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A notion of congruence for dtsPBC∗

I. V. Tarasyuk

Abstract. Algebra dtsPBC is a discrete time stochastic extension of finite Petri
box calculus (PBC) enriched with iteration. In this paper, we define a number
of stochastic equivalences for dtsPBC which allow one to identify finite and in-
finite stochastic processes with similar behaviour. A problem of preservation of
the equivalences by algebraic operations is discussed. As a result, we construct an
equivalence that is a congruence relation.

Keywords: stochastic process algebras, Petri box calculus, discrete time, oper-
ational semantics, denotational semantics, empty loops, stochastic equivalences,
congruence.

1. Introduction

Algebraic process calculi is a well-known formal model for specification of
computing systems and analysis of their behaviour. In such process alge-
bras (PAs), systems and processes are specified by formulas, and verification
of their properties is accomplished at a syntactic level by means of equiva-
lences, axioms and inference rules. In the last decades, stochastic extensions
of PAs were proposed and became widespread. Stochastic process algebras
(SPAs) do not just specify actions which can happen as usual process alge-
bras (qualitative features), but they associate some quantitative parameters
with actions (quantitative characteristics). The most popular SPAs pro-
posed so far are TIPP [4], PEPA [3] and EMPA [2].

Petri box calculus (PBC) [1] is a flexible and expressive process algebra
based on calculus CCS [5]. It was developed as a tool for specification of
Petri nets structure and their interrelations. Its goal was also to propose a
compositional semantics for high level constructs of concurrent programming
languages in terms of elementary Petri nets. PBC has a step operational
semantics in terms of labeled transition systems based on the Structured
Operational Semantics (SOS) rules. Its denotational semantics was pro-
posed in terms of a subclass of Petri nets (PNs) equipped with interface and
considered up to isomorphism called Petri boxes.

A stochastic extension of PBC called stochastic Petri box calculus
(sPBC) was proposed in [9, 10]. Only a finite part of PBC was used for the
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stochastic enrichment, i.e., sPBC has neither refinement nor recursion nor
iteration operations. The calculus has an interleaving operational semantics
in terms of labeled transition systems. Its denotational semantics was de-
fined in terms of a subclass of labeled continuous time stochastic PNs (LCT-
SPNs) called stochastic Petri boxes (s-boxes). The results on constructing
the iteration for sPBC were reported in [6, 7]. In [8], a congruence relation
for sPBC was constructed.

In [11, 13], a discrete time stochastic extension dtsPBC of finite PBC
was presented. A step operational semantics of dtsPBC was constructed
with the use of labeled probabilistic transition systems. Its denotational
semantics was defined based on a subclass of labeled discrete time stochas-
tic PNs (LDTSPNs) called discrete time stochastic Petri boxes (dts-boxes).
A variety of probabilistic equivalences were proposed to identify stochastic
processes with similar behaviour which are differentiated by the semantic
equivalence. The interrelations of all the introduced equivalences were stud-
ied. In [12], the iteration operator was added to the syntax of dtsPBC to
specify infinite processes.

In this paper, a problem of preservation of the equivalence notions by al-
gebraic operations is discussed. First, we present the syntax of the extended
dtsPBC. Second, we describe the operational and denotational semantics
of the calculus. Further, we consider a number of stochastic algebraic equiv-
alences based on transition systems without empty behaviour and present a
diagram of equivalence interrelations. The proposed equivalences are then
used to construct a new congruence relation for the algebra.

The paper is organized as follows. In the next Section 2, the syntax
of the algebra dtsPBC is presented. In Section 3, we describe its opera-
tional semantics in terms of labeled transition systems. In Section 4, we
present a short overview of the denotational semantics of the algebra based
on a subclass of LDTSPNs. Section 5 is devoted to the construction and the
interrelations of stochastic algebraic equivalences. Preservation of the equiv-
alences by the algebraic operations, i.e., a congruence problem, is discussed
in Section 6. The concluding Section 7 summarizes the results obtained and
outlines research perspectives in this area.

2. Syntax

In this section, we propose the syntax of the discrete time stochastic ex-
tension of finite PBC enriched with iteration called discrete time stochastic
Petri box calculus (dtsPBC).

We denote the set of all finite multisets over X by INX
f . Let Act =

{a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the

set of conjugated actions (conjugates) such that a 6= â and ˆ̂a = a. Let

A = Act ∪ Âct be the set of all actions, and L = INA
f be the set of all
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multiactions. Note that ∅ ∈ L, this corresponds to an internal activity, i.e.,
the execution of a multiaction that contains no visible action names. The
alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈
(0; 1) is the probability of the multiaction α. The multiaction probabilities
are used to calculate the probabilities of state changes (steps) at discrete
time moments. Let SL be the set of all activities. Let us note that the same
multiaction α ∈ L may have different probabilities in the same specification.
The alphabet of (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). For (α, ρ) ∈ SL,
we define its multiaction part as L(α, ρ) = α and its probability part as
Ω(α, ρ) = ρ.

