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Abstract

The paper is devoted to the investigation of behavioural equivalences of concurrent systems modelled
by Petri nets. The basic equivalence notions known from the literature are supplemented by new ones
and examined for all class of nets as well as for their subclasses: sequential nets (nets without concurrent
transitions), strictly labelled nets (which are isomorphic to unlabelled nets) and T-nets (nets without conflict
transitions). A complete diagram of interrelations of the considered equivalences is obtained. In addition,
the preservation of the equivalence notions by refinements is investigated, which allows one to consider the
behaviour of nets on a lower abstraction level.
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bisimulation, refinement.

1 Introduction

Petri nets are a popular formal model for design of concurrent and distributed systems. One of the main
advantages of Petri nets is their ability for structural characterization of three fundamental features of concurrent
computations: causality, nondeterminism and concurrency.

In recent years, a wide range of semantic equivalences was proposed in concurrency theory. Some of them
were either directly defined or transferred from other formal models to the framework of Petri nets. The
following basic notions of behavioural equivalences for Petri nets are known from the literature.

• Trace equivalences (which respect only protocols of nets functioning): interleaving [5], step [8] and pomset
[4].

• (Usual) bisimulation equivalences (which respect branching structure of nets functioning): interleaving [7],
step [6], partial word [12], pomset [3] and process [1].

• ST-bisimulation equivalences (which respect the duration of transition occurrences in nets functioning):
interleaving [4], partial word [12] and pomset [12].

• History preserving bisimulation equivalences (which respect the “past” or “history” of nets functioning):
pomset [9] one was proposed.

• Conflict preserving equivalences (which fully respect conflicts in nets): occurrence [4] one was presented.

• Isomorphism (i.e. coincidence of nets up to renaming of places and transitions).

A refinement operator is used for top-down design of concurrent systems. After applying refinement, some
components of the systems become having some internal structure, i.e. we consider such systems on lower
abstraction level as a result. In [2], SM-refinement operator for Petri nets was proposed, replacing transitions
of nets by SM-nets which are a special subclass of state machine nets.

In this paper, we introduce a number of the new equivalence notions in addition to the known from the
literature ones to obtain a complete set of the equivalences for Petri nets: partial word and process trace

∗The work is supported by Volkswagen Fund, grant N I/70 564 and Russian Fund of Fundamental Investigations, grant N
96-01-01655

1



equivalences, process ST-bisimulation equivalence, partial word and process history preserving bisimulation
equivalences, prime event structure equivalence.

The correlation of the new and known from the literature equivalences is established on the whole class of
Petri nets as well as on their subclasses: sequential nets (where no two transitions can be fired concurrently),
strictly labelled nets (all transitions have different labels) and T-nets (where no two transitions have the common
input or output place). In addition, all the considered behavioural equivalences are checked for preservation by
SM-refinements.

2 Basic definitions

2.1 Multisets

Let X be some set. A finite multiset M over X is a mapping M : X → N (N is a set of natural numbers) s.t
|{x ∈ X | M(x) > 0}| < ∞. M(X) denotes the set of all finite multisets over X. When ∀x ∈ X M(x) ≤ 1, M
is a proper set. Cardinality of multiset M is defined in such a way: |M | =

∑
x∈X M(x). We write x ∈ M

if M(x) > 0 and M ⊆ M ′, if ∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and
(M −M ′)(x) = max(0, M(x)−M ′(x)).

2.2 Labelled nets

Let Act = {a, b, . . .} be a set of action names or labels. A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉,
where:

• PN = {p, q, . . .} is a set of places;

• TN = {u, v, . . .} is a set of transitions;

• FN : (PN ×TN )∪ (TN ×PN ) → N is the flow relation with weights (N denotes a set of natural numbers);

• lN : TN → Act is a labelling of transitions with action names.

