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Abstract

Algebra AFLP2 is proposed which is an extension of algebra AFP2 by labelling function. Denotational and
operational semantics are presented. Interrelation of the net equivalences from [19, 20, 21] with equivalences of the
algebra is considered. Analogs of the net equivalences are defined on formulas of AFLP2, and the accordance of
these equivalences with their prototypes is established.
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1 Introduction

The importance of a proper understanding of the basic issues concerning the behaviour of systems with indepen-
dent (concurrent or distributed) execution of components became obvious over the last decades. For specification of
concurrent systems and processes and investigation of their behavioural properties a number of formal models were
proposed. In algebraic calculi, which are one of such models, a process is specified by an algebraic formula, and the
verification of process properties is accomplished by means of equivalences, axioms and inference rules. As mentioned
in [22], the advantages of process algebras are: their modularity (by definition), well-developed equivalence notions,
algebraic laws and complete proof systems.

In [5, 6] a number of algebras of concurrent nondeterministic processes (AFP0, AFP1, AFP2) were proposed.
Descriptive and analytical algebra AFP2 (Algebra of Finite Processes) with semantics based on posets with non-
actions and deadlocked actions combines mechanisms both for specification of processes and for the derivation of their
behavioural properties. The algebra is close to such calculi as TCSP [4] and CCS [13].

It has three basic operations (alternative, concurrency, precedence) and three auxilary ones (disjunction, “not
occur”,“mistaken not occur”). Comparing with CCS, one can see that CCS does not contain the auxilary operations
of AFP2. In addition, alternative and precedence operations in AFP2 are more flexible than nondeterministic choice
and prefix in CCS respectively.

Formulas of AFP2 are combined by the operations from symbols of three alphabets (actions, non-actions, dead-
locked actions). Non-actions with disjunction and “not occur” operations are used to preserve information about
nondeterminism in sequential components of a process. Deadlocked actions with operation “mistaken not occur” are
used to represent some contradictions in a process specification.

Unlike AFP2, CCS does not contain non-actions and deadlocked actions, but it has co-actions which are used for
binary synchronization. An advantage of AFP2 is a not binary mechanism of action synchronization by names which
is close to the net one. In accordance with the mechanism all equally named actions are synchronized, and the only
event is considered to correspond to these actions. It permits us to specify the processes which cannot be represented
(or it is not trivial to do) by formulas of other algebras (for example, CCS or algebra of event structures [2, 3]), where
the unique event is associated with each action occurrence in a formula [5]. But it is impossible to specify within
AFP2 the process with two concurrent actions having the same name.

We introduce an algebra AFLP2 (Algebra of Finite Labelled Processes) on the basis of AFP2 by imposing the
global labelling to event symbols which are combined into formulas. Hence, the formulas of AFLP2 specify labelled
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nondeterministic processes where some different events may be equally labelled, unlike AFP2-formulas. Thus, using
AFLP2 we can specify a much wider class of processes than in AFP2.

In AFLP2, denotational and operational semantics are introduced on the basis of labelled posets (lposets) with
non-events and deadlocked events, and their coincidence is established. The semantical equivalence of AFLP2-formulas
is defined, and sound and complete axiom set corresponding to the equivalence is presented.

It is demonstrated that by means of AFLP2 one can analyze the behaviour of weakly labelled A-nets (i.e. A-nets
[10, 12] which may have noninjective labelling function). The net equivalences considered in [19, 20, 21] are treated
on this subclass of Petri nets. Semantical equivalences (usual and observational) of AFLP2 are transferred to weakly
labelled A-nets, and their interrelation with the net equivalences is examined.

Analogs of the net equivalences are introduced on AFLP2-formulas, and their accordance with original net equiv-
alences is proved. So, we can add simple definitions of the basic net equivalences on formulas of AFLP2 to the
advantages of the algebra.

At last the fact is established that semantical equivalence of AFLP2 is the only one which is a congruence w.r.t.
operations of the algebra.

The paper is organized as follows. In Section 2 algebra AFLP2 is presented. In Subsection 2.1 a syntax of the
algebra is introduced. Subsection 2.2 is devoted to denotational semantics of the algebra. Axiomatization of equivalence
based on denotational semantics is proposed in Subsection 2.3. Completeness of the axiom system is proved using the
notion of canonical form of AFLP2-formulas, which is defined in Subsection 2.4. Operational semantics is presented
in Subsection 2.5. Equivalences from [19, 20, 21] are treated on weakly labelled A-nets in Section 3. Interrelation
of these net equivalences and semantical equivalences of AFLP2 which have been transferred to nets is studied in
Section 4. Analogs of the net equivalences are defined on AFLP2-formulas in Section 5. In Subsection 5.1 process
subformulas are introduced. In Subsection 5.2 trace, in Subsection 5.3 bisimulation, and in Subsection 5.4 conflict
respecting equivalences are defined. Subsection 5.4 is devoted to the interrelation of the net equivalences with their
analogs in AFLP2. Section 6 is a conclusion which contains a review of the results obtained and some directions of
further research.

Let us note that the definitions of multisets, nets, lposets, pomsets, causal nets, processes, ST-processes and
mappings (label-preserving bijection ≈, homomorphism v, isomorphism ') and other concepts which are used in the
paper can be found in [19, 20].

2 Algebra AFLP2

2.1 Syntax

Let Ev = {e, f, . . .} be an alphabet of symbols of (ordinary) events, Ev = {ē, f̄ , . . .} be symbols of non-events and
∆Ev = {δe, δf , . . .} be symbols of deadlocked events. Let us denote Êv = Ev∪Ev∪∆Ev. Symbols of Êv are combined
into formulas by operations ; (precedence), 5 (exclusive or, alternative), ‖ (concurrency), ∨ (disjunction, union), ee
(“not occur”), ẽe (“mistaken not occur”). We introduce Act = {a, b, . . .}, an alphabet of action symbols (labels). A
global labelling function lab : Ev → Act binds an action with each event. The function is extended to Ev ∪ ∆Ev as
follows: lab(ē) = lab(e) and lab(δe) = δlab(e).

A formula of AFLP2 in a basis Êv is defined by the following production system.

E ::= e | ē | δe | eeE | ẽeE | E; F | E‖F | E 5 F | E ∨ F

Here e ∈ Ev, ē ∈ Ev, δe ∈ ∆Ev are elementary formulas. We denote by AFLP2 a set of all formulas of AFLP2.
Let E be a formula of AFLP2. A set Ev(E) is defined as follows.

1. Ev(e) = Ev(ē) = Ev(δe) = e;

2. Ev(¬E) = Ev(E), ¬ ∈ {ee, ẽe};
3. Ev(E ◦ F ) = Ev(E) ∪ Ev(F ), ◦ ∈ {; , ‖,5,∨}.

Let us introduce also Ev(E) = {ē | e ∈ Ev(E)}, ∆Ev(E) = {δe | e ∈ Ev(E)} and Êv(E) = Ev(E)∪Ev(E)∪∆Ev(E).
One can associate with every formula E of AFLP2 a local labelling function lE = labdEv(E), which labels event

symbols of the formula.
Let us define a contents of E, cont(E), as follows.

1. cont(e) = e, cont(ē) = ē, cont(δe) = δe;

2. cont(¬E) = cont(E), ¬ ∈ {ee, ẽe};
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3. cont(E ◦ F ) = cont(E) ∪ cont(F ), ◦ ∈ {; , ‖,5,∨}.
We introduce also cont+(E) = cont(E)∩Ev — a set of events of E, cont−(E) = cont(E)∩Ev — a set of non-events
of E, ∆cont(E) = cont(E) ∩∆Ev — a set of deadlocked events of E.

Let E and E′ be formulas of AFLP2. E and E′ are isomorphic, notation E ' E′, if these formulas coincide up to
associativity rules w.r.t. ; , ‖,∨,5 and commutativity rules w.r.t. ‖,∨,5.

Example 1 (e‖f‖ḡ) ∨ (g‖ē‖f̄) ' (ē‖f̄‖g) ∨ (f‖e‖ḡ).

