
Equivalence notions for design of concurrent systems using Petri nets ∗

Igor V. Tarasyuk

Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences,

6, Lavrentieva ave.,
630090, Novosibirsk, Russia

e-mail: itar@iis.nsk.su

November 3, 2003

Abstract

The paper is devoted to the investigation of equivalence notions used to abstract from concrete behavioural
aspects of concurrent systems which are modelled by Petri nets. The basic behavioural equivalences known from
the literature are supplemented by new ones to obtain the complete picture and examined for all class of nets as
well as for some of their subclasses: sequential nets (nets without concurrency) and strictly labelled nets (which
are isomorphic to nonlabelled nets). For top-down design of concurrent systems refinement is used which is the
inverse operator to abstraction of concrete structure of such systems. An important property of equivalence notions
is their preservation by refinements which guarantees equivalence of systems to be modelled on different levels of
abstraction. All of considered equivalence notions are checked for preservation by refinements.

Keywords & phrases: Petri nets, sequential nets, strictly labelled nets, behavioural equivalences, bisimulation,
refinement.

1 Introduction

By now, concurrency theory is a quickly developing branch of computer science. It is stimulated by practice, where
importance of proper understanding of behaviour of concurrent systems became obvious over the last decades.

For specification of concurrent systems and analysis of their behavioural properties a number of formal models
were proposed. In [17] the relationship between basic formal models for concurrency was established. The choice of
model corresponds to the choice of level of abstraction from concrete behavioural aspects of systems to be modelled.

An alternative approach consists in fixing of some powerful formal model and using equivalence notions for such a
model to “merge” systems with similar behaviour. So, the choice of equivalence notion will correspond to the choice
of abstraction level.

Petri nets [13] are popular formal model for design of concurrent and distributed systems. As mentioned in [22],
the main advantage of Petri nets is their ability for structural characterization of three fundamental features, i.e.
causality, nondeterminism and concurrency.

In recent years, a wide range of semantic equivalences was proposed in concurrency theory. A lot of them were
either directly defined or transferred from other formal models to the framework of Petri nets. The following basic
notions of behavioural equivalences for Petri nets are known from the literature.

• Trace equivalences (which respect only protocols of nets functioning): interleaving [9], step [15] and pomset [8].

• (Usual) bisimulation equivalences (which respect branching structure of nets functioning): interleaving [12], step
[11], partial word [23], pomset [6] and process [2].

• ST-bisimulation equivalences (which respect the duration of transition occurrences in nets functioning): inter-
leaving [8], partial word [23] and pomset [23].

• History preserving bisimulation equivalences (which respect the “past” or “history” of nets functioning): pomset
[16] one was proposed.

∗The work is supported by Volkswagen Fund, grant N I/70 564 and Russian Foundation for Basic Research, grant N 96-01-01655

1

• Conflict respecting equivalences (which fully respect conflicts in nets): occurrence [8] one was presented.

• Isomorphism (i.e. coincidence of nets up to renaming of places and transitions) is a well-known concept.

These equivalence notions may be positioned on coordinate plane with axes ranged over: interleaving – process
semantics and trace equivalences – isomorphism. But the resulting picture is uncomplete, and there are some “holes” in
it. To complete this picture, we introduce a number of new equivalence notions. These are: partial word and process
trace equivalences, process ST-bisimulation equivalence, partial word and process history preserving bisimulation
equivalences [18, 19, 20, 21], prime event structure equivalence.

To use these equivalence notions for the choice of abstraction level when modelling concurrent systems, it is
important to understand firstly the interrelation of the notions on whole class of Petri nets. In addition, if we intend
to model systems with some restrictions, it is worth checking interrelation of the equivalences on subclasses of nets
which correspond to such systems. If some equivalence notions merge on some subclass of Petri nets, we will be able
to simplify checking of such nets by equivalence. For example, if some strict and weak equivalence notions coincide on
some subclass of nets, it is easier to check two nets from the subclass by weak equivalence and conclude that the nets
are equivalent in strict sence.

In this paper all equivalelences mentioned above are compared, and their correlation is established on whole class
of Petri nets as well as on some of their subclasses: sequential nets (where no transitions can fire concurrently), which
model sequential systems, having no concurrent components, and strictly labelled nets (where all transitions have
different labelling, and such nets may be considered as nonlabelled), which model systems, all components of which
serve different functions (or execute different actions).

For top-down design of concurrent systems refinement operator is used. It is inverse to the abstraction of concrete
structure of systems. When we apply refinement, some elementary components of the systems became having some
internal structure, i.e. we consider such systems on lower abstraction level as a result. Very important property
of behavioural equivalences is their preservation by refinements, which guarantees that equivalent systems remain
equivalent after applying the same refinement operator to them, i.e. that their equivalence is preserved at lower
abstraction level. In [5] SM-refinement operator for Petri nets was proposed, which replaces transitions of nets by
the net of special kind: SM-net. As it was mentioned, in spite of its simplicity, the refinement operator comprises
renaminging, simple splitting and simple choice.

In this paper all considered behavioural equivalences are checked for preservation by SM-refinements.
The paper is organized as follows. In Section 2 the basic definitions are presented. In Section 3 we introduce

behavioural equivalence notions. Section 4 is devoted to the investigation of the equivalences on whole class of Petri
nets, and Section 5 — on two of their subclasses: sequential and strictly labelled nets. Preservation of the equivalence
notions by refinements is investigated in Section 6. Concluding Section 7 contains a short overview of the results
obtained and some directions of further research.

Let us note that long proofs are omitted in this paper.

2 Basic definitions

2.1 Multisets

Let X be some set. A multiset M over X is a mapping M : X → N, where N is a set of natural numbers. For
x ∈ X, M(x) is a multiplicity x in M . We write x ∈ M if M(x) > 0.

When ∀x ∈ X M(x) ≤ 1, M is a proper set. M is finite if M(x) = 0 for all x ∈ X, except maybe a finite number
of them. Cardinality of multiset M is defined in such a way: |M | = ∑

x∈X M(x). M(X) denotes the set of all finite
multisets over X.

Set-theotetic notions are extended to finite multisets in the standard way. If M, M ′ ∈ M(X), we define M + M ′

by (M + M ′)(x) = M(x) + M ′(x). We write M ⊆ M ′, if ∀x ∈ X M(x) ≤ M ′(x). When M ′ ⊆ M , we define M −M ′

by (M −M ′)(x) = M(x) −M ′(x). Notation M + x − y is used instead of M + {x} − {y}. We write symbol ∅ for
empty multiset.

