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Abstract : In [MVFO01], a continuous time stochastic extension s/~ 3 (' of finite Petri box calculus

P BC' [BDH92] was proposed. In [M\VVCCO03], iteration operator was added to sPBC.
Algebra s P BC has an interleaving semantics, but P BC' has a step one.

We constructed a discrete time stochastic extension dts P BC of finite P BC' [Tar05] and enriched it
with iteration [Tar06].

We present the extension dtst P BC' of dtsPBC with immediate multiactions [TMV10, TMV13].

dtsiPBC(C'is a discrete time analog of s P BC' with immediate multiactions.
The step operational semantics is defined in terms of labeled probabilistic transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs with immediate

transitions (LDTSIPNS), called discrete time stochastic and immediate Petri boxes (dtsi-boxes).

The corresponding semi-Markov chain and (reduced) discrete time Markov chain are analyzed to

evaluate performance.

We propose step stochastic bisimulation equivalence and explain how to use it for reduction of

transition systems and semi-Markov chains.

We demonstrate how to apply this equivalence to compare stationary behaviour and simplify

performance analysis.
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The case study of performance evaluation is presented: running example of the shared memory system.

Keywords : stochastic Petri net, stochastic process algebra, Petri box calculus, discrete time,
immediate multiaction, transition system, operational semantics, immediate transition, dtsi-box,
denotational semantics, Markov chain, performance evaluation, stochastic equivalence, reduction,

shared memory system.
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Introduction

Previous work
e Continuous time (subsets of IR, ): interleaving semantics

— Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:
exponential transition firing delays,
Continuous time Markov chain (CTMC).
— Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:
exponential and zero transition firing delays,
Semi-Markov chain (SMC).
— Extended generalized stochastic Petri nets (EGSPNs) [HS89,MBBCCC89]:
hyper-exponential or Erlang or phase and zero transition firing delays.
— Deterministic stochastic Petri nets (DSPNs) [MC87,MCF90]:
exponential and deterministic transition firing delays,
Semi-Markov process (SMP), if no two deterministic transitions are enabled in any marking.
— Extended deterministic stochastic Petri nets (EDSPNSs) [GL94].
non-exponential and deterministic transition firing delays.
— Extended stochastic Petri nets (ESPNs) [DTGN85]:

arbitrary transition firing delays.
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e Discrete time (subsets of IV): interleaving and step semantics

— Discrete time stochastic Petri nets (DTSPNSs) [Mol85,Z2G94]:
geometric transition firing delays,
Discrete time Markov chain (DTMC).

— Discrete time deterministic and stochastic Petri nets (DTDSPNSs) [ZFHO1]:
geometric and fixed transition firing delays,
Semi-Markov chain (SMC).

— Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:
phase and fixed transition firing delays,

Semi-Markov chain (SMC).
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Stochastic process algebras

e MTIPP [HR94]
o (GSPA [BKLL95]
o PEP A [HIl96]
o S [Prige6]
o KM PA[BG098]
o GSMPA [BBG098]
e sAC P [AHRO00]
e TC P MViog]
More stochastic process calculi
e T/ PP [GHR93]
o WSCCS [Tof94]
o PNM — TIPP [Ret95]
e SPADES [AKB98]
o NMSPAI[LNOO]

SM — PEP A [Brad05]
1PEPA[HBC13]
mCC'S [DH13]
PHASE [CR14]

Algebra P B(C' and its extensions

Petri box calculus P B(C' [BDH92]

Time Petri box calculus t P BC [Kou00]

Timed Petri box calculus 7' P BC' [MF0O]

Stochastic Petri box calculus s P BC' [MVF01,MVCCO03]

Ambient Petri box calculus AP BC [FM03]

Arc time Petri box calculus at P BC' [Nia05]

Generalized stochastic Petri box calculus gs P B(C [MVCRO08]
Discrete time stochastic Petri box calculus dts P BC' [Tar05,Tar06]

Discrete time stochastic and immediate Petri box calculus
dtsiPBC [TMV10,TMV13]
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SPACLS: Classification of stochastic process algebras

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions
Continuous No MTIPP (CTMC), PE P A (CTMP), GSPA (GSMP), S, GSM P A (GSMP)
sPBC (CTMC)
Yes EM P A (SMC, CTMC), gs P BC' (SMC) —
Discrete No — dtsP BC' (DTMC)
Yes TC P%st (DTMRC) sACP, dtsiPBC (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.

The underlying stochastic process: in parentheses near the SPA names.
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Transition labeling
e CTSPNSs [Buc95]
e GSPNs [Buc98]
e DTSPNs [BTOO]
Stochastic equivalences
e Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]
® SPAs [HR94,Hil94,BG098]
e Markov process algebras (MPAS) [Buc94,BKe01]
e CTSPNSs [Buc95]
e GSPNs [Buc98]
e Stochastic automata (SAs) [Buc99]

e Stochastic event structures (SESs) [MCWO03]
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Syntax

The set of all finite multisets over X is IV )f;n The set of all subsets (powerset) of X is 2°.

Act = {a,b, ...} is the set of elementary actions.

Zc\t = {d, I;, .. } is the set of conjugated actions (conjugates) s.t. @ % a and 51, = Q.

A= Act U Zc\t is the set of all actions. £ = W“‘in IS the set of all multiactions.

The alphabetof a € Lis A(a) ={x € A| a(x) > 0}.

A stochastic multiaction is a pair («, p) s.t. « € L and p € (0; 1) is the probability of the multiaction c.
S L is the set of all stochastic multiactions.

An immediate multiaction is a pair (c,l) s.t. &« € Land [ € IN>1 is the weight of the multiaction .

T L is the set of all immediate multiactions. STL = SL UZL is the set of all activities.

The alphabet of (o, k) € SIZLis A(a, k) = A(a), thatof T € INGEE is A(T) = U n)erA(a).

The multiaction part of ¥ € IN$Z5 is L(T) = D (an)er O
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The : sequential execution ;, choice ||, parallelism

, relabeling | f1, restriction rs,
synchronization sy and iteration | * * |.

Sequential execution and choice have the standard interpretation.
Parallelism unlike that in standard process algebras.
Relabeling functions f : A — A are bijections preserving conjugates: Vx € A f(2) = f(z).

Restriction over a € Act: any process behaviour containing a a

Let o, 8 € L be two multiactions s.t. fora € Act wehavea € cvanda € S,ora € canda € £5.

Synchronization of aw and 3 by a is aB, 0 = 7:

alz)+ B(x) —1, z=aorx = a;
a(x) + B(x), otherwise.

In the iteration, the subprocess is executed first,

then the one is performed zero or more times, finally, the one is executed.
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Static expressions specify the structure of processes.

Definition 1 Let (o, k) € SZL and a € Act. A static expression of dtstPBC'is

Eu= (a,k) | E;E | E|[E | E|E | E[f]| Ersa| Esya | [ExE+E].

Stat Expr is the set of all static expressions of dtstPBC'.

