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Embedding and elimination for performance

analysis in stochastic process algebra dtsdPBC

Igor V. Tarasyuk∗

Abstract

Petri box calculus (PBC) is a parallel processs algebra with a Petri net se-
mantics. Discrete time stochastic and deterministic PBC (dtsdPBC) extends
PBC with discrete stochastic and deterministic delays. dtsdPBC has a step
operational semantics via labeled probabilistic transition systems and a Petri
net denotational semantics via dtsd-boxes, a subclass of labeled discrete time
stochastic and deterministic Petri nets. To analyze performance in dtsdPBC,
the underlying semi-Markov chains (SMCs) and (reduced) discrete time Mar-
kov chains (DTMCs and RDTMCs) of the process expressions are built.

The underlying SMCs are extracted from the transition systems with
the embedding method that constructs the embedded DTMCs (EDTMCs)
and calculates the sojourn time distributions in the states. The reductions
(RDTMCs) of the DTMCs are obtained with the elimination method that
removes the states with zero sojourn time (vanishing states) and recalculates
the probabilities to change the (remaining) states with positive sojourn time
(tangible states). We prove that the reduced SMC (RSMC) coincides with
the RDTMC, by demonstrating that an additional embedding (into RSMC)
of the reduced EDTMC is needed to coincide with the embedded RDTMC,
and by comparing the respective sojourn times.

Keywords: stochastic process algebra, Petri box calculus, discrete time, sto-
chastic delay, deterministic delay, transition system, operational semantics,
Markov chain, performance analysis, embedding, elimination

1 Introduction

Process calculi, like CSP [20], ACP [4] and CCS [35] are well-known formal mod-
els for specification of computing systems and analysis of their behaviour. In such
process algebras (PAs), formulas describe processes, and verification of the function-
ality properties of their behaviour is accomplished at a syntactic level via equivalen-
ces, axioms and inference rules. In order to represent stochastic timing and ana-
lyze the performance properties, stochastic extensions of PAs were proposed, like
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MTIPP [17], PEPA [18, 19] and EMPA [5]. Such stochastic process algebras (SPAs)
specify actions which can occur (qualitative features) and associate with the actions
the distribution parameters of their random delays (quantitative characteristics).

1.1 Petri box calculus (PBC)

Petri box calculus (PBC) [7, 9, 8, 6] is a flexible and expressive process algebra
developed as a tool for specification of the Petri nets (PNs) structure and their
interrelations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elementary PNs.
Formulas of PBC are combined from multisets of elementary actions and their
conjugates, called multiactions (basic formulas). The empty multiset of actions is
interpreted as the silent multiaction specifying an invisible activity. The operational
semantics of PBC is of step type, since its SOS rules have transitions with (mul-
ti)sets of activities, corresponding to simultaneous executions of activities (steps).
A denotational semantics of PBC was proposed via a subclass of PNs with an
interface and considered up to isomorphism, called Petri boxes. The extensions of
PBC with a deterministic, a nondeterministic or a stochastic model of time exist.

1.2 Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [22]. In tPBC, timing information is added
by associating time intervals with instantaneous actions. tPBC has a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was defined in terms of a subclass of labeled time Petri nets (LtPNs), based
on tPNs [34] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was
defined in [30, 31]. It accommodates a deterministic model of time. In contrast
to tPBC, multiactions of TPBC are not instantaneous, but have durations. TPBC
has a step timed operational semantics in terms of labeled transition systems. The
denotational semantics of TPBC was defined in terms of a subclass of labeled Timed
Petri nets (LTPNs), based on TPNs [41] and called Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [39, 40], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was defined on a subclass of labeled arc time Petri nets (atPNs), based of
those from [10, 15], where time restrictions are associated with the arcs, called arc
time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adapt the discrete time
approach, but TPBC has no immediate (multi)actions (those with zero delays).
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1.3 Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was
proposed in [29, 25, 26]. In sPBC, multiactions have stochastic delays that follow
(negative) exponential distribution. Each multiaction is equipped with a rate that
is a parameter of the corresponding exponential distribution. The (instantaneous)
execution of a stochastic multiaction is possible only after the corresponding sto-
chastic time delay. The calculus has an interleaving operational semantics defined
via transition systems labeled with multiactions and their rates. Its denotational
semantics was defined on a subclass of labeled continuous time stochastic PNs,
based on CTSPNs [32, 1] and called stochastic Petri boxes (s-boxes). In sPBC,
performance is evaluated via underlying continuous time Markov chains (CTMCs).