2.2 Labelled nets

Let Act = {a, b, . . .} be a set of action names or labels. A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {u, v, . . .} is a set of transitions;

• FN : (PN × TN) ∪ (TN × PN) → N is the flow relation with weights (N denotes a set of natural numbers);

2

• lN : TN → Act is a labelling of transitions with action names.

Let N = 〈PN , TN , FN , lN 〉 be labelled net and X ⊆ PN ∪ TN . A restriction of N on set X is a labelled net NdX=
〈PN ∩X,TN ∩X,FNd(X×X), lNd(TN∩X)〉. N ′ is a subset of N , denoted by N ′ ⊆ N , if ∃X ⊆ PN ∪ TN N ′ = NdX .

Given a labelled net N and some transition t ∈ TN , the precondition and postcondition t, notation respectively •t
and t•, are the multisets defined in such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous definitions are
introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). A transition t is unstable if •t = ∅. A labelled net is
stable if it has no unstable transitions. Further we will deal only with stable labelled nets. A labelled net N is acyclic,
if there exists no sequence x1, . . . , xn, xi ∈ PN ∪ TN (1 ≤ i ≤ n) s.t. FN (xi−1, xi) > 0 (1 ≤ i ≤ n) and x0 = xn. A
labelled net N is ordinary if ∀p ∈ PN

•p and p• are proper sets (not multisets). A labelled net N is finite if PN ∪ TN

is. Let ◦N = {p ∈ PN | •p = ∅} is a set of initial (input) places of N and N◦ = {p ∈ PN | p• = ∅} is a set of final
(output) places of N .

Given labelled nets N = 〈PN , TN , FN , lN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉.
A mapping β : N → N ′ is an isomorphism between N and N ′, notation β : N ' N ′, if:

1. β is a bijection s.t. β(PN) = PN ′ and β(TN) = TN ′ ;

2. ∀t ∈ TN lN (t) = lN ′(β(t));

3. ∀t ∈ TN
•β(t) = β(•t) and β(t)• = β(t•).

Labelled nets N and N ′ are isomorphic, notation N ' N ′, if there exists an isomorphism β : N ' N ′.
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN ∪ TN . Let us introduce the following

notions.

• x ≺N y ⇔ xF ?
Ny, where F ?

N is a transitive closure of FN (strict causal dependence relation);

• x ¹N y ⇔ (x ≺N y) ∨ (x = y) (causal dependence relation);

• x♦Ny ⇔ (x ≺N y) ∨ (y ≺N x) (linear ordering relation);

• x#Ny ⇔ ∃t, u ∈ TN (t 6= u, •t ∩ •u 6= ∅, t ¹N x, u ¹N y) (conflict relation);

• ↓N x = {y ∈ PN ∪ TN | y ≺N x} (a set of strict predecessors of x).

Let X ⊆ PN ∪ TN . A set X is left-closed in N , if ∀x ∈ X ↓N x ⊆ X. A set X is conflict-free in N , if
∀x, y ∈ X ¬(x#Ny). A configuration of N is a finite left-closed conflict-free set X ⊆ PN ∪ TN s.t. ◦N ⊆ X and
∀t ∈ TN ∩X t• ⊆ X. A computation of N is its subnet NdX , where X is a configuration of N .

2.3 Marked nets

Let N be a labelled net. A marking of N is a multiset M ∈ M(PN). A marked net (net) is a tuple N =
〈PN , TN , FN , lN ,MN 〉 where 〈PN , TN , FN , lN 〉 is a labelled net and MN ∈ M(PN) is an initial marking. Let M ∈
M(PN) be a marking of a net N . A transition t ∈ TN is firable in M , if •t ⊆ M . If t is firable in M , firing it yields a
new marking M ′ = M − •t + t•, notation M

t→ M ′. We write M → M ′, if M
t→ M ′ for some t. A marking M ′ of a

net N is reachable from marking M of the net, if:

1. M ′ = M or

2. there exists a reachable from M marking M ′′ of a net N s.t. M ′′ → M ′.

A marking M of a net N is reachable, if it is reachable from MN . Mark(N,M) denotes a set of all reachable from M
markings of a net N , and Mark(N) — a set of all reachable markings of a net N .

2.4 Partially ordered sets

A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉, where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X;

• l : X → Act is a labelling function.

Let x ∈ X. Then ↓ x = {y ∈ X | y ≺ x} is a set of strict predecessors of x.
Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′, notation β : ρ ≈ ρ′, if:

3

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ ≈ ρ′, if there exists a label-preserving bijection β : ρ ≈ ρ′.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, notation β : ρ v ρ′, if:

1. β : ρ ≈ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ v ρ′, if there exists a homomorphism β : ρ v ρ′.
A mapping β : X → X ′ is an isomorphism between ρ and ρ′, notation β : ρ ' ρ′, if β : ρ v ρ′ and β−1 : ρ′ v ρ.

Lposets ρ and ρ′ are isomorphic, notation ρ ' ρ′, if there exists an isomorphism β : ρ ' ρ′.
Partially ordered multiset (pomset) is an isomorphism class of lposets.

2.5 Event structures

A labelled event structure (LES) is a quadruple ξ = 〈X,≺, #, l〉, where:

• X = {x, y, . . .} is a set of events;

• ≺⊆ X ×X is a strict partial order, a causal dependence relation, which satisfies to the principle of finite causes:
∀x ∈ X | ↓ x| < ∞;

• # ⊆ X × X is an irreflexive symmetrical conflict relation, which satisfies to the principle of conflict heredity:
∀x, y, z ∈ X x#y ≺ z ⇒ x#z;

• l : X → Act is a labelling function.

Let Y ⊆ X. A set Y is left-closed in ξ, if ∀x ∈ Y ↓ x ⊆ Y . A set Y is conflict-free in ξ, if ∀x, y ∈ Y ¬(x#y).
A configuration of LES ξ is a finite left-closed conflict-free set Y ⊆ X. A computation of LES ξ is lposet ρ = 〈Y,≺
∩(Y × Y), ldY 〉, where Y is a configuration of ξ.

Let ξ = 〈X,≺, #, l〉 and ξ′ = 〈X ′,≺′, #′, l′〉 be LES.
A mapping β : X → X ′ is an isomorphism between ξ and ξ′, notation β : ξ ' ξ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x));

3. ∀x, y ∈ X x ≺ y ⇔ β(x) ≺′ β(y);

4. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

LES ξ and ξ′ are isomorphic, notation ξ ' ξ′, if there exists an isomorphism β : ξ ' ξ′.
A prime event structure (PES) is an isomorphism class of LES.

3 Equivalence notions

3.1 Equivalences based on C-processes

In this subsection we introduce definitions of equivalences based on C-processes, i.e. processes with causal nets [4].

