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An algebra

of labelled nondeterministic processes ∗

Igor V. Tarasyuk

Abstract. A new calculus of labelled nondeterministic processes AFLP2 is pro-
posed which is an extension of the known calculus AFP2 [3] by labelling func-
tion. The denotational and operational semantics and complete axiomatization of
the semantic equivalence are presented. The interrelation of net equivalences from
[11, 12] with equivalences of the algebra (semantic and observational) is considered.
Analogs of the net equivalences are defined in AFLP2, allowing one to consider the
processes specified by formulas of the algebra at different levels of abstraction.

1. Introduction

Algebraic calculi are one of the popular formal models for specification of concurrent
systems and processes and investigation of their behavioural properties.

The calculus AFP2 (Algebra of Finite Processes) proposed by V.E. Kotov and
L.A. Cherkasova [3] combines mechanisms both for specification and analysis of
nondeterministic concurrent processes. An advantage of AFP2 is a mechanism of
action synchronization by names which means that all actions with the same name
are synchronized. But it is impossible to specify the process with several actions
which have the same name within AFP2.

We introduce the new calculus AFLP2 (Algebra of Finite Labelled Processes)
based on AFP2 by imposing the global labelling on its formulas. Hence, the formu-
las of AFLP2 specify much wider class of labelled nondeterministic processes where
some different events may be equally labelled. The denotational and operational
semantics of AFLP2 are introduced. A sound and complete set of axioms corre-
sponding to the semantic equivalence of AFLP2 is presented. By means of AFLP2

one can analyse a behaviour of weakly labelled A-nets (i.e. A-nets [6] with possibly
noninjective labelling function). The semantic and observational equivalences of
AFLP2 are transferred to weakly labelled A-nets, and their interrelation with the
net equivalences from [11] is examined. Analogs of the net equivalences are intro-
duced on formulas of AFLP2. We prove that the semantic equivalence of AFLP2

is the only congruence w.r.t. operations of the algebra.

Notice that formal definitions of multisets, nets, lposets, pomsets, causal nets,
processes, ST-processes and mappings (label-preserving bijection ≈, homomor-
phism ⊑, isomorphism ≃) and other concepts which are used in the paper can
be found in [11, 12]. Complete proofs are given in [13].

∗The work is supported by Volkswagen Fund, grant I/70 564 and Russian Foundation
for Basic Research, grant 96-01-01655
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2. Algebra AFLP2

2.1. Syntax

Let Ev = {e, f, . . .} be symbols of events, Ev = {ē, f̄ , . . .} be symbols of non-
events and ∆Ev = {δe, δf , . . .} be symbols of deadlocked events. Let us denote

Êv = Ev∪Ev∪∆Ev. The symbols of Êv are combined into formulas by operations ;
(precedence), ▽ (exclusive or, alternative), ‖ (concurrency), ∨ (disjunction, union),

⌉⌉ (“not occur”), ⌉̃⌉ (“not occur by mistake”). Let Act = {a, b, . . .} be action symbols
(labels). The global labelling function lab : Ev → Act binds an action with each
event. The function is extended to Ev ∪ ∆Ev as follows: lab(ē) = lab(e) and
lab(δe) = δlab(e).

A formula of AFLP2 in the basis Êv is defined as follows.

E ::= e | ē | δe | ⌉⌉E | ⌉̃⌉E | E;F | E‖F | E ▽ F | E ∨ F

Here e ∈ Ev, ē ∈ Ev, δe ∈ ∆Ev are elementary formulas. AFLP2 denotes the set
of all formulas of AFLP2.

For a formula E the set Ev(E) is defined as follows: Ev(e) = Ev(ē) = Ev(δe) =

e; Ev(¬E) = Ev(E), ¬ ∈ {⌉⌉, ⌉̃⌉}; Ev(E ◦ F ) = Ev(E) ∪ Ev(F ), ◦ ∈ {; , ‖,▽,∨}.

Let Ev(E) = {ē | e ∈ Ev(E)}, ∆Ev(E) = {δe | e ∈ Ev(E)} and Êv(E) = Ev(E) ∪
Ev(E)∪∆Ev(E). One can associate with every formula E a local labelling function
lE = lab|Ev(E).

The contents of E, denoted by cont(E), is defined as follows: cont(e) = e,

cont(ē) = ē, cont(δe) = δe; cont(¬E) = cont(E), ¬ ∈ {⌉⌉, ⌉̃⌉}; cont(E ◦ F ) =
cont(E) ∪ cont(F ), ◦ ∈ {; , ‖,▽,∨}. Let cont+(E) = cont(E) ∩ Ev be the set
of events of E, cont−(E) = cont(E) ∩ Ev be the set of non-events of E, and
∆cont(E) = cont(E) ∩∆Ev be the set of deadlocked events of E.

Two formulas E and E′ are isomorphic, denoted by E ≃ E′, if they coincide up
to associativity rules w.r.t. ; , ‖,∨,▽ and up to commutativity rules w.r.t. ‖,∨,▽.

2.2. Denotational semantics

An lposet is a triple ρ = 〈X,≺, l〉 where:

• X ⊆ Êv;

• ≺⊆ X ×X is a strict partial order over X , a precedence relation;

• l : Ev(X) → Act is a labelling function.