2.2 Denotational semantics

A lposet is a triple ρ = 〈X,≺, l〉, where:

• X ⊆ Êv;

• ≺⊆ X ×X is a strict partial order over X, a precedence relation;

• l : Ev(X) → Act is a labelling function.

Let us note that Ev(X) = {e | (e ∈ X) ∨ (ē ∈ X) ∨ (δe ∈ X)}. We define also Ev(X) = {ē | e ∈ Ev(X)}, ∆Ev(X) =
{δe | e ∈ Ev(X)} and Êv(X) = Ev(X) ∪Ev(X) ∪∆Ev(X). We denote by X+ = X ∩Ev — a subset of events of X,
X− = X ∩ Ev — a subset of non-events of X, ∆X = X ∩∆Ev — a subset of deadlocked events of X.

Since now we will consider lposets which satisfy the following conditions.

1. e, ē and δe do not occur in X together, i.e. e occurs in X, or ē, or δe;

2. partial order ≺ is irreflexive;

3. ∀x, y ∈ X− ∪∆X (x 6≺ y)&(y 6≺ x), i.e. all elements of X− ∪∆X are incomparable;

4. ∀x ∈ X+ ∀y ∈ X− ∪∆X (x 6≺ y)&(y 6≺ x), i.e. all elements of X+ and X− ∪∆X are incomparable.

We write ρ / ρ′ when ρ is a strict prefix of ρ′ (in usual sense) and ρ/ρ′ when ρ is a prefix of ρ′, i.e. ρ / ρ′ or ρ = ρ′.
The modified union of lposets is defined as follows.

ρ∪̃ρ′ =





ρ, ρ′/ρ;
ρ′, ρ/ρ′;
{ρ, ρ′}, otherwise.

The modified union absorbs the computations which can be continued in another behaviour (deterministic subprocess)
of nondeterministic process, and equal computations.

For defining denotational semantics of AFLP2 the following operations over lposets are introduced: ; (precedence),
‖ (concurrency), 5 (alternative), ee (not occur), ẽe (mistaken not occur). If lposet ρ, constructed by means of these
operations, does not satisfy the conditions 1-4 mentioned above, we “correct” it using new auxilary regularization
operation [ρ]. This operation singles out the maximal prefix of ρ “before” some contradictions in process specification
arise. All the events specified in this process behaviour occuring “after” these contradictions, are announced as the
deadlocked events.

Let D1 = {δe | (e ∈ X)&(e ≺ e)} ∪ {δe | (e ∈ X)&(ē ∈ X)} ∪ {δe | (e ∈ X)&(δe ∈ X)} ∪ {δe | (ē ∈ X)&(δe ∈
X)} ∪∆X , D2 = {δe | (e ∈ X)&(δf ∈ D1)&(δf ≺ e)} and D3 = {δe | ē ∈ X}. We define a set D as follows.

D =
{ ∅, D1 = ∅;

D1 ∪D2 ∪D3, otherwise.

Then [ρ] = 〈D, ∅, ldEv(D)〉 ∪ 〈Y,≺ ∩(Y × Y ), ldEv(Y )〉, where Y = X \ Êv(D). It is easy to verify that if lposet ρ
satisfies the conditions 1-4, then [ρ] = ρ.

Let us introduce the lposet operations in the following way. Let ρ = 〈X,≺, l〉, ρ′ = 〈X,≺′, l′〉.
Not occur eeρ = 〈Ev(X), ∅, l〉.

Mistaken not occur ẽeρ = 〈∆Ev(X), ∅, l〉.
Precedence ρ; ρ′ = [〈X ∪X ′,≺ ∪ ≺′ ∪(X+ × (X ′)+) ∪ (∆X × (X ′)+), l ∪ l′〉].
Concurrency ρ‖ρ′ = [〈X ∪X ′, (≺ ∪ ≺′)?, l ∪ l′〉], where (≺ ∪ ≺′)? is a transitive closure of relation ≺ ∪ ≺′.
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Alternative ρ5 ρ′ = [〈X ∪Ev(X ′),≺, l ∪ l′〉]∪̃[〈Ev(X) ∪X ′,≺′, l ∪ l′〉]. It should be noted that ρ5 ρ′ is not lposet
but a set of two lposets describing alternative behaviours of nondeterministic process, i.e. if ρ occurs, then ρ′

does not occur, and vice versa.

We extend the operations introduced above to sets of lposets in the natural way. Let P = ∪n
i=1ρi and P ′ = ∪m

j=1ρ
′
j be

sets of lposets. Then ¬P = ∪̃n
i=1¬ρi, where ¬ ∈ {ee, ẽe} and P ◦ P ′ = ∪̃n

i=1(∪̃m
j=1ρi ◦ ρ′j), where ◦ ∈ {; , ‖,5}.

A nondeterministic concurrent process is characterized by the set of lposets, associated with all its possible alter-
native behaviours. Denotational semantics of AFLP2 is a mapping DFL2 from AFLP2 into set of lposets, defined as
follows.

1. DFL2[e] = 〈{e}, ∅, le〉, DFL2[ē] = 〈{ē}, ∅, le〉, DFL2[δe] = 〈{δe}, ∅, le〉, where le = (e, lab(e));

2. DFL2[¬E] = ¬DFL2[E], ¬ ∈ {ee, ẽe};
3. DFL2[E ◦ F ] = DFL2[E] ◦ DFL2[F ], ◦ ∈ {; , ‖,5};
4. DFL2[E ∨ F ] = DFL2[E]∪̃DFL2[F ].

Two AFLP2-formulas E and E′ are equivalent w.r.t. denotational semantics DFL2, notation E ≈DF L2 E′ iff
DFL2[E] = DFL2[E′].

If ρ = 〈X,≺, l〉 is an lposet, then ρ+ = 〈X+,≺, ldX+〉 is the lposet, corresponding to the “observable” part of ρ over
Ev. For every formula E of AFLP2 DFL2[E] = ∪n

i=1ρi is a set of lposets, which characterize a labelled nondeterministic
prosess specified by the formula. “Observable” part of this set is defined as follows: D+

FL2[E] = ∪n
i=1ρ

+
i . Two

formulas E and E′ are observationally equivalent w.r.t. denotational semantics DFL2, notation E ≈D+
F L2

E′ iff

D+
FL2[E] = D+

FL2[E
′].

A context C is an expression which is a formula of AFLP2, where zero or more subformulas are replaced by “holes”
to be filled by other AFLP2-formulas [6]. C[E] means putting of the formula E in each such “hole”.

Proposition 1 For any formulas E and E′ of AFLP2 E ≈DF L2 E′ ⇔ ∀C C[E] ≈DF L2 C[E′].

Proof. As Lemma 5.1 in [6]. ut
Thus, ≈DF L2 is a congruence w.r.t. operations of AFLP2. Let us note that ≈D+

F L2
is not a congruence. It is

demonstrated by the following example.

Example 2 Let E = e5 f , E′ = (e5 f)‖e‖f and lab(e) = a, lab(f) = b, lab(g) = c. Then D+
FL2[E] = D+

FL2[E
′] =

{〈{e}, ∅, l1〉, 〈{f}, ∅, l2〉, where l1(e) = a, l2(f) = b and E ≈D+
F L2

E′. But D+
FL2[E; g] = {〈{e, g},≺1, l1〉, 〈{f, g},≺2

, l2〉}, whereas D+
FL2[E

′; g] = {〈{e}, ∅, l3〉, 〈{f}, ∅, l4〉}, where e ≺1 g, f ≺2 g, l1(e) = l3(e) = a, l2(f) = l4(f) =
b, l1(g) = l2(g) = c, and E; g 6≈D+

F L2
E′; g. Let us note that in the process specified by the formula E′; g an action c

can never happen unlike E; g.

2.3 Axiomatization

In accordance with equivalence ≈DF L2 the axiom system ΘFL2 is introduced. It is represented in Table 1, where
E,F, G ∈ AFLP2, e ∈ Ev, ē ∈ Ev, δe ∈ ∆Ev.

The axiom system ΘFL2 is sound for ≈DF L2 , i.e. if E = E′ is an axiom of ΘFL2, then E ≈DF L2 E′. The proof
consists in determining the semantics of E and E′ and comparing them. It can be done directly by the definitions of
operations over lposets.