Given a labelled net N and some transition t ∈ TN , the precondition and postcondition t, notation respectively •t
and t•, are the multisets defined in such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous definitions
are introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). A labelled net N is acyclic, if there exists
no sequence x1, . . . , xn, xi ∈ PN ∪ TN (1 ≤ i ≤ n) s.t. FN (xi−1, xi) > 0 (1 ≤ i ≤ n) and x0 = xn. A labelled
net N is ordinary if ∀p ∈ PN

•p and p• are proper sets (not multisets). Let ◦N = {p ∈ PN | •p = ∅} is a set of
initial (input) places of N and N◦ = {p ∈ PN | p• = ∅} is a set of final (output) places of N .

Given labelled nets N = 〈PN , TN , FN , lN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉. A mapping β : N → N ′ is an
isomorphism between N and N ′, notation β : N ' N ′, if:

1. β is a bijection s.t. β(PN ) = PN ′ and β(TN ) = TN ′ ;

2. ∀t ∈ TN lN (t) = lN ′(β(t));

3. ∀t ∈ TN
•β(t) = β(•t) and β(t)• = β(t•).

Labelled nets N and N ′ are isomorphic, notation N ' N ′, if there exists an isomorphism β : N ' N ′.
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN∪TN . Let us introduce the following

notions.

• x ≺N y ⇔ xF ?
Ny, where F ?

N is a transitive closure of FN (strict causal dependence relation);

• x ¹N y ⇔ (x ≺N y) ∨ (x = y) (causal dependence relation);

• x#Ny ⇔ ∃t, u ∈ TN (t 6= u, •t ∩ •u 6= ∅, t ¹N x, u ¹N y) (conflict relation);

2.3 Marked nets

A marking of a labelled net N is a multiset M ∈M(PN ). A marked net (net) is a tuple N = 〈PN , TN , FN , lN ,
MN 〉 where 〈PN , TN , FN , lN 〉 is a labelled net and MN ∈ M(PN ) is an initial marking. Let M ∈ M(PN ) be a
marking of a net N . A transition t ∈ TN is firable in M , if •t ⊆ M . If t is firable in M , firing it yields a new
marking M ′ = M − •t + t•, notation M

t→ M ′. A marking M of a net N is reachable, if M = MN or there
exists a reachable marking M ′ of N s.t. M ′ t→ M for some t ∈ TN . Mark(N) denotes a set of all reachable
markings of a net N .

An action a ∈ Act is autoconcurrent in net N , if ∃M ∈ Mark(N) ∃t, u ∈ TN : lN (t) = lN (u) = a and
•t + •u ⊆ M . A net N is autoconcurrency free, if no action is autoconcurrent in N .

2



2.4 Partially ordered sets

A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉, where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X;

• l : X → Act is a labelling function.

Let x ∈ X. Then ↓ x = {y ∈ X | y ≺ x} is a set of strict predecessors of x.
Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′, notation β : ρ ≈ ρ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ ≈ ρ′, if there exists a label-preserving bijection β : ρ ≈ ρ′.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, notation β : ρ v ρ′, if:

1. β : ρ ≈ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ v ρ′, if there exists a homomorphism β : ρ v ρ′.
A mapping β : X → X ′ is an isomorphism between ρ and ρ′, notation β : ρ ' ρ′, if β : ρ v ρ′ and

β−1 : ρ′ v ρ. Lposets ρ and ρ′ are isomorphic, notation ρ ' ρ′, if there exists an isomorphism β : ρ ' ρ′.
Partially ordered multiset (pomset) is an isomorphism class of lposets.

2.5 Event structures

A labelled event structure (LES) is a quadruple ξ = 〈X,≺, #, l〉, where:

• X = {x, y, . . .} is a set of events;

• ≺⊆ X ×X is a strict partial order, a causal dependence relation, which satisfies to the principle of finite
causes: ∀x ∈ X | ↓ x| < ∞;

• # ⊆ X × X is an irreflexive symmetrical conflict relation, which satisfies to the principle of conflict
heredity: ∀x, y, z ∈ X x#y ≺ z ⇒ x#z;

• l : X → Act is a labelling function.

