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Abstract : In [MVF01], a continuous time stochastic extension sPBC of finite Petri box calculus

PBC [BDH92] was proposed. In [MVCC03], iteration operator was added to sPBC .

Algebra sPBC has an interleaving semantics, but PBC has a step one.

We constructed a discrete time stochastic extension dtsPBC of finite PBC [Tar05] and enriched it

with iteration [Tar06].

We present the extension dtsiPBC of dtsPBC with immediate multiactions [TMV10,TMV13].

dtsiPBC is a discrete time analog of sPBC with immediate multiactions.

The step operational semantics is defined in terms of labeled probabilistic transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs with immediate

transitions (LDTSIPNs), called discrete time stochastic and immediate Petri boxes (dtsi-boxes).

The corresponding semi-Markov chain and (reduced) discrete time Markov chain are analyzed to

evaluate performance.

We propose step stochastic bisimulation equivalence and explain how to use it for reduction of

transition systems and semi-Markov chains.

We demonstrate how to apply this equivalence to compare stationary behaviour and simplify

performance analysis.
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The case study of performance evaluation is presented: running example of the shared memory system.

Keywords : stochastic Petri net, stochastic process algebra, Petri box calculus, discrete time,

immediate multiaction, transition system, operational semantics, immediate transition, dtsi-box,

denotational semantics, Markov chain, performance evaluation, stochastic equivalence, reduction,

shared memory system.
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Introduction
Previous work
• Continuous time (subsets of IR+): interleaving semantics

– Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:

exponential transition firing delays,

Continuous time Markov chain (CTMC).

– Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:

exponential and zero transition firing delays,

Semi-Markov chain (SMC).

– Extended generalized stochastic Petri nets (EGSPNs) [HS89,MBBCCC89]:

hyper-exponential or Erlang or phase and zero transition firing delays.

– Deterministic stochastic Petri nets (DSPNs) [MC87,MCF90]:

exponential and deterministic transition firing delays,

Semi-Markov process (SMP), if no two deterministic transitions are enabled in any marking.

– Extended deterministic stochastic Petri nets (EDSPNs) [GL94]:

non-exponential and deterministic transition firing delays.

– Extended stochastic Petri nets (ESPNs) [DTGN85]:

arbitrary transition firing delays.
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• Discrete time (subsets of IN ): interleaving and step semantics

– Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:

geometric transition firing delays,

Discrete time Markov chain (DTMC).

– Discrete time deterministic and stochastic Petri nets (DTDSPNs) [ZFH01]:

geometric and fixed transition firing delays,

Semi-Markov chain (SMC).

– Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:

phase and fixed transition firing delays,

Semi-Markov chain (SMC).
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Stochastic process algebras

• MTIPP [HR94]

• GSPA [BKLL95]

• PEPA [Hil96]

• Sπ [Pri96]

• EMPA [BGo98]

• GSMPA [BBGo98]

• sACP [AHR00]

• TCP dst [MVi08]

More stochastic process calculi

• TIPP [GHR93]

• WSCCS [Tof94]

• PM − TIPP [Ret95]

• SPADES [AKB98]

• NMSPA [LN00]

• SM − PEPA [Brad05]

• iPEPA [HBC13]

• mCCS [DH13]

• PHASE [CR14]

Algebra PBC and its extensions

• Petri box calculus PBC [BDH92]

• Time Petri box calculus tPBC [Kou00]

• Timed Petri box calculus TPBC [MF00]

• Stochastic Petri box calculus sPBC [MVF01,MVCC03]

• Ambient Petri box calculusAPBC [FM03]

• Arc time Petri box calculus atPBC [Nia05]

• Generalized stochastic Petri box calculus gsPBC [MVCR08]

• Discrete time stochastic Petri box calculus dtsPBC [Tar05,Tar06]

• Discrete time stochastic and immediate Petri box calculus

dtsiPBC [TMV10,TMV13]
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SPACLS: Classification of stochastic process algebras

Time Immediate Interleaving semantics Non-interleaving semantics

(multi)actions

Continuous No MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ, GSMPA (GSMP)

sPBC (CTMC)

Yes EMPA (SMC, CTMC), gsPBC (SMC) —

Discrete No — dtsPBC (DTMC)

Yes TCP dst (DTMRC) sACP , dtsiPBC (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.

The underlying stochastic process: in parentheses near the SPA names.
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Transition labeling

• CTSPNs [Buc95]

• GSPNs [Buc98]

• DTSPNs [BT00]

Stochastic equivalences

• Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]

• SPAs [HR94,Hil94,BGo98]

• Markov process algebras (MPAs) [Buc94,BKe01]

• CTSPNs [Buc95]

• GSPNs [Buc98]

• Stochastic automata (SAs) [Buc99]

• Stochastic event structures (SESs) [MCW03]
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Syntax

The set of all finite multisets over X is INX
fin. The set of all subsets (powerset) of X is 2X .

Act = {a, b, . . .} is the set of elementary actions.

Âct = {â, b̂, . . .} is the set of conjugated actions (conjugates) s.t. â 6= a and ˆ̂a = a.

A = Act ∪ Âct is the set of all actions. L = INA
fin is the set of all multiactions.

The alphabet of α ∈ L is A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ) s.t. α ∈ L and ρ ∈ (0; 1) is the probability of the multiaction α.

SL is the set of all stochastic multiactions.

An immediate multiaction is a pair (α, l) s.t. α ∈ L and l ∈ IN≥1 is the weight of the multiaction α.

IL is the set of all immediate multiactions. SIL = SL ∪ IL is the set of all activities.

The alphabet of (α, κ) ∈ SIL is A(α, κ) = A(α), that of Υ ∈ INSIL
fin is A(Υ) = ∪(α,κ)∈ΥA(α).

The multiaction part of Υ ∈ INSIL
fin is L(Υ) =

∑
(α,κ)∈Υ α.
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The operations: sequential execution ;, choice [], parallelism ‖, relabeling [f ], restriction rs,

synchronization sy and iteration [ ∗ ∗ ].

Sequential execution and choice have the standard interpretation.

Parallelism does not include synchronization unlike that in standard process algebras.

Relabeling functions f : A → A are bijections preserving conjugates: ∀x ∈ A f(x̂) = f̂(x).

Restriction over a ∈ Act: any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions s.t. for a ∈ Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β.

Synchronization of α and β by a is α⊕aβ = γ:

γ(x) =





α(x) + β(x)− 1, x = a or x = â;

α(x) + β(x), otherwise.

In the iteration, the initialization subprocess is executed first,

then the body one is performed zero or more times, finally, the termination one is executed.
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Static expressions specify the structure of processes.

Definition 1 Let (α, κ) ∈ SIL and a ∈ Act. A static expression of dtsiPBC is

E ::= (α, κ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E∗E∗E].

StatExpr is the set of all static expressions of dtsiPBC .