Activities are combined into formulas by the following operations: se-
quential execution ;, choice [], parallelism ‖, relabeling [f ], restriction rs ,
synchronization sy and iteration [∗∗].

Relabeling functions f : A → A are bijections preserving conjugates,

i.e., ∀x ∈ A f(x̂) = f̂(x). Let α, β ∈ L be two multiactions such that for
some action a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and a ∈ β. Then
synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Static expressions specify the structure of a system. As we shall see,
they correspond to unmarked SPNs.

Definition 1. Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC
is defined as

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

StatExpr denote the set of all static expressions of dtsPBC.
To avoid inconsistency of the iteration operator, we should not allow

any concurrency in the highest level of the second argument of iteration.
This is not a severe restriction though, since we can always prefix paral-
lel expressions by an activity with the empty multiaction and appropriate
probability.

Definition 2. Let (α, ρ) ∈ SL and a ∈ Act. A regular static expression of
dtsPBC is defined as

D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E],
E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E].
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RegStatExpr denotes the set of all regular static expressions of dtsPBC.
Dynamic expressions specify the states of a system. As we shall see, they

correspond to marked SPNs.

Definition 3. Let (α, ρ) ∈ SL, a ∈ Act and E ∈ RegStatExpr. A regular
dynamic expression of dtsPBC is defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

RegDynExpr denotes the set of all regular dynamic expressions of
dtsPBC. We shall consider regular expressions only, hence, we can omit
the word “regular”.

3. Operational semantics

In this section, we present a short overview of the step operational semantics.
It was defined in [12] via labeled transition systems based on transformation
rules for dynamic expressions.

Note that expressions can contain identical activities. To avoid technical
difficulties, we can always enumerate coinciding activities from left to right
in the syntax of expressions.

The inaction rules describe expression transformations due to execution
of the empty multiset of activities (semantics-preserving syntactic transfor-

mations) and have a form G
∅
→ G̃, where G, G̃ ∈ RegDynExpr. The only

non-standard inaction rule (comparing with PBC) is G
∅
→ G.

A regular dynamic expression G is operative if no inaction rule can be

applied to it, with the exception of G
∅
→ G. Any dynamic expression can

be always transformed into a (not necessarily unique) operative one using
inaction rules. Let OpRegDynExpr denote the set of all operative regular
dynamic expressions of dtsPBC.

Definition 4. Let ≃ = (
∅
→ ∪

∅
←)∗ be isomorphism of dynamic expressions

in dtsPBC. Two dynamic expressions G and G′ are isomorphic, denoted by
G ≃ G′, if they can be reached from each other by applying inaction rules.

The action rules describe expression transformations due to the execu-

tion of non-empty multisets of activities. The rules have a form G
Γ
→ G̃,

where G ∈ OpRegDynExpr, G̃ ∈ RegDynExpr and Γ ∈ INSL
f \ ∅. The

only non-standard action rule is G sy a
Γ+{(α,ρ)}+{(β,χ)}

−→ eG sy a, a∈A(α), â∈A(β)

G sy a
Γ+{(α⊕aβ,ρ·χ)}

−→ eG sy a
.
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Definition 5. Let G be a dynamic expression. Then [G]≃ = {H | G ≃ H}
is the equivalence class of G with respect to isomorphism (the isomorphism
class). The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

• [G]≃ ∈ DR(G);

• if [H]≃ ∈ DR(G) and ∃Γ H
Γ
→ H̃ then [H̃]≃ ∈ DR(G).

Let G be a dynamic expression and s ∈ DR(G).

The set of all multisets of activities executable in s is defined as Exec(s) =

{Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

Let Γ ∈ Exec(s). The probability that the activities from Γ try to happen
in s is

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ)6∈Γ}

(1− χ).

In the case Γ = ∅ we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, otherwise.

The probability that the activities from Γ happen in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability that the execution of any activities changes s to s̃ is

PM(s, s̃) =
∑

{Γ|∃H∈s ∃ eH∈s̃ H
Γ
→ eH}

PT (Γ, s).

Definition 6. Let G be a dynamic expression. The (labeled probabilistic)
transition system of G is a quadruple TS(G) = (SG, LG,TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ INSL
f × (0; 1];

• the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s ∈ DR(G),

∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

• the initial state is sG = [G]≃.
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A transition (s, (Γ,P), s̃) ∈ TG will be written as s
Γ
→P s̃. It is interpreted

as follows: the probability to change the state s to s̃ in the result of executing
Γ is P. The step probabilities belong to the interval (0; 1]. The value 1 is the
case when we cannot leave a state, and thus there exists the only transition
from the state to itself.