Definition 2 Let (a, k) € SZL and a € Act. A regular static expression of dtsiPBC'is

E:= (a,k) | B;E | E[|JE | E|\|E | E|f]| Ersa| Esya| |[ExDxE|,
where D ::= (a, k) | D;E | D[|D | D[f] | Drsa | Dsya | [D+DxFE].

RegStatExpr is the set of all reqular static expressions of dtsiPBC.
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Dynamic expressions specify the states of processes.
Dynamic expressions are obtained from static ones annotated with upper or lower bars.

The underlying static expression of a dynamic one: removing all upper and lower bars.

Definition 3 Let B € StatExpr and a € Act. A dynamic expression of dtstPBC'is

G:= E|E|GE|EG|GIE|E]G|G|G|G[f]|Grsa|Gsyal
GxExE| | [ExG*E| | [ExExG].

DynFExpr is the set of all dynamic expressions of dtstPBC.
Definition 4 A dynamic expression is regular if its underlying static expression is regular.

RegDyn Expr is the set of all reqular dynamic expressions of dtsiPBC'.

We shall consider regular expressions only and omit the word “regular”.

13
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Generalized shared memory system

A model of two processors accessing a common shared memory [MBCDF95]

Processor 1 Memory Processor 2

SHMDIA: The diagram of the shared memory system

After activation of the system (turning the computer on), two processors are active, and the common

memory is available. Each processor can request an access to the memory after which the

nstantaneous decision is made.

When the decision is made in favour of a processor, it starts an acquisition of the memory, and another

processor waits until the former one ends its operations, and the system returns to the state with both
active processors and the available memory.
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a corresponds to the system activation.

T (1 <1 < 2) represent the common memory request of processor .

d; correspond to the instantaneous decision on the memory allocation in favour of the processor 1.

m; represent the common memory access of processor 1.

The other actions are used for communication purpose only.

Stop = ({c}, %) rs ¢ is the process that performs empty loops with probability 1 and never terminates.

The static expression of the first processor is

Ky = [({z1},p) * ({71}, p); ({d, w1}, 1); ({ma, 21}, p)) + Stop).
The static expression of the second processor is

Ky = [({z2, p) * ({72}, p); ({d2, y2},1); ({ma, 22}, p)) * Stop).
The static expression of the shared memory is

Ks = [({a, 71,22}, p) * (({#1},0); ({21}, o)) ({52}, 1); ({221, p))) = Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1||K2||K3) sy 1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS L1 I'S L IS Y1 IS Yo IS 21 IS Za.
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Operational semantics
Inaction rules

Inaction rules: instantaneous structural transformations.

Let I/, F', K € RegStatExpr and a € Act.

IRULES1: Inaction rules for overlined and underlined regular static expressions

B = B F E.F = E.F b F = B F
E[F = B(F B[F = B[F E[F = B[F
|F = E[|F E|F = E|F E|F = E||F
E[f] = E[f Elf] = E[f] FErsa= Ersa
rsa= Ersa Esya= Esya Lsya= Esya
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Let &/, F' € RegStatExpr, G, H, (NJ, H € RegDynFExpr and a € Act.

IRULES2: Inaction rules

G=C oc{ul} G=C. ol G=G Hoil G=G
GoE=GoE EoG=FEoG G||H=G| H G||H=G| H Gl f]l=GIf]
G=0G, oeirs,sy} G:>C~¥~ G=G _ G=G _
Goa=Goa [GxExF|=[GxExF| |[ExG*F|=[ExGx*F| [ExFxG|=[E+«Fx*G]

Definition 5 A regular dynamic expression is operative if no inaction rule can be applied to it.
OpRegDynExpr is the set of all operative regular dynamic expressions of dtsiPBC'.
We shall consider regular expressions only and omit the word “regular”.

Definition 6 = (= U <«)" is the structural equivalence of dynamic expressions in dtsi PBC.
(G and GG’ are structurally equivalent, G=~G’, if they can be reached each from other by applying

inaction rules in a forward or backward direction.
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Action and empty loop rules
Action rules with stochastic multiactions: execution of non-empty multisets of stochastic multiactions.
Action rules with immediate multiactions: execution of non-empty multisets of immediate multiactions.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (o, p), (B,x) € SL, (a,1),(B,m) € ZL and (v, k) € STL.
Let £, F' € RegStatExpr, G,H € OpRegDynFEzxpr, G, H € RegDynFExpr and a € Act.
LetD, A e INSEN\ {0}, TV e NS5, I,J € INFL A\ {0}, I' € INFS, and T € INGLE\ {0},

The names of the action rules with immediate multiactions have a suffix ‘1’.
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ARULES: Action and empty loop rules

19

t {(a,r)}
El %(G) B (a,k) — (a, k)
G—CG
S eRNE C GLH G, —init(G)V (init(G)Atang(E))
G.ELG.E E:GSE.G G|ESGE E|IGSE[G
. aLa GSCNJ, tang(H)
Ci — — P1 — T
G[|[E—-G[E E]|G=>E|[G G|H—G||H H|G=H||G
: eiNe, G5G, HSH
P1i — —— P2 N——
G||H—G|H H||G=H|G G|H— G| H
. G5G, HLH GLG
P2i oy —— L o
G|H—GI|H Glf]=— G[f]
GG, a,ag A(T) G5G
Rs — Il =
Grsa—Grsa |GxExF|—[GxExF|
2 GLH G, —init(G)V (init(G)Atang(F)) 12i aLéG
I3 GG, —init(G)V (init(G)Atang(F)) I3i aLéG
~ T +{(a,p) }+{(8, ~
GLG G sy a o) 450} »G sy a, a€a, a€P
Syl Y ~ Sy2 I +{(a®aBp-x)} ~
G sy a—G sy a G sya a »G sy a
I+ {(a,D}+{(B.m)}  ~ )
Sy2i G sya >»G sy a, a€Ea, €S

I't+{(a®qaB,l+m)}

G sy a >ésya
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RULECMP: Comparison of inaction, action and empty loop rules

Rules

State change

Time progress

Activities execution

Inaction rules

Action rules + + +
(stochastic multiactions)

Action rules + — +
(immediate multiactions)

Empty loop rule — + —

20
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Transition systems
Definition 7 The derivation set D R((') of a dynamic expression G is the minimal set:
e (G|~ € DR(G);
o if [H]~ € DR(G)and 3Y H 5 H then [H]|~ € DR(G).
Let G be a dynamic expression and s, § € DR(G).
The set of all multisets of activities executable from s is Exzec(s) = {Y | 3H € s 3H H EN H}.
The state s is tangible, if Exec(s) C INSA. For tangible states we may have Exec(s) = {0}.
The state s is vanishing, if Exec(s) C INZE \ {0}.
The set of all tangible states from DR(G) is DR (G).
The set of all vanishing states from DR(G) is DRy (G).

Obviously, DR(G) = DR (G) W DRy (G).
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Let T € Exec(s) \ {0}. The probability of the multiset of stochastic multiactions or the weight of the

multiset of immediate multiactions T which is ready for execution in s:

iaper 2 Hisayepsecs)@oery( —x), s € DRr(G);

PF(Y,s) =
Z(a,z)er L, s € DRy (G).

