
Comparing dtsdPBC with other stochastic

process algebras

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences,

Acad. Lavrentiev pr. 6, 630090, Novosibirsk, Russian Federation
itar@iis.nsk.su

Abstract. Petri box calculus (PBC) is a well-known algebra of parallel
processes with a Petri net semantics. Discrete time stochastic and de-
terministic PBC (dtsdPBC) extends PBC with discrete time stochastic
and deterministic delays. dtsdPBC has a step operational semantics via
labeled probabilistic transition systems and a Petri net denotational se-
mantics via dtsd-boxes, a subclass of labeled discrete time stochastic and
deterministic Petri nets. To evaluate performance in dtsdPBC, the un-
derlying semi-Markov chains (SMCs) and (reduced) discrete time Markov
chains (DTMCs and RDTMCs) of the process expressions are analyzed.
We determine the main positive features of dtsdPBC by comparing it
with well-known or similar stochastic process algebras. We classify them
by the time model (continuous or discrete) and concept (integrated or
orthogonal), probability distribution of stochastic delays, deterministic
(including immediate) (multi)actions and semantic parallelism. The de-
tected strong points of dtsdPBC are discrete stochastic time, determinis-
tic multiactions and step semantics. We also discuss the analytical soluti-
on, concurrency interpretation, application area and general advantages
of dtsdPBC.

Keywords: stochastic process algebra, stochastic Petri net, Petri box
calculus, discrete time, stochastic delay, deterministic delay, transition
system, operational semantics, time aspect, probability distribution, de-
terminism, parallelism, comparison, classification.

1 Introduction

Process calculi, like CSP [171], ACP [20] and CCS [220] are well-known formal
models for specification of computing systems and analysis of their behaviour.
In such process algebras (PAs), formulas describe processes, and verification
of the functionality properties of their behaviour is accomplished at a syntactic
level via equivalences, axioms and inference rules. In order to represent stochastic
timing and analyze the performance properties, stochastic extensions of PAs were
proposed, like MTIPP [165], PEPA [166,168] and EMPA [26]. Such stochastic
process algebras (SPAs) specify actions which can occur (qualitative features)
and associate with the actions the distribution parameters of their random delays
(quantitative characteristics).

2 I.V. Tarasyuk

1.1 Petri box calculus (PBC)

Petri box calculus (PBC) [31,33,32,30] is a flexible and expressive process algebra
developed as a tool for specification of the Petri nets (PNs) structure and their
interrelations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elementary
PNs. Formulas of PBC are combined from multisets of elementary actions and
their conjugates, called multiactions (basic formulas). The empty multiset of
actions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transitions
with (multi)sets of activities, corresponding to simultaneous executions of acti-
vities (steps). A denotational semantics of PBC was proposed via a subclass of
PNs with an interface and considered up to isomorphism, called Petri boxes.
The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time exist.

1.2 Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [186]. In tPBC, timing information is
added by associating time intervals with instantaneous actions. tPBC has a step
time operational semantics in terms of labeled transition systems. Its denota-
tional semantics was defined in terms of a subclass of labeled time Petri nets
(LtPNs), based on tPNs [219] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC),
was defined in [208,209], it accommodates a deterministic model of time. In
contrast to tPBC, multiactions of TPBC are not instantaneous, but have time
durations. TPBC has a step timed operational semantics in terms of labeled
transition systems. The denotational semantics of TPBC was defined in terms
of a subclass of labeled Timed Petri nets (LTPNs), based on TPNs [257] and
called Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [229,230], and it implements a nondeterministic time. In
atPBC, multiactions are associated with time delay intervals. atPBC possesses
a step time operational semantics in terms of labeled transition systems. Its
denotational semantics was defined on a subclass of labeled arc time Petri nets
(atPNs), based of those from [41,154], where time restrictions are associated with
the arcs, called arc time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all
adapt the discrete time approach, but TPBC has no immediate (multi)actions
(those with zero delays).

1.3 Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was
proposed in [204,200,201]. In sPBC, multiactions have stochastic delays that
follow (negative) exponential distribution. Each multiaction is equipped with

Comparing dtsdPBC with other stochastic process algebras 3

a rate that is a parameter of the corresponding exponential distribution. The
(instantaneous) execution of a stochastic multiaction is possible only after the
corresponding stochastic time delay. The calculus has an interleaving opera-
tional semantics defined via transition systems labeled with multiactions and
their rates. Its denotational semantics was defined on a subclass of labeled con-
tinuous time stochastic PNs, based on CTSPNs [210,11] and called stochastic
Petri boxes (s-boxes).

sPBC was enriched with immediate multiactions having zero delay in
[202,203]. We call such an extension generalized sPBC (gsPBC). An interleaving
operational semantics of gsPBC was constructed via transition systems labeled
with stochastic or immediate multiactions together with their rates or probabi-
lities. A denotational semantics of gsPBC was defined via a subclass of labeled
generalized stochastic PNs, based on GSPNs [210,11,12] and called generalized
stochastic Petri boxes (gs-boxes).

In [264,265,266,268], we presented a discrete time stochastic extension dt-
sPBC of the algebra PBC. In dtsPBC, the residence time in the process states
is geometrically distributed. A step operational semantics of dtsPBC was con-
structed via labeled probabilistic transition systems. Its denotational semantics
was defined in terms of a subclass of labeled discrete time stochastic PNs (LDT-
SPNs), based on DTSPNs [224,226] and called discrete time stochastic Petri
boxes (dts-boxes).

In [273,274,275,276,277], a calculus dtsiPBC was proposed as an extension
with immediate multiactions of dtsPBC. Immediate multiactions increase the
specification capability: they can model logical conditions, probabilistic branch-
ing, instantaneous probabilistic choices and activities whose durations are neg-
ligible in comparison with those of others. They are also used to specify urgent
activities and the ones that are not relevant for performance evaluation. The step
operational semantics of dtsiPBC was constructed with the use of labeled prob-
abilistic transition systems. Its denotational semantics was defined in terms of
a subclass of labeled discrete time stochastic and immediate PNs (LDTSIPNs),
called dtsi-boxes.

In [269,270,271,272], we defined dtsdPBC, an extension of dtsiPBC with
deterministic multiactions. In dtsdPBC, besides the probabilities from the real-
valued interval (0; 1), applied to calculate discrete time delays of stochastic mul-
tiactions, also non-negative integers are used to specify fixed delays of determin-
istic multiactions (including zero delay, which is the case of immediate multi-
actions). To resolve conflicts among deterministic multiactions, they are addi-
tionally equipped with positive real-valued weights. As argued in [305,301,302],
a combination of deterministic and stochastic delays fits well to model techni-
cal systems with constant (fixed) durations of the regular non-random activities
and probabilistically distributed (stochastic) durations of the randomly occur-
ring activities. dtsdPBC has a step operational semantics, defined via labeled
probabilistic transition systems. The denotational semantics of dtsdPBC was de-
fined in terms of a subclass of labeled discrete time stochastic and deterministic
Petri nets (LDTSDPNs), called dtsd-boxes.

4 I.V. Tarasyuk

1.4 Our contributions

As a basis model, we take discrete time stochastic and deterministic Petri box
calculus (dtsdPBC), presented in [269,270,271,272], featuring a step operatio-
nal semantics. Here we do not consider the Petri net denotational semantics
of the calculus, since it was extensively described in [270]. In that paper, a
consistency of the operational and denotational semantics with respect to step
stochastic bisimulation equivalence was proved. Hence, all the results established
for the former can be readily transferred to the latter up to that equivalence. In
order to evaluate performance in dtsdPBC, the underlying semi-Markov chains
(SMCs) and (reduced) discrete time Markov chains (DTMCs and RDTMCs) of
the process expressions are analyzed [271].

In the present paper, the enhanced related work overview is done, where
strong points of dtsdPBC with respect to other SPAs are detected. In overall,
we compare dtsdPBC with more than 90 existing SPAs and then classify them
according to the time model and concept, parallelism in the (operational) seman-
tics, existence of immediate or positively deterministic (waiting) (multi)actions
and (distribution) types of the stochastic delays.

If to compare dtsdPBC with the classical SPAs MTIPP, PEPA and EMPA,
the first main difference between them comes from PBC, since dtsdPBC is based
on this calculus: all algebraic operations and a notion of multiaction are inher-
ited from PBC. The second main difference is discrete probabilities of activities
induced by the discrete time approach, whereas action rates are used in the
standard SPAs with continuous time. As a consequence, dtsdPBC has a non-in-
terleaving step operational semantics. This is in contrast to the classical SPAs,
where concurrency is modeled by interleaving because of the continuous proba-
bility distributions of action delays and the race condition applied when several
actions can be executed in a state. The third main difference is deterministic
(particularly, immediate) multiactions. There are no even instantaneous activi-
ties in MTIPP and PEPA while immediate actions in EMPA can have different
priority levels. In dtsdPBC, all immediate (zero deterministic) multiactions have
the same (highest) priority, and all waiting (positive deterministic) multiactions
have the same (medium) priority (by leaving the lowest priority to stochastic
multiactions). The intention is to simplify the specification and analysis, since
weights (assigned also to immediate actions in EMPA) are enough to denote
preferences among deterministic multiactions and to produce the conformable
probabilistic behaviours.

The salient point of dtsdPBC is a combination of deterministic multiacti-
ons, discrete stochastic time and step semantics in an SPA. In the extensive
discussion, analytical solution, concurrency interpretation, application area and
general advantages of dtsdPBC are explained.

Thus, the main contributions of the paper are as follows.

– Comparison of dtsdPBC with existing SPAs, according to the time aspects,
semantic parallelism and delay types.

– Discussion about the analytical solution, concurrency interpretation, appli-
cation area and advantages of dtsdPBC.

Comparing dtsdPBC with other stochastic process algebras 5

1.5 Structure of the paper

In Section 2, the syntax of algebra dtsdPBC is proposed. In Section 3, the
operational semantics of the calculus in terms of labeled probabilistic transition
systems is presented. The differences and similarities between dtsdPBC and
other well-known or similar SPAs are considered in Section 4. The advantages of
dtsdPBC are explained in Section 5. Section 6 summarizes the results obtained
and outlines future research.

2 Syntax

In this section, we define the syntax: activities, operations and expressions.

2.1 Activities and operations

Multiset allows identical elements in a set.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M :X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

The set of all finite multisets over a set X is N
X
fin. Let M,M ′ ∈ N

X
fin. The

cardinality of M is |M | =
∑

x∈X M(x). We write x ∈ M if M(x) > 0 and
M ⊆ M ′ if ∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) +M ′(x)
and (M − M ′)(x) = max{0,M(x) − M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M is
seen as a proper set M ⊆ X . The set of all subsets (powerset) of X is 2X .

Let Act={a, b, . . .} be the set of elementary actions. Then Âct={â, b̂, . . .} is

the set of conjugated actions (conjugates) with â 6=a and ˆ̂a=a. Let A=Act∪Âct
be the set of all actions, and L=N

A
fin be the set of all multiactions. Here ∅∈L

specifies an internal move, i.e. the execution of a multiaction without visible
actions. The alphabet of α ∈ L is A(α)={x ∈ A | α(x)>0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probability 1 is left for
(implicitly assigned to) waiting multiactions, i.e. positively delayed deterministic
multiactions (to be defined later), which have weights to resolve conflicts with
other waiting multiactions. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl), where α ∈ L, θ ∈ N is the
non-negative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive
real-valued weight of the multiaction α. This weight is interpreted as a measure
of importance (urgency, interest) or a bonus reward associated with execution
of the deterministic multiaction at the moment when the corresponding delay
has expired. Such weights are used to calculate the probabilities to execute sets
of deterministic multiactions after their delays. An immediate multiaction is a

6 I.V. Tarasyuk

deterministic multiaction with the delay 0 while a waiting multiaction is a deter-
ministic multiaction with a positive delay. In case of no conflicts among waiting
multiactions, whose remaining times to execute (RTEs) are equal to one time
unit, they are executed with probability 1 at the next moment. Deterministic
multiactions have a priority over stochastic ones while immediate multiactions
have a priority over waiting ones. Different types of multiactions cannot par-
ticipate together in some step (parallel execution). Let DL be the set of all
deterministic multiactions, IL be the set of all immediate multiactions and WL
be the set of all waiting multiactions. We have DL = IL ∪WL.

The same multiaction α ∈ L may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a determinis-
tic multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities.
The alphabet of an activity (α, κ) ∈ SDL is A(α, κ) = A(α). The alphabet of a
multiset of activities Υ ∈ N

SDL
fin is A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the operations
of sequence ;, choice [], parallelism ‖, relabeling [f] of actions, restriction rs over
a single action, synchronization sy on an action and its conjugate, and iteration
[∗ ∗] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other PAs, but parallelism (parallel composition) does not
include synchronization, unlike the corresponding operation in CCS.

Relabeling functions f : A → A are bijections preserving conjugates, i.e.

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions: for α ∈ L we de-
fine f(α) =

∑
x∈α f(x) =

∑
x∈A α(x)f(x). Relabeling is extended to activities:

for (α, κ) ∈ SDL we define f(α, κ) = (f(α), κ). Relabeling is extended to the
multisets of activities: for Υ ∈N

SDL
fin we define f(Υ)=

∑
(α,κ)∈Υ (f(α), κ).

Restriction over an elementary action a ∈ Act means that, for a given ex-
pression, any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈
Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α

and β by a is defined as (α⊕a β)(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization
by a of two activities, whose multiaction parts α and β possess the above pro-
perties, results in the activity with the multiaction part α ⊕a β. We may syn-
chronize activities of the same type only: either both stochastic multiactions
or both deterministic ones with the same delay, since stochastic, waiting and
immediate multiactions have different priorities, and diverse delays of waiting
multiactions would contradict their joint timing. Note that the execution of
immediate multiactions takes no time, unlike that of waiting or stochastic ones.
Synchronization by ameans that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists
also the behaviour that differs from the former only in that the two activities
are replaced by the result of their synchronization.

Comparing dtsdPBC with other stochastic process algebras 7

In the iteration, the initialization subprocess is executed first, then the body
is performed zero or more times, and finally, the termination is executed.

2.2 Process expressions

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations to construct the composite process-algebraic formulas. As
for the PN intuition, static expressions correspond to unmarked LDTSDPNs
[269,270]. A marking is the allocation of tokens in the places of a PN. Markings
are used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associa-
ted, whose value is the time left till the moment when the waiting multiaction
can be executed. Therefore, besides standard (unstamped) waiting multiacti-
ons (α, ♮θl) ∈ WL, a special case of the stamped waiting multiactions should
be considered in the definition of static expressions. Each (time) stamped wait-
ing multiaction (α, ♮θl)

δ has an extra superscript δ ∈ {1, . . . , θ} that specifies a
time stamp indicating the latest value of the timer associated with that multi-
action. The standard waiting multiactions have no time stamps, to demonstrate
irrelevance of the timer values for them (for example, their timers have not yet
started or have already finished). The notion of the alphabet part for (the mul-
tisets of) stamped waiting multiactions is defined like that for (the multisets of)
unstamped waiting multiactions.

For simplicity, we do not assign the timer value superscripts δ to immediate
multiactions, a special case of deterministic multiactions (α, ♮θl) with the delay
θ = 0 in the form of (α, ♮0l), since their timer values always equal to 0.

Definition 2. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical difficulties with the iteration operator, we should not allow

concurrency at the highest level of the second argument of iteration. This is not
a severe restriction, since we can always prefix parallel expressions by an activity
with the empty multiaction part.

Definition 3. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) |(α, ♮θl)
δ |E;E |E[]E |E‖E |E[f] |E rs a |E sy a | [E ∗D ∗ E],

where D ::= (α, κ) |(α, ♮θl)
δ |D;E |D[]D |D[f] |D rs a |D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression ⇃E of E is obtained by removing all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) =

{(α, ρ) | (α, ρ) is a subexpression of E}. The set of all immediate multiactions

8 I.V. Tarasyuk

(from the syntax) of E is IL(E) = {(α, ♮0l) | (α, ♮
0
l) is a subexpression of

E}. The set of all waiting multiactions (from the syntax) of E is WL(E) =
{(α, ♮θl) | (α, ♮θl) or (α, ♮

θ
l)

δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus,
the set of all deterministic multiactions (from the syntax) of E is DL(E) =
IL(E)∪WL(E) and the set of all activities (from the syntax) of E is SDL(E)=
SL(E) ∪ DL(E)=SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages
of the process behaviour. As for the Petri net intuition, dynamic expressions
correspond to marked LDTSDPNs [269,270]. Dynamic expressions are obtained
from static ones, by annotating them with upper or lower bars which specify the
active components of the system at the current moment of time. The dynamic
expression with upper bar (the overlined one) E denotes the initial, and that
with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl)
δ, the superscript

δ ∈ {1, . . . , θ} specifies the current value of the running countdown timer as-
sociated with the waiting multiaction. That decreasing discrete timer is started
with the initial value θ (the waiting multiaction delay) at the moment when
the waiting multiaction becomes overlined. Then such a newly overlined stam-

ped waiting multiaction (α, ♮θl)
θ is similar to the freshly overlined unstamped

waiting multiaction (α, ♮θl). Such similarity will be captured by the structural
equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process
execution, the timer decrements by one discrete time unit with each global time
tick until the timer value becomes 1. This means that one unit of time remains
till execution of that multiaction (the remaining time to execute, RTE, equals
one). Its execution should follow in the next moment with probability 1, in case
there are no conflicting with it immediate multiactions or conflicting waiting
multiactions whose RTEs equal to one, and it is not affected by restriction. An
activity is affected by restriction, if it is within the scope of a restriction opera-
tion with the argument action, such that it or its conjugate is contained in the
multiaction part of that activity.

Definition 4. Let E∈StatExpr, a∈Act. A dynamic expression of dtsdPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression

⌊G⌋ of G is obtained by removing from it all upper and lower bars.

Definition 5. A dynamic expression G is regular if ⌊G⌋ is regular.

RegDynExpr denotes the set of all regular dynamic expressions of dtsdPBC.

Comparing dtsdPBC with other stochastic process algebras 9

Let G be a regular dynamic expression. The underlying timer-free regular
dynamic expression ⇃G of G is got by removing all timer value superscripts.

The set of all stochastic (immediate or waiting, respectively) multiactions
(from the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or
WL(G) = WL(⌊G⌋), respectively). Thus, the set of all deterministic multiac-
tions (from the syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all
activities (from the syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪
IL(G) ∪WL(G).

3 Operational semantics

In this section, we define the operational semantics via transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transfor-
mations in the form of G ⇒ G̃ which do not change the states of the specified
processes. The goal of those syntactic transformations is to obtain the well-
structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic ex-
pression does not lead to any discrete time tick or any transition firing in the
corresponding LDTSDPN [269,270], hence, its current marking stays unchanged.

An application of every inaction rule does not require a delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being
overlined and underlined static ones, where (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ},
E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule suggests that the
timer value of each newly overlined waiting multiaction is set to its delay.

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, ♮θl) ⇒ (α, ♮θl)
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f] ⇒ E[f] E[f] ⇒ E[f]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in
the arbitrary form, where E,F ∈RegStatExpr, G,H, G̃, H̃∈RegDynExpr and

10 I.V. Tarasyuk

a ∈ Act. For brevity, two distinct inaction rules with the same premises are
sometimes collated, resulting in the inaction rules with double conclusion.

Table 2. Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f] ⇒ G̃[f]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G ⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 6. A regular dynamic expression G is operative if no inaction rule
can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expres-
sions of dtsdPBC. Any dynamic expression can be always transformed into a
(not necessarily unique) operative one by using the inaction rules.

We shall consider regular expressions only and omit the word “regular”.

Definition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dy-
namic expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are
structurally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in a forward or a backward direction.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ)
is a subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s)={(α, ♮0l)∈IL|∃H∈s∩OpRegDynExpr (α, ♮0l) is a subexpression
of H}. The set of all enabled waiting multiactions of s is EnaWait(s)={(α, ♮θl)∈

WL|∃H ∈s∩OpRegDynExpr (α, ♮θl)
δ, δ∈{1, . . . , θ}, is a subexpression of H}.

The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =

{(α, ♮θl) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl)
θ is a subexpression of H}.

The set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s)∪EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪ EnaWait(s). Then

Comparing dtsdPBC with other stochastic process algebras 11

Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions en-
abled at the initial marking of the LDTSDPN [269,270] corresponding to G.
The activities, resulted from synchronization, are not present in the syntax of
the dynamic expressions. Their enabledness status can be recovered by observ-
ing that of the pair of synchronized activities from the syntax (they both should
be enabled for enabling their synchronous product), even if they are affected by
restriction after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the values
of timers), if each enabled waiting multiaction of [G]≈, being superscribed with
the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic
expressions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be always transformed
into the saturated one by a forward or a backward applying the inaction rules.

Proof. See [269,270]. ⊓⊔

Thus, any dynamic expression can be transformed into a (not always unique)
saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	G denotes the
timer decrement operator 	, applied to G. The result is a saturated operative
dynamic expression, obtained from G via decrementing by one all greater than
1 values of the timers associated with all (if any) stamped waiting multiacti-
ons from the syntax of G. Each such stamped waiting multiaction changes its
timer value from δ ∈ N≥1 in G to max{1, δ − 1} in 	G. The timer decrement
operator affects the (possibly overlined or underlined) stamped waiting multiac-
tions being the subexpressions of G as: (α, ♮θl)

δ is replaced with (α, ♮θl)
max{1,δ−1},

and similarly for the overlined or underlined ones.
Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the

timer value δ = 1 may remain unchanged for a stamped waiting multiaction that
is not executed by some reason at the next time moment, but stays stamped.
For example, that stamped waiting multiaction may be affected by restriction. If
the timer values cannot be decremented with a time tick for all stamped waiting
multiactions (if any) from G then 	G = G and we obtain so-called empty loop
transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions,
since it may only decrease their timer values, and the stamped waiting multiac-
tions stay stamped (with their timer values, possibly decremented by one).

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these rules
we capture the prioritization among different types of multiactions. We also
have the empty move rule, used to capture a delay of one discrete time unit

12 I.V. Tarasyuk

when no immediate or waiting multiactions are executable. In this case, the
empty multiset of activities is executed. The action and empty move rules will
be used later to determine all multisets of activities which can be executed from
the structural equivalence class of every dynamic expression (i.e. from the state
of the corresponding process). This information together with that about pro-
babilities or delays and weights of the activities to be executed from the current
process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiac-

tions describe dynamic expression transformations in the form of G
Γ
→ G̃ (G

I
→ G̃

or G
W
→ G̃, respectively) due to execution of non-empty multisets Γ of stochastic

(I of immediate or W of waiting, respectively) multiactions. The rules represent
possible state changes of the specified processes when some non-empty multisets
of stochastic (immediate or waiting, respectively) multiactions are executed. The
application of an action rule with stochastic (immediate or waiting, respectively)
multiactions to a dynamic expression leads in the corresponding LDTSDPN
[269,270] to a discrete time tick at which some stochastic or waiting transitions
fire (or to the instantaneous firing of some immediate transitions) and possible
change of the current marking. The current marking stays unchanged only if
there is a self-loop produced by the iterative execution of a non-empty multiset,
which must be one-element, since we allow no concurrency at the highest level
of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting mul-
tiactions can be executed from the current state) describes dynamic expression

transformations in the form of G
∅
→	G, called the empty moves, due to execu-

tion of the empty multiset of activities at a discrete time tick. When no timer
values are decremented within G with the empty multiset execution at the next
moment (for example, if G contains no stamped waiting multiactions), we have

	G = G. In such a case, the empty move from G is in the form of G
∅
→ G, called

the empty loop. The application of the empty move rule to a dynamic expression
leads to a discrete time tick in the corresponding LDTSDPN [269,270] at which
no transitions fire and the current marking is not changed, but the timer values
of the waiting transitions enabled at the marking (if any) are decremented by
one. This is a new rule that has no prototype among inaction rules of PBC, since
it represents a time delay.

Thus, an application of every action rule with stochastic or waiting mul-
tiactions or the empty move rule requires one discrete time unit delay, i.e. the
execution of a (possibly empty) multiset of stochastic or (non-empty) multiset of
waiting multiactions leading to the dynamic expression transformation described
by the rule is accomplished instantly after one time unit. An application of every
action rule with immediate multiactions does not take any time, i.e. the executi-
on of a (non-empty) multiset of immediate multiactions is accomplished instantly
at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid tech-
nical difficulties, such as calculation of the probabilities for multiple transitions,

Comparing dtsdPBC with other stochastic process algebras 13

we can enumerate coinciding activities from left to right in the syntax of ex-
pressions. The new activities, resulted from synchronization, will be annotated
with concatenation of numberings of the activities they come from, hence, the
numbering should have a tree structure to reflect the effect of multiple synchro-
nizations. We now define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders sho-

uld be considered up to permutation of their numbering. In this way, we shall
recognize different instances of the same activity. If we compare the contents of
different numberings, i.e. the sets of natural numbers in them, we shall identify
the mentioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become
proper sets. We suppose that the identical activities are enumerated when needed
to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G ∈ OpRegDynExpr. We define Can(G), the set of all
non-empty multisets of activities which can be potentially executed from G. Let
(α, κ)∈SDL, E, F ∈RegStatExpr, H∈OpRegDynExpr and a∈Act.

1. If final(G) then Can(G) = ∅.

2. If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2,. . ., θ}, then Can(G)=∅.

3. If G=(α, κ) and κ∈(0; 1) or κ=♮0l , l∈R>0, then Can(G)={{(α, κ)}}.

4. If G=(α, κ)1 and κ=♮θl , θ∈N≥1, l∈R>0, then Can(G)={{(α, κ)}}.
5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ∈Can(G‖H), Υ∈Can(H‖G), f(Υ)∈Can(G[f]), Υ∈Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).
7. If Υ∈Can(G sy a) and (α, κ), (β, λ)∈Υ are different, a∈α, â∈β, then

(a) Υ−{(α, κ), (β, λ)}+{(α⊕a β, κ · λ)}∈Can(G sy a) if κ, λ∈(0; 1);
(b) Υ − {(α, κ), (β, λ)} + {(α⊕a β, ♮

θ
l+m)} ∈ Can(G sy a) if κ = ♮θl ,

λ = ♮θm, θ ∈ N, l,m ∈ R>0.

When we synchronize a multiset of activities in different orders, we get sev-
eral activities with the same multiaction and probability or delay and weight
parts, but different numberings with the same content. Then we only consider
a single resulting activity.

If Υ∈Can(G) then by definition of Can(G), ∀Ξ⊆Υ, Ξ 6=∅, we get Ξ∈Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only

stochastic (immediate or waiting, respectively) multiactions in the multisets

14 I.V. Tarasyuk

from Can(G) then these stochastic (immediate or waiting, respectively) mul-
tiactions can be executed from G. Otherwise, besides stochastic ones, there are
also deterministic (immediate and/or waiting) multiactions in the multisets from
Can(G). By the note above, there are non-empty multisets of deterministic mul-
tiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ N

DL
fin \ {∅}. In this case, no

stochastic multiactions can be executed from G, even if Can(G) contains non-
empty multisets of stochastic multiactions, since deterministic multiactions have
a priority over stochastic ones, and should be executed first. Further, if there
are no stochastic, but both waiting and immediate multiactions in the multisets
from Can(G), then, analogously, no waiting multiactions can be executed from
G, since immediate multiactions have a priority over waiting ones (besides that
over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the
multisets from Can(G) then only waiting ones can be executed from G. Then
just maximal non-empty multisets of waiting multiactions can be executed from
G, since all non-conflicting waiting multiactions cannot wait and they should
occur at the next time moment with probability 1.

