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Abstract: Petri box calculus (PBC) is a well-known algebra of pa-
rallel processes with a Petri net semantics. Discrete time stochastic
and deterministic PBC (dtsdPBC) extends PBC with discrete time
stochastic and deterministic delays. dtsdPBC has a step operati-
onal semantics via labeled probabilistic transition systems and a
Petri net denotational semantics via dtsd-boxes, a subclass of labe-
led discrete time stochastic and deterministic Petri nets. To evalu-
ate performance in dtsdPBC, the underlying semi-Markov chains
(SMCs) and (reduced) discrete time Markov chains (DTMCs and
RDTMCs) of the process expressions are analyzed.

We determine the main positive features of dtsdPBC by com-
paring it with well-known or similar stochastic process algebras.
We classify them by the time model (continuous of discrete) and
concept (integrated or orthogonal), probability distribution of sto-
chastic delays, deterministic (including immediate) (multi)actions
and semantic parallelism. The detected strong points of dtsdPBC
are discrete stochastic time, deterministic multiactions and step
semantics. We also discuss the analytical solution, concurrency in-
terpretation, application area and general advantages of dtsdPBC.
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transition system, operational semantics, time aspect, probability
distribution, determinism, parallelism, comparison, classification.

1 Introduction

Process calculi, like CSP [169], ACP [20] and CCS [217| are well-known
formal models for specification of computing systems and analysis of their
behaviour. In such process algebras (PAs), formulas describe processes, and
verification of the functionality properties of their behaviour is accomplished
at a syntactic level via equivalences, axioms and inference rules. In order
to represent stochastic timing and analyze the performance properties, sto-
chastic extensions of PAs were proposed, like MTIPP [163], PEPA [164, 166]
and EMPA [26]. Such stochastic process algebras (SPAs) specify actions
which can occur (qualitative features) and associate with the actions the
distribution parameters of their random delays (quantitative characteristics).

1.1. Petri box calculus (PBC). Petri box calculus (PBC) |29, 31, 30, 28]
is a flexible and expressive process algebra developed as a tool for specification
of the Petri nets (PNs) structure and their interrelations. Its goal was also
to propose a compositional semantics for high level constructs of concurrent
programming languages in terms of elementary PNs. Formulas of PBC are
combined from multisets of elementary actions and their conjugates, called
multiactions (basic formulas). The empty multiset of actions is interpreted
as the silent multiaction specifying an invisible activity. The operational
semantics of PBC is of step type, since its SOS rules have transitions with
(multi)sets of activities, corresponding to simultaneous executions of activi-
ties (steps). A denotational semantics of PBC was proposed via a subclass
of PNs with an interface and considered up to isomorphism, called Petri
boxes. The extensions of PBC with a deterministic, a nondeterministic or a
stochastic model of time exist.

1.2. Time extensions of PBC. A time extension of PBC with a nonde-
terministic time model, called time Petri box calculus (tPBC), was proposed
in [183]. In tPBC, timing information is added by associating time intervals
with instantaneous actions. tPBC has a step time operational semantics in
terms of labeled transition systems. Its denotational semantics was defined
in terms of a subclass of labeled time Petri nets (LtPNs), based on tPNs
[216] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC),
was defined in [205, 206], it accommodates a deterministic model of time.
In contrast to tPBC, multiactions of TPBC are not instantaneous, but have
time durations. TPBC has a step timed operational semantics in terms of
labeled transition systems. The denotational semantics of TPBC was defined
in terms of a subclass of labeled Timed Petri nets (LTPNs), based on TPNs
[254] and called Timed Petri boxes (T-boxes).



COMPARING DTSDPBC WITH OTHER STOCHASTIC PROCESS ALGEBRAS 3

The third time extension of PBC, called arc time Petri box calculus
(atPBC), was constructed in [226, 227], and it implements a nondeterministic
time. In atPBC, multiactions are associated with time delay intervals. atPBC
possesses a step time operational semantics in terms of labeled transition
systems. Its denotational semantics was defined on a subclass of labeled arc
time Petri nets (atPNs), based of those from [39, 152|, where time restrictions
are associated with the arcs, called arc time Petri boxes (at-boxes). tPBC,
TPBC and atPBC, all adapt the discrete time approach, but TPBC has no
immediate (multi)actions (those with zero delays).

1.3. Stochastic extensions of PBC. A stochastic extension of PBC, cal-
led stochastic Petri box calculus (sPBC), was proposed in [201, 197, 198]. In
sPBC, multiactions have stochastic delays that follow (negative) exponential
distribution. Each multiaction is equipped with a rate that is a parameter of
the corresponding exponential distribution. The (instantaneous) execution of
a stochastic multiaction is possible only after the corresponding stochastic ti-
me delay. The calculus has an interleaving operational semantics defined via
transition systems labeled with multiactions and their rates. Its denotational
semantics was defined on a subclass of labeled continuous time stochastic
PNs, based on CTSPNs [207, 11| and called stochastic Petri boxes (s-boxes).

sPBC was enriched with immediate multiactions having zero delay in [199,
200]. We call such an extension generalized sPBC (gsPBC). An interleaving
operational semantics of gsPBC was constructed via transition systems la-
beled with stochastic or immediate multiactions together with their rates or
probabilities. A denotational semantics of gsPBC was defined via a subclass
of labeled generalized stochastic PNs, based on GSPNs [207, 11, 12| and
called generalized stochastic Petri boxes (gs-boxes).

In [261, 262, 263, 265|, we presented a discrete time stochastic extension
dtsPBC of the algebra PBC. In dtsPBC, the residence time in the process
states is geometrically distributed. A step operational semantics of dtsPBC
was constructed via labeled probabilistic transition systems. Its denotational
semantics was defined in terms of a subclass of labeled discrete time stochastic
PNs (LDTSPNSs), based on DTSPNs 221, 223] and called discrete time sto-
chastic Petri boxes (dts-boxes).

In [270, 271, 272, 273, 274], a calculus dtsiPBC was proposed as an
extension with immediate multiactions of dtsPBC. Immediate multiactions
increase the specification capability: they can model logical conditions, pro-
babilistic branching, instantaneous probabilistic choices and activities whose
durations are negligible in comparison with those of others. They are also
used to specify urgent activities and the ones that are not relevant for
performance evaluation. The step operational semantics of dtsiPBC was
constructed with the use of labeled probabilistic transition systems. Its de-
notational semantics was defined in terms of a subclass of labeled discrete
time stochastic and immediate PNs (LDTSIPNs), called dtsi-boxes.
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In [266, 267, 268, 269], we defined dtsdPBC, an extension of dtsiPBC with
deterministic multiactions. In dtsdPBC, besides the probabilities from the
real-valued interval (0; 1), applied to calculate discrete time delays of stochas-
tic multiactions, also non-negative integers are used to specify fixed delays of
deterministic multiactions (including zero delay, which is the case of immedi-
ate multiactions). To resolve conflicts among deterministic multiactions, they
are additionally equipped with positive real-valued weights. As argued in
[302, 298, 299|, a combination of deterministic and stochastic delays fits well
to model technical systems with constant (fixed) durations of the regular non-
random activities and probabilistically distributed (stochastic) durations of
the randomly occurring activities. dtsdPBC has a step operational semantics,
defined via labeled probabilistic transition systems. The denotational seman-
tics of dtsdPBC was defined in terms of a subclass of labeled discrete time
stochastic and deterministic Petri nets (LDTSDPNs), called dtsd-boxes.

1.4. Our contributions. As a basis model, we take discrete time stochas-
tic and deterministic Petri boz calculus (dtsdPBC), presented in [266, 267,
268, 269|, featuring a step operational semantics. Here we do not consider
the Petri net denotational semantics of the calculus, since it was extensively
described in [267]. In that paper, a consistency of the operational and deno-
tational semantics with respect to step stochastic bisimulation equivalence
was proved. Hence, all the results established for the former can be readily
transferred to the latter up to that equivalence. In order to evaluate per-
formance in dtsdPBC, the underlying semi-Markov chains (SMCs) and (re-
duced) discrete time Markov chains (DTMCs and RDTMCs) of the process
expressions are analyzed [268].

In the present paper, the enhanced related work overview is done, where
strong points of dtsdPBC with respect to other SPAs are detected. In overall,
we compare dtsdPBC with more than 90 existing SPAs and then classify
them according to the time model and concept, parallelism in the (operatio-
nal) semantics, existence of immediate or positively deterministic (waiting)
(multi)actions and (distribution) types of the stochastic delays.

If to compare dtsdPBC with the classical SPAs MTIPP, PEPA and EMPA,
the first main difference between them comes from PBC, since dtsdPBC is
based on this calculus: all algebraic operations and a notion of multiaction
are inherited from PBC. The second main difference is discrete probabilities
of activities induced by the discrete time approach, whereas action rates are
used in the standard SPAs with continuous time. As a consequence, dtsdPBC
has a non-interleaving step operational semantics. This is in contrast to the
classical SPAs, where concurrency is modeled by interleaving because of the
continuous probability distributions of action delays and the race condition
applied when several actions can be executed in a state. The third main dif-
ference is deterministic (particularly, immediate) multiactions. There are no
even instantaneous activities in MTTPP and PEPA while immediate actions
in EMPA can have different priority levels. In dtsdPBC, all immediate (zero
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deterministic) multiactions have the same (highest) priority, and all waiting
(positive deterministic) multiactions have the same (medium) priority (by
leaving the lowest priority to stochastic multiactions). The intention is to
simplify the specification and analysis, since weights (assigned also to imme-
diate actions in EMPA) are enough to denote preferences among determinis-
tic multiactions and to produce the conformable probabilistic behaviours.
The salient point of dtsdPBC is a combination of deterministic multiacti-
ons, discrete stochastic time and step semantics in an SPA. In the extensive
discussion, analytical solution, concurrency interpretation, application area
and general advantages of dtsdPBC are explained.
Thus, the main contributions of the paper are as follows.
e Comparison of dtsdPBC with existing SPAs, according to the time
aspects, semantic parallelism and delay types.
e Discussion about the analytical solution, concurrency interpretation,
application area and advantages of dtsdPBC.

1.5. Structure of the paper. In Section 2, the syntax of algebra dtsdPBC
is proposed. In Section 3, the operational semantics of the calculus in terms
of labeled probabilistic transition systems is presented. The differences and
similarities between dtsdPBC and other well-known or similar SPAs are
considered in Section 4. The advantages of dtsdPBC are explained in Section
5. Section 6 summarizes the results obtained and outlines future research.

2 Syntax
In this section, we define the syntax: activities, operations and expressions.

2.1. Activities and operations. Multiset allows identical elements in a set.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M : X—N with [{xe€ X | M(z)>0}| < oo, i.e. it has a finite number of elements.

The set of all finite multisets over a set X is Njf;n. Let M, M’ € Njf;n. The
cardinality of M is |M| = 3 _x M(z). We write x € M if M(x) > 0 and
M C M'ifVe € X M(z) < M'(z). We define (M + M')(z) = M(z)+ M'(x)
and (M — M')(z) = max{0, M (z) — M'(x)}. When Vz € X, M(z) <1, M
is seen as a proper set M C X. The set of all subsets (powerset) of X is 2.

Let Act={a,b, ...} be the set of elementary actions. Then Act= {a,b,...}
is the set of conjugated actions (conjugates) with a # a and a = a. Let
A= ActUAct be the set of all actions, and E:N;ﬁ‘m be the set of all multiac-
tions. Here () € L specifies an internal move, i.e. the execution of a multiaction
without visible actions. The alphabet of « € L is A(a)={x € A| a(x)>0}.

A stochastic multiaction is a pair (o, p), where o € £ and p € (0;1) is
the probability of the multiaction «. This probability is interpreted as that
of independent execution of the stochastic multiaction at the next discrete
time moment. Such probabilities are used to calculate those to execute
(possibly empty) sets of stochastic multiactions after one time unit delay.
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The probability 1 is left for (implicitly assigned to) waiting multiactions,
i.e. positively delayed deterministic multiactions (to be defined later), which
have weights to resolve conflicts with other waiting multiactions. Let SL be
the set of all stochastic multiactions.

A deterministic multiaction is a pair («, hle), where « € £, § € N is
the non-negative integer-valued (fized) delay and | € R~y = (0;00) is the
positive real-valued weight of the multiaction a. This weight is interpreted
as a measure of importance (urgency, interest) or a bonus reward associated
with execution of the deterministic multiaction at the moment when the
corresponding delay has expired. Such weights are used to calculate the pro-
babilities to execute sets of deterministic multiactions after their delays. An
immediate multiaction is a deterministic multiaction with the delay 0 while
a waiting multiaction is a deterministic multiaction with a positive delay. In
case of no conflicts among waiting multiactions, whose remaining times to
execute (RTEs) are equal to one time unit, they are executed with probabi-
lity 1 at the next moment. Deterministic multiactions have a priority over
stochastic ones while immediate multiactions have a priority over waiting
ones. Different types of multiactions cannot participate together in some step
(parallel execution). Let DL be the set of all deterministic multiactions, L
be the set of all immediate multiactions and WL be the set of all waiting
multiactions. We have DL = ZLUWL.

The same multiaction o« € £ may have different probabilities, (fixed)
delays and weights in the same specification. An activity is a stochastic or a
deterministic multiaction. Let SDL = SLUDL = SLUZLUWL be the set
of all activities. The alphabet of an activity (o, k) € SDL is A(a, k) = A(a).
The alphabet of a multiset of activities T € N‘;ﬁf is A(T) = Ua,r)erAl).

Activities are combined into formulas (process expressions) by the opera-
tions of sequence ;, choice [|, parallelism ||, relabeling [f] of actions, restriction
rs over a single action, synchronization sy on an action and its conjugate, and
iteration [* x| with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a stan-
dard interpretation, like in other PAs, but parallelism (parallel composition)
does not include synchronization, unlike the corresponding operation in CCS.

Relabeling fung‘gons f : A— A are bijections preserving conjugates, i.e.
Ve € A f(2)= f(z). Relabeling is extended to multiactions: for a € £ we
define f(a)=3"_c, f(x)=>",c4a(x)f(x). Relabeling is extended to activi-
ties: for (o, k) € SDL we define f(a, k)= (f(a), k). Relabeling is extended to
the multisets of activities: for T EN?Z% we define f(Y)=3", e (f(@), k).

Restriction over an elementary action a € Act means that, for a given ex-
pression, any process behaviour containing a or its conjugate a is not allowed.

Let «, 8 € L be two multiactions such that for some elementary action a €
Act we have a € o and a € 3, or @ € « and a € . Then, synchronization of «

and [ by a is defined as (a®, () (z) = { Zg; igg;,_ 1 zt;?vv(;z; =4
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Activities are synchronized via their multiaction parts, i.e. the synchroniza-
tion by a of two activities, whose multiaction parts a and (8 possess the
above properties, results in the activity with the multiaction part o« @, S.
We may synchronize activities of the same type only: either both stochastic
multiactions or both deterministic ones with the same delay, since stochastic,
waiting and immediate multiactions have different priorities, and diverse de-
lays of waiting multiactions would contradict their joint timing. Note that the
execution of immediate multiactions takes no time, unlike that of waiting or
stochastic ones. Synchronization by a means that, for a given expression with
a process behaviour containing two concurrent activities that can be synchro-
nized by a, there exists also the behaviour that differs from the former only
in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the bo-
dy is performed zero or more times, and finally, the termination is executed.

2.2. Process expressions. Static expressions specify the structure of pro-
cesses, i.e. how activities are combined by operations to construct the com-
posite process-algebraic formulas. As for the PN intuition, static expressions
correspond to unmarked LDTSDPNs [266, 267]. A marking is the allocation
of tokens in the places of a PN. Markings are used to describe dynamic
behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associa-
ted, whose value is the time left till the moment when the waiting multiaction
can be executed. Therefore, besides standard (unstamped) waiting multiacti-
ons («, hl@) € WL, a special case of the stamped waiting multiactions should
be considered in the definition of static expressions. Each (time) stamped
waiting multiaction (c, h?)é has an extra superscript § € {1,...,6} that
specifies a time stamp indicating the latest value of the timer associated with
that multiaction. The standard waiting multiactions have no time stamps,
to demonstrate irrelevance of the timer values for them (for example, their
timers have not yet started or have already finished). The notion of the al-
phabet part for (the multisets of) stamped waiting multiactions is defined
like that for (the multisets of) unstamped waiting multiactions.

For simplicity, we do not assign the timer value superscripts d to immedi-
ate multiactions, a special case of deterministic multiactions (c, hl@) with the
delay 6 = 0 in the form of (a, ), since their timer values always equal to 0.

Definition 2. Let (o, k) € SDL, (a, 1) e WL, § € {1,...,0} and a € Act.
A static expression of dtsdPBC is

E:=(o,k) | (a,0)) | E;E | E[|E | E|E | E[f] | Ersa| Esya|[ExExE).

Let StatExpr denote the set of all static expressions of dtsdPBC.

To avoid technical difficulties with the iteration operator, we should not
allow concurrency at the highest level of the second argument of iteration.
This is not a severe restriction, since we can always prefix parallel expressions
by an activity with the empty multiaction part.
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Definition 3. Let (a, k) € SDL, (a,4)) € WL, § € {1,...,0} and a € Act.
A regular static expression of dtsdPBC is

E = (o, k)| (0,1 )’ | B; E|E E| E| E| E[f]| E ts a| E sy a|[E + D x E],
where D == (o, k) | (e, 89)° | D; E|D[|D|D[f]| D rs a| D sy a|[D % D x E.