Inthe case T = () and s € DR (G) we define

PFE(0,s) = [is01emzects (1 =), Ea?eC(S)i(D};

1, Ezxec(s) 0}
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Let T € Exec(s). The probability to execute the multiset of activities Y in s:

PF(Y,s)

PT(Y,s) = :
( ) S) ZEEExeC(S) PF(E, S)

If s is tangible, then PT'((), s) € (0; 1]: the residence time in sis > 1.

The probability to move from s to s by executing any multiset of activities:

PM(s,5) = > PT(T,s).

(Y|3Hes IHes HSHY

23
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Definition 8 The (labeled probabilistic) transition system of a dynamic expression (s is
TS(G) = (Sg, La,Ta, S(;), where

e the set of statesis S = DR(G);
e the setof labelsis Lo = INSZE x (0;1];

e the set of transitions is

Te: = {(s,(Y, PT(Y,s)),3) | 5,5 € DR(G), 3H € s 3H € § H > H);
e the initial state is s = [G]~.
A transition (s, (Y, P), 5) € T is written as 837:5

T .. T . .. T .
We write s— s if 9P s —p sand s—sif 31 s — s.

24
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S3

({d1}72l)71

{H{r2},0),
{m1}.p2)}.p3

- 89

({da},20),1

(1—p)(1—p2)

({Tl},p),
p(1—p?)

SHMGTS: The transition system of the generalized shared memory system

25

(parallel executions of activities and the exclusively reachable states are marked with orange)
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Interpretation of the states of the generalized shared memory system

DRT(K) — {§1, S9, S5, S5, S8, 59} and DRV(K) = {§3, S4, 56}.

S1: the initial state,

So: the system is activated and the memory is not requested,

S3: the memory is requested by the first processor,

S4:. the memory is requested by the second processor,

S5: the memory is allocated to the first processor,

Sg. the memory is requested by two processors,

S~7. the memory is allocated to the second processor,

Sg: the memory is allocated to the first processor and the memory is requested by the second processor,

Sg: the memory is allocated to the second processor and the memory is requested by the first processor.
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Denotational semantics

Algebra of dtsi-boxes

N(a,p)b

(@, p)

®

Urs a st a usy a Q'I/d

Oid

BOXOPS: The plain and operator dtsi-boxes

* o |
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Definition 9 Let (o, k) € SIZL, a € Actand E, F, K € RegStatFExpr. The denotational
semantics of dtsiP BC'is a mapping Box j;5; from RegStatExpr into plain dtsi-boxes:

1. BOxdtsz (047/{’)1,) N(a,m)b;
2. Boxgisi(EoF) =

(
( ©
3. Boxgisi(E|f]) = Orf1(Bowgisi(EF)):
4. BOZCdtSz(EOCL) oa(Boxdtsi(E))a SIS {rsvsy};
(

5. Boxgisi ([ L+ F+K|) = O, . 1(Boxgisi(E), Boxgisi(F'), Boxgsi (K)).

For £ € RegStatExpr,let Box iy (E) = Boxgisi(E) and Box gisi(E) = Boxgisi(E).

1o 1 (OPDNSEM) For any static expression £/

TS(E)~RG(Boxg.si(E)).
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N1 N3 No
{1131},/) ({a7ﬁ7@}7p) {:Bg},p
{Tl}’p {7"2},/)

{m1,21},p {z1}.p {z2}.p {ma,z2},p
\_ o L/®\J ®U

SHMGPMBOX: The marked dtsi-boxes of the generalized two processors and shared memory
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N

N

{a},p?

{T1}7p {’7’2},/)

SHMGBOX: The marked dtsi-box of the generalized shared memory system
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Performance evaluation
Analysis of the underlying SMC
For a dynamic expression (7, a discrete random variable is associated with each state from D Ry (G).

The random variables (residence time in the tangible states) are geometrically distributed:
the probability to stay in the tangible state s € D R (G) for k — 1 moments
and leave it at the moment & > 1is PM (s, s)*~1(1 — PM(s, s)).

1

The mean value formula: the average sojourn time in the tangible state s is

1—PM(s,s)"
The average sojourn time in the vanishing state s is 0.
1
s € DR (G);
The average sojourn time in the state s is SJ(S) = 1—PM(s,s)’ ( )’
07 S € DRV(G)

The average sojourn time vector S.J of G has the elements SJ(s), s € DR(G).

(153%22))27 s € DRr(G);

0, S € DRv(G)

The sojourn time variance in the state sis VAR(s) =

The sojourn time variance vector VAR of G has the elements VAR(s), s € DR(G).
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The stochastic process associated with a dynamic expression (G: the underlying semi-Markov chain
(SMC) of G, SM C((G), which is analyzed by extracting the embedded (absorbing) discrete time

Markov chain (EDTMC) of G, EDT M C(G).
Let G be a dynamic expression and s, § € DR(G).
Let s — 5. The probability to stay in s due to k (k > 1) self-loops is PM (s, s)*

Let s — S and s # S. The probability to move from s to § by executing any multiset of activities after

possible self-loops is

=00 PM(s,3 ,
Par () = 4 PMEATZoPM(s 9" = Sy 5= | _oropur
| PM(s,s), otherwise;

1

1—PM¢(s,s)’ §— 5 : : :
where S L(s) = ’ is the self-loops abstraction factor in the state s.
1, otherwise;

The self-loops abstraction vector S L of G has the elements SL(s), s € DR(G).
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Definition 10 Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain
(EDTMC) of G, EDT' M C((), has the state space D R(G), the initial state |G|~ and the transitions
s—»p§,if s — Sand s # §, where P = PM*(s, §).

The underlying SMC of GG, SM C'(G), has the EDTMC EDT M C((G) and the sojourn time in every
s € DRy (G) is geometrically distributed with the parameter 1 — P M (s, s) while the sojourn time in
every s € DRy (G) is equal to zero.

Let G be a dynamic expression. The elements P (1 < 4,5 < n = [DR(G)]) of (one-step) transition

probability matrix (TPM) P* for EDT M C(G):

PM*(Si,Sj)v Si — Sj, Si 7& Sj;

0, otherwise.
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The transient (k-step, k € IN) probability mass function (PMF) ¥* k] = (¥ *[k](s1), ..., ¥ [k](sn))
for EDT MC'(G) is calculated as

where ¢*[0] = (¢ *[0](s1), . ..,%*[0](s,)) is the initial PMF:

0, otherwise.

We have ¢*[k + 1] = * [k]P* (k € IN).
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The steady-state PMF ©¥* = (Y*(s1),...,1¥*(sy)) for EDT M C/(G) is a solution of

V(P ~1) =0
1t =1

where 1 is the identity matrix of order n and O is a row vector of n values 0, 1 is that of n values 1.
When E DT M C(G) has the single steady state, 1™ = limy_, . ¥*[k].