3.1.1 C-processes

A causal net is acyclic ordinary labelled net C = 〈PC , TC , FC , lC〉, s.t:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;

2. | ↓C x| < ∞, i.e. a set of causes is finite.

The fundamental property of causal nets is known [2, 3]: if C is a causal net, then there exists a transition sequence
◦C = L0

v1→ · · · vn→ Ln = C◦ s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n
i=0Li and TC = {v1, . . . , vn}. Such a sequence is called

a full execution of C.
Given a net N and a causal net C. A mapping ϕ : PC ∪ TC → PN ∪ TN is an embedding C into N , notation

ϕ : C → N , if:

4

1. ϕ(PC) ∈M(PN) and ϕ(TC) ∈M(TN), i.e. sorts are preserved;

2. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved;

3. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected.

Since embeddings respect the flow relation, if ◦C v1→ · · · vn→ C◦ is a full execution of C, then M = ϕ(◦C)
ϕ(v1)−→ · · · ϕ(vn)−→

ϕ(C◦) = M ′ is a transition sequence in N , corresponding to this full execution, notation M
C,ϕ→ M ′. Conversely, for

any transition sequence M
t1→ · · · tn→ M ′ of a net N there exists a causal net C and an embedding ϕ : C → N s.t.

M = ϕ(◦C), M ′ = ϕ(C◦), ti = ϕ(vi) (0 ≤ i ≤ n) and ◦C v1→ · · · vn→ C◦ is a full execution of C.
A firable in marking M C-process (process) of a net N is a pair π = (C, ϕ), where C is a causal net and ϕ : C → N

is an embedding s.t. M = ϕ(◦C). A firable in MN process is a process of N . We write Π(N, M) for a set of all firable
in marking M processes of a net N and Π(N) for a set of all processes of a net N . Further we will deal only with
finite processes, i.e. processes having finite causal nets. An initial process of a net N is πN = (CN , ϕN) ∈ Π(N), s.t.
TCN

= ∅. If π ∈ Π(N, M), then firing of this process transforms a marking M into M ′ = M − ϕ(◦C) + ϕ(C◦) =
ϕ(C◦), notation M

π→ M ′. So, processes and reachable markings of a net N are connected in the following way:
Mark(N, M) = {ϕ(C◦) | π = (C, ϕ) ∈ Π(N, M)}.

Let π1 = (C1, ϕ1), π2 = (C2, ϕ2) ∈ Π(N). A mapping β : PC1 ∪ TC1 → PC2 ∪ TC2 is an isomorphism between π1

and π2, notation β : π1 ' π2, if:

1. β : C1 ' C2;

2. ∀x ∈ PC1 ∪ TC1 ϕ1(x) = ϕ2(β(x)).

Processes π1 and π2 are isomorphic, notation π1 ' π2, if there exists an isomorphism β : π1 ' π2.
Let π = (C, ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N, ϕ(C◦)), C = 〈PC , TC , FC , lC〉, C̃ = 〈PC̃ , TC̃ , FC̃ , lC̃〉, Ĉ =

〈PĈ , TĈ , FĈ , lĈ〉.
We write π

π̂→ π̃, if:

1. PC ∪ PĈ = PC̃ , TC ∪ TĈ = TC̃ , FC ∪ FĈ = FC̃ , lC ∪ lĈ = lC̃ ;

2. ϕ ∪ ϕ̂ = ϕ̃.

In such a case π̃ is an extension of π by process π̂, and π̂ is an extending process for π. We write π → π̃, if π
π̂→ π̃ for

some extending process π̂.
A process π of a net N is maximal, if it can be extended by no process π = (C, ϕ) s.t. TC 6= ∅. Let us denote a set

of all maximal processes of a net N by Πmax(N).
π̃ is an extension of π by one action, if π

π̂→ π̃ and |TĈ | = 1. In such a case we write π
v→ π̃ or π

a→ π̃, if TĈ = {v}
and lĈ(v) = a.

π̃ is an extension of π by multiset of actions or step, if π
π̂→ π̃ and ≺Ĉ= ∅. In such a case we write π

V→ π̃ or π
A→ π̃,

if TĈ = V and lĈ(TĈ) = A, A ∈M(Act).
Let us note that on the basis of any causal net C one can define lposet ρC = 〈TC ,≺N ∩(TC × TC), lC〉.

3.1.2 Trace equivalences

An interleaving trace of a net N is a sequence a1 · · · an ∈ Act∗ s.t. πN
a1→ π1

a2→ . . .
an→ πn, where πi ∈ Π(N) (1 ≤ i ≤ n)

and πN is an initial process of N . SeqTraces(N) denotes a set of all interleaving traces of N . Nets N and N ′ are
interleaving trace equivalent, notation N ≡i N ′, if SeqTraces(N) = SeqTraces(N ′).

A step trace of a net N is a sequence A1 · · ·An ∈ (M(Act))∗ s.t. πN
A1→ π1

A2→ . . .
An→ πn, where πi ∈ Π(N) (0 ≤ i ≤

n), and πN is an initial process of N . StepTraces(N) denotes a set of all step traces of N . Nets N and N ′ are step
trace equivalent, notation N ≡s N ′, if StepTraces(N) = StepTraces(N ′).

A pomset trace of a net N is a pomset ρ, an isomorphism class of lposet ρC for π = (C, f) ∈ Π(N). We write
ρ v ρ′, if ρC v ρC′ for ρC ∈ ρ and ρC′ ∈ ρ′. In such a case we say that pomset ρ is less sequential or more parallel than
ρ′. Pomsets(N) denotes a set of all pomset traces of N . Nets N and N ′ are partial word trace equivalent, notation
N ≡pw N ′, if Pomsets(N) v Pomsets(N ′) and Pomsets(N ′) v Pomsets(N), i.e. for any ρ′ ∈ Pomsets(N ′) there
exists ρ ∈ Pomsets(N) s.t. ρ v ρ′ and vice versa. Nets N and N ′ are pomset trace equivalent, notation N ≡pom N ′,
if Pomsets(N) = Pomsets(N ′).

A process trace of a net N is an isomorphism class of causal net C for π = (C, f) ∈ Π(N). ProcessNets(N) denotes
a set of all process traces of N . Nets N and N ′ are process trace equivalent, notation N ≡pr N ′, if ProcessNets(N) =
ProcessNets(N ′).