Let ξ = 〈X,≺,#, l〉 and ξ′ = 〈X ′,≺′, #′, l′〉 be LES. A mapping β : X → X ′ is an isomorphism between ξ and
ξ′, notation β : ξ ' ξ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x));

3. ∀x, y ∈ X x ≺ y ⇔ β(x) ≺′ β(y);

4. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

LES ξ and ξ′ are isomorphic, notation ξ ' ξ′, if there exists an isomorphism β : ξ ' ξ′.
A prime event structure (PES) is an isomorphism class of LES.

3 Equivalence notions

3.1 Equivalences based on C-processes

3.1.1 C-processes

A causal net is acyclic ordinary labelled net C = 〈PC , TC , FC , lC〉, s.t:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;
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2. | ↓C x| < ∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C = 〈PC , TC , FC , lC〉 one can define lposet ρC = 〈TC ,≺N

∩(TC × TC), lC〉.
The fundamental property of causal nets is [1]: if C is a causal net, then there exists a transition sequence

◦C = L0
v1→ · · · vn→ Ln = C◦ s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n

i=0Li and TC = {v1, . . . , vn}. Such a sequence is
called a full execution of C.

Given a net N and a causal net C. A mapping ϕ : PC ∪ TC → PN ∪ TN is an embedding C into N , notation
ϕ : C → N , if:

1. ϕ(PC) ∈M(PN ) and ϕ(TC) ∈M(TN ), i.e. sorts are preserved;

2. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved;

3. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected.

Since embeddings respect the flow relation, if ◦C v1→ · · · vn→ C◦ is a full execution of C, then M = ϕ(◦C)
ϕ(v1)−→

· · · ϕ(vn)−→ ϕ(C◦) = M ′ is a transition sequence in N .
A firable in marking M C-process (process) of a net N is a pair π = (C, ϕ), where C is a causal net and

ϕ : C → N is an embedding s.t. M = ϕ(◦C). A firable in MN process is a process of N . We write Π(N,M)
for a set of all firable in marking M processes of a net N and Π(N) for a set of all processes of a net N . An
initial process of a net N is πN = (CN , ϕN ) ∈ Π(N), s.t. TCN

= ∅. If π ∈ Π(N,M), then firing of this process
transforms a marking M into M ′ = M − ϕ(◦C) + ϕ(C◦) = ϕ(C◦), notation M

π→ M ′.
Let π = (C, ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)), C = 〈PC , TC , FC , lC〉, C̃ = 〈PC̃ , TC̃ , FC̃ ,

lC̃〉, Ĉ = 〈PĈ , TĈ , FĈ , lĈ〉.
We write π

π̂→ π̃, if

1. PC ∪ PĈ = PC̃ , TC ∪ TĈ = TC̃ , FC ∪ FĈ = FC̃ , lC ∪ lĈ = lC̃ ;

2. ϕ ∪ ϕ̂ = ϕ̃.

In such a case π̃ is an extension of π by process π̂, and π̂ is an extending process for π. We write π → π̃, if
π

π̂→ π̃ for some extending process π̂.
π̃ is an extension of π by one action, if π

π̂→ π̃ and |TĈ | = 1. In such a case we write π
a→ π̃, if TĈ = {v}

and lĈ(v) = a.

π̃ is an extension of π by multiset of actions or step, if π
π̂→ π̃ and ≺Ĉ= ∅. In such a case we write π

A→ π̃, if
TĈ = V and lĈ(TĈ) = A, A ∈M(Act).

3.1.2 Trace equivalences

An interleaving trace of a net N is a sequence a1 · · · an ∈ Act∗ s.t. πN
a1→ π1

a2→ . . .
an→ πn, where πi ∈ Π(N) (1 ≤

i ≤ n) and πN is an initial process of N . SeqTraces(N) denotes a set of all interleaving traces of N . Nets N
and N ′ are interleaving trace equivalent, notation N ≡i N ′, if SeqTraces(N) = SeqTraces(N ′).