sPBC was enriched with immediate multiactions having zero delay in [27, 28].
We call such an extension generalized sPBC (gsPBC). An interleaving operational
semantics of gsPBC was constructed via transition systems labeled with stochastic
or immediate multiactions together with their rates or probabilities. A denotational
semantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs,
based on GSPNs [32, 1, 2] and called generalized stochastic Petri boxes (gs-boxes).
The performance analysis in gsPBC is based on semi-Markov chains (SMCs).

In [46, 47, 48, 49], we presented a discrete time stochastic extension dtsPBC
of the algebra PBC. In dtsPBC, the residence time in the process states is geome-
trically distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was defined in
terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on
DTSPNs [36, 37] and called discrete time stochastic Petri boxes (dts-boxes). The
performance evaluation in dtsPBC is accomplished via the underlying discrete time
Markov chains (DTMCs) of the algebraic processes.

In [54, 55, 56, 57, 58], a calculus dtsiPBC was proposed as an extension with im-
mediate multiactions of dtsPBC. Immediate multiactions increase the specification
capability: they can model logical conditions, probabilistic branching, instanta-
neous probabilistic choices and activities whose durations are negligible in compar-
ison with those of others. They are also used to specify urgent activities and the ones
that are not relevant for performance evaluation. The step operational semantics of
dtsiPBC was constructed with the use of labeled probabilistic transition systems.
Its denotational semantics was defined in terms of a subclass of labeled discrete
time stochastic and immediate PNs (LDTSIPNs), called dtsi-boxes. The corres-
ponding stochastic process, the underlying SMC, was constructed and investigated,
with the purpose of performance evaluation. In addition, the alternative solution
methods were developed, based on the underlying ordinary and reduced DTMCs.

In [50, 51, 52, 53], we defined dtsdPBC, an extension of dtsiPBC with determi-
nistic multiactions. In dtsdPBC, besides the probabilities from the real-valued in-
terval (0; 1), applied to calculate discrete time delays of stochastic multiactions, also
non-negative integers are used to specify fixed delays of deterministic multiactions
(including zero delay, which is the case of immediate multiactions). To resolve con-
flicts among deterministic multiactions, they are additionally equipped with positi-
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ve real-valued weights. As argued in [65, 61, 62], a combination of deterministic and
stochastic delays fits well to model technical systems with constant (fixed) durations
of the regular non-random activities and probabilistically distributed (stochastic)
durations of the randomly occurring activities. dtsdPBC has a step operational
semantics, defined via labeled probabilistic transition systems. The denotational
semantics of dtsdPBC was defined in terms of a subclass of labeled discrete time
stochastic and deterministic Petri nets (LDTSDPNs), called dtsd-boxes.

1.4 Our contributions

As a basis model, we take discrete time stochastic and deterministic Petri box calcu-
lus (dtsdPBC), presented in [50, 51, 52, 53], featuring a step operational semantics.
Here we do not consider the Petri net denotational semantics of the calculus, since it
was extensively described in [51]. In that paper, a consistency of the operational and
denotational semantics with respect to step stochastic bisimulation equivalence was
proved. Hence, all the results established for the former can be readily transferred
to the latter up to that equivalence.

In [52], with the embedding method, based on the embedded DTMC (EDTMC)
specifying the state change probabilities, we constructed and solved the underlying
stochastic process, which is a semi-Markov chain (SMC). The obtained stationary
probability masses and average sojourn times in the states of the SMC were used to
calculate the performance measures (indices) of interest. The alternative solution
techniques were also developed, called abstraction and elimination, that are based
respectively on the corresponding discrete time Markov chain (DTMC) and its re-
duction (RDTMC) by eliminating vanishing states (those with zero sojourn times).