Definition 2 Let (α, κ) ∈ SIL and a ∈ Act. A regular static expression of dtsiPBC is

E ::= (α, κ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E∗D∗E],

whereD ::= (α, κ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D∗D∗E].

RegStatExpr is the set of all regular static expressions of dtsiPBC .
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Dynamic expressions specify the states of processes.

Dynamic expressions are obtained from static ones annotated with upper or lower bars.

The underlying static expression of a dynamic one: removing all upper and lower bars.

Definition 3 LetE ∈ StatExpr and a ∈ Act. A dynamic expression of dtsiPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |

[G∗E∗E] | [E∗G∗E] | [E∗E∗G].

DynExpr is the set of all dynamic expressions of dtsiPBC .

Definition 4 A dynamic expression is regular if its underlying static expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsiPBC .

We shall consider regular expressions only and omit the word “regular”.
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Generalized shared memory system

A model of two processors accessing a common shared memory [MBCDF95]

✲

✛

✛

✲

Processor 1 Processor 2Memory

SHMDIA: The diagram of the shared memory system

After activation of the system (turning the computer on), two processors are active, and the common

memory is available. Each processor can request an access to the memory after which the

instantaneous decision is made.

When the decision is made in favour of a processor, it starts an acquisition of the memory, and another

processor waits until the former one ends its operations, and the system returns to the state with both

active processors and the available memory.
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a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i.

di correspond to the instantaneous decision on the memory allocation in favour of the processor i.

mi represent the common memory access of processor i.

The other actions are used for communication purpose only.

Stop = ({c}, 12 ) rs c is the process that performs empty loops with probability 1 and never terminates.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1‖K2‖K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.
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Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations.

LetE,F,K ∈ RegStatExpr and a ∈ Act.

IRULES1: Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f ] ⇒ E[f ] E[f ] ⇒ E[f ] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K]

[E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K]
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LetE,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

IRULES2: Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃

G⇒G̃

G‖H⇒G̃‖H

H⇒H̃

G‖H⇒G‖H̃

G⇒G̃

G[f ]⇒G̃[f ]

G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a

G⇒G̃

[G∗E∗F ]⇒[G̃∗E∗F ]

G⇒G̃

[E∗G∗F ]⇒[E∗G̃∗F ]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

Definition 5 A regular dynamic expression is operative if no inaction rule can be applied to it.

OpRegDynExpr is the set of all operative regular dynamic expressions of dtsiPBC .

We shall consider regular expressions only and omit the word “regular”.

Definition 6 ≈ = (⇒ ∪ ⇐)∗ is the structural equivalence of dynamic expressions in dtsiPBC .

G andG′ are structurally equivalent,G≈G′, if they can be reached each from other by applying

inaction rules in a forward or backward direction.
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Action and empty loop rules

Action rules with stochastic multiactions: execution of non-empty multisets of stochastic multiactions.

Action rules with immediate multiactions: execution of non-empty multisets of immediate multiactions.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

LetE,F ∈ RegStatExpr, G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Let Γ,∆ ∈ INSL
fin \ {∅}, Γ′ ∈ INSL

fin, I, J ∈ INIL
fin \ {∅}, I ′ ∈ INIL

fin and Υ ∈ INSIL
fin \ {∅}.

The names of the action rules with immediate multiactions have a suffix ‘i’.
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ARULES: Action and empty loop rules

El
tang(G)

G
∅
→G

B (α, κ)
{(α,κ)}
−→ (α, κ)

S G
Υ
→G̃

G;E
Υ
→G̃;E E;G

Υ
→E;G̃

C
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(E))

G[]E
Γ
→G̃[]E E[]G

Γ
→E[]G̃

Ci G
I
→G̃

G[]E
I
→G̃[]E E[]G

I
→E[]G̃

P1
G

Γ
→G̃, tang(H)

G‖H
Γ
→G̃‖H H‖G

Γ
→H‖G̃

P1i G
I
→G̃

G‖H
I
→G̃‖H H‖G

I
→H‖G̃

P2 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i G
I
→G̃, H

J
→H̃

G‖H
I+J
−→G̃‖H̃

L G
Υ
→G̃

G[f ]
f(Υ)
−→G̃[f ]

Rs
G

Υ
→G̃, a,â6∈A(Υ)

G rs a
Υ
→G̃ rs a

I1 G
Υ
→G̃

[G∗E∗F ]
Υ
→[G̃∗E∗F ]

I2
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(F ))

[E∗G∗F ]
Γ
→[E∗G̃∗F ]

I2i G
I
→G̃

[E∗G∗F ]
I
→[E∗G̃∗F ]

I3
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(F ))

[E∗F∗G]
Γ
→[E∗F∗G̃]

I3i G
I
→G̃

[E∗F∗G]
I
→[E∗F∗G̃]

Sy1 G
Υ
→G̃

G sy a
Υ
→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}

−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}

−−−−−−−−−−−→G̃ sy a

Sy2i G sy a
I′+{(α,l)}+{(β,m)}

−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
I′+{(α⊕aβ,l+m)}

−−−−−−−−−−−−→G̃ sy a
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RULECMP: Comparison of inaction, action and empty loop rules

Rules State change Time progress Activities execution

Inaction rules − − −

Action rules ± + +

(stochastic multiactions)

Action rules ± − +

(immediate multiactions)

Empty loop rule − + −
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Transition systems

Definition 7 The derivation set DR(G) of a dynamic expressionG is the minimal set:

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃ΥH
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

LetG be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

The state s is tangible, if Exec(s) ⊆ INSL
fin. For tangible states we may have Exec(s) = {∅}.

The state s is vanishing, if Exec(s) ⊆ INIL
fin \ {∅}.

The set of all tangible states from DR(G) is DRT (G).

The set of all vanishing states from DR(G) is DRV (G).

Obviously,DR(G) = DRT (G) ⊎DRV (G).
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Let Υ ∈ Exec(s) \ {∅}. The probability of the multiset of stochastic multiactions or the weight of the

multiset of immediate multiactions Υ which is ready for execution in s:

PF (Υ, s) =





∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1− χ), s ∈ DRT (G);

∑
(α,l)∈Υ l, s ∈ DRV (G).

In the case Υ = ∅ and s ∈ DRT (G) we define

PF (∅, s) =





∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.
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Let Υ ∈ Exec(s). The probability to execute the multiset of activities Υ in s:

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

If s is tangible, then PT (∅, s) ∈ (0; 1]: the residence time in s is ≥ 1.

The probability to move from s to s̃ by executing any multiset of activities:

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).
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Definition 8 The (labeled probabilistic) transition system of a dynamic expressionG is

TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSIL
fin × (0; 1];

• the set of transitions is

TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Υ
→ H̃};

• the initial state is sG = [G]≈.

A transition (s, (Υ,P), s̃) ∈ TG is written as s
Υ
→P s̃.