In order to prove that ΘFL2 is complete for ≈DF L2 , we introduce a canonical form of AFLP2-formula.

2.4 Canonical form of formulas

Let us introduce the concepts associated with the structure of AFLP2-formulas.
Precedence is a formula E1; . . . ; En =;ni=1 Ei, Ei ∈ Êv (1 ≤ i ≤ n);
Conjunction is a formula E1‖ . . . ‖En = ‖n

i=1Ei, where Ei are precedences (1 ≤ i ≤ n).
Disjunction is a formula E = E1 ∨ . . . ∨ En = ∨n

i=1Ei, where Ei (1 ≤ i ≤ n) are conjunctions.
Normal conjunction is a conjunction E = ‖n

i=1Ei, for which the following requirements are valid.

1. Every formula Ei (1 ≤ i ≤ n) has one of the forms:

(a) elementary formula e (e ∈ Ev), ē (ē ∈ Ev), δe (δe ∈ ∆Ev);

(b) elementary precedence (e; f), where e, f ∈ Ev and e 6= f ;
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1. Associativity 5. Structural properties
1.1 E‖(F‖G) = (E‖F )‖G 5.1 ē; E = ē‖E
1.2 E 5 (F 5G) = (E 5 F )5G 5.2 E; ē = E‖ē
1.3 E ∨ (F ∨G) = (E ∨ F ) ∨G 5.3 E‖(E; F ) = (E; F )
1.4 E; (F ;G) = (E;F ); G 5.4 F‖(E; F ) = (E; F )
2. Commutativity 5.5 E; F ;G = (E; F )‖(F ; G)
2.1 E‖F = F‖E 5.6 (E;F )‖(F ; G) = (E; F )‖(F ; G)‖(E; G)
2.2 E 5 F = F 5 E 5.7 E‖E = E
2.3 E ∨ F = F ∨ E 5.8 E ∨ E = E
3. Distributivity 5.9 E ∨ F = E, if F / E (a concept of strict
3.1 (E‖F ); G = (E; G)‖(F ; G) prefix / for formulas will be defined further)
3.2 E; (F‖G) = (E; F )‖(E;G) 6. Axioms for deadlocked events and ẽe
3.3 (E ∨ F ); G = (E;G) ∨ (F ; G) 6.1 e‖ē = δe

3.4 E; (F ∨G) = (E;F ) ∨ (E; G) 6.2 e; e = δe

3.5 (E ∨ F )‖G = (E‖G) ∨ (F‖G) 6.3 e‖δe = δe

3.6 E 5 (F‖G) = (E 5 F )‖(E 5G) 6.4 δe; E = δe‖(ẽeE)
4. Axioms for 5 and ee 6.5 E; δe = E‖δe

4.1 E 5 F = (E‖(eeF )) ∨ ((eeE)‖F ) 6.6 δe‖(eeE) = δe‖(ẽeE)
4.2 ee(E‖F ) = (eeE)‖(eeF ) 6.7 ẽee = δe

4.3 ee(E ∨ F ) = (eeE) ∨ (eeF ) 6.8 ẽeē = δe

4.4 ee(E; F ) = (eeE)‖(eeF ) 6.9 ẽeδe = δe

4.5 eee = ē 6.10 ẽe(E‖F ) = (ẽeE)‖(ẽeF )
4.6 eeē = ē 6.11 ẽe(E;F ) = (ẽeE)‖(ẽeF )
4.7 eeδe = ē 6.12 ẽe(E ∨ F ) = (ẽeE) ∨ (ẽeF )

Table 1: Axiom system ΘFL2

2. If there is a formula Ei (1 ≤ i ≤ n) δe (δe ∈ ∆Ev), then there is not another one Ej (1 ≤ j ≤ n) s.t.
Ej = f̄ (f̄ ∈ Ev);

3. For any formulas Ei and Ej (1 ≤ i 6= j ≤ n) s.t. Ev(Ei) ∩ Ev(Ej) 6= ∅, Ei and Ej have a form of different
elementary precedences;

4. For any pair Ei = (e; f) and Ej = (f ; g) (1 ≤ i 6= j ≤ n) there exists a formula Ek = (e; g) (1 ≤ k ≤ n)
describing the transitive closure of the precedence relation for events e, f and g.

Let E and F be normal conjunctions. A formula E is a strict prefix of F , notation E /F , if the following requirements
are satisfied.

1. cont+(E) ⊂ cont+(F );

2. elementary precedence (e; f) is a conjunctive member of F and f ∈ cont+(E) iff (e; f) is a conjunctive member
of E;

A formula E is a prefix of F , notation E/F , if E / F or E ' F .

Example 3 In the formula (e‖g‖f̄‖h̄‖k̄)∨(g‖δe‖δf‖δh‖δk)∨(e‖δf‖δg‖δh‖δk)∨((f ;h)‖(f ; k)‖ē‖ḡ) the second and third
conjunctions are strict prefixes of the first one.

A formula E is in canonical form, if it is a disjunction E = ∨n
i=1Ei and the following conditions are satisfied.

1. Ei (1 ≤ i ≤ n) is a normal conjunction;

2. for any Ei and Ej (1 ≤ i 6= j ≤ n) Ei 6' Ej ;

3. for any Ei and Ej (1 ≤ i 6= j ≤ n) ¬(Ei / Ej ∨ Ej / Ei).

Each disjunctive member of canonical form characterizes one of the possible alternative behaviours of the nonde-
terministic process specified by the formula and has a special form practically coinciding with lposet corresponding to
this behaviour.
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Example 4 The formula (e‖g‖f̄‖h̄‖k̄) ∨ ((f ; h)‖(f ; k)‖ē‖ḡ) is in canonical form which is the representation of two
lposets corresponding to the deterministic (sub)processes of the nondeterministic process specified by the formula.

A notation E =ΘF L2 E′ means that the equation may be proved using the axiom system ΘFL2.
The following theorems present the required completeness result for ΘFL2.

Theorem 1 Every formula of AFLP2 may be proved equal to unique up to isomorphism canonical form using ΘFL2.

Proof. As Theorem 6.1 in [6]. ut
We will denote a set of all canonical forms of formula E by canon(E). Canonical forms from canon(E) coicide up

to associativity and commutativity rules for ∨ and ‖.

Theorem 2 For any formulas E and E′ of AFLP2 the following statement is valid: E ≈DF L2 E′ ⇔ E =ΘF L2 E′.

Proof. As Theorem 6.2 in [6]. ut
Hence, we can find whether any two formulas E and E′ of AFLP2 equivalent w.r.t. denotational semantics. To

do this, it is sufficient to reduce them to their canonical forms F and F ′ and check them by isomorphism.
The author proposed in [18] the term rewriting system RWS2 and wrote program CANON based on it to automat-

ically transform any AFP2-formula into canonical form. We can use CANON also in AFLP2 to check automatically
formulas of the algebra by equivalence ≈DF L2 using their canonical forms which may be obtained as outputs of CANON.

2.5 Operational semantics

A transition system is a quadruple TS = 〈S,L,→, sTS〉, where:

• S is a set of states;

• L is a set of labels;

• →⊆ S × L× S is a set of transitions;

• sTS ∈ S is an initial state.

The transition (s, a, s̃) will be denoted by s
a−→ s̃. We will consider only finite transition systems, i.e. systems having

finite sets of states.
Let us consider the following transition system over AFLP2-formulas. If F is AFLP2-formula which is in canonical

form (or it is canonical form, for short), then TS(F ) = 〈AFLP2 ∪ {ν},AFLP2,→TS , F 〉, where:

• A set of states, AFLP2 ∪{ν}, consists of AFLP2-formulas supplemented by special symbol of “empty” formula
ν, denoting the process which does nothing and successfully terminates. For any AFLP2-formula E the folowing
equations are supposed: E‖ν = ν‖E = E and cont(ν) = ∅.

• A set of labels consists of conjunctions of AFLP2 over alphabet Ev. Each such conjunction G is a representation
of lposet ρG = 〈cont(G),≺?