Definition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets
of activities which can be executed from G is

Now(G)=

Can(G) ∩ N
IL
fin, Can(G) ∩ N

IL
fin 6= ∅;

{W ∈Can(G)∩NWL
fin | (Can(G)∩NIL

fin=∅)∧
∀V ∈Can(G)∩NWL

fin W ⊆V ⇒V =W}, (Can(G)∩NWL
fin 6=∅);

Can(G), otherwise.

Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tan-
gible), denoted by stang(G), if Now(G) ⊆ N

SL
fin \ {∅}. In particular, we have

stang(G), if Now(G) = ∅. The expression G is w-tangible (waitingly tangible),
denoted by wtang(G), if ∅ 6= Now(G) ⊆ N

WL
fin \{∅}. The expression G is tangible,

denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin∪N

WL
fin)\{∅}.

Again, we particularly have tang(G), if Now(G) = ∅. Otherwise, the expression
G is vanishing, denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ N

IL
fin\{∅}.

Note that the operative dynamic expressions from [G]≈ may have different types.
Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩

OpRegDynExpr stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩
OpRegDynExpr wtang(H) and ∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We
write tang([G]≈), if stang([G]≈) or wtang([G]≈). Otherwise, we write
vanish([G]≈), and in this case ∃H ∈ [G]≈ ∩OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules, where (α, ρ), (β, χ)∈
SL, (α, ♮0l), (β, ♮

0
m) ∈ IL, (α, ♮θl), (β, ♮

θ
m) ∈ WL, E, F ∈ RegStatExpr,

G,H ∈ SatOpRegDynExpr, G̃, H̃ ∈ RegDynExpr, a ∈ Act, Γ,∆ ∈ N
SL
fin \

{∅}, Γ ′ ∈ N
SL
fin, I, J ∈ N

IL
fin \ {∅}, I ′ ∈ N

IL
fin, V,W ∈ N

WL
fin \ {∅}, V ′ ∈ N

WL
fin

and Υ ∈ N
SDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈ α) ∨ (â ∈ α)}.

We use the following abbreviations in the names of the rules: “E” for “Empty
move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for

Comparing dtsdPBC with other stochastic process algebras 15

“Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule
E. The other rules are the action rules, describing transformations of dynamic
expressions, which are built using particular algebraic operations. If we cannot
merge the rules with stochastic, immediate ans waiting multiactions in one rule
for some operation then we get the coupled action rules. In such cases, the names
of the action rules with stochastic multiactions have a suffix ‘s’, those with
immediate multiactions have a suffix ‘i’, and those with waiting multiactions
have a suffix ‘w’. For explanation of the rules in Table 3, see [269,270].

Table 3. Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l)

{(α,♮0
l
)}

−→ (α, ♮0l) Bw (α, ♮θl)
1

{(α,♮θ
l
)}

−→ (α, ♮θl)

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f]
f(Υ)
−→ G̃[f]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F]≈))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F]≈))

[E ∗G ∗ F]
V
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0
l
)}+{(β,♮0

m
)}

−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θ
l
)}+{(β,♮θ

m
)}

−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a

16 I.V. Tarasyuk

Notice that the timers of all waiting multiactions that lose their enabled-
ness when a state change occurs become inactive (turned off) and their values
become irrelevant while the timers of all those preserving their enabledness con-
tinue running with their stored values. Hence, we adapt the enabling memory
policy [211,1,11,12] when the process states are changed and the enabledness of
deterministic multiactions is possibly modified (immediate multiactions may be
seen as those with the timers displaying a single value 0, so we do not need to
store their values). Then the timer values of waiting multiactions are taken as
the enabling memory variables.

Like in [186], we are interested in the dynamic expressions, inferred by ap-
plying the inaction rules (also in the reverse direction) and action rules from
the overlined static expressions, such that no stamped (superscribed with the
timer values) waiting multiaction is a subexpression of them. The reason is
to ensure that time proceeds uniformly and only enabled waiting multiactions
are stamped. We call such dynamic expressions reachable, by analogy with the
reachable states of LDTSDPNs [269,270].

Definition 12. A dynamic expression G is reachable, if there exists a static

expression E without timer value superscripts, such that E ≈ G or E ≈ G0
Υ1→

H1 ≈ G1
Υ2→ . . .

Υn→ Hn ≈ G for some Υ1, . . . , Υn ∈ N
SDL
fin .

We now consider the enabledness of the stamped waiting multiactions.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]≈) are stamped in G.

Proof. See [269,270]. ⊓⊔

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dy-
namic expressions. The transition systems are used to define the operational
semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of

activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

Here H
Υ
→ H̃ is an inference by the rules from Table 3. It can be proved by

induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈
s Υ ∈ Now(H). The reverse statement does not hold, since the preconditions in
the action rules disable executions of the activities with the lower-priority types
from every H ∈ s, see [269,270].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ N

SL
fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,

hence, we may haveExec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ N

WL
fin \ {∅}. The state s is tangible, denoted

by tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ N
SL
fin ∪ N

WL
fin . Again, for a

tangible state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the
state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ N

IL
fin\{∅}.

Comparing dtsdPBC with other stochastic process algebras 17

Definition 13. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

– [G]≈ ∈ DR(G);

– if [H]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the
set of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all
tangible states from DR(G) is denoted by DRT (G) = DRST (G) ∪ DRWT (G).
The set of all vanishing states from DR(G) is denoted by DRV (G). Then
DR(G) = DRT (G) ∪DRV (G) = DRST (G) ∪DRWT (G) ∪DRV (G).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiac-

tions Υ is ready for execution in s or the weight of the multiset of deterministic
multiactions Υ which is ready for execution in s is

PF (Υ, s)=

∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}

(1− χ), s∈DRST (G);

∑

(α,♮θ
l
)∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =

∏

{(β,χ)}∈Exec(s)

(1 − χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

Let Υ ∈ Exec(s). Besides Υ , other multisets of activities may be ready for
execution in s, hence, a normalization is needed to calculate the execution prob-
ability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ |∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Definition 14. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);
– the set of labels is LG = N

SDL
fin × (0; 1];

– the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G),

∃H ∈ s ∃H̃ ∈ s̃ H
Υ
→ H̃};

– the initial state is sG = [G]≈.

18 I.V. Tarasyuk

The transition system TS(G) associated with a dynamic expression G des-
cribes all the steps (parallel executions) that occur at discrete time moments
with some (one-step) probability and consist of multisets of activities. Every
step consisting of stochastic (waiting, respectively) multiactions or the empty
step (consisting of the empty multiset of activities) occurs instantly after one
discrete time unit delay. Each step consisting of immediate multiactions occurs
instantly without any delay. The step can change the current state to a different
one. The states are the structural equivalence classes of dynamic expressions ob-
tained by application of action rules starting from the expressions belonging to

[G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as s
Υ
→P s̃. It is interpreted

as: the probability to change from state s to s̃ as a result of executing Υ is P .
From every s-tangible state the empty multiset of activities can always be

executed by rule E. Hence, for s-tangible states, Υ may be the empty multi-
set, and its execution only decrements by one the timer values (if any) of the

current state. Then we have a transition s
∅
→P	 s from an s-tangible state s

to the tangible state 	 s = [H]≈ for H ∈ s ∩ SatOpRegDynExpr. Since
structurally equivalent saturated operative dynamic expressions remain so after
decreasing by one their timers, 	 s is unique for each s and the definition is
correct. Thus, 	s corresponds to applying the empty move rule to an arbitrary
saturated operative dynamic expression from s, followed by taking the structural
equivalence class of the result. We have to keep track of such executions, called
the empty moves, since they affect the timers and have non-zero probabilities.
This follows from the definition of PF (∅, s) and the fact that the probabilities
of stochastic multiactions belong to the interval (0; 1). When it holds 	H = H

for H ∈ s∩SatOpRegDynExpr, we obtain 	s = s. Then the empty move from

s is in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing

states Υ cannot be the empty multiset, since we must execute some immediate
(waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 when the only

transition from an s-tangible state s is the empty move one s
∅
→1	s, or if there

is a single transition from a w-tangible or a vanishing state. We write s
Υ
→ s̃ if

∃P s
Υ
→P s̃ and s → s̃ if ∃Υ s

Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 15. Let for dynamic expressions G,G′, TS(G)=(SG, LG, TG, sG),
TS(G′) = (SG′ , LG′, TG′ , sG′). A mapping β : SG → SG′ is an isomorphism
between TS(G) and TS(G′), denoted by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by
TS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Definition 16. Two dynamic expressions G and G′ are equivalent with respect
to transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Comparing dtsdPBC with other stochastic process algebras 19

4 Comparative study

In this section, we consider in detail differences and similarities between dtsdPBC
and other well-known or similar SPAs for the purpose of subsequent determining
the specific advantages of dtsdPBC.

4.1 Continuous time and interleaving semantics

Let us compare dtsdPBC with classical SPAs: Markovian TImed Processes and
Performability (Performance and dependability) evaluation (MTIPP) [165], Per-
formance Evaluation Process Algebra (PEPA) [166,168] and Extended Marko-
vian Process Algebra (EMPA) [26].

In MTIPP, every activity is a pair consisting of the action name (including
the symbol τ for the internal, invisible action) and the parameter of exponenti-
al distribution of the action delay (the rate). The operations are prefix, choice,
parallel composition including synchronization on the specified action set and
recursion. It is possible to specify processes by recursive equations. The inter-
leaving semantics is defined on the basis of Markovian (i.e. extended with the
specification of rates) labeled transition systems. Note that we have the inter-
leaving behaviour here because the exponential PDF is a continuous one, and
a simultaneous execution of any two activities has zero probability according
to the properties of continuous distributions. CTMCs can be derived from the
mentioned transition systems to analyze performance.

In PEPA, activities are the pairs consisting of action types (including the un-
known, unimportant type τ) and activity rates. The rate is either the parameter
of exponential distribution of the activity duration or it is unspecified, denoted
by ⊤. An activity with unspecified rate is passive by its action type. The set
of operations includes prefix, choice, cooperation, hiding and constants whose
meaning is given by the defining equations including the recursive ones. The
cooperation is accomplished on the set of action types (the cooperation set)
on which the components must synchronize or cooperate. If the cooperation
set is empty, the cooperation operator turns into the parallel combinator. The
semantics is interleaving, it is defined via the extension of labeled transition
systems with a possibility to specify activity rates. Based on the transition sys-
tems, the continuous time Markov processes (CTMPs) are generated which are
used for performance evaluation with the help of the embedded continuous time
Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can be
external or internal (denoted by τ) according to types. There are three kinds of
actions according to rates: timed ones with exponentially distributed durations
(essentially, the actions from MTIPP and PEPA), immediate ones with prior-
ities and weights (the actions analogous to immediate transitions of GSPNs)
and passive ones (similar to passive actions of PEPA). Timed actions specify
activities that are relevant for performance analysis. Immediate actions model
logical events and the activities that are irrelevant from the performance view-
point or much faster than others. Passive actions model activities waiting for

20 I.V. Tarasyuk

the synchronization with timed or immediate ones, and express nondeterminis-
tic choice. The set of operators consist of prefix, functional abstraction, functional
relabeling, alternative composition and parallel composition ones. Parallel com-
position includes synchronization on the set of action types like in TCSP [171].
The syntax also includes recursive definitions given by means of constants. The
semantics is interleaving and based on the labeled transition systems enriched
with the information about action rates. For the exponentially timed kernel of
the algebra (the sublanguage including only exponentially timed and passive
actions), it is possible to construct CTMCs from the transition systems of the
process terms to analyze performance.

In dtsdPBC, every activity is a pair consisting of the multiaction (not just
an action, as in the classical SPAs) as a first element. The second element is
either the probability (not the rate, as in the classical SPAs) to execute the
multiaction independently (the activity is called a stochastic multiaction in this
case) or a combined specification of the (fixed) delay and weight expressing how
important is the execution of this multiaction (the activity is called a determin-
istic multiaction in this case). Immediate (zero delay deterministic) multiactions
in dtsdPBC are similar to immediate actions in EMPA, but all the immediate
multiactions in dtsdPBC have the same (implicit) priority 2. The purpose is to
execute them always before waiting (positive delay deterministic) multiactions
with the same (implicit) priority 1, and stochastic multiactions with the same
(implicit) priority 0. The immediate actions in EMPA can have different priority
levels. Associating the same priority with all immediate (or waiting) multiac-
tions in dtsdPBC results in the simplified specification and analysis, and such a
decision is also appropriate to the calculus. The reason is that, as mentioned in
[157], weights (assigned also to immediate actions in EMPA) are enough to de-
note preferences among immediate multiactions (designating their advantages or
prescribing sub-priorities to them) and to produce the conformable probabilistic
behaviours when one has to make a choice among several immediate multiac-
tions executable in some state. There are no deterministic actions in MTIPP
and PEPA. Immediate actions are only available in immediate PEPA (iPEPA)
[160], where they are analogous to immediate multiactions in dtsdPBC, and in
a variant of TIPP [144] discussed while constructing the calculus Probabilistic
Markovian TIPP (PM-TIPP) in [259,260], but there immediate activities are
used just to specify probabilistic branching and they cannot be synchronized.

dtsdPBC has the sequence operation, in contrast to the prefix one in the
classical SPAs. One can combine arbitrary expressions with the sequence oper-
ator, i.e. it is more flexible than the prefix one, where the first argument should
be a single activity. The choice operation in dtsdPBC is analogous to that in
MTIPP and PEPA, as well as to the alternative composition in EMPA, in the
sense that the choice is probabilistic, but a discrete probability function is used
in dtsdPBC, unlike continuous ones in the classical calculi. Concurrency and
synchronization in dtsdPBC are different operations (this feature is inherited
from PBC), unlike the situation in the classical SPAs where parallel composi-
tion (combinator) has a synchronization capability. Relabeling in dtsdPBC is

Comparing dtsdPBC with other stochastic process algebras 21

analogous to that in EMPA, but it is additionally extended to conjugated ac-
tions. The restriction operation in dtsdPBC differs from hiding in PEPA and
functional abstraction in EMPA, where the hidden actions are labeled with a
symbol of “silent” action τ . In dtsdPBC, restriction by an action means that,
for a given expression, any process behaviour containing the action or its con-
jugate is not allowed. The synchronization on an elementary action in dtsdPBC
collects all the pairs consisting of this elementary action and its conjugate which
are contained in the multiactions from the synchronized activities. The operation
produces new activities such that the first element of every resulting activity is
the union of the multiactions from which all the mentioned pairs of conjugated
actions are removed. The second element is either the product of the probabil-
ities of the synchronized stochastic multiactions or a specification of the joint
delay and the sum of the weights of the synchronized deterministic multiactions
with the same delay. This differs from the way synchronization is applied in the
classical SPAs where it is accomplished over identical action names, and every
resulting activity consists of the same action name and the rate calculated via
some expression (including sums, minimums and products) on the rates of the
initial activities, such as the apparent rate in PEPA. dtsdPBC has no recursi-
on or recursive definitions, but it has the iteration operation to specify infinite
looping behaviour with the explicitly defined start and termination.

dtsdPBC has a discrete time semantics, and residence time in the tangible
states is geometrically distributed, unlike the classical SPAs with continuous
time semantics and exponentially distributed activity delays. As a consequence,
the semantics of dtsdPBC is the step one, in contrast to the interleaving seman-
tics of the classical SPAs. The performance is investigated via the underlying
SMCs and (reduced) DTMCs extracted from the labeled probabilistic transition
systems associated with expressions of dtsdPBC. In the classical SPAs, CTMCs
are usually used for performance evaluation. In [141], a denotational semantics
of PEPA has been proposed via PEPA nets that are high-level CTSPNs with
coloured tokens (coloured CTSPNs), from which the underlying CTMCs can be
retrieved. In [25,21], a denotational semantics of EMPA based on GSPNs has
been defined, from which one can also extract the underlying SMCs and CTMCs
(when both immediate and timed transitions are present) or DTMCs (but when
there are only immediate transitions). dtsdPBC has a denotational semantics in
terms of LDTSIPNs from which the underlying SMCs and (reduced) DTMCs
can be derived.

Consider other SPAs with continuous time and interleaving semantics. Such
SPAs without immediate (and without positive deterministic) actions belong
to the (general) classification group of MTIPP and PEPA. Such SPAs with
immediate (and without positive deterministic) actions are (generally) classified
as belonging to the group of EMPA.

Continuous time interleaving SPAs without immediate actions.
Stochastic Process Algebra (PAS) and Generalized Stochastic Process Al-

gebra (PAGS) [182] extend LOTOS [41,40] with exponential and generally dis-
tributed continuous delays, respectively. PAS has operations of inaction, pre-

22 I.V. Tarasyuk

fix with (both) the rate (of an exponential delay) and action, choice, paral-
lel composition (with synchronization by a set of actions), relabeling (with a
function) and hiding (of a set of actions). In PAGS , rate and action prefix is
replaced with PDF (of the general delay) and action prefix. The remaining op-
erations of PAS are supplemented in PAGS by successful termination, enabling
and disrupt. PAS and PAGS have the operational semantics on labeled tran-
sition systems and denotational semantics on stochastic event structures. Im-
mediate actions can be easily added to the two SPAs. Continuous phase type
[228,263,174,283,190,176,172] delays can be defined in PAGS.

PEPA with phase type distributions (PEPA∞
ph) [120] extends PEPA to spe-

cify and analyze particular queues types with potentially infinite number of
clients. The activities (with visible actions or internal one) of the PEPA∞

ph com-
ponents have phase type distributed durations. The PEPA∞

ph operators are:
(action and duration or passive symbol) prefix, action choice, probabilistic choi-
ce, synchronization (by the actions set), hiding (of the actions set) and constant
(for recursive definition). The operational semantics of the PEPA∞

ph compo-
nents is defined on labeled transition systems (multi-graphs). The stationary
probabilities for the processes of a PEPA∞

ph fragment are calculated with the
matrix-geometric method, to overcome the state explosion problem.

Generalized (General) Process Algebra (GPA) [69] implements generalized
cost operations from the semi-ring structures. GPA demonstrates a novel ap-
proach to process algebras (PAs) with measurable transitions that permits to
construct different classes of PAs, such as untimed, probabilistic and stochas-
tic ones. The mathematical structure that generally represents the transition
costs operations in such PAs is a semi-ring. The GPA actions can be visible
or invisible. The GPA operations are: terminal agent, (action and cost) prefix,
choice, parallel composition (with synchronization by a set of actions), hiding
(of a set of actions) and (recursive) definition. Operational semantics of GPA is
based on multi-labeled transition systems, where each transition is labeled by
(possibly invisible) action and cost (of the transition execution).

Markov Chains (MC) and Markov Action-labeled Chains (MAC) [162] are
the SPAs constructed on the basis of CTMCs. In MC, the processes describe
(unlabeled) CTMCs as compositions of the transition rates by the operations of
(finite) sum of the prefixed (with the rates) processes, recursion (over variables)
and (simple) parallel composition. In MAC (also called pure Markovian pro-
cess algebra), the processes describe labeled (with visible and invisible actions)
CTMCs as compositions of the pairs of actions and the transition rates by the
operations of (finite) sum of the prefixed (with such pairs) processes, parallel
composition (with synchronization by a set of actions), renaming and recursion
(over variables).

Stochastic Probes (SP) [9] specify over SPAs the performance requirements
to software systems (beginning and end of a measurement by the model devel-
oper). The types of measures are: steady-state, transient and passage-time. The
SP specifications are based on the regular expressions syntax describing the be-
haviour that a software model must demonstrate before starting or stopping the

Comparing dtsdPBC with other stochastic process algebras 23

performance measurement. Stochastic probes are themselves transformed into
SPA components before a software model is explored with the process composi-
tion. SP has operators of sequence, choice, zero-or-one, iteration, range, positive
closure and (standard) closure.

BioNetGen [37,121,122] is a rule-based language allowing one to construct a
computational model of dynamics for the biochemical process of cellular signal
transduction. The language can respect completely and exactly the specified
enzymatic activities, potential modifications and interactions in signalling mole-
cules. Binding and enzymatic biomolecular reactions are described by the rate-
assigned reaction rules for transforming reactants into products. BioNetGen pro-
vides a graphical representation for the signal transduction networks in biology.

Grouped PEPA (GPEPA) [169,159,148,124] stems from the PEPA perfor-
mance analysis technique for the large-scaled systems with many replicated com-
ponents. The technique is based on the ODE systems, instead of the traditional
CTMCs. GPEPA is a PEPA conservative extension, to which the fluid-flow ana-
lysis method is applied for approximating the mean number of the component
types. The method takes as continuous the discrete state space of a process and
transforms the discrete model into a coupled ODE system. The GPEPA operati-
ons over component groups (purely concurrent groups of standard PEPA compo-
nents) are cooperation (over a set of synchronized actions), hiding and labeling.
Operational semantics of GPEPA is used to construct population CTMCs, being
the aggregated CTMCs whose states represent the sets of population members.

Stochastic Kernel language for agents interaction and mobility (StoKlaim)
[233,232,235] extends programming and modeling language Klaim [231,34] by
adding exponential action delays to describe random phenomena. The StoKlaim
operations are: null process, prefixing (by action and its rate), choice, paral-
lel composition and process instantiation. StoKlaim has operational semantics
based on the rate (that extend the labeled) transition systems and transition-
labeled CTMCs. The underlying stochastic process of StoKlaim is CTMC, for
which the transient or stationary probabilities are calculated.

Stochastic Pi-Machine (SPiM) [243,246,244,241,295,236] is a graphical calcu-
lus for Sπ [249,250,251,243,191,29], aiming to specify biological processes. SPiM
is reduction equivalent to Sπ, hence, they have the same expressive power. Such
a graphical representation permits to detect cycles and to animate interactions
of the system components for the dynamics visualization, as well as to serve
as simulator of Sπ for visual modeling and simulation of biological systems by
non-specialists. SPiM is a syntactic subset of Sπ, where choice of actions is al-
lowed only on the highest level of definitions. Stochastic behaviour is embedded
into the system by assigning channels with interaction rates and delays with
extinction rates, both being the parameters of exponential distribution.

κ-calculus (κ) [102,103,104,191,187] is a formal proteins language, whose bio-
logical interaction rules on the set of agents have rates. The rules prevent combi-
natory explosion when describing the dynamics with ODEs, have intuitive graph-
ical representation based on biological knowledge, and become a natural part of
building, changing and discussing the model. κ specifies well biological signal and

24 I.V. Tarasyuk

control processes, being massively distributed systems. It formalizes directly and
transparently molecular agents and their interactions in signalling networks.

Stochastic BioAmbients (SBioA) [63,242,191,29] provides calculus of Biologi-
cal Ambients BioAmbients (BioA) [258,217,150,191,29] with a stochastic opera-
tional semantics to respect quantitative information. BioAmbients was intended
to specify, simulate and analyze biological entities. The SBioA semantics is based
on the stochastic simulation algorithm that calculates the real rates (parameters
of exponential distribution governing the delays) of transitions. The semantics
represents an influence of chemical and physical parameters (such as molecules
concentration) to dynamics of living matter and constructs stochastic transition
systems, from which CTMCs are extracted. The stationary probability distribu-
tions of those CTMCs are calculated, aiming to explore behaviour of biological
systems in their steady state with the reward techniques for computing perfor-
mance measures.

Markovian Process Calculus (MPC) [22] describes simple Markov (with sto-
chastic delays governed by exponential distribution) processes, constructed with
the operators of null term, Markovian action prefix (with an exponentially ti-
med action, a pair of the action name and the rate of its exponential delay),
alternative composition and process constant (specified by the equation with a
recursion possibility, i.e. by potentially recursive specification). The operational
semantics of MPC is defined on labeled (multi)transition systems.

PEPA + Π [135] extends PEPA, aiming to model biological systems, by
applying mass action law and bounded capacity law cooperations. In PEPA+Π ,
cooperation operator of PEPA is supplemented by the cooperation set with
mass action kinetics (in addition to the standard one with bounded capacity
kinetics). A special notation is also proposed for parallel composition of large
numbers of independent (non-cooperating) identical processes. The relationship
is established between two semantics of PEPA + Π : that in terms of CTMCs
(with large state space) and that on coupled ODE systems (to handle massive
quantities of processes).

Stochastic Bigraphs (SBG) [188] calculus offers a stochastic semantics for Bi-
graphical Reactive Systems (BRSs), a unifying framework for designing models
of concurrent and mobile systems. Such reactive systems are described by rewrit-
ing rules with an initial bigraph, to which the rules are applied. Bigraphs are the
algebraic terms, represented by special graphs that represent communication of
agents and their spatial configuration, so that some nodes can contain others.
SBG provides BRSs with a uniform stochastic interpretation, where abstract
rules of biomolecular reactions have positive rates assigned, used to calculate
reaction rates. Stochastic transition systems, obtained from the SBG semantics,
are taken to derive CTMCs that are analyzed with simulation.

Stochastic Păun- (P-) Systems (SPS) [237] is a class of computational mod-
els for cell biology and membrane computing. The main ingredients of a P-
system are membrane structure (that delimits compartments), multisets of ob-
jects and biochemical reaction rules. The rules are endowed with the rates re-
flecting propensity of the corresponding reactions and can handle both objects

Comparing dtsdPBC with other stochastic process algebras 25

and membranes. The known types of P-systems are cellular, tissular and neu-
ral ones. The analysis of P-systems consists in applying symbolic probabilistic
model checking.

Chemical Ground Form (CGF) [74,75,299,143] is a calculus for modeling
biochemical reactions, a modification for biological systems of Sπ without com-
munication. The actions in CGF have associated stochastic rates (positive real
numbers, the exponential distribution parameters). Invisible action expresses
unary reaction while complementary identically named visible actions specify
two reactants in a binary reaction with the same name. The operators of CGF
are: (successful) termination, prefix and parallel composition. The probabilis-
tic semantics of CGF is based on DTMCs, its stochastic discrete-state seman-
tics is constructed on CTMCs and its continuous-state semantics is defined on
ODEs. The abstract probabilistic semantics of CGF is built by extracting la-
beled interval DTMCs from abstract labeled transition systems, based on ab-
stract multisets, with intervals of integers used instead of single multiplicities.
CGF corresponds to basic chemistry.

Chemical Parametric Form (CPF) [75] extends CGF with parametrization,
communication and reuse, being more general subset of Sπ. The CPF stochas-
tic processes can be converted to chemical reactions (interrelated with CGF).
The mapping of CPF to chemistry results in the parametric and compositio-
nal indirect (two-step) mapping of CPF to ODEs that is easier to define and
understand than a direct (one-step) mapping. That indirect mapping can be
interpreted as the ODE semantics of the CPF processes.

Biochemical Ground Form (BGF) [79,299] extends CGF with the capabili-
ties of complexation (joining) and splitting molecules, through association and
dissociation. Calculus BGF adds to the syntax of CGF two pairs of complemen-
tary actions, intended to specify association and dissociation. The operators of
BGF additionally include trailing of the association histories. The discrete-state
semantics of BGF (like that of CGF) is based on CTMCs, extracted from labeled
transition graphs. Differently from CGF, calculus BGF is Turing powerful and
corresponds to biochemistry.

Stochastic Calculus of Communicating Systems (StoCCS) [185,234] is a CCS
stochastic extension being a fragment of Sπ. The StoCCS operators are: null
process, prefixing (by action label and its rate), stochastic choice and parallel
composition. Labeled state-to Function Transition Systems (FuTSs) are used to
unify definitions of the (S)PAs semantics with a goal to compare the calculi.
Based on FuTSs, two stochastic enhancements of CCS with binary synchro-
nization are proposed: StoCCSAA with active input and output actions of the
channel (along which the synchronization signal is transmitted from the input
to output action) and StoCCSAP with passive input and active output actions
of the channel.