Here Ev(X) = {e | (e ∈ X) ∨ (ē ∈ X) ∨ (δe ∈ X)}. Let Ev(X) = {ē | e ∈

Ev(X)}, ∆Ev(X) = {δe | e ∈ Ev(X)} and Êv(X) = Ev(X) ∪ Ev(X) ∪∆Ev(X).
X+ = X ∩Ev denotes the subset of events of X , X− = X ∩Ev denotes the subset
of non-events of X and ∆X = X ∩∆Ev denotes the subset of deadlocked events of
X .

Since now on we consider only lposets with the following properties.

1. e, ē and δe do not occur in X together, i.e. exactly one of the following three
cases is possible: either e occurs in X , or ē, or δe;
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2. partial order ≺ is irreflexive;

3. ∀x, y ∈ X− ∪∆X (x 6≺ y) ∧ (y 6≺ x);

4. ∀x ∈ X+ ∀y ∈ X− ∪∆X (x 6≺ y) ∧ (y 6≺ x).

The modified union of lposets absorbs equal and incomplete computations:

ρ ∪̃ ρ′ =





ρ, ρ′ is a prefix of ρ;
ρ′, ρ is a prefix of ρ′;
{ρ, ρ′}, otherwise.

To define the denotational semantics of AFLP2, analogs of algebraic operations
over lposets are introduced. If lposet ρ constructed by means of these operations,
does not satisfy the conditions 1-4 mentioned above, we “correct” it using a new
auxilary regularization operation [ρ].

LetD1 = {δe | (e ∈ X)∧(e ≺ e)}∪{δe | (e ∈ X)∧(ē ∈ X)}∪{δe | (e ∈ X)∧(δe ∈
X)} ∪ {δe | (ē ∈ X) ∧ (δe ∈ X)} ∪∆X , D2 = {δe | (e ∈ X) ∧ (δf ∈ D1) ∧ (δf ≺ e)}
and D3 = {δe | ē ∈ X}. We define the set D as follows.

D =

{
∅, D1 = ∅;
D1 ∪D2 ∪D3, otherwise.

Then [ρ] = 〈D, ∅, l|Ev(D)〉 ∪ 〈Y,≺ ∩(Y × Y ), l|Ev(Y )〉, where Y = X \ Êv(D).
Let ρ = 〈X,≺, l〉, ρ′ = 〈X,≺′, l′〉. We introduce the lposet operations in the

following way.

Not occur ⌉⌉ρ = 〈Ev(X), ∅, l〉.

Not occur by mistake ⌉̃⌉ρ = 〈∆Ev(X), ∅, l〉.

Precedence ρ; ρ′ = [〈X ∪X ′,≺ ∪ ≺′ ∪(X+ × (X ′)+) ∪ (∆X × (X ′)+), l ∪ l′〉].

Concurrency ρ‖ρ′ = [〈X ∪X ′, (≺ ∪ ≺′)+, l∪ l′〉], where (≺ ∪ ≺′)+ is a transitive
closure of relation ≺ ∪ ≺′.

Alternative ρ▽ ρ′ = [〈X ∪ Ev(X ′),≺, l ∪ l′〉]∪̃[〈Ev(X) ∪X ′,≺′, l ∪ l′〉].

Let P = ∪n
i=1ρi and P ′ = ∪m

j=1ρ
′
j be sets of lposets. Then ¬P = ∪̃

n
i=1¬ρi,

where ¬ ∈ {⌉⌉, ⌉̃⌉} and P ◦ P ′ = ∪̃
n
i=1(∪̃

m
j=1ρi ◦ ρ

′
j), where ◦ ∈ {; , ‖,▽}.

The denotational semantics of AFLP2 is a mapping DFL2 from AFLP2 into
the set of lposets defined as follows.

1. DFL2[e] = 〈{e}, ∅, le〉, DFL2[ē] = 〈{ē}, ∅, le〉, DFL2[δe] = 〈{δe}, ∅, le〉;

2. DFL2[¬E] = ¬DFL2[E], ¬ ∈ {⌉⌉, ⌉̃⌉};

3. DFL2[E ◦ F ] = DFL2[E] ◦ DFL2[F ], ◦ ∈ {; , ‖,▽};

4. DFL2[E ∨ F ] = DFL2[E] ∪̃ DFL2[F ].

Two formulas E and E′ are semantically equivalent, denoted by E ≈FL2 E′ iff
DFL2[E] = DFL2[E

′].
If ρ = 〈X,≺, l〉 is an lposet, then ρ+ = 〈X+,≺, l|X+〉 is the lposet corre-

sponding to the “observable” part of ρ over Ev. If some formula E of AFLP2

DFL2[E] = ∪n
i=1ρi, then the “observable” part of this set is defined as follows:

D+
FL2[E] = ∪n

i=1ρ
+
i . Two formulas E and E′ are observationally equivalent, de-

noted by E ≈FL2+ E′ iff D+
FL2[E] = D+

FL2[E
′].
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1. Associativity 5. Structural properties
1.1 E‖(F‖G) = (E‖F )‖G 5.1 ē;E = ē‖E
1.2 E ▽ (F ▽G) = (E ▽ F )▽G 5.2 E; ē = E‖ē
1.3 E ∨ (F ∨G) = (E ∨ F ) ∨G 5.3 E‖(E;F ) = (E;F )
1.4 E; (F ;G) = (E;F );G 5.4 F‖(E;F ) = (E;F )
2. Commutativity 5.5 E;F ;G = (E;F )‖(F ;G)
2.1 E‖F = F‖E 5.6 (E;F )‖(F ;G) = (E;F )‖
2.2 E ▽ F = F ▽ E (F ;G)‖(E;G)
2.3 E ∨ F = F ∨ E 5.7 E‖E = E
3. Distributivity 5.8 E ∨ E = E
3.1 (E‖F );G = (E;G)‖(F ;G) 5.9 E ∨ F = E, if F ⊳ E
3.2 E; (F‖G) = (E;F )‖(E;G) (a concept of strict prefix ⊳ for
3.3 (E ∨ F );G = (E;G) ∨ (F ;G) formulas is defined in [13])

3.4 E; (F ∨G) = (E;F ) ∨ (E;G) 6. Axioms for ∆Ev and ⌉̃⌉
3.5 (E ∨ F )‖G = (E‖G) ∨ (F‖G) 6.1 e‖ē = δe
3.6 E ▽ (F‖G) = (E ▽ F )‖(E ▽G) 6.2 e; e = δe
4. Axioms for ▽ and ⌉⌉ 6.3 e‖δe = δe
4.1 E ▽ F = (E‖(⌉⌉F )) ∨ ((⌉⌉E)‖F ) 6.4 δe;E = δe‖(⌉̃⌉E)
4.2 ⌉⌉(E‖F ) = (⌉⌉E)‖(⌉⌉F ) 6.5 E; δe = E‖δe
4.3 ⌉⌉(E ∨ F ) = (⌉⌉E) ∨ (⌉⌉F ) 6.6 δe‖(⌉⌉E) = δe‖(⌉̃⌉E)

4.4 ⌉⌉(E;F ) = (⌉⌉E)‖(⌉⌉F ) 6.7 ⌉̃⌉e = δe
4.5 ⌉⌉e = ē 6.8 ⌉̃⌉ē = δe
4.6 ⌉⌉ē = ē 6.9 ⌉̃⌉δe = δe
4.7 ⌉⌉δe = ē 6.10 ⌉̃⌉(E‖F ) = (⌉̃⌉E)‖(⌉̃⌉F )

6.11 ⌉̃⌉(E;F ) = (⌉̃⌉E)‖(⌉̃⌉F )

6.12 ⌉̃⌉(E ∨ F ) = (⌉̃⌉E) ∨ (⌉̃⌉F )

Table 1. Axiom system ΘFL2

Proposition 1. For any two formulas of AFLP2 E and E′ and context C the
following holds: E ≈FL2 E

′ ⇔ ∀C C[E] ≈FL2 C[E′].

Thus, ≈FL2 is a congruence w.r.t. operations of AFLP2.

2.3. Axiomatization

In accordance with the equivalence ≈FL2 the axiom system ΘFL2 is introduced. It
is represented in Table 1, where E,F,G are formulas of AFLP2, and e ∈ Ev, ē ∈ Ev
and δe ∈ ∆Ev.

The definition of a canonical form of AFLP2-formula coincides with that of
AFP2-formula [3]. Informally, a formula E is in canonical form, if it has the form
E = ∨n

i=1‖
mi

j=1Eij , s.t. Eij (1 ≤ i ≤ n, 1 ≤ j ≤ mi) are elementary formulas
or elementary precedences of the form (e; f) where e, f ∈ Ev, and some additional
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conditions are satisfied which guarantee that each disjunctive member of a canonical
form has a special form practically coinciding with lposet corresponding to one of
possible alternative behaviours of the nondeterministic process specified by the
formula.

Theorem 1. Using ΘFL2, it is posiible to prove that any formula of AFLP2 may
is equal to a unique (up to isomorphism) canonical form.

Let canon(E) denotes the set of all canonical forms of a formula E. The
notation E =ΘFL2

E′ means that the equation may be proved using the axiom
system ΘFL2.

Theorem 2. For any two formulas of AFLP2 E and E′ the following holds:
E ≈FL2 E′ ⇔ E =ΘFL2

E′.

Hence, to find whether any two formulas E and E′ are semantically equivalent,
it is sufficient to reduce them to their canonical forms F and F ′ and check these
forms by isomorphism.

2.4. Operational semantics

A transition system is a quadruple TS = 〈S,L,→, sTS〉, where:

• S is a set of states;

• L is a set of labels;

• →⊆ S × L× S is a set of transitions;

• sTS ∈ S is an initial state.

A transition (s, a, s̃) is denoted by s
a

−→ s̃.
Let us consider the following transition system over formulas of AFLP2. If F

is a formula of AFLP2 in the canonical form, then
TS(F ) = 〈AFLP2 ∪ {ν},AFLP2,→TS , F 〉, where:

• The set of states, AFLP2 ∪ {ν}, consists of the formulas of AFLP2 supple-
mented by a special symbol of “empty” formula ν denoting the process which
does nothing and successfully terminates. For any formula E of AFLP2, the
following is supposed: E‖ν = ν‖E = E and cont(ν) = ∅.