We write s
Υ
→s̃ if ∃P s

Υ
→P s̃ and s→s̃ if ∃Υ s

Υ
→ s̃.
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✗
✖

✔
✕s̃1

✗
✖

✔
✕s̃2

✗
✖

✔
✕s̃5

✗
✖

✔
✕s̃8

✗
✖

✔
✕s̃7

✗
✖

✔
✕s̃9

❄

❄

❄

❄

❄

❄

TS(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
�✒

✲ ✛

✛ ✲

({a},ρ3),ρ3

({r1},ρ),

ρ(1−ρ)

({r2},ρ),

ρ(1−ρ)

{({r1},ρ),({r2},ρ)},ρ2

({d1},2l),1 ({d2},2l),1

({r2},ρ),

ρ(1−ρ2)

({r1},ρ),

ρ(1−ρ2)

{({r1},ρ),

({m2},ρ2)},ρ3

{({r2},ρ),

{m1},ρ2)},ρ3

({m1},ρ2),

ρ2(1−ρ)

({m2},ρ2),

ρ2(1−ρ)

({d1},2l), 1
2

({d2},2l), 1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

❅
❅

❅
❅

❅
❅■

PPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

✲✄✂

✲✄✂ �✁✛

�✁✛

✝✆✻

✝✆✻
∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(1−ρ)2

SHMGTS: The transition system of the generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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Interpretation of the states of the generalized shared memory system

DRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}.

s̃1: the initial state,

s̃2: the system is activated and the memory is not requested,

s̃3: the memory is requested by the first processor,

s̃4: the memory is requested by the second processor,

s̃5: the memory is allocated to the first processor,

s̃6: the memory is requested by two processors,

s̃7: the memory is allocated to the second processor,

s̃8: the memory is allocated to the first processor and the memory is requested by the second processor,

s̃9: the memory is allocated to the second processor and the memory is requested by the first processor.
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Denotational semantics

Algebra of dtsi-boxes
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BOXOPS: The plain and operator dtsi-boxes
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Definition 9 Let (α, κ) ∈ SIL, a ∈ Act and E,F,K ∈ RegStatExpr. The denotational

semantics of dtsiPBC is a mappingBoxdtsi from RegStatExpr into plain dtsi-boxes:

1. Boxdtsi((α, κ)ι) = N(α,κ)ι ;

2. Boxdtsi(E◦F ) = Θ◦(Boxdtsi(E), Boxdtsi(F )), ◦ ∈ {; , [], ‖};

3. Boxdtsi(E[f ]) = Θ[f ](Boxdtsi(E));

4. Boxdtsi(E◦a) = Θ◦a(Boxdtsi(E)), ◦ ∈ {rs,sy};

5. Boxdtsi([E∗F∗K]) = Θ[ ∗ ∗ ](Boxdtsi(E), Boxdtsi(F ), Boxdtsi(K)).

For E ∈ RegStatExpr, let Boxdtsi(E) = Boxdtsi(E) and Boxdtsi(E) = Boxdtsi(E).

Theorem 1 (OPDNSEM) For any static expressionE

TS(E)≃RG(Boxdtsi(E)).



I.V. Tarasyuk: Performance evaluation in stochastic process algebra dtsiPBC 29

({m2,z2},ρ)

({d2,y2},l)

✡

♥t e

({r2},ρ)

♥
❄

❄

♥

❄

♥x

♥

✘

✙

✛

({m1,z1},ρ)

♥
({d1,y1},l)

♥x

({r1},ρ)

♥
❄

❄

✠

♥t e

♥

❄

✗

✖

✲

({x1},ρ)

❄

❄

❄

❄

❄

❄

({x2},ρ)

❄

❄

N1 N2

({a,x̂1,x̂2},ρ)
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SHMGPMBOX: The marked dtsi-boxes of the generalized two processors and shared memory
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SHMGBOX: The marked dtsi-box of the generalized shared memory system
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Performance evaluation

Analysis of the underlying SMC

For a dynamic expressionG, a discrete random variable is associated with each state from DRT (G).

The random variables (residence time in the tangible states) are geometrically distributed:

the probability to stay in the tangible state s ∈ DRT (G) for k − 1 moments

and leave it at the moment k ≥ 1 is PM(s, s)k−1(1− PM(s, s)).

The mean value formula: the average sojourn time in the tangible state s is 1
1−PM(s,s) .

The average sojourn time in the vanishing state s is 0.

The average sojourn time in the state s is SJ(s) =





1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector SJ of G has the elements SJ(s), s ∈ DR(G).

The sojourn time variance in the state s is V AR(s) =





PM(s,s)
(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector V AR of G has the elements V AR(s), s ∈ DR(G).
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The stochastic process associated with a dynamic expressionG: the underlying semi-Markov chain

(SMC) of G, SMC(G), which is analyzed by extracting the embedded (absorbing) discrete time

Markov chain (EDTMC) of G, EDTMC(G).

LetG be a dynamic expression and s, s̃ ∈ DR(G).

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is PM(s, s)k.

Let s→ s̃ and s 6= s̃. The probability to move from s to s̃ by executing any multiset of activities after

possible self-loops is

PM∗(s, s̃) =





PM(s, s̃)
∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;



 = SL(s)PM(s, s̃),

where SL(s) =





1
1−PM(s,s) , s→ s;

1, otherwise;
is the self-loops abstraction factor in the state s.

The self-loops abstraction vector SL of G has the elements SL(s), s ∈ DR(G).
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Definition 10 Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain

(EDTMC) of G, EDTMC(G), has the state spaceDR(G), the initial state [G]≈ and the transitions

s→→P s̃, if s→ s̃ and s 6= s̃, where P = PM∗(s, s̃).

The underlying SMC of G, SMC(G), has the EDTMC EDTMC(G) and the sojourn time in every

s ∈ DRT (G) is geometrically distributed with the parameter 1− PM(s, s) while the sojourn time in

every s ∈ DRV (G) is equal to zero.

LetG be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition

probability matrix (TPM) P∗ for EDTMC(G):

P∗
ij =





PM∗(si, sj), si → sj , si 6= sj ;

0, otherwise.
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The transient (k-step, k ∈ IN ) probability mass function (PMF) ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn))

for EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF:

ψ∗[0](si) =





1, si = [G]≈;

0, otherwise.

We have ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
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The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ
∗(sn)) for EDTMC(G) is a solution of





ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is that of n values 1.

When EDTMC(G) has the single steady state, ψ∗ = limk→∞ ψ∗[k].

The steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G):

ϕ(si) =





ψ∗(si)SJ(si)∑
n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

To calculate ϕ, we apply abstracting from self-loops to get P∗ and ψ∗,

followed by weighting by SJ and normalization.