Stochastic Calculus of Looping Sequences (SCLS) [13,16] extends stochas-
tically Calculus of Looping Sequences (CLS) [17]. SCLS is a quantitative term
rewriting formalism for describing evolution of the microbiological systems (such
as cellular pathways) while taking into account the activities speed, represented

26 I.V. Tarasyuk

by stochastic rates (the exponential distribution parameters). SCLS has opera-
tors of sequencing, looping, containment and parallel composition. The looping
operator connects the ends of sequence, resulting in the circular (looping) se-
quence that can specify membrane. CTMCs are extracted from the semantics of
the SCLS systems, with a goal of simulating and verifying their properties with
stochastic model checking.

Language for Biochemical Systems (LBS) [238,239] combines modeling (with
rewrite rules) and modularity. LBS is based on Calculus of Biochemical Systems
(CBS), intended for modular specification of metabolic, signalling and regula-
tory networks, as reactions between modified complexes that occur concurrent-
ly in the hierarchy of compartments, with possible interactions and transport
across compartments. LBS has the species expressions, parametrized modules
with subtypes, nondeterminism, as well as nested declarations of species and
compartments. Formal specification of the language is given by abstract syntax
and general semantics, being parametric on the structure of the target semantic
objects: PNs, coloured PNs (CPNs), ODEs and CTMCs.

Biochemical Performance Evaluation Process Algebra (Bio-PEPA)
[89,90,88,91,131,150,127,132,128,149,215,216,93,214,262,129,170,29] is construc-
ted to model and analyze biological networks. For that, PEPA is extended with
stoichiometry (quantitative interrelations of reactants in biochemical reactions),
the species roles in reactions and functional rates for different kinetic rules types
of the reaction dynamics. The processes in Bio-PEPA are seen as species rather
than molecules, like in Sπ. The Bio-PEPA operators are: prefix combinator (with
the pair of action type and its stoichiometry coefficient, in the role of reactant,
product, activator, inhibitor or generic modifier), choice, constant, cooperation
(by the activities set) and concentration level. The operational semantics of Bio-
PEPA is defined on stochastic labeled transition systems, based on the discrete
concentration levels. Bio-PEPA maintains several analysis methods: Stochastic
Simulation Algorithm (SSA) [139,140], numerical solution for the steady-state
analysis of the CTMC (with discrete concentration levels) underlying the model
semantics, translation into the equivalent deterministic model of ODEs, as well
as stochastic model checking.

Context-dependent Bioambient Calculus (CoBiC) [54] is a stochastic exten-
sion with functional rates of Biological Ambients calculus, BioAmbients (BioA).
The rates in CoBiC are calculated by respecting as the volume of ambients (such
as cells), as the whole context (surrounding environment) with the concentration
and pressure (context-dependent rates). To model transport of molecules in and
out of membranes, CoBiC has both the notion of membrane or compartment (to
separate inside from outside) and the internal or external compartment concen-
tration functions. The channel and ambient names in CoBiC are connected with
the operations of inactive process, local sum (standard choice of the processes,
prefixed with the ambient capabilities, including exponential delays), restriction
(of a name), recursion (to model infinite behaviour), ambient (named compart-
ment with a process, and basic or minimal volume associated) and parallel com-
position. The operational semantics of CoBiC is defined by reduction rules. The

Comparing dtsdPBC with other stochastic process algebras 27

rates of basic actions are the functions depending on the context of the executing
processes (the global configuration of the system). Those functions are evaluated
to positive real numbers in each state, so that from the labeled transition system
a (time-homogenous) CTMC can be derived, used to simulate the model.

Spatial Calculus of Looping Sequences (that we call SpCLS) [14,15] is a
spatial extension of Calculus of Looping Sequences (CLS) that observes the
position and taken space of biological elements with time passage in a continu-
ous two- or three-dimensional space. The movement of elements in the space can
be exactly described, and they can interact when constraints on their positions
are satisfied. Both deterministic and stochastic movements of the elements can
be specified. Like in SCLS, rewrite rules for reactions in SpCLS are endowed
with kinetic parameters defining their stochastic propensity rates. The reaction
rates are the parameters of exponential distribution that models the expected
duration of a reaction with a specific combination of reactants.

Typed Stochastic Calculus of Looping Sequences (TSCLS) [118,36] is an ex-
tension of SCLS with the types of the elements that speed up or slow down
reactions, such as positive or negative catalyzers. The operational semantics of
TSCLS that respects the types of the species is applied to derive the stochastic
evolution of a system, where the activities speeds can be modified by catalyzers.
The types offer an abstraction that can represent the interactions of elements
without exact specification of their positions. The rewrite rules have the rates
that allow the evolutions of the rules to follow different probability distributions,
which is useful for the high-level simulation. The typed stochastic semantics
generates the transition systems, producing the CTMCs that are applied in the
simulation procedure.

Stochastic Calculus of Wrapped Compartments (SCWC) [96,95,261] natu-
rally describes a wide class of biological systems via direct representation of
membranes and compartments. SCWC is a variant of SCLS without sequen-
cing operator and with multisets (instead of ordered sequences) of atomic ele-
ments, to specify membranes. SCWC is intended to simplify the development
of automatic analysis tools while preserving the SCLS expressiveness. Every re-
action rule in SCWC has an assigned rate function of the context. SCWC has
a stochastic operational semantics, from which a CTMC is extracted to verify
the system properties. To identify kinetic parameters of biological systems in
SCWC, an effective stochastic simulator is applied (instead of standard ODE-
based methods), thus extending the class of investigated systems.

Stochastic Calculus of Communicating Systems (that we call stCCS) [77,78]
is a stochastic extension of CCS without replication [220]. Each action (label,
transition) is associated with the exponential distribution rate, which is the same
for its paired action. The synchronization of each action and its paired one results
in an internal action with the rate defined by the mass action law. The operations
of stCCS are: empty (null) process, prefix (guard), parallel composition and
choice (summation). The structural operational semantics of stCCS is defined via
measure theory and assigns to each process a set of measures over the processes
space. The measures encode the rates of the transitions from a process to a

28 I.V. Tarasyuk

measurable set of processes. The stochastic behaviour is derived using continuous
time Markov processes (CTMPs).

Stochastic strand algebra (that we call stSA) [76] is a formal language with
a simple relational semantics and compositional descriptions, where each com-
ponent maps directly to DNA structures. stSA is designed for DNA computing
(such as DNA strand displacement) by specifying DNA strands and gates, as
well as their interactions. The atomic elements of stSA are signals and (null and
curried) gates (from signals to signals). The stochastic rates (positive reals) are
assigned to gates. The stSA operators are: persistency of (null or curried) gates
and parallel (concurrent) composition. The semantics of stSA is given by labeled
transition graphs (LTGs), from which CTMCs are derived. The translation from
stSA to CTSPNs maps signals to marked places and gates to transitions with the
associated rates. Since CTSPNs can be represented as finite stochastic chemical
systems (SCSs), with each transition corresponding to a chemical reaction, and
SCSs can be translated to stSA, CTSPNs are equivalent to stSA.

Markovian Agent Spatial Stochastic Process Algebra (MASSPA) [147] for-
mally describes behaviour of Markovian Agent Models (MAMs), a spatial sto-
chastic modeling framework. A Markovian agent in a MAM is a simple sequen-
tial component that can have local transitions (with exponential rates), possibly
sends messages and can have message-induced transitions. The MASSPA oper-
ations are: (exponentially rated) prefix, choice, (Poisson distributed number of)
message sending, (probabilistic) message reception, constant, null process and
parallel (with the message exchange). The underlying CTMC of a lumped process
is approximated with special techniques. The CTMC describes the density evo-
lution of an agent type at current moment for a given location. The ODE-based
analysis of higher moments (such as variation) is proposed in the performance
evaluation of discrete spatial stochastic models. Stochastic simulation is used
to verify the ODE-based approximation of mean and standard deviations for
counting the model components.

Process Algebra with Hooks (PAH) [108,109,110] is intended to model biolog-
ical systems at multiple levels of detail (scales). The processes of PAH describe
different scales, such as biochemistry, cells and tissue. The operators of PAH
include the deadlock process, agent definition, sequential execution and nonde-
terministic choice. In addition, two symmetric operators of synchronization (on
the set of actions) are used to compose processes within one level of detail (hor-
izontal cooperation) and between the levels (vertical cooperation). Stochastic
semantics of PAH is based on functional rates of reactions. Continuous time and
exponential delays are applied.

Stochastic Brane Calculus (that we call SBC) [10,29] is a stochastic extension
of Brane Calculus (BC) [73,150,29]. The membranes are collections of actions
while the systems consist of nested membranes. The systems are built with the
operations of empty system, parallel composition and nesting (within a mem-
brane). The semantics of each SBC process is intended to be a measure of the
stochastic distribution of its derivations (outcomes). The processes form a mea-
surable space, and each process has an action-indexed family of measures on this

Comparing dtsdPBC with other stochastic process algebras 29

space. The stochastic semantics of the Brane systems defines them as continuous
time Markov processes (CTMPs) over the measurable space generated by terms
up-to syntactic congruence. The compositional and syntax-driven structural op-
erational (SOS) representation of this stochastic semantics is provided.

Fluid Process Algebra (FPA) [284,285] is a subalgebra of GPEPA being a
conservative extension of PEPA with fluid semantics, intended to simplify solving
the systems of coupled ODEs. FPA has the expressive power of GPEPA without
hiding operator. The FPA operations over the PEPA-like model components,
specified using operations of (action and rate) prefix, choice, recursive definition
with constant, and cooperation, are: cooperation (over a set of synchronized
actions) and labeling. The labels are used to distinguish the representative com-
ponents, which are replicated. A fluid atom is an occurrence of some labeled
component in a process. FPA has a fluid semantics based on the underlying sys-
tems of ODEs that are used for the analysis. Each ODE system approximates
the evolution in time of the processes population representing a local state.

Simple Stochastic Process Algebra (SSPA) [293] describes CTMCs with a
product-form solution, implying that their stationary distributions are effec-
tively solvable. The proofs of important properties for SSPA are simpler than
for labeled Markov Automata (LMAs) that have a direct relation with CTMCs,
but do not permit to use the inductive structure of the language. SSPA preserves
semantics of the cooperation operator of LMAs, what is important for correct-
ness of the product-form solution. The operators of SSPA are the empty process,
identifier, choice (from a set of processes, prefixed with actions and rates), clo-
sure (replacing variable by a real-valued rate in each pair of an action and a
variable) and interaction (among many processes, by a set of actions).

Calculus of Chemical Systems (that we call CChS) [248] is proposed for mod-
ular description of chemical reaction systems and modeling with rules in systems
biology. CChS is based on CCS, but with communication replaced by chemical
reactions. The operations of (quantitative version of) CChS include rule (with a
positive real-valued rate), parallel composition, the empty process, local defini-
tion and process identifier. Different compositional semantics of (quantitative)
CChS are given, based on quantitative PNs (CTSPNs), ODEs and stochastic
transition matrices. Complete axiomatizations and normal forms are presented
for all the semantics.

Fluid Extended Process Algebra (FEPA) [286,287,177] explores the models,
specified with large systems of ordinary differential equations (ODEs). The se-
quential process components, called fluid atoms, can have a multiplicity (the
number of copies in the model specification). There are two variants of synchro-
nization: with the minimum of the rates of the synchronized processes (to model
computer systems, as in PEPA or with their product (to represent chemical re-
actions and biological networks with the rule of large numbers, as in Bio-PEPA.
The FEPA processes are described by the ODE systems with the derivatives of
the population functions that define the multiplicities (numbers of replicas in
a population) of fluid atoms by one variable (time). The typical FEPA multi-
plicity values are rather large and interpreted as non-negative real (instead of

30 I.V. Tarasyuk

natural) numbers, defined by the population functions of time, whose values can
be found for every particular moment. The FEPA expressiveness is restricted
to the processes being a parallel composition (with the embedded synchroniza-
tion by the cooperation actions) of the fluid atoms denoting a large number of
copies of simple sequential components, specified with the operations of (action
and rate) prefix, choice and recursive definition with constants. The FEPA fluid
atoms are considered uniformly, without dividing into “discrete” atoms with
small multiplicities and “continuous” ones with large multiplicities.

Probabilistic Programming Process Algebra (ProPPA) [136,137,170] is an
extension of Bio-PEPA. ProPPA permits uncertain description of models and
application of the machine learning techniques, aiming to include observational
information in the modeling. The semantics of ProPPA is defined on probabilistic
constraint Markov chains (PCMCs), an extension of constraint Markov chains
(CMCs). CMCs generalize DTMCs so that the state change probabilities become
not fixed, but satisfy some constraints or belong to a set of acceptable values.
Markov decision processes (MDPs) or uncertain Markov chains (UMCs) are used
to simulate CMCs. Analogously, PCMCs generalize CTMCs, but they associ-
ate a probability distribution with the constraint satisfaction set of values. The
stochastic relation defines the rate of the transition from one complete system to
another. The rate is generalized in ProPPA to a distribution over possible rates.

Collective Adaptive Resource-sharing Markovian Agents (CARMA)
[48,199,134] is used to specify and analyze collective adaptive systems. CARMA
has linguistic constructs for modeling and programming systems that work in
openended and unpredictable environments. A model is a collective of com-
ponents, each expressing a set of attributes. To model dynamic aggregations
(ensembles), CARMA has communication primitives based on predicates (over
the expressed attributes), to select the communication participants. There are
multicast- and unicast communications. The CARMA operations are: empty
process, component destroy, action prefix, choice, parallel composition, pred-
icate guarding and recursive definition. The operational semantics is defined
on labeled state-to Function Transition Systems (FuTSs) [234], from which the
action-labeled CTMCs are derived.

Cox and Convenience Calculus (CCC) [255,35] is constructed to generate and
manipulate continuous acyclic phase type (APH) distributions for compositional
representation of process delays. The delays correspond to the completion times
of activities. Basic delays are described by exponential distributions. Complex
delays are obtained by composing basic delays with stochastic operations on
continuous probability distributions: summation (convolution), minimum and
maximum. CCC generates representations of APH distributions in Cox forms.
The stochastic operations have the respective ones among CCC operators: rate
(of exponential delay), disabling (race between two exponential distributions),
sequential composition (corresponds to convolution), choice (corresponds to min-
imum) and parallel composition (corresponds to maximum). The operational se-
mantics maps the CCC expressions onto Markov (decorated) transition systems
and then interprets them as absorbing CTMCs.

Comparing dtsdPBC with other stochastic process algebras 31

Modelling in Ecology with Location Attributes (MELA) [294] is designed
to model ecological systems while respecting location in space and influence of
environment. MELA is a high-level language for formal description of the ecolo-
gical concurrent systems of agents that can evolve simultaneously and interact.
It specifies population models with single or multiple species. Its actions have
rates being the exponential distribution parameters. The MELA operators are:
no-influence action, influence action, probabilistic effect of action, choice, con-
stant, null component and parallel. Operational semantics of MELA is defined
on the labeled transition systems with qualitative and quantitative informa-
tion about actions. MELA supports stochastic simulation and direct analysis of
the underlying CTMCs, as well as numerical solution of the fluid approxima-
tion with the ODE systems.

Network of Broadcasting Agents (NBA) [47] is a fragment of CARMA with-
out attributes. NBA supports both unicast and broadcast communication to
model quantitative aspects of the systems of broadcasting processes. Within the
agents, actions have rates (the exponential distribution parameters), broadcast
messages have probabilities while unicast messages have weights, used to calcu-
late probabilities. Stochastic operational semantics of NBA is defined on labeled
state-to Function Transition Systems (FuTSs) [234]. Fluid approximation theo-
rem is proved for the NBA population semantics, based on population CTMCs.

Reversible Markovian Process Calculus (RMPC) [27,28] extends MPC with
the causal and time reversibility concepts. The RMPC forward processes are
constructed with the operators of terminated process, action-prefixing (with an
action name and the exponential delay rate), choice and parallel composition
(with the synchronization on the set of actions). The RMPC backward processes
are built on top of forward ones by decorating action prefixes with the commu-
nication keys, to identify the past synchronizations with the environment. The
action prefixes with keys are called labels and can be forward (-rated) and back-
ward (-rated). The operational semantics of RMPC is defined on labeled transi-
tion systems with forward and backward transitions. From the labeled transition
systems, the underlying action-labeled CTMCs are derived whose transitions are
labeled with the corresponding actions and rates, but without keys.

Continuous time interleaving SPAs with immediate actions.

Markovian Process Algebra of M. Bernardo, L. Donatiello and R. Gorrieri
(MPA) [24] is used to model functionality and performance. The MPA action
is a pair of its type and rate. According to type, the actions can be external
(observable) and internal (invisible). According to rate, the actions can be pas-
sive (with zero rate) and active (with a positive rate). The active actions can
be timed (with a finite positive rate) and immediate (with an infinite positive
rate). The immediate actions have priorities ans weights. The operators of MPA
include null term, prefix (with an action), functional abstraction (hiding, by the
actions types set), temporal restriction (by the passive actions types set), rela-
beling (with a function), alternative composition (choice), parallel composition
(with the synchronization set), constant (for recursive definition). The opera-
tional semantics of MPA is based on labeled transitions systems, from which

32 I.V. Tarasyuk

homogenous CTMCs are extracted, being a performance evaluation formalism
(stochastic model, Markovian semantics). The net semantics (distributed model)
of MPA is defined on GSPNs that clearly represent parallelism and causality.

Markovian Process Algebra of P. Buchholz (the extended version that we
call MPA-B) [65,66] is based on CCS and CSP. Every action in MPA-B has a
basic transition rate. Activities are the pairs from an action and the value pa-
rameter, expressing the action speed or its invocations number. There is also a
distinguished invisible action. For each activity, action is executed after expo-
nential delay with the rate equal to the product of the activity value parameter
and basic transition rate of the action. This enables compositional analysis with
parallel composition of process expressions. MPA-B has the operators of termi-
nation, prefix, choice, parallel composition (with synchronization on the actions
set), hiding and recursion. The operational semantics of MPA-B is defined on
finite multi-labeled transition systems (MLTSs), whose transitions are labeled
by the pairs from an action and the value parameter. The MLTSs, constructed
with the rules of structural operational semantics, are used to extract the un-
derlying CTMCs. The extensions of MPA-B with immediate activities and non-
exponential activities durations (such as phase type distributed) are proposed.

Probabilistic Markovian TImed Processes and Performability evaluation
(PM-TIPP) [259,260] is an extension of the Markovian variant of TIPP by prob-
abilistic branching. It can be specified by weighted immediate activities, also
describing management actions, to test for resources availability. Instead, PM-
TIPP is MTIPP with an additional probabilistic choice operator. PM-TIPP has
hiding and relabeling operators as well. In PM-TIPP, Markovian transitions
(with exponential delay) are merged at the semantic level with their direct fol-
lowers, corresponding to the probabilistic choice. The operational semantics of
PM-TIPP is based on labeled transition systems with two transition relations de-
noting Markovian transitions (labeled with actions, rates and additional words)
and probabilistic transitions (labeled with probabilities and additional words).

Spectral Expansion TImed Processes and Performability evaluation (SE-
TIPP) [223] is a modification of TIPP enabling solution with the spectral expan-
sion method (SE). SE-TIPP can model processes with infinite state space, result-
ing in a significant modeling power increase. The systems with infinite number
of states are modeled intuitively while the specification scheme for such systems
gives a compact representation of infinite Markov processes, to be solved with
SE. In SE-TIPP, actions have the associated rates (parameters of exponential
distribution). The operations of SE-TIPP are: (successful) termination, variable,
prefix (with an activity), choice, parallelism (with the synchronized actions set),
hiding and recursion. The underlying Markov processes may be two-dimensional:
finite in one direction and infinite in the other. The model description is trans-
formed into a matrices set, used in the SE solution procedure, followed by the
performance measures calculation.

Stochastic Process Algebra for Discrete Event Simulation of P.G. Harrison
and B. Strulo (that we call SPADES-HS) [155] extends Timed CCS [297,298] to
formally describe discrete event simulation. SPADES-HS specifies time progress

Comparing dtsdPBC with other stochastic process algebras 33

and probabilistic choice (discrete or continuous): selecting from a countable pro-
cesses number or taking a random waiting time. The SPA describes infinite (as a
rule) semantic objects, has immediate and delayed prefixing, can specify separa-
tely random timer starts, timer completions and current activities. Time delays
may be non-exponential, resulting in more generality. SPADES-HS has visible ac-
tions, their conjugates and the (self-conjugate) invisible action. The operators of
SPADES-HS are: deadlocked (terminated) process, time prefix with fixed delay,
(impatient) prefix with action, patient prefix with action, nondeterministic choi-
ce, probabilistic choice, time prefix with random delay (with the density), paral-
lel, relabeling (with the renaming function), restriction (on the actions set) and
recursion. The operational semantics is defined on labeled transitions systems
with the labeled (with actions), probabilistic and (time) evolution transitions.

Stochastic Timed Calculus (STC) [164] extends CCS with stochastic time
under the maximal progress assumption. The (visible and a special invisible)
immediate actions of STC are separated from delays, governed by an expo-
nential distribution with the parameters called rates. The STC operations are:
delay (with a rate) prefix, action prefix, choice and recursion (by variables). The
operational semantics of STC is based on labeled transition systems with the
action (action labels) and timed (rate labels) transition relations.

Stochastic Process Algebra for Discrete Event Simulation of P.R. D’Arge-
nio, J.-P. Katoen and E. Brinksma (SPADES) [6,7,3,162,5] is a non-Markovian
stochastic calculus. The actions in SPADES are separated from continuous time
generally distributed stochastic delays. The semantics of SPADES is based on
stochastic automata (SAs) [4] that can be executed using discrete event sim-
ulation. The semantics of SAs themselves is defined via probabilistic (labeled)
transition systems with general distributions (discrete, continuous and singular).
The operations of SPADES include stop (inaction) process, (action) prefixing,
triggering condition, choice, clock setting, parallel composition (with the syn-
chronization set of actions), left merge (with set of actions), communication
merge (with set of actions), renaming (with the function) and process instanti-
ation (for recursive definition).

Stochastic Process Algebra (SPA) [39] is an extension of TCSP with anony-
mous (unnamed) timed actions, to model continuous time stochastic delays be-
tween visible actions. All named (visible and invisible) actions are immediate (of
zero duration) and have no delays assigned. Timed actions are specified by posi-
tive real numbers being the exponential distribution parameters of delays (rates)
of those (Markovian) actions. Functional and temporal behaviour is treated sep-
arately. The SPA operators are: empty (stop) process, prefixing with immediate
named actions, prefixing with timed anonymous actions, choice, parallel compo-
sition (with the synchronization set of actions), restriction (on the actions set)
and recursion. Synchronization may occur only between immediate named ac-
tions and termed timeless [167]. The structural operational semantics of SPA is
based on the rules for timed anonymous (Markovian) actions and for immediate
named actions. It is defined on labeled transition systems with two transition
relations: implementation of unnamed time delay or instantaneous execution of

34 I.V. Tarasyuk

a named action. The compositional structure of the SPA specifications is used
for a novel solution of the underlying stochastic process by reformulation of the
underlying CTMC as a semi-Markov process.

Non-Markovian Stochastic Process Algebra (NMSPA) [196] permits gene-
ral (not only exponential) probability distributions of delays, to increase the
expressive power. Some practically important distributions types are used, such
as uniform, discrete and Poisson. This fact allows one to specify passive, urgent
and immediate actions. Besides visible actions, NMSPA has the (urgent) invisible
action. The operators of NMSPA include deadlocked process (STOP), choice
of the fastest action (with the random variable of delay) from those prefixing
processes, parallel composition (with the synchronization set), restriction (on
the actions set), renaming (with the function) and recursion. The operational
semantics of NMSPA is based on labeled transition systems.

Stochastic Basic Language Of Temporal Ordering Specification (that we call
SB-LOTOS) [163] is an extension of Basic (data-absent) LOTOS with the conti-
nuous phase type distributed delays. The actions can be visible ones, the invisible
(internal, unobservable) one and the successful termination one (denoted by δ).
The SB-LOTOS operators are: inaction (stop), successful termination (exit), ac-
tion prefix, rate (of the exponential delay) prefix, choice, sequential composition
(enabling), disabling, parallel composition (by a set of actions), hiding (of a set of
actions), relabeling (with a function), process instantiation (for recursive definiti-
ons) and elapse (describing continuous phase type delay via its absorbing CTMC
using the actions start, delay and break). The SB-LOTOS operational semantics
is defined on the generalization of Interactive Markov Chains (IMC) [161,162,23],
with the transitions on the time being continuously phase type distributed.

Biochemical Stochastic π-calculus (BioSpi) [254,150] extends the name-pas-
sing SPA Sπ with the goal of investigating biomolecular systems and interacti-
ons. BioSpi describes the structure and dynamics of biochemical networks. The
actions have the rates assigned (parameters of the exponential distribution of
delays), corresponding to the basal reaction rates. The channel requests (send
or/and receive, or withdraw) may have the infinite rate, i.e. be instantaneous.
BioSpi inherits all operations of Sπ, but the prefixing actions are replaced by
the pairs of actions and rates. Reduction semantics of BioSpi respects the time
and probability of biochemical reactions. The quantitative analysis is based on
the stochastic discrete simulation with support of mobility.

Immediate Markov Action-labeled Chains (IMAC) [162] enriches MAC with
immediate actions that are executed without any delay. The operations of MAC
are supplemented with immediate (action) prefix, such that the prefixing imme-
diate action is executed instantly before evolving into the prefixed process. The
operational semantics of IMAC is based on labeled transition systems with two
transition relations, describing executions of durational actions (with rates) and
those of immediate actions, respectively. The choice between durational actions
is probabilistic while that between immediate actions is nondeterministic.

Interactive Markov Chains (IMC) and their Interactive Markov Language
(IML) [161,162,23] is a compositional continuous time behavioural model. Im-

Comparing dtsdPBC with other stochastic process algebras 35

mediate actions in IMC are added to MC, i.e. time transitions (with rates) and
action (interactive, immediate) transitions are separated. The processes describe
interactive Markov chains (IMCs) with visible and invisible actions as composi-
tions of the actions and transition rates by the operations of (finite) sum of the
prefixed (with actions or rates) processes, parallel composition (with the syn-
chronization set of actions), renaming and recursion (over variables). The opera-
tional semantics of IMC is based on the union of labeled transition systems and
CTMCs. The semantic transitions are Markovian, with the rates-defined expo-
nentially distributed delays, or interactive, corresponding to instant execution
of (possibly invisible) actions.

Interactive Generalized Semi-Markov Processes (IGSMP) [61] is a calculus
with interleaving semantics for (visible and invisible) actions and ST- (Start-
Termination-) semantics for (non-Markovian) delays. The actions are all imme-
diate and separated from delays, specified as a pair of distribution function (of
the duration probability) and weight. IGSMP specifies the probabilistic timed
delays with general continuous distributions and synchronized actions with zero
duration, as well as probabilistic (under preselection policy), nondeterministic
and prioritized choice. The operators are: empty process, delay prefix, action
prefix, choice, hiding (the set of actions turned into invisible ones), relabeling
(with the function), parallel (with the synchronization set of actions), recursi-
on (over variables). The operational semantics of IGSMP constructs generalized
semi-Markov processes (GSMPs) being the probabilistic systems with general-
ly distributed time, which are extended with the action transitions describing
interactions among the system components. The concurrent execution of delays
is expressed by a variant of ST-semantics, based on dynamic names. For per-
formance evaluation, GSMPs are extracted from IGSMPs and analyzed with
mathematical and simulative methods to obtain the performance measures.