Let RegStatExpr denote the set of all reqular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free reqular sta-
tic expression |E of E is obtained by removing all timer value superscripts.
The set of all stochastic multiactions (from the syntaz) of E is SL(E) =
{(a, p) | (e, p) is & subexpression of E}. The set of all immediate multiacti-
ons (from the syntazx) of E is TL(E) = {(a, 1?) | (o, 1?) is a subexpression of
E}. The set of all waiting multiactions (from the syntaz) of E is WL(E) =
{(e,89) | (a,8)) or (e, 1)? is a subexpression of E for 6 € {1,...,60}}. Thus,
the set of all deterministic multiactions (from the syntax) of E is DL(E) =
IL(E) UWL(E) and the set of all activities (from the syntax) of E is
SDL(E)=SL(E)UDL(E)=SL(E)UZL(E) UWL(E).

Dynamic expressions specify the states of processes, i.e. particular stages
of the process behaviour. As for the Petri net intuition, dynamic expressions
correspond to marked LDTSDPNs [266, 267|. Dynamic expressions are ob-
tained from static ones, by annotating them with upper or lower bars which
specify the active components of the system at the current moment of time.
The dynamic expression with upper bar (the overlined one) E denotes the
initial, and that with lower bar (the underlined one) E denotes the final state
of the process specified by a static expression FE.

For every overlined stamped waiting multiaction («, hl@)5, the superscript
0 € {1,...,0} specifies the current value of the running countdown timer
associated with the waiting multiaction. That decreasing discrete timer is
started with the initial value 6 (the waiting multiaction delay) at the moment
when the waiting multiaction becomes overlined. Then such a newly overlined

stamped waiting multiaction (a, h?)e is similar to the freshly overlined un-

stamped waiting multiaction (e, hle) Such similarity will be captured by the
structural equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process
execution, the timer decrements by one discrete time unit with each global
time tick until the timer value becomes 1. This means that one unit of time
remains till execution of that multiaction (the remaining time to execute,
RTE, equals one). Its execution should follow in the next moment with
probability 1, in case there are no conflicting with it immediate multiactions
or conflicting waiting multiactions whose RTEs equal to one, and it is not
affected by restriction. An activity is affected by restriction, if it is within
the scope of a restriction operation with the argument action, such that it
or its conjugate is contained in the multiaction part of that activity.

Definition 4. Let E€Stat Expr, acAct. A dynamic expression of dtsdPBC'is
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Gu=E|E|GE|EG|GIE|E|G|G|G|Glf]|GrsalGsyal
[GxExE||[ExGxE]|[ExExqG|.

Let DynFExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression
|G| of G is obtained by removing from it all upper and lower bars.

Definition 5. A dynamic expression G is regular if |G| is regular.

RegDyn Expr denotes the set of all reqular dynamic expressions of dtsdPBC.

Let G be a regular dynamic expression. The underlying timer-free reqular
dynamic expression |G of G is got by removing all timer value superscripts.

The set of all stochastic (immediate or waiting, respectively) multiactions
(from the syntaz) of G is defined as SL(G) = SL(|G)) (ZL(G) =ZL(|G])
or WL(G) = WL(|G]), respectively). Thus, the set of all deterministic
multiactions (from the syntax) of G is DL(G) = ZL(G) UWL(G) and the
set of all activities (from the syntaz) of G is SDL(G) = SL(G) UDL(G) =
SL(G)UZL(G) UWL(G).

3 Operational semantics
In this section, we define the operational semantics via transition systems.

3.1. Inaction rules. The inaction rules for dynamic expressions describe

their structural transformations in the form of G = G which do not change
the states of the specified processes. The goal of those syntactic transforma-
tions is to obtain the well-structured resulting expressions called operative
ones to which no inaction rules can be further applied. The application of an
inaction rule to a dynamic expression does not lead to any discrete time tick
or any transition firing in the corresponding LDTSDPN [266, 267], hence,
its current marking stays unchanged.

An application of every inaction rule does not require a delay, i.e. the dyna-
mic expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being
overlined and underlined static ones, where (o, 1Y) € WL, § € {1,...,60},
E,F, K € RegStat Expr and a € Act. The first inaction rule suggests that the
timer value of each newly overlined waiting multiaction is set to its delay.

In Table 2, we introduce inaction rules for regular dynamic expressions in
the arbitrary form, where F, F' € RegStatExpr, G, H,G, H € RegDynFExpr
and a € Act. For brevity, two distinct inaction rules with the same premises
are sometimes collated, resulting in the inaction rules with double conclusion.

Definition 6. A regular dynamic expression G is operative if no inaction
rule can be applied to it.

Let OpRegDynExpr denote the set of all operative reqular dynamic ex-
pressions of dtsdPBC. Any dynamic expression can be always transformed
into a (not necessarily unique) operative one by using the inaction rules.
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TABLE 1. Inaction rules for overlined and underlined regular
static expressions

(o, 19) = (a,89)? E,F=E;F E,F=E;F

E;F = E;F E[F = E[|F E[F = E[F

E[F = E[|F E[E = E[F E||F = E|F

E|E= E|F E[f] = Elf] E[f] = Elf]
Ersa=Ersa Ersa=Ersa Esya=Esya
Esya=Esya [ExF«K|=[ExF«K|] [ExF+«K|=[ExFxK)|

TABLE 2. Inaction rules for arbitrary regular dynamic expressions

G=G, oc{;[} G=G
GoE=GoE, EcG=EoG G|H= G|H, H|G= H|G
G=G G=G, oc{rssy} G=G
Glf] = Glf] Goa=Goa [GxExF]=[GxEx*F]
G=0G G=G
[E*GxF|=[ExGxF) [Ex FxG)= [ExFx*G|

We shall consider regular expressions only and omit the word ‘“regular”.

Definition 7. The relation = = (= U <)* is a structural equivalence of dy-
namic expressions in dtsdPBC. Thus, two dynamic expressions G and G’ are
structurally equivalent, denoted by G ~ G’, if they can be reached from each
other by applying the inaction rules in a forward or a backward direction.

Let G be a dynamic expression. Then [G]l = {H | G ~ H} is the
equivalence class of G with respect to the structural equivalence, called the
(corresponding) state. Next, G is an initial dynamic expression, denoted by
init(G), if 3F € RegStatExpr G € [E|~. Further, G is a final dynamic
expression, denoted by final(G), if IE € RegStatExpr G € [E]~.

Let G be a dynamic expression and s = [G]~. The set of all enabled
stochastic multiactions of s is EnaSto(s) = {(a,p) € SL | 3H € s N
OpRegDynExpr («a,p) is a subexpression of H}. The set of all enabled im-
mediate multiactions of s is Enalmm(s) = {(a,t)) € ZL | 3H € s N

OpRegDynExpr («, h?) is a subexpression of H}. The set of all enabled wai-
ting multiactions of s is EnaW ait(s)={(a, 1! ) € WL|I3HE sNOpRegDyn Expr
(o, h?)‘S, d €{1,...,0}, is a subexpression of H}. The set of all newly ena-
bled waiting multiactions of s is EnaWaitNew(s) = {(a,1)) € WL | 3H €
sN OpRegDynExpr («, hl@)‘g is a subexpression of H}.

The set of all enabled deterministic multiactions of s is EnaDet(s) =
EnalImm(s)UEnaW ait(s) and the set of all enabled activities of s is Ena(s)=
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EnaSto(s) U EnaDet(s) = EnaSto(s) U Enalmm(s) U EnaW ait(s). Then
Ena(s) = Ena(|G]x) is an algebraic analogue of the set of all transitions
enabled at the initial marking of the LDTSDPN [266, 267| corresponding
to G. The activities, resulted from synchronization, are not present in the
syntax of the dynamic expressions. Their enabledness status can be recovered
by observing that of the pair of synchronized activities from the syntax (they
both should be enabled for enabling their synchronous product), even if they

are affected by restriction after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the va-
lues of timers), if each enabled waiting multiaction of [G]~, being superscribed
with the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynFExpr denote the set of all saturated operative dynamic
expressions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be always transformed
into the saturated one by a forward or a backward applying the inaction rules.

Proof. See [266, 267]. O

Thus, any dynamic expression can be transformed into a (not always uni-
que) saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then O G denotes the
timer decrement operator O, applied to GG. The result is a saturated operati-
ve dynamic expression, obtained from G via decrementing by one all greater
than 1 values of the timers associated with all (if any) stamped waiting
multiactions from the syntax of GG. Each such stamped waiting multiaction
changes its timer value from 6 € N>; in G to max{1,d — 1} in O G. The
timer decrement operator affects the (possibly overlined or underlined) stam-
ped waiting multiactions being the subexpressions of G as: (a, hl@)é is replaced
with (a, h?)max{l"s_l}, and similarly for the overlined or underlined ones.

Note that when 6 = 1, we have max{1,d —1} = max{1,0} = 1, hence, the
timer value § = 1 may remain unchanged for a stamped waiting multiaction
that is not executed by some reason at the next time moment, but stays
stamped. For example, that stamped waiting multiaction may be affected
by restriction. If the timer values cannot be decremented with a time tick
for all stamped waiting multiactions (if any) from G then O G = G and we
obtain so-called empty loop transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions,
since it may only decrease their timer values, and the stamped waiting multi-
actions stay stamped (with their timer values, possibly decremented by one).

3.2. Action and empty move rules. The action rules are applied when
some activities are executed. With these rules we capture the prioritization
among different types of multiactions. We also have the empty move rule,
used to capture a delay of one discrete time unit when no immediate or
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waiting multiactions are executable. In this case, the empty multiset of ac-
tivities is executed. The action and empty move rules will be used later to
determine all multisets of activities which can be executed from the structu-
ral equivalence class of every dynamic expression (i.e. from the state of the
corresponding process). This information together with that about probabi-
lities or delays and weights of the activities to be executed from the current
process state will be used to calculate the probabilities of such executions.
The action rules with stochastic (immediate or waiting, respectively) mul-

L : . . : . r ~
tiactions describe dynamic expression transformations in the form of G— G

(G LGaoag é, respectively) due to execution of non-empty multisets
I' of stochastic (I of immediate or W of waiting, respectively) multiactions.
The rules represent possible state changes of the specified processes when
some non-empty multisets of stochastic (immediate or waiting, respectively)
multiactions are executed. The application of an action rule with stochastic
(immediate or waiting, respectively) multiactions to a dynamic expression
leads in the corresponding LDTSDPN [266, 267] to a discrete time tick at
which some stochastic or waiting transitions fire (or to the instantaneous
firing of some immediate transitions) and possible change of the current
marking. The current marking stays unchanged only if there is a self-loop
produced by the iterative execution of a non-empty multiset, which must
be one-element, since we allow no concurrency at the highest level of the
second argument of iteration.

The empty move rule (applicable only when no immediate or waiting
multiactions can be executed from the current state) describes dynamic

expression transformations in the form of G ﬂ)@ G, called the empty moves,
due to execution of the empty multiset of activities at a discrete time tick.
When no timer values are decremented within G with the empty multiset
execution at the next moment (for example, if G contains no stamped waiting
multiactions), we have OG = G. In such a case, the empty move from G is in

the form of G ﬂ) G, called the empty loop. The application of the empty move
rule to a dynamic expression leads to a discrete time tick in the corresponding
LDTSDPN [266, 267] at which no transitions fire and the current marking
is not changed, but the timer values of the waiting transitions enabled at
the marking (if any) are decremented by one. This is a new rule that has no
prototype among inaction rules of PBC, since it represents a time delay.

Thus, an application of every action rule with stochastic or waiting mul-
tiactions or the empty move rule requires one discrete time unit delay, i.e.
the execution of a (possibly empty) multiset of stochastic or (non-empty)
multiset of waiting multiactions leading to the dynamic expression transfor-
mation described by the rule is accomplished instantly after one time unit.
An application of every action rule with immediate multiactions does not
take any time, i.e. the execution of a (non-empty) multiset of immediate
multiactions is accomplished instantly at the current moment.
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The expressions of dtsdPBC can contain identical activities. To avoid
technical difficulties, such as calculation of the probabilities for multiple
transitions, we can enumerate coinciding activities from left to right in the
syntax of expressions. The new activities, resulted from synchronization, will
be annotated with concatenation of numberings of the activities they come
from, hence, the numbering should have a tree structure to reflect the effect
of multiple synchronizations. We now define the numbering which encodes a
binary tree with the leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ¢ ::= n | (¢)(¢), where n € N.

Let Num denote the set of all numberings of expressions.

The new activities resulting from synchronizations in different orders sho-
uld be considered up to permutation of their numbering. In this way, we shall
recognize different instances of the same activity. If we compare the contents
of different numberings, i.e. the sets of natural numbers in them, we shall
identify the mentioned instances. The content of a numbering ¢« € Num is

A LeN;
Cont(e) = { Cont(t1) U Cont(t2), = (t1)(c2).
After the enumeration, the multisets of activities from the expressions beco-
me proper sets. We suppose that the identical activities are enumerated when
needed to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G € OpRegDynExpr. We define Can(G), the set of all
non-empty multisets of activities which can be potentially executed from G.
Let (o, k) eSDL, E,F € RegStatExpr, H € OpRegDynExpr and a€ Act.
(1) If final(G) then Can(G) = 0.
(2) If G=(a, k)% and k=Y, 0EN>s, IER~(, 5€{2,...,0}, then Can(G)=0.
(3) If G=(a, k) and k€ (0;1) or k=1, l€Rx0, then Can(G)={{(a, k)}}.
(4) If G=(a,k)! and k=1, 0€N>1, l€R~, then Can(G)={{(a, k)}}.
(5) If Y € Can(G) then Y € Can(GoE), T € Can(EoG) (o € {;,[]}),
YeCan(G||H), YeCan(H||G), f(T)eCan(G[f]), TeCan(G rs a)
(when a,a & A(T)), T € Can(G sy a), T € Can(|G * E x F)),
T e Can([E+G=F]), T e Can([E * F *G]).
(6) If T € Can(G) and E € Can(H) then T + Z € Can(G| H).
(7) If YeCan(G sy a) and (o, k), (B, \)EY are different, aca, a€p, then
(@) T—{(a, k), (B, \)}H{(a®s B, k-N)} €Can(G sy a) if K, A€ (0;1);
(b) T —{(a,5), (B, N} + {(a®0 B,5,,)} € Can(G sy a) if s = K,
A=10,0eN, I,mc Rsy.
When we synchronize a multiset of activities in different orders,
we get several activities with the same multiaction and probabi-
lity or delay and weight parts, but different numberings with the
same content. Then we only consider a single resulting activity.

If YeCan(G) then by definition of Can(G), VECY, Z40, we get ZeCan(G).
Let G € OpRegDynExpr and Can(G) # 0. Obviously, if there are only
stochastic (immediate or waiting, respectively) multiactions in the multisets
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from Can(G) then these stochastic (immediate or waiting, respectively)
multiactions can be executed from G. Otherwise, besides stochastic ones,
there are also deterministic (immediate and/or waiting) multiactions in the
multisets from Can(G). By the note above, there are non-empty multisets of
deterministic multiactions in Can(G) as well, i.e. 3T € Can(G) T € me
{0}. In this case, no stochastic multiactions can be executed from G, even
if Can(G) contains non-empty multisets of stochastic multiactions, since
deterministic multiactions have a priority over stochastic ones, and should
be executed first. Further, if there are no stochastic, but both waiting and
immediate multiactions in the multisets from C'an(G), then, analogously, no
waiting multiactions can be executed from G, since immediate multiactions
have a priority over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the
multisets from C'an(G) then only waiting ones can be executed from G. Then
just mazimal non-empty multisets of waiting multiactions can be executed
from G, since all non-conflicting waiting multiactions cannot wait and they
should occur at the next time moment with probability 1.

Definition 11. Let G € OpRegDynExpr. The set of all non-empty multisets
of activities which can be executed from G is

Can(G) NNEE

Z’I’L’

Can(G )ﬂNIﬁ # 0

Now(G) = {Wecan(G) NNYYL (Can(G)N fo DA
B VVGCcm(G)ﬂme WCV=V=W}, (Can(G)NN}EH#0);
Can(G), otherwise.

Let G € OpRegDynExpr. The expression G is s-tangible (stochastically
tangible), denoted by stang(G), if Now(G) C N}gfn \ {0}. In particular, we
have stang(G), if Now(G) = (. The expression G is w-tangible (waitingly
tangible), denoted by wtang(G), if § # Now(G) € NyY=\{0}. The expression
G is tangible, denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) C
(me u me) \ {0}. Again, we particularly have tang(QG), if Now(G) = 0.
Otherwise, the expression G is vanishing, denoted by vanish(G), and in this
case () # Now(G) C N%fn \{0}. Note that the operative dynamic expressions
from [G]~ may have different types in general.