In this paper, we formally prove that the reduced SMC (RSMC) coincides with
the RDTMC. Interestingly, the proof of this very intuitive fact appears to be rather
involved. First, we demonstrate that an additional embedding (into RSMC) of the
reduced EDTMC is needed to coincide with the embedded RDTMC. Second, we
calculate the respective sojourn time distributions in the tangible states (those
with positive sojourn times) and check their coincidence. Hence, constructing the
RDTMC is more optimal than building the RSMC, since the former technique
involves only one computationally costly embedding. The main contributions are:

• Coincidence of the embedded reduced EDTMC with the embedded RDTMC.

• Identity of the respective sojourn times, hence, the RSMC and the RDTMC.

1.5 Structure of the paper

In Section 2, the syntax of algebra dtsdPBC is proposed. In Section 3, the opera-
tional semantics of the calculus in terms of labeled probabilistic transition systems
is presented. In Section 4, the underlying stochastic process (SMC) is defined,
the alternative solution method via the corresponding RDTMC is outlined, and
coincidence of the reduced SMC (RSMC) with the RDTMC is established. Section
5 summarizes the results obtained and outlines future research.
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2 Syntax

In this section, we define the syntax: activities, operations and expressions.

2.1 Activities and operations

Multiset allows identical elements in a set.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M :X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

The set of all finite multisets over a set X is N
X
fin. Let M,M ′ ∈ N

X
fin. The

cardinality of M is |M | =
∑
x∈XM(x). We write x ∈ M if M(x) > 0 and M ⊆

M ′ if ∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and
(M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M is seen as
a proper set M ⊆ X . The set of all subsets (powerset) of X is 2X .

Let Act={a, b, . . .} be the set of elementary actions. Then Âct={â, b̂, . . .} is the

set of conjugated actions (conjugates) with â 6=a and ˆ̂a=a. Let A=Act∪Âct be the
set of all actions, and L=N

A
fin be the set of all multiactions. Here ∅∈L specifies

an internal move, i.e. the execution of a multiaction without visible actions. The
alphabet of α ∈ L is A(α)={x ∈ A | α(x)>0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets of
stochastic multiactions after one time unit delay. The probability 1 is left for
(implicitly assigned to) waiting multiactions, i.e. positively delayed deterministic
multiactions (to be defined later), which have weights to resolve conflicts with other
waiting multiactions. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl ), where α ∈ L, θ ∈ N is the non-ne-
gative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive real-valued
weight of the multiaction α. This weight is interpreted as a measure of importance
(urgency, interest) or a bonus reward associated with execution of the deterministic
multiaction at the moment when the corresponding delay has expired. Such weights
are used to calculate the probabilities to execute sets of deterministic multiactions
after their delays. An immediate multiaction is a deterministic multiaction with the
delay 0 while a waiting multiaction is a deterministic multiaction with a positive
delay. In case of no conflicts among waiting multiactions, whose remaining times to
execute (RTEs) are equal to one time unit, they are executed with probability 1 at
the next moment. Deterministic multiactions have a priority over stochastic ones
while immediate multiactions have a priority over waiting ones. Different types of
multiactions cannot participate together in a step (parallel execution). Let DL be
the set of all deterministic multiactions, IL be the set of all immediate multiactions
and WL be the set of all waiting multiactions. We have DL = IL ∪WL.

The same multiaction α ∈ L may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a deterministic
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multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities. The
alphabet of an activity (α, κ) ∈ SDL is A(α, κ) = A(α). The alphabet of a multiset
of activities Υ ∈ N

SDL
fin is A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the operations
of sequence ;, choice [], parallelism ‖, relabeling [f ] of actions, restriction rs over a
single action, synchronization sy on an action and its conjugate, and iteration [ ∗ ∗ ]
with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other PAs, but parallelism (parallel composition) does not
include synchronization, unlike the corresponding operation in CCS.

Relabeling functions f : A→A are bijections preserving conjugates, i.e. ∀x ∈

A f(x̂)= f̂(x). Relabeling is extended to multiactions: for α∈L we define f(α)=∑
x∈α f(x)=

∑
x∈A α(x)f(x). Relabeling is extended to activities: for (α, κ)∈SDL

we define f(α, κ)= (f(α), κ). Relabeling is extended to the multisets of activities:
for Υ∈N

SDL
fin we define f(Υ)=

∑
(α,κ)∈Υ(f(α), κ).