Value Passing Stochastic Process Algebra (VPSPA) [197,198] extends
NMSPA with the value passing feature. VPSPA permits generally distributed
delays. The properties of the VPSPA specifications are studied by translating
them into the programs of concurrent functional programming language Eden,
where parallel processes are executed and their quantitative properties are inves-
tigated. To analyze the specified generally delayed systems, simulation is used
instead of model checking. The performance of the system implementation is
simulated, in order to obtain the real estimates of its theoretical performance.
The communication actions are input (message receiving) and output (messa-
ge transmitting) ones. There is also the invisible action (urgent, immediate).
There are data transmission channels with the values. The stochastic actions
describe the delays specified by generally distributed continuous random vari-
ables. Choice has no probability assigned while parallelism has the associated set
of indexed starts and terminations of delays (like in the ST-semantics of IGSMP
[61]). Further operators are termination, delay prefix, channel receiving, chan-
nel transmission, conditional, hiding and recursive definition. The operational
semantics of VPSPA is based on labeled transition systems.

36 I.V. Tarasyuk

Semi-Markov PEPA (SM-PEPA) [55,56,57,8] extends PEPA with the action
delays distributions that ensure the underlying stochastic model to be an SMC.
In SM-PEPA, actions are associated with symbolic priorities and parameters of
general delays. The parameters are the rates of exponential delays or the pairs
of a weight and a generally distributed delay, defined by Laplace transform. The
SM-PEPA operators are: prefix, cooperation, hiding and constant. At each pri-
ority level, only one type of actions is allowed: Markovian or semi-Markovian.
The semi-Markov synchronization is specified by the user-defined functions of
the combined weight and delay. Operational semantics of SM-PEPA is construc-
ted with the rules for Markovian and semi-Markovian actions. For the model
analysis, the SM-PEPA specifications are automatically transformed into semi-
Markov SPNs.

Stochastic Beta-binders (that we call SBB) [106,150,29] is a stochastic ver-
sion of Beta-binders [253,217,150,29] with typed interaction sites for accurate
description of biological entities. In SBB, quantitative measures on biological
phenomena are studied. The quantitative parameters are extracted from typed
interaction sites, resulting in the affinity concept. The SPA has exponential or
zero action delays. The quantitative information is given by the action rates
(exponential distribution parameters) that represent stochastic behaviour and
define reaction speeds. The operators are: inactive process, (input, output, hi-
ding, unhiding and exposing) prefixing (with the pair of action and rate), paral-
lelism, static binding and multiple instances of prefixed process. The operational
(stochastic reductional) semantics is based on labeled transition systems. The
underlying stochastic process is CTMC.

MOdeling and DEscription language for Stochastic Timed systems
(MODEST) [38,151,71,156] is a formalism for modular description of reactive
systems behaviour respecting functional and nonfunctional aspects (timing or
service quality) of systems in a single specification. The actions are separated
from (random) delays, there are simple and structured data types, structur-
ing mechanisms (like parallel composition and abstraction), means to control
the assignments granularity, exception handling, nondeterministic and random
branching, timing. There are patient and impatient actions, exception names,
the unhandled error action, the break action and the unobservable (silent) ac-
tion. The operations include stop (no activity), abort (unhandled error), break
(action with no restriction), act (action with no restriction), condition (when),
urgency (of the first activity), process instantiation, call by value, choice, se-
quential composition, loop, relabeling, alphabet extension, exception handling,
probabilistic prefix and parallel composition (with the multiway synchroniza-
tion set). The operational semantics is defined on stochastic timed automata,
a union of timed and stochastic automata [4], interpreted over (infinite) timed
probabilistic transition systems (with immediate action transitions to discrete
probability distributions over successor states, and timed transitions with posi-
tive real-valued delays). MODEST describes a wide spectrum of models: labeled
transition systems, timed and hybrid automata (and probabilistic variants of
them), stochastic processes like (discrete and continuous time, generalized semi-

Comparing dtsdPBC with other stochastic process algebras 37

) Markov chains and (discrete and continuous time) Markov decision processes,
Markov and stochastic (timed and hybrid) automata.

Stochastic Concurrent Constraint Programming (sCCP)
[43,49,44,45,50,51,52,53] is a stochastic extension of CCP [247]. sCCP is pro-
posed for modeling and analysis of biological systems. In sCCP, communication
is asynchronous, species are described by variables, reactions are represented by
constraints on the variables and rates are specified by functions. The sCCP op-
erations are: tell prefix (with rate), ask prefix (with rate), choice, empty process,
(recursive) procedure call (with rate), hiding and parallel composition. Two op-
erational semantics of sCCP are defined: the continuous time one (standard) and
discrete time one (with the rates interpreted as weights to calculate probabilities;
we call the latter SPA dsCCP), resulting in CTMCs and DTMCs, respectively,
as the performance analysis model. The traditional semantics (the standard one
on CTMCs and differential one on ODEs with fluid flow approximation) are
supplemented with hybrid semantics on (Non-)Deterministic Hybrid Automata
(DHA, NDA) and Simple Stochastic Hybrid Automata (SSHA). The analysis
consists in stochastic simulation or in translations into the stochastic verifica-
tion programming system, ODEs and hybrid systems.

Nano-κ-calculus (nanoκ) [98,99,194], based on κ [102,103,104,191,187], is in-
tended for modeling, analysis and prediction of the molecular devices properties.
Biochemical systems are modeled in nanoκ by defining their reaction sets. The
semantics of nanoκ is based on reaction rules, where reactions (creations, de-
structions or exchanges) have finite or infinite rates. The stochastic model of
nanoκ is based on the stochastic transition system with finite (for Markovian
transitions) and infinite (for invisible, silent, interactive transitions) rates, thus
resulting in the Markovian and transient states, respectively. From that transi-
tion system (with only silent actions), interactive Markov chain (IMC) [161,162]
is extracted that can be downgraded to CTMC, if all invisible interactive tran-
sitions are partitioned into the confluent directed acyclic graphs of finite depth.
The nanoκ implementation into SPiM takes molecules as processes and derives
the overall (stochastic) behavior by communication rules.

Stochastic Pi-Calculus for Concurrent Objects (SPiCO) [189,217] is a mod-
eling and simulation language for systems biology, based on Sπ. SPiCO supports
high-level modeling by using the multi-profile concurrent objects with static in-
heritance that correctly represent interacting molecules. The SPiCO operators
are: empty process, parallel composition, channel creation, sum, application, pat-
tern input (receive), tuple output (send) and (recursive) definition. The SPiCO
stochastic semantics is defined on CTMCs. The transitions can be timed (expo-
nential delays with finite rates) or immediate (zero delay with infinite rate and
probabilities). To construct CTMC, immediate transitions (corresponding to in-
stantaneous reactions) are eliminated and their probability effects are respected.
SPiCO is encoded back into BioSpi while preserving the semantics.

Stochastic π-calculus with polyadic synchronization (Sπ@) [289,290,291] is
an enrichment of the language Sπ. The calculus Sπ@ is a stochastic extension
of the process algebra π@ [292]. In Sπ@, finite and infinite rates are allowed,

38 I.V. Tarasyuk

hence, there exist immediate actions (reaction types), taken as possessing hi-
gher priority (from two possible, defined by types of the rates) than standard
ones. The operators of Sπ@ are: null process, guarded (action prefixed) choice,
parallel, guarded (action prefixed) replication and scope restriction (of a na-
me). The language Sπ@ flexibly models multiple compartments with dynamic
structure and provides enhanced biological faithfulness. The biological systems
specified in Sπ@ are used in the extension of Stochastic Simulation Algorithm
(SSA) [139,140] that handles multiple compartments with varying volumes.

Attributed π-calculus (π(L)) [179] extends π-calculus [221,222] with attribu-
ted processes and attribute dependent synchronization, for application in sys-
tems biology. π(L) is parametrized with the language L defining the attribute
values, it expresses polyadic synchronization and different compartment organi-
zations. The π(L) operators are: defined process, parallel composition, channel
creation, summation of (receiver or sender prefixed) choice alternatives, empty
solution and parametric process definition. The nondeterministic (small step re-
duction) and stochastic (CTMCs extraction) semantics are proposed, with the
rates possibly dependent on the attribute values. Finite and infinite (immediate
transition) rates are allowed in the stochastic semantics, for which a simulation
algorithm is developed.

EXtended Stochastic Probes (XSP) [8,92] is an enrichment of SP [9] for
the state-aware performance analysis with the queries combining instantaneous
observations of the model states and finite sequences of the model activities
observations. The queries are implemented in XSP by composing the observers
with the described by an SPA model that has a discrete time representation
via CTMC. The communicating local probes have immediate actions for instan-
taneous communication among components of the probes, and for transferral
of the states information without affecting the behaviour and without pertur-
bing the performance analysis. The XSP novelty is a combination of the state
and activity specifications with local and global observations. The XSP activity
probes operators are: (activity) observation, sequence, choice, labeling, (upper
bounded) iteration, range (lower and upper bounded) iteration, one-or-more,
zero-or-more, zero-or-one, resetting and bracketing.

Phase Type Processes (PTP) [296] allow for probabilistic and nondeterminis-
tic choices, as well as continuous phase type (generalizing exponential) and zero
delays. The (visible or invisible) action transitions, used to react on the external
stimuli, are separated from the phase type transitions. The PTP semantics is
constructed via the path probabilities with respect to schedulers resolving the
nondeterministic choices in the timed process history. Parallel composition is
studied in the context of the partial memoryless property. A mapping from
PTP to a subclass of the single phase processes with exponentially distributed
delays is defined.

BlenX [113,114,115,252,112,29] is a language used with Beta-binders calculus
as a basis for scaled structure for modeling, simulation and analysis of biological
systems. With that goal, a programming system Beta Workbench (BWB), based
on BlenX, is described that simplifies development of the bio-systems models

Comparing dtsdPBC with other stochastic process algebras 39

at different abstraction levels, can simulate their dynamic behaviour, check and
ask the simulation results. BWB has three tools that jointly use the compiler
and runtime environment of BlenX: stochastic simulator, CTMCs generator and
reactions generator. The actions in BlenX have the rates (parameters of the ex-
ponential distribution of delay) or executed without delay. The operators over
the BlenX processes are: deadlocked process, parallel (logical and), (guarded)
choice (logical or), conditional (if-then), (guarded) replication and (action se-
quence) prefixing.

DNA Strand Displacement language (DSD) [245,192,193,191] is intended for
designing, modeling and simulation of the DNA circuits that make computati-
ons via strand displacement. The examples of applying that computational me-
chanism are the digital logic circuits and catalytic signal amplification circuits,
functioning as efficient molecular detectors. The DSD syntax describes molecules,
their segments and three types of sequences: concatenation, left and right over-
hangings. DSD can model slow reactions with finite rates and fast reactions
that occur instantly or much faster than others. After exploring all trajectories
(interleavings of reactions, reduction paths) of the specified system, CTMCs are
generated, used to analyze quantitative properties of its behaviour.

Markovian Calculus of Communicating Systems (mCCS) [116,117] is a Mar-
kovian extension of CCS with the interpretation on Markov automata (MAs)
that describe systems behaviour via nondeterministic, probabilistic and timed
events. Markov labeled transition systems are extracted from MAs to study their
behaviour. Analogously to [161,119], external actions are taken as immediate,
time progresses when no internal activity is possible, and timed actions only
demonstrate Markovian behaviour. The mCCS operations are: (successful) ter-
mination, indefinite (imprecise) and definite rate prefixing, insistent prefixing
with an action, choice, parallelism, process constant (associated with definition)
and probabilistic choice (with a finite index set).

Stochastic HYPE (that we call SHYPE) [46,129] is a HYPE [133,130] stochas-
tic extension, designed for the fine-grained modeling stochastic hybrid systems.
Each flow or influence affecting a variable is modeled separately and the general
system’s behaviour is obtained by composing these elements. A flow is an influ-
ence that continuously modifies a variable and has the strength and form that
are changed by events. The continuous behaviour of a system is governed by the
ODEs sets and is altered by discrete events. The discrete behaviour of a system
is defined either by urgent actions, executed as soon as an activation condition
is satisfied, or by non-urgent actions, which can wait some (non-zero) time be-
fore execution. In SHYPE, non-urgent actions are associated with probability
distributions of their delays and thus become stochastic actions. The events are
divided into instantaneous and stochastic and combined by the operations of
prefix (with/without influence), choice, parallel (with/without synchronization)
and constant (for recursive definitions). The operational semantics of SHYPE
is defined via labeled multitransition systems. The stochastic hybrid semantics
of SHYPE maps those transition systems into (or directly constructs from the

40 I.V. Tarasyuk

syntactic model) Transition-Driven Stochastic Hybrid Automata, a subset of
Piecewise Deterministic Markov Processes.

Markov Automata Process Algebra (MAPA) [278,279,145,146] is proposed
for effective compositional specification, generation and modeling of Markov au-
tomata (MAs), whose events can be nondeterministic or happen probabilistically,
or have exponential timed delay. The operations of MAPA include process in-
stantiation (allowing recursion), conditional, nondeterministic choice, (possibly
infinite) nondeterministic choice over data type, probabilistic choice over data
type and rate (of the exponential delay) prefixing. For the modular construction
of large systems, the top-level operations can be added: parallelism, encapsula-
tion (analogous to restriction), hiding and renaming. The operational semantics
of MAPA is defined in terms of MAs.

Immediate PEPA (iPEPA) [160] adds to PEPA immediate actions with
weights. The weights are transformed into probabilities while each parallel com-
position application and the resulted probabilities are recalculated at all compo-
sition levels. Immediate actions supplement standard timed actions having rates
and are used to represent communication between the measurement processes,
intended for specification of stationary and transient passage time measures. The
iPEPA operations are: standard and immediate (high-priority) prefix, choice,
constant and cooperation (on the action types from a set). After removing van-
ishing states (in which only immediate actions are executed) from the transition
systems of the well-behaved (without immediate cycles and with deterministic
initial behaviour) iPEPA components, the derived transition systems (with only
timed transitions, accomplished by timed actions) are obtained, translated into
CTMCs for performance analysis.

Immediate GPEPA (iGPEPA) [160] is an enrichment of GPEPA with imme-
diate actions having weights. The actions in iGPEPA are timed (a pair of timed
action type and rate) or immediate (a pair of immediate action type and weight).
A component of iGPEPA is a component group with the group labeling or a coo-
perative composition of the iGPEPA components. The component group is an f-
(fluid-) component or an unsynchronized parallel composition of f-components.
The iGPEPA operations over component groups (purely concurrent groups of
standard components of iPEPA [160]) are cooperation (over a set of synchronized
actions) and labeling. The iGPEPA models have the associated systems of co-
upled first-order ODEs, used to calculate stationary and transient fluid passage
times. The vanishing states (that enable immediate actions) are eliminated at
the level of f-components when two regularity conditions are satisfied: absence of
immediate cycles and deterministic initial behaviour. The operational semantics
of iGPEPA is defined on the underlying CTMCs.

PHASE [86,87,85] is designed to model non-Markovian systems by imple-
menting phase type distributed action delays. PHASE has sequential, choice
and parallel operators. The elementary process is a phase type transition (a
pair of action and infinitesimal generator matrix of its phase type delay). The
parallel processes are synchronized by actions. The PHASE operational seman-
tics represents phase type distributions through their generating CTMCs. It

Comparing dtsdPBC with other stochastic process algebras 41

defines Markovian transitions (expressing exponentially distributed delays) and
action transitions (corresponding to the instantaneous executions of actions).
PHASE advantageously models and more accurately analyzes performance of
non-Markovian systems with phase type distributions. PHASE is applied in the
general analysis method for such systems, to obtain the processes translated
into a probabilistic model checker for studying quantitative properties of the
Markovian approximations.

Process Algebra for LOcated MArkovian agents (PALOMA) [123,124] de-
scribes the systems of populations consisting from the agents distributed over
space, where the relative positions of agents influence their interaction, and com-
prises Markovian Multi-class, Multi-message Markovian Agent Models
(M2MAM). PALOMA can construct formal models of large collective adap-
tive systems, with the agents distributed over the named locations. Each action
in PALOMA is either spontaneous (durational with a rate of the exponential
occurrence time when it can emit a broadcast or unicast message of the same
type) or induced (immediate with a probability to receive a broadcast or unicast
message of the same type). The PALOMA operators over agents (parameter-
ized by locations) are: spontaneous (with broadcast, unicast or without any
emission) action prefixing, induced (by broadcast or unicast) action prefixing,
choice and parallel composition. PALOMA has a discrete operational semantics,
based on the labeled transition systems with delay and probabilistic transitions,
from which semi-Markov chains (SMCs) can be extracted. The calculus also has
a differential, population, operational semantics, from which population CTMC
(pCTMCs) can be obtained, used while deriving ODEs for the mean-field model.

Stochastic Hybrid Communicating Sequential Processes (SHCSP) [240] ex-
tends Hybrid Communicating Sequential Processes (HCSP) calculus [300] with
probability and stochasticity. In SHCSP, nondeterministic choice is replaced by
probabilistic one and ODEs are generalized by stochastic differential equations
(SDEs) that describe stochastic continuous evolution, including Brownian mo-
tion. In addition to the HCSP operations of null process, assignment, receiving
or sending value along channel, sequential composition, alternative statement
and repetition, the SHCSP operations include probabilistic choice and SDE-
governed evolution, can specify preemption, weights, communication and con-
currency, aiming to construct stochastic hybrid processes in a modular way.

Continuous time interleaving SPAs with positive deterministic actions.

Bio-PEPA with delays (Bio-PEPAd) [72,129] is an enrichment of Bio-PEPA,
by adding non-Markovian action delays. The syntax of Bio-PEPAd is inher-
ited from Bio-PEPA and endowed with the action delays functions. Bio-PEPAd
has a Start-Termination- (ST-) operational semantics, where the beginning and
end of each action execution are taken as separate events, defined by different
action delays: exponentially distributed and positively deterministically timed,
respectively. Distinguishing the starts and completions of actions is similar to
the idea of ST-semantics for GSMPA [60,58]. The processes of Bio-PEPAd are
translated into generalized semi-Markov processes (GSMPs) [61,4], used in the
Delay Stochastic Simulation Algorithm (DSSA) and in Delay Differential Equa-

42 I.V. Tarasyuk

tions (DDEs) extending the deterministic formalism of ODEs to model biological
systems with delays.

Table 4 (specifically) classifies the continuous time interleaving SPAs surve-
yed above (including MTIPP, PEPA and EMPA) and in Section 1 (sPBC and
gsPBC) according to whether the time delays are associated with (multi)acti-
ons (integrated or orthogonal time [94,170]), the presence of (positive) deter-
ministic or (only) immediate (multi)actions, and the type of stochastic delays
(exponentially or phase type, or generally distributed). The names of SPAs with
the SPN-based denotational semantics are printed in bold font.

Table 4. Classification of the continuous time interleaving stochastic process algebras

Time Determin. Exponential Phase type General
(multi)act. delays delays delays

Integ- Non-exist MTIPP, PEPA, PAS, sPBC, MAC, SP, PEPA∞
ph PAGS, GPA

rated BioNetGen, GPEPA, StoKlaim, SPiM, κ,
SBioA, MPC, PEPA+Π , SBG, SPS, CGF,

CPF, BGF, StoCCS, SCLS, LBS, Bio-PEPA,
CoBiC, SpCLS, TSCLS, SCWC, stCCS,

stSA, PAH, SBC, FPA, SSPA, CChS, FEPA,
ProPPA, CARMA, MELA, NBA, RMPC

Immediate MPA, MPA-B, PM-TIPP, SE-TIPP, EMPA, PHASE NMSPA,
BioSpi, IMAC, SBB, nanoκ, SPiCO, Sπ@, SM-PEPA
π(L), XSP, BlenX, gsPBC, DSD, SHYPE,

iPEPA, iGPEPA, PALOMA
Positive Bio-PEPAd — —

Ortho- Non-exist MC, MASSPA CCC —
gonal Immediate STC, SPA, IMC, IML, sCCP, mCCS, SB-LOTOS, SPADES-HS,

MAPA PTP SPADES,
IGSMP,
VPSPA,

MODEST,
SHCSP

4.2 Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were considered among non-Markovian ones
[183,59]. The semantics of all Markovian calculi is interleaving and their action
delays have exponential distribution, which is the only continuous probability
distribution with memoryless (Markovian) property.

In [62], Generalized Stochastic Process Algebra (GSPA) was introduced. It
has a true-concurrent denotational semantics in terms of generalized stochas-
tic event structures (GSESs) with non-Markovian stochastic delays of events.

Comparing dtsdPBC with other stochastic process algebras 43

In that paper, no operational semantics or performance evaluation methods for
GSPA were presented. In [184], generalized semi-Markov processes
(GSMPs) [61,4] were extracted from GSESs to analyze performance.

In [250,251,191], Generalized Stochastic π-calculus (that we call GSπ) with
general continuous distributions of activity delays was defined. It has a proved
operational semantics with transitions labeled by encodings of their deduction
trees. No well-established underlying performance model for this version of GSπ
was described.

In [60,58], Generalized Semi-Markovian Process Algebra (GSMPA) was deve-
loped with an ST-operational semantics and non-Markovian action delays. The
performance analysis in GSMPA is accomplished via GSMPs.

Again, the first fundamental difference between dtsdPBC and the calculi
GSPA, GSπ and GSMPA is that dtsdPBC is based on PBC, whereas GSPA is
an extension of simple Process Algebra (PA) from [62], GSπ extends π-calculus
[221,222] and GSMPA is an enrichment of EMPA. Therefore, both GSPA and
GSMPA have prefixing, choice (alternative composition), parallel composition,
renaming (relabeling) and hiding (abstraction) operations, but only GSMPA has
constants. Unlike dtsdPBC, GSPA has neither iteration or recursion, GSMPA
allows only recursive definitions, whereas GSπ additionally has operations to
specify mobility. Note also that GSPA, GSπ and GSMPA do not specify even
instantaneous events or activities while dtsdPBC has deterministic multiactions.

The second significant difference is that geometrically distributed or zero de-
lays are associated with process states in dtsdPBC, unlike generally distributed
delays assigned to events in GSPA or to activities in GSπ and GSMPA. As a
consequence, dtsdPBC has a discrete time operational semantics allowing for
concurrent execution of activities in steps. GSPA has no operational semantics
while GSπ and GSMPA have continuous time ones. In continuous time semantics,
concurrency is simulated by interleaving, since simultaneous occurrence of any
two events has zero probability according to the properties of continuous proba-
bility distributions. Therefore, interleaving transitions are often annotated with
an additional information to keep concurrency data. The transition labels in the
operational semantics of GSπ encode the action causality information and allow
one to derive the enabling relations and the firing distributions of concurrent
transitions from the transition sequences. At the same time, abstracting from
stochastic delays leads to the classical early interleaving semantics of π-calculus
[221,222]. The ST-operational semantics of GSMPA is based on decorated tran-
sition systems governed by transition rules with rather complex preconditions.
There are two types of transitions: the choice (action beginning) and the ter-
mination (action ending) ones. The choice transitions are labeled by weights
of single actions chosen for execution while the termination transitions have
no labels. Only single actions can begin, but several actions can end in paral-
lel. Thus, the choice transitions happen just sequentially while the termination
transitions can happen simultaneously. As a result, the decorated interleaving /
step transition systems are obtained. dtsdPBC has an SPN-based denotational
semantics. In comparison with event structures, PNs are more expressive and

44 I.V. Tarasyuk

visually tractable formalism, capable of finitely specifying an infinite behaviour.
Recursion in GSPA produces infinite GSESs while dtsdPBC has iteration oper-
ation with a finite SPN semantics. Identification of infinite GSESs that can be
finitely represented in GSPA was left for a future research.

4.3 Discrete time

In [1], a class of compositional DTSPNs with generally distributed discrete time
transition delays was proposed, called dts-nets. The denotational semantics of a
stochastic extension (that we call stochastic ACP or sACP) of a subset of Al-
gebra of Communicating Processes (ACP) [20] can be constructed via dts-nets.
There are two types of transitions in dts-nets: immediate (timeless) ones, with
zero delays, and time ones, whose delays are random variables having general
discrete distributions. The top-down synthesis of dts-nets consists in the substi-
tution of their transitions by blocks (dts-subnets) corresponding to the sequence,
choice, parallelism and iteration operators. It was explained how to calculate the
throughput time of dts-nets using the service time (defined as holding time or
delay) of their transitions. For this, the notions of service distribution for the
transitions and throughput distribution for the building blocks were defined.
Since the throughput time of the parallelism block was calculated as the max-
imal service time for its two constituting transitions, the analogue of the step
semantics was implemented.

In [206,207], an SPA called Theory of Communicating Processes with dis-
crete stochastic time (TCP dst) was introduced, later in [205] called Theory of
Communicating Processes with discrete real and stochastic time (TCP drst). It
has discrete real time (deterministic) delays (including zero delays) and discrete
stochastic time delays. The algebra generalizes real time processes to discrete
stochastic time ones by applying real time properties to stochastic time and
imposing race condition to real time semantics. TCP dst has an interleaving
operational semantics in terms of stochastic transition systems. The performance
is analyzed via discrete time probabilistic reward graphs which are essentially
the reward transition systems with probabilistic states having finite number
of outgoing probabilistic transitions and timed states having a single outgoing
timed transition. The mentioned graphs can be transformed by unfolding or
geometrization into discrete time Markov reward chains (DTMRCs) appropriate
for transient or stationary analysis.

The first difference between dtsdPBC and the algebras sACP and TCP dst

is that dtsdPBC is based on PBC, but sACP and TCP dst are the extensions of
ACP [20]. sACP has taken from ACP only sequence, choice, parallelism and iter-
ation operations, whereas dtsdPBC has additionally relabeling, restriction and
synchronization ones, inherited from PBC. In TCP dst, besides standard action
prefixing, alternative composition, parallel composition, encapsulation (similar to
restriction) and recursive variables, there are also timed delay prefixing, depen-
dent delays scope and the maximal time progress operators, which are new both
for ACP and dtsdPBC.

Comparing dtsdPBC with other stochastic process algebras 45

The second difference is that dtsdPBC, sACP and TCP dst have zero delays,
however, discrete time delays in dtsdPBC are zeros or geometrically distribu-
ted (being 1 or ∞ as special cases) and associated with process states. The zero
delays are possible just in vanishing states while geometrically distributed delays
are possible only in tangible states. For each s-tangible (w-tangible) state, the
parameter of geometric distribution governing the delay in the state is completely
determined by the probabilities (weights) of all stochastic (waiting) multiactions
executable from it. In sACP and TCP dst, delays are generally distributed, but
they are assigned to transitions in sACP and separated from actions (excepting
zero delays) in TCP dst. A special attention is given to zero delays in sACP and
deterministic delays in TCP dst. In sACP, immediate (timeless) transitions with
zero delays serve as source and sink transitions of the dts-subnets corresponding
to the choice, parallelism and iteration operators. In TCP dst, zero delays of
actions are specified by undelayable action prefixes while positive deterministic
delays of processes are specified with timed delay prefixes. Neither formal syntax
nor operational semantics for sACP are defined and it is not explained how to
derive Markov chains from the algebraic expressions or the corresponding dts-
nets to analyze performance. It is not stated explicitly, which type of semantics
(interleaving or step) is accommodated in sACP. In spite of the discrete time
approach, operational semantics of TCP dst is still interleaving, unlike that of
dtsdPBC. In addition, no denotational semantics was defined for TCP dst.