We write s
Γ
→ s̃ if ∃P s

Γ
→P s̃ and s→ s̃ if ∃Γ s

Γ
→ s̃.

Note that Γ could be the empty set, and its execution does not change
isomorphism classes. This corresponds to the application of inaction rules
to the expressions from the isomorphism classes. We have to keep track of
such executions called empty loops, because they have nonzero probabilities.
This follows from the definition of PF (∅, s) and the fact that multiaction
probabilities cannot be equal to 1 as they belong to the interval (0; 1).

Definition 7. Let G,G′ be dynamic expressions and
TS(G) = (SG, LG,TG, sG), TS(G′) = (SG′ , LG′ ,TG′ , sG′) be their transition
systems. A mapping β : SG → SG′ is an isomorphism between TS(G) and
TS(G′), denoted by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by
TS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 8. Two dynamic expressions G and G′ are isomorphic with
respect to transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Definition 9. Let G be a dynamic expression. The underlying discrete
time Markov chain (DTMC) of G, denoted by DTMC(G), has the state
space DR(G) and the transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).

4. Denotational semantics

In this section, we present a short overview of the denotational semantics.
It was defined in [12] via a subclass of labeled DTSPNs called discrete time
stochastic Petri boxes (dts-boxes).



A notion of congruence for dtsPBC 127

Definition 10. A plain discrete time stochastic Petri box (plain dts-box) is
a tuple N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, respectively, such
that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN ×TN )∪(TN ×PN )→ IN is a function describing the weights
of arcs between places and transitions and vice versa;

• ΛN is the place and transition labeling function such that ΛN : PN →
{e, i, x} (it specifies entry, internal and exit places, respectively) and
ΛN : TN → SL (it associates activities with transitions).

Let t ∈ TN , U ∈ INTN

f . The precondition •t and the postcondition t• of t are

the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p).
The precondition •U and the postcondition U• of U are the multisets of
places defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t•. We require that ∀t ∈
TN

•t 6= ∅ 6= t• and •t ∩ t• = ∅.
In addition, for the set of entry places of N defined as ◦N = {p ∈ PN |

ΛN (p) = e} and the set of exit places of N defined as N◦ = {p ∈ PN |
ΛN (p) = x} we require that ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A marked plain dts-box is a pair (N,MN ), where N is a plain dts-box

and MN ∈ INPN

f is the initial marking. We denote N = (N, ◦N) and N =

(N,N◦). A marked plain dts-box (PN , TN ,WN ,ΛN ,MN ) could be inter-
preted as the LDTSPN (PN , TN ,WN ,ΩN , LN ,MN ), where ∀t ∈ TN ΩN (t) =
Ω(ΛN (t)) (transition probability function) and LN (t) = L(ΛN (t)) (transi-
tion labeling function).

Let N(α,ρ)i denote the plain dts-box of the enumerated elementary static
expression (α, ρ)i and Θ◦(N1, N2), ◦ ∈ {; , [], ‖}, Θ[f ](N1), Θ◦a(N1), ◦ ∈
{rs, sy}, Θ[∗∗](N1) denote the composite plain dts-boxes resulted from ap-
plication of the net algebraic operations to the plain dts-boxes N1 and N2.

Definition 11. Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr.
The denotational semantics of dtsPBC is a mapping Boxdts from
RegStatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i ;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};

5. Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).
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For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) =
Boxdts(E). Note that any dynamic expression can be decomposed into
overlined or underlined static expressions or those without overlines and
underlines, and the definition of dts-boxes is compositional.

Isomorphism is a coincidence of systems up to renaming of their compo-
nents or states. Let ≃ denote isomorphism between transition systems or
DTMCs and reachability graphs. Note that in this case, the names of tran-
sitions of the dts-box corresponding to a static expression could be identified
with the enumerated activities of the latter.

For a dts-box N , we denote its reachability graph by RG(N) and its
underlying DTMC by DTMC(N).

Theorem 1. [12] For any static expression E

TS(E) ≃ RG(Boxdts(E)).

Proposition 1. [12] For any static expression E

DTMC(E) ≃ DTMC(Boxdts(E)).

5. Stochastic equivalences

In this section, we propose a number of stochastic equivalences of expres-
sions. The semantic equivalence =ts is too strict in many cases, hence, we
need weaker equivalence notions to compare behaviour of processes specified
by algebraic formulas.