The steady-state PMF ¢ = (¢(81),...,9(sp)) for SMC(G):

Y7 (5:)SJ(s4) s;i € DR (G);

o(s) = 4 TSI
0, S; € DRv(G).
To calculate ¢, we apply to get P* and 9™,
followed by SJ and
EDTMC(G) has , unlike SM C(G), hence, the behaviour of EDTMC(G)

stabilizes quicker than that of SM C'(G), since P*
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SMC(F)

SHMGSMC: The underlying SMC of the generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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The average sojourn time vector of K:

3,7_(1 L 0 1 ; 1 1 1)
PP p2—p) 7 T p(L+p—p2) T p(L+p—p?) p2 p?)

The sojourn time variance vector of K:

V7R2<1—p3 (1=p) (g U=p0+p (A=pZ(tp) 1-p’ 1—p2>.
po P2 =p)? T T pP(A+p—p?)? (Lt p—p?)?T pt T pt
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The TPM for EDTMC(K):

[0 1 0 0 0 0 0 0 0
1— 1—
0 0 L =2 0 2 000 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
p* _ p(1—p) > 1—p?
P = 0 14+p—p? 0 1+Z—/02 0 0 0 1+p502 0
0 0 0 o o0 o0 o0 3 3
p(1—p) 2 1—p2
0 L2 2 0 0 0 0 0 @=L
0 0 0 10 0 0 0 0
\ 0 0 1 0 0 0 0 0 0 )

The steady-state PMF for EDTMC(K):

~

¢* — 2(6+3p—19p2—|—2p3) (07 2p(2 o Sp o p2)7 2+ P — 3p2 + p37 2+ P — 3/02 + p3’
24+ p—=3p* +0°,20°(1 = p),2+p—3p° +p>,2 —p—p*>,2 = p—p°).
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The steady-state PMF 15* weighted by SJ:

1
20%(6 + 3p — 9p? + 2p3)

(0,20%(1 = p),0,0,p(2 = p),0,p(2 = p),2 —p—p*,2—p—p*).

We normalize the steady-state weighted PMF dividing it by the sum of its components

- —~T 2 2 3
557" = +p—p 2/) |
p?(6 + 3p — 9p* + 2p?)

The steady-state PMF for SM C(K):

1
5 — 0,2p%(1 — p),0,0,p(2 = p),0,p(2—p),2—p—p*,2 — p — p?).
P 2(2+p_p2_p3)( p~(1—p) p(2—1p),0,p(2—p),2—p—p p—p°)
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1.
(* —0— Y17[K]
| —o— Y]
0'6“ —a— 5" [K]
f —v— Y6'[K]
o]
f —c— Yg'[K]
02
' ‘ A" d \\ O e S S i Ty S S S
AVs

”5 2 A X222 2 222 22 2222222 22 22 22 2 22 X X 2 2 2 2 & & X 2 k

0 0 40 0

SHMTP: Transient probabilities alteration diagram for the EDTMC of the generalized shared memory system when p = %
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Analysis of the reduced DTMC

Definition 11 Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G,
DTMC(G), has the state space D R((G), the initial state |G|~ and the transitions s —p 3, where
P =PM(s,Ss).

Let G be a dynamic expression. The elements P;; (1 < 4,5 < n = |[DR(G)|) of (one-step) transition
probability matrix (TPM) P for DT M C(G) are

PM(s;,si), S;— Si;
p_ | PMGsisy ;

0, otherwise.

Let G be a dynamic expression and P be the TPM for DT M C(G).

Reordering the states from D R(G): the of P correspond to the states from
DRy (G) and the correspond to the states from D Rp(G).
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Let | DR(G)| = nand |DR7(G)| = m. The resulting matrix is decomposed as:

C D
E F

The elements of the (n — m) X (n — m) submatrix C: the probabilities to move from vanishing to

vanishing states.

The elements of the (n — m) X m submatrix D: the probabilities to move from vanishing to tangible

states.

The elements of the m X (n — m) submatrix E: the probabilities to move from tangible to vanishing

states.

The elements of the m X m submatrix F': the probabilities to move from tangible to tangible states.
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The TPM P° for RDT M C(G) is the m X m matrix:

P° =F + EGD,

where the elements of the matrix G are the probabilities to move from vanishing to vanishing states in

any number of state transitions, without traversal of the tangible states:

C f: Ck 22:0 Ck, 3l € INVEk > [ Ck = 0, noloops among vanishing states;
k=0

I-C)7 !, limp_. C*¥ =0, loops among vanishing states;

where 0 is the square matrix consisting only of zeros and I is the identity matrix, both of size n — m.
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Forl <i,9 <mandl <k, [l <n—m,let
JFi; be the elements of the matrix I, &;;, be those of E, G}, be those of G and D;; be those of D.

The elements Pfj of the matrix P¢ are

n—mmn—m

Py=Fij+ Y Y EwGuDy=TFij+ Y Ek Y GuDy=7Fij+ Y Dy Y EwGu.
k=1 1=1 I=1 k=1

k=1 [=1

le. Pfj (1 <1i,7< m) is the total probability to move from the tangible state s; to the tangible state s;

in any number of steps, without traversal of tangible states, but possibly going through vanishing states.
Lets, 5 € DRy (G) suchthats = s;, § = s;.

The probability to move from s to s in any number of steps, without traversal of tangible states is

PM®(s,3) = Py,.
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Definition 12 Let G be a dynamic expression and |G|~ € DR (G).

The reduced discrete time Markov chain (RDTMC) of (7, denoted by RDT'M C((), has the state
space D R ((), the initial state [(G]~. and the transitions s<p 5, where P = PM®(s, §).

Let DRy (G) = {s1,...,5m} and [G]~ € DR (G). The transient (k-step, k € IN) probability
mass function (PMF) ¥° k] = (¢°[k](s1), ..., ¥°k](sm)) for RDTMC(G) is calculated as

U] = ¢ [0)(P°)*,
where ¥°[0] = (¢°[0](s1), . ..,¥°[0](s:,)) is the initial PMF:

]-7 Si = [G]N

0, otherwise.

We have ¢° |k + 1] = ¢°[k|P° (k € IN).
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The steady-state PMF 1)° = (¢°(s1),...,¥°(Sm)) for RDT M C(G) is a solution of:

(PO —T) = 0
wolT —1
where I is the identity matrix of size m and O is a row vector of m values 0, 1 is that of m values 1.

When RDT M C(G) has the single steady state, ¢° = limy_, o 1°[k].

_ 1 (PMFSMCT) Let GG be a dynamic expression, ¢ be the steady-state PMF for
SMC(G) and ° be the steady-state PMF for RDT' M C'(G). ThenVs € DR(G)

°(s), s € DRp(G);

p(s) =
0, S € DRv(G)
To calculate ¢, we take )° as the ,
instead of to get P* and ¢, followed by SJ and

Using RDT M C(G) instead of ED'T'M C'(G) allows one to avoid multistage analysis.

Constructing P requires calculating matrix powers or inverse matrices.
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RDTMC(G) has self-loops, unlike EDT M C(G), hence,
the behaviour of RD'T'M C(G) may stabilize slower than that of EDT M C(G).
P¢ is smaller and denser matrix than P*, since P° has non-zero elements

at the main diagonal and many of them outside it.