G, lG〉, where e ≺G f ⇔ (e; f) is a conjunctive member of G, and ≺?
G is a transitive

closure of ≺G.

• A transition E
G−→ Ẽ ∈→TS represents the transformation of the formula E into Ẽ as a result of execution of

lposet ρG.

• An initial state of the transition system is F .

The set of transitions of TS(F ) is defined by the following inference rules.

1. Elementary event

1.1 e
e−→ ν

2. Elementary precedence

2.1 e; f e−→ f

2.2 e; f
e;f−→ ν

3. Concurrency
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3.1 E
G−→Ẽ

E‖F G−→Ẽ‖F
cont(G) ∩ cont(F ) = ∅

3.2 F
G−→F̃

E‖F G−→E‖F̃
cont(G) ∩ cont(E) = ∅

3.3 E
G−→Ẽ, F

H−→F̃

E‖F G‖H−→ Ẽ‖F̃
cont(G) ∩ cont(F̃ ) = ∅, cont(H) ∩ cont(Ẽ) = ∅

4. Disjunction

4.1 E
G−→Ẽ

E∨F
G−→Ẽ

cont(G) 6⊆ cont(F )

4.2 F
G−→F̃

E∨F
G−→F̃

cont(G) 6⊆ cont(E)

4.3 E
G−→Ẽ, F

H−→F̃

E∨F
G−→Ẽ∨F̃

canon(G) ' canon(H)

Let TS(F ) = {G | ∃F̃ : F
G−→ F̃} be a set of formulas of TS(F ). If F

G−→ F̃ is a transition of TS(F ), and no inference
rule is applied to F̃ , then F̃ is a terminal formula, and G is a maximal formula of TS(F ). It is easy to see that F̃ is
either ν or conjunction of symbols from Ev or ∆Ev and cont(G) ⊆ Ev. A terminal formula of TS(F ) contains the
information about events which cannot happen in present behaviour of the nondeterministic process specified by F .
Let us denote by TSmax(F ) a set of maximal formulas of TS(F ).

An operational semantics of AFLP2 is a mapping OFL2 from AFLP2 into set of lposets which is defined as follows.
Let E be a formula of AFLP2 and F ∈ canon(E). Then OFL2[E] = {ρG‖F̃ | G ∈ TSmax(F ) & F

G−→ F̃}. For any
formula E of AFLP2 OFL2[E] = ∪n

i=1ρi is a set of lposets which characterize the labelled process specified by the
formula. Therefore, the definition of operational semantics does not depend on concrete canonical form F of formula
E.

“Observable” part of the set is defined as follows: O+
FL2[E] = ∪n

i=1ρ
+
i .

Given a normal conjunction E of AFLP2. E+ denotes a formula which is a result of removing the symbols of
Ev ∪∆Ev from E. Formally, E+ is defined as follows.

1. e+ = e, ē+ = δ+
e = ν,

2. (e; f)+ = e; f ,

3. (E ◦ F )+ = E+ ◦ F+, ◦ ∈ {‖,∨}.
The following proposition is devoted to the interrelation between maximal formulas of TS(F ) and disjunctive

members of F .

Proposition 2 Let F = ∨n
i=1Fi be canonical form. Then:

1. For any G ∈ TSmax(F ) and terminal formula F̃ with F
G−→ F̃ there exists a disjunctive member Fj (1 ≤ j ≤ n)

of F s.t. G‖F̃ ' Fj.

2. For any disjunctive member Fj of F there exist G ∈ TSmax(F ) and terminal formula F̃ with F
G−→ F̃ s.t.

G‖F̃ ' Fj.

Proof.

1. We have ∨n
i=1Fi

G−→ F̃ . Since F̃ does not contain disjunction operations, rules 4.1 and 4.2 were applied several
times to ∨n

i=1Fi. Consequently, ∃j (1 ≤ j ≤ n) Fj
G−→ F̃ . Since cont(G) ⊆ Ev and cont(F̃ ) ⊆ Ev ∪ ∆Ev,

Fj ' F+
j ‖F̃ and F+

j ‖F̃ G−→ F̃ . By rule 3.1 we have F+
j

G−→ ν. It is easy to prove with induction by structure

of formulas that for some normal conjunction E, E
G−→ ν implies E = G. In our case we have F+

j = G. Thus,
Fj ' F+

j ‖F̃ = G‖F̃ .

2. Obviously, F+
j

F+
j−→ ν. For conjunction F̃ of symbols from cont−(Fj) or ∆cont(Fj) (since symbols from Ev

and ∆Ev may not occur in Fj together) we have Fj ' F+
j ‖F̃ . By rule 3.1 F+

j ‖F̃
F+

j−→ F̃ . Consequently,

Fj

F+
j−→ F̃ . By rules 4.1, 4.2 ∨n

i=1Fi

F+
j−→ F̃ , since for disjunctive members of canonical form the following is valid:

cont(Fk) 6⊆ cont(Fl) (1 ≤ k 6= l ≤ n). Therefore, F+
j = G ∈ TSmax(F ). ut
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The following proposition says about interrelation between observable part of OFL2[E] and set of maximal formulas
of TS(F ) for F ∈ canon(E).

Proposition 3 Let E be a formula of AFLP2 and F ∈ canon(E). Then O+
FL2[E] = {ρG | G ∈ TSmax(F )}.

Proof. Let ρG‖F̃ ∈ OFL2[E]. Since cont(G) ⊆ Ev and cont(F̃ ) ⊆ Ev ∪ ∆Ev, we have (G‖F̃ )+ = G. Consequently,
ρ+

G‖F̃ = ρ(G‖F̃ )+ = ρG. ut
Now we can present the main result concerning the interrelation between denotational and operational semantics

of AFLP2.

Theorem 3 Let E be a formula of AFLP2. Then OFL2[E] = DFL2[E].

Proof. Let F = ∨n
i=1Fi ∈ canon(E). By definition of canonical form the following equation takes place: DFL2[E] =

∪n
i=1ρFi

. Let ρG‖F̃ ∈ OFL2[E]. By Proposition 2 there exists a disjunctive member Fj (1 ≤ j ≤ n) of F s.t. G‖F̃ ' Fj .
Hence, ρG‖F̃ = ρFj

, and we have OFL2[E] ⊆ DFL2[E]. The backward inclusion is proved analogously. ut

3 Equivalences on weakly labelled A-nets

Algebra AFP0 is dual to AFP2 descriptive calculus [5]. Its formulas specify finite A-nets which can form a semantic
domain for a subclass of “structured” formulas of AFP2 (i.e. formulas over Ev with operations 5, ‖, ;, in our termi-
nology). The labelling on AFP0-formulas may be introduced and a new algebra AFLP0 may be obtained as a result.
Then formulas of AFLP0 will specify finite weakly labelled A-nets (i.e. A-nets having labelling function which may be
noninjective).

Formally, A-net [12, 10] is an acyclic ordinary strictly labelled net N = 〈PN , TN , FN , lN ,MN 〉 with the following
properties.

1. ∀p ∈ PN (•p 6= ∅) ∨ (p• 6= ∅), i.e. there are no isolated places;

2. ∀p, q ∈ PN (•p = •q)&(p• = q•) ⇒ p = q, i.e. there are no “superfluous” places;

3. ∀t ∈ TN (•t 6= ∅)&(t• 6= ∅), i.e. all transitions have input and output places;

4. ∀x ∈ PN ∪ TN |{y | y ≺N x}| < ∞, i.e. the set of causes is finite (here ≺N= F ?
N is a transitive closure of FN );

5. ∀p ∈ PN ∀t, u ∈ TN t, u ∈ •p ⇒ t al u, i.e. transitions with common output place are alternative;

6. MN = {p ∈ PN | •p = ∅}, i.e. an initial marking is a set of input places of the net.

The alternative relation, denoted by al, is defined as follows. Let t, u ∈ TN for A-net N . t al u, if the following
requirements are valid.

1. (t 6≺N u)&(u 6≺N t);

2. (•t ∩ •u 6= ∅) ∨ (∃p ∈ •t ∀t′ ∈ •p t′ al u) ∨ (∃q ∈ •u ∀u′ ∈ •q t al u′) ∨ (t = u).