5

3.1.3 (Usual) bisimilation equivalences

A notation R : N↔?N
′ means that R is a bisimulation of type ? (?-bisimulation) between nets N and N ′. Nets N

and N ′ are called ?-bisimulation equivalent, notation N↔?N
′, if R : N↔?N

′ for some ?-bisimulation R.
Let R ⊆ Π(N)×Π(N ′). In the following definition π̂ = (Ĉ, f̂), π̂′ = (Ĉ ′, f̂ ′).
R is a ?-bisimulation between N and N ′, ? ∈{interleaving, step, partial word, pomset, process}, notation R :

N↔?N
′, ? ∈ {i, s, pw, pom, pr}, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂→ π̃,

(a) |TĈ | = 1, if ? = i;

(b) ≺Ĉ= ∅, if ? = s;

then ∃π̃′ : π′ π̂′→ π̃′, (π̃, π̃′) ∈ R and

(a) ρĈ′ v ρĈ , if ? = pw;

(b) ρĈ ' ρĈ′ , if ? ∈ {i, s, pom};
(c) Ĉ ' Ĉ ′, if ? = pr;

3. As previous item but the roles of N and N ′ are reversed.

3.1.4 ST-processes

ST-processes are introduced for the representation of states of nets supposing that transitions of the nets may have
some internal structure or their occurrences have a duration.

A firable in marking M ST-process of a net N is a pair (πE , πP) s.t. πE , πP ∈ Π(N, M), πP
πW→ πE and ∀v, w ∈

TCE v ≺CE w ⇒ v ∈ TCP In such a case πE is a process which has started, i.e. all actions of πE have started. A
process πP corresponds to the finished part of πE , and πW corresponds to the still working part. Clearly, ≺CW = ∅.
A firable in MN ST-process is an ST-process of a net N . ST − Π(N, M) denotes a set of all firable in M ST-
processes of N , and ST − Π(N) denotes a set of all ST-processes of N . (πN , πN) is an initial ST-process of N . Let
(πE , πP), (π̃E , π̃P) ∈ ST −Π(N). We write (πE , πP) → (π̃E , π̃P), if πE → π̃E and πP → π̃P .

3.1.5 ST-bisimulation equivalences

Let R ⊆ ST − Π(N)× ST − Π(N ′)× B, where B = {β | β : TC → TC′ , π = (C, f) ∈ Π(N), π′ = (C ′, f ′) ∈ Π(N ′)}.
In the following definition πE = (CE , fE), πP = (CP , fP), π′E = (C ′E , f ′E), π′P = (C ′P , f ′P), π = (C, f), π′ = (C ′, f ′).

R is a ?-ST-bisimulation between N and N ′ ? ∈{interleaving, partial word, pomset, process}, notation R :
N↔?ST N ′, ? ∈ {i, pw, pom, pr}, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP), (π′E , π′P), β) ∈ R ⇒ β : ρCE
≈ ρC′

E
and β(TCP

) = TC′
P
;

3. ((πE , πP), (π′E , π′P), β) ∈ R, (πE , πP) → (π̃E , π̃P) ⇒ ∃β̃, (π̃′E , π̃′P) : (π′E , π′P) → (π̃′E , π̃′P), β̃dTCE
= β,

((π̃E , π̃P), (π̃′E , π̃′P), β̃) ∈ R, and if πP
π→ π̃E , π′P

π′→ π̃′E then:

(a) (β̃dTC
)−1 : ρC′ v ρC , if ? = pw;

(b) β̃dTC : ρC ' ρC′ , if ? ∈ {pom, pr};
(c) C ' C ′, if ? = pr;

4. As previous item but the roles of N and N ′ are reversed.

6

3.1.6 History preserving bisimulation equivalences

Let R ⊆ Π(N) × Π(N ′) × B, where B = {β | β : TC → TC′ , π = (C, f) ∈ Π(N), π′ = (C ′, f ′) ∈ Π(N ′)}. In the
following definition π = (C, f), π̃ = (C̃, f̃), π′ = (C ′, f ′), π̃′ = (C̃ ′, f̃ ′).

R is a ?-history preserving bisimulation between N and N ′, ? ∈{partial word, pomset, process}, notation N↔?hN ′,
? ∈ {pw, pom, pr}, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : ρC ≈ ρC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃dTC
= β, (π̃, π̃′, β̃) ∈ R and

(a) β̃−1 : ρC̃′ v ρC̃ , if ? = pw;

(b) β̃ : ρC̃ ' ρC̃′ , if ? ∈ {pom, pr};
(c) C̃ ' C̃ ′, if ? = pr;

4. As previous item but the roles of N and N ′ are reversed.

3.2 Equivalences based on O-processes

In this subsection we introduce definitions of equivalences based on O-processes, i.e. processes with occurrence nets
(branching processes, in terminology of [7]).

3.2.1 O-processes

An occurrence net is an acyclic ordinary labelled net O = 〈PO, TO, FO, lO〉, s.t.:

1. ∀r ∈ PO |•r| ≤ 1, i.e. there is no forward conflict;

2. ∀x ∈ PO ∪ TO ¬(x#Ox), i.e. conflict relation is irreflexive;

3. ∀x ∈ PO ∪ TO | ↓O x| < ∞, i.e. set of causes is finite.

Let us note that computations of occurrence net are its initial causal subnets.
Let O = 〈PO, TO, FO, lO〉 be occurrence net and N = 〈PN , TN , FN , lN ,MN 〉 be some net. A mapping ψ : PO∪TO →

PN ∪ TN is an embedding O into N , notation ψ : O → N , if:

1. ψ(PO) ∈M(PN) and ψ(TO) ∈M(TN). i.e. sorts are preserved;

2. ∀v ∈ TO lO(v) = lN (ψ(v)), i.e. labelling is preserved;

3. ∀v ∈ TO
•ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), i.e. flow relation is respected;

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w)) ⇒ v = w, i.e. there are no “superfluous” conflicts.

A firable in marking M O-process of a net N is a pair $ = (O, ψ), where O is an occurrence net and ψ : O → N is
an embedding s.t. M = ψ(◦O). Let us note that marking M may be not reachable in general case. A firable in MN

O-process is O-process of a net N . We write ℘(N,M) for a set of all firable in marking M O-processes of a net N and
℘(N) for a set of all O-processes of a net N . Further we will deal only with finite O-processes, i.e. O-processes having
finite occurrence nets. An initial O-process of a net N coincides with its initial C-process, i.e. $N = πN .

Let $ = (O1, ψ1), $2 = (O2, ψ2) ∈ ℘(N). A mapping β : PO1 ∪ TO1 → PO2 ∪ TO2 is an isomorphism between $1

and $2, notation β : $1 ' $2, if:

1. β : O1 ' O2;

2. ∀x ∈ PO1 ∪ TO1 ψ1(x) = ψ2(β(x)).