The complexity of the analytical calculation of ¢ w.r.t. 1™ depends on the model structure:
the number of vanishing states and loops among them.

Usually it is lower, since the matrix size reduction plays an important role.

The elimination of vanishing states.

e The system models with many immediate activities:

significant simplification of the solution.

e The abstraction level of SMCs:

decreases their impact to the solution complexity.

e The abstraction level of transition systems:

allows immediate activities to specify logical structure.
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From T'S(K), we can construct RDT M C(K) and calculate (¢ using it.

DR7(K) = {51,592, 55,57, 53, 59} and DRy (K) = {53, 54, 56}

We reorder the elements of D R(K) by
moving the equivalence classes of vanishing states to the first positions:
§37 §47 §67 §17 §27 §57 §77 §87 §9-

The reordered TPM for DT M C(K):

0 0 0 0 0 1 0
( 0 0 0 0 0 0 1
0 0 0 0 0 0 0
- 0 0 0 1 — p3 p3 0 0
PT = p(L—p) p(l—p) p2 0 (1 — p)? 0 0
0 p3 0 0 p2(1—p) (1 —p)(1—p?) 0
p3 0 0 0 p2 (1 — p) 0 (1 —p)(1 = p?)
\ 0 p2 0 0 0 0
p2 0 0 0 0 0 0

O OoONH O O

48

S O ONm O O
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The result of the decomposing f’r:

0
1— 1— 2
0 0 0 050 10 0 0 p(L—p) p(l—p) p
- ~ ~ 0 p° 0
C=l000]|.D=l0o0010 0], E=
p° 0 0
0 0 0 0000 5 3
0 p? 0
L0 0y
(11— 0 0 0 0
0  (1—p)? 0 0 0 0
= 0 p(1—=p) (1—p)(1-p° 0 p(1 —p?) 0
0 p*(1—p) 0 (1=p)(1—p%) 0 p(1—p?)
0 0 0 0 1— p? 0
\ 0 0 0 0 0 1-p* )
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Since C! = 0, we have Vk > 0, C*¥ = 0, hence, [ = 0 and there are no loops among vanishing

states. Then

The TPM for RDT M C(K):

~

P°=F+EGD=F+EID=F 4 ED =

(11— p’ 0 0 \
0 (1-p)’ p(1—p) p(1—p) g g
0 p(1—=p) (1-p)(1-p? p’ p(1—p?) 0
0 p*(1—p) p’ (1=p)(1—p?) 0 p(1—p?)
0 0 0 p? 1 — p? 0
\ 0 0 0? 0 0 1—p%
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N 2
—{ 3

D
(1—p)(1—p* N

ST Jima-m

p(1—p?) p(1—p?)

SHMGRDTMC: The reduced DTMC of the generalized shared memory system
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The steady-state PMF for RDTMC(K):

- 1
C = 07221_ ) 2 — ) 2 — 72_ — 272_ — 2.
%2+p_ﬁ_p%( p"(1—p)p(2—p)p(2—p)2—p—0p p—p?)

~ ~

Note that 1/° = (1°(51), ¥°(52), 1°(85), ¥°(57), 1°(8s), ¥°(89)).

By Proposition PMFSMCT:

. . 2(1— ~ (= 2—

¢(s1) =0, P(52) = 2+pp_(p2i>p3a @(55) = 2(2+pp(_p2p)_p3)a
S0a0) — p(2—p) 30} — 2—p—p? 2(3a) — 2—p—p?
P87) = 2(2+p—p2—p3)’ P(5s) = 2(2+p—p2—p3)’ P(59) = 2(2+p—p2—p3)°

The steady-state PMF for SM C(K):

1

P = (0,2p*(1 = p),0,0,p(2 = p),0,p(2—p),2—p—p*,2—p—p°).

22+ p—p* —p°)

This coincides with the result obtained with the use of 15* and SJ.
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53

1.6
—0— Y1 [K]
08 —m— (K]
0.6l —o— Y3 [K]
—a— Y5 [K]

A A 4 1 1 1

30

SHMTRPR: Transient probabilities alteration diagram for the RDTMC of the generalized shared memory system when p = %
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Let GG be a dynamic expression and s, § € DR(G), S, S C DR(G).
The following performance indices (measures) are based on the steady-state PMF for SMC(G).

® The average recurrence (return) time in the state s (the number of discrete time units or steps

. C N - 1
required for this) is 205"

e The fraction of residence time in the state s is ¢(s).

e The fraction of residence time in the set of states S C D R((G) or the probability of the event

determined by a condition that is true for all states from S'is > ___ ¢ ¢(s).

e The relative fraction of residence time in the set of states S w.r.t. thatin .S is gsef zg
ses

e The rate of leaving the state s is %.

® The steady-state probability to perform a step with an activity (a, /4;) 5
ZsEDR(G) (s) Z{T|(a,/<a)€T} PT(T,s).

e The probability of the event determined by a reward function r on the states is

ZsEDR(G) ©o(s)r(s), whereVs € DR(G)0 < r(s) < 1.
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Performance indices of the generalized shared memory system

e The average recurrence time in the state S5, where no processor requests the memory,

) 1 _ 24p—p*—p’
the average system run-through, is 5 22 (1=p)

e The common memory is available only in the states s9, S3, 54, Sg.

The steady-state probability that the memory is available is
T S p*(1—p) P (1—p)
P2 + P3 T P4+ Y6 = = +0+0+0=

2+p—p?— 2+4p—p?—p3"
The steady-state probability that the memory is used (i.e. not available),
p’(l—p) _  24p—2p°

the shared memory utilization, is 1 — T p—pZ—p® — Thp—pT_p5

e After activation of the system, we leave the state s; for all, and the common memory is either

requested or allocated in every remaining state, with exception of ss.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving S,

~ 2 3
@2 . p(A=p)  p2—p) _ p"(1—p)(2—p)
calculated as ST, - Thp—prpP I = o p2—p3
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e The common memory request of the first processor ({71 }, p) is only possible from the states §o, §7.

The request probability in each of the states is the sum of the execution probabilities for all multisets
of activities containing ({71}, p).

The steady-state probability of the shared memory request from the first processor is
P2 2 vy ety PT(Y,52) + 872 v (13 pyery PT(T, 57) =

2(1— 2— 2(24-p—2p>
T C (0(1 = p) + 02) + st (p(1 = p?) + p%) = F5 2.
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Stochastic equivalences

Step stochastic bisimulation equivalence
For T € ﬂ\fﬁiﬁ we consider L(T') € ﬂ\fﬁn i.e. (possibly empty) multisets of multiactions.
Let G be a dynamic expression and H C DR(G). Fors € DR(G) and A € IN%, we write

A : - : :
s—pH,where P = PM (s, H) is the overall probability to move from s into the set of states H via

steps with the multiaction part A:

PMu(s, M) = > PT(Y,s).
(Y|35€H 553, L(Y)=A)

A A
We write s—H if 3P s —p H.