Let us note that in original definition [12] A-nets are considered as nonlabelled, that corresponds to the requirement
of strict labelling in present definition (i.e. no two different transitions have the same label). Since we will consider
nets having only finite processes, item 4 of A-nets definition may be ignored. Items 5 and 6 of the definition imply a
safeness of A-nets.

Let us define a mapping ΨL : AFLP0 → AFLP2 as follows.

1. ΨL(e) = e,

2. ΨL(E;FL0 F ) = E;FL2 F ,

3. ΨL(E‖FL0F ) = E‖FL2F ,

4. ΨL(E 5FL0 F ) = E 5FL2 F .

Symbol “FL0” marks the operations of AFLP0, and symbol “FL2” is used for AFLP2 ones. Denotational semantics
of AFLP0 is a mapping DFL0, which associates with every formula E of the algebra a set of maximal C-subnets
(O-subnets, in terms of [5]) of finite A-net N , specified by the formula. Let us note that with every causal net
C = 〈PC , TC , FC , lC〉 we can associate lposet ρC = 〈TC ,≺C ∩(TC × TC), lC〉.
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Theorem 4 Let E be a formula of AFLP0 and F be a formula of AFLP2 s.t. F = ΨL(E). Then {ρC | C ∈
DFL0[E]} = D+

FL2[F ].

Proof. As Theorem 4.3 in [5], taking into account the information about labelling of E and F . ut
Hence, with every formula E of AFLP0 which specifies finite weakly labelled A-net N , we can associate the formula

F of AFLP2 s.t. the set of lposets of maximal C-subnets of N coincides with the set of lposets of maximal deterministic
(sub)processes of the nondeterministic process specified by F . Let us note that the result of the theorem is valid for
any (not only maximal) initial C-subnets of N and for any deterministic processes specified by F . In such a case initial
deterministic processes will correspond to initial C-subnets.

Let us note also that a mapping ΨL only replaces operations of AFLP0 by AFLP2 ones. Consequently, if we have
finite weakly labelled A-net N specified by AFLP0-formula E, we can analyze its behaviour by means of the same
AFLP2-formula E.

Example 5 Let us consider AFLP2-formulas E and E′ which are associated with nets N and N ′ in Figures 1 and
2. Let lab(e) = lab(ei) = a, lab(f) = lab(fi) = b, lab(g) = lab(gi) = c, lab(h) = lab(hi) = d (1 ≤ i ≤ 3).

• In Figure 1(a) E = e‖f, E′ = (e1; f1)5 (e2; f2).

• In Figure 1(b) E = (e1; f)5 e2, E′ = e; f .

• In Figure 1(c) E = (e; f1)‖(f1 5 f2), E′ = e‖f .

• In Figure 1(d) E = (e; f)‖e, E′ = e; f .

• In Figure 1(e) E = (e; f)‖(g; h), E′ = (e; (f1 5 f2))‖(e; (f2 5 h1))‖(g; (f2 5 h1))‖(g; (h1 5 h2))‖(f1 5 h2).

• In Figure 2(a) E = ((e1 5 e2); f1)‖(f1 5 f2)‖e1‖e2‖f2, E′ = ((e1; f1)5 (e2; f3))‖(f1 5 f2)‖(e2 5 f2)‖e1‖f3.

• In Figure 2(b) E = (e; f ; h)‖(e; g2)‖(g1 5 g2)‖f‖g1, E′ = (e; (f1 5 f2); h)‖(e; g2)‖(f2 5 g1)‖(g1 5 g2)‖f1.

• In Figure 2(c) E = e, E′ = e1 5 e2.

• In Figure 2(d) E = (e5 f)‖e‖f, E′ = (e5 f)‖(e; g)‖(f ; g).

In [19, 20, 21] a wide set of equivalences (considered in the literature as well as proposed by the author) was
examined on nets. These equivalences may be partitioned as follows. Trace equivalences: interleaving (denoted by
≡i) [9], step (≡s) [16], partial word (≡pw) [19], pomset (≡pom) [8] and process (≡pr) [19]. Bisimulation equivalences:
interleaving (↔i) [15], step (↔s) [14], partial word (↔pw) [23], pomset (↔pom) [2] and process (↔pr) [1]. ST-
bisimulation equivalences: interleaving (↔iST ) [8], partial word (↔pwST ) [23], pomset (↔pomST )[23] and process
(↔prST ) [19]. History preserving bisimulation equivalences: partial word (↔pwh) [19], pomset (↔pomh) [17] and
process (↔prh) [19].

Since then we considered the following equivalence notions. Conflict respecting equivalences: prime event structure
(PES) (≡pes) and occurrence (≡occ) [8]. Isomorphism (') is a coincidence of nets up to renaming of places and
transitions. The author proved that correlation of all the equivalences is depicted by graph in Figure 4 without ≈DF L2

and ≈D+
F L2

. No additional nontrivial arrow may be added in the graph.
Now we will consider the equivalences on weakly labelled A-nets. Unlike A-nets, where most of the equivalence

notions are merged, interrelation of the equivalences on weakly labelled A-nets is as well as on nets without any
restrictions and it may be represented by the same graph.

Theorem 5 Let N and N ′ be weakly labelled A-nets and↔∈ {≡,↔,'}, ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST, pomST,
prST, pwh, pomh, prh, pes, occ}. Then N ↔? N ′ ⇒ N ↔?? N ′ iff there exists a directed path from ↔? to ↔?? in the
graph in Figure 4 (without ≈DF L2 and ≈D+

F L2
).

Proof. ⇐ By Theorem 1 in [19, 20].
⇒ The absence of additional nontrival arrows is proved by the following examples on weakly labelled A-nets.

• In Figure 1(a) N↔iN
′, but N 6≡s N ′, since only in N actions a and b can be executed concurrently.

• In Figure 1(e) N↔iST N ′, but N 6≡pw N ′, since the net N corresponds to pomset s.t. even less sequential pomset
cannot be executed in N ′.

• In Figure 1(c) N↔pwhN ′, but N 6≡pom N ′, since only in N action b can depend on a.

• In Figure 1(d) N ≡pes N ′, but N 6≡pr N ′, since only in N a-labelled transition has additional output place.
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• In Figure 1(b) N ≡pr N ′, but N↔/ iN
′, since only in N action a can happen so that b cannot happen after it.

• In Figure 2(a) N↔prN
′, but N↔/ iST N ′, since only in N ′ action a can begin working so that no b can start

unless a finishes.

• In Figure 2(b) N↔prST N ′, but N↔/ pwhN ′, since only in N ′ actions a and b can happen so that the next action,
c, must depend on a.

• In Figure 2(c) N↔prhN ′, but N 6≡pes N ′, since only labelled event structure (LES) that corresponds to N ′ has
two conflict actions a.

• In Figure 2(d) N ≡occ N ′, but N 6' N ′, since only in N ′ there is a c-labelled transition (which can never be
fired). ut

The following example concludes this section.

Example 6 Let us consider the net N ′ in Figure 1(e). The corresponding AFLP2-formula is E′ = (e; (f1 5 f2))‖
(e; (f2 5 h1))‖(g; (f2 5 h1))‖(g; (h1 5 h2))‖(f1 5 h2), lab(e) = a, lab(f1) = lab(f2) = b, lab(g) = c, lab(h1) =
lab(h2) = d. Its canonical form is F ′ = ((e; f1)‖(e; h1)‖(g; h1)‖f̄2‖h̄2) ∨ ((e; f2)‖(g; f2)‖(g; h2)‖f̄1‖h̄1). The labelled
nondeterministic process specified by E′ has two lposets which are presented in Figure 3. In this figure labels of events
are in parentheses, and partial order is depicted by arrows.

Let us demonstrate that in TS(F ′) from initial formula F ′ a part of the first lposet can be executed which does not
contain the event f1. In the following instances of transition rules of TS(F ) the numbers of applied rules are under
arrows, and verification of conditions which associated with rules is in parentheses.