• The set of labels consists of conjunctions of AFLP2 over alphabet Ev. Each
conjunction G is a representation of lposet ρG = 〈cont(G),≺+

G, lG〉, where
e ≺G f ⇔ (e; f) is a conjunctive member of G, and ≺+

G is a transitive
closure of ≺G.

• A transition E
G
−→ Ẽ ∈→TS represents the transformation of the formula E

into Ẽ as a result of execution of lposet ρG.

• The initial state of the transition system is F .

The set of transitions of TS(F ) is defined by the following inference rules.

1. Elementary event
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1.1 e
e

−→ ν

2. Elementary precedence

2.1 e; f
e

−→ f

2.2 e; f
e;f
−→ ν

3. Concurrency

3.1 E
G

−→Ẽ

E‖F
G

−→Ẽ‖F
cont(G) ∩ cont(F ) = ∅

3.2 F
G

−→F̃

E‖F
G

−→E‖F̃
cont(G) ∩ cont(E) = ∅

3.3 E
G

−→Ẽ, F
H
−→F̃

E‖F
G‖H
−→ Ẽ‖F̃

cont(G) ∩ cont(F̃ ) = ∅, cont(H) ∩ cont(Ẽ) = ∅

4. Disjunction

4.1 E
G

−→Ẽ

E∨F
G

−→Ẽ
cont(G) 6⊆ cont(F )

4.2 F
G

−→F̃

E∨F
G

−→F̃
cont(G) 6⊆ cont(E)

4.3 E
G

−→Ẽ, F
H
−→F̃

E∨F
G

−→Ẽ∨F̃
canon(G) ≃ canon(H)

Let TS(F ) = {G | ∃F̃ : F
G
−→ F̃} be the set of the formulas of TS(F ). If F

G
−→ F̃

is a transition of TS(F ), and no inference rule is applied to F̃ , then F̃ is a terminal
formula of TS(F ). TSmax(F ) denotes the set of maximal formulas of TS(F ).

The operational semantics of AFLP2 is a mapping OFL2 from AFLP2 into the
set of lposets defined as follows. Let E be a formula of AFLP2 and F ∈ canon(E).

Then OFL2[E] = {ρG‖F̃ | G ∈ TSmax(F ) ∧ F
G
−→ F̃}.

Theorem 3. Let E be a formula of AFLP2. Then OFL2[E] = DFL2[E].

3. Equivalences on weakly labelled A-nets

The descriptive calculus AFP0 [3] is dual to AFP2. Its formulas specify finite A-
nets. Labelling on formulas of AFP0 may be introduced, and a new algebra AFLP0

may be obtained as a result. Then the formulas of AFLP0 will specify finite weakly
labelled A-nets (i.e. A-nets [6] with possibly noninjective labelling function).

Let us define a mapping ΨL : AFLP0 → AFLP2 as follows.

1. ΨL(e) = e,

2. ΨL(E;FL0 F ) = E;FL2 F ,

3. ΨL(E‖FL0F ) = E‖FL2F ,

4. ΨL(E ▽FL0 F ) = E ▽FL2 F .
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The symbol “FL0” marks the operations of AFLP0, and the symbol “FL2” is
used for operations of AFLP2. The denotational semantics of AFLP0 is a mapping
DFL0 which associates with every formula E of the algebra a set of maximal causal
subnets (O-subnets, in terms of [3]) of finite A-net N specified by the formula.
Note that with every causal net C = 〈PC , TC , FC , lC〉 we can associate lposet ρC =
〈TC , F

+
C ∩ (TC × TC), lC〉, where F+

C is a transitive closure of FC .

Theorem 4. Let E be a formula of AFLP0 and F be a formula of AFLP2 s.t.
F = ΨL(E). Then {ρC | C ∈ DFL0[E]} = D+

FL2[F ].

Note that the mapping ΨL only replaces the operations of AFLP0 by those of
AFLP2. Consequently, if we have a finite weakly labelled A-net N specified by
AFLP0-formula E, we can analyze its behaviour by means of the same formula E
of AFLP2.

From the literature, the following net equivalences are known. Trace equiv-
alences: interleaving (denoted by ≡i) [5], step (≡s) [9], partial word (≡pw) [11],
pomset (≡pom) [4] and process (≡pr) [11]. Bisimulation equivalences: interleaving
(↔i) [8], step (↔s) [7], partial word (↔pw) [14], pomset (↔pom) [2] and pro-
cess (↔pr) [1]. ST-bisimulation equivalences: interleaving (↔iST ) [4], partial word
(↔pwST ) [14], pomset (↔pomST )[14] and process (↔prST ) [11]. History preserving
bisimulation equivalences: pomset (↔pomh) [10] and process (↔prh) [11]. Conflict
preserving equivalences: prime event structure (PES) (≡pes) [12], occurrence (≡occ)
[4], and isomorphism (≃). The interrelations of all the equivalences are depicted by
graph in Figure 4 (without ≈FL2 and ≈FL2+) where no additional nontrivial arrow
may be added [12].

Now we will consider the equivalences on weakly labelled A-nets. Unlike A-
nets, where most of the equivalence notions are merged, the interrelations of the
equivalences on weakly labelled A-nets and on nets without any restrictions are the
same, and may be represented by the same graph.