To identify processes with intuitively similar behaviour, and to be able
to apply standard constructions and techniques, we should abstract from
infinite internal behaviour. Since dtsPBC is a stochastic extension of a
finite part of PBC with iteration, the only source of infinite silent behaviour
are empty loops, i.e., the transitions which are labeled by the empty set
of activities and do not change states. During such an abstraction, we
should collect the probabilities of the empty loops. Note that the resulting
probabilities are those defined for an infinite number of empty steps. In
the following, we explain how to abstract from the empty loops both in the
algebraic setting of dtsPBC and in the net one of LDTSPNs.

5.1. Empty loops

Let G be a dynamic expression. A transition system TS(G) can have loops
going from a state to itself which are labeled by the empty set and have non-

zero probability. Such empty loop s
∅
→P s appears when no activities occur



A notion of congruence for dtsPBC 129

at a time step, and this happens with some positive probability. Obviously,
in this case the current state remains unchanged.

Let G be a dynamic expression and s ∈ DR(G).
The probability to stay in s due to k (k ≥ 1) empty loops is (PT (∅, s))k.
The probability to execute in s a non-empty multiset of activities Γ ∈

Exec(s) \ {∅} after possible empty loops is

PT ∗(Γ, s) = PT (Γ, s) ·
∞∑

k=0

(PT (∅, s))k =
PT (Γ, s)

1− PT (∅, s)
.

The value k = 0 in the summation above corresponds to the case when
no empty loops occur. Note that PT ∗(Γ, s) ≤ 1, hence, it is really a prob-
ability, since PT (∅, s) + PT (Γ, s) ≤ PT (∅, s) +

∑
∆∈Exec(s)\{∅} PT (∆, s) =∑

∆∈Exec(s) PT (∆, s) = 1. Moreover, PT ∗(Γ, s) defines a probability distri-

bution, i.e., ∀s ∈ DR(G)
∑

Γ∈Exec(s)\{∅} PT ∗(Γ, s) = 1.

Definition 12. The (labeled probabilistic) transition system without empty

loops TS∗(G) has the state space DR(G) and the transitions s
Γ
→→P s̃, if

s
Γ
→ s̃, Γ 6= ∅ and P = PT ∗(Γ, s).

Note that TS∗(G) describes the viewpoint of a person who observes steps
only if they include non-empty multisets of activities.

We write s
Γ
→→ s̃ if ∃P s

Γ
→→P s̃ and s→→ s̃ if ∃Γ s

Γ
→→ s̃. For a one-element

transition set Γ = {(α, ρ)} we write s
(α,ρ)
→→ P s̃ and s

(α,ρ)
→→ s̃.

For E ∈ RegStatExpr, let TS∗(E) = TS∗(E).

Definition 13. Two dynamic expressions G and G′ are isomorphic with
respect to transition systems without empty loops, denoted by G =ts∗ G′, if
TS∗(G) ≃ TS∗(G′).

Definition 14. The underlying DTMC without empty loops DTMC∗(G)
has the state space DR(G) and the transitions s →→P s̃, if s →→ s̃, where
P = PM∗(s, s̃) and

PM∗(s, s̃) =
∑

{Γ|s
Γ
→→s̃}

PT ∗(Γ, s).

For E ∈ RegStatExpr, let DTMC∗(E) = DTMC∗(E).
When concurrency aspects are not relevant, the interleaving behaviour is

to be considered. The interleaving semantics abstracts from steps with more
than one element. After such an abstracting, one has to normalize probabil-
ities of the remaining one-element steps. We need to do this since the sum
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of outgoing probabilities should always be equal to one for each marking to
form a probability distribution. For this, a special interleaving transition
relation is proposed. Let G be a dynamic expression, s, s̃ ∈ DR(G) and

s
(α,ρ)
→→ s̃. We write s

(α,ρ)
⇀⇀ P s̃, where P = PT ∗

i ((α, ρ), s) and

PT ∗
i ((α, ρ), s) =

PT ∗({(α, ρ)}, s)∑
{(β,χ)}∈Exec(s) PT ∗({(β, χ)}, s)

.

Let N = (PN , TN ,WN ,ΩN , LN ,MN ) ba a LDTSPN and M,M̃ ∈ INPN

f ,

t ∈ TN , U ⊆ TN . Then the transition relations M
U
→→P M̃, M

U
→→ M̃, M →

→ M̃ , M
t
→→P M̃, M

t
→→ M̃, M →→P M̃, M

t
⇀⇀P M̃ , the reachability

graph without empty loops RG∗(N) and the underlying DTMC without empty
loops DTMC∗(N) are defined like the corresponding notions for dynamic
expressions.

Theorem 2. For any static expression E

TS∗(E) ≃ RG∗(Boxdts(E)).