1. e; f1
e−→2.1 f1

2. e; h1
e;h1−→2.2 ν

3. (e; f1)‖(e; h1)
e‖(e;h1)−→3.3 f1‖ν ({e} ∩ ∅ = ∅, {e, h1} ∩ {f1} = ∅)

4. g; h1
g;h1−→2.2 ν

5. (e; f1)‖(e; h1)‖(g; h1)
e‖(e;h1)‖(g;h1)−→3.3 f1‖ν‖ν ({e, h1} ∩ ∅ = ∅, {g, h1} ∩ {f1} = ∅)

6. (e; f1)‖(e; h1)‖(g; h1)‖f̄2
e‖(e;h1)‖(g;h1)−→3.1 f1‖ν‖ν‖f̄2 ({e, g, h1} ∩ {f̄2} = ∅)

7. (e; f1)‖(e; h1)‖(g; h1)‖f̄2‖h̄2
e‖(e;h1)‖(g;h1)−→3.1 f1‖ν‖ν‖f̄2‖h̄2 ({e, g, h1} ∩ {h̄2} = ∅)

8. ((e; f1)‖(e; h1)‖(g; h1)‖f̄2‖h̄2) ∨ ((e; f2)‖(g; f2)‖(g; h2)‖f̄1‖h̄1)
e‖(e;h1)‖(g;h1)−→4.1 f1‖ν‖ν‖f̄2‖h̄2

({e, g, h1} 6⊆ {e, g, f2, h2, f̄1, h̄1})

Thus, F ′ G−→ F̃ ′ is a transition of TS(F ′), where G = e‖(e; h1)‖(g; h1), F̃ ′ = f1‖f̄2‖h̄2. Hence, in TS(F ′) lposet
ρG = 〈{e, g, h1},≺, l〉 can be executed from the initial state, where e ≺ h1, g ≺ h1, l(e) = a, l(g) = c, l(h1) = d.
As a result, we obtain the formula F̃ ′ = f1‖f̄2‖h̄2 containing the information that in present behaviour of the labelled
nondeterministic process, specified by E′, events f2 and h2 did not happen since some alternative with them events
(namely h1) happened. In addition one can see that in the present state, specified by F̃ ′, the event f1 can happen. As
a result, we will reach the state specified by the terminal formula f̄2‖h̄2 of TS(F ′).

Let us find the denotational semantics of E′. DFL2[E′] = {〈{e, f1, g, h1, f̄2, h̄2},≺1, l〉, 〈{e, f2, g, h2, f̄1, h̄1},≺2, l〉},
D+

FL2[E
′] = {〈{e, f1, g, h1},≺1, l1〉, 〈{e, f2, g, h2},≺2, l2〉}, where e ≺1 f1, e ≺1 h1, g ≺1 h1, e ≺2 f2, g ≺2 f2, g ≺2

h2, l(e) = l1(e) = l2(e) = a, l(f1) = l(f2) = l1(f1) = l2(f2) = b, l(g) = l1(g) = l2(g) = c, l(h1) = l(h2) = l1(h1) =
l2(h2) = d.
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Figure 1: Examples of weakly labelled A-nets
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Figure 2: Examples of weakly labelled A-nets (continued)
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Figure 3: Set of lposets of the labelled nondeterministic process

4 Interrelation of the net equivalences and semantical equivalences of
AFLP2

Any finite A-net, as it was proved in [11], can be represented by AFP0-formula using regularization algorithm.
Therefore, any finite weakly labelled A-net can be represented by AFLP0-formula with the use of the analogous
algorithm. In the previous section the mapping ΨL was defined which associates AFLP2-formula with every AFLP0-
formula and preserves the sets of lposets. Hence, one can associate AFLP2-formula E with every finite weakly labelled
A-net N s.t. the set of lposets of initial C-subnets of N coincides with the set of lposets of deterministic processes
specified by E.

In such a case it is clear that the concepts of formula equivalences of AFLP2 may be extended to nets. Given some
formula equivalence, we will consider two nets to be equivalent iff the formulas are equivalent which are associated
with these nets.

Let us consider the interrelation of the net and formula equivalences.

Theorem 6 Let N and N ′ be weakly labelled A-nets and ↔∈ {≡,↔,',≈}, ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST,
pomST, prST, pwh, pomh, prh, pes, occ,DFL2,D+

FL2}. Then N ↔? N ′ ⇒ N ↔?? N ′ iff there exists a directed path
from ↔? to ↔?? in the graph in Figure 4.

Proof. ⇐ Using Theorem 5 and the following notes.

• ≈+
DF L2

implies ≡pes. It is proved as follows. Let N ≈D+
F L2

N ′, E and E′ are the formulas which corresponds

to the nets N and N ′ respectively. We have D+
FL2[E] = D+

FL2[E
′] = ∪n

i=1ρi, ρi = 〈Xi,≺i, li〉 (1 ≤ i ≤ n).
On the basis of this set of lposets we can uniquely construct LES ξ = 〈∪n

i=1Xi,∪n
i=1 ≺i,#,∪n

i=1li〉, where
x#y ⇔ ∀i (1 ≤ i ≤ n) (x 6∈ Xi) ∨ (y 6∈ Xi). It is easy to see that E(N) = E(N ′) is an isomorphism class of ξ.
Consequently, N ≡pes N ′.

• ≈D+
F L2

is a consequence of ≈DF L2 , since ≈D+
F L2

does not respect the symbols of Ev ∪∆Ev.

⇒ Using Theorem 5 and the following examples of weakly labelled A-nets.

• A-nets N and N ′ in Figure 1(d) are associated with AFLP2-formulas E = (e; f)‖e and E′ = e; f , lab(e) =
a, lab(f) = b. Since DFL2[E] = DFL2[E′] = 〈{e, f},≺, l〉, where e ≺ f, l(e) = a, l(f) = b, we have N ≈DF L2 N ′,
but N 6≡pr N ′.

• Let us consider some weakly labelled A-nets N and N ′ which differ only by transition names. We have N ' N ′,
but N 6≈D+

F L2
N ′, since ≈D+

F L2
respects transition names (events).

• A-nets N and N ′ in Figure 2(d) are associated with AFLP2-formulas E = (e 5 f)‖e‖f and E′ = (e 5
f)‖(e; g)‖(f ; g), lab(e) = a, lab(f) = b. N ≈D+

F L2
N ′, but N 6≈DF L2 N ′, since DFL2[E] = {〈{e, δf}, ∅, l〉,

〈{f, δe}, ∅, l〉}, l(e) = a, l(f) = b, whereas DFL2[E′] = {〈{e, δf , δg}, ∅, l′〉, 〈{f, δe, δg}, ∅, l′〉}, l′(e) = a, l′(f) =
b, l′(g) = c. ut

5 Analogs of the net equivalences on AFLP2-formulas

In this section we introduce equivalences on formulas of AFLP2 which correspond to the net ones.
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≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pwh ↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

¾¾

'

?

?

?

?

?

?

?

?

?

?

?

??

≈D+
F L2

≈DF L2

≡pes ≡occ

?

?

?

?

¾

Figure 4: Correlation of the net equivalences and equivalences of AFLP2

5.1 Process subformulas

Let E be AFLP2-formula and F ∈ canon(E). A set of process subformulas of E is defined as follows: PSF (E) =
{G | G ∈ canon(H) & H ∈ TS(F )} ∪ {ν}. One can see that this definition does not depend on concrete canonical
form F of formula E, since PSF(E) contains all possible transpositions of conjunctive members of normal conjunctions
based on each formula H ∈ TS(F ). By definition, a process subformula is either ν or normal conjunction which is
a disjunctive member of F or prefix of such a member. We consider process subformulas up to isomorphism. Since
process subformulas are normal conjunctions, isomorphism on such formulas is a coincidence up to transposition of
conjunctive members. Let lposet ρν = 〈∅, ∅, ∅〉 correspond to empty formula ν.

We write G
Ĝ−→ G̃, if F

H−→ F ′, F ′ Ĥ−→ F ′′, F
H̃−→ F ′′ are transitions of TS(F ) and G ∈ canon(H), Ĝ ∈ canon(Ĥ),

G̃ ∈ canon(H̃). In such a case the process subformula G̃ is an extension of G by Ĝ, and Ĝ is an extending process

subformula. Let ∀G ∈ PSF (E) ν
G−→ G. We write G → G̃, if G

Ĝ−→ G̃ fore some Ĝ.