Theorem 5. Let N and N ′ be weakly labelled A-nets and ↔∈ {≡,↔,≃}, ⋆, ⋆⋆ ∈
{i, s,
pw, pom, pr, iST, pwST, pomST, prST, pomh, prh, pes, occ}. Then N ↔⋆ N ′ ⇒
N ↔⋆⋆ N ′ iff there exists a directed path from ↔⋆ to ↔⋆⋆ in the graph in Figure 4
(without ≈FL2 and ≈FL2+).

Proof. ⇐ By Theorem 1 from [11].

⇒ The absence of additional nontrival arrows is proved by the following exam-
ples on weakly labelled A-nets.

• In Figure 1(a) N↔iN
′, but N 6≡s N

′, since only in N ′ actions a and b cannot
be executed concurrently.

• In Figure 1(e) N↔iSTN
′, but N 6≡pw N ′, since the net N corresponds to the

pomset s.t. even a less sequential pomset cannot be executed in N ′.

• In Figure 1(c) N↔pwSTN
′, but N 6≡pom N ′, since only in N an action b can

depend on a.
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• In Figure 1(d)N ≡pes N
′, butN 6≡pr N

′, since only inN a-labelled transition
has an additional output place.

• In Figure 1(b) N ≡pr N ′, but N↔/ iN
′, since only in N an action a can

happen so that b cannot happen after it.

• In Figure 2(a) N↔prN
′, but N↔/ iSTN

′, since only in N ′ an action a can
begin working so that no b can start unless a finishes.

• In Figure 2(b) N↔prSTN
′, but N↔/ pomhN

′, since only in N ′ actions a and
b can happen so that the next action c must depend on a.

• In Figure 2(c) N↔prhN
′, but N 6≡pes N ′, since only the labelled event

structure (LES) that corresponds to N ′ has two conflict actions a.

• In Figure 2(d) N ≡occ N
′, but N 6≃ N ′, since only in N ′ there is a c-labelled

transition (which can never be fired).

Example 1. Let us consider the netN ′ in Figure 1(e). The corresponding formula
of AFLP2 is E

′ = (e; (f1▽f2))‖(e; (f2▽h1))‖(g; (f2▽h1))‖(g; (h1▽h2))‖(f1▽h2),
where lab(e) = a, lab(f1) = lab(f2) = b, lab(g) = c, lab(h1) = lab(h2) = d. Its
canonical form is F ′ = ((e; f1)‖(e;h1)‖(g;h1)‖f̄2‖h̄2) ∨ ((e; f2)‖(g; f2)‖(g;h2)‖f̄1‖
h̄1). The labelled nondeterministic process specified by E′ has two lposets presented
in Figure 3. In this figure, the labels of events are in parentheses and the partial
order is depicted by arrows.

Let us demonstrate that in TS(F ′) from the initial formula F ′ the part of the
first lposet which does not contain the event f1 can be executed. In the following
instances of transition rules of TS(F ), the numbers of applied rules are under
arrows, and verification of conditions associated with the rules is in parentheses.

1. e; f1
e

−→2.1 f1

2. e;h1
e;h1

−→2.2 ν

3. (e; f1)‖(e;h1)
e‖(e;h1)
−→3.3 f1‖ν ({e} ∩ ∅ = ∅, {e, h1} ∩ {f1} = ∅)

4. g;h1
g;h1

−→2.2 ν

5. (e; f1)‖(e;h1)‖(g;h1)
e‖(e;h1)‖(g;h1)

−→3.3 f1‖ν‖ν ({e, h1}∩∅ = ∅, {g, h1}∩{f1} = ∅)

6. (e; f1)‖(e;h1)‖(g;h1)‖f̄2
e‖(e;h1)‖(g;h1)

−→3.1 f1‖ν‖ν‖f̄2 ({e, g, h1} ∩ {f̄2} = ∅)

7. (e; f1)‖(e;h1)‖(g;h1)‖f̄2‖h̄2
e‖(e;h1)‖(g;h1)

−→3.1 f1‖ν‖ν‖f̄2‖h̄2 ({e, g, h1} ∩ {h̄2} =
∅)

8. ((e; f1)‖(e;h1)‖(g;h1)‖f̄2‖h̄2) ∨ ((e; f2)‖(g; f2)‖(g;h2)‖f̄1‖h̄1)
e‖(e;h1)‖(g;h1)

−→4.1

f1‖ν‖ν‖f̄2‖h̄2 ({e, g, h1} 6⊆ {e, g, f2, h2, f̄1, h̄1})

Thus, F ′ G
−→ F̃ ′ is a transition of TS(F ′), where G = e‖(e;h1)‖(g;h1), F̃

′ =
f1‖f̄2‖h̄2. Hence, in TS(F ′) the lposet ρG = 〈{e, g, h1},≺, l〉 can be executed from
the initial state, where e ≺ h1, g ≺ h1, l(e) = a, l(g) = c, l(h1) = d.