A
We write s—pH if 3A s = H, where P = PM (s, H) is the overall probability to move from s into

the set of states H via any steps:

PM(s,H)= Y PT(Y,s).

(T|35eH 555}
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Definition 13 Let GG and G’ be dynamic expressions. An equivalence relation
R C (DR(G) U DR(G"))? is a step stochastic bisimulation between G and G', R : G+ G', if:

1. (|G~ [G'~) € R.
2. (81,82) € R = VH € (DR(G)UDR(G"))/r VA € ﬂ\fﬁm
A A
s1 —p H & s9 —p H.
Two dynamic expressions (G and G’ are step stochastic bisimulation equivalent, G< . G’, if
IR : G+ . .G,
_ 2 (BISSPL) Let G and GG’ be dynamic expressions and R : G<>_.G'. Then

R C (DRr(G)U DR (G"Y)*W(DRy(G) U DRy (G))?,
where W is disjoint union.

Rss(G,G") = {R | R : G<>..G"} is the union of all step stochastic bisimulations
between G and G

_ 3 (LARBIS) Let G and GG’ be dynamic expressions and G< . .G’. Then R,s(G, G") is

the largest step stochastic bisimulation between GG and G”.
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Reduction modulo equivalences
An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expression GG and a step stochastic autobisimulation R : GG G,
let K € DR(G)/xr and s1, s2 € K.

~

We have VK € DR(G) /g VA € INE s AP K & 53 5p K.

~

The equality is valid for all 51, so € IC, hence, we can rewrite it as Kip’%, where
P — PMA(]C, ]C) — PMA(Sl, IC) = PMA(SQ, IC)

We write K3 IP K Bp Kand KoK i IAK B K.

The similar arguments: we write JC— 7 /C, where

P =PM(K,K) = PM(s1,K) = PM(s5,K).

Since R C (DR7(G))*Y(DRy(G))?, we have VK € DR(G) /R,
all states from /C are ,when K € DR (G) /R,
or all of them are ,when C € DRy (G)/%.

59
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The average sojourn time in the equivalence class (w.r.t. R) of states K is

1—P]\}(IC,IC)’ K € DRr(G)/r;

SIr(K) =
0, IC € DRv(G)/R

The average sojourn time vector for the equivalence classes (w.r.t. R) of states of G, S Jx,

has the elements SJz (K), K € DR(G)/R.

The sojourn time variance in the equivalence class (w.r.t. R) of states C is

PM(K,K) .
VARR(K) = | @Puwxye: K€ DRr(G)/R;

0, IC e DR\/(G)/R

The sojourn time variance vector for the equivalence classes (w.r.t. R) of states of G, V ARz, has the

elements VARR (K), K € DR(G)/%.
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Rss(G) = J{R | R : G+>..G} is the largest step stochastic autobisimulation on G.

Definition 14 The quotient (by ) (labeled probabilistic) transition system of a dynamic expression
GisTS, (G)= (5S¢ ,Ls Te 8¢ ) where

* 5o, = DR(G)/r.. ()

e L., C (ﬂ\fﬁn) x (0; 1];

o 7o = {(K, (4, PM(K,K)),K) | K.K € DR(G)/..cc, K K);

—SS

¢ s = ||Glxlr.. (@)

—SS

~ A ~
The transition (K, (A,P), ) € T, will be written as IC—p K.
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The static expression of the first processor is

Ly = [({z1},0) = ({7} p); ({ds ya g, 0); ({ms 211, p)) * Stop.
The static expression of the second processor is

Ly = [({z2}, p) * ({7}, p); ({d, w2}, 1); ({m, 22}, p)) * Stop].
The static expression of the shared memory is

L3 = [({a, 71,22}, p) ({911, D); ({21}, ) [[(({52}, 1): ({22}, p))) * Stop].

The static expression of the abstract generalized shared memory system with two processors is

L = (L1||L2||L3) sy x1 sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS T1 IS To IS Y1 IS Yo IS 21 IS Zo.
DR(L) resembles DR(K), and T'S(L) is similar to T'S (K).

SMC(L)~SMC(K), thus, the average sojourn time vectors of L and K,
the TPMs and the steady-state PMFs for EDT M C(L) and EDT M C(K) coincide.
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Performance indices of the abstract generalized shared memory system

The are the same
for the
The . non-identified viewpoint to the processors.

e The common memory request of a processor ({7}, p) is only possible from the states S5, 55, 7.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of activities containing ({r}, p).

The steady-state probability of the shared memory request from a processor is

P2 2 x1(ry ey DT, 52) + 85 2 vy oy pyexy PT(T, 55) +

P72 1v 1y pyexy PT(T, 87) = Qf;(_lp?i)ps (p(1 = p) +p(1—p) +p?) +

2— 2— 2(2—p)(14p—p?
s 22 (p(1— ) + 9°) + 5l (p(1 — p?) + pP) = et
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The quotient of the abstract generalized shared memory system
DR(L)/ .. @) = {K1. Ko, Ks. Ka. K5, K}, where

K1 = {51} (the initial state),

/Eg = {52} (the system is activated and the memory is not requested),
163 = {§3, 54} (the memory is requested by one processor),

Ky = {55, 57} (the memory is allocated to a processor),

/65 = {§6} (the memory is requested by two processors),

g = {§8, §9} (the memory is allocated to a processor and the memory is requested by another

processor).

DRy(L)/ . ) = {K1.Ko. K. Ko} and DRy (L) /) = {Ks. K5}

64
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TS, (L) =
D)
K1 B,
{a},p>
Y
]E {m},p2(1—p) > ]E ‘<_—)
0, 4 2 ),
(1—p)(1—p2) (1—p)?
{{r}. {m}}.p>
{d},1
{r},2p(1—p)
{r},p(1—p?) /CS {({r}.{r}}.p>

{m},p?

Y Y
ch(_pg /CG J* {d}.1 /C5

SHMGQTS: The quotient transition system of the abstract generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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The quotient (by <) average sojourn time vector of Gis SJ., = SJr__(q)-

— VARRSS (G) .

The quotient (by <> ) sojourn time variance vector of G is VAR,

—SS

Let K — K and K =~ K. The probability to move from /C to K by executing any multiset of activities

after possible self-loops is

T—PM(K,K)’
PM(K, ), otherwise.

_ PM(K,K) S PM(K, Kk = LMEK) _— je e
ot iy - | PMOCR) Sy PM(E.K

We have YK € DR7(G)/r..(c) PM*(K,K) = ST (K)YPM(K,K).

—S8S
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Definition 15 The quotient (by ) EDTMC of a dynamic expression G, EDTMC., (G),
has the state space DR(G) /%, (q). the initial state [[G]~]|® . () and the transitions K—spIC, if
K — K and K # K, where P = PM*(K, K).

The quotient (by ) underlying SMC of G, SMC, (G), has the EDTMC EDTMC,, (G) and
the sojourn time in every K € DRT(G)/RSS(G) is geometrically distributed with the parameter
1 — PM (K, K) while the sojourn time in every K € DRy (G)/x..(c) is equal to zero.