EDTMC(G) has no self-loops, unlike SMC(G), hence, the behaviour of EDTMC(G)

stabilizes quicker than that of SMC(G), since P∗ has only zero elements at the main diagonal.
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SHMGSMC: The underlying SMC of the generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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The average sojourn time vector of K :

S̃J =

(
1

ρ3
,

1

ρ(2− ρ)
, 0, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ(1 + ρ− ρ2)
,
1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K :

Ṽ AR =

(
1− ρ3

ρ6
,

(1− ρ)2

ρ2(2− ρ)2
, 0, 0,

(1− ρ)2(1 + ρ)

ρ2(1 + ρ− ρ2)2
, 0,

(1− ρ)2(1 + ρ)

ρ2(1 + ρ− ρ2)2
,
1− ρ2

ρ4
,
1− ρ2

ρ4

)
.
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The TPM for EDTMC(K):

P̃∗ =




0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0




.

The steady-state PMF for EDTMC(K):

ψ̃∗ = 1
2(6+3ρ−9ρ2+2ρ3) (0, 2ρ(2− 3ρ− ρ2), 2 + ρ− 3ρ2 + ρ3, 2 + ρ− 3ρ2 + ρ3,

2 + ρ− 3ρ2 + ρ3, 2ρ2(1− ρ), 2 + ρ− 3ρ2 + ρ3, 2− ρ− ρ2, 2− ρ− ρ2).
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The steady-state PMF ψ̃∗ weighted by S̃J :

1

2ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

We normalize the steady-state weighted PMF dividing it by the sum of its components

ψ̃∗S̃J
T
=

2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

The steady-state PMF for SMC(K):

ϕ̃ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).
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Analysis of the reduced DTMC

Definition 11 Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G,

DTMC(G), has the state spaceDR(G), the initial state [G]≈ and the transitions s→P s̃, where

P = PM(s, s̃).

LetG be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition

probability matrix (TPM) P for DTMC(G) are

Pij =





PM(si, sj), si → sj ;

0, otherwise.

LetG be a dynamic expression and P be the TPM for DTMC(G).

Reordering the states from DR(G): the first rows and columns of P correspond to the states from

DRV (G) and the last ones correspond to the states from DRT (G).
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Let |DR(G)| = n and |DRT (G)| = m. The resulting matrix is decomposed as:

P =


 C D

E F


 .

The elements of the (n−m)× (n−m) submatrix C: the probabilities to move from vanishing to

vanishing states.

The elements of the (n−m)×m submatrix D: the probabilities to move from vanishing to tangible

states.

The elements of the m× (n−m) submatrix E: the probabilities to move from tangible to vanishing

states.

The elements of the m×m submatrix F: the probabilities to move from tangible to tangible states.
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The TPM P⋄ for RDTMC(G) is the m×m matrix:

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing to vanishing states in

any number of state transitions, without traversal of the tangible states:

G =
∞∑

k=0

Ck =





∑l
k=0C

k, ∃l ∈ IN ∀k > lCk = 0, no loops among vanishing states;

(I−C)−1, limk→∞ Ck = 0, loops among vanishing states;

where 0 is the square matrix consisting only of zeros and I is the identity matrix, both of size n−m.
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For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let

Fij be the elements of the matrix F, Eik be those of E, Gkl be those of G and Dlj be those of D.

The elements P⋄
ij of the matrix P⋄ are

P⋄
ij = Fij +

n−m∑

k=1

n−m∑

l=1

EikGklDlj = Fij +
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj = Fij +
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to the tangible state sj

in any number of steps, without traversal of tangible states, but possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj .

The probability to move from s to s̃ in any number of steps, without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .
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Definition 12 Let G be a dynamic expression and [G]≈ ∈ DRT (G).

The reduced discrete time Markov chain (RDTMC) of G, denoted by RDTMC(G), has the state

spaceDRT (G), the initial state [G]≈ and the transitions s→֒P s̃, where P = PM⋄(s, s̃).

LetDRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). The transient (k-step, k ∈ IN ) probability

mass function (PMF) ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ
⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF:

ψ⋄[0](si) =





1, si = [G]≈;

0, otherwise.

We have ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ IN).
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The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ
⋄(sm)) for RDTMC(G) is a solution of:





ψ⋄(P⋄ − I) = 0

ψ⋄1T = 1
,

where I is the identity matrix of size m and 0 is a row vector of m values 0, 1 is that of m values 1.

When RDTMC(G) has the single steady state, ψ⋄ = limk→∞ ψ⋄[k].

Proposition 1 (PMFSMCT) LetG be a dynamic expression, ϕ be the steady-state PMF for

SMC(G) and ψ⋄ be the steady-state PMF for RDTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =





ψ⋄(s), s ∈ DRT (G);

0, s ∈ DRV (G).

To calculate ϕ, we take all the elements of ψ⋄ as the steady-state probabilities of the tangible states,

instead of abstracting from self-loops to get P∗ and ψ∗, followed by weighting by SJ and normalization.

Using RDTMC(G) instead of EDTMC(G) allows one to avoid multistage analysis.

Constructing P⋄ requires calculating matrix powers or inverse matrices.
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RDTMC(G) has self-loops, unlike EDTMC(G), hence,

the behaviour of RDTMC(G) may stabilize slower than that of EDTMC(G).

P⋄ is smaller and denser matrix than P∗, since P⋄ has non-zero elements

at the main diagonal and many of them outside it.

The complexity of the analytical calculation of ψ⋄ w.r.t. ψ∗ depends on the model structure:

the number of vanishing states and loops among them.

Usually it is lower, since the matrix size reduction plays an important role.

The elimination of vanishing states.

• The system models with many immediate activities:

significant simplification of the solution.

• The abstraction level of SMCs:

decreases their impact to the solution complexity.

• The abstraction level of transition systems:

allows immediate activities to specify logical structure.



I.V. Tarasyuk: Performance evaluation in stochastic process algebra dtsiPBC 48

From TS(K), we can constructRDTMC(K) and calculate ϕ̃ using it.

DRT (K) = {s̃1, s̃2, s̃5, s̃7, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}.

We reorder the elements of DR(K) by

moving the equivalence classes of vanishing states to the first positions:

s̃3, s̃4, s̃6, s̃1, s̃2, s̃5, s̃7, s̃8, s̃9.

The reordered TPM for DTMC(K):

P̃r =




0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 1 − ρ3 ρ3 0 0 0 0

ρ(1 − ρ) ρ(1 − ρ) ρ2 0 (1 − ρ)2 0 0 0 0

0 ρ3 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

ρ3 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 ρ2 0 0 0 0 0 1 − ρ2 0

ρ2 0 0 0 0 0 0 0 1 − ρ2



.
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The result of the decomposing P̃r :

C̃ =




0 0 0

0 0 0

0 0 0


 , D̃ =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1
2

1
2


 , Ẽ =




0 0 0

ρ(1− ρ) ρ(1− ρ) ρ2

0 ρ3 0

ρ3 0 0

0 ρ2 0

ρ2 0 0




,

F̃ =




1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 0 0 0 0

0 ρ2(1− ρ) (1− ρ)(1− ρ2) 0 ρ(1− ρ2) 0

0 ρ2(1− ρ) 0 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)

0 0 0 0 1− ρ2 0

0 0 0 0 0 1− ρ2




.
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Since C̃1 = 0, we have ∀k > 0, C̃k = 0, hence, l = 0 and there are no loops among vanishing

states. Then

G̃ =
l∑

k=0

C̃k = C̃0 = I.