Let G € RegDynExpr. We write stang([G]x), if VH € [G]~ N
OpRegDynExpr stang(H). We write wtang(|G|~), if 3H € [G]x N
OpRegDynExpr wtang(H) and VH' € [G]x N OpRegDynExpr tang(H').
We write tang([Glx), if stang([G]~) or wtang([G]x). Otherwise, we write
vanish([G]x), and in this case 3H € [G]x N OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules, where (o, p), (8, x) €
SL, (o, 19),(8,82,) € IL, (« h ),(ﬁ 1) € WL, E,F € RegStatExpr,

G, H € SatOpRegDynExpr, G He RegDynExpr, a € Act, ')A € me
{0}, ' e NSE, 17 € NEEN {0}, I' € NEE, VW € NWE\ {0}, v/ € e

and T € N‘?Z?LE \ {0}. We denote T, = {(a,k) € T | (a € @) V (a € a)}.
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We use the following abbreviations in the names of the rules from the
table: “E” for “Empty move”, “B” for “Basis case”, “S” for “Sequence”, “C”
for “Choice”, “P” for “Parallel”, “L” for “reLabeling”, “R” for “Restriction”,
“I” for “Iteraton” and “Sy” for “Synchronization”. The first rule in the table
is the empty move rule E. The other rules are the action rules, describing
transformations of dynamic expressions, which are built using particular
algebraic operations. If we cannot merge the rules with stochastic, immediate
ans waiting multiactions in one rule for some operation then we get the
coupled action rules. In such cases, the names of the action rules with
stochastic multiactions have a suffix ‘s’, those with immediate multiactions
have a suffix ‘i’, and those with waiting multiactions have a suffix ‘w’. For
explanation of the rules in Table 3, see [266, 267].

TABLE 3. Action and empty move rules

Bi (0 10) % (0,19) Bw (a0t (2% (0,1)

0
l

o @ L @, ~init(G) V (init(G) A stang([E)~))

EG LHIE
Ggé stang([H ] )

Cw

¢4 a, ﬂzmt(G)

GIE = G||E, E[G

(init(Q)

SIE)G
tang([E)~))

P1i

G[|E Y G[] E, E[|G
aLa

A
%IE(G

G||H—>GH OH, H|GS
¢4 a, stang([H]x)

Plw

OH|G

GHH 4 G||H H||G 4 HHG

G¢LG HAH

P2s

P2i

G||H—>G|| OH,

G—> G HY g7

q|H Y Gq|H
G—>§

P2w

I1

H|G YoH|G

I2s

G|H —

G
Glf]

F(1) ~
171 18 @y
¢La, w’m’t(G)

G—)G H-A O

T+4 GHH
T
La R

G|H —

I+J GHH

cta

Grsa —"Grsa
Vv (init(G) A stang([F|x))

[GxExF] =

I2i

[G*E*F]

aLa

[E+«GxF]—

[E*é*]F], [E x F * G| EN

[E+GxF] 5

I2w

[E«Gx|F], [ExF«G] = 4
G5 G, —init(G)

[Ex|F * G
V (init(G) A mng([F] ))

[E+G*F] %
eRNe

Syl

Gsya

[E « G |F, [E*F*G] [E

F/

{(04 P IH{(Bx)}

[Ex|F * G

Gsya, a€a, €S

Sy2s

I +{(a®aB,p-x)}

Gsyagésya

Gsya

—

Gsya

’ b0 0
Gsya I'+H{(a5)}+H{B:h)}

Gsya, a€a, a6EP

Sy2i

Gsya

I'H{(a®a B8, )}

V' +{(a8)) }H{(Boi) )

ésya

Gsya

Gsya, a€a, a€f

Sy2w

Gsya

Vi {(@@a Bl )}

G

sy a
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Notice that the timers of all waiting multiactions that lose their enabled-
ness when a state change occurs become inactive (turned off ) and their values
become irrelevant while the timers of all those preserving their enabledness
continue running with their stored values. Hence, we adapt the enabling
memory policy [208, 1, 11, 12] when the process states are changed and the
enabledness of deterministic multiactions is possibly modified (immediate
multiactions may be seen as those with the timers displaying a single value
0, so we do not need to store their values). Then the timer values of waiting
multiactions are taken as the enabling memory variables.

Like in [183], we are interested in the dynamic expressions, inferred by
applying the inaction rules (also in the reverse direction) and action rules
from the overlined static expressions, such that no stamped (superscribed
with the timer values) waiting multiaction is a subexpression of them. The
reason is to ensure that time proceeds uniformly and only enabled waiting
multiactions are stamped. We call such dynamic expressions reachable, by
analogy with the reachable states of LDTSDPNs [266, 267].

Definition 12. A dynamic expression G is reachable, if there exists a static
expression E without timer value superscripts, such that E ~ G or £ =

GongzGlT—g...&Hn%GforsomeTl,...,TnGNSDE.

fin
We now consider the enabledness of the stamped waiting multiactions.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaW ait([G]x) are stamped in G.

=~

Proof. See [266, 267]. O

3.3. Transition systems. We now construct labeled probabilistic transi-
tion systems associated with dynamic expressions. The transition systems
are used to define the operational semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]~. The set of all multisets of

activities executable in s is defined as Exec(s) = {Y | 3H € s 3H H 2N

H }. Here H X H is an inference by the rules from Table 3. It can be
proved by induction on the structure of expressions that T € Exec(s) \ {0}
implies 3H € s T € Now(H). The reverse statement does not hold, since
the preconditions in the action rules disable executions of the activities with
the lower-priority types from every H € s, see [266, 267].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) C N}gfn For an s-tangible state s we always have () € Exec(s)
by rule E; hence, we may have FExec(s) = {0}. The state s is w-tangible
(waitingly tangible), denoted by wtang(s), if Exec(s) C N}fff\{@} The state
s is tangible, denoted by tang(s), if stang(s) or wtang(s), i.e. Exec(s) C
N‘?fn U N}ﬁ\;rf Again, for a tangible state s we may have () € Exec(s) and
Ezec(s) = {0}. Otherwise, the state s is vanishing, denoted by vanish(s),
and in this case Exec(s) C N%fn \ {0}.
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Definition 13. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

e [G]~ € DR(G);
o if [H]~ € DR(G) and 3T H 5 H then [H]~ € DR(G).

The set of all s-tangible states from DR(G) is denoted by DRgr(G), and
the set of all w-tangible states from DR(G) is denoted by DRy 7(G). The
set of all tangible states from DR(G) is denoted by DR (G) = DRgr(G) U
DRw1(G). The set of all vanishing states from DR(G) is denoted by DRy (G).
Then DR(G) = DRT(G) U DRv(G) = DRST(G) @] DRWT(G) U DRv(G).

Let now G be a dynamic expression and s,§ € DR(G).

Let T € Exec(s) \ {0}. The probability that the multiset of stochastic
multiactions Y is ready for execution in s or the weight of the multiset of
deterministic multiactions T which is ready for execution in s is

II » II (-x), s€DRs(G);
(a.p)eT {{(B.x)}eEzec(s)|(B,x)¢ T}
PF(Y,s)=
(1,s) l s€ DRwr(G)UDRy(G).
(a,h?)ET

In the case T =) and s € DRgr(G) we define

[T (=), Bzecs) #{0};
PF(Q)?S) = {(B,x)}YeEzec(s)
1, Exec(s) = {0}.
Let T € Ezec(s). Besides T, other multisets of activities may be ready for
execution in s, hence, a normalization is needed to calculate the execution
probability. The probability to execute the multiset of activities T in s is

PF(Y,s)

=€ FExec(s

PT(Y,s) =

The probability to move from s to § by executing any multiset of activities is
PM(s,3) = > PT(Y,s).
{Y|3Hes 3Hes HSH)
Definition 14. Let G be a dynamic expression. The (labeled probabilistic)
transition system of G is a quadruple TS(G) = (Sq, La, Ta, sG), where
o the set of states is S¢ = DR(G);
e the set of labels is Lg = N‘?;ZE x (0;1];
o the set of transitions is Tg = {(s, (Y, PT(Y,s)),5) | 5,5 € DR(G),
JHes3Hes HS HY;
e the initial state is sq¢ = [G]~.
The transition system 7'S(G) associated with a dynamic expression G des-

cribes all the steps (parallel executions) that occur at discrete time moments
with some (one-step) probability and consist of multisets of activities. Every
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step consisting of stochastic (waiting, respectively) multiactions or the empty
step (i.e. that consisting of the empty multiset of activities) occurs instantly
after one discrete time unit delay. Each step consisting of immediate multi-
actions occurs instantly without any delay. The step can change the current
state to a different one. The states are the structural equivalence classes of
dynamic expressions obtained by application of action rules starting from
the expressions belonging to [G]~. A transition (s, (Y,P),s) € Tg will be

written as s I)p 5. It is interpreted as follows: the probability to change from
state s to § as a result of executing Y is P.

From every s-tangible state the empty multiset of activities can always
be executed by rule E. Hence, for s-tangible states, T may be the empty
multiset, and its execution only decrements by one the timer values (if any)

of the current state. Then we have a transition s ngs from an s-tangible
state s to the tangible state Os =[O H]x for H € s N SatOpRegDynExpr.
Since structurally equivalent saturated operative dynamic expressions remain
so after decreasing by one their timers, O s is unique for each s and the
definition is correct. Thus, O s corresponds to applying the empty move
rule to an arbitrary saturated operative dynamic expression from s, followed
by taking the structural equivalence class of the result. We have to keep
track of such executions, called the empty moves, since they affect the timers
and have non-zero probabilities. This follows from the definition of PF((), s)
and the fact that the probabilities of stochastic multiactions belong to the
interval (0;1). When it holds O H = H for H € sN SatOpRegDynExpr, we

obtain (Os = s. Then the empty move from s is in the form of s 2)73 s, called
the empty loop. For w-tangible and vanishing states T cannot be the empty
multiset, since we must execute some immediate (waiting) multiactions from
them at the current (next) moment.

The step probabilities belong to the interval (0;1], being 1 when the only

transition from an s-tangible state s is the empty move one s glO s, or if

there is a single transition from a w-tangible or a vanishing state. We write
T .. T ~ . T -

s—=>§ifFP s »p Sand s — 5 if IT s = 3.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 15. Let for dynamic expressions G,G', TS(G)=(Sq, La, Ta, Sc),
TS(G')= (S, Lers Ter, S ). A mapping B : Sg — S¢r is an isomorphism
between T'S(G) and TS(G"), denoted by B : TS(G) ~TS(G"), if

(1) B is a bijection such that B(sq) = sqr;

(2) V5,5 € Sa VY s S5p 5 o B(s) Sp B(3).
Two transition systems T'S(G) and T'S(G') are isomorphic, denoted by
TS(G)~TS(G"), if I8 : TS(G) ~TS(G").

Definition 16. Two dynamic expressions G and G’ are equivalent with
respect to transition systems, denoted by G =5 G', if TS(G) ~ T'S(G").
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4 Comparative study

In this section, we consider in detail differences and similarities between
dtsdPBC and other well-known or similar SPAs for the purpose of subsequent
determining the specific advantages of dtsdPBC.

4.1. Continuous time and interleaving semantics. Let us compare
dtsdPBC with classical SPAs: Markovian TImed Processes and Performabili-
ty (Performance and dependability) evaluation (MTIPP) [163], Performance
Evaluation Process Algebra (PEPA) [164, 166] and Extended Markovian
Process Algebra (EMPA) [26].

In MTIPP, every activity is a pair consisting of the action name (including
the symbol 7 for the internal, invisible action) and the parameter of expo-
nential distribution of the action delay (the rate). The operations are prefiz,
choice, parallel composition including synchronization on the specified acti-
on set and recursion. It is possible to specify processes by recursive equa-
tions. The interleaving semantics is defined on the basis of Markovian (i.e.
extended with the specification of rates) labeled transition systems. Note that
we have the interleaving behaviour here because the exponential PDF is a
continuous one, and a simultaneous execution of any two activities has zero
probability according to the properties of continuous distributions. CTMCs
can be derived from the mentioned transition systems to analyze performance.

In PEPA, activities are the pairs consisting of action types (including
the unknown, unimportant type 7) and activity rates. The rate is either
the parameter of exponential distribution of the activity duration or it is
unspecified, denoted by T. An activity with unspecified rate is passive by its
action type. The set of operations includes prefix, choice, cooperation, hiding
and constants whose meaning is given by the defining equations including
the recursive ones. The cooperation is accomplished on the set of action
types (the cooperation set) on which the components must synchronize or
cooperate. If the cooperation set is empty, the cooperation operator turns
into the parallel combinator. The semantics is interleaving, it is defined
via the extension of labeled transition systems with a possibility to specify
activity rates. Based on the transition systems, the continuous time Markov
processes (CTMPs) are generated which are used for performance evaluation
with the help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can
be external or internal (denoted by 7) according to types. There are three
kinds of actions according to rates: timed ones with exponentially distributed
durations (essentially, the actions from MTIPP and PEPA), immediate ones
with priorities and weights (the actions analogous to immediate transitions of
GSPNs) and passive ones (similar to passive actions of PEPA). Timed actions
specify activities that are relevant for performance analysis. Immediate acti-
ons model logical events and the activities that are irrelevant from the perfor-
mance viewpoint or much faster than others. Passive actions model activities
waiting for the synchronization with timed or immediate ones, and express
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nondeterministic choice. The set of operators consist of prefiz, functional
abstraction, functional relabeling, alternative composition and parallel compo-
sition ones. Parallel composition includes synchronization on the set of action
types like in TCSP [169]. The syntax also includes recursive definitions given
by means of constants. The semantics is interleaving and based on the labeled
transition systems enriched with the information about action rates. For the
exponentially timed kernel of the algebra (the sublanguage including only
exponentially timed and passive actions), it is possible to construct CTMCs
from the transition systems of the process terms to analyze performance.

In dtsdPBC, every activity is a pair consisting of the multiaction (not
just an action, as in the classical SPAs) as a first element. The second
element is either the probability (not the rate, as in the classical SPAs)
to execute the multiaction independently (the activity is called a stochastic
multiaction in this case) or a combined specification of the (fixed) delay
and weight expressing how important is the execution of this multiaction
(the activity is called a deterministic multiaction in this case). Immediate
(zero delay deterministic) multiactions in dtsdPBC are similar to immediate
actions in EMPA, but all the immediate multiactions in dtsdPBC have the
same (implicit) priority 2. The purpose is to execute them always before
waiting (positive delay deterministic) multiactions with the same (implicit)
priority 1, and stochastic multiactions with the same (implicit) priority O.
The immediate actions in EMPA can have different priority levels. Asso-
ciating the same priority with all immediate (or waiting) multiactions in
dtsdPBC results in the simplified specification and analysis, and such a
decision is also appropriate to the calculus. The reason is that, as mentioned
in [155], weights (assigned also to immediate actions in EMPA) are enough to
denote preferences among immediate multiactions (designating their advan-
tages or prescribing sub-priorities to them) and to produce the conformable
probabilistic behaviours when one has to make a choice among several im-
mediate multiactions executable in some state. There are no deterministic
actions in MTIPP and PEPA. Immediate actions are only available in imme-
diate PEPA (iPEPA) [158], where they are analogous to immediate multiacti-
ons in dtsdPBC, and in a variant of TIPP [142] discussed while constructing
the calculus Probabilistic Markovian TIPP (PM-TIPP) in [256, 257|, but
there immediate activities are used just to specify probabilistic branching
and they cannot be synchronized.

dtsdPBC has the sequence operation, in contrast to the prefix one in the
classical SPAs. One can combine arbitrary expressions with the sequence
operator, i.e. it is more flexible than the prefix one, where the first argument
should be a single activity. The choice operation in dtsdPBC is analogous
to that in MTIPP and PEPA, as well as to the alternative composition in
EMPA | in the sense that the choice is probabilistic, but a discrete probability
function is used in dtsdPBC, unlike continuous ones in the classical calculi.
Concurrency and synchronization in dtsdPBC are different operations (this
feature is inherited from PBC), unlike the situation in the classical SPAs
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where parallel composition (combinator) has a synchronization capability.
Relabeling in dtsdPBC is analogous to that in EMPA, but it is additionally
extended to conjugated actions. The restriction operation in dtsdPBC differs
from hiding in PEPA and functional abstraction in EMPA, where the hidden
actions are labeled with a symbol of “silent” action 7. In dtsdPBC, restriction
by an action means that, for a given expression, any process behaviour
containing the action or its conjugate is not allowed. The synchronization
on an elementary action in dtsdPBC collects all the pairs consisting of this
elementary action and its conjugate which are contained in the multiactions
from the synchronized activities. The operation produces new activities such
that the first element of every resulting activity is the union of the multiac-
tions from which all the mentioned pairs of conjugated actions are removed.
The second element is either the product of the probabilities of the syn-
chronized stochastic multiactions or a specification of the joint delay and
the sum of the weights of the synchronized deterministic multiactions with
the same delay. This differs from the way synchronization is applied in the
classical SPAs where it is accomplished over identical action names, and every
resulting activity consists of the same action name and the rate calculated
via some expression (including sums, minimums and products) on the rates
of the initial activities, such as the apparent rate in PEPA. dtsdPBC has no
recursion or recursive definitions, but it has the iteration operation to specify
infinite looping behaviour with the explicitly defined start and termination.
dtsdPBC has a discrete time semantics, and residence time in the tangible
states is geometrically distributed, unlike the classical SPAs with continuous
time semantics and exponentially distributed activity delays. As a consequen-
ce, the semantics of dtsdPBC is the step one, in contrast to the interleaving
semantics of the classical SPAs. The performance is investigated via the
underlying SMCs and (reduced) DTMCs extracted from the labeled pro-
babilistic transition systems associated with expressions of dtsdPBC. In
the classical SPAs, CTMCs are usually used for performance evaluation. In
[139], a denotational semantics of PEPA has been proposed via PEPA nets
that are high-level CTSPNs with coloured tokens (coloured CTSPNs), from
which the underlying CTMCs can be retrieved. In [25, 21], a denotational
semantics of EMPA based on GSPNs has been defined, from which one can
also extract the underlying SMCs and CTMCs (when both immediate and
timed transitions are present) or DTMCs (but when there are only immediate
transitions). dtsdPBC has a denotational semantics in terms of LDTSIPNs
from which the underlying SMCs and (reduced) DTMCs can be derived.