As a result, we obtain the formula F̃ ′ = f1‖f̄2‖h̄2 containing the following infor-
mation: in the present behaviour of the labelled nondeterministic process specified
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Figure 1. Examples of weakly labelled A-nets
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Figure 2. Examples of weakly labelled A-nets (continued)
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Figure 3. Set of lposets of the labelled nondeterministic process

by E′ the events f2 and h2 did not happen since some event(s) alternative to them
(namely h1) happened. In addition one can see that in the present state specified
by F̃ ′ the event f1 can happen. As a result, we will reach the state specified by the
terminal formula f̄2‖h̄2 of TS(F ′).

Let us find the denotational semantics of E′. DFL2[E
′] = {〈{e, f1, g, h1, f̄2,

h̄2},≺1, l〉, 〈{e, f2, g, h2, f̄1, h̄1},≺2, l〉}, D+
FL2[E

′] = {〈{e, f1, g, h1},≺1, l1〉, 〈{e, f2,
g, h2},≺2, l2〉}, where e ≺1 f1, e ≺1 h1, g ≺1 h1, e ≺2 f2, g ≺2 f2, g ≺2

h2, l(e) = l1(e) = l2(e) = a, l(f1) = l(f2) = l1(f1) = l2(f2) = b, l(g) = l1(g) =
l2(g) = c, l(h1) = l(h2) = l1(h1) = l2(h2) = d.

4. Interrelation of the net equivalences and

equivalences of AFLP2

Any finite A-net may be represented by a formula of AFP0 using regularization
algorithm [3]. Therefore, any finite weakly labelled A-net may be represented by a
formula of AFLP0 with the use of analogous algorithm. The mapping ΨL associates
a formula of AFLP2 with every formula of AFLP0. Hence, one can associate a
formula of AFLP2 with every finite weakly labelled A-net. Given some formula
equivalence, we consider two nets equivalent iff the formulas associated with these
nets are equivalent.

Theorem 6. Let N and N ′ be weakly labelled A-nets and ↔∈ {≡,↔,≃,≈}, ⋆,
⋆ ⋆ ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pomh, prh, pes, occ, FL2, FL2+}.
Then N ↔⋆ N ′ ⇒ N ↔⋆⋆ N ′ iff there exists a directed path from ↔⋆ to ↔⋆⋆ in
the graph in Figure 4.

5. Analogs of the net equivalences on formulas of AFLP2

5.1. Process subformulas

If F ∈ canon(E) for some formula E of AFLP2, then the set of the process sub-
formulas of E is defined as follows: PSF (E) = {G | G ∈ canon(H) ∧ H ∈
TS(F )} ∪ {ν}. We consider the process subformulas up to isomorphism.

We write G
Ĝ
−→ G̃, if F

H
−→ F ′, F ′ Ĥ

−→ F ′′ and F
H̃
−→ F ′′ are transitions of

TS(F ) and G ∈ canon(H), Ĝ ∈ canon(Ĥ), G̃ ∈ canon(H̃). In such a case the
process subformula G̃ is an extension of G by Ĝ, and Ĝ is an extending process
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Figure 4. The interrelations of the net equivalences and equivalences of AFLP2

subformula. Let ∀G ∈ PSF (E) ν
G
−→ G. We write G → G̃, if G

Ĝ
−→ G̃ fore some

Ĝ.

G̃ is an extension of G by one action, if G
Ĝ
−→ G̃ and Ĝ = e, e ∈ Ev. In such

a case we write G
e
→ G̃ or G

a
→ G̃, if lab(e) = a ∈ Act.

G̃ is an extension of G by a multiset of actions or a step, if G
Ĝ
−→ G̃ and

Ĝ = ‖ni=1ei, ei ∈ Ev (1 ≤ i ≤ n). In such a case we write G
U
→ G̃ or G

A
→ G̃, if

U = {e1, . . . , en}, A = {lab(e1), . . . , lab(en)} ∈ M(Act) (here M(Act) is a set of
all multisets over Act).

5.2. Trace equivalences

An interleaving trace of a formula E is a sequence a1 · · · an ∈ Act∗ s.t. ν
a1→ G1

a2→
. . .

an→ Gn, where Gi ∈ PSF (E) (1 ≤ i ≤ n). SeqT races(E) denotes a set of all
interleaving traces of E. Two formulas E and E′ are interleaving trace equivalent,
denoted by E ≡i E

′, iff SeqT races(E) = SeqT races(E′).

A step trace of a formula E is a sequence A1 · · ·An ∈ (M(Act))∗ s.t. ν
A1→

G1
A2→ . . .

An→ Gn, where Gi ∈ PSF (E) (1 ≤ i ≤ n). StepT races(E) denotes a set
of all step traces of E. Two formulas E and E′ are step trace equivalent, denoted
by E ≡s E

′, iff StepT races(E) = StepT races(E′).
A pomset trace of a formula E is a pomset ρ which is an isomorphism class

of lposet ρG for G ∈ PSF (E). We write ρ ⊑ ρ′, if ρG ⊑ ρG′ for ρG ∈ ρ and
ρG′ ∈ ρ′. In such a case we say that ρ is less sequential or more parallel than ρ′.
Pomsets(E) denotes a set of all pomset traces of E. Two formulas E and E′ are
partial word trace equivalent, denoted by E ≡pw E′, iff Pomsets(E) ⊑ Pomsets(E′)
and Pomsets(E′) ⊑ Pomsets(E), i.e. for any ρ′ ∈ Pomsets(E′) there exists
ρ ∈ Pomsets(E) s.t. ρ ⊑ ρ′ and vice versa. Two formulas E and E′ are pomset
trace equivalent, denoted by E ≡pom E′, iff Pomsets(E) = Pomsets(E′).
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5.3. Bisimulation equivalences