A step trace of a net N is a sequence A1 · · ·An ∈ (M(Act))∗ s.t. πN
A1→ π1

A2→ . . .
An→ πn, where πi ∈

Π(N) (0 ≤ i ≤ n), and πN is an initial process of N . StepTraces(N) denotes a set of all step traces of N . Nets
N and N ′ are step trace equivalent, notation N ≡s N ′, if StepTraces(N) = StepTraces(N ′).

A pomset trace of a net N is a pomset ρ, an isomorphism class of lposet ρC for π = (C, ϕ) ∈ Π(N). We
write ρ v ρ′, if ρC v ρC′ for ρC ∈ ρ and ρC′ ∈ ρ′. In such a case we say that pomset ρ is less sequential or more
parallel than ρ′. Pomsets(N) denotes a set of all pomset traces of N . Nets N and N ′ are partial word trace
equivalent, notation N ≡pw N ′, if Pomsets(N) v Pomsets(N ′) and Pomsets(N ′) v Pomsets(N), i.e. for any
ρ′ ∈ Pomsets(N ′) there exists ρ ∈ Pomsets(N) s.t. ρ v ρ′ and vice versa. Nets N and N ′ are pomset trace
equivalent, notation N ≡pom N ′, if Pomsets(N) = Pomsets(N ′).

A process trace of a net N is an isomorphism class of causal net C for π = (C, ϕ) ∈ Π(N). ProcessNets(N)
denotes a set of all process traces of N . Nets N and N ′ are process trace equivalent, notation N ≡pr N ′, if
ProcessNets(N) = ProcessNets(N ′).

Example 1 • In Figure 1(a) N ≡i N ′, but N 6≡s N ′, since only in N actions a and b can happen concur-
rently.

• In Figure 1(c) N ≡s N ′, but N 6≡pw N ′, since the pomset corresponds to the net N s.t. even less sequential
pomset is not in N ′.
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Figure 1: Examples on Petri nets

• In Figure 1(b) N ≡pw N ′, but N 6≡pom N ′, since only in net N action b can depend on action a.

• In Figure 1(d) N ≡pom N ′, but N 6≡pr N ′, since N is causal net which is not isomorphic to N ′ (because
of additional output place).

3.1.3 Usual bisimilation equivalences

A notation R : N↔?N
′ means that R is a bisimulation of type ? (?-bisimulation) between nets N and N ′. Nets

N and N ′ are called ?-bisimulation equivalent, notation N↔?N
′, if R : N↔?N

′ for some ?-bisimulation R.
Let R ⊆ Π(N)×Π(N ′). In the following definition π̂ = (Ĉ, ϕ̂), π̂′ = (Ĉ ′, ϕ̂′).
R is a ?-bisimulation between N and N ′, ? ∈{interleaving, step, partial word, pomset, process}, notation

R : N↔?N
′, ? ∈ {i, s, pw, pom, pr}, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂→ π̃,

(a) |TĈ | = 1, if ? = i;

(b) ≺Ĉ= ∅, if ? = s;

then ∃π̃′ : π′ π̂′→ π̃′, (π̃, π̃′) ∈ R and

(a) ρĈ′ v ρĈ , if ? = pw;
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↔prST

↔/ pwh

b c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u

a

±°
²¯uN ′

?

½
½½=

PPPPPq
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Figure 2: Examples on Petri nets (continued)
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(b) ρĈ ' ρĈ′ , if ? ∈ {i, s, pom};
(c) Ĉ ' Ĉ ′, if ? = pr;

3. As item 2 but the roles of N and N ′ are reversed.

Example 2 In Figure 1(e) N ≡pr N ′, but N↔/ iN
′, since only in net N action a can happen so that action b

can not happen afterwards.