Consider other SPAs with continuous time and interleaving semantics.
Such SPAs without immediate (and without positive deterministic) actions
belong to the (general) classification group of MTIPP and PEPA. Such SPAs
with immediate (and without positive deterministic) actions are (generally)
classified as belonging to the group of EMPA.
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Continuous time interleaving SPAs without immediate actions.
Stochastic Process Algebra (PAg) and Generalized Stochastic Process
Algebra (PAgg) [179] extend LOTOS [39, 38| with exponential and generally
distributed continuous delays, respectively. PAg has operations of inaction,
prefix with (both) the rate (of an exponential delay) and action, choice,
parallel composition (with synchronization by a set of actions), relabeling
(with a function) and hiding (of a set of actions). In PAgg, rate and action
prefix is replaced with PDF (of the general delay) and action prefix. The
remaining operations of PAg are supplemented in PAgg by successful termi-
nation, enabling and disrupt. PAg and PAgg have the operational semantics
on labeled transition systems and denotational semantics on stochastic event
structures. Immediate actions can be easily added to the two SPAs. Continu-
ous phase type [225, 260, 171, 280, 187, 173] delays can be defined in PAgs.
PEPA with phase type distributions (PEPA) [118] extends PEPA to
specify and analyze particular queues types with potentially infinite number
of clients. The activities (with visible actions or internal one) of the PEP A,
components have phase type distributed durations. The PEPA;?L operators
are: (action and duration or passive symbol) prefix, action choice, probabilis-
tic choice, synchronization (by the actions set), hiding (of the actions set) and
constant (for recursive definition). The operational semantics of the PEPAJ;
components is defined on labeled transition systems (multi-graphs). The sta-
tionary probabilities for the processes of a PEPA;?L fragment are calculated
with the matrix-geometric method, to overcome the state explosion problem.
Generalized (General) Process Algebra (GPA) [67] implements generalized
cost operations from the semi-ring structures. GPA demonstrates a novel ap-
proach to process algebras (PAs) with measurable transitions that permits to
construct different classes of PAs, such as untimed, probabilistic and stochas-
tic ones. The mathematical structure that generally represents the transition
costs operations in such PAs is a semi-ring. The GPA actions can be visible or
invisible. The GPA operations are: terminal agent, (action and cost) prefix,
choice, parallel composition (with synchronization by a set of actions), hiding
(of a set of actions) and (recursive) definition. Operational semantics of GPA
is based on multi-labeled transition systems, where each transition is labeled
by (possibly invisible) action and cost (of the transition execution).
Markov Chains (MC) and Markov Action-labeled Chains (MAC) [160]
are the SPAs constructed on the basis of CTMCs. In MC, the processes
describe (unlabeled) CTMCs as compositions of the transition rates by the
operations of (finite) sum of the prefixed (with the rates) processes, recursion
(over variables) and (simple) parallel composition. In MAC (also called pure
Markovian process algebra), the processes describe labeled (with visible and
invisible actions) CTMCs as compositions of the pairs of actions and the
transition rates by the operations of (finite) sum of the prefixed (with such
pairs) processes, parallel composition (with synchronization by a set of acti-
ons), renaming and recursion (over variables).
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Stochastic Probes (SP) [9] specify over SPAs the performance requirements
to software systems (beginning and end of a measurement by the model
developer). The types of measures are: steady-state, transient and passa-
ge-time. The SP specifications are based on the regular expressions syntax
describing the behaviour that a software model must demonstrate before
starting or stopping the performance measurement. Stochastic probes are
themselves transformed into SPA components before a software model is ex-
plored with the process composition. SP has operators of sequence, choice,
zero-or-one, iteration, range, positive closure and (standard) closure.

BioNetGen [35, 119, 120] is a rule-based language allowing one to construct
a computational model of dynamics for the biochemical process of cellular
signal transduction. The language can respect completely and exactly the
specified enzymatic activities, potential modifications and interactions in
signalling molecules. Binding and enzymatic biomolecular reactions are de-
scribed by the rate-assigned reaction rules for transforming reactants into
products. BioNetGen provides a graphical representation for the signal trans-
duction networks in biology.

Grouped PEPA (GPEPA) [167, 157, 146, 122] stems from the PEPA
performance analysis technique for the large-scaled systems with many repli-
cated components. The technique is based on the ODE systems, instead of
the traditional CTMCs. GPEPA is a PEPA conservative extension, to which
the fluid-flow analysis method is applied for approximating the mean number
of the component types. The method takes as continuous the discrete state
space of a process and transforms the discrete model into a coupled ODE
system. The GPEPA operations over component groups (purely concurrent
groups of standard PEPA components) are cooperation (over a set of syn-
chronized actions), hiding and labeling. Operational semantics of GPEPA is
used to construct population CTMCs, being the aggregated CTMCs whose
states represent the sets of population members.

Stochastic Kernel language for agents interaction and mobility (StoKlaim)
[230, 229, 232] extends programming and modeling language Klaim [228, 32]
by adding exponential action delays to describe random phenomena. The
StoKlaim operations are: null process, prefixing (by action and its rate), choi-
ce, parallel composition and process instantiation. StoKlaim has operational
semantics based on the rate (that extend the labeled) transition systems and
transition-labeled CTMCs. The underlying stochastic process of StoKlaim is
CTMC, for which the transient or stationary probabilities are calculated.

Stochastic Pi-Machine (SPiM) [240, 243, 241, 238, 292, 233] is a graphical
calculus for St [246, 247, 248, 240, 188, 27|, aiming to specify biological
processes. SPiM is reduction equivalent to S7, hence, they have the same
expressive power. Such a graphical representation permits to detect cycles
and to animate interactions of the system components for the dynamics visu-
alization, as well as to serve as simulator of Sm for visual modeling and simu-
lation of biological systems by non-specialists. SPiM is a syntactic subset of
S, where choice of actions is allowed only on the highest level of definitions.
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Stochastic behaviour is embedded into the system by assigning channels with
interaction rates and delays with extinction rates, both being the parameters
of exponential distribution.

k-calculus (k) [100, 101, 102, 188, 184] is a formal proteins language, whose
biological interaction rules on the set of agents have rates. The rules prevent
combinatory explosion when describing the dynamics with ODEs, have in-
tuitive graphical representation based on biological knowledge, and become
a natural part of building, changing and discussing the model. k specifies
well biological signal and control processes, being massively distributed sys-
tems. It formalizes directly and transparently molecular agents and their
interactions in signalling networks.

Stochastic BioAmbients (SBioA) [61, 239, 188, 27| provides calculus of Bio-
logical Ambients BioAmbients (BioA) [255, 214, 148, 188, 27| with a stochas-
tic operational semantics to respect quantitative information. BioAmbients
was intended to specify, simulate and analyze biological entities. The SBioA
semantics is based on the stochastic simulation algorithm that calculates the
real rates (parameters of exponential distribution governing the delays) of
transitions. The semantics represents an influence of chemical and physical
parameters (such as molecules concentration) to dynamics of living matter
and constructs stochastic transition systems, from which CTMCs are extrac-
ted. The stationary probability distributions of those CTMCs are calculated,
aiming to explore behaviour of biological systems in their steady state with
the reward techniques for computing performance measures.

Markovian Process Calculus (MPC) [22] describes simple Markov (with
stochastic delays governed by exponential distribution) processes, constructed
with the operators of null term, Markovian action prefix (with an exponen-
tially timed action, a pair of the action name and the rate of its exponential
delay), alternative composition and process constant (specified by the equati-
on with a recursion possibility, i.e. by potentially recursive specification). The
operational semantics of MPC is defined on labeled (multi)transition systems.

PEPA + 11 [133] extends PEPA, aiming to model biological systems,
by applying mass action law and bounded capacity law cooperations. In
PEPA + 11, cooperation operator of PEPA is supplemented by the coope-
ration set with mass action kinetics (in addition to the standard one with
bounded capacity kinetics). A special notation is also proposed for parallel
composition of large numbers of independent (non-cooperating) identical
processes. The relationship is established between two semantics of PEPA+
IT: that in terms of CTMCs (with large state space) and that on coupled ODE
systems (to handle massive quantities of processes).

Stochastic Bigraphs (SBG) [185] calculus offers a stochastic semantics for
Bigraphical Reactive Systems (BRSs), a unifying framework for designing
models of concurrent and mobile systems. Such reactive systems are described
by rewriting rules with an initial bigraph, to which the rules are applied.
Bigraphs are the algebraic terms, represented by special graphs that represent
communication of agents and their spatial configuration, so that some nodes
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can contain others. SBG provides BRSs with a uniform stochastic interpre-
tation, where abstract rules of biomolecular reactions have positive rates
assigned, used to calculate reaction rates. Stochastic transition systems,
obtained from the SBG semantics, are taken to derive CTMCs that are
analyzed with simulation.

Stochastic Paun- (P-) Systems (SPS) [234] is a class of computational
models for cell biology and membrane computing. The main ingredients of a
P-system are membrane structure (that delimits compartments), multisets of
objects and biochemical reaction rules. The rules are endowed with the rates
reflecting propensity of the corresponding reactions and can handle both
objects and membranes. The known types of P-systems are cellular, tissular
and neural ones. The analysis of P-systems consists in applying symbolic
probabilistic model checking.

Chemical Ground Form (CGF) [72, 73, 296, 141] is a calculus for modeling
biochemical reactions, a modification for biological systems of Sm without
communication. The actions in CGF have associated stochastic rates (positive
real numbers, the exponential distribution parameters). Invisible action ex-
presses unary reaction while complementary identically named visible actions
specify two reactants in a binary reaction with the same name. The operators
of CGF are: (successful) termination, prefix and parallel composition. The
probabilistic semantics of CGF is based on DTMCs, its stochastic discrete-
state semantics is constructed on CTMCs and its continuous-state semantics
is defined on ODEs. The abstract probabilistic semantics of CGF is built by
extracting labeled interval DTMCs from abstract labeled transition systems,
based on abstract multisets, with intervals of integers used instead of single
multiplicities. CGF corresponds to basic chemistry.

Chemical Parametric Form (CPF) [73] extends CGF with parametrization,
communication and reuse, being more general subset of Sw. The CPF sto-
chastic processes can be converted to chemical reactions (interrelated with
CGF). The mapping of CPF to chemistry results in the parametric and
compositional indirect (two-step) mapping of CPF to ODEs that is easier
to define and understand than a direct (one-step) mapping. That indirect
mapping can be interpreted as the ODE semantics of the CPF processes.

Biochemical Ground Form (BGF) [77, 296] extends CGF with the capabi-
lities of complexation (joining) and splitting molecules, through association
and dissociation. Calculus BGF adds to the syntax of CGF two pairs of com-
plementary actions, intended to specify association and dissociation. The
operators of BGF additionally include trailing of the association histories.
The discrete-state semantics of BGF (like that of CGF) is based on CTMCs,
extracted from labeled transition graphs. Differently from CGF, calculus
BGF is Turing powerful and corresponds to biochemistry.

Stochastic Calculus of Communicating Systems (StoCCS) [182, 231] is a
CCS stochastic extension being a fragment of Sw. The StoCCS operators are:
null process, prefixing (by action label and its rate), stochastic choice and
parallel composition. Labeled state-to Function Transition Systems (FuTSs)
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are used to unify definitions of the (S)PAs semantics with a goal to compare
the calculi. Based on FuTSs, two stochastic enhancements of CCS with
binary synchronization are proposed: StoCCS 44 with active input and out-
put actions of the channel (along which the synchronization signal is trans-
mitted from the input to output action) and StoC'CS4p with passive input
and active output actions of the channel.

Stochastic Calculus of Looping Sequences (SCLS) [13, 16] extends stochas-
tically Calculus of Looping Sequences (CLS) [17]. SCLS is a quantitative term
rewriting formalism for describing evolution of the microbiological systems
(such as cellular pathways) while taking into account the activities speed,
represented by stochastic rates (the exponential distribution parameters).
SCLS has operators of sequencing, looping, containment and parallel com-
position. The looping operator connects the ends of sequence, resulting in
the circular (looping) sequence that can specify membrane. CTMCs are
extracted from the semantics of the SCLS systems, with a goal of simulating
and verifying their properties with stochastic model checking.

Language for Biochemical Systems (LBS) [235, 236] combines modeling
(with rewrite rules) and modularity. LBS is based on Calculus of Biochemical
Systems (CBS), intended for modular specification of metabolic, signalling
and regulatory networks, as reactions between modified complexes that occur
concurrently in the hierarchy of compartments, with possible interactions and
transport across compartments. LBS has the species expressions, parametri-
zed modules with subtypes, nondeterminism, as well as nested declarations
of species and compartments. Formal specification of the language is given by
abstract syntax and general semantics, being parametric on the structure of
the target semantic objects: PNs, coloured PNs (CPNs), ODEs and CTMCs.

Biochemical Performance Evaluation Process Algebra (Bio-PEPA) (87,
88, 86, 89, 129, 148, 125, 130, 126, 147, 212, 213, 91, 211, 259, 127, 168, 27|
is constructed to model and analyze biological networks. For that, PEPA
is extended with stoichiometry (quantitative interrelations of reactants in
biochemical reactions), the species roles in reactions and functional rates
for different kinetic rules types of the reaction dynamics. The processes in
Bio-PEPA are seen as species rather than molecules, like in Sw. The Bio-
PEPA operators are: prefix combinator (with the pair of action type and its
stoichiometry coefficient, in the role of reactant, product, activator, inhibitor
or generic modifier), choice, constant, cooperation (by the activities set) and
concentration level. The operational semantics of Bio-PEPA is defined on
stochastic labeled transition systems, based on the discrete concentration
levels. Bio-PEPA maintains several analysis methods: Stochastic Simulation
Algorithm (SSA) [137, 138], numerical solution for the steady-state analysis
of the CTMC (with discrete concentration levels) underlying the model
semantics, translation into the equivalent deterministic model of ODEs, as
well as stochastic model checking.

Context-dependent Bioambient Calculus (CoBiC) [52] is a stochastic ex-
tension with functional rates of Biological Ambients calculus, BioAmbients



COMPARING DTSDPBC WITH OTHER STOCHASTIC PROCESS ALGEBRAS 27

(BioA). The rates in CoBiC are calculated by respecting as the volume of am-
bients (such as cells), as the whole context (surrounding environment) with
the concentration and pressure (context-dependent rates). To model trans-
port of molecules in and out of membranes, CoBiC has both the notion of
membrane or compartment (to separate inside from outside) and the internal
or external compartment concentration functions. The channel and ambient
names in CoBiC are connected with the operations of inactive process, local
sum (standard choice of the processes, prefixed with the ambient capabilities,
including exponential delays), restriction (of a name), recursion (to model
infinite behaviour), ambient (named compartment with a process, and basic
or minimal volume associated) and parallel composition. The operational
semantics of CoBiC is defined by reduction rules. The rates of basic actions
are the functions depending on the context of the executing processes (the
global configuration of the system). Those functions are evaluated to positive
real numbers in each state, so that from the labeled transition system a
(time-homogenous) CTMC can be derived, used to simulate the model.

Spatial Calculus of Looping Sequences (that we call SpCLS) [14, 15] is
a spatial extension of Calculus of Looping Sequences (CLS) that observes
the position and taken space of biological elements with time passage in a
continuous two- or three-dimensional space. The movement of elements in
the space can be exactly described, and they can interact when constraints
on their positions are satisfied. Both deterministic and stochastic movements
of the elements can be specified. Like in SCLS, rewrite rules for reactions
in SpCLS are endowed with kinetic parameters defining their stochastic
propensity rates. The reaction rates are the parameters of exponential dis-
tribution that models the expected duration of a reaction with a specific
combination of reactants.

Typed Stochastic Calculus of Looping Sequences (TSCLS) [116, 34] is
an extension of SCLS with the types of elements that speed up or slow
down reactions, such as positive or negative catalyzers. The operational
semantics of TSCLS that respects the types of species is applied to derive
the stochastic evolution of a system, where the speeds of activities can be
modified by catalyzers. The types offer an abstraction that can represent
the interactions of elements without exact specification of their positions.
The rewrite rules have the rates that allow the evolutions of the rules to
follow different probability distributions, which is useful for the high-level
simulation. The typed stochastic semantics generates the transition systems,
producing the CTMCs that are applied in the simulation procedure.

Stochastic Calculus of Wrapped Compartments (SCWC) [94, 93, 258] na-
turally describes a wide class of biological systems via direct representation of
membranes and compartments. SCWC is a variant of SCLS without sequen-
cing operator and with multisets (instead of ordered sequences) of atomic ele-
ments, to specify membranes. SCWC is intended to simplify the development
of automatic analysis tools while preserving the SCLS expressiveness. Every
reaction rule in SCWC has an assigned rate function of the context. SCWC
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has a stochastic operational semantics, from which a CTMC is extracted to
verify the system properties. To identify kinetic parameters of biological sys-
tems in SCWC, an effective stochastic simulator is applied (instead of stan-
dard ODE-based methods), thus extending the class of investigated systems.