Restriction over an elementary action a ∈ Act means that, for a given expressi-
on, any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act

we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α and β

by a is defined as (α⊕a β)(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization by
a of two activities, whose multiaction parts α and β possess the above properties,
results in the activity with the multiaction part α⊕aβ. We may synchronize activi-
ties of the same type only: either both stochastic multiactions or both deterministic
ones with the same delay, since stochastic, waiting and immediate multiactions have
different priorities, and diverse delays of waiting multiactions would contradict their
joint timing. Note that the execution of immediate multiactions takes no time, un-
like that of waiting or stochastic ones. Synchronization by a means that, for a given
expression with a process behaviour containing two concurrent activities that can
be synchronized by a, there exists also the behaviour that differs from the former
only in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is
performed zero or more times, and finally, the termination is executed.

2.2 Process expressions

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations to construct the composite process-algebraic formulas. As for
the PN intuition, static expressions correspond to unmarked LDTSDPNs [50, 51].
A marking is the allocation of tokens in the places of a PN. Markings are used to
describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated,
whose value is the time left till the moment when the waiting multiaction can be
executed. Therefore, besides standard (unstamped) waiting multiactions (α, ♮θl ) ∈
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WL, a special case of the stamped waiting multiactions should be considered in the
definition of static expressions. Each (time) stamped waiting multiaction (α, ♮θl )

δ

has an extra superscript δ ∈ {1, . . . , θ} that specifies a time stamp indicating the
latest value of the timer associated with that multiaction. The standard waiting
multiactions have no time stamps, to demonstrate irrelevance of the timer values
for them (for example, their timers have not yet started or have already finished).
The notion of the alphabet part for (the multisets of) stamped waiting multiactions
is defined like that for (the multisets of) unstamped waiting multiactions.

For simplicity, we do not assign the timer value superscripts δ to immediate mul-
tiactions, a special case of deterministic multiactions (α, ♮θl ) with the delay θ = 0
in the form of (α, ♮0l ), since their timer values always equal to 0.

Definition 2. Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical difficulties with the iteration operator, we should not allow

concurrency at the highest level of the second argument of iteration. This is not
a severe restriction, since we can always prefix parallel expressions by an activity
with the empty multiaction part.

Definition 3. Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) |(α, ♮θl )
δ |E;E |E[]E |E‖E |E[f ] |E rs a |E sy a | [E ∗D ∗ E],

where D ::= (α, κ) |(α, ♮θl )
δ |D;E |D[]D |D[f ] |D rs a |D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression ⇃E of E is obtained by removing all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) = {(α, ρ) |

(α, ρ) is a subexpression of E}. The set of all immediate multiactions (from the
syntax) of E is IL(E) = {(α, ♮0l ) | (α, ♮

0
l ) is a subexpression of E}. The set of all

waiting multiactions (from the syntax) of E is WL(E) = {(α, ♮θl ) | (α, ♮
θ
l ) or (α, ♮

θ
l )
δ

is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all deterministic multi-
actions (from the syntax) of E is DL(E)=IL(E)∪WL(E) and the set of all activi-
ties (from the syntax) of E is SDL(E)=SL(E)∪DL(E)=SL(E)∪IL(E)∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages of the
process behaviour. As for the Petri net intuition, dynamic expressions correspond
to marked LDTSDPNs [50, 51]. Dynamic expressions are obtained from static ones,
by annotating them with upper or lower bars which specify the active components of
the system at the current moment of time. The dynamic expression with upper bar
(the overlined one) E denotes the initial, and that with lower bar (the underlined
one) E denotes the final state of the process specified by a static expression E.
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For every overlined stamped waiting multiaction (α, ♮θl )
δ, the superscript δ ∈

{1, . . . , θ} specifies the current value of the running countdown timer associated
with the waiting multiaction. That decreasing discrete timer is started with the
initial value θ (the waiting multiaction delay) at the moment when the waiting
multiaction becomes overlined. Then such a newly overlined stamped waiting mul-

tiaction (α, ♮θl )
θ is similar to the freshly overlined unstamped waiting multiaction

(α, ♮θl ). Such similarity will be captured by the structural equivalence, defined later.
While the stamped waiting multiaction stays overlined with the process executi-

on, the timer decrements by one discrete time unit with each global time tick until
the timer value becomes 1. This means that one time unit remains till execution of
that multiaction (the remaining time to execute, RTE, is one). Its execution should
follow in the next moment with probability 1, in case there are no conflicting with
it immediate multiactions or conflicting waiting multiactions whose RTEs equal to
one, and it is not affected by restriction. An activity is affected by restriction, if it
is within the scope of a restriction operation with the argument action, such that
it or its conjugate is contained in the multiaction part of that activity.