3.1.4 ST-processes

An ST-process of a net N is a pair (πE , πP ) s.t. πE , πP ∈ Π(N), πP
πW→ πE and ∀v, w ∈ TCE

v ≺CE
w ⇒

v ∈ TCP
In such a case πE is a process which has started, i.e. all actions of πE have started. A process πP

corresponds to the finished part of πE , and πW corresponds to the still working part. ST − Π(N) denotes a
set of all ST-processes of N . (πN , πN ) is an initial ST-process of N . Let (πE , πP ), (π̃E , π̃P ) ∈ ST −Π(N). We
write (πE , πP ) → (π̃E , π̃P ), if πE → π̃E and πP → π̃P .

3.1.5 ST-bisimulation equivalences

LetR ⊆ ST−Π(N)×ST−Π(N ′)×B, where B = {β | β : TC → TC′ , π = (C,ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)}.
In the following definition πE = (CE , ϕE), πP = (CP , ϕP ), π′E = (C ′E , ϕ′E), π′P = (C ′P , ϕ′P ), π = (C, ϕ), π′ =
(C ′, ϕ′).

R is a ?-ST-bisimulation between N and N ′ ? ∈{interleaving, partial word, pomset, process}, notation
R : N↔?ST N ′, ? ∈ {i, pw, pom, pr}, if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : ρCE
≈ ρC′

E
and β(TCP

) = TC′
P
;

3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) : (π′E , π′P ) → (π̃′E , π̃′P ), β̃dTCE
=

β, ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R, and if πP
π→ π̃E , π′P

π′→ π̃′E then:

(a) (β̃dTC
)−1 : ρC′ v ρC , if ? = pw;

(b) β̃dTC : ρC ' ρC′ , if ? ∈ {pom, pr};
(c) C ' C ′, if ? = pr;

4. As item 3 but the roles of N and N ′ are reversed.

Example 3 In Figure 2(a) N↔prN
′, but N↔/ iST N ′, since only in net N ′ action a can start so that no action

b can begin working until a finishes.

3.1.6 History preserving bisimulation equivalences

Let R ⊆ Π(N)×Π(N ′)×B, where B = {β | β : TC → TC′ , π = (C, ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)}. In the
following definition π = (C,ϕ), π̃ = (C̃, ϕ̃), π′ = (C ′, ϕ′), π̃′ = (C̃ ′, ϕ̃′).

R is a ?-history preserving bisimulation between N and N ′, ? ∈{partial word, pomset, process}, notation
N↔?hN ′,
? ∈ {pw, pom, pr}, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : ρC ≈ ρC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃dTC = β, (π̃, π̃′, β̃) ∈ R and

(a) β̃−1 : ρC̃′ v ρC̃ , if ? = pw;

(b) β̃ : ρC̃ ' ρC̃′ , if ? ∈ {pom, pr};
(c) C̃ ' C̃ ′, if ? = pr;

4. As item 3 but the roles of N and N ′ are reversed.

Example 4 In Figure 2(b) N↔prST N ′, but N↔/ pwhN ′, since only in net N ′ after action a action b can happen
so that action c must depend on a.
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3.2 Equivalences based on O-processes

3.2.1 O-processes

An occurrence net is an acyclic ordinary labelled net O = 〈PO, TO, FO, lO〉, s.t.:

1. ∀r ∈ PO |•r| ≤ 1, i.e. there is no forward conflict;

2. ∀x ∈ PO ∪ TO ¬(x#Ox), i.e. conflict relation is irreflexive;

3. ∀x ∈ PO ∪ TO | ↓O x| < ∞, i.e. set of causes is finite.

Let us note that on the basis of any occurrence net O = 〈PO, TO, FO, lO〉 one can define LES ξO = 〈TO,≺O

∩(TO × TO),#O ∩ (TO × TO), lO〉.
Let O = 〈PO, TO, FO, lO〉 be occurrence net and N = 〈PN , TN , FN , lN ,MN 〉 be some net. A mapping

ψ : PO ∪ TO → PN ∪ TN is an embedding O into N , notation ψ : O → N , if:

1. ψ(PO) ∈M(PN ) and ψ(TO) ∈M(TN ). i.e. sorts are preserved;

2. ∀v ∈ TO lO(v) = lN (ψ(v)), i.e. labelling is preserved;

3. ∀v ∈ TO
•ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), i.e. flow relation is respected;

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w)) ⇒ v = w, i.e. there are no “superfluous” conflicts.