Stochastic Calculus of Communicating Systems (that we call stCCS) |75,
76] is a stochastic extension of CCS without replication [217]. Each action
(label, transition) is associated with the exponential distribution rate, which
is the same for its paired action. The synchronization of each action and its
paired one results in an internal action with the rate defined by the mass
action law. The operations of stCCS are: empty (null) process, prefix (guard),
parallel composition and choice (summation). The structural operational
semantics of stCCS is defined via measure theory and assigns to each process
a set of measures over the processes space. The measures encode the rates of
the transitions from a process to a measurable set of processes. The stochastic
behaviour is derived using continuous time Markov processes (CTMPs).

Stochastic strand algebra (that we call stSA) [74] is a formal language
with a simple relational semantics and compositional descriptions, where
each component maps directly to DNA structures. stSA is designed for
DNA computing (such as DNA strand displacement) by specifying DNA
strands and gates, as well as their interactions. The atomic elements of
stSA are signals and (null and curried) gates (from signals to signals). The
stochastic rates (positive reals) are assigned to gates. The stSA operators are:
persistency of (null or curried) gates and parallel (concurrent) composition.
The semantics of stSA is given by labeled transition graphs (LTGs), from
which CTMCs are derived. The translation from stSA to CTSPNs maps sig-
nals to marked places and gates to transitions with the associated rates. Sin-
ce CTSPNs can be represented as finite stochastic chemical systems (SCSs),
with each transition corresponding to a chemical reaction, and SCSs can be
translated to stSA, CTSPNs are equivalent to stSA.

Markovian Agent Spatial Stochastic Process Algebra (MASSPA) [145] for-
mally describes behaviour of Markovian Agent Models (MAMs), a spatial
stochastic modeling framework. A Markovian agent in a MAM is a simple se-
quential component that can have local transitions (with exponential rates),
possibly sends messages and can have message-induced transitions. The
MASSPA operations are: (exponentially rated) prefix, choice, (Poisson distri-
buted number of ) message sending, (probabilistic) message reception, cons-
tant, null process and parallel (with the message exchange). The underlying
CTMC of a lumped process is approximated with special techniques. The
CTMC describes the density evolution of an agent type at current moment
for a given location. The ODE-based analysis of higher moments (such as va-
riation) is proposed in the performance evaluation of discrete spatial stochas-
tic models. Stochastic simulation is used to verify the ODE-based approxi-
mation of mean and standard deviations for counting the model components.

Process Algebra with Hooks (PAH) [106, 107, 108]| is intended to model
biological systems at multiple levels of detail (scales). The processes of PAH
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describe different scales, such as biochemistry, cells and tissue. The ope-
rators of PAH include the deadlock process, agent definition, sequential
execution and nondeterministic choice. In addition, two symmetric operators
of synchronization (on the set of actions) are used to compose processes
within one level of detail (horizontal cooperation) and between the levels
(vertical cooperation). Stochastic semantics of PAH is based on functional
rates of reactions. Continuous time and exponential delays are applied.

Stochastic Brane Calculus (that we call SBC) [10, 27| is a stochastic ex-
tension of Brane Calculus (BC) |71, 148, 27|. The membranes are collections
of actions while the systems consist of nested membranes. The systems are
built with the operations of empty system, parallel composition and nesting
(within a membrane). The semantics of each SBC process is intended to be
a measure of the stochastic distribution of its derivations (outcomes). The
processes form a measurable space, and each process has an action-indexed
family of measures on this space. The stochastic semantics of the Brane
systems defines them as continuous time Markov processes (CTMPs) over
the measurable space generated by terms up-to syntactic congruence. The
compositional and syntax-driven structural operational (SOS) representation
of this stochastic semantics is provided.

Fluid Process Algebra (FPA) [281, 282] is a subalgebra of GPEPA being
a conservative extension of PEPA with fluid semantics, intended to simplify
solving the systems of coupled ODEs. FPA has the expressive power of
GPEPA without hiding operator. The FPA operations over the PEPA-like
model components, specified using operations of (action and rate) prefix,
choice, recursive definition with constant, and cooperation, are: cooperation
(over a set of synchronized actions) and labeling. The labels are used to
distinguish the representative components, which are replicated. A fluid
atom is an occurrence of some labeled component in a process. FPA has
a fluid semantics based on the underlying systems of ODEs that are used for
the analysis. Fach ODE system approximates the evolution in time of the
processes population representing a local state.

Simple Stochastic Process Algebra (SSPA) [290] describes CTMCs with
a product-form solution, implying that their stationary distributions are
effectively solvable. The proofs of important properties for SSPA are simpler
than for labeled Markov Automata (LMAs) that have a direct relation with
CTMCs, but do not permit to use the inductive structure of the language.
SSPA preserves semantics of the cooperation operator of LMAs, what is
important for correctness of the product-form solution. The operators of
SSPA are the empty process, identifier, choice (from a set of processes,
prefixed with actions and rates), closure (replacing variable by a real-valued
rate in each pair of an action and a variable) and interaction (among many
processes, by a set of actions).

Calculus of Chemical Systems (that we call CChS) [245] is proposed for
modular description of chemical reaction systems and modeling with rules
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in systems biology. CChS is based on CCS, but with communication re-
placed by chemical reactions. The operations of (quantitative version of)
CChS include rule (with a positive real-valued rate), parallel composition,
the empty process, local definition and process identifier. Different compo-
sitional semantics of (quantitative) CChS are given, based on quantitative
PNs (CTSPNs), ODEs and stochastic transition matrices. Complete axio-
matizations and normal forms are presented for all the semantics.

Fluid Extended Process Algebra (FEPA) [283, 284, 174] explores the mo-
dels, specified with large systems of ordinary differential equations (ODEs).
The sequential process components, called fluid atoms, can have a multiplicity
(the number of copies in the model specification). There are two variants of
synchronization: with the minimum of the rates of the synchronized processes
(to model computer systems, as in PEPA or with their product (to represent
chemical reactions and biological networks with the rule of large numbers,
as in Bio-PEPA. The FEPA processes are described by the ODE systems
with the derivatives of the population functions that define the multiplicities
(numbers of replicas in a population) of fluid atoms by one variable (time).
The typical FEPA multiplicity values are rather large and interpreted as
non-negative real (instead of natural) numbers, defined by the population
functions of time, whose values can be found for every particular moment.
The FEPA expressiveness is restricted to the processes being a parallel
composition (with the embedded synchronization by the cooperation actions)
of the fluid atoms denoting a large number of copies of simple sequential
components, specified with the operations of (action and rate) prefix, choice
and recursive definition with constants. The FEPA fluid atoms are considered
uniformly, without dividing into “discrete” atoms with small multiplicities
and “continuous” ones with large multiplicities.

Probabilistic Programming Process Algebra (ProPPA) [134, 135, 168] is
an extension of Bio-PEPA. ProPPA permits uncertain description of models
and application of the machine learning techniques, aiming to include obser-
vational information in the modeling. The semantics of ProPPA is defined on
probabilistic constraint Markov chains (PCMCs), an extension of constraint
Markov chains (CMCs). CMCs generalize DTMCs so that the state change
probabilities become not fixed, but satisfy some constraints or belong to
a set of acceptable values. Markov decision processes (MDPs) or uncertain
Markov chains (UMCs) are used to simulate CMCs. Analogously, PCMCs
generalize CTMCs, but they associate a probability distribution with the
constraint satisfaction set of values. The stochastic relation defines the rate
of the transition from one complete system to another. The rate is generalized
in ProPPA to a distribution over possible rates.

Collective Adaptive Resource-sharing Markovian Agents (CARMA) [46,
196, 132] is used to specify and analyze collective adaptive systems. CARMA
has linguistic constructs for modeling and programming systems that work
in openended and unpredictable environments. A model is a collective of
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components, each expressing a set of attributes. To model dynamic aggrega-
tions (ensembles), CARMA has communication primitives based on predica-
tes (over the expressed attributes), to select the communication participants.
There are multicast- and unicast communications. The CARMA operations
are: empty process, component destroy, action prefix, choice, parallel compo-
sition, predicate guarding and recursive definition. The operational semantics
is defined on labeled state-to Function Transition Systems (FuTSs) [231],
from which the action-labeled CTMCs are derived.

Cox and Convenience Calculus (CCC) [252, 33] is constructed to generate
and manipulate continuous acyclic phase type (APH) distributions for compositional
representation of process delays. The delays correspond to the completion
times of activities. Basic delays are described by exponential distributions.
Complex delays are obtained by composing basic delays with stochastic
operations on continuous probability distributions: summation (convolution),
minimum and maximum. CCC generates representations of APH distributi-
ons in Cox forms. The stochastic operations have the respective ones among
CCC operators: rate (of exponential delay), disabling (race between two
exponential distributions), sequential composition (corresponds to convoluti-
on), choice (corresponds to minimum) and parallel composition (corresponds
to maximum). The operational semantics maps the CCC expressions onto
Markov (decorated) transition systems and then interprets them as absorbing
CTMCs.

Modelling in Ecology with Location Attributes (MELA) [291] is designed
to model ecological systems while respecting location in space and influence
of environment. MELA is a high-level language for formal description of
the ecological concurrent systems of agents that can evolve simultaneously
and interact. It specifies population models with single or multiple species.
Its actions have rates being the exponential distribution parameters. The
MELA operators are: no-influence action, influence action, probabilistic ef-
fect of action, choice, constant, null component and parallel. Operational
semantics of MELA is defined on the labeled transition systems with qualita-
tive and quantitative information about actions. MELA supports stochastic
simulation and direct analysis of the underlying CTMCs, as well as numerical
solution of the fluid approximation with the ODE systems.

Network of Broadcasting Agents (NBA) [45] is a fragment of CARMA
without attributes. NBA supports both unicast and broadcast communica-
tion to model quantitative aspects of the systems of broadcasting processes.
Within the agents, actions have rates (the exponential distribution para-
meters), broadcast messages have probabilities while unicast messages have
weights, used to calculate probabilities. Stochastic operational semantics of
NBA is defined on labeled state-to Function Transition Systems (FuTSs)
[231]. Fluid approximation theorem is proved for the NBA population se-
mantics, based on population CTMCs.
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Continuous time interleaving SPAs with immediate actions.

Markovian Process Algebra of M. Bernardo, L. Donatiello and R. Gorri-
eri (MPA) [24] is used to model functionality and performance. The MPA
action is a pair of its type and rate. According to type, the actions can be
external (observable) and internal (invisible). According to rate, the actions
can be passive (with zero rate) and active (with a positive rate). The active
actions can be timed (with a finite positive rate) and immediate (with an
infinite positive rate). The immediate actions have priorities ans weights.
The operators of MPA include null term, prefix (with an action), func-
tional abstraction (hiding, by the actions types set), temporal restriction
(by the passive actions types set), relabeling (with a function), alternative
composition (choice), parallel composition (with the synchronization set),
constant (for recursive definition). The operational semantics of MPA is
based on labeled transitions systems, from which homogenous CTMCs are
extracted, being a performance evaluation formalism (stochastic model, Mar-
kovian semantics). The net semantics (distributed model) of MPA is defined
on GSPNs that clearly represent parallelism and causality.

Markovian Process Algebra of P. Buchholz (the extended version that
we call MPA-B) [63, 64] is based on CCS and CSP. Every action in MPA-
B has a basic transition rate. Activities are the pairs from an action and
the value parameter, expressing the action speed or its invocations number.
There is also a distinguished invisible action. For each activity, action is
executed after exponential delay with the rate equal to the product of the
activity value parameter and basic transition rate of the action. This ena-
bles compositional analysis with parallel composition of process expressions.
MPA-B has the operators of termination, prefix, choice, parallel composition
(with synchronization on the actions set), hiding and recursion. The operatio-
nal semantics of MPA-B is defined on finite multi-labeled transition systems
(MLTSs), whose transitions are labeled by the pairs from an action and
the value parameter. The MLTSs, constructed with the rules of structural
operational semantics, are used to extract the underlying CTMCs. The ex-
tensions of MPA-B with immediate activities and non-exponential activities
durations (such as phase type distributed) are proposed.

Probabilistic Markovian TImed Processes and Performability evaluation
(PM-TIPP) [256, 257] is an extension of the Markovian variant of TIPP by
probabilistic branching. It can be specified by weighted immediate activities,
also describing management actions, to test for resources availability. Instead,
PM-TIPP is MTIPP with an additional probabilistic choice operator. PM-
TIPP has hiding and relabeling operators as well. In PM-TIPP, Markovian
transitions (with exponential delay) are merged at the semantic level with
their direct followers, corresponding to the probabilistic choice. The operati-
onal semantics of PM-TIPP is based on labeled transition systems with two
transition relations denoting Markovian transitions (labeled with actions,
rates and additional words) and probabilistic transitions (labeled with pro-
babilities and additional words).
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Spectral Expansion TImed Processes and Performability evaluation (SE-
TIPP) [220] is a modification of TIPP enabling solution with the spectral ex-
pansion method (SE). SE-TTPP can model processes with infinite state space,
resulting in a significant modeling power increase. The systems with infinite
number of states are modeled intuitively while the specification scheme for
such systems gives a compact representation of infinite Markov processes, to
be solved with SE. In SE-TIPP, actions have the associated rates (parame-
ters of exponential distribution). The operations of SE-TIPP are: (successful)
termination, variable, prefix (with an activity), choice, parallelism (with the
synchronized actions set), hiding and recursion. The underlying Markov pro-
cesses may be two-dimensional: finite in one direction and infinite in the
other. The model description is transformed into a matrices set, used in the
SE solution procedure, followed by the performance measures calculation.

Stochastic Process Algebra for Discrete Event Simulation of P.G. Harrison
and B. Strulo (that we call SPADES-HS) [153] extends Timed CCS [294,
295] to formally describe discrete event simulation. SPADES-HS specifies
time progress and probabilistic choice (discrete or continuous): selecting from
a countable processes number or taking a random waiting time. The SPA
describes infinite (as a rule) semantic objects, has immediate and delayed
prefixing, can specify separately random timer starts, timer completions and
current activities. Time delays may be non-exponential, resulting in more
generality. SPADES-HS has visible actions, their conjugates and the (self-
conjugate) invisible action. The operators of SPADES-HS are: deadlocked
(terminated) process, time prefix with fixed delay, (impatient) prefix with
action, patient prefix with action, nondeterministic choice, probabilistic choi-
ce, time prefix with random delay (with the density), parallel, relabeling
(with the renaming function), restriction (on the actions set) and recursion.
The operational semantics is defined on labeled transitions systems with the
labeled (with actions), probabilistic and (time) evolution transitions.

Stochastic Timed Calculus (STC) [162] extends CCS with stochastic time
under the maximal progress assumption. The (visible and a special invisible)
immediate actions of STC are separated from delays, governed by an expo-
nential distribution with the parameters called rates. The STC operations
are: delay (with a rate) prefix, action prefix, choice and recursion (by variab-
les). The operational semantics of STC is based on labeled transition systems
with the action (action labels) and timed (rate labels) transition relations.

Stochastic Process Algebra for Discrete Event Simulation of P.R. D’Ar-
genio, J.-P. Katoen and E. Brinksma (SPADES) [6, 7, 3, 160, 5] is a non-
Markovian stochastic calculus. The actions in SPADES are separated from
continuous time generally distributed stochastic delays. The semantics of
SPADES is based on stochastic automata (SAs) [4] that can be executed
using discrete event simulation. The semantics of SAs themselves is defi-
ned via probabilistic (labeled) transition systems with general distributions
(discrete, continuous and singular). The operations of SPADES include stop
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(inaction) process, (action) prefixing, triggering condition, choice, clock set-
ting, parallel composition (with the synchronization set of actions), left merge
(with set of actions), communication merge (with set of actions), renaming
(with the function) and process instantiation (for recursive definition).

Stochastic Process Algebra (SP.A) [37] is an extension of TCSP with
anonymous (unnamed) timed actions, to model continuous time stochastic
delays between visible actions. All named (visible and invisible) actions are
immediate (of zero duration) and have no delays assigned. Timed actions
are specified by positive real numbers being the exponential distribution
parameters of delays (rates) of those (Markovian) actions. Functional and
temporal behaviour is treated separately. The SP.A operators are: empty
(stop) process, prefixing with immediate named actions, prefixing with timed
anonymous actions, choice, parallel composition (with the synchronization
set of actions), restriction (on the actions set) and recursion. Synchronization
may occur only between immediate named actions and termed timeless
[165]. The structural operational semantics of SP.A is based on the rules for
timed anonymous (Markovian) actions and for immediate named actions.
It is defined on labeled transition systems with two transition relations:
implementation of unnamed time delay or instantaneous execution of a named
action. The compositional structure of the SPA specifications is used for a
novel solution of the underlying stochastic process by reformulation of the
underlying CTMC as a semi-Markov process.

Non-Markovian Stochastic Process Algebra (NMSPA) [193] permits gene-
ral (not only exponential) probability distributions of delays, to increase the
expressive power. Some practically important distributions types are used,
such as uniform, discrete and Poisson. This fact allows one to specify passive,
urgent and immediate actions. Besides visible actions, NMSPA has the (ur-
gent) invisible action. The operators of NMSPA include deadlocked process
(STOP), choice of the fastest action (with the random variable of delay) from
those prefixing processes, parallel composition (with the synchronization set),
restriction (on the actions set), renaming (with the function) and recursion.
The operational semantics of NMSPA is based on labeled transition systems.