Consider other SPAs with discrete time and interleaving semantics.

Discrete time interleaving SPAs without immediate actions.
Weighted Synchronous Calculus of Communicating Systems (WSCCS)

[280,281,218] is an extension of SCCS [220] with weights. WSCCS is a calculus
of probabilistic processes, where probabilities are not directly assigned to the
choice operation. Instead, weights are interpreted as the probabilistic specifica-
tions using the relative frequency concept and corresponding equality criterium.
There exist special weights expressing priorities. The weights and actions in
WSCCS are separated. The actions in WSCCS form an Abelian group with the
identity action and inverse of each action. The WSCCS operators are: empty
(null) process, (action) prefix, weighted choice (with a finite number of weights),
(synchronous) parallel composition, permit (only actions in a set), prioritized
parts (taking only), relabeling and recursion (or recursive definition). The dis-
crete model of time is applied in WSCCS and processes are executed at time
ticks. Either weighted choice or named action execution occur at each tick, re-
sulting in the interleaving semantics and stratified model [142]. WSCCS is also
used to calculate upper bounds on the performance of mutually affected systems,
in which action delays are specified symbolically as random values with general
discrete phase type distributions.

Discrete time variant (that we call dsCCP) of stochastic Concurrent Con-
straint Programming (sCCP) was proposed in [43]. The calculus sCCP is con-
structed to model and analyze biological systems. In sCCP, communication is
asynchronous, species are described by variables, reactions are seen as constra-
ints on the variables and rates are defined using functions. The operations of

46 I.V. Tarasyuk

sCCP include ask prefix (with rate), tell prefix (with rate), choice, empty process,
procedure call (with rate), hiding and parallel composition. The analysis consists
in stochastic simulation, as well as in translation into a probabilistic verification
tool, ODEs and hybrid systems. A discrete time version (with rates interpreted as
weights, used to calculate probabilities) of the sCCP operational semantic results
in the algebra dsCCP, with DTMCs being the performance analysis model.

Discrete time interleaving SPAs with immediate actions.

Interactive Probabilistic Chains (IPC) [97,158] calculus unifies in a single pro-
babilistic discrete time model the capabilities of compositional modeling, func-
tional verification and performance analysis (through translation into DTMCs)
for industrial systems and networks on chips. The operators of IPC are termi-
nation, sequential composition, probabilistic choice (with a set of probabilities),
nondeterministic choice, parallel composition (with synchronization set), hiding
(of actions set), process call and (possibly recursive) process definition. Being
a discrete time analogue of the algebra IMC [161,162], IPC has an interleav-
ing operational semantics on the unification of labeled transition systems and
DTMCs. The transitions in that semantics are either probabilistic (that occur
with particular probabilities during exactly one discrete time tick) or interac-
tive (corresponding to the instantaneous execution of some actions, possibly
invisible). The performance model of IPC is DTMCs, obtained from interac-
tive probabilistic chains using schedulers to resolve a nondeterministic choice by
replacing it with a probabilistic choice.

The three SPAs are rather specific: unlike standard approach, weights in
WSCCS, rates (weights) in dsCCP and probabilities in IPC are not associated
with actions. In dsCCP, probabilities are calculated using rates (weights) that
are assigned to operations. In IPC, actions are executed instantaneously while
probabilistic choices take one unit time. In the common SPAs with the integrated
time concept, the time parameters are combined with actions into pairs called
activities. In dsCCP and IPC, the orthogonal time concept is applied, where
time progress is separated from actions, assumed to be immediate and to specify
logical progress [94,170].

Table 5 summarizes the SPAs comparison above and that from Section 1
(the calculi sPBC, gsPBC, dtsPBC and dtsiPBC), by (generally) classifying the
SPAs according to the concept of time, the presence of (positive or arbitrary)
deterministic or (only) immediate (multi)actions, and the operational semantics
type. The names of SPAs with the denotational semantics based on SPNs are
printed in bold font. The underlying stochastic process (if defined) for each
presented SPA is specified in parentheses near its name.

5 Discussion

Let us now discuss which advantages has dtsdPBC in comparison with the SPAs
described in Section 4.

Comparing dtsdPBC with other stochastic process algebras 47

Table 5. Classification of stochastic process algebras

Time Deterministic Interleaving semantics Non-interleaving semantics
(multi)actions

Conti- Non-exist MTIPP (CTMC), GSPA (GSMP), GSπ,
nuous PEPA (CTMP), GSMPA (GSMP)

sPBC (CTMC)
Immediate EMPA (SMC, CTMC), —

gsPBC (SMC)
Positive Bio-PEPAd (GSMP) —

Dis- Non-exist WSCCS (DTMC), dtsPBC (DTMC)
crete dsCCP (DTMC)

Immediate IPC (DTMC) dtsiPBC (SMC, DTMC)

Arbitrary TCP dst (DTMRC) sACP,
dtsdPBC (SMC, DTMC)

5.1 Analytical solution

An important aspect is the analytical tractability of the underlying stochas-
tic process, used for performance evaluation in SPAs. The underlying CTMCs in
MTIPP and PEPA, as well as SMCs in EMPA, are treated analytically, but these
continuous time SPAs have interleaving semantics. GSPA, GSπ and GSMPA
are the continuous time models, for which a non-interleaving semantics is con-
structed, but for the underlying GSMPs in GSPA and GSMPA, only simulation
and numerical methods are applied, whereas no performance model for GSπ is
defined. sACP and TCP dst are the discrete time models with the associated an-
alytical methods for the throughput calculation in sACP or for the performance
evaluation based on the underlying DTMRCs in TCP dst, but both models have
interleaving semantics. dtsdPBC is a discrete time model with a non-interleaving
semantics, where analytical methods are applied to the underlying SMCs. Hence,
if an interleaving model is appropriate as a framework for the analytical solution
towards performance evaluation then one has a choice between the continuous
time SPAs MTIPP, PEPA, EMPA and the discrete time ones sACP, TCP dst.
Otherwise, if one needs a non-interleaving model with the associated analytical
methods for performance evaluation and the discrete time approach is feasible
then dtsdPBC is the right choice.

The existence of an analytical solution also permits to interpret quantitative
values (rates, probabilities, weights etc.) from the system specifications as param-
eters, which can be adjusted to optimize the system performance, like in dtsPBC,
dtsiPBC and dtsdPBC. The DTMCs whose transition probabilities are parame-
ters were introduced in [105]. The parameters can also be adjusted in parametric
probabilistic transition systems (PTSs) [195], i.e. in the DTMCs whose transi-
tion probabilities may be real-valued parameters. Parametric CTMCs with the
transition rates treated as parameters were investigated in [153]. Parametric
probabilistic timed automata (PTAs) were defined in [80]. Parametric DTMCs
with the transition probabilities being polynomials over real-valued parameters

48 I.V. Tarasyuk

were investigated in [152]. In [178], a new method of computing the reachability
probabilities was proposed for parametric DTMCs whose state change probabil-
ities are the fractions of polynomials over the set of parameters. The parame-
ter value synthesis problem was studied in [111] for parametric interval DTMCs
(IDTMCs), in which the parameters are the borders of the transition probability
intervals. In [256], a new parameter synthesis technique called lifting was pro-
posed for parametric models: stochastic games (SGs), Markov decision processes
(MDPs) and DTMCs. Parametric verification for concurrent systems modeled
by parametric versions of timed automata (TAs), interval (DT)MCs (IDTMCs),
PNs and logic Action-Restricted CTL (ARCTL) was surveyed in [2]. For para-
metric verification with logic PCTL in [100], uncertain MDPs (UMDPs) were
applied whose parameters may be either controlled (as in the standard paramet-
ric MDPs) or uncontrolled (being random values with the probability distribu-
tions), aiming to specify uncertainty of the transition probabilities and reward
functions. In [181], the parameter synthesis problem was investigated and the
algorithms of its solution were proposed for two Markovian models: parametric
DTMCs and MDPs, being the subclasses of parametric SGs.

On the other hand, no parameters in formulas of SPAs were considered in
the literature so far. In dtsdPBC we can easily construct examples with more
parameters than we did in our case study. The performance indices will be then
interpreted as functions of several variables. The advantage of our approach is
that, unlike of the method from [195] and other works, we should not impose to
the parameters any special conditions needed to guarantee that the real values,
interpreted as the transition probabilities, always lie in the interval [0; 1]. To be
convinced of this fact, just remember that, as we have demonstrated, the positive
probability functions PF, PT, PM define probability distributions, hence, they
always return values belonging to (0; 1] for any probability parameters from (0; 1)
and weight parameters from R>0. In addition, the transition constraints (their
probabilities, rates and guards), calculated using the parameters, in our case
should not always be polynomials over variables-parameters, as often required
in the mentioned papers, but they may also be fractions of polynomials, like in
our case study.

5.2 Concurrency interpretation

One can see that the stochastic process calculi proposed in the literature are
based on interleaving, as a rule, and parallelism is simulated by synchronous or
asynchronous execution. As a semantic domain, the interleaving formalism of
transition systems is often used. However, to properly support intuition of the
behaviour of concurrent and distributed systems, their semantics should treat
parallelism as a primitive concept that cannot be reduced to nondeterminism.
Moreover, in interleaving semantics, some important properties of these systems
cannot be expressed, such as simultaneous occurrence of concurrent transitions
[107] or local deadlock in the spatially distributed processes [227]. Therefore,
investigation of stochastic extensions for more expressive and powerful algebraic
calculi is an important issue. The development of step or “true concurrency”

Comparing dtsdPBC with other stochastic process algebras 49

(such that parallelism is considered as a causal independence) SPAs is an inte-
resting and nontrivial problem, which has attracted special attention last years.
Nevertheless, not so many formal stochastic models of parallel systems were de-
fined whose underlying stochastic processes are based on DTMCs. As mentioned
in [125], such models are more difficult to analyze, since several events can occur
simultaneously in discrete time systems (the models have a step semantics) and
the probability of a set of events cannot be easily related to the probability of
the single ones. Thus, parallel executions of actions are often not considered also
in the discrete time SPAs, such as TCP dst, whose underlying stochastic process
is DTMCs with rewards (DTMRCs). As observed in [173], even for stochastic
models with generally distributed delays, the concurrency degree restrictions
were imposed to simplify their analysis techniques. In particular, the enabling
restriction requires that no two generally distributed transitions are enabled in
any reachable marking. Hence, their activity periods do not intersect and no two
such transitions can fire simultaneously. This results in interleaving semantics
of the model.

Stochastic models with discrete time and step semantics have the following
important advantage over those having just an interleaving semantics. The un-
derlying Markov chains of parallel stochastically timed processes have the addi-
tional transitions corresponding to the simultaneous execution of concurrent (i.e.
non-synchronized) activities. The transitions of that kind allow one to bypass
a lot of intermediate states, which otherwise should be visited when interleav-
ing semantics is accommodated. When step semantics is used, the intermediate
states can also be visited with some probability (this is an advantage, since some
alternative system’s behaviour may start from these states), but this probability
is not greater than the corresponding one in case of interleaving semantics. While
in interleaving semantics, only the empty or singleton (multi)sets of activities
can be executed, in step semantics, generally, the (multi)sets of activities with
more than one element can be executed as well. Hence, in step semantics, there
are more variants of execution from each state than in the interleaving case and
the executions probabilities, whose sum should be equal to 1, are distributed
among more possibilities. Therefore, the systems with parallel stochastic pro-
cesses usually have smaller average run-through. In case the underlying Markov
chains of the processes are ergodic, they will generally take less discrete time
units to stabilize the behaviour, since their TPMs will be usually denser because
of additional non-zero elements outside the main diagonal. Hence, both the first
passage-time performance indices based on the transient probabilities and the
steady-state performance indices based on the stationary probabilities can be
potentially computed quicker, resulting in mostly faster quantitative analysis of
the systems. On the other hand, step semantics, induced by simultaneous firing
several transitions at each step, is natural for Petri nets and allows one to exploit
full power of the model. Therefore, it is important to respect the probabilities of
parallel executions of activities in discrete time SPAs, especially in those with a
Petri net denotational semantics.

50 I.V. Tarasyuk

The speed (rate) of converging the transient PMF for a DTMC to its sta-
tionary PMF was studied in [190] (the quantitative estimate via the TPM’s
second eigenvalue, by the absolute value descendance) and in [126] (the equiv-
alent qualitative conditions in terms of geometric ergodicity, i.e. exponentially
fast approaching the stationary distribution with time progress).

5.3 Application area

From the application viewpoint, one considers what kind of systems are more
appropriate to be modeled and analyzed within SPAs. MTIPP and PEPA are
well-suited for the interleaving continuous time systems such that the activity
rates or the average sojourn time in the states are known in advance and expo-
nential distribution approximates well the activity delay distributions, whereas
EMPA can be used to model the mentioned systems with the activity delays of
different duration order or the extended systems, in which purely probabilistic
choices or urgent activities must be implemented. GSPA and GSMPA fit well
for modeling the continuous time systems with a capability to keep the activity
causality information, and with the known activity delay distributions, which
cannot be approximated accurately by exponential distribution, while GSπ can
additionally model mobility in such systems. TCP dst is a good choice for inter-
leaving discrete time systems with deterministic (fixed) and generalized stochas-
tic delays, whereas sACP is capable to model non-interleaving systems as well,
but it offers not enough performance analysis methods.

dtsdPBC is consistent for the step discrete time systems such that the inde-
pendent execution probabilities of activities are known and geometrical distri-
bution approximates well the state residence time distributions. These include
Dirac distribution of the positive deterministic sojourn time, which is then split-
ted into one time units and allocated with the consecutive process states. In
addition, dtsdPBC can model the mentioned systems featuring very scattered
activity delays, or even more complex systems with instantaneous probabilistic
choice or urgency. Hence, dtsdPBC can be taken as a non-interleaving discrete
time counterpart of TCP dst.

5.4 Advantages of our approach

Table 6 contains a classification of the (labeled) SPNs classes mentioned in this
paper, according to the model of time (continuous or discrete) and presence
of (besides stochastic) immediate or deterministic (i.e. immediate and wait-
ing) transitions. We consider (labeled) CTSPNs [225,210,67,11,19,12], GSPNs
[81,83,210,84,211,68,11,19,12], WDTSPNs [70], DTSPNs
[224,226,264,265,266,267,268], spTPNs [64], DTSIPNs [273,274,275,276,277],
DTDSPNs [305,301,302] and DTSDPNs [269,270,271,272]. We also consider a
continuous time model of deterministic stochastic Petri nets (DSPNs) [212,213]
with stochastic (exponential) and deterministic transitions. In the parentheses
near the SPNs classes, the names of the SPAs discussed here are written whose
denotational semantics is based on the respective types of SPNs. For example,

Comparing dtsdPBC with other stochastic process algebras 51

denotational semantics of PEPA is constructed using (labeled) CTSPNs while
that of dtsiPBC is defined via dtsi-boxes, a subclass of LDTSIPNs. The names
of the SPNs and SPAs, defined by us, are printed in bold font. In the table, all
the SPNs with continuous time have interleaving semantics whereas those with
discrete time have non-interleaving (step) semantics.

Table 6. Classification of stochastic Petri nets

Time Stochastic Stochastic and Stochastic and
transitions immediate deterministic

transitions transitions

Continuous (L)CTSPNs (L)GSPNs DSPNs
(PEPA, sPBC) (EMPA, gsPBC) (—)

Discrete (L)WDTSPNs (—), spTPNs (—), DTDSPNs (—),
(L)DTSPNs (L)DTSIPNs (L)DTSDPNs
(dtsPBC) (dtsiPBC) (dtsdPBC)

Thus, the main advantages of dtsdPBC are the flexible multiaction labels,
stochastic and deterministic multiactions, powerful operations, as well as a step
operational and a Petri net denotational semantics allowing for concurrent ex-
ecution of activities (transitions), together with an ability for analytical and
parametric performance evaluation. The uniqueness of our approach consists in
applying a parallel semantics for the process expressions and preserving the con-
currency level in the extracted performance models (SMC, DTMC and RDTMC)
through their state changes corresponding to the simultaneous executions.

6 Conclusion

In this paper, we have considered dtsdPBC [269,270,271,272], an extension with
discrete stochastic and deterministic time of Petri box calculus (PBC)
[31,33,32,30]. Stochastic process algebra dtsdPBC has a parallel step operati-
onal semantics, based on labeled probabilistic transition systems, and a Petri
net denotational semantics in terms of dtsd-boxes, a special subclass of LDTS-
DPNs [269,270]. The underlying semi-Markov chains (SMCs) and (reduced) dis-
crete time Markov chains (DTMCs and RDTMCs) of the process expressions
are analyzed in dtsdPBC to evaluate performance [271]. We have determined
the advantages of dtsdPBC by comparing it with more than 90 other SPAs,
most of which appeared to adapt continuous time, interleaving semantics and
exponential delays. We have discussed the SPAs approaches to the analytical
solution, concurrency interpretation and application area.

6.1 Originality of the model

The advantage of our framework is twofold. First, one can specify in it concurrent
composition and synchronization of (multi)actions, what is not possible in clas-

52 I.V. Tarasyuk

sical Markov chains. As argued in [282], (stochastic) PNs represent the systems
structure more concisely and can be an intermediate formalism for their more
intuitive translation into Markov chains. Second, algebraic formulas represent
processes in a more compact way than PNs and allow one to apply syntactic
transformations and comparisons. Process algebras are compositional by defi-
nition and their operations naturally correspond to operators of programming
languages. Hence, it is much easier to construct a complex model in the algebraic
setting than in PNs. The complexity of PNs generated for practical models in
the literature demonstrates that it is not straightforward to construct such PNs
directly from the system specifications.

dtsdPBC is well suited for the discrete time applications, whose discrete
states change with a global time tick, such as business processes, neural and
transportation networks, computer and communication systems, timed web ser-
vices [288], as well as for those, in which the distributed architecture or the
concurrency level should be preserved while modeling and analysis, such as ge-
netic regulatory and cellular signalling networks (featuring maximal parallelism)
in biology [102,103,104,42,18] (remember that we have additional transitions due
to concurrent executions in step semantics). In [138], biological networks were
jointly modeled by (standard, qualitative) PNs, CTSPNs and continuous PNs
(CPNs), to demonstrate their complementarity that makes necessary adding
deterministic time to stochastic models, as well as combining stochastic and
continuous (deterministic) aspects into one model (such as stochastic rates of
reactions and continuous amounts of species).

dtsdPBC can also model and analyze parallel systems with fixed durations
of the typical activities (loading, processing, transfer, repair, low-level events,
message delivery) and stochastic durations of the randomly occurring activities
(arrival, departure, failure, packet loss, message collision), including industrial,
manufacturing, queueing, computing and network systems.

6.2 Research perspectives

Future work consists in constructing a congruence relation for dtsdPBC, i.e.
the equivalence that withstands application of all operations of the algebra.
A possible candidate is a stronger version of the equivalence with respect to
transition systems, with two extra transitions skip and redo, like in sPBC [201].
Moreover, recursion operation could be added to dtsdPBC to increase specifica-
tion power of the algebra.

We also plan to extend dtsdPBC with discrete phase type multiaction delays
that are described by arbitrary finite absorbing DTMCs and include geometric
and non-Markovian (like deterministic) delays as special cases. Discrete phase
type probability distributions approximate with any precision general discrete
distributions over positive integers and are closed under minimum (alternative
composition, conflict), maximum (parallel composition, parallelism), finite con-
volution (sequential composition, precedence), finite weighted and infinite geo-
metric summations [228,263,174,283,190,176,172].

Comparing dtsdPBC with other stochastic process algebras 53

Some known SPNs with phase type transition delays are: SPNs with phase-
type distributed transition times (PTDTT-SPNs) [101] and phased delay PNs
(PDPNs) [180] (the both classes with discrete and continuous time), as well
as defective discrete phase SPNs (DDP-SPNs) [82], discrete deterministic and
stochastic PNs (DDSPNs) [303,304] and non-Markovian SPNs (NMSPNs) [175]
(the three classes with discrete time). Only NMSPNs have a non-interleaving
transition firing semantics, but it is complex and technical.

Some existing SPAs with phase type action delays are: a modification of
PAGS [182], PEPA∞

ph [120], SB-LOTOS [163], PTP [296], PHASE [86,87,85]
and CCC [255,35] (the six SPAs with continuous time), as well as a variant of
WSCCS [281] (with discrete time). All those SPAs have only interleaving op-
erational and no SPN-based denotational semantics. Those interleaving phase
SPAs are rather specialized or theoretically-oriented and hardly applicable in
practice or with restricted specification capabilities. In detail, PAGS is rather
theoretical, PEPA∞

ph describes very special subclasses of non-Markovian sys-
tems, SB-LOTOS separates actions and delays, WSCCS has technically com-
plex and non-sufficiently intuitive syntax and semantics, PTP has cooperating
processes that cannot be synchronized by the shared activities, PHASE offers
just a few operators, whereas CCC does not have actions, synchronization and
recursion. Unlike PAGS , PEPA∞

ph, SB-LOTOS, PTP, PHASE and CCC with
continuous time, WSCCS adapts a discrete time model, but the semantics of
WSCCS is still interleaving.

Thus, it is actual to construct a discrete time SPA with phase type delays and
non-interleaving semantics: operational one (on the labeled transition systems
with parallel executions of activities) and denotational one (on the SPNs with
phase delays and parallel firings of transitions).

References

1. W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time
stochastic Petri nets, Statistica Neerlandica, 54:2 (2000), 237–255. Zbl 0994.
68091

2. É. André, M. Knapik, D. Lime, W. Penczek, L. Petrucci, Parametric verification:
an introduction, Lecture Notes in Computer Science, 11790 (2019), 64–100.

3. P.R. D’Argenio, Algebras and automata for timed and stochastic systems, Ph.D.
thesis, CTIT PhD-Thesis Series, 99-25, Department of Computer Science, Uni-
versity of Twente, Enschede, The Netherlands, 1999.

4. P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic
automata, Information and Computation, 203:1 (2005), 1–38.

5. P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part II: Process
algebra, Information and Computation, 203:1 (2005), 39–74.

6. P.R. D’Argenio, J.-P. Katoen, E. Brinksma, An algebraic approach to the
specification of stochastic systems (extended abstract), Proc. IFIP TC2/WG2.2,
2.3 Int. Conf. on Programming Concepts and Methods (PROCOMET) 1998 (D.
Gries, W.-P. de Roever, eds.), Shelter Island, New York, USA, 126–147, Chapman
& Hall, London, UK, 1998.

https://doi.org/10.1111/1467-9574.00139
https://doi.org/10.1111/1467-9574.00139
https://doi.org/10.1007/978-3-662-60651-3_3
https://doi.org/10.1007/978-3-662-60651-3_3
https://www.cs.famaf.unc.edu.ar/~dargenio/sites/default/files/pdf/papers/paper-207.pdf
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1016/j.ic.2005.07.002
https://doi.org/10.1016/j.ic.2005.07.002
https://doi.org/10.1007/978-0-387-35358-6_12
https://doi.org/10.1007/978-0-387-35358-6_12

54 I.V. Tarasyuk

7. P.R. D’Argenio, J.-P. Katoen, E. Brinksma, A compositional approach to
generalised semi-Markov processes, Proc. 4th Int. Workshop on Discrete Event
Systems (WODES) 1998 (A. Guia, R. Smedinga, M.P. Spathopoulos, eds.),
Cagliary, Italy, 391–397, IEE Publisher, London, UK, 1998.

8. A. Argent-Katwala, J.T. Bradley, A. Clark, S. Gilmore, Location-aware quality of
service measurements for service-level agreements, Lecture Notes in Computer
Science, 4912 (2008), 222–239.

9. A. Argent-Katwala, J.T. Bradley, N.J. Dingle, Expressing performance
requirements using regular expressions to specify stochastic probes over process
algebra models, Proc. 4th Int. Workshop on Software and Performance (WOSP)
2004, Redwood Shores, California, USA, 49–58, ACM Press, 2004.

10. G. Bacci, M. Miculan, Measurable stochastics for Brane Calculus, Theoretical
Computer Science, 431 (2012), 117–136.

11. G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Sci-
ence, 2090 (2001), 84–155. Zbl 0990.68092

12. G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in
Computer Science, 4486 (2007), 83–131. Zbl 1323.68400

13. R. Barbuti, G. Caravagna, A. Maggiolo-Schettini, P. Milazzo, G. Pardini,
The calculus of looping sequences, Lecture Notes in Computer Science, 5016
(2008), 387–423.

14. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, Spatial calculus of
looping sequences, Proc. 2nd Workshop From Biology to Concurrency and Back
(FBTC) 2008 (N. Cannata, E. Merelli, I. Ulidowski, eds.), Reykjavik, Iceland,
Electronic Notes in Theoretical Computer Science, 229:1 (2009), 21–39.

15. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, Spatial calculus of
looping sequences, Theoretical Computer Science, 412:43 (2011), 5976–6001.

16. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, P. Tiberi, P. Troina, Stochastic
calculus of looping sequences for the modelling and simulation of cellular
pathways, Lecture Notes in Computer Science, 5121 (2008), 86–113.

17. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, A. Troina, A calculus of looping
sequences for modelling microbiological systems, Fundamenta Informaticae,
72:1–3 (2006), 21–35. Zbl 1101.92021

18. E. Bartocci, P. Lió, Computational modeling, formal analysis, and tools for
systems biology, PLoS Computational Biology, 12:1 (2016), e1004591.

19. F. Bause, P.S. Kritzinger, Stochastic Petri nets: an introduction to the theory,
Friedrich Vieweg and Sohn, Braunschweig / Wiesbaden, Germany, 2002. Zbl
1013.60065

20. J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction,
Theoretical Computer Science, 37 (1985), 77–121.

21. M. Bernardo, Theory and application of extended Markovian process algebra,
Ph.D. thesis, University of Bologna, Italy, 1999.

22. M. Bernardo, S. Botta, A survey of modal logics characterizing behavioural
equivalences for non-deterministic and stochastic systems, Mathematical Struc-
tures in Computer Science, 18:1 (2008), 29–55. MR2459612

23. M. Bernardo, F. Corradini, L. Tesei, Timed process calculi with deterministic or
stochastic delays: commuting between durational and durationless actions, Theo-
retical Computer Science (2016), 629, 2–39.

24. M. Bernardo, L. Donatiello, R. Gorrieri, Modeling and analyzing concurrent
systems with MPA, Proc. 2nd Int. Workshop on Process Algebra and Performance
Modelling (PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg / Erlangen,

https://www.cs.famaf.unc.edu.ar/~dargenio/sites/default/files/pdf/papers/paper-210.pdf
https://www.cs.famaf.unc.edu.ar/~dargenio/sites/default/files/pdf/papers/paper-210.pdf
https://doi.org/10.1007/978-3-540-78663-4_16
https://doi.org/10.1007/978-3-540-78663-4_16
https://doi.org/10.1145/974044.974051
https://doi.org/10.1145/974044.974051
https://doi.org/10.1145/974044.974051
https://doi.org/10.1016/j.tcs.2011.12.055
https://doi.org/10.1007/3-540-44667-2_3
https://doi.org/10.1007/978-3-540-72522-0_3
https://doi.org/10.1007/978-3-540-68894-5_11
https://doi.org/10.1016/j.entcs.2009.02.003
https://doi.org/10.1016/j.entcs.2009.02.003
https://doi.org/10.1016/j.tcs.2011.01.020
https://doi.org/10.1016/j.tcs.2011.01.020
https://doi.org/10.1007/978-3-540-88765-2_3
https://doi.org/10.1007/978-3-540-88765-2_3
https://doi.org/10.1007/978-3-540-88765-2_3
http://www.lix.polytechnique.fr/~troina/publications/fi06.pdf
http://www.lix.polytechnique.fr/~troina/publications/fi06.pdf
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1371/journal.pcbi.1004591
https://ls4-www.cs.tu-dortmund.de/download/typo3/de/home/bause/bause_kritzinger_spn_book_screen.pdf
https://doi.org/10.1016/0304-3975(85)90088-X
http://www.sti.uniurb.it/bernardo/documents/phdthesis.pdf
https://doi.org/10.1017/S0960129507006408
https://doi.org/10.1017/S0960129507006408
https://doi.org/10.1016/j.tcs.2016.02.022
https://doi.org/10.1016/j.tcs.2016.02.022
http://www.sti.uniurb.it/bernardo/documents/papm1994.pdf
http://www.sti.uniurb.it/bernardo/documents/papm1994.pdf

Comparing dtsdPBC with other stochastic process algebras 55

Germany, Arbeitsberichte des IMMD, 27:4 (1994), 71–88, Universität Erlangen-
Nürnberg, Germany.