The steady-state PMFs ¢}, for EDTMC, (G)and., for SMC., (G) are defined

—SS

Y* for EDTMC(G) and ¢ for SMC(G).
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SMC. (L) — )
( ICq )p_3

— p(l—p)2
1 1+p—p
p(1+p—p2) ( ]C4

<l
Bl

p%]CG< 1 ]C5 0

SHMGQSMC: The quotient underlying SMC of the abstract generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked with orange)
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The quotient average sojourn time vector of F:

STJ'—(l Lo : 0
PP p2—p) T p(L+p—p?)

The guotient sojourn time variance vector of F:

' (1=p> (1-=p° — (1-p?*Q1+p)
VAR = ( , 0,
p° T p*(2—p)?

69
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The TPM for EDTMC., (L):

—SS

[0 1 o 0 0 0 )
2(1—p)
0 0 =20 52 0
5 _ |0 0 0 1 0 0
B 0 p(1—p) p 0 0 1—p”
I+p—p?  14p—p? 14+p—p?
0 0 0 0 0 1
\ 0 0 1 0 0 0 )

The steady-state PMF for EDTMC,, (L):

—SS

V" = s (0,02 = 3p 4 p%), 2+ p— 30> + 7,
24 p—3p>+p*,p*(1 = p),2 — p— p?).
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~ —~/
The steady-state PMF 1)"* weighted by SJ :

1
p?(6 + 3p — 9p* + 2p°)

We normalize the steady-state weighted PMF dividing it by the sum of its components

2+p—p° —p’

~ —~IT
*SJ = .
i p?(6 + 3p — 9p* + 2p3)

The steady-state PMF for SMC, (L):

—SS

1
24 p—pP =)

~/

(07102(1 o 10)7 0710(2 o p)aoa 2 — P — p2)

(07/02(1 N /0)707/0(2 R p)707 2 — P — /02)
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1.
(* —0— Y1 [K]
—— Yo [K]
0.8
—o— Y37 [K]
| I K]
0.6“
7 —v— Y5 [K]
ﬁ —&— g *[K]
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0.2 SEOEE00E00EE0EEEE00E0
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10 0 0 40 0

SHMQTP: Transient probabilities alteration diagram for the quotient EDTMC of the abstract generalized shared memory system when p = %
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Definition 16 Let G be a dynamic expression. The quotient (by <>, ) DTMC of G, DT MC., (&),

—SS

~

has the state space DR(G) /.. (). the initial state [[G]~|%._ () and the transitions C —p IC,
where P = PM (K, K).

Definition 17 The reduced quotient (by <> .) DTMC of GG, denoted by RDT'MC., (), is defined

—SS

like RDTMC(G), butitis constructed from DT'MC,, (G) instead of DT MC(G).

The steady-state PMFs ¢, for DT'MC,, (G)and ¢, for RDTMC,., (G) are defined
Y for DTMC(G) and ° for RDTMC(G).

The relationships between the steady-state PMFs ¢, and ¢y, , @ and i,

P4y and Ve, are as those between their “non-quotient” versions.

—S8S
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FromT'S., (L), we can construct RDTMC, (L) and calculate ¢ using it.
DRT(E)/RSS(Z) — {/El, //62, /%4, //66} and DRV (z)/Rss(f) — {//63, /%5}

We reorder the elements of DR(Z)/RSS(D by moving the equivalence classes of vanishing states to

the first positions: Kz, ICs, KC1, Ko, Iy, K.

The reordered TPM for DTMCy,  (L):

0 0 0 0

0 0 0 0

0 0 1-—p° 03
2p(1=p) p* 0  (1—p)

P 0 0 p(1—-p)

p? 0 0 0
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The result of the decomposing f’;n

C =

F/

Lo o
00 0 1
p’ 0
(1—p)? 0
pP(L=p) (1-p)(1-p?)
0 0
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Since C’! = 0, we have Vk > 0, C’* = 0, hence, [ = 0 and there are no loops among vanishing

states. Then
l
G =) ¢c'=C"=1
k=0

The TPM for RDTMC, (L):
Pe—F' 4 BGD = F' + BID = F' + B'D' —

(14 p’ 0 0 )
0 (1-p)? 2p(1 = p) p’

0  p*(01—p) 1=p—p>+2p° p(1-p?
\ 0 0 p? 1—p> )
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RDTMC,, (L)

—SS

~ p>(1—p) ~

= (1—p)?

SHMGQRDTMC: The reduced quotient DTMC of the abstract generalized shared memory system
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The steady-state PMF for RDT'MC, (L):

1
24 p—p2—p?

TIo

(0, 0°(1 = p), p(2 = p),2 — p— p?).

Note that 1)'* = (1)/° (K1), 9"® (Ka2), 4'°(K4), 4" (Ks)).
By the “quotient” analogue of Proposition PMFESMCT:

95/(,61) — 07 95/(,62) — 2fp£1p;p_)p37 95/(’/63) — 07

P'(Ky) = 7222 ¢(Ks) =0, 5 (Rg) = 20

The steady-state PMF for SMC, (L):

—SS

, 1

— 0, 0%(1 = p),0,p(2—p),0,2 — p— p?).
P 2+p_ﬁ_pg p (1 —=p),0,p(2 - p) p—1p°)

~ —~/
This coincides with the result obtained with the use of ¢"* and SJ .
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1.G
—0—y1"°[K]
a7’ [K]
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SHMQRTP: Transient probabilities alteration diagram for the reduced quotient DTMC of the abstract generalized shared memory system when p = %
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Stationary behaviour

Steady state and equivalences

_ 4 (STPROB) Let GG, G’ be dynamic expressions with R : GG G and © be the
steady-state PMF for SM C'(G), ¢’ be the steady-state PMF for SM C'(G”). Then
VH € (DR(G)UDR(G"))/r

>, wls)= Y Y.

sEHNDR(G) s'€HNDR(G")

Let G be a dynamic expression and ¢ be the steady-state PMF for SM C/(G),
¢, be the steady-state PMF for SMC,, (G).

—SS —SS

By Proposition STPROB: VIC € DR(G)/RSS(G)

P, (K) =) 0(s).

selC
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Definition 18 A derived step trace of a dynamic expression Gis > = A --- A,, € (ZNﬁm)* where

HSGDR(G)Sgslg-“&Sn, L(T)=A4A;(1<i<n).

The probability to execute the derived step trace X in s:

PT(%,s) = > ﬁ PT(Y;, si—1).

[T1roTols=s0 oy 2. D00 £(T)=A, (1<i<n)} !

o0l | 2 (STTRAC) Let G, G’ be dynamic expressions with R : GG " and ¢ be the
steady-state PMF for SM C(G), ' be the steady-state PMF for SM C(G") and X be a derived step
trace of G and G’. ThenVH € (DR(G)U DR(G"))/»

Yo e(s)PT(S,s)= > P(PT(S,5).

sEHNDR(G) s'"eHNDR(G)
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By Theorem STTRAC: VK € DR(G) /.. (o)

po,,(O)PT(X,K) = > o(s)PT(S, ),
sekC

where Vs € K PT(3,K) = PT (X%, s).