Proof. As for the qualitative (functional) behaviour, we have the same
isomorphism as in PBC. The quantitative behaviour is the same by the
following reasons. First, the activities of an expression have probability
parts coinciding with the probabilities of the transitions belonging to the
corresponding dts-box. Second, both in stochastic processes specified by
expressions and in dts-boxes conflicts are resolved via the same probabil-
ity functions used to construct the corresponding transition systems and
reachability graphs.

Proposition 2. For any static expression E

DTMC∗(E) ≃ DTMC∗(Boxdts(E)).

Proof. By Theorem 2 and definitions of underlying DTMC for dynamic
expressions and LDTSPNs, since transition probabilities of the associated
DTMCs are the sums of those belonging to transition systems or reachability
graphs.

Theorem 2 guarantees that the net versions of algebraic equivalences
could be easily defined. For every equivalence on the transition system
without empty loops of a dynamic expression, a similarly defined analogue
exists on the reachability graph without empty loops of the corresponding
dts-box.
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5.2. Stochastic trace equivalences

Trace equivalences are the least discriminating ones. In the trace semantics,
the behaviour of a system is associated with the set of all possible sequences
of activities, i.e., protocols of work or computations. Thus, the points of
choice of an external observer between several extensions of a particular
computation are not taken into account.

For Γ ∈ INSL
f , we define its multiaction part by L(Γ) =

∑
(α,ρ)∈Γ α. Note

that L(Γ) ∈ INL
f , i.e, L(Γ) is a multiset of multiactions.

Definition 15. An interleaving stochastic trace of a dynamic expression G
is a pair (σ, PT ∗(σ)), where σ = α1 · · ·αn ∈ L

∗ and

PT ∗(σ) =
∑

{(α1,ρ1),...,(αn,ρn)|[G]≃=s0
(α1,ρ1)
⇀⇀ ···

(αn,ρn)
⇀⇀ sn}

n∏

i=1

PT ∗
i ((αi, ρi), si−1).

We denote a set of all interleaving stochastic traces of a dynamic ex-
pression G by IntStochTraces(G). Two dynamic expressions G and G′ are
interleaving stochastic trace equivalent, denoted by G ≡is G

′, if

IntStochTraces(G) = IntStochTraces(G′).

Definition 16. A step stochastic trace of a dynamic expression G is a pair
(Σ, PT ∗(Σ)), where Σ = A1 · · ·An ∈ (INL

f )
∗ and

PT ∗(Σ) =
∑

{Γ1,...,Γn|[G]≃=s0
Γ1→→···

Γn→→sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1).

We denote a set of all step stochastic traces of a dynamic expression
G by StepStochTraces(G). Two dynamic expressions G and G′ are step
stochastic trace equivalent, denoted by G ≡ss G

′, if

StepStochTraces(G) = StepStochTraces(G′).

5.3. Stochastic bisimulation equivalences

Bisimulation equivalences respect completely the particular points of choice
in the behaviour of a modeled system. We intend to present a parameterized
definition of stochastic bisimulation equivalences.

Let G be a dynamic expression and H ⊆ DR(G). Then for some s ∈

DR(G) and A ∈ INL
f we write s

A
→→P H, where P = PM∗

A(s,H) and
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PM∗
A(s,H) =

∑

{Γ|∃s̃∈H s
Γ
→→s̃, L(Γ)=A}

PT ∗(Γ, s).

Thus, PM∗
A(s,H) is the overall probability to come into the set of states

H starting in s via steps with the multiaction part A. The summation above
reflects the probability of the events union.

We propose the interleaving transition relation s
α
⇀⇀P H, where P =

PM∗
iα(s,H) and

PM∗
iα(s,H) =

∑

{(α,ρ)|∃s̃∈H s
(α,ρ)
→→ s̃}

PT ∗
i ((α, ρ), s).

Definition 17. Let G be a dynamic expression. An equivalence relation
R ⊆ DR(G)2 is a ⋆-stochastic bisimulation between states s1 and s2 from
DR(G), ⋆ ∈{interleaving, step}, denoted by R : s1↔⋆ss2, ⋆ ∈ {i, s}, if
∀H ∈ DR(G)/R

• ∀x ∈ L and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INL
f and →֒=→→, if ⋆ = s;

s1
x
→֒P H ⇔ s2

x
→֒P H.

Two states s1 and s2 are ⋆-stochastic bisimulation equivalent,
⋆ ∈{interleaving, step}, denoted by s1↔⋆ss2, if ∃R : s1↔⋆ss2, ⋆ ∈ {i, s}.

To introduce bisimulation between dynamic expressions G and G′, we
should consider a “composite” set of states DR(G) ∪DR(G′).