5.3.1. Usual bisimulations

Let R ⊆ PSF (E)× PSF (E′).
R is a ⋆-bisimulation between E and E′, ⋆ ∈{interleaving, step, partial word,

pomset}, denoted by R : E↔⋆E
′, ⋆ ∈ {i, s, pw, pom}, iff:

1. (ν, ν) ∈ R;

2. (G,G′) ∈ R, G
Ĝ
−→ G̃, and if

(a) |cont(Ĝ)| = 1, if ⋆ = i;

(b) ≺
Ĝ
= ∅, if ⋆ = s;

then ∃G̃′ : G′ Ĝ′

−→ G̃′, (G̃, G̃′) ∈ R and

(a) ρ
Ĝ′ ⊑ ρ

Ĝ
, if ⋆ = pw;

(b) ρ
Ĝ
≃ ρ

Ĝ′ , if ⋆ ∈ {i, s, pom}.

3. The same as item 2, but the roles of E and E′ are reversed.

Two formulas E and E′ are ⋆-bisimulation equivalent, ⋆ ∈{interleaving, step,
partial word, pomset}, denoted by E↔⋆E

′, ⋆ ∈ {i, s, pw, pom}, iff ∃R : E↔⋆E
′.

5.3.2. ST-process subformulas

An ST-process subformula of a formula E is a pair (G,H) s.t. G,H ∈ PSF (E),

H
K
−→ G and ∀e, f ∈ cont(G) e ≺G f ⇒ e ∈ cont(H). In such a case G

is the process subformula which has started, i.e. all events of G have started.
The process subformula H corresponds to that part of G which has finished and K
corresponds to the part which has started but has not finished yet. Clearly, ≺K= ∅.
ST − PSF (E) denotes a set of all ST-process subformulas of E.

Let (ν, ν) be an initial ST-process subformula. Let (G,H), (G̃, H̃) ∈ ST −
PSF (E). We write (G,H) → (G̃, H̃), if G → G̃ and H → H̃ .

5.3.3. ST-bisimulations

Let R ⊆ ST − PSF (E) × ST − PSF (E′) × B, where B = {β | β : cont(G) →
cont(G′), G ∈ PSF (E), G′ ∈ PSF (E′)}.

R is a ⋆-ST-bisimulation between E and E′, ⋆ ∈{interleaving, partial word,
pomset}, denoted by R : E↔⋆STE

′, ⋆ ∈ {i, pw, pom}, iff:

1. ((ν, ν), (ν, ν), ∅) ∈ R;

2. ((G,H), (G′, H ′), β) ∈ R ⇒ β : ρG ≈ ρG′ and β(cont(H)) = cont(H ′);

3. ((G,H), (G′, H ′), β) ∈ R, (G,H) → (G̃, H̃) ⇒ ∃β̃, (G̃′, H̃ ′) : (G′, H ′) →

(G̃′, H̃ ′), β̃|cont(G) = β, ((G̃, H̃), (G̃′, H̃ ′), β̃) ∈ R, and if H
K
−→ G̃, H ′ K′

−→

G̃′ then:

(a) (β̃|cont(K))
−1 : ρK′ ⊑ ρK , if ⋆ = pw;
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(b) β̃|cont(K) : ρK ≃ ρK′ , if ⋆ = pom;

4. The same as item 3, but the roles of E and E′ are reversed.

Two formulas E and E′ are ⋆-ST-bisimulation equivalent, ⋆ ∈ {interleaving,
partial word, pomset}, denoted by E↔⋆STE

′, ⋆ ∈ {i, pw, pom}, iff ∃R : E↔⋆STE
′.

5.3.4. History preserving bisimulations

Let R ⊆ PSF (E) × PSF (E′) × B, where B = {β | β : cont(G) → cont(G′), G ∈
PSF (E), G′ ∈ PSF (E′)}.

R is a pomset history preserving bisimulation between E and E′, denoted by
R : E↔pomhE

′, iff:

1. (ν, ν, ∅) ∈ R;

2. (G,G′, β) ∈ R ⇒ β : ρG ≃ ρG′ ;

3. (G,G′, β) ∈ R, G → G̃ ⇒ ∃β̃, G̃′ : G′ → G̃′, β̃|cont(G) = β, (G̃, G̃′, β̃) ∈ R;

4. The same as item 3, but the roles of E and E′ are reversed.

Two formulas E and E′ are pomset history preserving bisimulation equivalent,
denoted by E↔pomhE

′, iff ∃R : E↔pomhE
′.

5.4. Conflict preserving equivalences

Let E be a formula of AFLP2 and F = ∨n
i=1Fi ∈ canon(E). On the basis of F we

can construct a labelled event structure (LES) ξF = 〈cont+(F ),≺F ,#F ,
lF |cont+(F )〉, where

• e ≺F f ⇔ ∃i (1 ≤ i ≤ n) (e; f) is a subformula of Fi;

• e#F f ⇔ ∀i (1 ≤ i ≤ n) e and f do not occur in Fi together.