The TPM for RDTMC(K):

P̃⋄ = F̃+ ẼG̃D̃ = F̃+ ẼID̃ = F̃+ ẼD̃ =


1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 ρ(1− ρ) ρ(1− ρ) ρ2

2
ρ2

2

0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ3 ρ(1− ρ2) 0

0 ρ2(1− ρ) ρ3 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)

0 0 0 ρ2 1− ρ2 0

0 0 ρ2 0 0 1− ρ2




.
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✚

✘
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✛
✚

✘
✙s̃8

✛
✚

✘
✙s̃7

✛
✚

✘
✙s̃9

❄❄ ❄

RDTMC(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�

�
��✒�
�

�
�

�
�

�✠✛ ✲

ρ3

ρ(1−ρ) ρ(1−ρ)

ρ(1−ρ2) ρ(1−ρ2)ρ2(1−ρ) ρ2(1−ρ)

ρ2 ρ2

ρ2

2
ρ2

2

❅
❅

❅
❅

❅
❅❅■❅
❅
❅

❅
❅
❅
❅❘

PPPPPPPPPPPPPPPPPPP✐

✲✞✝

✲✞✝

☎✆✛

☎✆✛

✝ ✆✻

✝ ✆✻
1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ3

(1−ρ)2

✓ ✏
❄

✬ ✩
❄ ρ3 ρ3

SHMGRDTMC: The reduced DTMC of the generalized shared memory system
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The steady-state PMF for RDTMC(K):

ψ̃⋄ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1− ρ), ρ(2− ρ), ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

Note that ψ̃⋄ = (ψ̃⋄(s̃1), ψ̃
⋄(s̃2), ψ̃

⋄(s̃5), ψ̃
⋄(s̃7), ψ̃

⋄(s̃8), ψ̃
⋄(s̃9)).

By Proposition PMFSMCT:

ϕ̃(s̃1) = 0, ϕ̃(s̃2) = ρ2(1−ρ)

2+ρ−ρ2−ρ3
, ϕ̃(s̃5) = ρ(2−ρ)

2(2+ρ−ρ2−ρ3)
,

ϕ̃(s̃7) =
ρ(2−ρ)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃8) = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃9) = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3)
.

The steady-state PMF for SMC(K):

ϕ̃ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .



I.V. Tarasyuk: Performance evaluation in stochastic process algebra dtsiPBC 53

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

àààààààààààààààààààààààààààààààààààààààààààààààààà

ìì
ì
ì
ìì
ìì
ììì

ìììì
ììììììììì

ììììììììììììììììììììììììììì

òòò
ò
ò
ò
ò
ò
ò
òò
òò
òò
òòò

òòòòò
òòòòòòòòòòòòòòòò

òòòòòòòòòòòò

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ò Ψ5
í@kD

ì Ψ3
í@kD

à Ψ2
í@kD

æ Ψ1
í@kD

SHMTRPR: Transient probabilities alteration diagram for the RDTMC of the generalized shared memory system when ρ = 1
2
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LetG be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G).

The following performance indices (measures) are based on the steady-state PMF for SMC(G).

• The average recurrence (return) time in the state s (the number of discrete time units or steps

required for this) is 1
ϕ(s) .

• The fraction of residence time in the state s is ϕ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the probability of the event

determined by a condition that is true for all states from S is
∑

s∈S ϕ(s).

• The relative fraction of residence time in the set of states S w.r.t. that in S̃ is
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃) .

• The rate of leaving the state s is
ϕ(s)
SJ(s) .

• The steady-state probability to perform a step with an activity (α, κ) is∑
s∈DR(G) ϕ(s)

∑
{Υ|(α,κ)∈Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.
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Performance indices of the generalized shared memory system

• The average recurrence time in the state s̃2, where no processor requests the memory,

the average system run-through, is 1
ϕ̃2

= 2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6.

The steady-state probability that the memory is available is

ϕ̃2 + ϕ̃3 + ϕ̃4 + ϕ̃6 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0 + 0 + 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 .

The steady-state probability that the memory is used (i.e. not available),

the shared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state s̃1 for all, and the common memory is either

requested or allocated in every remaining state, with exception of s̃2.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving s̃2,

calculated as ϕ̃2

S̃J2
= ρ2(1−ρ)

2+ρ−ρ2−ρ3 · ρ(2−ρ)1 = ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .
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• The common memory request of the first processor ({r1}, ρ) is only possible from the states s̃2, s̃7.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of activities containing ({r1}, ρ).

The steady-state probability of the shared memory request from the first processor is

ϕ̃2

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃2) + ϕ̃7

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ) + ρ2) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) = ρ2(2+ρ−2ρ2)
2(2+ρ−ρ2−ρ3) .
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Stochastic equivalences

Step stochastic bisimulation equivalence

For Υ ∈ INSIL
fin , we consider L(Υ) ∈ INL

fin, i.e. (possibly empty) multisets of multiactions.

LetG be a dynamic expression and H ⊆ DR(G). For s ∈ DR(G) andA ∈ INL
fin we write

s
A
→PH, where P = PMA(s,H) is the overall probability to move from s into the set of states H via

steps with the multiaction partA:

PMA(s,H) =
∑

{Υ|∃s̃∈H s
Υ
→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A
→H if ∃P s

A
→P H.

We write s→PH if ∃A s
A
→ H, where P = PM(s,H) is the overall probability to move from s into

the set of states H via any steps:

PM(s,H) =
∑

{Υ|∃s̃∈H s
Υ
→s̃}

PT (Υ, s).
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Definition 13 Let G and G′ be dynamic expressions. An equivalence relation

R ⊆ (DR(G) ∪DR(G′))2 is a step stochastic bisimulation betweenG and G′, R : G↔ssG
′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H ⇔ s2

A
→P H.

Two dynamic expressionsG and G′ are step stochastic bisimulation equivalent,G↔ssG
′, if

∃R : G↔ssG
′.

Proposition 2 (BISSPL) Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R ⊆ (DRT (G) ∪DRT (G
′))2⊎(DRV (G) ∪DRV (G

′))2,

where ⊎ is disjoint union.

Rss(G,G
′) =

⋃
{R | R : G↔ssG

′} is the union of all step stochastic bisimulations

betweenG and G′.