O-processes $1 and $2 are isomorphic, notation $1 ' $2, if there exists an isomorphism β : $1 ' $2.
Let $ = (O, ψ), $̃ = (Õ, ψ̃) ∈ ℘(N), $̂ = (Ô, ψ̂) ∈ ℘(N,ψ(O◦)), O = 〈PO, TO, FO, lO〉, Õ = 〈PÕ, TÕ, FÕ, lÕ〉,

Ô = 〈PÔ, TÔ, FÔ, lÔ〉.
We write $

$̂→ $̃, if:

1. PO ∪ PÔ = PÕ; TO ∪ TÔ = TÕ; FO ∪ FÔ = FÕ; lO ∪ lÔ = lÕ;

7

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pwh ↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

¾¾

'

?

?

?

?

?

?

?

?

?

?

?

??

≡pes ≡occ

?

?
¾

Figure 1: Correlation of equivalence notions on whole class of Petri nets

2. ψ ∪ ψ̂ = ψ̃.

In such a case O-process $̃ is an extension of $ by O-process $̂, and $̂ is an extending O-process for $. We write
$ → $̃, if $

$̂→ $̃ for some extending O-process $̂.
An O-process $ of a net N is maximal, if it can be extended by no O-process $̂ = (Ô, ψ̂) s.t. TÔ 6= ∅. A set

of all maximal O-processes of a net N , notation ℘max(N), consists ot the unique (up to isomorphism) O-process
$max = (Omax, ψmax). In such a case an isomorphism class of occurrence net Omax is an unfolding of a net N ,
notation U(N).

Let us note that on the basis of any occurrence net O one can define LES ξO = 〈TO,≺O ∩(TO × TO), #O ∩ (TO ×
TO), lO〉. Then on the basis of unfolding U(N) of a net N one can define PES E(N) = ξU(N) which is an isomorphism
class of LES ξO for O ∈ U(N).

3.2.2 Conflict respecting equivalences

A PES-trace of a net N is PES ξ, an isomorphism class of LES ξO for $ = (O,ψ) ∈ ℘(N). PEStructs(N) denotes
a set of all PES-traces of a net N . Nets N and N ′ are PES-equivalent, notation N ≡pes N ′, if PEStructs(N) =
PEStructs(N ′). Let us note that we can change this requirement by E(N) = E(N ′) due to the uniqueness of maximal
O-process.

An occurrence trace of a net N is an isomorphism class of occurrence net O for $ = (O,ψ) ∈ ℘(N). OccNets(N)
denotes a set of all occurrence traces of a net N . Nets N and N ′ are occurrence equivalent notation N ≡occ N ′,
if OccNets(N) = OccNets(N ′). Let us note that we can change this requirement by U(N) = U(N ′) due to the
uniqueness of maximal O-process.

4 Comparing equivalence notions on whole class of Petri nets

Theorem 1 Let ↔∈ {≡,↔,'} and ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pwh, pomh, prh, pes, occ}.
For nets N and N ′ N ↔? N ′ ⇒ N ↔?? N ′ iff there exists a directed path from ↔? to ↔?? in the graph in
Figure 1.

Proof. ⇐ See [18] and the following substantiations.

• Implication ≡occ→≡pes is valid since PES of isomorphic occurrence nets coincide.

• Implication ≡pes→↔pomh is proved as follows. Let $ = (O,ψ) ∈ ℘max(N), $′ = (O′, ψ′) ∈ ℘max(N ′), γ : ξO '
ξO′ . We have R : N↔pomhN ′, where relation R is defined in the following way. Let π = (C, ϕ), π′ = (C ′, ϕ′),
then (π, π′, β) ∈ R ⇔ [C is a computation of O, ϕ = ψd(PC∪TC), C ′ is a computation of O′, ϕ′ = ψ′d(PC′∪TC′)
s.t. γdTC : ρC ' ρC′ , β = γdTC].

• Implication ≡occ→ ↔prh is proved as follows. Let $ = (O, ψ) ∈ ℘max(N), $′ = (O′, ψ′) ∈ ℘max(N ′), γ : O '
O′. We have R : N↔prhN ′, where relation R is defined in the following way. Let π = (C, ϕ), π′ = (C ′, ϕ′),
then (π, π′, β) ∈ R ⇔ [C is a computation of O, ϕ = ψd(PC∪TC), C ′ is a computation of O′, ϕ′ = ψ′d(PC′∪TC′)
s.t. γd(PC∪TC): C ' C ′, β = γdTC

].

8

• Implication '→≡occ is valid since unfoldings of isomorphic nets coincide.

⇒ Impossibility to draw any additional arrow in Figure 1 is proved by the following examples on nets.

• In Figure 2(a) N↔iN
′, but N 6≡s N ′, since only in N actions a and b can happen concurrently.

• In Figure 2(e) N↔iST N ′, but N 6≡pw N ′, since the pomset corresponds to the net N s.t. even less sequential
pomset is not in N ′.

• In Figure 2(c) N↔pwhN ′, but N 6≡pom N ′, since only in net N action b can depend on action a.

• In Figure 2(d) N ≡pes N ′, but N 6≡pr N ′, since N is causal net which is not isomorphic to N ′ (because of
additional output place).

• In Figure 2(b) N ≡pr N ′, but N↔/ iN
′, since only in net N action a can happen so that action b can not happen

afterwards.

• In Figure 3(a) N↔prN
′, but N↔/ iST N ′, since only in net N ′ action a can start so that no action b can begin

working until a finishes.

• In Figure 3(b) N↔prST N ′, but N↔/ pwhN ′, since only in net N ′ after action a action b can happen so that action
c must depend on a.

• In Figure 3(c) N↔prhN ′, but N 6≡pes N ′, since only net N ′ is corresponded by PES with two conflict actions a.

• In Figure 3(d) N ≡occ N ′, but N 6' N ′, since unfirable transitions of nets N and N ′ are labelled by different
actions (a and b). ut

5 Comparing equivalence notions on subclasses of Petri nets

5.1 Sequential nets

A sequential net is a net N = 〈PN , TN , FN , lN ,MN 〉 s.t. ∀π = (C, ϕ) ∈ Π(N) ∀v, w ∈ TC (v♦Cw) (i.e. ≺C is a total
ordering on transitions of causal net C).

Proposition 1 For sequential nets N and N ′:

1. N ≡i N ′ ⇔ N ≡pom N ′;

2. N↔iN
′ ⇔ N↔pomhN ′.

Proof.

1. ⇐ By Theorem 1.