Definition 18. Let G,G′ be dynamic expressions. A relation R ⊆ (DR(G)
∪DR(G′))2 is a ⋆-stochastic bisimulation between G and G′, ⋆ ∈{interlea-
ving, step}, denoted by R : G↔⋆sG

′, if R : [G]≃↔⋆s[G
′]≃, ⋆ ∈ {i, s}.

Two dynamic expressions G and G′ are ⋆-stochastic bisimulation equiv-
alent, ⋆ ∈{interleaving, step}, denoted by G↔⋆sG

′, if ∃R : G↔⋆sG
′, ⋆ ∈

{i, s}.

5.4. Stochastic isomorphism

Stochastic isomorphism is a relation that is weaker than the equivalence with
respect to the isomorphism of the associated transition systems without
empty loops. The main idea of the following definition is to collect the
probabilities of all transitions between the same pair of states such that the
transition labels have the same multiaction parts.

Let G be a dynamic expression and s, s̃ ∈ DR(G) such that s
A
→→P {s̃}.

In this case, we write s
A
→→P s̃.
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Definition 19. Let G,G′ be dynamic expressions. A mapping
β : DR(G) → DR(G′) is a stochastic isomorphism between G and G′,
denoted by β : G =sto G

′, if

1. β is a bijection such that β([G]≃) = [G′]≃;

2. ∀s, s̃ ∈ DR(G) ∀A ∈ INL
f s

A
→→P s̃ ⇔ β(s)

A
→→P β(s̃).

Two dynamic expressions G and G′ are stochastically isomorphic, denoted
by G =sto G

′, if ∃β : G =sto G
′.

5.5. Interrelations of the stochastic equivalences

Now we intend to compare the introduced stochastic equivalences and obtain
the lattice of their interrelations.

Proposition 3. For dynamic expressions G and G′ the following holds:

G =ts∗ G
′ ⇔ G =ts G

′.

Proof. Analogous to the proof of the corresponding proposition from [13],
but for infinite processes as well.

Note that, though isomorphism of transition systems with and with-
out empty loops appears to be the same relation, the equivalences defined
on these two types of transition systems could be different. This is the case
when the relations abstract from concrete activities which can happen (more
exactly, from their probability parts) and take into account the overall prob-
abilities to execute multiactions only. It is clear that the equivalences defined
through transition systems with empty loops imply the relations based on
those without empty loops, but the reverse implication is not valid.

For instance, we have defined stochastic isomorphism with the use of
transition systems without empty loops. We can define the corresponding
relation based on transition systems with empty loops as well. Then the
latter equivalence will be strictly stronger than the former. As mentioned
above, we decided to abstract from empty loops because of the difficulties
with infinite internal behaviour. Now we can give another reason for this
decision: the equivalences based on transition systems with empty loops are
rather cumbersome. The following example shows why.

Example 1. Let E = ({a}, 12) and E′ = ({a}, 12)1[]({a},
1
2)2. Then E =sto

E′, but E is not equivalent to E′ according to the stronger version of sto-
chastic isomorphism, since the probability of the only non-empty transition
in TS(E) is 1

2 , whereas the probability of both non-empty transitions in

TS(E′) is 1
3 , and

1
2 6=

1
3 +

1
3 . On the other hand, the probability of the only

non-empty transition in TS∗(E) is 1, the probability of both non-empty
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Figure 1. A problem with the stochastic isomorphism based on transition systems
with empty loops
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Figure 2. Interrelations of the stochastic equivalences

transitions in TS∗(E′) is 1
2 , and 1 = 1

2 +
1
2 . The transition systems with and

without empty loops of E and E
′
are presented in Figure 1.

In the following, the symbol ‘ ’ will denote “nothing”, and the equiva-
lences subscribed by it are considered as those without any subscription.

Theorem 3. Let ↔,↔↔∈ {≡,↔,=,≃} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts}. For
dynamic expressions G and G′

G↔⋆ G
′ ⇒ G↔↔⋆⋆ G

′

iff there exists a directed path from ↔⋆ to ↔↔⋆⋆ in the graph in Figure 2.
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Proof. Analogous to the proof of the corresponding theorem from [13], but
for infinite processes as well.

6. Preservation by algebraic operations

An important question concerning equivalence relations is whether two com-
pound expressions always remain equivalent if they are constructed from
pairwise equivalent subexpressions. The equivalence having the mentioned
property of preservation by algebraic operations is called a congruence. To
be a congruence is a desirable property but not an obligatory one, since
many important behavioural equivalences are not congruences. As a rule,
a congruence relation is too strict, i.e., it differentiates too many formulas.
This is the reason why a weaker but more interesting equivalence notion
that is not a congruence is preferred in many cases when process behaviour
is to be compared.