Stochastic Basic Language Of Temporal Ordering Specification (that we
call SB-LOTOS) [161] is an extension of Basic (data-absent) LOTOS with
the continuous phase type distributed delays. The actions can be visible
ones, the invisible (internal, unobservable) one and the successful termina-
tion one (denoted by ¢). The SB-LOTOS operators are: inaction (stop),
successful termination (exit), action prefix, rate (of the exponential delay)
prefix, choice, sequential composition (enabling), disabling, parallel compo-
sition (by a set of actions), hiding (of a set of actions), relabeling (with a
function), process instantiation (for recursive definitions) and elapse (descri-
bing continuous phase type delay via its absorbing CTMC using the actions
start, delay and break). The SB-LOTOS operational semantics is defined on
the generalization of Interactive Markov Chains (IMC) [159, 160, 23|, with
the transitions on the time being continuously phase type distributed.
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Biochemical Stochastic w-calculus (BioSpi) [251, 148] extends the name-
passing SPA S7 with the goal of investigating biomolecular systems and
interactions. BioSpi describes the structure and dynamics of biochemical net-
works. The actions have the rates assigned (parameters of the exponential
distribution of delays), corresponding to the basal reaction rates. The channel
requests (send or/and receive, or withdraw) may have the infinite rate, i.e. be
instantaneous. BioSpi inherits all operations of Sm, but the prefixing actions
are replaced by the pairs of actions and rates. Reduction semantics of BioSpi
respects the time and probability of biochemical reactions. The quantitative
analysis is based on the stochastic discrete simulation with support of mobility.

Immediate Markov Action-labeled Chains (IMAC) [160] enriches MAC
with immediate actions that are executed without any delay. The operations
of MAC are supplemented with immediate (action) prefix, such that the
prefixing immediate action is executed instantly before evolving into the
prefixed process. The operational semantics of IMAC is based on labeled
transition systems with two transition relations, describing executions of
durational actions (with rates) and those of immediate actions, respectively.
The choice between durational actions is probabilistic while that between
immediate actions is nondeterministic.

Interactive Markov Chains (IMC) and their Interactive Markov Language
(IML) [159, 160, 23| is a compositional continuous time behavioural model.
Immediate actions in IMC are added to MC, i.e. time transitions (with rates)
and action (interactive, immediate) transitions are separated. The processes
describe interactive Markov chains (IMCs) with visible and invisible actions
as compositions of the actions and transition rates by the operations of
(finite) sum of the prefixed (with actions or rates) processes, parallel composition
(with the synchronization set of actions), renaming and recursion (over variables).
The operational semantics of IMC is based on the union of labeled transition
systems and CTMCs. The semantic transitions are Markovian, with the
rates-defined exponentially distributed delays, or interactive, corresponding
to instant execution of (possibly invisible) actions.

Interactive Generalized Semi-Markov Processes (IGSMP) [59] is a calculus
with interleaving semantics for (visible and invisible) actions and ST- (Start-
Termination-) semantics for (non-Markovian) delays. The actions are all
immediate and separated from delays, specified as a pair of distribution
function (of the duration probability) and weight. IGSMP specifies the pro-
babilistic timed delays with general continuous distributions and synchroni-
zed actions with zero duration, as well as probabilistic (under preselection
policy), nondeterministic and prioritized choice. The operators are: empty
process, delay prefix, action prefix, choice, hiding (the set of actions turned
into invisible ones), relabeling (with the function), parallel (with the synchro-
nization set of actions), recursion (over variables). The operational semantics
of IGSMP constructs generalized semi-Markov processes (GSMPs) being the
probabilistic systems with generally distributed time, which are extended
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with the action transitions describing interactions among the system com-
ponents. The concurrent execution of delays is expressed by a variant of ST-
semantics, based on dynamic names. For performance evaluation, GSMPs
are extracted from IGSMPs and analyzed with mathematical and simulative
methods to obtain the performance measures.

Value Passing Stochastic Process Algebra (VPSPA) [194, 195 extends
NMSPA with the value passing feature. VPSPA permits generally distributed
delays. The properties of the VPSPA specifications are studied by transla-
ting them into the programs of concurrent functional programming language
Eden, where parallel processes are executed and their quantitative properties
are investigated. To analyze the specified generally delayed systems, simula-
tion is used instead of model checking. The performance of the system im-
plementation is simulated, in order to obtain the real estimates of its theore-
tical performance. The communication actions are input (message receiving)
and output (message transmitting) ones. There is also the invisible action
(urgent, immediate). There are data transmission channels with the values.
The stochastic actions describe the delays specified by generally distributed
continuous random variables. Choice has no probability assigned while pa-
rallelism has the associated set of indexed starts and terminations of delays
(like in the ST-semantics of IGSMP [59]). Further operators are terminati-
on, delay prefix, channel receiving, channel transmission, conditional, hiding
and recursive definition. The operational semantics of VPSPA is based on
labeled transition systems.

Semi-Markov PEPA (SM-PEPA) [53, 54, 55, 8] extends PEPA with the
action delays distributions that ensure the underlying stochastic model to be
an SMC. In SM-PEPA, actions are associated with symbolic priorities and
parameters of general delays. The parameters are the rates of exponential
delays or the pairs of a weight and a generally distributed delay, defined by
Laplace transform. The SM-PEPA operators are: prefix, cooperation, hiding
and constant. At each priority level, only one type of actions is allowed:
Markovian or semi-Markovian. The semi-Markov synchronization is specified
by the user-defined functions of the combined weight and delay. Operational
semantics of SM-PEPA is constructed with the rules for Markovian and semi-
Markovian actions. For the model analysis, the SM-PEPA specifications are
automatically transformed into semi-Markov SPNs.

Stochastic Beta-binders (that we call SBB) [104, 148, 27| is a stochastic
version of Beta-binders [250, 214, 148, 27| with typed interaction sites for
accurate description of biological entities. In SBB, quantitative measures on
biological phenomena are studied. The quantitative parameters are extracted
from typed interaction sites, resulting in the affinity concept. The SPA has
exponential or zero action delays. The quantitative information is given by
the action rates (exponential distribution parameters) that represent sto-
chastic behaviour and define reaction speeds. The operators are: inactive
process, (input, output, hiding, unhiding and exposing) prefixing (with the
pair of action and rate), parallelism, static binding and multiple instances of
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prefixed process. The operational (stochastic reductional) semantics is based
on labeled transition systems. The underlying stochastic process is CTMC.

MOdeling and DEscription language for Stochastic Timed systems
(MODEST) [36, 149, 69, 154| is a formalism for modular description of
reactive systems behaviour respecting functional and nonfunctional aspects
(timing or service quality) of systems in a single specification. The actions are
separated from (random) delays, there are simple and structured data types,
structuring mechanisms (like parallel composition and abstraction), means
to control the assignments granularity, exception handling, nondeterministic
and random branching, timing. There are patient and impatient actions,
exception names, the unhandled error action, the break action and the un-
observable (silent) action. The operations include stop (no activity), abort
(unhandled error), break (action with no restriction), act (action with no
restriction), condition (when), urgency (of the first activity), process instanti-
ation, call by value, choice, sequential composition, loop, relabeling, alphabet
extension, exception handling, probabilistic prefix and parallel composition
(with the multiway synchronization set). The operational semantics is defined
on stochastic timed automata, a union of timed and stochastic automata
[4], interpreted over (infinite) timed probabilistic transition systems (with
immediate action transitions to discrete probability distributions over succes-
sor states, and timed transitions with positive real-valued delays). MODEST
describes a wide spectrum of models: labeled transition systems, timed and
hybrid automata (and probabilistic variants of them), stochastic processes
like (discrete and continuous time, generalized semi-) Markov chains and
(discrete and continuous time) Markov decision processes, Markov and sto-
chastic (timed and hybrid) automata.

Stochastic Concurrent Constraint Programming (sCCP) [41, 47, 42, 43,
48, 49, 50, 51] is a stochastic extension of CCP [244]. sCCP is proposed
for modeling and analysis of biological systems. In sCCP, communication is
asynchronous, species are described by variables, reactions are represented
by constraints on the variables and rates are specified by functions. The
sCCP operations are: tell prefix (with rate), ask prefix (with rate), choi-
ce, empty process, (recursive) procedure call (with rate), hiding and parallel
composition. Two operational semantics of sSCCP are defined: the continuous
time one (standard) and discrete time one (with the rates interpreted as
weights to calculate probabilities; we call the latter SPA dsCCP), resulting
in CTMCs and DTMCs, respectively, as the performance analysis model.
The traditional semantics (the standard one on CTMCs and differential
one on ODEs with fluid flow approximation) are supplemented with hybrid
semantics on (Non-)Deterministic Hybrid Automata (DHA, NDA) and Sim-
ple Stochastic Hybrid Automata (SSHA). The analysis consists in stochastic
simulation or in translations into the stochastic verification programming
system, ODEs and hybrid systems.

Nano-x-calculus (nanok) [96, 97, 191], based on « [100, 101, 102, 188, 184],
is intended for modeling, analysis and prediction of the molecular devices
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properties. Biochemical systems are modeled in nanox by defining their
reaction sets. The semantics of nanok is based on reaction rules, where
reactions (creations, destructions or exchanges) have finite or infinite rates.
The stochastic model of nanox is based on the stochastic transition system
with finite (for Markovian transitions) and infinite (for invisible, silent, inter-
active transitions) rates, thus resulting in the Markovian and transient states,
respectively. From that transition system (with only silent actions), interac-
tive Markov chain (IMC) [159, 160] is extracted that can be downgraded
to CTMC, if all invisible interactive transitions are partitioned into the
confluent directed acyclic graphs of finite depth. The nanox implementation
into SPiM takes molecules as processes and derives the overall (stochastic)
behavior by communication rules.

Stochastic Pi-Calculus for Concurrent Objects (SPiCO) [186, 214] is a
modeling and simulation language for systems biology, based on Sw. SPiCO
supports high-level modeling by using the multi-profile concurrent objects
with static inheritance that correctly represent interacting molecules. The
SPiCO operators are: empty process, parallel composition, channel creation,
sum, application, pattern input (receive), tuple output (send) and (recursive)
definition. The SPiCO stochastic semantics is defined on CTMCs. The tran-
sitions can be timed (exponential delays with finite rates) or immediate (zero
delay with infinite rate and probabilities). To construct CTMC, immediate
transitions (corresponding to instantaneous reactions) are eliminated and
their probability effects are respected. SPiCO is encoded back into BioSpi
while preserving the semantics.

Stochastic m-calculus with polyadic synchronization (Sw@) [286, 287, 288|
is an enrichment of the language Sm. The calculus S7@ is a stochastic ex-
tension of the process algebra 7@ [289]. In S7@, finite and infinite rates
are allowed, hence, there exist immediate actions (reaction types), taken as
possessing higher priority (from two possible, defined by types of the rates)
than standard ones. The operators of ST@ are: null process, guarded (action
prefixed) choice, parallel, guarded (action prefixed) replication and scope
restriction (of a name). The language Sm@ flexibly models multiple com-
partments with dynamic structure and provides enhanced biological faith-
fulness. The biological systems specified in ST@ are used in the extension
of Stochastic Simulation Algorithm (SSA) [137, 138] that handles multiple
compartments with varying volumes.

Attributed m-calculus (w(L£)) [176] extends m-calculus 218, 219] with at-
tributed processes and attribute dependent synchronization, for application
in systems biology. 7(L) is parametrized with the language £ defining the
attribute values, it expresses polyadic synchronization and different com-
partment organizations. The 7(L) operators are: defined process, parallel
composition, channel creation, summation of (receiver or sender prefixed)
choice alternatives, empty solution and parametric process definition. The
nondeterministic (small step reduction) and stochastic (CTMCs extraction)
semantics are proposed, with the rates possibly dependent on the attribute
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values. Finite and infinite (immediate transition) rates are allowed in the
stochastic semantics, for which a simulation algorithm is developed.

EXtended Stochastic Probes (XSP) [8, 90] is an enrichment of SP [9] for
the state-aware performance analysis with the queries combining instanta-
neous observations of the model states and finite sequences of the model
activities observations. The queries are implemented in XSP by composing
the observers with the described by an SPA model that has a discrete time
representation via CTMC. The communicating local probes have immediate
actions for instantaneous communication among components of the probes,
and for transferral of the states information without affecting the behaviour
and without perturbing the performance analysis. The XSP novelty is a
combination of the state and activity specifications with local and global
observations. The XSP activity probes operators are: (activity) observation,
sequence, choice, labeling, (upper bounded) iteration, range (lower and up-
per bounded) iteration, one-or-more, zero-or-more, zero-or-one, resetting and
bracketing.

Phase Type Processes (PTP) [293] allow for probabilistic and nondeter-
ministic choices, as well as continuous phase type (generalizing exponential)
and zero delays. The (visible or invisible) action transitions, used to react
on the external stimuli, are separated from the phase type transitions. The
PTP semantics is constructed via the path probabilities with respect to
schedulers resolving the nondeterministic choices in the timed process histo-
ry. Parallel composition is studied in the context of the partial memoryless
property. A mapping from PTP to a subclass of the single phase processes
with exponentially distributed delays is defined.

BlenX [111, 112, 113, 249, 110, 27| is a language used with Beta-binders
calculus as a basis for scaled structure for modeling, simulation and analysis
of biological systems. With that goal, a programming system Beta Workbench
(BWB), based on BlenX, is described that simplifies development of the bio-
systems models at different abstraction levels, can simulate their dynamic
behaviour, check and ask the simulation results. BWB has three tools that
jointly use the compiler and runtime environment of BlenX: stochastic simu-
lator, CTMCs generator and reactions generator. The actions in BlenX have
the rates (parameters of the exponential distribution of delay) or executed
without delay. The operators over the BlenX processes are: deadlocked pro-
cess, parallel (logical and), (guarded) choice (logical or), conditional (if-then),
(guarded) replication and (action sequence) prefixing.

DNA Strand Displacement language (DSD) [242, 189, 190, 188] is intended
for designing, modeling and simulation of the DNA circuits that make compu-
tations via strand displacement. The examples of applying that computatio-
nal mechanism are the digital logic circuits and catalytic signal amplification
circuits, functioning as efficient molecular detectors. The DSD syntax de-
scribes molecules, their segments and three types of sequences: concatena-
tion, left and right overhangings. DSD can model slow reactions with finite
rates and fast reactions that occur instantly or much faster than others.
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After exploring all trajectories (interleavings of reactions, reduction paths)
of the specified system, CTMCs are generated, used to analyze quantitative
properties of its behaviour.

Markovian Calculus of Communicating Systems (mCCS) [114, 115] is a
Markovian extension of CCS with the interpretation on Markov automata
(MAs) that describe systems behaviour via nondeterministic, probabilistic
and timed events. Markov labeled transition systems are extracted from MAs
to study their behaviour. Analogously to [159, 117|, external actions are
taken as immediate, time progresses when no internal activity is possible, and
timed actions only demonstrate Markovian behaviour. The mCCS operations
are: (successful) termination, indefinite (imprecise) and definite rate prefi-
xing, insistent prefixing with an action, choice, parallelism, process constant
(associated with definition) and probabilistic choice (with a finite index set).

Stochastic HYPE (that we call SHYPE) [44, 127] is a HYPE [131, 128]
stochastic extension, designed for the fine-grained modeling stochastic hybrid
systems. Each flow or influence affecting a variable is modeled separately and
the general system’s behaviour is obtained by composing these elements.
A flow is an influence that continuously modifies a variable and has the
strength and form that are changed by events. The continuous behaviour of
a system is governed by the ODEs sets and is altered by discrete events. The
discrete behaviour of a system is defined either by urgent actions, executed as
soon as an activation condition is satisfied, or by non-urgent actions, which
can wait some (non-zero) time before execution. In SHYPE, non-urgent
actions are associated with probability distributions of their delays and thus
become stochastic actions. The events are divided into instantaneous and
stochastic and combined by the operations of prefix (with /without influence),
choice, parallel (with/without synchronization) and constant (for recursive
definitions). The operational semantics of SHYPE is defined via labeled
multitransition systems. The stochastic hybrid semantics of SHYPE maps
those transition systems into (or directly constructs from the syntactic model)
Transition-Driven Stochastic Hybrid Automata, a subset of Piecewise Deter-
ministic Markov Processes.

Markov Automata Process Algebra (MAPA) (275, 276, 143, 144] is pro-
posed for effective compositional specification, generation and modeling of
Markov automata (MAs), whose events can be nondeterministic or happen
probabilistically, or have exponential timed delay. The operations of MAPA
include process instantiation (allowing recursion), conditional, nondetermi-
nistic choice, (possibly infinite) nondeterministic choice over data type, pro-
babilistic choice over data type and rate (of the exponential delay) prefixing.
For the modular construction of large systems, the top-level operations can
be added: parallelism, encapsulation (analogous to restriction), hiding and
renaming. The operational semantics of MAPA is defined in terms of MAs.

Immediate PEPA (iPEPA) [158] adds to PEPA immediate actions with
weights. The weights are transformed into probabilities while each parallel
composition application and the resulted probabilities are recalculated at all
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composition levels. Immediate actions supplement standard timed actions
having rates and are used to represent communication between the measure-
ment processes, intended for specification of stationary and transient passage
time measures. The iPEPA operations are: standard and immediate (high-
priority) prefix, choice, constant and cooperation (on the action types from
a set). After removing vanishing states (in which only immediate actions are
executed) from the transition systems of the well-behaved (without immedi-
ate cycles and with deterministic initial behaviour) iPEPA components, the
derived transition systems (with only timed transitions, accomplished by ti-
med actions) are obtained, translated into CTMCs for performance analysis.