G̃ is an extension of G by one action, if G
Ĝ−→ G̃ and Ĝ = e, e ∈ Ev. In such a case we write G

e→ G̃ or G
a→ G̃,

if lab(e) = a ∈ Act.

G̃ is a extension of G by multiset of actions or step, if G
Ĝ−→ G̃ and Ĝ = ‖n

i=1ei, ei ∈ Ev (1 ≤ i ≤ n). In such a
case we write G

U→ G̃ or G
A→ G̃, if U = {e1, . . . , en}, A = {lab(e1), . . . , lab(en)} ∈ M(Act) (here M(Act) is a set of

all multisets over Act).
Let G ∈ PSF (E). Then G is a maximal process subformula of E, if it can be extended by no process subformula.

A set of all maximal process subformulas of E is denoted by PSFmax(E).

Example 7 For the formula E′, corresponding to the net N ′ in Figure 1(e), PSFmax(E′) = {(e; f1)‖(e; h1)‖(g;h1),
(e; f2)‖(g; f2)‖(g;h2)}. Let us note that each of 2 process subformulas in PSFmax(E′) represents an isomorphism
class consisting of 6 formulas which are different transpositions of conjunctive members. Since we consider process
subformulas up to isomorphism, we write only 2 formulas instead of 12.

5.2 Trace equivalences

An interleaving trace of a formula E is a sequence a1 · · · an ∈ Act∗ s.t. ν
a1→ G1

a2→ . . .
an→ Gn, where Gi ∈ PSF (E) (1 ≤

i ≤ n). Let us denote a set of all interleaving traces of E by SeqTraces(E). Two formulas E and E′ are interleaving
trace equivalent, notation E ≡i E′, iff SeqTraces(E) = SeqTraces(E′).

A step trace of a formula E is a sequence A1 · · ·An ∈ (M(Act))∗ s.t. ν
A1→ G1

A2→ . . .
An→ Gn, where Gi ∈

PSF (E) (1 ≤ i ≤ n). Let us denote a set of all step traces of E by StepTraces(E). Two formulas E and E′ are step
trace equivalent, notation E ≡s E′, iff StepTraces(E) = StepTraces(E′).

A pomset trace of a formula E is a pomset ρ which is an isomorphism class of lposet ρG for G ∈ PSF (E). We write
ρ v ρ′, if ρG v ρG′ for ρG ∈ ρ and ρG′ ∈ ρ′. In such a case we say that ρ is less sequential or more parallel than ρ′. Let
us denote by Pomsets(E) a set of all pomset traces of E. Two formulas E and E′ are partial word trace equivalent,
notation E ≡pw E′, iff Pomsets(E) v Pomsets(E′) and Pomsets(E′) v Pomsets(E), i.e. for any ρ′ ∈ Pomsets(E′)
there exists ρ ∈ Pomsets(E) s.t. ρ v ρ′ and vice versa. Two formulas E and E′ are pomset trace equivalent, notation
E ≡pom E′, iff Pomsets(E) = Pomsets(E′).
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5.3 Bisimulation equivalences

A notation R : E↔?E
′ means that R is a bisimulation of type ? (?-bisimulation) between formulas E and E′. E and

E′ are ?-bisimulation equivalent, notation E↔?E
′, iff R : E↔?E

′ for some ?-bisimulation R.

5.3.1 Usual bisimulations

Let R ⊆ PSF (E)× PSF (E′).
R is a ?-bisimulation between E and E′, ? ∈{ interleaving, step, partial word, pomset}, notation R : E↔?E

′, ? ∈
{i, s, pw, pom}, iff:

1. (ν, ν) ∈ R;

2. (G,G′) ∈ R, G
Ĝ−→ G̃,

(a) |cont(Ĝ)| = 1, if ? = i;

(b) ≺Ĝ= ∅, if ? = s;

then ∃G̃′ : G′ Ĝ′−→ G̃′, (G̃, G̃′) ∈ R and

(a) ρĜ′ v ρĜ, if ? = pw;

(b) ρĜ ' ρĜ′ , if ? ∈ {i, s, pom}.

3. As previous item but the roles of E and E′ are reversed.

5.3.2 ST-process subformulas

An ST-process subformula of a formula E is a pair (G,H) s.t. G,H ∈ PSF (E), H
K−→ G and ∀e, f ∈ cont(G) e ≺G

f ⇒ e ∈ cont(H). In such a case G is the process subformula which has started, i.e. all events of G has started. The
process subformula H corresponds to that part of G, which has finished, and K — to the part which has started but
has not finished yet. Clearly, ≺K= ∅. ST − PSF (E) denotes a set of all ST-process subformulas of E.

(ν, ν) is an initial ST-process subformula. Let (G,H), (G̃, H̃) ∈ ST − PSF (E). We write (G,H) → (G̃, H̃), if
G → G̃ and H → H̃.

5.3.3 ST-bisimulations

Let R ⊆ ST −PSF (E)×ST −PSF (E′)×B, where B = {β | β : cont(G) → cont(G′), G ∈ PSF (E), G′ ∈ PSF (E′)}.
R is a ?-ST-bisimulation between E and E′, ? ∈{ interleaving, partial word, pomset}, notation R : E↔?ST E′, ? ∈

{i, pw, pom}, iff:

1. ((ν, ν), (ν, ν), ∅) ∈ R;

2. ((G,H), (G′,H ′), β) ∈ R ⇒ β : ρG ≈ ρG′ and β(cont(H)) = cont(H ′);

3. ((G,H), (G′,H ′), β) ∈ R, (G,H) → (G̃, H̃) ⇒ ∃β̃, (G̃′, H̃ ′) : (G′,H ′) → (G̃′, H̃ ′), β̃dcont(G)= β,

((G̃, H̃), (G̃′, H̃ ′), β̃) ∈ R, and if H
K−→ G̃, H ′ K′

−→ G̃′ then:

(a) (β̃dcont(K))−1 : ρK′ v ρK , if ? = pw;

(b) β̃dcont(K): ρK ' ρK′ , if ? = pom;

4. As previous item but the roles of E and E′ are reversed.

5.3.4 History preserving bisimulations

Let R ⊆ PSF (E)× PSF (E′)× B, where B = {β | β : cont(G) → cont(G′), G ∈ PSF (E), G′ ∈ PSF (E′)}.
R is a ?-history preserving bisimulation between E and E′, ? ∈{ partial word, pomset}, notation R : E↔?hE′, ? ∈

{pw, pom}, iff:

1. (ν, ν, ∅) ∈ R;

2. (G,G′, β) ∈ R ⇒ β : ρG ≈ ρG′ ;

3. (G,G′, β) ∈ R, G → G̃ ⇒ ∃β̃, G̃′ : G′ → G̃′, β̃dcont(G)= β, (G̃, G̃′, β̃) ∈ R and
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(a) β̃−1 : ρG̃′ v ρG̃, if ? = pw;

(b) β̃ : ρG̃ ' ρG̃′ , if ? = pom;

4. As previous item but the roles of E and E′ are reversed.

5.4 Conflict respecting equivalences

Let E be a formula of AFLP2 and F = ∨n
i=1Fi ∈ canon(E). On the basis of F we can construct LES ξF =

〈cont+(F ),≺F , #F , lF dcont+(F )〉, where

• e ≺F f ⇔ ∃i (1 ≤ i ≤ n) (e; f) is a subformula of Fi;

• e#F f ⇔ ∀i (1 ≤ i ≤ n) e and f do not occur in Fi together.

Let us denote by E(E) a PES which is an isomorphism class of ξF for F ∈ canon(E). Obviously, the definition of E(E)
does not depend on concrete canonical form F of formula E. Formulas E and E′ are prime event structure (PES-)
equivalent, notation E ≡pes E′, if E(E) = E(E′).

5.5 Interrelation of the net equivalences with their analogs in AFLP2

Let E be a formula of AFLP2 which corresponds to finite weakly labelled A-net N . In Section 3 the set of lposets of
initial C-subnets of N was established to coincide with set of lposets of deterministic processes specified by E. The
following proposition says about the interrelation of lposets of processes of N (from set of all processes Π(N) of N)
and lposets of process subformulas of E.