Definition 4. Let E∈StatExpr, a∈Act. A dynamic expression of dtsdPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression ⌊G⌋

of G is obtained by removing from it all upper and lower bars.

Definition 5. A dynamic expression G is regular if ⌊G⌋ is regular.

RegDynExpr denotes the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dy-

namic expression ⇃G of G is got by removing all timer value superscripts.
The set of all stochastic (immediate or waiting, respectively) multiactions (from

the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or WL(G) =
WL(⌊G⌋), respectively). Thus, the set of all deterministic multiactions (from the
syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all activities (from the
syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪ IL(G) ∪WL(G).

3 Operational semantics

In this section, we define the operational semantics via transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transformations
in the form of G ⇒ G̃ which do not change the states of the specified processes.
The goal of those syntactic transformations is to obtain the well-structured resulting
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expressions called operative ones to which no inaction rules can be further applied.
The application of an inaction rule to a dynamic expression does not lead to any
discrete time tick or any transition firing in the corresponding LDTSDPN [50, 51],
hence, its current marking stays unchanged.

An application of every inaction rule does not require a delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being over-
lined and underlined static ones, where (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ},
E, F,K∈RegStatExpr and a∈Act. The first inaction rule suggests that the timer
value of each newly overlined waiting multiaction is set to its delay.

Table 1: Inaction rules for overlined and underlined regular static expressions

(α, ♮θl ) ⇒ (α, ♮θl )
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the
arbitrary form, where E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈
Act. For brevity, two distinct inaction rules with the same premises are sometimes
collated, resulting in the inaction rules with double conclusion.

Table 2: Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦E ⇒ G̃ ◦E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f ] ⇒ G̃[f ]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗ E ∗ F ] ⇒ [G̃ ∗E ∗ F ]

G ⇒ G̃

[E ∗G ∗ F ] ⇒ [E ∗ G̃ ∗ F ]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 6. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressi-
ons of dtsdPBC. Any dynamic expression can be always transformed into a (not
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necessarily unique) operative one by using the inaction rules.
We shall consider regular expressions only and omit the word “regular”.

Definition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic
expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are structurally
equivalent, denoted by G ≈ G′, if they can be reached from each other by applying
the inaction rules in a forward or a backward direction.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s ∩OpRegDynExpr (α, ρ)
is a subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s)={(α, ♮0l )∈IL|∃H∈s ∩OpRegDynExpr (α, ♮0l ) is a subexpression
of H}. The set of all enabled waiting multiactions of s is EnaWait(s)= {(α, ♮θl )∈

WL | ∃H ∈ s ∩ OpRegDynExpr (α, ♮θl )
δ, δ ∈ {1, . . . , θ}, is a subexpression of H}.

The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =

{(α, ♮θl ) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl )
θ is a subexpression of H}.

The set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s) ∪ EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪EnaDet(s) = EnaSto(s) ∪EnaImm(s) ∪ EnaWait(s). Then
Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions enabled
at the initial marking of the LDTSDPN [50, 51] corresponding to G. The activities,
resulted from synchronization, are not in the syntax of the dynamic expressions.
Their enabledness status is recovered by observing that of the pair of synchronized
activities from the syntax (they both should be enabled for enabling their synchro-
nous product), even if they are affected by restriction after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the values
of timers), if each enabled waiting multiaction of [G]≈, being superscribed with the
value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expres-
sions of dtsdPBC.

Proposition 1 ([50, 51]). Any operative dynamic expression can be always trans-
formed into the saturated one by a forward or a backward applying the inaction rules.