⇒ Let N ≡i N ′, then SeqTraces(N) = SeqTraces(N ′). To prove N ≡pom N ′, it is sufficient to establish the
equality Pomsets(N) = Pomsets(N ′). It follows immediately, since Pomsets(N) and Pomsets(N ′) are totally
ordered multisets (chains), and there is on-to-one correspondence between SeqTraces(N) and Pomsets(N)
(SeqTraces(N ′) and Pomsets(N ′) respectively).

2. See [5]. ut

Theorem 2 Let ↔∈ {≡,↔,'} and ?, ?? ∈ {i, pr, prST, prh, pes, occ}. For sequential nets N and N ′ N ↔? N ′ ⇒
N ↔?? N ′ iff there exists a directed path from ↔? to ↔?? in the graph in Figure 4.

Proof. ⇐ By Theorem 1.
⇒ Impossibility to draw any additional arrow in Figure 4 is proved by the following examples on sequential nets.

• In Figure 2(d) N ≡pes N ′, but N 6≡pr N ′.

• In Figure 2(b) N ≡pr N ′, but N↔/ iN
′.

• In Figure 5(a) N↔prN
′, but N↔/ prST N ′, since only in net N ′ process with action a can start so that it can be

extended by process with action b in the only way (i.e. so that extended process be unique).

9

a b

±°
²¯

±°
²¯u u

? ?

(a)

N

↔i

b a

±°
²¯

±°
²¯

a b

±°
²¯u

?

?

?

?

¢
¢®

A
AU

N ′

(b)

N

b

±°
²¯

a a

±°
²¯u
¢

¢®
A
AU

? ?

?
±°
²¯

≡pr

↔/ i

b

±°
²¯

a

±°
²¯uN ′

?

?

?

(c)

ba

±°
²¯

±°
²¯u uN

? ? ↔pwh

6≡pom

a b

±°
²¯

±°
²¯u u

? ?

N ′

(d)

N

a

±°
²¯

±°
²¯u

?

?

a

±°
²¯u

?

N ′

≡pes

6≡pr

(e)

b d

±°
²¯

±°
²¯

a c

±°
²¯

±°
²¯u u

?

?

?

?

?

?

N

↔iST

6≡pw

b b d d

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a c

±°
²¯

±°
²¯

±°
²¯u u uN ′

?

?

?

?

?

?

Z
Z~

½
½½=

? ?
½½=½

½=
Z

Z~
Z

Z~

±°
²¯

b

?

?

¢
¢

¢
¢

¢
¢

¢®

A
A
A
A
A
A
AU

¤
¤
¤
¤
¤
¤
¤¤²

6≡s

Figure 2: Examples on Petri nets

10

b b

±°
²¯

±°
²¯

±°
²¯u u

a ±°
²¯u

±°
²¯u

?

?

?

¾

?
½

½=
½

½=

(a) N

↔pr

↔/ iST

b b

±°
²¯

±°
²¯

±°
²¯u u

a ±°
²¯u

±°
²¯u a ±°

²¯
- -

?

?

? ?
½½= ½

½=

N ′

b c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u

a

±°
²¯u(b) N

?

½
½½=

PPPPPq

JĴ ¢¢® SSw ¶¶/ JĴ ¢¢®

↔prST

↔/ pwh

b c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u

a

±°
²¯uN ′

?

½
½½=

PPPPPq

JĴ ¢¢® SSw ¶¶/ JĴ ¢¢®
b

JĴ ££°

(c)

a a

±°
²¯u

À JĴ

N ′↔prh

6≡pes

6

HHHHY

a

±°
²¯

N u
?

c

a

±°
²¯

±°
²¯

?

?

?

(d) N

c

b

±°
²¯

±°
²¯

?

?

?

N ′

≡occ

6'u u

Figure 3: Examples on Petri nets (continued)

≡i ¾ ≡pr

? ?

↔i ↔pr¾
?

↔prST

?

↔prh

'
?

≡pes ≡occ¾

?

?

Figure 4: Correlation of equivalence notions on sequential nets

11

b b

±°
²¯

±°
²¯

±°
²¯

a

±°
²¯u

u

?

©©©¼ ?

@@R À SSw ¡¡ª

N

↔pr

↔/ prST

b b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a a

±°
²¯u

u

HHHj

¡¡ª @@R ?

@@R ¡¡ª ?

N ′(a)

c c

±°
²¯

±°
²¯

b

±°
²¯

±°
²¯

a

±°
²¯u

?

¶¶/ JĴ

?

?

££° JĴ

u
££°

(b) N

↔prST

↔/ prh

c c

±°
²¯

±°
²¯

±°
²¯

bb

±°
²¯

a

±°
²¯u

u

?

¡¡ª ZZ~

? ?

? ?

JĴ

N ′

½½=

¶¶/

½½=

³³³³)

C
C
C
C
C
C
CW

±°
²¯

©©©¼

A
A
A
A
A
A
AU

↔pomh

6≡pes

↔pomh

6≡pes

Figure 5: Examples on sequential nets

• In Figure 5(b) N↔prST N ′, but N↔/ prhN ′, since only in net N ′ there is process with actions a and b s.t. it can
be extended by process with action c in the only way. (i.e. so that connection of causal net with action c and
a-containing subnet of causal net with actions a and b be unique).

• In Figure 3(c) N↔prhN ′, but N 6≡pes N ′.

• In Figure 3(d) N ≡occ N ′, but N 6' N ′. ut

5.2 Strictly labelled nets

A strictly labelled net is a net N = 〈PN , TN , FN , lN ,MN 〉 s.t. ∀t, u ∈ TN t 6= u ⇒ lN (t) 6= lN (u) (i.e. its labelling
function is injective).

Proposition 2 For strictly labelled nets N and N ′:

1. N ≡? N ′ ⇔ N↔?N
′, ? ∈ {i, pw, pom, pr};

2. N ≡s N ′ ⇔ N↔iST N ′.

Proof. Omitted. ut
The following example demonstrates which equivalence notions do not merge on strictly labelled nets.

Example 1 • In Figure 6(a) N↔iN
′, but N 6≡s N ′, since only in net N actions a and b can happen concurrently.

• In Figure 6(b) N↔pwhN ′, but N 6≡pom N ′, since only in net N ′ action b can depend on action a.

• In Figure 2(d) N ≡pes N ′, but N 6≡pr N ′.

• In Figure 6(c) N↔pomST N ′, but N↔/ pwhN ′, since only in net N ′ after action a action b can happen so that
action c must depend on a.

12

a b

±°
²¯

±°
²¯u u

? ?

N

(a)

±°
²¯

±°
²¯

±°
²¯u u u

a b
? ?

½
½=

Z
Z~

B
B

B
BM

¤
¤
¤
¤¤º

N ′

↔i

6≡s

a b

±°
²¯

±°
²¯u u

? ?

b

±°
²¯

±°
²¯u u

a

±°
²¯u

?