Proposition 3 (LARBIS) LetG and G′ be dynamic expressions and G↔ssG
′. Then Rss(G,G

′) is

the largest step stochastic bisimulation betweenG and G′.
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Reduction modulo equivalences

An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expressionG and a step stochastic autobisimulation R : G↔ssG,

let K ∈ DR(G)/R and s1, s2 ∈ K.

We have ∀K̃ ∈ DR(G)/R ∀A ∈ INL
fin s1

A
→P K̃ ⇔ s2

A
→P K̃.

The equality is valid for all s1, s2 ∈ K, hence, we can rewrite it as K
A
→PK̃, where

P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→K̃ if ∃P K

A
→P K̃ and K→K̃ if ∃AK

A
→ K̃.

The similar arguments: we write K→PK̃, where

P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).

Since R ⊆ (DRT (G))
2⊎(DRV (G))

2, we have ∀K ∈ DR(G)/R,

all states from K are tangible, when K ∈ DRT (G)/R,

or all of them are vanishing, when K ∈ DRV (G)/R.
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The average sojourn time in the equivalence class (w.r.t. R) of states K is

SJR(K) =





1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (w.r.t. R) of states of G, SJR,

has the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (w.r.t. R) of states K is

V ARR(K) =





PM(K,K)
(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (w.r.t. R) of states of G, V ARR, has the

elements V ARR(K), K ∈ DR(G)/R.
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Rss(G) =
⋃
{R | R : G↔ssG} is the largest step stochastic autobisimulation on G.

Definition 14 The quotient (by ↔ss) (labeled probabilistic) transition system of a dynamic expression

G is TS↔ss
(G) = (S↔ss

, L↔ss
, T↔ss

, s↔ss
), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
⊆ (INL

fin)× (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→PK̃.
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The abstract generalized shared memory system and its reduc tion

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, l); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, l); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with two processors is

L = (L1‖L2‖L3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(L) resemblesDR(K), and TS(L) is similar to TS(K).

SMC(L)≃SMC(K), thus, the average sojourn time vectors of L andK ,

the TPMs and the steady-state PMFs for EDTMC(L) and EDTMC(K) coincide.
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Performance indices of the abstract generalized shared memory system

The first, second and third performance indices are the same

for the generalized system and its abstract modification.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, ρ) is only possible from the states s̃2, s̃5, s̃7.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of activities containing ({r}, ρ).

The steady-state probability of the shared memory request from a processor is

ϕ̃2

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃2) + ϕ̃5

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃5) +

ϕ̃7

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ) + ρ(1− ρ) + ρ2) +

ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .
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The quotient of the abstract generalized shared memory system

DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where

K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and the memory is not requested),

K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor),

K̃5 = {s̃6} (the memory is requested by two processors),

K̃6 = {s̃8, s̃9} (the memory is allocated to a processor and the memory is requested by another

processor).

DRT (L)/Rss(L)
= {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L)

= {K̃3, K̃5}.
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TS↔ss
(L)

✎
✍

☞
✌K̃6 K̃5

K̃3

✎
✍

☞
✌K̃4

✎
✍

☞
✌K̃2

✎
✍

☞
✌K̃1

{a},ρ3

{m},ρ2(1−ρ)

{d},1

{r},ρ(1−ρ2) {{r},{r}},ρ2

{r},2ρ(1−ρ)
{d},1

{m},ρ2

{{r},{m}},ρ3

❄

❄❄

✲

✛

✡
✡

✡
✡✡✢❏

❏
❏

❏❏❪❏
❏
❏
❏❏❫

✓
✓
✓
✓✼

�✁✛
∅,1−ρ3

✄✂✲
∅,

(1−ρ)(1−ρ2)

�✁✛
∅,

(1−ρ)2

✄✂✲
∅,1−ρ2

SHMGQTS: The quotient transition system of the abstract generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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The quotient (by ↔ss) average sojourn time vector of G is SJ↔ss
= SJRss(G).

The quotient (by ↔ss) sojourn time variance vector of G is V AR↔ss
= V ARRss(G).

Let K → K̃ and K 6= K̃. The probability to move from K to K̃ by executing any multiset of activities

after possible self-loops is

PM∗(K, K̃) =





PM(K, K̃)
∑∞
k=0 PM(K,K)k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise.

We have ∀K ∈ DRT (G)/Rss(G) PM
∗(K, K̃) = SJ↔ss

(K)PM(K, K̃).
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Definition 15 The quotient (by ↔ss) EDTMC of a dynamic expressionG, EDTMC↔ss
(G),

has the state spaceDR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K→→PK̃, if

K → K̃ and K 6= K̃, where P = PM∗(K, K̃).

The quotient (by ↔ss) underlying SMC of G, SMC↔ss
(G), has the EDTMC EDTMC↔ss

(G) and

the sojourn time in every K ∈ DRT (G)/Rss(G) is geometrically distributed with the parameter

1− PM(K,K) while the sojourn time in every K ∈ DRV (G)/Rss(G) is equal to zero.

The steady-state PMFs ψ∗
↔ss

for EDTMC↔ss
(G) and ϕ↔ss

for SMC↔ss
(G) are defined

like ψ∗ for EDTMC(G) and ϕ for SMC(G).
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SMC↔ss
(L)

✎
✍

☞
✌K̃6 K̃5

K̃3

✎
✍

☞
✌K̃4

✎
✍

☞
✌K̃2

✎
✍

☞
✌K̃1

1

ρ(1−ρ)

1+ρ−ρ2

1

1−ρ2

1+ρ−ρ2

ρ
2−ρ

2(1−ρ)
2−ρ1

1

ρ2

1+ρ−ρ2

❄

❄❄

✲

✛

✡
✡

✡
✡✡✢❏

❏
❏

❏❏❪❏
❏
❏
❏❏❫

✓
✓
✓
✓✼

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ3

1
ρ(2−ρ)

0

0

SHMGQSMC: The quotient underlying SMC of the abstract generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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The quotient average sojourn time vector of F :

S̃J
′
=

(
1

ρ3
,

1

ρ(2− ρ)
, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ2

)
.

The quotient sojourn time variance vector of F :

Ṽ AR
′
=

(
1− ρ3

ρ6
,

(1− ρ)2

ρ2(2− ρ)2
, 0,

(1− ρ)2(1 + ρ)

ρ2(1 + ρ− ρ2)2
, 0,

1− ρ2

ρ4

)
.
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The TPM for EDTMC↔ss
(L):

P̃′∗ =




0 1 0 0 0 0

0 0 2(1−ρ)
2−ρ 0 ρ

2−ρ 0

0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1

0 0 1 0 0 0




.