Thus, any dynamic expression can be transformed into a (not always unique)
saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	 G denotes the
timer decrement operator 	, applied to G. The result is a saturated operative
dynamic expression, obtained from G via decrementing by one all greater than
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1 values of the timers associated with all (if any) stamped waiting multiactions
from the syntax of G. Each such stamped waiting multiaction changes its timer
value from δ ∈ N≥1 in G to max{1, δ − 1} in 	G. The timer decrement operator
affects the (possibly overlined or underlined) stamped waiting multiactions being
the subexpressions of G as follows: (α, ♮θl )

δ is replaced with (α, ♮θl )
max{1,δ−1}, and

similarly for the overlined or underlined ones.

When δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the timer value
δ = 1 may remain unchanged for a stamped waiting multiaction that is not executed
by some reason at the next moment, but stays stamped. For example, that stamped
waiting multiaction may be affected by restriction. If the timer values cannot be
decremented with a time tick for all stamped waiting multiactions (if any) from G

then 	G = G and we obtain the so-called empty loop transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions, since
it may only decrease their timer values, and the stamped waiting multiactions stay
stamped (with their timer values, possibly decremented by one).

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these rules
we capture the prioritization among different types of multiactions. We also have
the empty move rule, used to capture a delay of one discrete time unit when no
immediate or waiting multiactions are executable. In this case, the empty multi-
set of activities is executed. The action and empty move rules will be used later
to determine all multisets of activities which can be executed from the structural
equivalence class of every dynamic expression (i.e. from the state of the correspond-
ing process). This information together with that about probabilities or delays and
weights of the activities to be executed from the current process state will be used
to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiacti-

ons describe dynamic expression transformations in the form of G
Γ
→G̃ (G

I
→ G̃ or

G
W
→ G̃, respectively) due to execution of non-empty multisets Γ of stochastic (I of

immediate orW of waiting, respectively) multiactions. The rules represent possible
state changes of the specified processes when some non-empty multisets of stochastic
(immediate or waiting, respectively) multiactions are executed. The application of
an action rule with stochastic (immediate or waiting, respectively) multiactions to a
dynamic expression leads in the corresponding LDTSDPN [50, 51] to a discrete time
tick at which some stochastic or waiting transitions fire (or to the instantaneous
firing of some immediate transitions) and possible change of the current marking.
The current marking stays unchanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be one-element, since we
allow no concurrency at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting mul-
tiactions can be executed from the current state) describes dynamic expression

transformations in the form of G
∅
→	G, called the empty moves, due to execution
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of the empty multiset of activities at a discrete time tick. When no timer values
are decremented within G with the empty multiset execution at the next moment
(for example, if G contains no stamped waiting multiactions), we have 	G = G. In

such a case, the empty move from G is in the form of G
∅
→ G, called the empty loop.

The application of the empty move rule to a dynamic expression leads to a discrete
time tick in the corresponding LDTSDPN [50, 51] at which no transitions fire and
the current marking is not changed, but the timer values of the waiting transitions
enabled at the marking (if any) are decremented by one. This is a new rule that
has no prototype among inaction rules of PBC, since it represents a time delay.

Thus, an application of every action rule with stochastic or waiting multiactions
or the empty move rule requires one discrete time unit delay, i.e. the execution of
a (possibly empty) multiset of stochastic or (non-empty) multiset of waiting multi-
actions leading to the dynamic expression transformation described by the rule is
accomplished instantly after one time unit. An application of every action rule with
immediate multiactions does not take any time, i.e. the execution of a (non-empty)
multiset of immediate multiactions is done instantly at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid technical
difficulties, such as calculation of the probabilities for multiple transitions, we can
enumerate coinciding activities from left to right in the syntax of expressions. The
new activities, resulted from synchronization, will be annotated with concatenation
of numberings of the activities they come from, hence, the numbering should have a
tree structure to reflect the effect of multiple synchronizations. We now define the
numbering which encodes a binary tree with the leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders should be

considered up to permutation of their numbering. In this way, we shall recognize
different instances of the same activity. If we compare the contents of different
numberings, i.e. the sets of natural numbers in them, we shall identify the men-
tioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become pro-
per sets. We suppose that the identical activities are enumerated when needed to
avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G ∈ OpRegDynExpr. We define Can(G), the set of all
non-empty multisets of activities which can be potentially executed from G. Let
(α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and a ∈ Act.