?

?
½½=

N N ′

↔pwh

6≡pom

(b)

cb

a

±°
²¯

±°
²¯

±°
²¯ u

u
?

À

J
Ĵ

??

N

(c)

↔pomST

↔/ pwh

cb

a

±°
²¯

±°
²¯

±°
²¯ u

u
?

À

J
Ĵ

??

N ′

³³³)

6≡pr

a b

±°
²¯

±°
²¯u u

? ?
a b

±°
²¯

±°
²¯u u

? ?
±°
²¯
2

¡¡ª
ZZ~

±°
²¯

±°
²¯u u

¡¡ª @@R

(d)

N N ′

↔prh

6≡pes

±°
²¯u

¡¡ª
±°
²¯u

¡¡ª

Figure 6: Examples on strictly labelled nets

• In Figure 6(d) N↔prhN ′, but N 6≡pes N ′, since only in unfolding of a net N ′ transitions with labels a and b
have common input place. PES with conflict actions a and b corresponds to this unfolding.

• In Figure 3(d) N ≡occ N ′, but N 6' N ′.

6 Preservation of equivalence notions by refinements

An empty in/out net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

1. ∃pin, pout ∈ PD s.t. pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net D has unique input and unique output
place.

2. MD = {pin} and ∀M ∈ Mark(D) (pout ∈ M ⇒ M = {pout}), i.e. at the beginning there is unique token in
pin, and at the end there is unique token in pout;

3. p•in and •pout are proper sets (not multisets), i.e. pin (respectively pout) represents a set of all tokens consumed
(respectively produced) for any refined transition.

Let N = 〈PN , TN , FN , lN , MN 〉 be some net, a ∈ lN (TN) and D = 〈PD, TD, FD, lD,MD〉 be empty in/out system. An
empty in/out refinement, notation ref(N, a, D), is (up to isomorphism) a net N = 〈PN , TN , FN , lN , MN 〉, s.t.:

1. PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

2. TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

3. FN (x̄, ȳ) =

FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, y ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

4. lN (ū) =
{

lN (ū), ū ∈ TN \ l−1
N (a);

lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1
N (a);

5. MN (p) =
{

MN (p), p ∈ PN ;
0, otherwise.

13

b c2

b c2 c1

a a c1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u

? ?
Q

QQs
´

´́+

½
½½=

Z
ZZ~

½
½½=

? ? ?

? ?

? ?

b b c2 c1 c2

b c2

a a a c1 c1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u u

?

? ?

? ? ? ? ?

½
½½=

Z
ZZ~

½
½½=? ?

? ? ? ?
PPPq

³³³)
XXXXXXXXz

»»»»»»»»9

6≡i

ref(N, c, D) ref(N ′, c, D)

b b c

a a c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u

??
Q

QQs
½

½=

N

b b b c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a a a c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u u

? ? ? ?
PPPq

³³³)
XXXXXXXXz

»»»»»»»»9

N ′

↔s

6≡pw

↔/ iST

c2

c1

±°
²¯

±°
²¯

±°
²¯u

?

?

?

?

D

Q
QQs

´
´́+

PPPPPq
³³³³³)

Q
QQs

½
½=

PPPPPq
³³³³³)

±°
²¯

±°
²¯

©©©©¼
HHHHj

JĴ À

SSw ¶¶/

JĴ

¶¶/

@@R

©©©©¼
HHHHj

JĴ À

SSw ¶¶/

JĴÀ

±°
²¯

±°
²¯

""

Q
QQs

""

?

À

SSw SSw

Q
QQs

Figure 7: Equivalences from ≡i to ↔s are not preserved by SM-refinements

An SM-net is an empty in/out net D = 〈PD, TD, FD, lD,MD〉 s.t. ∀t ∈ TD |•t| ≤ 1 and |t•| ≤ 1. An SM-refinement is
an empty in/out refinement ref(N, a, D) s.t. D is SM-net.

We say that some equivalence on nets is preserved by refinements, if equivalent nets remain equivalent after applying
any refinement operator to them accordingly. Let us consider some examples which demonstrate that some considered
in the paper equivalence notions are not preserved by SM-refinements.

Example 2 • In Figure 7 N↔sN
′, but ref(N, c, D) 6≡i ref(N ′, c, D), since only in ref(N ′, c, D) the sequence of

actions c1abc2 can happen. Consequently, no equivalence from ≡i to ↔s is preserved by SM-refinements.

• In Figure 8 N↔prN
′, but ref(N, a, D)↔/ iref(N ′, a, D), since only in ref(N ′, a, D) after occurrence of action

a1 action b can not happen. Consequently, no equivalence from ↔i to ↔pr is preserved by SM-refinements.

• In Figure 9 N↔pwhN ′, but ref(N, b, D)↔/ pwhref(N ′, b, D), since only in ref(N, b, D) after action a action
b1 can happen so that action b2 must depend on a. Consequently, equivalence ↔pwh is not preserved by SM-
refinements.

Theorem 3 Let ↔∈ {≡,↔,'} and ? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pwh, pomh, prh, pes, occ}. For
nets N = 〈PN , TN , FN , lN ,MN 〉, N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉 s.t. a ∈ lN (TN) ∩ lN ′(TN ′) and SM-net D =
〈PD, TD, FD, lD,MD〉 the following is valid: N ↔? N ′ ⇒ ref(N, a,D) ↔? ref(N ′, a,D) iff ↔? is in oval in Figure
10.

Proof. Omitted. ut
Let us note that preservation of ↔pomh by SM-refinements was proved in [5]. Preservation by refinements of

↔?ST , ? ∈ {i, pw, pom} was established in [23], but it was done in the framework of event structures, and different
refinement operator was used (for example, conflicts are not allowed in substituted event structure). For other
equivalences our results seem to be new.

14

b b

a2

a1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u

u

u u

?

?

?

?

? ?
´

´́+
´

´́+

¾

ref(N, a,D)

b b

a2

a1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u

u

u u

?

?

?

?

? ?
´

´́+
´

´́+

≡pr

↔/ i

a1 a2±°
²¯

±°
²¯

6

J
J

J
J

J
J

JJ]

- - - -

ref(N ′, a,D)

b b

a

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u u

?

?

? ?
´

´́+
´

´́+
b b

a

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u u

?

?

? ?
´

´́+
´

´́+

u

±°
²¯u¾

N N ′

↔pr

↔/ iST

u

±°
²¯u

HHHHY

a ±°
²¯

- -

6

a2

a1

±°
²¯

±°
²¯

?

?