Definition 20. Let ↔ be an equivalence of dynamic expressions. Two
static expressions E and E′ are equivalent with respect to ↔, denoted by
E ↔ E′, if E ↔ E′.

Let us investigate which algebraic equivalences we proposed are congru-
ences on static expressions. The following example demonstrates that no
equivalence between ≡is and =sto is a congruence.

Example 2. Let E = ({a}, 12), E′ = ({a}, 13) and F = ({b}, 12). We have

E =sto E′, since both TS∗(E) and TS∗(E′) have the transitions with the
multiaction part {a} of their labels and probability 1. On the other hand,
E[]F 6≡is E′[]F , since only in TS∗(E′[]F ) the probabilities of the transitions
with the multiaction parts {a} and {b} of their labels are different (13 and 2

3 ,
respectively). Thus, no equivalence between ≡is and =sto is a congruence.

In Figure 3 the marked dts-boxes corresponding to the dynamic expres-
sions above are presented, i.e., N1 = Boxdts(E), N ′

1 = Boxdts(E′), N2 =

Boxdts(F ) and N = Boxdts(E[]F ), N ′ = Boxdts(E′[]F ). In addition, we
depict the net analogues of the algebraic equivalences.

The following proposition demonstrates that all the equivalences between
≡is and =ts are not congruences.

Proposition 4. Let ⋆ ∈ {i, s}, ⋆⋆ ∈ {sto, ts}. The equivalences ≡⋆, ↔⋆,
=⋆⋆ are not preserved by algebraic operations.
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Proof. Let E = ({a}, 12), E′ = ({a}, 12);Stop and F = ({b}, 12). We have

E =ts E′, since both TS(E) and TS(E′) have the transitions with the
multiaction part {a} of their labels and probability 1

2 . On the other hand,

E;F 6≡is E′;F , since only in TS∗(E′;F ) no other transition can fire after the
transition with the multiaction part {a} of its label. Thus, no equivalence
between ≡is and =ts is a congruence.

In Figure 4 the marked dts-boxes corresponding to the dynamic expres-
sions above are presented, i.e., N1 = Boxdts(E), N ′

1 = Boxdts(E′), N2 =

Boxdts(F ) and N = Boxdts(E[]F ), N ′ = Boxdts(E′[]F ). In addition, we
depict the net analogues of the algebraic equivalences.

The following proposition demonstrates that ≃ is a congruence.

Proposition 5. The equivalence ≃ is preserved by algebraic operations.

Proof. By definition of ≃.
We suppose that, for an analogue of =ts to be a congruence, we have

to equip transition systems of expressions with two extra transitions skip
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and redo like in [8]. This allows one to avoid difficulties demonstrated in the
example from the proof of Proposition 4 with unexpected termination due to
the Stop process. At the same time, such an enrichment of transition systems
does not overcome the problems explained in Example 2 with abstraction
from empty loops. Hence, the equivalences between ≡is and =sto defined on
the basis of the enriched transition systems will still be non-congruences.

To define the analogue of =ts mentioned above, we shall introduce a
notion of sr-transition system. It has the final state and two extra transitions
from the initial state to the final one and back. Note that sr-transition
systems do not have the loop transitions from the final state to itself. First,
we propose the rules for skip and redo. Let E ∈ RegStatExpr.

E
skip
→ E E

redo
→ E

Now we can define sr-transition systems of dynamic expressions in the
form E, where E is a static expression. This syntactic restriction is needed
to take into account two additional rules given above. We assume that skip
has probability 0, hence, it will be never executed. On the other hand, redo
has probability 1, hence, it will be immediately executed at the next time
moment if it is enabled.

Definition 21. Let E be a static expression and TS(E) = (S,L,T , s). The
(labeled probabilistic) sr-transition system of E is a quadruple TSsr(E) =
(Ssr, Lsr,Tsr, ssr), where

• Ssr = S ∪ {[E]≃};

• Lsr ⊆ (INSL
f × (0; 1]) ∪ {(skip, 0), (redo, 1)};

• Tsr = T \ {([E]≃, (∅, 1), [E ]≃)} ∪ {([E]≃, (skip, 0), [E]≃),
([E]≃, (redo, 1), [E ]≃)};

• ssr = s.

We define a new notion of isomorphism for sr-transition systems.

Definition 22. Let E,E′ be static expressions and
TSsr(E) = (Ssr, Lsr,Tsr, ssr), TSsr(E′) = (S′

sr, L
′
sr,T

′
sr, s

′
sr) be their sr-

transition systems. A mapping β : Ssr → S′
sr is an isomorphism between

TSsr(E) and TSsr(E′), denoted by β : TSsr(E) ≃ TSsr(E′), if

1. β is a bijection such that β(ssr) = s′sr and β([E]≃) = [E′]≃;

2. ∀s, s̃ ∈ Ssr ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

Two sr-transition systems TSsr(E) and TSsr(E′) are isomorphic, denoted
by TSsr(E) ≃ TSsr(E′), if ∃β : TSsr(E) ≃ TSsr(E′).
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For E ∈ RegStatExpr, let TSsr(E) = TSsr(E).