A firable in marking M O-process of a net N is a pair $ = (O, ψ), where O is an occurrence net and
ψ : O → N is an embedding s.t. M = ψ(◦O). Let us note that marking M may be not reachable in general
case. A firable in MN O-process is O-process of a net N . We write ℘(N, M) for a set of all firable in marking
M O-processes of a net N and ℘(N) for a set of all O-processes of a net N . An initial O-process of a net N
coincides with its initial C-process, i.e. $N = πN .

An extension of O-processes is idefined as well as for C-processes. An O-process $ of a net N is maximal,
if it can be extended by no O-process $̂ = (Ô, ψ̂) s.t. TÔ 6= ∅. A set of all maximal O-processes of a net N ,
notation ℘max(N), consists ot the unique (up to isomorphism) O-process $max = (Omax, ψmax). In such a
case an isomorphism class of occurrence net Omax is an unfolding of a net N , notation U(N). On the basis
of unfolding U(N) of a net N one can define PES E(N) = ξU(N) which is an isomorphism class of LES ξO for
O ∈ U(N).

3.2.2 Conflict preserving equivalences

Nets N and N ′ are PES-equivalent, notation N ≡pes N ′, if E(N) = E(N ′).
Nets N and N ′ are occurrence equivalent, notation N ≡occ N ′, if U(N) = U(N ′).

Example 5 In Figure 2(c) N↔prhN ′, but N 6≡pes N ′, since only net N ′ has corresponding PES with two
conflict actions a.

4 Comparing the equivalence notions on the whole class of Petri
nets

Theorem 1 Let ↔∈ {≡,↔,'} and ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pwh, pomh, prh, pes,
occ}. For nets N and N ′ N ↔? N ′ ⇒ N ↔?? N ′ iff there exists a directed path from ↔? to ↔?? in the graph
in Figure 3.

5 Comparing the equivalence notions on subclasses of Petri nets

5.1 Sequential nets

A sequential net is a net N = 〈PN , TN , FN , lN ,MN 〉 s.t. ∀π = (C,ϕ) ∈ Π(N) ∀v, w ∈ TC (v ≺C w) ∨ (w ≺C v)
(i.e. ≺C is a total ordering on transitions of causal net C).

Proposition 1 For sequential nets N and N ′:

1. N ≡i N ′ ⇔ N ≡pom N ′;

2. N↔iN
′ ⇔ N↔pomhN ′.

Theorem 2 Let ↔∈ {≡,↔,'} and ?, ?? ∈ {i, pr, prST, prh, pes, occ}. For sequential nets N and N ′ N ↔?

N ′ ⇒ N ↔?? N ′ iff there exists a directed path from ↔? to ↔?? in the graph in Figure 4.
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5.2 Strictly labelled nets

A strictly labelled net is a net N = 〈PN , TN , FN , lN , MN 〉 s.t. ∀t, u ∈ TN t 6= u ⇒ lN (t) 6= lN (u) (i.e. its
labelling function is injective).

Proposition 2 For strictly labelled nets N and N ′:

1. N ≡? N ′ ⇔ N↔?N
′, ? ∈ {i, pw, pom, pr};

2. N ≡s N ′ ⇔ N↔iST N ′.

5.3 T-nets

A T-net is a net N = 〈PN , TN , FN , lN ,MN 〉 s.t. ∀p ∈ PN |•p| ≤ 1 and |p•| ≤ 1.

Proposition 3 For autoconcurrency free T-nets N N ′ N ≡i N ′ ⇔ N↔iST N ′.

6 Preservation of the equivalence notions by refinements

An empty in/out net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

1. ∃pin, pout ∈ PD s.t. pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net D has unique input and unique
output place.