25. M. Bernardo, L. Donatiello, R. Gorrieri, A formal approach to the integration of
performance aspects in the modeling and analysis of concurrent systems, Infor-
mation and Computatison, 144:2 (1998), 83–154.

26. M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time, Theoretical Computer
Science, 202:1–2 (1998), 1–54.

27. M. Bernardo, C.A. Mezzina, Towards bridging time and causal reversibility, Lec-
ture Notes in Computer Science, 12136 (2020), 22–38.

28. M. Bernardo, C.A. Mezzina, Bridging causal reversibility and time reversibility: a
stochastic process algebraic approach, Logical Methods in Computer Science, 19:2
(2023), 6:1–6:27.

29. A. Bernini, L. Brodo, P. Degano, M. Falaschi, D. Hermith, Process calculi for
biological processes, Natural Computing, 17 (2018), 345–373.

30. E. Best, R. Devillers, Petri net primer: a compendium on the core model,
analysis, and synthesis, Computer Science Foundations and Applied Logic Series
(CSFAL), Springer International Publishing / Birkhäuser, 2024.

31. E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with
multi-label communication, Lecture Notes in Computer Science, 609 (1992), 21–
69.

32. E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on The-
oretical Computer Science, Springer, 2001.

33. E. Best, M. Koutny,A refined view of the box algebra, Lecture Notes in Computer
Science, 935 (1995), 1–20.

34. L. Bettini, V. Bono, R. De Nicola, G.L. Ferrari, D. Gorla, M. Loreti, E. Moggi, R.
Pugliese, E. Tuosto, B. Venneri, The Klaim project: theory and practice, Lecture
Notes in Computer Science, 2874 (2003), 88–150.

35. A. Bies, H. Hermanns, M.A. Köhl, A. Schmidt, Matching distributions under
structural constraints, Lecture Notes in Computer Science, 14287 (2023), 221–
237.

36. L. Bioglio, M. Dezani-Ciancaglini, P. Giannini, A. Troina, Typed stochastic
semantics for the calculus of looping sequences, Theoretical Computer Science,
431 (2012), 165–180.

37. M.L. Blinov, J.R. Faeder, B. Goldstein, W.S. Hlavacek, BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains, Bioinformatics, 20:17 (2004), 3289–3291.

38. H.C. Bohnenkamp, P.R. D’Argenio, H. Hermanns, J.-P. Katoen, MODEST: a
compositional modeling formalism for hard and softly timed systems, IEEE
Transactions on Software Engineering, 32:10 (2006), 812–830.

39. H.C. Bohnenkamp, B.R. Haverkort, Semi-numerical solution of stochastic process
algebra models, Lecture Notes in Computer Science, 1601 (1999), 228–243.

40. T. Bolognesi, F. Lucidi, LOTOS-like process algebras with urgent or timed
interactions, Proc. IFIP TC6/WG6.1 4th Int. Conf. on Formal Description Techni-
ques for Distributed Systems and Communication Protocols: Formal Description
Techniques, IV (FORTE) 1991 (K.R. Parker, G.A. Rose, eds.), Sydney, Australia,
IFIP Transactions C: Communication Systems (1992), 249–264, Elsevier Science
Publishers (North-Holland), Amsterdam, The Netherlands, 1992.

41. T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc.
IFIP WG6.1 10th Int. Symposium on Protocol Specification, Testing and Verifi-
cation (PSTV) 1990 (L. Logrippo, R.L. Probert, H. Ural, eds.), Ottawa, Canada,

https://doi.org/10.1006/inco.1998.2706
https://doi.org/10.1006/inco.1998.2706
https://doi.org/10.1016/S0304-3975(97)00127-8
https://doi.org/10.1016/S0304-3975(97)00127-8
https://doi.org/10.1007/978-3-030-50086-3_2
https://doi.org/10.46298/LMCS-19(2:6)2023
https://doi.org/10.46298/LMCS-19(2:6)2023
https://doi.org/10.1007/s11047-018-9673-2
https://doi.org/10.1007/s11047-018-9673-2
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/3-540-55610-9_167
https://doi.org/10.1007/3-540-55610-9_167
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/3-540-60029-9_29
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-031-43835-6_16
https://doi.org/10.1007/978-3-031-43835-6_16
https://doi.org/10.1016/j.tcs.2011.12.062
https://doi.org/10.1016/j.tcs.2011.12.062
https://doi.org/10.1093/bioinformatics/bth378
https://doi.org/10.1093/bioinformatics/bth378
https://doi.org/10.1093/bioinformatics/bth378
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1007/3-540-48778-6_14
https://doi.org/10.1007/3-540-48778-6_14
https://doi.org/10.1016/B978-0-444-89402-1.50027-8
https://doi.org/10.1016/B978-0-444-89402-1.50027-8
https://dl.acm.org/doi/abs/10.5555/645833.670383

56 I.V. Tarasyuk

395–408, Elsevier Science Publishers (North-Holland), Amsterdam, The Nether-
lands 1990.

42. N. Bonzanni, K.A. Feenstra, W. Fokkink, E. Krepska, What can formal methods
bring to systems biology? Lecture Notes in Computer Science, 5850 (2009), 16–
22.

43. L. Bortolussi, Stochastic concurrent constraint programming, Proc. 4th Int. Work-
shop on Quantitative Aspects of Programming Languages (QAPL) 2006 (A. Di
Pierro, H. Wiklicky, eds.), Vienna, Austria, Electronic Notes in Theoretical Com-
puter Science, 164:3 (2006), 65–80.

44. L. Bortolussi, Constraint-based approaches to stochastic dynamics of biological
systems, Ph.D. thesis, Ph.D. Thesis Series, CS2007/1, University of Udine, Italy,
2007.

45. L. Bortolussi, S. Fonda, A. Policriti, Constraint-based simulation of biological
systems described by Molecular Interaction Maps, Proc. Int. Conf. on Bioinfor-
matics and Biomedicine (BIBM) 2007 (X. Hu, I. Mandoiu, Z. Obradovic, J. Xia,
eds.), Fremont, CA, USA, 288–293, IEEE Computer Society Press, 2007.

46. L. Bortolussi, V. Galpin, J. Hillston, HYPE with stochastic events, Proc. 9th Int.
Workshop on Quantitative Aspects of Programming Languages and Systems
(QAPL) 2011 (M. Massink, G. Norman, eds.), Saarbrücken, Germany, Electronic
Proceedings in Theoretical Computer Science, 57 (2011), 120–133.

47. L. Bortolussi, J. Hillston, M. Loreti, Fluid approximation of broadcasting systems,
Theoretical Computer Science, 816 (2020), 221–248.

48. L. Bortolussi, R. De Nicola, V. Galpin, S. Gilmore, J. Hillston, D. Latella, M.
Loreti, M. Massink, CARMA: Collective Adaptive Resource-sharing Markovian
Agents, Proc. 13th Workshop on Quantitative Aspects of Programming Langua-
ges and Systems (QAPL) 2015 (N. Bertrand, M. Tribastone, eds.), London, UK,
Electronic Proceedings in Theoretical Computer Science, 194 (2015), 16–31.

49. L. Bortolussi, A. Policriti, Modeling biological systems in concurrent constraint
programming, Proc. 2nd Int. Workshop on Constraint Based Methods in Bioin-
formatics (WCB) 2006 (A. Dovier, A. Dal Palù, S. Will, eds.), Nantes, France,
6–29, 2006.

50. L. Bortolussi, A. Policriti, Stochastic concurrent constraint programming and
differential equations, Proc. 5th Workshop on Quantitative Aspects of Program-
ming Languages (QAPL) 2007 (A. Aldini, F. van Breugel, eds.), Braga, Portugal,
Electronic Notes in Theoretical Computer Science, 190:3 (2007), 27–42.

51. L. Bortolussi, A. Policriti, Modeling biological systems in stochastic concurrent
constraint programming, Constraints, 13:1–2 (2008), 66–90.

52. L. Bortolussi, A. Policriti, Hybrid systems and biology: continuous and discrete
modeling for systems biology, Lecture Notes in Computer Science, 5016 (2008),
424–448.

53. L. Bortolussi, A. Policriti, Hybrid dynamics of stochastic programs, Theoretical
Computer Science, 411 (2010), 2052–2077.

54. L. Bortolussi, M.G. Vigliotti, CoBiC: context-dependent bioambient calculus,
Proc. 7th Workshop on Quantitative Aspects of Programming Languages (QAPL)
2009 (C. Baier, A. di Pierro, eds.), York, UK, Electronic Notes in Theoretical
Computer Science, 253:3 (2009), 187–201.

55. J.T. Bradley, Semi-Markov PEPA: a contradiction in terms? Proc. 2nd Work-
shop on Process Algebras and Stochastically Timed Activities (PASTA) 2003
(S.T. Gilmore, ed.), 1–6, LFCS, Edinburgh, UK, 2003.

https://doi.org/10.1007/978-3-642-05089-3_2
https://doi.org/10.1007/978-3-642-05089-3_2
https://doi.org/10.1016/j.entcs.2006.07.012
https://dmi.units.it/~bortolu/files/reps/Bortolussi-PhDThesis.pdf
https://dmi.units.it/~bortolu/files/reps/Bortolussi-PhDThesis.pdf
https://doi.org/10.1109/BIBM.2007.31
https://doi.org/10.1109/BIBM.2007.31
https://doi.org/10.4204/EPTCS.57.9
https://doi.org/10.1016/j.tcs.2020.02.020
https://doi.org/10.4204/EPTCS.194.2
https://doi.org/10.4204/EPTCS.194.2
https://dmi.units.it/~bortolu/files/conferences/bortolussi_WCB06.pdf
https://dmi.units.it/~bortolu/files/conferences/bortolussi_WCB06.pdf
https://doi.org/10.1016/j.entcs.2007.07.003
https://doi.org/10.1016/j.entcs.2007.07.003
https://doi.org/10.1007/s10601-007-9034-8
https://doi.org/10.1007/s10601-007-9034-8
https://doi.org/10.1007/978-3-540-68894-5_12
https://doi.org/10.1007/978-3-540-68894-5_12
https://doi.org/10.1016/j.tcs.2010.02.008
https://doi.org/10.1016/10.1016/j.entcs.2009.10.012
http://www.doc.ic.ac.uk/~jb/reports/ps/2003-bradley-5.ps.gz

Comparing dtsdPBC with other stochastic process algebras 57

56. J.T. Bradley, Semi-Markov PEPA: compositional modelling and analysis with
generally distributed actions, Proc. 20th Annual UK Performance Engineering
Workshop (UKPEW) 2004 (I. Awan, ed.), 266–275, University of Bradford, UK,
2004.

57. J.T. Bradley, Semi-Markov PEPA: modelling with generally distributed actions,
International Journal of Simulation: Systems, Science and Technology, 6:3–4
(2005), 43–51.

58. M. Bravetti, Specification and analysis of stochastic real-time systems, Ph.D. the-
sis, University of Bologna, Italy, 2002.

59. M. Bravetti, P.R. D’Argenio, Tutte le algebre insieme: concepts, discussions and
relations of stochastic process algebras with general distributions, Lecture Notes
in Computer Science, 2925 (2004), 44–88.

60. M. Bravetti, M. Bernardo, R. Gorrieri, Towards performance evaluation with
general distributions in process algebras, Lecture Notes in Computer Science,
1466 (1998), 405–422. MR1683349

61. M. Bravetti, R. Gorrieri, The theory of interactive generalized semi-Markov
processes, Theoretical Computer Science, 282:1 (2002), 5–32.

62. E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, A stochastic causality-based
process algebra, The Computer Journal, 38:7 (1995), 552–565.

63. L. Brodo, P. Degano, C. Priami, A stochastic semantics for BioAmbients, Lecture
Notes in Computer Science, 4671 (2007), 22–34.

64. G. Bucci, L. Sassoli, E. Vicario, Correctness verification and performance analysis
of real-time systems using stochastic preemptive time Petri nets. IEEE Transac-
tions on Software Engineering, 31:11 (2005), 913–927.

65. P. Buchholz, On a Markovian process algebra, Forschungsbericht, 500 (1994),
Fachbereich Informatik, Technische Universität Dortmund, Germany.

66. P. Buchholz, Markovian process algebra: composition and equivalence, Proc. 2nd

Int. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (U.
Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany, Arbeitsberichte
des IMMD, 27:4 (1994), 11–30.

67. P. Buchholz, A notion of equivalence for stochastic Petri nets, Lecture Notes in
Computer Science, 935 (1995), 161–180. MR1461026

68. P. Buchholz, Iterative decomposition and aggregation of labeled GSPNs, Lecture
Notes in Computer Science, 1420 (1998), 226–245.

69. P. Buchholz, P. Kemper, Quantifying the dynamic behavior of process algebras,
Lecture Notes in Computer Science, 2165 (2001), 184–199.

70. P. Buchholz, I.V. Tarasyuk, Net and algebraic approaches to probabilistic
modeling, Joint Novosibirsk Computing Center and Institute of Informatics Sys-
tems Bulletin, Series Computer Science, 15 (2001), 31–64. Zbl 1004.68112

71. Y. Butkova, A. Hartmanns, H. Hermanns, A Modest approach to modelling and
checking Markov automata, Lecture Notes in Computer Science, 11785 (2019),
52–69.

72. G. Caravagna, J. Hillston, Bio-PEPAd: a non-Markovian extension of
Bio-PEPA, Theoretical Computer Science, 419 (2012), 26–49.

73. L. Cardelli, Brane calculi: interactions of biological membranes, Lecture Notes in
Computer Science, 3082 (2005), 257–278.

74. L. Cardelli, On process rate semantics, Theoretical Computer Science, 391:3
(2008), 190–215.

75. L. Cardelli, From processes to ODEs by chemistry, Proc. 5th IFIP Int. Conf. on
Theoretical Computer Science (TCS) 2008, IFIP 20th World Computer Congress

http://www.doc.ic.ac.uk/~jb/reports/ps/2004-bradley-2.ps.gz
http://www.doc.ic.ac.uk/~jb/reports/ps/2004-bradley-2.ps.gz
https://ijssst.info/Vol-06/No-3&4/CRC-Jeremy.pdf
http://www.cs.unibo.it/~bravetti/papers/phdthesis.ps.gz
https://doi.org/10.1007/978-3-540-24611-4_2
https://doi.org/10.1007/978-3-540-24611-4_2
https://doi.org/10.1007/BFb0055638
https://doi.org/10.1007/BFb0055638
https://doi.org/10.1016/S0304-3975(01)00043-3
https://doi.org/10.1016/S0304-3975(01)00043-3
https://doi.org/10.1093/comjnl/38.7.552
https://doi.org/10.1093/comjnl/38.7.552
https://doi.org/10.1007/978-3-540-73940-1_3
https://doi.org/10.1109/TSE.2005.122
https://doi.org/10.1109/TSE.2005.122
https://doi.org/10.1007/3-540-60029-9_39
https://doi.org/10.1007/3-540-69108-1_13
https://doi.org/10.1007/3-540-44804-7_12
http://bulletin.iis.nsk.su/files/article/buchholz.pdf
http://bulletin.iis.nsk.su/files/article/buchholz.pdf
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1016/j.tcs.2011.11.028
https://doi.org/10.1016/j.tcs.2011.11.028
https://doi.org/10.1007/978-3-540-25974-9_24
https://doi.org/10.1016/j.tcs.2007.11.012
https://doi.org/10.1007/978-0-387-09680-3_18

58 I.V. Tarasyuk

(WCC) 2008, TC1, Foundations of Computer Science (G. Ausiello, J. Karhumäki,
G. Mauri, L. Ong, eds.), Milan, Italy, IFIP International Federation for Informa-
tion Processing (IFIPAICT), 273 (2008), 261–281.

76. L. Cardelli, Strand algebras for DNA computing, Natural Computing, 10 (2011),
407–428.

77. L. Cardelli, R. Mardare, The measurable space of stochastic processes, Proc. 7th

Int. Conf. on Quantitative Evaluation of Systems (QEST) 2010, Williamsburg,
VA, USA, 171–180, IEEE Computer Society Press, 2010.

78. L. Cardelli, R. Mardare, The measurable space of stochastic processes, Funda-
menta Informaticae, 131:3–4 (2014), 351–371.

79. L. Cardelli, G. Zavattaro, On the computational power of biochemistry, Lecture
Notes in Computer Science, 5147 (2008), 65–80.

80. N. Chamseddine, M. Duflot, L. Fribourg, C. Picaronny, J. Sproston, Computing
expected absorption times for parametric determinate probabilistic timed
automata, Proc. 5th International Conf. on Quantitative Evaluation of Systems
(QEST) 2008, St. Malo, France, 254–263, IEEE Computer Society Press, 2008.

81. G. Chiola, A software package for the analysis of generalized stochastic Petri net
models, Proc. 1st Int. Workshop on Timed Petri Nets 1985, Turin, Italy, IEEE
Computer Society Press, 1985.

82. G. Ciardo, Discrete-time Markovian stochastic Petri nets, Computations with
Markov Chains: Proc. 2nd Int. Workshop on the Numerical Solution of Markov
Chains (NSMC) 1995 (W.J. Stewart, ed.), Raleigh, NC, USA, 339–358, Kluwer
Academic Publishers, Boston, MA, USA, 1995. Zbl 0862.60079

83. G. Ciardo, J.K. Muppala, K.S. Trivedi, SPNP: stochastic Petri net package, Proc.
3rd Int. Workshop on Petri Nets and Performance Models (PNPM) 1989, Kyoto,
Japan, 142–151, IEEE Computer Society Press, 1989.

84. G. Ciardo, J.K. Muppala, K.S. Trivedi, On the solution of GSPN reward models,
Performance Evaluation, 12:4 (1991), 237–253. Zbl 0754.60097

85. G. Ciobanu, Analyzing non-Markovian systems by using a stochastic process
calculus and a probabilistic model checker, Mathematics, 11 (2023), Article 302.

86. G. Ciobanu, A.S. Rotaru, PHASE: a stochastic formalism for phase-type
distributions, Lecture Notes in Computer Science, 8829 (2014), 91–106.

87. G. Ciobanu, A.S. Rotaru, Phase-type approximations for non-Markovian
systems: a case study, Lecture Notes in Computer Science, 8938 (2015), 323–334.

88. F. Ciocchetta, M.L. Guerriero, Modelling biological compartments in Bio-PEPA,
Proc. 2nd Int. Meeting on Membrane Computing and Biologically Inspired Process
Calculi (MeCBIC) 2008 (G. Ciobanu, ed.), Iasi, Romania, Electronic Notes in
Theoretical Computer Science, 227 (2009), 77–95.

89. F. Ciocchetta, J. Hillston, Bio-PEPA: an extension of the process algebra PEPA
for biochemical networks, Proc. 1st Workshop From Biology To Concurrency and
back (FBTC) 2007 (N. Cannata, E. Merelli, eds.), Lisbon, Portugal, Electronic
Notes in Theoretical Computer Science, 194:3 (2008), 103–117.

90. F. Ciocchetta, J. Hillston, Process algebras in systems biology, Lecture Notes in
Computer Science, 5016 (2008), 265–312.

91. F. Ciocchetta, J. Hillston, Bio-PEPA: a framework for the modelling and
analysis of biochemical networks, Theoretical Computer Science, 410:33–34
(2009), 3065–3084.

92. G. Clark, S. Gilmore, State-aware performance analysis with eXtended Stochastic
Probes, Lecture Notes in Computer Science, 5261 (2008), 125–140.

https://doi.org/10.1007/s11047-010-9236-7
https://doi.org/10.1109/QEST.2010.30
https://doi.org/10.3233/FI-2014-1019
https://doi.org/10.1007/978-3-540-85101-1_6
https://doi.org/10.1109/QEST.2008.34
https://doi.org/10.1109/QEST.2008.34
https://doi.org/10.1109/QEST.2008.34
https://doi.org/10.1007/978-1-4615-2241-6_20
https://doi.org/10.1109/PNPM.1989.68548
https://doi.org/10.1016/0166-5316(91)90003-L
https://doi.org/10.3390/math11020302
https://doi.org/10.3390/math11020302
https://doi.org/10.1007/978-3-319-11737-9_7
https://doi.org/10.1007/978-3-319-11737-9_7
https://doi.org/10.1007/978-3-319-15201-1_21
https://doi.org/10.1007/978-3-319-15201-1_21
https://doi.org/10.1016/j.entcs.2008.12.105
https://doi.org/10.1016/j.entcs.2007.12.008
https://doi.org/10.1016/j.entcs.2007.12.008
https://doi.org/10.1007/978-3-540-68894-5_8
https://doi.org/10.1016/j.tcs.2009.02.037
https://doi.org/10.1016/j.tcs.2009.02.037
https://doi.org/10.1007/978-3-540-87412-6_10
https://doi.org/10.1007/978-3-540-87412-6_10

Comparing dtsdPBC with other stochastic process algebras 59

93. G. Clark, S. Gilmore, M.L. Guerriero, J. Hillston, Conservation of mass analysis
for Bio-PEPA, Proc. 6th Int. Workshop on Practical Applications of Stochas-
tic Modelling (PASM) 2012 and 11th Int. Workshop on Parallel and Distributed
Methods in Verification (PDMC) 2012 (J. Bradley, K. Heljanko, W. Knotten-
belt, N. Thomas, eds.), London, UK, Electronic Notes in Theoretical Computer
Science, 296 (2013), 107–126.

94. G. Clark, S. Gilmore, J. Hillston, M. Tribastone, Stochastic process algebras, Lec-
ture Notes in Computer Science, 4486 (2007), 132–179.

95. M. Coppo, F. Damiani, M. Drocco, E. Grassi, M. Guether, A. Troina, Modelling
ammonium transporters in Arbuscular Mycorrhiza symbiosis, Lecture Notes in
Computer Science, 6575 (2011), 85–109.

96. M. Coppo, F. Damiani, M. Drocco, E. Grassi, A. Troina, Stochastic calculus of
wrapped compatnents, Proc. 8th Int. Workshop on Quantitative Aspects of Pro-
gramming Languages (QAPL) 2010 (A. Di Pierro, G. Norman, eds.), Electronic
Proceedings in Theoretical Computer Science, 28 (2010), 82–98.

97. N. Coste, H. Hermanns, E. Lantreibecq, W. Serwe, Towards performance
prediction of compositional models in industrial GALS designs, Lecture Notes in
Computer Science, 5643 (2009), 204–218.

98. A. Credi, M. Garavelli, C. Laneve, S. Pradalier, S. Silvi, G. Zavattaro,
Modelization and simulation of nano devices in nanoκ calculus, Lecture Notes in
Computer Science, 4695 (2007), 168–183.

99. A. Credi, M. Garavelli, C. Laneve, S. Pradalier, S. Silvi, G. Zavattaro, nanoκ: a
calculus for the modeling and simulation of nano devices, Theoretical Computer
Science, 408:1 (2008), 17–30.

100. M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen, U. Topcu, Scenario-based
verification of uncertain MDPs, Lecture Notes in Computer Science, 12078
(2020), 287–305.

101. A. Cumani, ESP — a package for the evaluation of stochastic Petri nets with
phase-type distributed transition times, Proc. 1st Int. Workshop on Timed Petri
Nets 1985, Turin, Italy, 144–151, IEEE Computer Society Press, 1985.

102. V. Danos, J. Feret, W. Fontana, R. Harmer, J. Krivine, Rule-based modelling of
cellular signalling, Lecture Notes in Computer Science, 4703 (2007), 17–41.

103. V. Danos, J. Feret, W. Fontana, J. Krivine, Scalable simulation of cellular
signaling networks, Lecture Notes in Computer Science, 4807 (2007), 139–157.

104. V. Danos, J. Feret, W. Fontana, J. Krivine, Abstract interpretation of cellular
signalling networks, Lecture Notes in Computer Science, 4905 2008, 83–97.

105. C. Daws, Symbolic and parametric model checking of discrete-time Markov
chains, Lecture Notes in Computer Science, 3407 (2005), 280–294.

106. P. Degano, D. Prandi, C. Priami, P. Quaglia, Beta-binders for biological
quantitative experiments, Proc. 4th Int. Workshop on Quantitative Aspects of
Programming Languages (QAPL) 2006 (A. Di Pierro, H. Wiklicky, eds.), Vienna,
Austria, Electronic Notes in Theoretical Computer Science, 164:3 (2006), 101–
117.

107. P. Degano, C. Priami, Non-interleaving semantics for mobile processes, Theoret-
ical Computer Science, 216:1–2 (1999), 237–270.

108. A. Degasperi, Multi-scale modelling of biological systems in process algebra,
Ph.D. thesis, School of Computing Science, College of Science and Engineering,
University of Glasgow, UK, 2011.

109. A. Degasperi, M. Calder, Multi-scale modelling of biological systems in process
algebra with multi-way synchronisation, Proc. 9th Int. Conf. on Computational

https://doi.org/10.1016/j.entcs.2013.07.008
https://doi.org/10.1016/j.entcs.2013.07.008
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-642-19748-2_5
https://doi.org/10.1007/978-3-642-19748-2_5
https://doi.org/10.4204/EPTCS.28.6
https://doi.org/10.4204/EPTCS.28.6
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-540-75140-3_12
https://doi.org/10.1016/j.tcs.2008.07.006
https://doi.org/10.1016/j.tcs.2008.07.006
https://doi.org/10.1007/978-3-030-45190-5_16
https://doi.org/10.1007/978-3-030-45190-5_16
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-76637-7_10
https://doi.org/10.1007/978-3-540-76637-7_10
https://doi.org/10.1007/978-3-540-78163-9_11
https://doi.org/10.1007/978-3-540-78163-9_11
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1016/j.entcs.2006.07.014
https://doi.org/10.1016/j.entcs.2006.07.014
https://doi.org/10.1016/S0304-3975(99)80003-6
https://theses.gla.ac.uk/2946/1/2011degasperiphd.pdf
https://doi.org/10.1145/2037509.2037537
https://doi.org/10.1145/2037509.2037537

60 I.V. Tarasyuk

Methods in Systems Biology (CMSB) 2011, Paris, France, 195–208, ACM Press,
2011.

110. A. Degasperi, M. Calder, A process algebra framework for multi-scale modelling
of biological systems, Theoretical Computer Science, 488 (2013), 15–45.

111. B. Delahaye, D. Lime, L. Petrucci, Parameter synthesis for parametric interval
Markov chains, Lecture Notes in Computer Science, 9583 (2016), 372–390.

112. L. Dematté, R. Larcher, A. Palmisano, C. Priami, A. Romanel, Programming
biology in BlenX, Systems Biology for Signaling Networks (S. Choi, ed.), Chapter
31, 777–820, Systems Biology Series, Volume 1, Springer, New York, NY, USA,
2010.