_ 5 (SJAVVA) Let G, G’ be dynamic expressions with R : G+ __G’. Then
VH € (DR(G)UDR(G"))/r

SJRQ(DR(G))2(H M DR(G)) = SJRQ(DR(G/))Z (7‘[ M DR(G/)),

VARRQ(DR(G))2 (HNDR(G)) = VARRQ(DR(G/))2 (HN DR(G")).
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Performance indices of the quotient abstract generalized shared memory system

e The average recurrence time in the state /Co, where no processor requests the memory,

1 _ 24p—p*—p’
he aver m run-thr h,is = =
the average system run-through, is 90,2 p2(1—p)

e The common memory is available only in the states /Co, IC3, ICs.

The steady-state probability that the memory is available is

- - ~ 2(1— 2(1—
90/2 + QOé + 90/5 — Q_i_pp(_pzp_)p?, +04+0= 2+pp(_p2p_)p3.

The steady-state probability that the memory is used (i.e. not available),

p’(1=p) _ _2+p—2p°
2+p—p*—p? 2+p—p?—p3"

the shared memory utilization, is 1 —

e After activation of the system, we leave the state [C; for all, and the common memory is either

requested or allocated in every remaining state, with exception of /Cs.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving Ko,

~/ 2 3
Py p’(A—=p)  p2=p) _ p"(1=p)(2—p)
calculated as 57 T ko7 T = 24p—p2—p3 -
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e The common memory request of a processor {'r'} is only possible from the states Co, /C4.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of multiactions containing {7 }.
The steady-state probability of the shared memory request from a processor is
P2 204 Ritryen, Ra k) PMaK2, K) + 2100 ) kiiyea maary PMalKs, K) =

“(1- 2— 2(2—p) (14 p—p>
0P (2p(1 = p) + p?) + 525 (p(1 — p?) + pP) = AU

The are the same for the abstract generalized shared

memory systems.

The coincidence of the illustrates Proposition STPROB.
The coincidence of the illustrates Proposition STPROB and Proposition SJAVVA.
The coincidence of the is by Theorem STTRAC:

one should apply its result to the step traces {{r}}, {{r}, {r}}, {{r}, {m}} of L anditself,

and sum the left and right parts of the three resulting equalities.
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Effect of quantitative changes of p to performance of the quotient abstract generalized shared memory

system in its steady state
p € (0; 1) is the probability of every multiaction of the system.

The closer is p to 0, the less is the probability to execute some activities at every discrete time step: the

system will most probably stand idle.

The closer is p to 1, the greater is the probability to execute some activities at every discrete time step:

the system will most probably operate.

95/1 = gﬁg — @5 = () are constants, and they do not depend on p.

2 2
s _p(A=p) = _ _ p(2—p) = _ _2=p—p
Po = o4, p2—p3 P4 = 25,23 P6 = 25— 213 dependon p.
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1.0} ,

08

0.6 _— )

0.4 R
_— D 6’

0.2
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SHMGQSSP: Steady-state probabilities ©5, @7, P as functions of the parameter p

@05, @) tend to 0 and @f tends to 1 when p approaches 0.

When p is closer to 0, the probability that the memory is allocated to a processor and the memory is

requested by another processor increases: more unsatisfied memory requests.
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05, g tend to 0 and @)y tends to 1 when p approaches 1.

When p is closer to 1, the probability that the memory is allocated to a processor (and not requested by

another one) increases: less unsatisfied memory requests.
The maximal value 0.0797 of ¢}, is reached when p ~ 0.7433.

In this case, the probability that the system is activated and the memory is not requested is maximal:

maximal shared memory availability is about 8%.
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SHMGQART: Average system run-through @L, as a function of the parameter p

2

The average system run-through is ga_l"
2

It tends to oo when p approaches O or 1.

The minimal value 12.5516 of @i is reached when p ~ 0.7433.

/
2

To speed up the system’s operation: take the parameter p closer to 0.7433.
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10fmmmmmmmmmnnnn,

LTS an®
----------------------- --

SHMGQIND: Some performance indices as functions of the parameter p

The shared memory utilization is 1 — @5 — @5 — .

It tends to 1 when p approaches 0 and when p approaches 1.

The minimal value 0.9203 of the utilization is reached when p ~ 0.7433.

The minimal shared memory utilization is about 92%.

To increase the utilization: take the parameter p closer to 0 or 1.
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~1/
The rate with which the necessity of shared memory emerges is %.
2

It tends to 0 when p approaches 0 and when p approaches 1.
The maximal value 0.0751 of the rate is reached when p ~ 0.7743.
The maximal rate with which the necessity of shared memory emerges is about 1—13

To decrease the rate: take the parameter p closerto O or 1.

The steady-state probability of the shared memory request from a processor is gb’QZN]’Q -+ g54ZN]’ :

where 3/ = PM4(K;, K), i € {2,4}.

Z{A,ﬂ{r}eA, K;AK)

It tends to 0 when p approaches 0 and it tends to 1 when p approaches 1.

To increase the probability: take the parameter p closer to 1.
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Simplification of performance analysis

The method of
1. The investigated system is specified by a static expression of dtsiPBC'.
2. The transition system of the expression is constructed.

3. After treating the transition system for self-similarity,

a step stochastic autobisimulation equivalence for the expression is determined.
4. The quotient underlying SMC is constructed from the quotient transition system.
5. Stationary probabilities and performance indices are calculated using the SMC.

4 and 5:
constructing the reduced quotient DTMC from the quotient transition system,
calculating the stationary probabilities of the quotient underlying SMC using this DTMC

and obtaining the performance indices.
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EQPEVA: Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying SMCs containing one closed

communication class of states, which is ergodic, to ensure unigueness of the stationary distribution.

If an SMC contains several closed communication classes of states that are all ergodic:

several stationary distributions may exist, depending on the initial PMF.

The general steady-state probabilities are then calculated as the sum of the stationary probabilities of all
the ergodic classes of states, weighted by the probabilities to enter these classes,

starting from the initial state and passing through transient states.

The underlying SMC of each process expression has one initial PMF (that at the time moment 0):

the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.
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Overview and open questions

The results obtained

e A discrete time stochastic and immediate extension dtsit P BC of finite PBC

enriched with iteration.

® The step operational semantics based on labeled probabilistic transition systems.

e The denotational semantics in terms of a subclass of LDTSIPNSs.

e The method of performance evaluation based on underlying SMCs.

e Step stochastic bisimulation equivalence of the expressions and dtsi-boxes.
e The transition systems and SMCs reduction modulo the equivalence.

® A comparison of stationary behaviour up to the equivalence.

e Performance analysis simplification with the equivalence.

e The case study: the shared memory system.
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Further research

e Constructing a congruence relation: the equivalence that withstands application

of the algebraic operations.

e Introducing the deterministically timed multiactions with fixed time delays

(including the zero delay).

e Extending the syntax with recursion operator.
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The slides can be downloaded from Internet:

http://itar.iis.nsk.su/files/itar/pages/albcl5sld.pdf

Thank you for your attention!