Example 3. Let E = ({a}, 12 ). In Figure 5 the transition systems TSsr(E)

and TSsr(E;Stop) are presented. In the latter sr-transition system (unlike
the former one) the final state can be reached by executing the transition
(skip, 0) from the initial state only.

Definition 23. Two dynamic expressions E and E′ are isomorphic with
respect to sr-transition systems, denoted by E =tssr E′, if TSsr(E) ≃
TSsr(E′).

Note that sr-transition systems without empty loops can be defined,
as well as the equivalence =tssr∗ based on them. At the same time, the
coincidence of =tssr and =tssr∗ can be proved similar to that of =ts and
=ts∗.

Theorem 4. Let ↔,↔↔∈ {≡,↔,=,≃} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts, tssr}.
For dynamic expressions G and G′

G↔⋆ G
′ ⇒ G↔↔⋆⋆ G

′

iff there exists a directed path from ↔⋆ to ↔↔⋆⋆ in the graph in Figure 6.

Proof. (⇐) Let us check validity of implications in the graph in Figure 6.

• The implication =tssr⇒=ts is valid, since sr-transition systems have
more states and transitions than usual ones.
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Figure 6. Interrelations of the stochastic equivalences and the new congruence

• The implication ≃⇒=tssr is valid, since the sr-transition system of a
dynamic formula is defined based on its isomorphism class.

(⇒) The absence of additional nontrivial arrows (not resulting from the
combination of the existing ones) in the graph in Figure 6 is proved by the
following examples.

• Let E = ({a}, 12) and E′ = ({a}, 12);Stop. We have E =ts E′ as
demonstrated in the example from the proof of Proposition 4. On the
other hand, E 6=tssr E′, since only in TSsr(E′) after the transition
with the multiaction part of label {a} we do not reach the final state,
see Example 3.

• Let E = ({a}, 12 ) and E′ = (({a}, 12); ({â},
1
2 )) sy a. Then E =tssr E′,

since E =ts E′ as demonstrated in the last example from the proof
of Theorem 3, and the final states of both TSsr(E′) and TSsr(E′) are
reachable from the others with “normal” transitions (i.e., not with skip

only). On the other hand, E 6≃ E′.

The following theorem demonstrates that =tssr is a congruence of static
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expressions with respect to the operations of dtsPBC.

Theorem 5. Let a ∈ Act and E,E′, F,K ∈ RegStatExpr. If E =tssr E′

then

1. E ◦ F =tssr E′ ◦ F, F ◦E =tssr F ◦E′, ◦ ∈ {; , [], ‖};

2. E[f ] =tssr E′[f ];

3. E ◦ a =tssr E′ ◦ a, ◦ ∈ {rs, sy};

4. [E ∗ F ∗K] =tssr [E′ ∗ F ∗K], [F ∗ E ∗K] =tssr [F ∗ E′ ∗K],
[F ∗K ∗E] =tssr [F ∗K ∗ E′].

Proof. First, we have no problems with termination, hence, the composite
sr-transition systems built from the isomorphic ones can always execute the
same multisets of activities. Second, the probabilities of the corresponding
transitions of the composite systems coincide, since the probabilities are
calculated from identical values.

7. Conclusion

In this paper, in the framework of dtsPBC with iteration, we considered
a number of stochastic algebraic equivalences which have natural net ana-
logues on LDTSPNs. The equivalences abstract from empty loops in tran-
sition systems corresponding to dynamic expressions. Preservation of the
equivalences by algebraic operations was investigated. As a result, a con-
gruence relation was proposed based on the transition systems isomorphism.

In the future, we plan to demonstrate how the equivalence notions can
be applied to reduction of expressions and boxes. A logical characterization
of the equivalences via formulas of probabilistic modal logics is an impor-
tant problem as well. The next subject is to investigate which equivalence
relations preserve stationary behaviour. Further, we intend to outline the
performance evaluation technique within the algebra and present the corre-
sponding case studies.
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[6] Macià H.S., Valero V.R., Cazorla D.L., Cuartero F.G. Introducing the itera-
tion in sPBC. – Department of Computer Science, University of Castilla-La
Mancha, Albacete, Spain, September 2003. – 20 p. – (Technical Report; Vol.
DIAB-03-01-37). – http://www.info-ab.uclm.es/descargas/

tecnicalreports/DIAB-03-01-37/diab030137.zip
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