2. MD = {pin} and ∀M ∈ Mark(D) (pout ∈ M ⇒ M = {pout}), i.e. at the beginning there is unique token
in pin, and at the end there is unique token in pout;

3. p•in and •pout are proper sets (not multisets), i.e. pin (respectively pout) represents a set of all tokens
consumed (respectively produced) for any refined transition.

Let N = 〈PN , TN , FN , lN ,MN 〉 be some net, a ∈ lN (TN ) and D = 〈PD, TD, FD, lD,MD〉 be empty in/out system.
An empty in/out refinement, notation ref(N, a,D), is (up to isomorphism) a net N = 〈PN , TN , FN , lN ,
MN 〉, s.t.:

1. PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

2. TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

3. FN (x̄, ȳ) =





FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

4. lN (ū) =
{

lN (ū), ū ∈ TN \ l−1
N (a);

lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1
N (a);

5. MN (p) =
{

MN (p), p ∈ PN ;
0, otherwise.

An SM-net is an empty in/out net D = 〈PD, TD, FD, lD,MD〉 s.t. ∀t ∈ TD |•t| ≤ 1 and |t•| ≤ 1. An SM-
refinement is an empty in/out refinement ref(N, a, D) s.t. D is SM-net.

We say that some equivalence on nets is preserved by refinements, if equivalent nets remain equivalent after
applying any refinement operator to them accordingly.

The following example demonstrates which of the equivalence notions are not preserved by SM-refinements.

Example 6 • In Figure 5 N↔sN
′, but ref(N, c, D) 6≡i ref(N ′, c, D), since only in ref(N ′, c, D) the se-

quence of actions c1abc2 can happen. Consequently, no equivalence from ≡i to ↔s is preserved by SM-
refinements.

• In Figure 6 N↔prN
′, but ref(N, a, D)↔/ iref(N ′, a, D), since only in ref(N ′, a,D) after occurrence of

action a1 action b can not happen. Consequently, no equivalence from ↔i to ↔pr is preserved by SM-
refinements.

• In Figure 7 N↔pwhN ′, but ref(N, b,D)↔/ pwhref(N ′, b,D), since only in ref(N, b, D) after action a
action b1 can happen so that action b2 must depend on a. Consequently, the equivalence ↔pwh is not
preserved by SM-refinements.
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Figure 8: Preservation of the equivalences by SM-refinements

Let us consider which of the net equivalences are preserved by SM-refinements.

Theorem 3 Let ↔∈ {≡,↔,'} and ? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pwh, pomh, prh, pes, occ}.
For nets N = 〈PN , TN , FN , lN ,MN 〉, N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉 s.t. a ∈ lN (TN ) ∩ lN ′(TN ′) and SM-net
D = 〈PD, TD, FD, lD,MD〉 the following is valid: N ↔? N ′ ⇒ ref(N, a,D) ↔? ref(N ′, a, D) iff ↔? is in oval
in Figure 8.

7 Conclusion

In this paper, we examined and supplemented by new ones a group of the basic behavioural equivalences which
can be used to consider systems being modelled by Petri nets, at different abstraction levels.

The main result consists in establishing correlation of all the equivalence notions on the whole class of Petri
nets as well as on their subclasses of sequential, strictly labelled and T-nets. All the considered equivalences
were checked for preservation by SM-refinements. So, we can use the equivalence notions that are preserved by
SM-refinements, for top-down design of concurrent systems.

Let us mention some directions of further research.
One of these directions is obtaining a complete picture of correlation of the equivalence notions on strictly

labelled nets and T-nets. Some early results can be found in [10, 11].
Another direction of further research consists in the investigation of place bisimulation equivalences from [1].

We intend to compare these equivalences with the ones we examined (for example, the relationship is unknown
between place bisimulation equivalences and ST-, history preserving ones). It is interesting to introduce ST-
and history preserving versions of place bisimulation equivalences, that allow one to prune the structure of nets
with respect to the real time aspects or “history” of functioning of nets. In addition, it is worth checking place
bisimulation equivalences for preservation by refinements to establish whether they may be used for construction
of multilevel concurrent systems.
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