113. L. Dematté, C. Priami, A. Romanel, Modelling and simulation of biological
processes in BlenX, ACM SIGMETRICS Performance Evaluation Review, 35:4
(2008), 32–39.

114. L. Dematté, C. Priami, A. Romanel, The BetaWorkbench: a computational tool to
study the dynamics of biological systems, Briefings In Bioinformatics, 9:5 (2008),
437–449.

115. L. Dematté, C. Priami, A. Romanel, The BlenX language: a tutorial, Lecture
Notes in Computer Science, 5016 (2008), 313–365.

116. Y. Deng, M.C.B. Hennessy,On the semantics of Markov automata, Lecture Notes
in Computer Science, 6756 (2011), 307–318.

117. Y. Deng, M.C.B. Hennessy, On the semantics of Markov automata, Information
and Computation, 222 (2013), 139–168.

118. M. Dezani-Ciancaglini, P. Giannini, A. Troina, A type system for a stochastic
CLS, Proc. 3rd Workshop on Membrane Computing and Biologically Inspired
Process Calculi (MeCBIC) 2009 (G. Ciobanu, ed.), Bologna, Italy, Electronic
Proceedings in Theoretical Computer Science, 11 (2009), 91–105.

119. Ch. Eisentraut, H. Hermanns, L. Zhang, On probabilistic automata in continuous
time, Proc. 25th Annual IEEE Symposium on Logic in Computer Science (LICS)
2010, Edinburgh, UK, 342–351, IEEE Computer Society Press, 2010.

120. A. El-Rayes, M. Kwiatkowska, G. Norman, Solving infinite stochastic process
algebra models through matrix-geometric methods, Proc. 7th Int. Workshop on
Process Algebra and Performance Modelling (PAPM) 1999 (J. Hillston, M. Silva,
eds.), Zaragoza, Spain, 41–62, Prensas Universitarias de Zaragoza, Spain, 1999.

121. J.R. Faeder, M.L. Blinov, B. Goldstein, W.S. Hlavacek, Combinatorial complexity
and dynamical restriction of network flows in signal transduction, Systems Biol-
ogy, 2:1 (2005), 5–15.

122. J.R. Faeder, M.L. Blinov, W.S. Hlavacek, Graphical rule-based representation of
signal-transduction networks, Proc. ACM Symposium on Applied Computing
(SAC) 2005, Santa Fe, New Mexico, USA, 133–140, ACM Press, 2005.

123. Ch. Feng, J. Hillston, PALOMA: a process algebra for located Markovian agents,
Lecture Notes in Computer Science, 8657 (2014), 265–280.

124. Ch. Feng, J. Hillston, Speed-up of stochastic simulation of PCTMC models by
statistical model reduction, Lecture Notes in Computer Science, 9272 (2015), 291–
305.

125. J.M. Fourneau, Collaboration of discrete-time Markov chains: tensor and product
form, Performance Evaluation, 67 (2010), 779–796.

126. M.A. Gallegos-Herrada, D. Ledvinka, J.S. Rosenthal, Equivalences of geometric
ergodicity of Markov chains, Journal of Theoretical Probability (2023).

127. V. Galpin, Equivalences for a biological process algebra, Theoretical Computer
Science, 412:43 (2011), 6058–6082.

https://doi.org/10.1016/j.tcs.2013.03.018
https://doi.org/10.1016/j.tcs.2013.03.018
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-1-4419-5797-9_31
https://doi.org/10.1007/978-1-4419-5797-9_31
https://doi.org/10.1145/1364644.1364653
https://doi.org/10.1145/1364644.1364653
https://doi.org/10.1093/bib/bbn023
https://doi.org/10.1093/bib/bbn023
https://doi.org/10.1007/978-3-540-68894-5_9
https://doi.org/10.1007/978-3-642-22012-8_24
https://doi.org/10.1016/j.ic.2012.10.010
https://doi.org/10.4204/EPTCS.11.6
https://doi.org/10.4204/EPTCS.11.6
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://www.dcs.gla.ac.uk/~gethin/papers/papm99.pdf
https://www.dcs.gla.ac.uk/~gethin/papers/papm99.pdf
https://doi.org/10.1049/sb:20045031
https://doi.org/10.1049/sb:20045031
https://doi.org/10.1145/1066677.1066712
https://doi.org/10.1145/1066677.1066712
https://doi.org/10.1007/978-3-319-10696-0_22
https://doi.org/10.1007/978-3-319-23267-6_19
https://doi.org/10.1007/978-3-319-23267-6_19
https://doi.org/10.1016/j.peva.2010.01.008
https://doi.org/10.1016/j.peva.2010.01.008
https://doi.org/10.1007/s10959-023-01240-1
https://doi.org/10.1007/s10959-023-01240-1
https://doi.org/10.1016/j.tcs.2011.07.006

Comparing dtsdPBC with other stochastic process algebras 61

128. V. Galpin, Modelling trafficking of proteins within the mammalian cell using
Bio-PEPA, Lecture Notes in Computer Science, 7605 (2012), 374–377.

129. V. Galpin, Hybrid semantics for Bio-PEPA, Information and Computation, 236
(2014), 122–145.

130. V. Galpin, L. Bortolussi, J. Hillston, HYPE: a process algebra for compositional
flows and emergent behaviour, Lecture Notes in Computer Science, 5710 (2009),
305–320.

131. V. Galpin, J. Hillston, Equivalence and discretisation in Bio-PEPA, Lecture No-
tes in Computer Science, 5688 (2009), 189–204.

132. V. Galpin, J. Hillston, A semantic equivalence for Bio-PEPA based on
discretisation of continuous values, Theoretical Computer Science, 412:21 (2011),
2142–2161.

133. V. Galpin, J. Hillston, L. Bortolussi, HYPE applied to the modelling of hybrid
biological systems, Proc. 24th Conf. on the Mathematical Foundations of Pro-
gramming Semantics (MFPS XXIV) 2008 (A. Bauer, M. Mislove, eds.), Philadel-
phia, PA, USA, Electronic Notes in Theoretical Computer Science, 218 (2008),
33–51.

134. V. Galpin, N. Zoń, P. Wilsdorf, S. Gilmore, Mesoscopic modelling of pedestrian
movement using Carma and its tools, ACM Transactions on Modeling and Com-
puter Simulation (TOMACS), 28:2 (2018), Article 11, 11:2–11:26.

135. N. Geisweiller, J. Hillston, M. Stenico, Relating continuous and discrete PEPA
models of signalling pathways, Theoretical Computer Science, 404:1–2 (2008),
97–111.

136. A. Georgoulas, J. Hillston, D. Milios, G. Sanguinetti, Probabilistic programming
process algebra, Lecture Notes in Computer Science, 8657 (2014), 249–264.

137. A. Georgoulas, J. Hillston, G. Sanguinetti, ProPPA: probabilistic programming
for stochastic dynamical systems, ACM Transactions on Modeling and Computer
Simulation (TOMACS), 28:1 (2018), Article 3, 3:1–3:23.

138. D. Gilbert, M. Heiner, S. Lehrack, A unifying framework for modelling and
analysing biochemical pathways using Petri nets, Lecture Notes in Computer Sci-
ence, 4695 (2007), 200–216.

139. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, Journal
of Physical Chemistry, 81:25 (1977), 2340–2361.

140. D.T. Gillespie, Approximate accelerated stochastic simulation of chemically
reacting systems, Journal of Chemical Physics, 115:4 (2001), 1716–1733.

141. S. Gilmore, J. Hillston, L. Kloul, M. Ribaudo, PEPA nets: a structured
performance modelling formalism, Performance Evaluation, 54:2 (2003), 79–104.

142. R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified
models of probabilistic processes, Information and Computation, 121:1 (1995),
59–80. Zbl 0832.68042

143. R. Gori, F. Levi, An analysis for proving probabilistic termination of biological
systems, Theoretical Computer Science, 471 (2013), 27–73.

144. N. Götz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system design:
the integration of functional specification and performance analysis using
stochastic process algebras, Lecture Notes in Computer Science, 729 (1993), 121–
146.

145. D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen, M. Timmer, Modelling, reduction
and analysis of Markov automata, Lecture Notes in Computer Science, 8054
(2013), 55–71.

https://doi.org/10.1007/978-3-642-33636-2_24
https://doi.org/10.1007/978-3-642-33636-2_24
https://doi.org/10.1016/j.ic.2014.01.016
https://doi.org/10.1007/978-3-642-04081-8_21
https://doi.org/10.1007/978-3-642-04081-8_21
https://doi.org/10.1007/978-3-642-03845-7_13
https://doi.org/10.1016/j.tcs.2011.01.007
https://doi.org/10.1016/j.tcs.2011.01.007
https://doi.org/10.1016/j.entcs.2008.10.004
https://doi.org/10.1016/j.entcs.2008.10.004
https://doi.org/10.1145/3155338
https://doi.org/10.1145/3155338
https://doi.org/10.1016/j.tcs.2008.04.012
https://doi.org/10.1016/j.tcs.2008.04.012
https://doi.org/10.1007/978-3-319-10696-0_21
https://doi.org/10.1007/978-3-319-10696-0_21
https://doi.org/10.1145/3154392
https://doi.org/10.1145/3154392
https://doi.org/10.1007/978-3-540-75140-3_14
https://doi.org/10.1007/978-3-540-75140-3_14
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.1378322
https://doi.org/10.1063/1.1378322
https://doi.org/10.1016/S0166-5316(03)00069-5
https://doi.org/10.1016/S0166-5316(03)00069-5
https://doi.org/10.1006/inco.1995.1123
https://doi.org/10.1006/inco.1995.1123
https://doi.org/10.1016/j.tcs.2012.10.058
https://doi.org/10.1016/j.tcs.2012.10.058
https://doi.org/10.1007/BFb0013851
https://doi.org/10.1007/BFb0013851
https://doi.org/10.1007/BFb0013851
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1007/978-3-642-40196-1_5

62 I.V. Tarasyuk

146. D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen, M. Timmer, Analysis of timed
and long-run objectives for Markov automata, Logical Methods in Computer Sci-
ence, 10:3:17 (2014), 1–29.

147. M.C. Guenther, J.T. Bradley, Higher moment analysis of a spatial stochastic
process algebra, Lecture Notes in Computer Science, 6977 (2011), 87–101.

148. M.C. Guenther, A. Stefanek, J.T. Bradley, Moment closures for performance
models with highly non-linear rates, Lecture Notes in Computer Science, 7587
(2013), 32–47.

149. M.L. Guerriero, A. Pokhilko, A.P. Fernández, K.J. Halliday, A.J. Millar, J. Hill-
ston, Stochastic properties of the plant circadian clock, Journal of the Royal So-
ciety Interface, 9:69 (2012), 744–756.

150. M.L. Guerriero, D. Prandi, C. Priami, P. Quaglia, Process calculi abstractions for
biology, Algorithmic Bioprocesses, Chapter 3.3, 463–486 (A. Condon, D. Harel,
J.N. Kok, A. Salomaa, E. Winfree, eds.), Natural Computing Series (NCS),
Springer, Berlin, Heidelberg, Germany, 2009.

151. E.M. Hahn, A. Hartmanns, H. Hermanns, J.-P. Katoen, A compositional
modelling and analysis framework for stochastic hybrid systems, Formal Methods
in System Design, 43:2 (2013), 191–232.

152. E.M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for parametric
Markov models, International Journal on Software Tools for Technology Transfer,
13:1 (2011), 3–19.

153. T. Han, J.-P. Katoen, A. Mereacre, Approximate parameter synthesis for
probabilistic time-bounded reachability, Proc. 29th IEEE Real-Time Systems Sym-
posium (RTSS) 2008, New York, USA, 173–182, IEEE Computer Society Press,
2008.

154. H.M. Hanish, Analysis of place/transition nets with timed-arcs and its
application to batch process control, Lecture Notes in Computer Science, 691
(1993), 282–299.

155. P.G. Harrison, B. Strulo, Stochastic process algebra for discrete event simulation,
Quantitative Methods in Parallel Systems, Esprit Basic Research Series, 18–37
(F. Bacelli, A. Jean-Marie, I. Mitrani, eds.), Springer, Berlin, Germany, 1995.

156. A. Hartmanns, An overview of Modest models and tools for real stochastic timed
systems, Proc. 5th Workshop on Models for Formal Analysis of Real Systems
(MARS) 2022 (C. Dubslaff, B. Luttik, eds.), Electronic Proceedings in Theoretical
Computer Science, 355 (2022), 1–12.

157. V. Hashemi, H. Hermanns, L. Song, Reward-bounded reachability probability for
uncertain weighted MDPs, Lecture Notes in Computer Science, 9583 (2016), 351–
371.

158. H. Hatefi, H. Hermanns, Improving time bounded reachability computations in
interactive Markov chains, Lecture Notes in Computer Science, 8161 (2013), 250–
266.

159. R.A. Hayden, J.T. Bradley, A fluid analysis framework for a Markovian process
algebra, Theoretical Computer Science, 411 (2010), 2260–2297.

160. R.A. Hayden, J.T. Bradley, A. Clark, Performance specification and evaluation
with unified stochastic probes and fluid analysis, IEEE Transactions on Software
Engineering, 39:1 (2013), 97–118.

161. H. Hermanns, Interactive Markov chains: the quest for quantified quality, Lectu-
re Notes in Computer Science, 2428 (2002), 1–217. Zbl 1012.68142

162. H. Hermanns, U. Herzog, J.-P. Katoen, Process algebra for performance
evaluation, Theoretical Computer Science, 274:1–2 (2002), 43–87.

https://doi.org/10.2168/LMCS-10(3:17)2014
https://doi.org/10.2168/LMCS-10(3:17)2014
https://doi.org/10.1007/978-3-642-24749-1_8
https://doi.org/10.1007/978-3-642-24749-1_8
https://doi.org/10.1007/978-3-642-36781-6_3
https://doi.org/10.1007/978-3-642-36781-6_3
https://doi.org/10.1098/rsif.2011.0378
https://doi.org/10.1007/978-3-540-88869-7_23
https://doi.org/10.1007/978-3-540-88869-7_23
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1109/RTSS.2008.19
https://doi.org/10.1109/RTSS.2008.19
https://doi.org/10.1007/3-540-56863-8_52
https://doi.org/10.1007/3-540-56863-8_52
https://doi.org/10.1007/978-3-642-79917-4_2
https://doi.org/10.4204/EPTCS.355.1
https://doi.org/10.4204/EPTCS.355.1
https://doi.org/10.1007/978-3-662-49122-5_17
https://doi.org/10.1007/978-3-662-49122-5_17
https://doi.org/10.1007/978-3-642-40213-5_16
https://doi.org/10.1007/978-3-642-40213-5_16
https://doi.org/10.1016/j.tcs.2010.02.001
https://doi.org/10.1016/j.tcs.2010.02.001
https://doi.org/10.1109/TSE.2012.1
https://doi.org/10.1109/TSE.2012.1
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1016/S0304-3975(00)00305-4
https://doi.org/10.1016/S0304-3975(00)00305-4

Comparing dtsdPBC with other stochastic process algebras 63

163. H. Hermanns, J.-P. Katoen, Automated compositional Markov chain generation
for a plain-old telephone system, Science of Computer Programming, 36:1 (2000),
97–127.

164. H. Hermanns, M. Lohrey, Observational congruence in stochastic timed calcu-
lus with maximal progress, Technischer Bericht, IMMD VII-7/97 (1997), In-
stitut für Matematische Maschinen und Datenverarbeitung (IMMD), Friedrich-
Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

165. H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences and axioms for
MTIPP, Proc. 2nd Int. Workshop on Process Algebras and Performance Modelling
(PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany,
Arbeitsberichte des IMMD, 27:4 (1994), 71–88.

166. J. Hillston, A compositional approach to performance modelling, Ph.D. thesis,
Department of Computer Science, University of Edinburgh, UK, 1994.

167. J. Hillston, The nature of synchronisation, Proc. 2nd Int. Workshop on Process
Algebra and Performance Modelling (PAPM) 1994 (U. Herzog, M. Rettelbach,
eds.), Regensberg / Erlangen, Germany, Arbeitsberichte des IMMD, 27:4 (1994),
51–70.

168. J. Hillston, A compositional approach to performance modelling, Cambridge Uni-
versity Press, Cambridge, UK, 1996. Zbl 1080.68003

169. J. Hillston, Fluid flow approximation of PEPA models, Proc. 2nd Int. Conf. on
the Quantitative Evaluation of Systems (QEST) 2005, Turin, Italy, 33–43, IEEE
Computer Society Press, 2005.

170. J. Hillston, Stochastic process algebras and their Markovian semantics, ACM
SIGLOG News, 5:2 (2018), 20–35.

171. C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK,
1985.

172. A. Horváth, I. Horváth, M. Paolieri, M. Telek, E. Vicario, Approximation of
cumulative distribution functions by Bernstein phase-type distributions, Lecture
Notes in Computer Science, 14996 (2024), 90–106.

173. A. Horváth, M. Paolieri, L. Ridi, E. Vicario, Transient analysis of non-Markovian
models using stochastic state classes, Performance Evaluation, 69:7–8 (2012),
315–335.

174. A. Horváth, M. Paolieri, E. Vicario, Approximating distributions and transient
probabilities by matrix exponential distributions and functions, Quantitative As-
sessments of Distributed Systems: Methodologies and Techniques (D. Bruneo, S.
Distefano, eds.), Chapter 5, 107–127, Performability Engineering Series, Scrivener
Publishing LLC, Beverly, MA, USA, 2015.

175. A. Horváth, A. Puliafito, M. Scarpa, M. Telek, Analysis and evaluation of non-
Markovian stochastic Petri nets, Lecture Notes in Computer Science, 1786
(2000), 171–187. Zbl 0967.68114

176. A. Horváth, E. Vicario, Construction of phase type distributions by Bernstein
exponentials, Lecture Notes in Computer Science, 14231 (2023), 201–215.

177. G. Iacobelli, M. Tribastone, A. Vandin, Differential bisimulation for a Markovian
process algebra, Lecture Notes in Computer Science, 9234 (2015), 293–306. Zbl
06482743

178. N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Ábráham, J.-P. Katoen, B.
Becker,
Accelerating parametric probabilistic verification, Lecture Notes in Computer Sci-
ence, 8657 (2014), 404–420.

179. M. John, C. Lhoussaine, J. Niehren, A.M. Uhrmacher, The attributed pi calculus,
Lecture Notes in Computer Science, 5307 (2008), 83–102.

https://doi.org/10.1016/S0167-6423(99)00019-2
https://doi.org/10.1016/S0167-6423(99)00019-2
http://www.dcs.ed.ac.uk/pepa/synchronisation.pdf
https://doi.org/10.1017/CBO9780511569951
https://doi.org/10.1109/QEST.2005.12
https://doi.org/10.1145/3212019.3212023
http://www.usingcsp.com/cspbook.pdf
https://doi.org/10.1007/978-3-031-68416-6_6
https://doi.org/10.1007/978-3-031-68416-6_6
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1002/9781119131151.ch5
https://doi.org/10.1002/9781119131151.ch5
https://doi.org/10.1007/3-540-46429-8_13
https://doi.org/10.1007/3-540-46429-8_13
https://doi.org/10.1007/978-3-031-43185-2_14
https://doi.org/10.1007/978-3-031-43185-2_14
https://doi.org/10.1007/978-3-662-48057-1_23
https://doi.org/10.1007/978-3-662-48057-1_23
https://doi.org/10.1007/978-3-319-10696-0_31
https://doi.org/10.1007/978-3-540-88562-7_10

64 I.V. Tarasyuk

180. R.L. Jones, G. Ciardo, On phased delay stochastic Petri nets, Proc. 9th Int. Work-
shop on Petri Nets and Performance Models (PNPM) 2001, Aachen, Germany,
165–174, IEEE Computer Society Press, 2001.

181. S. Junges, E. Ábrahám, Ch. Hensel, N. Jansen, J.-P. Katoen, T. Quatmann,
M. Volk, Parameter synthesis for Markov models: covering the parameter space,
Formal Methods in System Design (2024).

182. J.-P. Katoen, Quantitative and qualitative extensions of event structures, Ph.D.
thesis, CTIT Ph.D.-thesis series, 96-09, Centre for Telematics and Information
Technology, University of Twente, Enschede, The Netherlands, 1996.

183. J.-P. Katoen, P.R. D’Argenio, General distributions in process algebra, Lecture
Notes in Computer Science, 2090 (2001), 375–429.

184. J.-P. Katoen, E. Brinksma, D. Latella, R. Langerak, Stochastic simulation of
event structures, Proc. 4th Int. Workshop on Process Algebra and Performance
Modelling (PAPM) 1996 (M. Ribaudo, ed.), Torino, Italy, 21–40, CLUT Press,
1996.

185. B. Klin, V. Sassone, Structural operational semantics for stochastic process
calculi, Lecture Notes in Computer Science, 4962 (2008), 428–442.

186. M. Koutny, A compositional model of time Petri nets, Lecture Notes in Com-
puter Science, 1825 (2000), 303–322.

187. J. Krivine, Systems biology, ACM SIGLOG News, 4:3 (2017), 43–61.
188. J. Krivine, R. Milner, A. Troina, Stochastic bigraphs, Proc. 24th Conf. on the

Mathematical Foundations of Programming Semantics (MFPS XXIV) 2008 (A.
Bauer, M. Mislove, eds.), Philadelphia, PA, USA, Electronic Notes in Theoretical
Computer Science, 218 (2008), 73–96.

189. C. Kuttler, C. Lhoussaine, J. Niehren, A stochastic Pi calculus for concurrent
objects, Lecture Notes in Computer Science, 4545 (2007), 232–246.

190. L. Lakatos, L. Szeidl, M. Telek, Introduction to queueing systems with
telecommunication applications, Springer Nature, Cham, Switzerland, 2019.

191. M.R. Lakin, L. Paulevé, A. Phillips, Stochastic simulation of multiple process
calculi for biology, Theoretical Computer Science, 431 (2012), 181–206.

192. M.R. Lakin, A. Phillips, Modelling, simulating and verifying Turing-powerful
strand displacement systems, Lecture Notes in Computer Science, 6937 (2011),
130–144.

193. M.R. Lakin, S. Youssef, L. Cardelli, A. Phillips, Abstractions for DNA circuit
design, Journal of the Royal Society Interface, 9:68 (2012), 470–486.

194. C. Laneve, S. Pradalier, G. Zavattaro, From biochemistry to stochastic processes,
Proc. 7th Workshop on Quantitative Aspects of Programming Languages (QAPL)
2009 (C. Baier, A. di Pierro, eds.), York, UK, Electronic Notes in Theoretical
Computer Science, 253:3 (2009), 167–185.

195. R. Lanotte, A. Maggiolo-Schettini, A. Troina, Parametric probabilistic transition
systems for system design and analysis, Formal Aspects of Computing, 19:1
(2007), 93–109.

196. B.N. López, G.M. Núñez, NMSPA: a non-Markovian model for stochastic
processes, Proc. Int. ICDCS Workshop on Distributed System Validation and
Verification (DSVV) 2000 (T.-H. Lai, ed.), Taipei, Taiwan, China, 33–40, 2000.

197. B.N. López, G.M. Núñez, F. Rubio, Stochastic process algebras meet Eden, Lec-
ture Notes in Computer Science, 2335 (2002), 29–48.

198. B.N. López, G.M. Núñez, F. Rubio, An integrated framework for the performance
analysis of asynchronous communicating stochastic processes, Formal Aspects of
Computing, 16:3 (2004), 238–262.

https://doi.org/10.1109/PNPM.2001.953366
https://doi.org/10.1007/s10703-023-00442-x
https://doi.org/10.3990/1.9789036507998
https://doi.org/10.1007/3-540-44667-2_11
http://eprints.eemcs.utwente.nl/6487/01/263_KLLB96b.pdf
http://eprints.eemcs.utwente.nl/6487/01/263_KLLB96b.pdf
https://doi.org/10.1007/978-3-540-78499-9_30
https://doi.org/10.1007/978-3-540-78499-9_30
https://doi.org/10.1007/3-540-44988-4_18
https://doi.org/10.1145/3129173.3129182
https://doi.org/10.1016/j.entcs.2008.10.006
https://doi.org/10.1007/978-3-540-73433-8_17
https://doi.org/10.1007/978-3-540-73433-8_17
https://doi.org/10.1007/978-1-4614-5317-8
https://doi.org/10.1007/978-1-4614-5317-8
https://doi.org/10.1016/j.tcs.2011.12.057
https://doi.org/10.1016/j.tcs.2011.12.057
https://doi.org/10.1007/978-3-642-23638-9_12
https://doi.org/10.1007/978-3-642-23638-9_12
https://doi.org/10.1098/rsif.2011.0343
https://doi.org/10.1098/rsif.2011.0343
https://doi.org/10.1016/j.entcs.2009.10.011
https://doi.org/10.1007/s00165-006-0015-2
https://doi.org/10.1007/s00165-006-0015-2
http://dalila.sip.uclm.es/membros/manolo/papers/dsvv2000.ps.gz
http://dalila.sip.uclm.es/membros/manolo/papers/dsvv2000.ps.gz
https://doi.org/10.1007/3-540-47884-1_3
https://doi.org/10.1007/s00165-004-0044-7
https://doi.org/10.1007/s00165-004-0044-7

Comparing dtsdPBC with other stochastic process algebras 65

199. M. Loreti, J. Hillston, Modelling and analysis of collective adaptive systems with
CARMA and its tools, Lecture Notes in Computer Science, 9700 (2016), 83–119.

200. H. Macià, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in
sPBC, Lecture Notes in Computer Science, 3235 (2004), 292–308. Zbl 1110.68420

201. H. Macià, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC,
Formal Methods in System Design, 32:2 (2008), 85–128. Zbl 1138.68040

202. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of
Petri box calculus with immediate multiactions, Fundamenta Informaticae, 87:3–
4 (2008), 367–406. Zbl 1154.68092

203. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, I.V. Tarasyuk, Modelling a video
conference system with sPBC, Applied Mathematics and Information Sciences
10:2 (2016), 475–493.

204. H. Macià, V. Valero, D. de Frutos, sPBC: a Markovian extension of finite Petri
box calculus, Proc. 9th IEEE Int.Workshop on Petri Nets and Performance Models
(PNPM) 2001, Aachen, Germany, 207–216, IEEE Computer Society Press, 2001.

205. J. Markovski, P.R. D’Argenio, J.C.M. Baeten, E.P. de Vink, Reconciling real and
stochastic time: the need for probabilistic refinement, Formal Aspects of Comput-
ing, 24:4–6 (2012), 497–518. MR2947264

206. J. Markovski, E.P. de Vink, Extending timed process algebra with discrete
stochastic time, Lecture Notes of Computer Science, 5140 (2008), 268–283. Zbl
1170.68542

207. J. Markovski, E.P. de Vink, Performance evaluation of distributed systems based
on a discrete real- and stochastic-time process algebra, Fundamenta Informati-
cae, 95:1 (2009), 157–186. MR2590801

208. O. Marroqúın, D. de Frutos, TPBC: timed Petri box calculus, Technical Re-
port, Departamento de Sistemas Infofmáticos y Programación, Universidad Com-
plutense de Madrid, Spain, 2000 (in Spanish).

209. O. Marroqúın, D. de Frutos, Extending the Petri box calculus with time, Lecture
Notes in Computer Science, 2075 (2001), 303–322. Zbl 0986.68082

210. M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes
in Computer Science, 424 (1990), 1–29.

211. M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with
generalised stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley
and Sons, 1995. Zbl 0843.68080

212. M.A. Marsan, G. Chiola, On Petri nets with deterministic and exponentially
distributed firing times, Lecture Notes in Computer Science, 266 (1987), 132–145.