Proposition 4 Let E be a formula of AFLP2 corresponding to finite weakly labelled A-net N . Then {ρC | π =
(C, id) ∈ Π(N)} = {ρG | G ∈ PSF (E)}.

Proof.

1. As it was mentioned in [5], a set of maximal C-subnets of finite A-net forms a set of its maximal processes.
Obviously, a set of initial C-subnets forms a set of all (not only maximal) processes of A-net. The similar fact
is valid for weakly labelled A-nets. Hence, we may consider a set of all processes of N , Π(N) as consisting (up
to isomorphism of processes) of processes having the form π = (C, id), where id is an identity mapping over
PC ∪ TC . A lposet ρC = 〈TC ,≺C ∩(TC × TC), lC〉 may be associated with each such a process.

2. On the other side, with each disjunctive member Fj (1 ≤ j ≤ n) of F = ∨n
i=1Fi ∈ canon(E) lposet of one of the

maximal deterministic processes specified by E, ρ+
Fj

= 〈cont+(Fj),≺?
Fj

, lFj 〉, may be associated. Hence, with
disjunctive members of F and their prefixes lposets of all (not only maximal) deterministic processes specified by
E may be associated. Let us note that for any disjunctive member Fj (of its prefix) of F there exists a process
subformula G ∈ PSF (E) s.t. G ' F+

j and ρ+
Fj

= ρF+
j

= ρG. ut

The following proposition establishes a bijection between the set of processes of N and the set of process subformulas
of E which preserves lposets.

Proposition 5 Let E be a formula of AFLP2 corresponding to finite weakly labelled A-net N . Then there exists a
bijection χ : Π(N) → PSF (E) s.t. for π ∈ Π(N), π = (C, id) and G ∈ PSF (E) with χ(π) = G we have ρC = ρG.

Proof. Let us demonstrate that lposets define up to isomorphism both processes of N and process subformulas of E.

1. We define a mapping χ1 from Π(N) into set of lposets as follows. If π = (C, id) ∈ Π(N) then χ1(π) = ρC .
Obviously, each process is associated with the only lposet. Consequently, χ1 is a function. It is a surjection by
definition. In addition, each process π = (C, id) ∈ Π(N) is determined uniquely by its causal net C. A net C
is an initial C-subnet of N , and, consequently, it is uniquely determined by its transition set TC . Therefore, no
two different processes of Π(N) are associated with the same lposet, because otherwise transition sets of causal
nets of the processes would coincide. Hence, χ1 is a bijection.

2. We define a mapping χ2 from PSF (E) into set of lposets as follows. If G ∈ PSF (E) then χ2(G) = ρG.
Obviously, each process subformula is associated with the only lposet. Consequently, χ2 is a function. It is a
surjection by definition. In addition, no two different (not isomorphic) process subformulas are associated with
one lposet, since process subformulas are, essentially, representations of lposets. Hence, χ2 is a bijection.

16



If χ = χ−1
2 ◦ χ1 then χ : Π(N) → PSF (E) is a bijection which preserves lposets, i.e. if χ(π) = G, π = (C, id) then

ρC = ρG. ut
Now we will prove the result concerning extension rules for processes and process subformulas.

Proposition 6 Let E be a formula of AFLP2 corresponding to finite weakly labelled A-net N . Then ∀π, π′ ∈
Π(N) π

π̂−→ π̃ ⇔ χ(π)
χ(π̂)−→ χ(π̃).

Proof. It is sufficient to remark that the definitions of process and process subformula extensions are based on the
following extension rule for lposets. Let ρ = 〈X,≺, l〉, ρ̃ = 〈X̃, ≺̃, l̃〉, ρ̂ are lposets. ρ̃ is an extension of ρ by ρ̂, notation

ρ
ρ̂−→ ρ̃ iff ρ / ρ̃ and ρ̂ = ρ̃dX̃\X . ut
Now we can present the main result of this section concerning interrelation of the net equivalences and their analogs

on formulas.

Theorem 7 Let E be a formula of AFLP2 corresponding to finite weakly labelled A-net N , E′ be a formula of AFLP2

corresponding to finite weakly labelled A-net N ′ and ↔∈ {≡,↔}, ? ∈ {i, s, pw, pom, iST, pwST, pomST, pwh, pomh,
pes}. Then N ↔? N ′ ⇔ E ↔? E′.

Proof. ⇒ Any trace of the net N [19, 20] is a trace of E. To prove it is sufficient to replace each π ∈ Π(N) in definition
of trace of N by process subformula G ∈ PSF (E) s.t. χ(π) = G. The fact that any trace of E is a trace of N is proved
analogously. Therefore, the sets of traces of N and E coincide as well as sets of traces of N ′ and E′. Consequently,
N ≡? N ′ ⇔ E ≡? E′, ? ∈ {i, s, pw, pom}.

Using Proposition 6, we may assert the following. Let ? ∈ {i, s, pw, pom, iST, pwST, pomST, pwh, pomh}, then
R : N↔?N

′ ⇔ S : E↔?E
′, where S is defined as follows.

Usual bisimulations (π, π′) ∈ R ⇔ (χ(π), χ′(π′)) ∈ S;

ST-bisimulations ((πE , πP ), (π′E , π′P ), β) ∈ R ⇔ ((χ(πE), χ(πP )), (χ′(π′E), χ′(π′P )), χ′ ◦ β ◦ χ−1) ∈ S.

History preserving bisimulations (π, π′, β) ∈ R ⇔ (χ(π), χ′(π′), χ′ ◦ β ◦ χ−1) ∈ S.

Formula E specifies nondeterministic process which is a maximal O-process (process based on occurrence instead of
causal net, branching process in terms of [7]) of N . Consequently, PES based on occurrence net of such a process of
N , notation E(N), coincides with E(E). We also have E(N ′) = E(E′). Consequently, N ≡pes N ′ ⇔ E ≡pes E′.

⇐ As previous item but using χ−1 and (χ′)−1 instead of χ and χ′ respectively. ut
Clearly, correlation of formula equivalences and analogs of the net equivalences in AFLP2 is depicted by graph in

Figure 4, where process equivalences are removed (since they are unexpressible in terms of process algebras).
The question arises after defining analogs of the net equivalences on AFLP2-formulas, whether some of these

equivalences are congruences w.r.t. operations of the algebra. Let us consider the following example.

Example 8 Let E = e5f and E′ = (e5f)‖e‖f , where lab(e) = a, lab(f) = b, lab(g) = c. We have E ≈D+
F L2

E′, but
E; g 6≡i E′; g, since PSF (E; g) = {ν, e, f, (e; g), (f ; g)}, whereas PSF (E′; g) = {ν, e, f}. Therefore SeqTraces(E; g) =
{a, b, ac, bc}, whereas SeqTraces(E′; g) = {a, b}.

Let us note that formulas E; g and E′; g are associated with nets N and N ′ in Figure 5. We proved an accordance
of the net equivalences with their analogs in AFLP2. Hence, the fact E; g 6≡i E′; g can be derived considering N and
N ′, for which N 6≡i N ′, since only in N ′ an action c can never happen.

Consequently, none of the considered equivalences on AFLP2-formulas is a congruence, with the exception of
≈DF L2 , i.e. ≈DF L2 is the weakest equivalence which is a congruence.

6 Conclusion

In the paper a new algebra AFLP2 was presented for description and analysis of properties of labelled nondetermin-
istic processes. Denotational and operational semantics and formula equivalences on their basis were proposed. A
correlation of the net and formula equivalences was established on finite weakly labelled A-nets. Analogs of the net
equivalences were introduced on AFLP2-formulas which are in accordance with the initial equivalences on Petri nets.
Hence, algebra AFLP2 possesses rather powerful tools to deal with nondeterministic finite processes.

Further development of the theme may consist in introducing a recursion operator in AFLP2 (as it was suggested
in [5] for AFP2) to specify not only finite but infinite processes as well. Now, the author develops algebra ALP2 which
is an extension of AFLP2 by recursion.
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Figure 5: A-nets from example of congruence
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