Immediate GPEPA (iGPEPA) [158] is an enrichment of GPEPA with
immediate actions having weights. The actions in iGPEPA are timed (a pair
of timed action type and rate) or immediate (a pair of immediate action
type and weight). A component of iGPEPA is a component group with the
group labeling or a cooperative composition of the iGPEPA components. The
component group is an f- (fluid-) component or an unsynchronized parallel
composition of f~components. The iGPEPA operations over component gro-
ups (purely concurrent groups of standard components of iPEPA [158]) are
cooperation (over a set of synchronized actions) and labeling. The iGPEPA
models have the associated systems of coupled first-order ODEs, used to
calculate stationary and transient fluid passage times. The vanishing states
(that enable immediate actions) are eliminated at the level of f-components
when two regularity conditions are satisfied: absence of immediate cycles
and deterministic initial behaviour. The operational semantics of iGPEPA
is defined on the underlying CTMCs.

PHASE [84, 85, 83] is designed to model non-Markovian systems by imple-
menting phase type distributed action delays. PHASE has sequential, choice
and parallel operators. The elementary process is a phase type transition (a
pair of action and infinitesimal generator matrix of its phase type delay). The
parallel processes are synchronized by actions. The PHASE operational se-
mantics represents phase type distributions through their generating CTMCs.
It defines Markovian transitions (expressing exponentially distributed delays)
and action transitions (corresponding to the instantaneous executions of
actions). PHASE advantageously models and more accurately analyzes per-
formance of non-Markovian systems with phase type distributions. PHASE
is applied in the general analysis method for such systems, to obtain the
processes translated into a probabilistic model checker for studying quanti-
tative properties of the Markovian approximations.

Process Algebra for LOcated MArkovian agents (PALOMA) [121, 122]
describes the systems of populations consisting from the agents distributed
over space, where the relative positions of agents influence their interacti-
on, and comprises Markovian Multi-class, Multi-message Markovian Agent
Models (M2MAM). PALOMA can construct formal models of large collec-
tive adaptive systems, with the agents distributed over the named locations.
Each action in PALOMA is either spontaneous (durational with a rate of the
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exponential occurrence time when it can emit a broadcast or unicast message
of the same type) or induced (immediate with a probability to receive a
broadcast or unicast message of the same type). The PALOMA operators
over agents (parameterized by locations) are: spontaneous (with broadcast,
unicast or without any emission) action prefixing, induced (by broadcast or
unicast) action prefixing, choice and parallel composition. PALOMA has a
discrete operational semantics, based on the labeled transition systems with
delay and probabilistic transitions, from which semi-Markov chains (SMCs)
can be extracted. The calculus also has a differential, population, operational
semantics, from which population CTMC (pCTMCs) can be obtained, used
while deriving ODEs for the mean-field model.

Stochastic Hybrid Communicating Sequential Processes (SHCSP) [237]
extends Hybrid Communicating Sequential Processes (HCSP) calculus [297]
with probability and stochasticity. In SHCSP, nondeterministic choice is
replaced by probabilistic one and ODEs are generalized by stochastic dif-
ferential equations (SDEs) that describe stochastic continuous evolution,
including Brownian motion. In addition to the HCSP operations of null
process, assignment, receiving or sending value along channel, sequential
composition, alternative statement and repetition, the SHCSP operations
include probabilistic choice and SDE-governed evolution, can specify preemp-
tion, weights, communication and concurrency, aiming to construct stochastic
hybrid processes in a modular way.

Continuous time interleaving SPAs with positive deterministic actions.

Bio-PEPA with delays (Bio-PEPAd) [70, 127] is an enrichment of Bio-
PEPA, by adding non-Markovian action delays. The syntax of Bio-PEPAd
is inherited from Bio-PEPA and endowed with the action delays functions.
Bio-PEPAd has a Start-Termination- (ST-) operational semantics, where
the beginning and end of each action execution are taken as separate events,
defined by different action delays: exponentially distributed and positively
deterministically timed, respectively. Distinguishing the starts and completi-
ons of actions is similar to the idea of ST-semantics for GSMPA [58, 56]. The
processes of Bio-PEPAd are translated into generalized semi-Markov proces-
ses (GSMPs) [59, 4], used in the Delay Stochastic Simulation Algorithm
(DSSA) and in Delay Differential Equations (DDEs) extending the determi-
nistic formalism of ODEs to model biological systems with delays.

Table 4 (specifically) classifies the continuous time interleaving SPAs sur-
veyed above (including MTIPP, PEPA and EMPA) and in Section 1 (sPBC
and gsPBC) according to whether the time delays are associated with (mul-
ti)actions (integrated or orthogonal time [92, 168]), the presence of (positive)
deterministic or (only) immediate (multi)actions, and the type of stochastic
delays (exponentially or phase type, or generally distributed). The names of
SPAs with the SPN-based denotational semantics are printed in bold font.

4.2. Continuous time and non-interleaving semantics. Only a few
non-interleaving SPAs were considered among non-Markovian ones [180,
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TABLE 4. Classification of the continuous time interleaving
stochastic process algebras

Time Determin. Exponential Phase type General
(multi)act. delays delays delays
Integ- | Non-exist MTIPP, PEPA, PAg, sPBC, MAC, SP, PEPA;?L PAgs, GPA
rated BioNetGen, GPEPA, StoKlaim, SPiM, x,
SBioA, MPC, PEPA+I1, SBG, SPS, CGF,
CPF, BGF, StoCCS, SCLS, LBS, Bio-PEPA,
CoBiC, SpCLS, TSCLS, SCWC, stCCS,
stSA, PAH, SBC, FPA, SSPA, CChS,
FEPA, ProPPA, CARMA, MELA, NBA
Immediate || MPA, MPA-B, PM-TIPP, SE-TIPP, EMPA, PHASE NMSPA,
BioSpi, IMAC, SBB, nanok, SPiCO, St@, SM-PEPA
w(L), XSP, BlenX, gsPBC, DSD, SHYPE,
iPEPA, iGPEPA, PALOMA
Positive Bio-PEPAd — —
Ortho- | Non-exist MC, MASSPA cCcC —
gonal | Immediate STC, SPA, IMC, IML, sCCP, mCCS, SB-LOTOS, | SPADES-HS,
MAPA PTP SPADES,
IGSMP,
VPSPA,
MODEST,
SHCSP

57]. The semantics of all Markovian calculi is interleaving and their action
delays have exponential distribution, which is the only continuous probability
distribution with memoryless (Markovian) property.

In [60], Generalized Stochastic Process Algebra (GSPA) was introduced. It
has a true-concurrent denotational semantics in terms of generalized stochas-
tic event structures (GSESs) with non-Markovian stochastic delays of events.
In that paper, no operational semantics or performance evaluation methods
for GSPA were presented. In [181], generalized semi-Markov processes
(GSMPs) [59, 4] were extracted from GSESs to analyze performance.

In [247, 248, 188], Generalized Stochastic m-calculus (that we call GS)
with general continuous distributions of activity delays was defined. It has a
proved operational semantics with transitions labeled by encodings of their
deduction trees. No well-established underlying performance model for this
version of GS7 was described.

In [58, 56], Generalized Semi-Markovian Process Algebra (GSMPA) was
developed with an ST-operational semantics and non-Markovian action de-
lays. The performance analysis in GSMPA is accomplished via GSMPs.

Again, the first fundamental difference between dtsdPBC and the calculi
GSPA, GSm and GSMPA is that dtsdPBC is based on PBC, whereas GSPA
is an extension of simple Process Algebra (PA) from [60], GS7 extends m-
calculus [218, 219] and GSMPA is an enrichment of EMPA. Therefore, both
GSPA and GSMPA have prefizing, choice (alternative composition), parallel
composition, renaming (relabeling) and hiding (abstraction) operations, but
only GSMPA permits constants. Unlike dtsdPBC,; GSPA has neither iteration
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or recursion, GSMPA allows only recursive definitions, whereas GSm addi-
tionally has operations to specify mobility. Note also that GSPA, GS7 and
GSMPA do not specify even instantaneous events or activities while dtsdPBC
has deterministic multiactions.

The second significant difference is that geometrically distributed or zero
delays are associated with process states in dtsdPBC, unlike generally distri-
buted delays assigned to events in GSPA or to activities in GS7 and GSMPA.
As a consequence, dtsdPBC has a discrete time operational semantics allo-
wing for concurrent execution of activities in steps. GSPA has no operational
semantics while GSm and GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleaving, since simultaneous
occurrence of any two events has zero probability according to the properties
of continuous probability distributions. Therefore, interleaving transitions
are often annotated with an additional information to keep concurrency data.
The transition labels in the operational semantics of GS7 encode the action
causality information and allow one to derive the enabling relations and the
firing distributions of concurrent transitions from the transition sequences.
At the same time, abstracting from stochastic delays leads to the classical
early interleaving semantics of m-calculus [218, 219|. The ST-operational
semantics of GSMPA is based on decorated transition systems governed
by transition rules with rather complex preconditions. There are two types
of transitions: the choice (action beginning) and the termination (action
ending) ones. The choice transitions are labeled by weights of single actions
chosen for execution while the termination transitions have no labels. Only
single actions can begin, but several actions can end in parallel. Thus, the
choice transitions happen just sequentially while the termination transitions
can happen simultaneously. As a result, the decorated interleaving / step
transition systems are obtained. dtsdPBC has an SPN-based denotational
semantics. In comparison with event structures, PNs are more expressive
and visually tractable formalism, capable of finitely specifying an infinite
behaviour. Recursion in GSPA produces infinite GSESs while dtsdPBC has
iteration operation with a finite SPN semantics. Identification of infinite
GSESs that can be finitely represented in GSPA was left for a future research.

4.3. Discrete time. In [1], a class of compositional DTSPNs with generally
distributed discrete time transition delays was proposed, called dts-nets. The
denotational semantics of a stochastic extension (that we call stochastic ACP
or sACP) of a subset of Algebra of Communicating Processes (ACP) [20] can
be constructed via dts-nets. There are two types of transitions in dts-nets:
immediate (timeless) ones, with zero delays, and time ones, whose delays
are random variables having general discrete distributions. The top-down
synthesis of dts-nets consists in the substitution of their transitions by blocks
(dts-subnets) corresponding to the sequence, choice, parallelism and iteration
operators. It was explained how to calculate the throughput time of dts-nets
using the service time (defined as holding time or delay) of their transitions.
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For this, the notions of service distribution for the transitions and throughput
distribution for the building blocks were defined. Since the throughput time
of the parallelism block was calculated as the maximal service time for its two
constituting transitions, the analogue of the step semantics was implemented.

In [203, 204], an SPA called Theory of Communicating Processes with dis-
crete stochastic time (7C P%*) was introduced, later in [202] called Theory of
Communicating Processes with discrete real and stochastic time (TCP9"st).
It has discrete real time (deterministic) delays (including zero delays) and
discrete stochastic time delays. The algebra generalizes real time processes to
discrete stochastic time ones by applying real time properties to stochastic
time and imposing race condition to real time semantics. TC P%! has an
interleaving operational semantics in terms of stochastic transition systems.
The performance is analyzed via discrete time probabilistic reward graphs
which are essentially the reward transition systems with probabilistic states
having finite number of outgoing probabilistic transitions and timed states
having a single outgoing timed transition. The mentioned graphs can be
transformed by unfolding or geometrization into discrete time Markov reward
chains (DTMRCs) appropriate for transient or stationary analysis.

The first difference between dtsdPBC and the algebras sACP and TC Pt
is that dtsdPBC is based on PBC, but sACP and T'C' P%? are the extensions
of ACP [20]. sACP has taken from ACP only sequence, choice, parallelism and
iteration operations, whereas dtsdPBC has additionally relabeling, restriction
and synchronization ones, inherited from PBC. In TC'P%*, besides standard
action prefiring, alternative composition, parallel composition, encapsulation
(similar to restriction) and recursive variables, there are also timed delay
prefizing, dependent delays scope and the mazimal time progress operators,
which are new both for ACP and dtsdPBC.

The second difference is that dtsdPBC, sACP and T'C P4 have zero de-
lays, however, discrete time delays in dtsdPBC are zeros or geometrically dis-
tributed (being 1 or oo as special cases) and associated with process states.
The zero delays are possible just in vanishing states while geometrically dis-
tributed delays are possible only in tangible states. For each s-tangible (w-
tangible) state, the parameter of geometric distribution governing the delay
in the state is completely determined by the probabilities (weights) of all
stochastic (waiting) multiactions executable from it. In sSACP and TC P!,
delays are generally distributed, but they are assigned to transitions in sACP
and separated from actions (excepting zero delays) in TC'P%*. A special at-
tention is given to zero delays in sSACP and deterministic delays in 7°C P95,
In sACP, immediate (timeless) transitions with zero delays serve as source
and sink transitions of the dts-subnets corresponding to the choice, paralle-
lism and iteration operators. In TC'P%*, zero delays of actions are specified
by undelayable action prefixes while positive deterministic delays of processes
are specified with timed delay prefixes. Neither formal syntax nor operati-
onal semantics for SACP are defined and it is not explained how to derive
Markov chains from the algebraic expressions or the corresponding dts-nets
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to analyze performance. It is not stated explicitly, which type of semantics
(interleaving or step) is accommodated in SACP. In spite of the discrete time
approach, operational semantics of TC'P%! is still interleaving, unlike that
of dtsdPBC. In addition, no denotational semantics was defined for T'C' P95t

Consider other SPAs with discrete time and interleaving semantics.

Discrete time interleaving SPAs without immediate actions.
Weighted Synchronous Calculus of Communicating Systems (WSCCS)
[277, 278, 215] is an extension of SCCS [217] with weights. WSCCS is a
calculus of probabilistic processes, where probabilities are not directly as-
signed to the choice operation. Instead, weights are interpreted as the pro-
babilistic specifications using the relative frequency concept and correspon-
ding equality criterium. There exist special weights expressing priorities. The
weights and actions in WSCCS are separated. The actions in WSCCS form
an Abelian group with the identity action and inverse of each action. The
WSCCS operators are: empty (null) process, (action) prefix, weighted choice
(with a finite number of weights), (synchronous) parallel composition, permit
(only actions in a set), prioritized parts (taking only), relabeling and recursi-
on (or recursive definition). The discrete model of time is applied in WSCCS
and processes are executed at time ticks. Either weighted choice or named ac-
tion execution occur at each tick, resulting in the interleaving semantics and
stratified model [140]. WSCCS is also used to calculate upper bounds on the
performance of mutually affected systems, in which action delays are specified
symbolically as random values with general discrete phase type distributions.
Discrete time variant (that we call dsCCP) of stochastic Concurrent Con-
straint Programming (sCCP) was proposed in [41]. The calculus sCCP is
constructed to model and analyze biological systems. In sCCP, communica-
tion is asynchronous, species are described by variables, reactions are seen as
constraints on the variables and rates are defined using functions. The ope-
rations of sSCCP include ask prefix (with rate), tell prefix (with rate), choice,
empty process, procedure call (with rate), hiding and parallel composition.
The analysis consists in stochastic simulation, as well as in translation into
a probabilistic verification tool, ODEs and hybrid systems. A discrete time
version (with rates interpreted as weights, used to calculate probabilities) of
the sCCP operational semantic results in the algebra dsCCP, with DTMCs
being the performance analysis model.
Discrete time interleaving SPAs with immediate actions.
Interactive Probabilistic Chains (IPC) [95, 156| calculus unifies in a single
probabilistic discrete time model the capabilities of compositional modeling,
functional verification and performance analysis (through translation into
DTMCs) for industrial systems and networks on chips. The operators of IPC
are termination, sequential composition, probabilistic choice (with a set of
probabilities), nondeterministic choice, parallel composition (with synchro-
nization set), hiding (of actions set), process call and (possibly recursive)
process definition. Being a discrete time analogue of the algebra IMC [159,
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TABLE 5. Classification of stochastic process algebras

Time | Deterministic Interleaving semantics | Non-interleaving semantics
(multi)actions

Conti- Non-exist MTIPP (CTMC), GSPA (GSMP), GSm,
nuous PEPA (CTMP), GSMPA (GSMP)

sPBC (CTMC)
Immediate || EMPA (SMC, CTMC), —
gsPBC (SMC)

Positive Bio-PEPAd (GSMP) —
Dis- Non-exist WSCCS (DTMC), dtsPBC (DTMC)
crete dsCCP (DTMC)
Tmmediate IPC (DTMC) dtsiPBC (SMC, DTMC)
Arbitrary TC P (DTMRCQ) sACP,

dtsdPBC (SMC, DTMC)

160], IPC has an interleaving operational semantics on the unification of
labeled transition systems and DTMCs. The transitions in that semantics are
either probabilistic (that occur with particular probabilities during exactly
one discrete time tick) or interactive (corresponding to the instantaneous exe-
cution of some actions, possibly invisible). The performance model of IPC is
DTMCs, obtained from interactive probabilistic chains using schedulers to
resolve a nondeterministic choice by replacing it with a probabilistic choice.