213. M.A. Marsan, G. Chiola, A. Fumagalli, Improving the efficiency of the analysis of
DSPN models, Lecture Notes in Computer Science, 424 (1990), 30–50.

214. M. Massink, M. Brambilla, D. Latella, M. Dorigo, M. Birattari, On the use of
Bio-PEPA for modelling and analysing collective behaviours in swarm robotics,
Swarm Intelligence, 7 (2013), 201–228.

215. M. Massink, D. Latella, Fluid analysis of foraging ants, Lecture Notes in Com-
puter Science, 7274 (2012), 152–165.

216. M. Massink, D. Latella, A. Bracciali, M.D. Harrison, J. Hillston, Scalable context-
dependent analysis of emergency egress models, Formal Aspects of Computing,
24:2 (2012), 267–302.

217. C. Maus, M. John, M. Röhl, A.M. Uhrmacher, Hierarchical modeling for
computational biology, Lecture Notes in Computer Science, 5016 (2008), 81–124.

218. Ch. McCaig, R. Norman, C. Shankland, Process algebra models of population
dynamics, Lecture Notes in Computer Science, 5147 (2008), 139–155.

https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-540-30232-2_19
https://doi.org/10.1007/978-3-540-30232-2_19
https://doi.org/10.1007/s10703-007-0045-2
https://doi.org/10.3233/FUN-2008-873-405
https://doi.org/10.3233/FUN-2008-873-405
https://doi.org/10.18576/amis/100210
https://doi.org/10.18576/amis/100210
https://doi.org/10.1109/PNPM.2001.953370
https://doi.org/10.1109/PNPM.2001.953370
https://doi.org/10.1007/s00165-012-0230-y
https://doi.org/10.1007/s00165-012-0230-y
https://doi.org/10.1007/978-3-540-79980-1_21
https://doi.org/10.1007/978-3-540-79980-1_21
https://doi.org/10.3233/FI-2009-146
https://doi.org/10.3233/FI-2009-146
https://doi.org/10.1007/3-540-45740-2_18
https://doi.org/10.1007/3-540-52494-0_23
http://www.di.unito.it/~greatspn/GSPN-Wiley/
http://www.di.unito.it/~greatspn/GSPN-Wiley/
https://doi.org/10.1007/3-540-18086-9_23
https://doi.org/10.1007/3-540-18086-9_23
https://doi.org/10.1007/3-540-52494-0_24
https://doi.org/10.1007/3-540-52494-0_24
https://doi.org/10.1007/s11721-013-0079-6
https://doi.org/10.1007/s11721-013-0079-6
https://doi.org/10.1007/978-3-642-30829-1_11
https://doi.org/10.1007/s00165-011-0188-1
https://doi.org/10.1007/s00165-011-0188-1
https://doi.org/10.1007/978-3-540-68894-5_4
https://doi.org/10.1007/978-3-540-68894-5_4
https://doi.org/10.1007/978-3-540-85101-1_11
https://doi.org/10.1007/978-3-540-85101-1_11

66 I.V. Tarasyuk

219. Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols:
implications of a theoretical study, IEEE Transactions on Communications, 24:9
(1976), 1036–1043. Zbl 0362.68096

220. R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle
River, NJ, USA, 1989. Zbl 0683.68008

221. R.A.J. Milner, J.G. Parrow, D.J. Walker, A calculus of mobile processes, I, Infor-
mation and Computation, 100:1 (1992), 1–40.

222. R.A.J. Milner, J.G. Parrow, D.J. Walker, A calculus of mobile processes, II, In-
formation and Computation, 100:1 (1992), 41–77.

223. I. Mitrani, A. Ost, M. Rettelbach, TIPP and the spectral expansion method, Qu-
antitative Methods in Parallel Systems, Esprit Basic Research Series, 99–113 (F.
Bacelli, A. Jean-Marie, I. Mitrani, eds.), Springer, Berlin, Germany, 1995.

224. M.K. Molloy, On the integration of the throughput and delay measures in dis-
tributed processing models, Ph.D. thesis, Report, CSD-810-921 (1981), Univer-
sity of California, Los Angeles, CA, USA.

225. M.K. Molloy, Performance analysis using stochastic Petri nets, IEEE Transac-
tions on Computing, 31:9 (1982), 913–917.

226. M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software
Engineering, 11:4 (1985), 417–423. Zbl 0558.68053

227. U. Montanari, M. Pistore, D. Yankelevich, Efficient minimization up to location
equivalence, Lecture Notes in Computer Science, 1058 (1996), 265–279.

228. M.F. Neuts, Matrix-geometric solutions in stochastic models: an algorithmic ap-
proach, Johns Hopkins Series in the Mathematical Sciences, 2, Johns Hopkins
University Press, Baltimore, MD, USA, 1981.

229. A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture
Notes in Computer Science, 3407 (2005), 447–462. Zbl 1109.68076

230. A. Niaouris, M. Koutny, An algebra of timed-arc Petri nets, Technical Report,
CS-TR-895 (2005), School of Computer Science, University of Newcastle upon
Tyne, UK.

231. R. De Nicola, G.L. Ferrari, R. Pugliese, Klaim: a kernel language for agents
interaction and mobility, IEEE Transactions on Software Engineering, 24:5
(1998), 315–330.

232. R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, M. Massink, Model checking
mobile stochastic logic, Theoretical Computer Science, 382:1 (2007), 42–70.

233. R. De Nicola, J.-P. Katoen, D. Latella, M. Massink, StoKlaim: a stochastic
extension of Klaim, Technical Report, 2006-TR-01 (2006), Consiglio Nazionale
delle Ricerche, Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, Italy.

234. R. De Nicola, D. Latella, M. Loreti, M. Massink, A uniform definition of
stochastic process calculi, ACM Computing Surveys, 46:1 (2013), Article 5.

235. R. De Nicola, D. Latella, M. Loreti, M. Massink, Quantitative analysis of
distributed systems in StoKlaim: a tutorial, Quantitative Assessments of Distri-
buted Systems: Methodologies and Techniques (D. Bruneo, S. Distefano, eds.),
Chapter 2, 27–55, Performability Engineering Series, Scrivener Publishing LLC,
Beverly, MA, USA, 2015.

236. L. Paulevé, S. Youssef, M.R. Lakin, A. Phillips, A generic abstract machine for
stochastic process calculi, Proc. 8th Int. Conf. on Computational Methods in Sys-
tems Biology (CMSB) 2010, Trento, Italy, 43–54, ACM Press, 2010.

237. Gh. Păun, F.J. Romero-Campero, Membrane computing as a modeling
framework. Cellular systems case studies, Lecture Notes in Computer Science,
5016 (2008), 168–214.

https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1109/TCOM.1976.1093424
https://www.research.ed.ac.uk/en/publications/communication-and-concurrency
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1007/978-3-642-79917-4_6
https://doi.org/10.1109/TC.1982.1676110
https://doi.org/10.1109/TSE.1985.232230
https://doi.org/10.1007/3-540-61055-3_42
https://doi.org/10.1007/3-540-61055-3_42
https://doi.org/10.1007/978-3-540-31862-0_32
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf
https://doi.org/10.1109/32-685256
https://doi.org/10.1109/32-685256
https://doi.org/10.1016/j.tcs.2007.05.008
https://doi.org/10.1016/j.tcs.2007.05.008
https://openportal.isti.cnr.it/data/2006/160346/2006_160346.pdf
https://openportal.isti.cnr.it/data/2006/160346/2006_160346.pdf
https://doi.org/10.1145/2522968.2522973
https://doi.org/10.1145/2522968.2522973
https://doi.org/10.1002/9781119131151.ch2
https://doi.org/10.1002/9781119131151.ch2
https://doi.org/10.1145/1839764.1839771
https://doi.org/10.1145/1839764.1839771
https://doi.org/10.1007/978-3-540-68894-5_6
https://doi.org/10.1007/978-3-540-68894-5_6

Comparing dtsdPBC with other stochastic process algebras 67

238. M.R. Pedersen, G.D. Plotkin, A language for biochemical systems, Lecture Notes
in Computer Science, 5307 (2008), 63–82.

239. M.R. Pedersen, G.D. Plotkin, A language for biochemical systems: design and
formal specifications, Lecture Notes in Computer Science, 5945 (2010), 77–145.

240. Y. Peng, Sh. Wang, N. Zhan, L. Zhang, Extending hybrid CSP with probability
and stochasticity, Lecture Notes in Computer Science, 9409 (2015), 87–102.

241. A. Phillips, A visual process calculus for biology, Symbolic Systems Biology: The-
ory and Methods (M.S. Iyengar, ed.), Chapter 5, Jones and Bartlett Publishers,
2009.

242. A. Phillips, An abstract machine for the stochastic bioambient calculus, Proc. 2nd

Int. Meeting on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC) 2008 (G. Ciobanu, ed.), Iasi, Romania, Electronic Notes in Theoretical
Computer Science, 227 (2009), 143–159.

243. A. Phillips, L. Cardelli, A correct abstract machine for the stochastic pi-calculus,
Proc. Workshop on Concurrent Models in Molecular Biology (BioConcur) 2004,
Electronic Notes in Theoretical Computer Science, 2004.

244. A. Phillips, L. Cardelli, Efficient, correct simulation of biological processes in the
stochastic pi-calculus, Lecture Notes in Computer Science, 4695 (2007), 184–199.

245. A. Phillips, L. Cardelli, A programming language for composable DNA circuits,
Journal of the Royal Society Interface, 6:Suppl4 (2009), S419–S436.

246. A. Phillips, L. Cardelli, G. Castagna, A graphical representation for biological
processes in the stochastic pi-calculus, Lecture Notes in Computer Science, 4230
(2006), 123–152.

247. L.F. Pino, F. Boncho, F.D. Valencia, A behavioural congruence for concurrent
constraint programming with nondeterministic choice, Lecture Notes in Com-
puter Science, 8687 (2014), 351–368.

248. G.D. Plotkin, A calculus of chemical systems, Lecture Notes in Computer Sci-
ence, 8000 (2013), 445–465.

249. C. Priami, Stochastic π-calculus, The Computer Journal, 38:7 (1995), 578–589.
250. C. Priami, Stochastic π-calculus with general distributions, Proc. 4th Int. Work-

shop on Process Algebra and Performance Modelling (PAPM) 1996 (M. Ribaudo,
ed.), Torino, Italy, 41–57, CLUT Press, 1996.

251. C. Priami, Language-based performance prediction for distributed and mobile
systems, Information and Computation, 175:2 (2002), 119–145. MR1911524

252. C. Priami, P. Ballarini, P. Quaglia, BlenX4Bio — BlenX for biologists, Lecture
Notes in Computer Science, 5688 (2009), 26–51.

253. C. Priami, P. Quaglia, Beta-binders for biological interactions, Lecture Notes in
Computer Science, 3082 (2005), 20–33.

254. C. Priami, A. Regev, W. Silverman, E. Shapiro, Application of a stochastic
namepassing calculus to representation and simulation of molecular processes,
Information Processing Letters, 80:1 (2001), 25–31.

255. R. Pulungan, H. Hermanns, A construction and minimization service for
continuous probability distributions, International Journal on Software Tools for
Technology Transfer, 17:1 (2015), 77–90.

256. T. Quatmann, Ch. Dehnert, N. Jansen, S. Junges, J.-P. Katoen, Parameter
synthesis for Markov models: faster than ever, Lecture Notes in Computer Sci-
ence, 9938 (2016), 50–67.

257. Ch. Ramchandani, Performance evaluation of asynchronous concurrent systems
by timed Petri nets, Ph.D. thesis, Department of Electrical Engineering, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1973.

https://doi.org/10.1007/978-3-540-88562-7_9
https://doi.org/10.1007/978-3-642-11712-1_3
https://doi.org/10.1007/978-3-642-11712-1_3
https://doi.org/10.1007/978-3-319-25942-0_6
https://doi.org/10.1007/978-3-319-25942-0_6
https://www.microsoft.com/en-us/research/publication/a-visual-process-calculus-for-biology
https://doi.org/10.1016/j.entcs.2008.12.109
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Bioconcur04.pdf
https://doi.org/10.1007/978-3-540-75140-3_13
https://doi.org/10.1007/978-3-540-75140-3_13
https://doi.org/10.1098/rsif.2009.0072.focus
https://doi.org/10.1007/11905455_7
https://doi.org/10.1007/11905455_7
https://doi.org/10.1007/978-3-319-10882-7_21
https://doi.org/10.1007/978-3-319-10882-7_21
https://doi.org/10.1007/978-3-642-41660-6_24
https://doi.org/10.1093/comjnl/38.7.578
https://doi.org/10.1006/inco.2000.3058
https://doi.org/10.1006/inco.2000.3058
https://doi.org/10.1007/978-3-642-03845-7_3
https://doi.org/10.1007/978-3-540-25974-9_3
https://doi.org/10.1016/S0020-0190(01)00214-9
https://doi.org/10.1016/S0020-0190(01)00214-9
https://doi.org/10.1007/s10009-013-0296-8
https://doi.org/10.1007/s10009-013-0296-8
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4

68 I.V. Tarasyuk

258. A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro, BioAmbients: an
abstraction for biological compartments, Theoretical Computer Science, 325:1
(2004), 141–167.

259. M. Rettelbach, Immediate transitions in stochastic process algebras — theory and
application, Ph.D. thesis, Universität Erlangen-Nürnberg, Germany, 1995 (in Ger-
man).

260. M. Rettelbach, Probabilistic branching in Markovian process algebras, The Com-
puter Journal, 38:7 (1995), 590–599.

261. E. Sciacca, S. Spinella, C. Calcagno, F. Damiani, M. Coppo, Parameter
identification and assessment of nutrient transporters in AM symbiosis through
stochastic simulations, Proc. 3rd Int. Workshop on Interactions Between Com-
puter Science and Biology (CS2Bio) 2012 (P. Giannini, E. de Vink, eds.), Stock-
holm, Sweden, Electronic Notes in Theoretical Computer Science, 293 (2013),
83–96.

262. E. Scott, A. Hoyle, C. Shankland, PEPA’d oysters: converting dynamic energy
budget models to Bio-PEPA, illustrated by a Pacific oyster case study, Proc. 6th

Int. Workshop on Practical Applications of Stochastic Modelling (PASM) 2012
and 11th Int. Workshop on Parallel and Distributed Methods in Verification
(PDMC) 2012 (J. Bradley, K. Heljanko, W. Knottenbelt, N. Thomas, eds.), Lon-
don, UK, Electronic Notes in Theoretical Computer Science, 296 (2013), 211–228.

263. W.J. Stewart, Probability, Markov chains, queues, and simulation. The
mathematical basis of performance modeling, Princeton University Press, Prince-
ton, NJ, USA, 2009.

264. I.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem De-
partment für Informatik, 3/05, Carl von Ossietzky Universität Oldenburg, Ger-
many, 2005.

265. I.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of
the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue,
24 (2006), 129–148. Zbl 1249.68132

266. I.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta In-
formaticae, 76:1–2 (2007), 189–218.

267. I.V. Tarasyuk, Equivalences for behavioural analysis of concurrent and
distributed computing systems, Geo Academic Publisher, Novosibirsk, Russia,
2007 (in Russian).

268. I.V. Tarasyuk, Equivalence relations for modular performance evaluation in
dtsPBC, Mathematical Structures in Computer Science, 24:1 (2014), e240103.

269. I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus,
arXiv: 1905.00456, Computing Research Repository, Cornell University Library,
Ithaca, NY, USA, 2019.

270. I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus
dtsdPBC, Siberian Electronic Mathematical Reports, 17 (2020), 1598–1679. Zbl
1448.68352

271. I.V. Tarasyuk, Performance evaluation in stochastic process algebra dtsdPBC, Si-
berian Electronic Mathematical Reports, 18:2 (2021), 1105–1145. Zbl 1482.68156

272. I.V. Tarasyuk, Performance preserving equivalence for stochastic process algebra
dtsdPBC, Siberian Electronic Mathematical Reports, 20:2 (2023), 646–699.

273. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus
with immediate multiactions, Technical Report, DIAB-10-03-1, Department of
Computer Systems, High School of Computer Science Engineering, University of
Castilla - La Mancha, Albacete, Spain, 2010.

https://doi.org/10.1016/j.tcs.2004.03.061
https://doi.org/10.1016/j.tcs.2004.03.061
https://doi.org/10.1093/comjnl/38.7.590
https://doi.org/10.1016/j.entcs.2013.02.020
https://doi.org/10.1016/j.entcs.2013.02.020
https://doi.org/10.1016/j.entcs.2013.02.020
https://doi.org/10.1016/j.entcs.2013.07.014
https://doi.org/10.1016/j.entcs.2013.07.014
https://press.princeton.edu/books/hardcover/9780691140629/probability-markov-chains-queues-and-simulation
https://press.princeton.edu/books/hardcover/9780691140629/probability-markov-chains-queues-and-simulation
http://itar.iis.nsk.su/files/itar/pages/dtspbcib_cov.pdf
http://bulletin.iis.nsk.su/files/article/tarasyuk_2.pdf
http://doi.org/10.3233/FUN-2007-761-212
http://itar.iis.nsk.su/files/itar/pages/moncovcnt.pdf
http://itar.iis.nsk.su/files/itar/pages/moncovcnt.pdf
https://doi.org/10.1017/S0960129513000029
https://doi.org/10.1017/S0960129513000029
https://doi.org/10.48550/arXiv.1905.00456
https://doi.org/10.33048/semi.2020.17.112
https://doi.org/10.33048/semi.2020.17.112
https://doi.org/10.33048/semi.2021.18.085
https://doi.org/10.33048/semi.2023.20.039
https://doi.org/10.33048/semi.2023.20.039
http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf
http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf

Comparing dtsdPBC with other stochastic process algebras 69

274. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus
with immediate multiactions dtsiPBC, Proc. 6th Int. Workshop on Practical Ap-
plications of Stochastic Modelling (PASM) 2012 and 11th Int. Workshop on Par-
allel and Distributed Methods in Verification (PDMC) 2012 (J. Bradley, K. Hel-
janko, W. Knottenbelt, N. Thomas, eds.), London, UK, Electronic Notes in The-
oretical Computer Science, 296 (2013), 229–252.

275. I.V. Tarasyuk, H. Macià, V. Valero, Performance analysis of concurrent systems
in algebra dtsiPBC, Programming and Computer Software, 40:5 (2014), 229–249.
Zbl 1339.68033

276. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic process reduction for performance
evaluation in dtsiPBC, Siberian Electronic Mathematical Reports, 12 (2015),
513–551. Zbl 1346.60118

277. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic equivalence for performance
analysis of concurrent systems in dtsiPBC, Siberian Electronic Mathematical Re-
ports, 15 (2018), 1743–1812. Zbl 1414.60062

278. M. Timmer, J.-P. Katoen, J. van de Pol, M.I.A. Stoelinga, Efficient modelling and
generation of Markov automata, Lecture Notes in Computer Science, 7454
(2012), 364–379. Zbl 1364.68295

279. M. Timmer, J. van de Pol, M.I.A. Stoelinga, Confluence reduction for Markov
automata, Lecture Notes in Computer Science, 8053 (2013), 243–257.

280. C. Tofts, Processes with probabilities, priority and time, Formal Aspects of Com-
puting, 6:5 (1994), 536–564.

281. C. Tofts, Symbolic approaches to probability distributions in process algebra, For-
mal Aspects of Computing, 12:5 (2000), 392–415.

282. K.S. Trivedi, Probability and statistics with reliability, queuing, and computer
science applications, John Wiley and Sons, Hoboken, NJ, USA, 2016.

283. K.S. Trivedi, A. Bobbio, Reliability and availability engineering: modeling,
ıanalysist and applications, Cambridge University Press, Cambridge, UK, 2017.

284. M. Tschaikowski, M. Tribastone, Exact fluid lumpability for Markovian process
algebra, Lecture Notes in Computer Science, 7454 (2012), 380–394. Zbl 1364.
68297

285. M. Tschaikowski, M. Tribastone, Exact fluid lumpability in Markovian process
algebra, Theoretical Computer Science, 538 (2014), 140–166. Zbl 1359.68228

286. M. Tschaikowski, M. Tribastone, Extended differential aggregations in process
algebra for performance and biology, Proc. 12th Int. Workshop on Quantitative
Aspects of Programming Languages and Systems (QAPL) 2014, Grenoble, France,
Electronic Proceedings in Theoretical Computer Science, 154 (2014), 34–47.

287. M. Tschaikowski, M. Tribastone, A unified framework for differential
aggregations in Markovian process algebra, Journal of Logical and Algebraic Me-
thods in Programming, 84 (2015), 238–258. Zbl 1319.68151

288. V. Valero, M.E. Cambronero, Using unified modelling language to model the
publish/subscribe paradigm in the context of timed Web services with distributed
resources, Mathematical and Computer Modelling of Dynamical Systems, 23:6
(2017), 570–594.

289. C. Versari, N. Busi, Stochastic simulation of biological systems with dynamical
compartment structure, Lecture Notes in Computer Science, 4695 (2007), 80–95.

290. C. Versari, N. Busi, Efficient stochastic simulation of biological systems with
multiple variable volumes, Proc. 1st Workshop From Biology To Concurrency and
back (FBTC) 2007 (N. Cannata, E. Merelli, eds.), Lisbon, Portugal, Electronic
Notes in Theoretical Computer Science, 194:3 (2008), 165–180.

https://doi.org/10.1016/j.entcs.2013.07.015
https://doi.org/10.1016/j.entcs.2013.07.015
https://doi.org/10.1134/S0361768814050089
https://doi.org/10.1134/S0361768814050089
https://doi.org/10.17377/semi.2015.12.044
https://doi.org/10.17377/semi.2015.12.044
https://doi.org/10.33048/semi.2018.15.144
https://doi.org/10.33048/semi.2018.15.144
https://doi.org/10.1007/978-3-642-32940-1_26
https://doi.org/10.1007/978-3-642-32940-1_26
https://doi.org/10.1007/978-3-642-40229-6_17
https://doi.org/10.1007/978-3-642-40229-6_17
https://doi.org/10.1007/BF01211867
https://doi.org/10.1007/PL00013291
https://doi.org/10.1002/9781119285441
https://doi.org/10.1002/9781119285441
https://doi.org/10.1017/9781316163047
https://doi.org/10.1017/9781316163047
https://doi.org/10.1007/978-3-642-32940-1_27
https://doi.org/10.1007/978-3-642-32940-1_27
https://doi.org/10.1016/j.tcs.2013.07.029
https://doi.org/10.1016/j.tcs.2013.07.029
https://doi.org/10.4204/EPTCS.154.3
https://doi.org/10.4204/EPTCS.154.3
https://doi.org/10.1016/j.jlamp.2014.10.004
https://doi.org/10.1016/j.jlamp.2014.10.004
https://doi.org/10.1080/13873954.2016.1277360
https://doi.org/10.1080/13873954.2016.1277360
https://doi.org/10.1080/13873954.2016.1277360
https://doi.org/10.1007/978-3-540-75140-3_6
https://doi.org/10.1007/978-3-540-75140-3_6
https://doi.org/10.1016/j.entcs.2007.12.012
https://doi.org/10.1016/j.entcs.2007.12.012

70 I.V. Tarasyuk

291. C. Versari, N. Busi, Stochastic biological modelling in the presence of multiple
compartments, Theoretical Computer Science, 410 (2009), 3039–3064.

292. C. Versari, R. Gorrieri, π@: a π-based process calculus for the implementation of
compartmentalised bio-inspired calculi, Lecture Notes in Computer Science, 5016
(2008), 449–506.

293. M.G. Vigliotti, Operational semantics for product-form solution, Lecture Notes in
Computer Science, 7587 (2013), 16–31.

294. L.L. Vissat, J. Hillston, G. Marion, M.J. Smith, MELA: modelling in ecology with
location attributes, Proc. 14th Int. Workshop on Quantitative Aspects of Program-
ming Languages and Systems (QAPL) 2016 (M. Tribastone, H. Wiklicky, eds.),
Eindhoven, The Netherlands, Electronic Proceedings in Theoretical Computer
Science, 227 (2016), 82–97.

295. D.Y.Q. Wang, L. Cardelli, A. Phillips, N. Piterman, J. Fisher, Computational
modeling of the EGFR network elucidates control mechanisms regulating signal
dynamics, BMC Systems Biology, 3 (2009), Article 118.

296. V. Wolf, Equivalences on phase type processes, Ph.D. thesis, University of Mann-
heim, Mannheim, Germany, 2008.

297. W. Yi, Real-time behaviour of asynchronous agents, Lecture Notes in Computer
Science, 458 (1990), 502–520.

298. W. Yi, CCS + time = an interleaving model for real time systems, Lecture No-
tes in Computer Science, 510 (1991), 217–228.

299. G. Zavattaro, A gentle introduction to Stochastic (Poly)Automata Collectives
and the (Bio)Chemical Ground Form, Lecture Notes in Computer Science, 5016
(2008), 507–523.

300. Ch. Zhou, J. Wang, A.P. Ravn, A formal description of hybrid systems, Lecture
Notes in Computer Science, 1066 (1996), 511–530.

301. R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Work-
shop on Quality of Communication-Based Systems 1994, Technical University of
Berlin, Germany, 123–136, Kluwer Academic Publishers, 1995. Zbl 0817.68111

302. R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D.
thesis, Technical University of Berlin, Germany, 1997.

303. R. Zijal, G. Ciardo, Discrete deterministic and stochastic Petri nets, ICASE Re-
port, 96-72, Institute for Computer Applications in Science and Engineering
(ICASE), NASA, Langley Research Centre, Hampton, VA, USA, 1996.

304. R. Zijal, G. Ciardo, G. Hommel, Discrete deterministic and stochastic Petri nets,
Proc. 9th ITG/GI Professional Meeting on Measuring, Modeling and Evaluation of
Computer and Communication Systems (MMB) 1997 (K. Irmscher, Ch. Mittasch,
K. Richter, eds.), Freiberg, Germany, 103–117, VDE-Verlag, Berlin, Germany,
1997.

305. R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc.
11th Int. Conf. on Analysis and Optimization of Systems, Discrete Event Systems
(DES) 1994 (G. Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, Lecture
Notes in Control and Information Sciences, 199 (1994), 198–204.

https://doi.org/10.1016/j.tcs.2009.03.038
https://doi.org/10.1016/j.tcs.2009.03.038
https://doi.org/10.1007/978-3-540-68894-5_13
https://doi.org/10.1007/978-3-540-68894-5_13
https://doi.org/10.1007/978-3-642-36781-6_2
https://doi.org/10.4204/EPTCS.227.6
https://doi.org/10.4204/EPTCS.227.6
https://doi.org/10.1186/1752-0509-3-118
https://doi.org/10.1186/1752-0509-3-118
https://doi.org/10.1186/1752-0509-3-118
https://madoc.bib.uni-mannheim.de/1911
https://doi.org/10.1007/BFb0039080
https://doi.org/10.1007/3-540-54233-7_136
https://doi.org/10.1007/978-3-540-68894-5_14
https://doi.org/10.1007/978-3-540-68894-5_14
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/978-94-011-0187-5_8
http://www.cs.odu.edu/~mln/ltrs-pdfs/icase-1996-72.pdf
http://www.cs.ucr.edu/~ciardo/pubs/1997MMB-DDSPN.pdf
https://doi.org/10.1007/BFb0033549

	Comparing dtsdPBC with other stochastic process algebras