?

u
D

±°
²?̄

Figure 8: Equivalences from ↔i to ↔pr are not preserved by SM-refinements

15

b2

b1

a

b2

b1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u

?

?

?

?

?

?

?

?

¤
¤
¤
¤
¤
¤
¤¤²

ref(N, b,D)

a

b2

b1

±°
²¯

±°
²¯

±°
²¯u u

? ?

?

?

ref(N ′, b,D)

↔pwST

6≡pom

↔/ pwh

b

a b

±°
²¯

±°
²¯

±°
²¯u u

?

?

?

?¤
¤
¤
¤
¤
¤
¤¤²

a b

±°
²¯

±°
²¯u u

? ?

N N ′

↔pwh

6≡pom

b2

b1

±°
²¯

±°
²¯u

?

?

?

D

±°
²?̄

Figure 9: Equivalence ↔pwh is not preserved by SM-refinements

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pwh ↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾

¾¾

?

?

?

?

?

?

?

?

?

???

'
?

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

≡occ≡pes ¾

? ?

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°
¾

Figure 10: Preservation of equivalences by SM-refinements

16

7 Conclusion

In this paper we examined and supplemented by new ones a group of basic behavioural equivalences which can be
used to consider systems that are modelled by Petri nets, at different abstraction levels. A correlation between all
equivalence notions was investigated on whole class of Petri nets as well as on some of their subclasses: sequential
nets and strictly labelled nets. All equivalences were checked for preservation by SM-refinements. So, we can use
equivalence notions that are preserved by SM-refinements, for top-down design of concurrent systems.

Further research may consist in obtaining the complete picture of correlation of the equivalence notions on strictly
labelled nets and investigation of the notions on T-nets (conflict-free nets). The author proved the merging of inter-
leaving trace and ST-bisimulation equivalences on autoconcurrency-free T-nets.

We want to extend our results on nets with τ -actions also. Since it is wider class of nets, some equivalences would
not be connected on such nets.

Another direction of further research consists in the investigation of place bisimulation equivalences from [1, 2, 3].
We intend to compare these equivalences with the ones we examined (for example, the relationship is unknown
between place bisimulation equivalences and ST-, history preserving ones). We would like to introduce ST- and
history preserving versions of place bisimulation equivalences. In addition, it is interesting to check all place-based
bisimulation equivalences for preservation by refinements.

We can extend our research to back-forth bisimulation equivalences [10, 14] also, which are more strict than ones
we considered. In accordance to these notions, simulation should not only be in forward direction, but in backward
direction also.

Acknowledgements I would like to thank my scientific supervisor Irina B. Virbitskaite for advice to compare
equivalence notions on different subclasses of Petri nets and check them for preservation by refinements and for many
useful discussions which played an important role in the research.

This work was done while the author’s visit to Institute of Informatics of Hildesheim. I thank the head of the
institute Prof. Dr. Eike Best for providing a good working atmosphere and for useful discussions, remarks and
questions.

I am indebted to researcher of the institute, Tom Thielke, for advices that helped to improve an initial variant of
the paper.

References

[1] Autant C., Belmesk Z., Schnoebelen Ph. Strong bisimularity on nets revisited. Extended abstract. LNCS 506,
p.295–312, June 1991.

[2] Autant C., Schnoebelen Ph. Place bisimulations in Petri nets. LNCS 616, p.45–61, June 1992.

[3] Autant C. Petri nets for the semantics and the implementation of parallel processes. Ph.D. thesis, Institut National
Polytechnique de Grenoble, May 1993 (in French).

[4] Best E., Devillers R. Sequential and concurrent behaviour in Petri net theory. TCS 55, p.87–136, 1987.

[5] Best E., Devillers R., Kiehn A., Pomello L. Concurrent bisimulations in Petri nets. Acta Informatica 28, p.231–
264, 1991.

[6] Boudol G., Castellani I. On the semantics of concurrency: partial orders and transition systems. LNCS 249,
p.123–137, 1987.

[7] Engelfriet J. Branching processes of Petri nets. Acta Informatica 28(6), p.575–591, 1991.

[8] van Glabbeek R.J., Vaandrager F.W. Petri net models for algebraic theories of concurrency. LNCS 259, p.224–242,
1987.

[9] Hoare C.A.R. Communicating sequential processes, on the construction of programs. (McKeag R.M., Macnaghten
A.M., eds.) Cambridge University Press, p.229–254,1980.

[10] De Nicola R., Montanari U., Vaandrager F.W. Back and forth bisimulations. LNCS 458, p.152–165, 1990.

[11] Nielsen M., Thiagarajan P.S. Degrees of non-determinizm and concurrency: A Petri net view. LNCS 181, p.89–
117, December 1984.

[12] Park D.M.R. Concurrency and automata on infinite sequences. LNCS 104, p.167–183, March 1981.

17

[13] Petri C.A. Kommunikation mit Automaten. Ph.D. thesis, Universität Bonn, Schriften des Instituts für Instru-
mentelle Mathematik, 1962 (in Deutsch).

[14] Pinchinat S. Bisimulations for the semantics of reactive systems. Ph.D. thesis, Institut National Politechnique de
Grenoble, January 1993 (in French).

[15] Pomello L. Some equivalence notions for concurrent systems. An overview. LNCS 222, p.381–400, 1986.

[16] Rabinovitch A., Trakhtenbrot B.A. Behaviour structures and nets. Fundamenta Informaticae XI, p.357–404, 1988.

[17] Sassone V., Nielsen M., Winskel G. A classification of models for concurrency. LNCS 715, p.82–96, 1993.

[18] Tarasyuk I.V. Equivalences on Petri nets. Specification, Verification and Net Models of Concurrent Systems,
p.33–54, Institute of Informatics Systems, Novosibirsk, 1994.

[19] Tarasyuk I.V. An investigation of equivalence notions on some subclasses of Petri nets. Bulletin of the Novosibirsk
Computing Center 3 (Series Computer Science), p.89–101, Computing Center, Novosibirsk, 1995.

[20] Tarasyuk I.V. An investigation of net equivalences. Proceedings of 4th International Conference on Applied Logics,
p.74–75, Irkutsk, Russia, June 1995 (in Russian).

[21] Tarasyuk I.V. Equivalence notions for design of concurrent systems using Petri nets. Hildesheimer Informatik
Berichte 4/96, part 1, 19 p., Institut für Informatik, Universität Hildesheim, Hildesheim, Germany, 1996.

[22] Vogler W. Failures semantics based on interval semiwords is a congruence for refinement. LNCS 415, p.285–297,
1990.

[23] Vogler W. Bisimulation and action refinement. LNCS 480, p.309–321, 1991.

18