The steady-state PMF for EDTMC↔ss
(L):

ψ̃′∗ = 1
6+3ρ−9ρ2+2ρ3 (0, ρ(2− 3ρ+ ρ2), 2 + ρ− 3ρ2 + ρ3,

2 + ρ− 3ρ2 + ρ3, ρ2(1− ρ), 2− ρ− ρ2).
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The steady-state PMF ψ̃′∗ weighted by S̃J
′
:

1

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

We normalize the steady-state weighted PMF dividing it by the sum of its components

ψ̃′∗S̃J
′T

=
2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

The steady-state PMF for SMC↔ss
(L):

ϕ̃′ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).
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SHMQTP: Transient probabilities alteration diagram for the quotient EDTMC of the abstract generalized shared memory system when ρ = 1
2
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Definition 16 Let G be a dynamic expression. The quotient (by ↔ss) DTMC of G, DTMC↔ss
(G),

has the state spaceDR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →P K̃,

where P = PM(K, K̃).

Definition 17 The reduced quotient (by ↔ss) DTMC of G, denoted by RDTMC↔ss
(G), is defined

like RDTMC(G), but it is constructed from DTMC↔ss
(G) instead of DTMC(G).

The steady-state PMFs ψ↔ss
for DTMC↔ss

(G) and ψ⋄
↔ss

for RDTMC↔ss
(G) are defined

like ψ for DTMC(G) and ψ⋄ for RDTMC(G).

The relationships between the steady-state PMFs ψ↔ss
and ψ∗

↔ss
, ϕ↔ss

and ψ↔ss
,

ϕ↔ss
and ψ⋄

↔ss
are the same as those between their “non-quotient” versions.
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From TS↔ss
(L), we can constructRDTMC↔ss

(L) and calculate ϕ̃′ using it.

DRT (L)/Rss(L)
= {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L)

= {K̃3, K̃5}.

We reorder the elements of DR(L)/Rss(L)
by moving the equivalence classes of vanishing states to

the first positions: K̃3, K̃5, K̃1, K̃2, K̃4, K̃6.

The reordered TPM for DTMC↔ss
(L):

P̃′
r =




0 0 0 0 1 0

0 0 0 0 0 1

0 0 1− ρ3 ρ3 0 0

2ρ(1− ρ) ρ2 0 (1− ρ)2 0 0

ρ3 0 0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)

ρ2 0 0 0 0 1− ρ2




.
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The result of the decomposing P̃′
r :

C̃′ =


 0 0

0 0


 , D̃′ =


 0 0 1 0

0 0 0 1


 , Ẽ′ =




0 0

2ρ(1− ρ) ρ2

ρ3 0

ρ2 0



,

F̃′ =




1− ρ3 ρ3 0 0

0 (1− ρ)2 0 0

0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)

0 0 0 1− ρ2



.
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Since C̃′1 = 0, we have ∀k > 0, C̃′k = 0, hence, l = 0 and there are no loops among vanishing

states. Then

G̃′ =
l∑

k=0

C̃′l = C̃′0 = I.

The TPM for RDTMC↔ss
(L):

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′ID̃′ = F̃′ + Ẽ′D̃′ =




1− ρ3 ρ3 0 0

0 (1− ρ)2 2ρ(1− ρ) ρ2

0 ρ2(1− ρ) 1− ρ− ρ2 + 2ρ3 ρ(1− ρ2)

0 0 ρ2 1− ρ2



.
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RDTMC↔ss
(L)

✎
✍

☞
✌K̃6

✎
✍

☞
✌K̃4

✎
✍

☞
✌K̃2

✎
✍

☞
✌K̃1

ρ2(1−ρ)

2ρ(1−ρ)

ρ2 ρ3

�✁✛
1−ρ3

✄✂✲
1−ρ−

ρ2+2ρ3

�✁✛
(1−ρ)2

✄✂✲
1−ρ2

✻✻

❄

✲✛
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

ρ2ρ(1−ρ2)

SHMGQRDTMC: The reduced quotient DTMC of the abstract generalized shared memory system
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The steady-state PMF for RDTMC↔ss
(L):

ψ̃′⋄ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), ρ(2− ρ), 2− ρ− ρ2).

Note that ψ̃′⋄ = (ψ̃′⋄(K̃1), ψ̃
′⋄(K̃2), ψ̃

′⋄(K̃4), ψ̃
′⋄(K̃6)).

By the “quotient” analogue of Proposition PMFSMCT:

ϕ̃′(K̃1) = 0, ϕ̃′(K̃2) =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 , ϕ̃′(K̃3) = 0,

ϕ̃′(K̃4) =
ρ(2−ρ)

2+ρ−ρ2−ρ3 , ϕ̃′(K̃5) = 0, ϕ̃′(K̃6) =
2−ρ−ρ2

2+ρ−ρ2−ρ3 .

The steady-state PMF for SMC↔ss
(L):

ϕ̃′ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.
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SHMQRTP: Transient probabilities alteration diagram for the reduced quotient DTMC of the abstract generalized shared memory system when ρ = 1
2
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Stationary behaviour

Steady state and equivalences

Proposition 4 (STPROB) Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the

steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for SMC(G′). Then

∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

LetG be a dynamic expression and ϕ be the steady-state PMF for SMC(G),

ϕ↔ss
be the steady-state PMF for SMC↔ss

(G).

By Proposition STPROB: ∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K) =

∑

s∈K

ϕ(s).
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Definition 18 A derived step trace of a dynamic expressionG is Σ = A1 · · ·An ∈ (INL
fin)

∗, where

∃s ∈ DR(G) s
Υ1→ s1

Υ2→ · · ·
Υn→ sn, L(Υi) = Ai (1 ≤ i ≤ n).

The probability to execute the derived step trace Σ in s:

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···
Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏

i=1

PT (Υi, si−1).

Theorem 2 (STTRAC) LetG,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the

steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for SMC(G′) and Σ be a derived step

trace of G and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ϕ′(s′)PT (Σ, s′).
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By Theorem STTRAC: ∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K)PT (Σ,K) =

∑

s∈K

ϕ(s)PT (Σ, s),

where ∀s ∈ K PT (Σ,K) = PT (Σ, s).

Proposition 5 (SJAVVA) Let G,G′ be dynamic expressions with R : G↔ssG
′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).
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Performance indices of the quotient abstract generalized shared memory system

• The average recurrence time in the state K̃2, where no processor requests the memory,

the average system run-through, is 1
ϕ̃′

2
= 2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states K̃2, K̃3, K̃5.

The steady-state probability that the memory is available is

ϕ̃′
2 + ϕ̃′

3 + ϕ̃′
5 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 + 0 + 0 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 .

The steady-state probability that the memory is used (i.e. not available),

the shared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state K̃1 for all, and the common memory is either

requested or allocated in every remaining state, with exception of K̃2.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving K̃2,

calculated as
ϕ̃′

2

S̃J
′

2

= ρ2(1−ρ)
2+ρ−ρ2−ρ3 · ρ(2−ρ)1 = ρ3(1−ρ)(2−ρ)

2+ρ−ρ2−ρ3 .
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• The common memory request of a processor {r} is only possible from the states K̃2, K̃4.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of multiactions containing {r}.