The three SPAs are rather specific: unlike standard approach, weights in
WSCCS, rates (weights) in dsCCP and probabilities in IPC are not associa-
ted with actions. In dsCCP, probabilities are calculated using rates (weights)
that are assigned to operations. In IPC, actions are executed instantaneously
while probabilistic choices take one unit time. In the common SPAs with
the integrated time concept, the time parameters are combined with actions
into pairs called activities. In dsCCP and IPC, the orthogonal time concept
is applied, where time progress is separated from actions, assumed to be
immediate and to specify logical progress [92, 168].

Table 5 summarizes the SPAs comparison above and that from Section 1
(the calculi sPBC, gsPBC, dtsPBC and dtsiPBC), by (generally) classifying
the SPAs according to the concept of time, the presence of (positive or
arbitrary) deterministic or (only) immediate (multi)actions, and the opera-
tional semantics type. The names of SPAs with the denotational semantics
based on SPNs are printed in bold font. The underlying stochastic process
(if defined) for each presented SPA is specified in parentheses near its name.

5 Discussion

Let us now discuss which advantages has dtsdPBC in comparison with
the SPAs described in Section 4.
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5.1. Analytical solution. An important aspect is the analytical tracta-
bility of the underlying stochastic process, used for performance evaluation
in SPAs. The underlying CTMCs in MTIPP and PEPA, as well as SMCs
in EMPA, are treated analytically, but these continuous time SPAs have
interleaving semantics. GSPA, GSm and GSMPA are the continuous time
models, for which a non-interleaving semantics is constructed, but for the
underlying GSMPs in GSPA and GSMPA, only simulation and numerical
methods are applied, whereas no performance model for GS7 is defined.
SACP and T'C P9 are the discrete time models with the associated analytical
methods for the throughput calculation in sACP or for the performance
evaluation based on the underlying DTMRCs in TC P9, but both models
have interleaving semantics. dtsdPBC is a discrete time model with a non-
interleaving semantics, where analytical methods are applied to the underly-
ing SMCs. Hence, if an interleaving model is appropriate as a framework for
the analytical solution towards performance evaluation then one has a choice
between the continuous time SPAs MTIPP, PEPA, EMPA and the discrete
time ones SACP, TC P%t. Otherwise, if one needs a non-interleaving model
with the associated analytical methods for performance evaluation and the
discrete time approach is feasible then dtsdPBC is the right choice.

The existence of an analytical solution also permits to interpret quantita-
tive values (rates, probabilities, weights etc.) from the system specifications
as parameters, which can be adjusted to optimize the system performance,
like in dtsPBC, dtsiPBC and dtsdPBC. The DTMCs whose transition pro-
babilities are parameters were introduced in [103]. The parameters can also
be adjusted in parametric probabilistic transition systems (PTSs) [192], i.e.
in the DTMCs whose transition probabilities may be real-valued parameters.
Parametric CTMCs with the transition rates treated as parameters were in-
vestigated in [151]. Parametric probabilistic timed automata (PTAs) were
defined in [78|. Parametric DTMCs with the transition probabilities being
polynomials over real-valued parameters were investigated in [150]. In [175],
a new method of computing the reachability probabilities was proposed for
parametric DTMCs whose state change probabilities are the fractions of po-
lynomials over the set of parameters. The parameter value synthesis problem
was studied in [109] for parametric interval DTMCs (IDTMCs), in which the
parameters are the borders of the transition probability intervals. In [253], a
new parameter synthesis technique called lifting was proposed for parametric
models: stochastic games (SGs), Markov decision processes (MDPs) and
DTMCs. Parametric verification for concurrent systems modeled by para-
metric versions of timed automata (TAs), interval (DT)MCs (IDTMCs),
PNs and logic Action-Restricted CTL (ARCTL) was surveyed in [2]. For
parametric verification with logic PCTL in [98], uncertain MDPs (UMDPs)
were applied whose parameters may be either controlled (as in the standard
parametric MDPs) or uncontrolled (being random values with the probability
distributions), aiming to specify uncertainty of the transition probabilities
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and reward functions. In [178], the parameter synthesis problem was investi-
gated and the algorithms of its solution were proposed for two Markovian mo-
dels: parametric DTMCs and MDPs, being the subclasses of parametric SGs.

On the other hand, no parameters in formulas of SPAs were considered
in the literature so far. In dtsdPBC we can easily construct examples with
more parameters than we did in our case study. The performance indices will
be then interpreted as functions of several variables. The advantage of our
approach is that, unlike of the method from [192] and other works, we should
not impose to the parameters any special conditions needed to guarantee
that the real values, interpreted as the transition probabilities, always lie in
the interval [0;1]. To be convinced of this fact, just remember that, as we
have demonstrated, the positive probability functions PF, PT, PM defi-
ne probability distributions, hence, they always return values belonging to
(0; 1] for any probability parameters from (0; 1) and weight parameters from
R<o. In addition, the transition constraints (their probabilities, rates and
guards), calculated using the parameters, in our case should not always be
polynomials over variables-parameters, as often required in the mentioned
papers, but they may also be fractions of polynomials, like in our case study.

5.2. Concurrency interpretation. One can see that the stochastic pro-
cess calculi proposed in the literature are based on interleaving, as a rule, and
parallelism is simulated by synchronous or asynchronous execution. As a se-
mantic domain, the interleaving formalism of transition systems is often used.
However, to properly support intuition of the behaviour of concurrent and
distributed systems, their semantics should treat parallelism as a primitive
concept that cannot be reduced to nondeterminism. Moreover, in interleaving
semantics, some important properties of these systems cannot be expressed,
such as simultaneous occurrence of concurrent transitions [105] or local de-
adlock in the spatially distributed processes [224]. Therefore, investigation of
stochastic extensions for more expressive and powerful algebraic calculi is an
important issue. The development of step or “true concurrency” (such that
parallelism is considered as a causal independence) SPAs is an interesting
and nontrivial problem, which has attracted special attention last years.
Nevertheless, not so many formal stochastic models of parallel systems were
defined whose underlying stochastic processes are based on DTMCs. As
mentioned in [123], such models are more difficult to analyze, since several
events can occur simultaneously in discrete time systems (the models have a
step semantics) and the probability of a set of events cannot be easily related
to the probability of the single ones. Thus, parallel executions of actions
are often not considered also in the discrete time SPAs, such as T'C P!,
whose underlying stochastic process is DTMCs with rewards (DTMRCs).
As observed in [170], even for stochastic models with generally distributed
delays, the concurrency degree restrictions were imposed to simplify their
analysis techniques. In particular, the enabling restriction requires that no
two generally distributed transitions are enabled in any reachable marking.
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Hence, their activity periods do not intersect and no two such transitions
can fire simultaneously. This results in interleaving semantics of the model.

Stochastic models with discrete time and step semantics have the following
important advantage over those having just an interleaving semantics. The
underlying Markov chains of parallel stochastically timed processes have
the additional transitions corresponding to the simultaneous execution of
concurrent (i.e. non-synchronized) activities. The transitions of that kind
allow one to bypass a lot of intermediate states, which otherwise should be
visited when interleaving semantics is accommodated. When step semantics
is used, the intermediate states can also be visited with some probability
(this is an advantage, since some alternative system’s behaviour may start
from these states), but this probability is not greater than the corresponding
one in case of interleaving semantics. While in interleaving semantics, only
the empty or singleton (multi)sets of activities can be executed, in step
semantics, generally, the (multi)sets of activities with more than one element
can be executed as well. Hence, in step semantics, there are more variants of
execution from each state than in the interleaving case and the executions
probabilities, whose sum should be equal to 1, are distributed among more
possibilities. Therefore, the systems with parallel stochastic processes usually
have smaller average run-through. In case the underlying Markov chains of
the processes are ergodic, they will generally take less discrete time units to
stabilize the behaviour, since their TPMs will be usually denser because of
additional non-zero elements outside the main diagonal. Hence, both the first
passage-time performance indices based on the transient probabilities and
the steady-state performance indices based on the stationary probabilities
can be potentially computed quicker, resulting in mostly faster quantitative
analysis of the systems. On the other hand, step semantics, induced by
simultaneous firing several transitions at each step, is natural for Petri nets
and allows one to exploit full power of the model. Therefore, it is important
to respect the probabilities of parallel executions of activities in discrete time
SPAs, especially in those with a Petri net denotational semantics.

The speed (rate) of converging the transient PMF for a DTMC to its sta-
tionary PMF was studied in [187] (the quantitative estimate via the TPM’s
second eigenvalue, by the absolute value descendance) and in [124] (the
equivalent qualitative conditions in terms of geometric ergodicity, i.e. ex-
ponentially fast approaching the stationary distribution with time progress).

5.3. Application area. From the application viewpoint, one considers
what kind of systems are more appropriate to be modeled and analyzed
within SPAs. MTIPP and PEPA are well-suited for the interleaving continu-
ous time systems such that the activity rates or the average sojourn time in
the states are known in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can be used to model
the mentioned systems with the activity delays of different duration order
or the extended systems, in which purely probabilistic choices or urgent
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activities must be implemented. GSPA and GSMPA fit well for modeling
the continuous time systems with a capability to keep the activity causality
information, and with the known activity delay distributions, which cannot
be approximated accurately by exponential distribution, while GS7 can ad-
ditionally model mobility in such systems. TCP%! is a good choice for
interleaving discrete time systems with deterministic (fixed) and generalized
stochastic delays, whereas sACP is capable to model non-interleaving systems
as well, but it offers not enough performance analysis methods.

dtsdPBC is consistent for the step discrete time systems such that the
independent execution probabilities of activities are known and geometrical
distribution approximates well the state residence time distributions. These
include Dirac distribution of the positive deterministic sojourn time, which is
then splitted into one time units and allocated with the consecutive process
states. In addition, dtsdPBC can model the mentioned systems featuring very
scattered activity delays, or even more complex systems with instantaneous
probabilistic choice or urgency. Hence, dtsdPBC can be taken as a non-
interleaving discrete time counterpart of T'C' P,

5.4. Advantages of our approach. Table 6 contains a classification of
the (labeled) SPNs classes mentioned in this paper, according to the model of
time (continuous or discrete) and presence of (besides stochastic) immediate
or deterministic (i.e. immediate and waiting) transitions. We consider (la-
beled) CTSPNs [222, 207, 65, 11, 19, 12|, GSPNs [79, 81, 207, 82, 208, 66,
11, 19, 12], WDTSPNs [68], DTSPNs [221, 223, 261, 262, 263, 264, 265],
spTPNs [62], DTSIPNs [270, 271, 272, 273, 274], DTDSPNs [302, 298, 299
and DTSDPNs [266, 267, 268, 269]. We also consider a continuous time
model of deterministic stochastic Petri nets (DSPNs) [209, 210] with sto-
chastic (exponential) and deterministic transitions. In the parentheses near
the SPNs classes, the names of the SPAs discussed here are written whose
denotational semantics is based on the respective types of SPNs. For exam-
ple, denotational semantics of PEPA is constructed using (labeled) CTSPNs
while that of dtsiPBC is defined via dtsi-boxes, a subclass of LDTSIPNs.
The names of the SPNs and SPAs, defined by us, are printed in bold font.
In the table, all the SPNs with continuous time have interleaving semantics
whereas those with discrete time have non-interleaving (step) semantics.

Thus, the main advantages of dtsdPBC are the flexible multiaction labels,
stochastic and deterministic multiactions, powerful operations, as well as a
step operational and a Petri net denotational semantics allowing for con-
current execution of activities (transitions), together with an ability for
analytical and parametric performance evaluation. The uniqueness of our
approach consists in applying a parallel semantics for the process expressions
and preserving the concurrency level in the extracted performance models
(SMC, DTMC and RDTMC) through their state changes corresponding to
the simultaneous executions.
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TABLE 6. Classification of stochastic Petri nets

Time Stochastic Stochastic and | Stochastic and

transitions immediate deterministic

transitions transitions

Continuous (L)CTSPNs (L)GSPNs DSPNs
(PEPA, sPBC) (EMPA, gsPBC) (—)

Discrete || (L)YWDTSPNs (—), | spTPNs (—), | DTDSPNs (—),
(L)DTSPNs (L)DTSIPNs | (L)DTSDPNs

(dtsPBC) (dtsiPBC) (dtsdPBC)

6 Conclusion

In this paper, we have considered dtsdPBC [266, 267, 268, 269]|, an ex-
tension with discrete stochastic and deterministic time of Petri box calculus
(PBC) [29, 31, 30, 28]. Stochastic process algebra dtsdPBC has a parallel step
operational semantics, based on labeled probabilistic transition systems, and
a Petri net denotational semantics in terms of dtsd-boxes, a special subclass
of LDTSDPNs [266, 267]. The underlying semi-Markov chains (SMCs) and
(reduced) discrete time Markov chains (DTMCs and RDTMCs) of the process
expressions are analyzed in dtsdPBC to evaluate performance [268|. We have
determined the advantages of dtsdPBC by comparing it with more than 90
other SPAs, most of which appeared to adapt continuous time, interleaving
semantics and exponential delays. We have discussed the SPAs approaches
to the analytical solution, concurrency interpretation and application area.

The advantage of our framework is twofold. First, one can specify in it con-
current composition and synchronization of (multi)actions, what is not possi-
ble in classical Markov chains. As argued in [279], (stochastic) PNs represent
the systems structure more concisely and can be an intermediate formalism
for their more intuitive translation into Markov chains. Second, algebraic
formulas represent processes in a more compact way than PNs and allow
one to apply syntactic transformations and comparisons. Process algebras
are compositional by definition and their operations naturally correspond to
operators of programming languages. Hence, it is much easier to construct a
complex model in the algebraic setting than in PNs. The complexity of PNs
generated for practical models in the literature demonstrates that it is not
straightforward to construct such PNs directly from the system specifications.

dtsdPBC is well suited for the discrete time applications, whose discrete
states change with a global time tick, such as business processes, neural and
transportation networks, computer and communication systems, timed web
services [285], as well as for those, in which the distributed architecture or
the concurrency level should be preserved while modeling and analysis, such
as genetic regulatory and cellular signalling networks (featuring maximal
parallelism) in biology [100, 101, 102, 40, 18| (remember that we have addi-
tional transitions due to concurrent executions in step semantics). In [136],
biological networks were jointly modeled by (standard, qualitative) PNs,
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CTSPNs and continuous PNs (CPNs), to demonstrate their complementarity
that makes necessary adding deterministic time to stochastic models, as well
as combining stochastic and continuous (deterministic) aspects into one mo-
del (such as stochastic rates of reactions and continuous amounts of species).
dtsdPBC can also model and analyze parallel systems with fixed durati-
ons of the typical activities (loading, processing, transfer, repair, low-level
events, message delivery) and stochastic durations of the randomly occurring
activities (arrival, departure, failure, packet loss, message collision), including
industrial, manufacturing, queueing, computing and network systems.

Future work consists in constructing a congruence relation for dtsdPBC,
i.e. the equivalence that withstands application of all operations of the algeb-
ra. A possible candidate is a stronger version of the equivalence with respect
to transition systems, with two extra transitions skip and redo, like in sPBC
[198]. Moreover, recursion operation could be added to dtsdPBC to increase
specification power of the algebra.

We also plan to extend dtsdPBC with discrete phase type multiaction
delays that are described by arbitrary finite absorbing DTMCs and include
geometric and non-Markovian (like deterministic) delays as special cases.
Discrete phase type probability distributions approximate with any precision
general discrete distributions over positive integers and are closed under mi-
nimum (alternative composition, conflict), maximum (parallel composition,
parallelism), finite convolution (sequential composition, precedence), finite
weighted and infinite geometric summations [225, 260, 171, 280, 187, 173|.

Some known SPNs with phase type transition delays are: SPNs with pha-
se-type distributed transition times (PTDTT-SPNs) [99] and phased delay
PNs (PDPNs) [177] (the both classes with discrete and continuous time),
as well as defective discrete phase SPNs (DDP-SPNs) [80], discrete deter-
ministic and stochastic PNs (DDSPNs) [300, 301] and non-Markovian SPNs
(NMSPNs) [172] (the three classes with discrete time). Only NMSPNs have a
non-interleaving transition firing semantics, but it is complex and technical.

Some existing SPAs with phase type action delays are: a modification
of PAgs [179], PEPAZ, [118], SB-LOTOS [161], PTP [293], PHASE [84,
85, 83] and CCC [252, 33| (the six SPAs with continuous time), as well as a
variant of WSCCS [278] (with discrete time). All those SPAs have only inter-
leaving operational and no SPN-based denotational semantics. Those interle-
aving phase SPAs are rather specialized or theoretically-oriented and hardly
applicable in practice or with restricted specification capabilities. In detail,
PAgg is rather theoretical, PEPA;?L describes very special subclasses of
non-Markovian systems, SB-LOTOS separates actions and delays, WSCCS
has technically complex and non-sufficiently intuitive syntax and semantics,
PTP has cooperating processes that cannot be synchronized by the shared
activities, PHASE offers just a few operators, whereas CCC does not have ac-
tions, synchronization and recursion. Unlike PAgg, PEPA;?L, SB-LOTOS,
PTP, PHASE and CCC with continuous time, WSCCS adapts a discrete
time model, but the semantics of WSCCS is still interleaving.
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Thus, it is actual to construct a discrete time SPA with phase type delays
and non-interleaving semantics: operational one (on the labeled transition
systems with parallel executions of activities) and denotational one (on the
SPNs with phase delays and parallel firings of transitions).
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