E(E) denotes an isomorphism class of ξF for F ∈ canon(E). Two formulas E
and E′ are prime event structure (PES-) equivalent, denoted by E ≡pes E′, if
E(E) = E(E′).

5.5. The interrelations of the net equivalences with their analogs
in AFLP2

Theorem 7. Let E (E′) be a formula of AFLP2 corresponding to the finite weakly
labelled A-net N (N ′) and ↔∈ {≡,↔}, ⋆ ∈ {i, s, pw, pom, iST, pwST, pomST,
pomh, pes}. Then N ↔⋆ N ′ ⇔ E ↔⋆ E′.

Clearly, the interrelations of the equivalences of AFLP2 and analogs of the net
equivalences are depicted by a graph in Figure 4 without process equivalences (since
they are unexpressible in terms of process algebras).

The question arises after defining the analogs of the net equivalences on formulas
of AFLP2, whether some of these equivalences are congruences w.r.t. operations
of the algebra. Let us consider the following example.
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✑✑✰

Figure 5. A-nets from example of congruence

Example 2. Let E = e▽ f and E′ = (e▽ f)‖e‖f , where lab(e) = a, lab(f) =
b, lab(g) = c. We have E ≈FL2+ E′, but E; g 6≡i E′; g, since PSF (E; g) =
{ν, e, f, (e; g), (f ; g)}, whereas PSF (E′; g) = {ν, e, f}. Therefore SeqT races(E; g)
= {a, b, ac, bc}, whereas SeqT races(E′; g) = {a, b}.

Note that formulas E; g and E′; g are associated with nets N andN ′ in Figure 5.
We proved an accordance of the net equivalences with their analogs in AFLP2.
Hence, the fact E; g 6≡i E

′; g can be derived from the consideration of N and N ′,
for which N 6≡i N

′, since only in N ′ the action c can never happen.
Consequently, none of the considered equivalences on formulas of AFLP2 is a

congruence except ≈FL2, i.e. ≈FL2 is the weakest equivalence which is a congru-
ence.

6. Conclusion

In this paper the new calculus AFLP2 was presented for the description and analy-
sis of labelled nondeterministic processes. The interrelations of the net equivalences
and equivalences of the algebra were established. Analogs of the net equivalences
were introduced on formulas of AFLP2. It gives a possibility to consider the pro-
cesses specified by formulas of the algebra at different levels of abstraction without
refering to their net representations. Hence, algebra AFLP2 possesses rather pow-
erful tools of dealing with nondeterministic finite processes.
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References

[1] C. Autant, Ph. Schnoebelen, Place bisimulations in Petri nets, Lecture Notes
in Computer Science, 616, 1992, 45–61.

[2] G. Boudol, I. Castellani On the semantics of concurrency: partial orders and

transition systems, Lecture Notes in Computer Science, 249, 1987, 123–137.



98 I.V. Tarasyuk

[3] L.A. Cherkasova, Posets with non-actions: a model for concurrent nondeter-

ministic processes, Arbeitspapiere der GMD, Bonn, Germany, 403, 1989, 68
p.

[4] R.J. van Glabbeek, F.W. Vaandrager, Petri net models for algebraic theories

of concurrency, Lecture Notes in Computer Science, 259, 1987, 224–242.

[5] C.A.R. Hoare, Communicating sequential processes, on the construction of

programs, (McKeag R.M., Macnaghten A.M., eds.) Cambridge University
Press, 1980, 229–254.

[6] V.E. Kotov, Petri Nets, Moscow, Nauka, 1984, 160 p. (in Russian).

[7] M. Nielsen, P.S. Thiagarajan, Degrees of non-determinizm and concurrency:

a Petri net view, Lecture Notes in Computer Science, 181, 1984, 89–117.

[8] D.M.R. Park, Concurrency and automata on infinite sequences, Lecture Notes
in Computer Science, 104, 1981, 167–183.

[9] L. Pomello, Some equivalence notions for concurrent systems. An overview,
Lecture Notes in Computer Science, 222, 1986, 381–400.

[10] A. Rabinovitch, B.A. Trakhtenbrot, Behaviour structures and nets. Funda-
menta Informaticae, XI, 1988, 357–404.

[11] I.V. Tarasyuk, An investigation of equivalence notions on some subclasses

of Petri nets, Bulletin of Novosibirsk Computing Center, Computing Center,
Novosibirsk, 3, 1995, 89–101.

[12] I.V. Tarasyuk, Equivalence notions for design of concurrent systems using

Petri nets, Hildesheimer Informatik-Bericht, Institut für Informatik, Univer-
sität Hildesheim, Hildesheim, Germany, 4/96, part 1, January 1996, 19 p.

[13] I.V. Tarasyuk, Algebra AFLP2: a calculus of labelled nondeterministic pro-

cesses, Hildesheimer Informatik-Bericht, Institut für Informatik, Universität
Hildesheim, Hildesheim, Germany, 4/96, part 2, January 1996, 18 p.

[14] W. Vogler, Bisimulation and action refinement, Lecture Notes in Computer
Science, 480, 1991, 309–321.