The steady-state probability of the shared memory request from a processor is

ϕ̃′
2

∑
{A,K̃|{r}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) + ϕ̃′
4

∑
{A,K̃|{r}∈A, K̃4

A
→K̃}

PMA(K̃4, K̃) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (2ρ(1− ρ) + ρ2) + ρ(2−ρ)

2+ρ−ρ2−ρ3 (ρ(1− ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .

The performance indices are the same for the complete and quotient abstract generalized shared

memory systems.

The coincidence of the first and second performance indices illustrates Proposition STPROB.

The coincidence of the third performance index illustrates Proposition STPROB and Proposition SJAVVA.

The coincidence of the fourth performance index is by Theorem STTRAC:

one should apply its result to the step traces {{r}}, {{r}, {r}}, {{r}, {m}} of L and itself,

and sum the left and right parts of the three resulting equalities.
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Effect of quantitative changes of ρ to performance of the quotient abstract generalized shared memory

system in its steady state

ρ ∈ (0; 1) is the probability of every multiaction of the system.

The closer is ρ to 0, the less is the probability to execute some activities at every discrete time step: the

system will most probably stand idle.

The closer is ρ to 1, the greater is the probability to execute some activities at every discrete time step:

the system will most probably operate.

ϕ̃′
1 = ϕ̃′

3 = ϕ̃′
5 = 0 are constants, and they do not depend on ρ.

ϕ̃′
2 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 , ϕ̃
′
4 = ρ(2−ρ)

2+ρ−ρ2−ρ3 , ϕ̃
′
6 = 2−ρ−ρ2

2+ρ−ρ2−ρ3 depend on ρ.
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SHMGQSSP: Steady-state probabilities ϕ̃′
2, ϕ̃

′
4, ϕ̃

′
6 as functions of the parameter ρ

ϕ̃′
2, ϕ̃

′
4 tend to 0 and ϕ̃′

6 tends to 1 when ρ approaches 0.

When ρ is closer to 0, the probability that the memory is allocated to a processor and the memory is

requested by another processor increases: more unsatisfied memory requests.
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ϕ̃′
2, ϕ̃

′
6 tend to 0 and ϕ̃′

4 tends to 1 when ρ approaches 1.

When ρ is closer to 1, the probability that the memory is allocated to a processor (and not requested by

another one) increases: less unsatisfied memory requests.

The maximal value 0.0797 of ϕ̃′
2 is reached when ρ ≈ 0.7433.

In this case, the probability that the system is activated and the memory is not requested is maximal:

maximal shared memory availability is about 8%.
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SHMGQART: Average system run-through 1
ϕ̃′

2
as a function of the parameter ρ

The average system run-through is 1
ϕ̃′

2
.

It tends to ∞ when ρ approaches 0 or 1.

The minimal value 12.5516 of 1
ϕ̃′

2
is reached when ρ ≈ 0.7433.

To speed up the system’s operation: take the parameter ρ closer to 0.7433.
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SHMGQIND: Some performance indices as functions of the parameter ρ

The shared memory utilization is 1− ϕ̃′
2 − ϕ̃′

3 − ϕ̃′
5.

It tends to 1 when ρ approaches 0 and when ρ approaches 1.

The minimal value 0.9203 of the utilization is reached when ρ ≈ 0.7433.

The minimal shared memory utilization is about 92%.

To increase the utilization: take the parameter ρ closer to 0 or 1.
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The rate with which the necessity of shared memory emerges is
ϕ̃′

2

S̃J
′

2

.

It tends to 0 when ρ approaches 0 and when ρ approaches 1.

The maximal value 0.0751 of the rate is reached when ρ ≈ 0.7743.

The maximal rate with which the necessity of shared memory emerges is about 1
13 .

To decrease the rate: take the parameter ρ closer to 0 or 1.

The steady-state probability of the shared memory request from a processor is ϕ̃′
2Σ̃

′
2 + ϕ̃′

4Σ̃
′
4,

where Σ̃′
i =

∑
{A,K̃|{r}∈A, K̃i

A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 4}.

It tends to 0 when ρ approaches 0 and it tends to 1 when ρ approaches 1.

To increase the probability: take the parameter ρ closer to 1.
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Simplification of performance analysis

The method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsiPBC .

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similarity,

a step stochastic autobisimulation equivalence for the expression is determined.

4. The quotient underlying SMC is constructed from the quotient transition system.

5. Stationary probabilities and performance indices are calculated using the SMC.

Simplification of the steps 4 and 5:

constructing the reduced quotient DTMC from the quotient transition system,

calculating the stationary probabilities of the quotient underlying SMC using this DTMC

and obtaining the performance indices.
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E TS(E) TS↔ss
(E) SMC↔ss

(E)

RDTMC↔ss
(E)

ϕ↔ss

ψ⋄
↔ss

✲ ✲ ✲

✲
✻❆

❆
❆❯

✲ Performance✲

EQPEVA: Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying SMCs containing one closed

communication class of states, which is ergodic, to ensure uniqueness of the stationary distribution.

If an SMC contains several closed communication classes of states that are all ergodic:

several stationary distributions may exist, depending on the initial PMF.

The general steady-state probabilities are then calculated as the sum of the stationary probabilities of all

the ergodic classes of states, weighted by the probabilities to enter these classes,

starting from the initial state and passing through transient states.

The underlying SMC of each process expression has one initial PMF (that at the time moment 0):

the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.



I.V. Tarasyuk: Performance evaluation in stochastic process algebra dtsiPBC 93

Overview and open questions

The results obtained

• A discrete time stochastic and immediate extension dtsiPBC of finite PBC

enriched with iteration.

• The step operational semantics based on labeled probabilistic transition systems.

• The denotational semantics in terms of a subclass of LDTSIPNs.

• The method of performance evaluation based on underlying SMCs.

• Step stochastic bisimulation equivalence of the expressions and dtsi-boxes.

• The transition systems and SMCs reduction modulo the equivalence.

• A comparison of stationary behaviour up to the equivalence.

• Performance analysis simplification with the equivalence.

• The case study: the shared memory system.
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Further research

• Constructing a congruence relation: the equivalence that withstands application

of the algebraic operations.

• Introducing the deterministically timed multiactions with fixed time delays

(including the zero delay).

• Extending the syntax with recursion operator.
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[MVC02] MACIÀ S.H., VALERO R.V., CUARTERO G.F. A congruence relation in finite sPBC. Technical

Report DIAB-02-01-31 , 34 p., Department of Computer Science, University of Castilla - La Mancha,

Albacete, Spain, October 2002, http://www.info-ab.uclm.es/retics/

publications/2002/tr020131.ps.
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