1. If final(G) then Can(G) = ∅.

2. If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2,. . ., θ}, then Can(G)=∅.

3. If G=(α, κ) and κ∈(0; 1) or κ=♮0l , l∈R>0, then Can(G)={{(α, κ)}}.
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4. If G=(α, κ)1 and κ=♮θl , θ∈N≥1, l∈R>0, then Can(G)={{(α, κ)}}.

5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),
Υ∈Can(G‖H), Υ∈Can(H‖G), f(Υ)∈Can(G[f ]), Υ∈Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ+ Ξ ∈ Can(G‖H).

7. If Υ∈Can(G sy a) and (α, κ), (β, λ)∈Υ are different, a∈α, â∈β, then

a) Υ−{(α, κ), (β, λ)}+{(α⊕a β, κ · λ)}∈Can(G sy a) if κ, λ∈(0; 1);

b) Υ− {(α, κ), (β, λ)} + {(α⊕a β, ♮θl+m)} ∈ Can(G sy a) if κ = ♮θl ,

λ = ♮θm, θ ∈ N, l,m ∈ R>0.

When we synchronize a multiset of activities in different orders, we get
several activities with the same multiaction and probability or delay and
weight parts, but different numberings with the same content. Then we
only consider a single resulting activity.

If Υ∈Can(G) then by definition of Can(G), ∀Ξ⊆Υ, Ξ 6=∅, we get Ξ∈Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only stochas-

tic (immediate or waiting, respectively) multiactions in the multisets from Can(G)
then these stochastic (immediate or waiting, respectively) multiactions can be ex-
ecuted from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the
note above, there are non-empty multisets of deterministic multiactions in Can(G)
as well, i.e. ∃Υ ∈ Can(G) Υ ∈ N

DL
fin \ {∅}. In this case, no stochastic multiactions

can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones,
and should be executed first. Further, if there are no stochastic, but both waiting
and immediate multiactions in the multisets from Can(G), then, analogously, no
waiting multiactions can be executed from G, since immediate multiactions have a
priority over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the mul-
tisets from Can(G) then only waiting ones can be executed from G. Then just
maximal non-empty multisets of waiting multiactions can be executed from G,
since all non-conflicting waiting multiactions cannot wait and they should occur at
the next time moment with probability 1.

Definition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Now(G)=





Can(G) ∩ N
IL
fin, Can(G) ∩ N

IL
fin 6= ∅;

{W ∈Can(G)∩NWL
fin | (Can(G)∩NIL

fin=∅)∧
∀V ∈Can(G)∩NWL

fin W ⊆V ⇒V =W}, (Can(G)∩NWL
fin 6=∅);

Can(G), otherwise.
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Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tan-
gible), denoted by stang(G), if Now(G) ⊆ N

SL
fin \ {∅}. In particular, we have

stang(G), if Now(G) = ∅. The expression G is w-tangible (waitingly tangible),
denoted by wtang(G), if ∅ 6= Now(G) ⊆ N

WL
fin \ {∅}. The expression G is tangible,

denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin ∪N

WL
fin ) \ {∅}.

Again, we particularly have tang(G), if Now(G) = ∅. Otherwise, the expression G
is vanishing, denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ N

IL
fin \ {∅}.

Note that the operative dynamic expressions from [G]≈ may have different types.
Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩

OpRegDynExpr stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩
OpRegDynExpr wtang(H) and ∀H ′ ∈ [G]≈∩OpRegDynExpr tang(H ′). We wri-
te tang([G]≈), if stang([G]≈) or wtang([G]≈). Otherwise, we write vanish([G]≈),
and in this case ∃H ∈ [G]≈ ∩OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules, where (α, ρ), (β, χ) ∈
SL, (α, ♮0l ), (β, ♮

0
m) ∈ IL, (α, ♮θl ), (β, ♮

θ
m) ∈ WL, E, F ∈ RegStatExpr, G,H ∈

SatOpRegDynExpr, G̃, H̃ ∈ RegDynExpr, a ∈ Act, Γ,∆ ∈ N
SL
fin \ {∅}, Γ′ ∈

N
SL
fin, I, J ∈ N

IL
fin \ {∅}, I ′ ∈ N

IL
fin, V,W ∈ N

WL
fin \ {∅}, V ′ ∈ N

WL
fin and Υ ∈

N
SDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈ α) ∨ (â ∈ α)}.
We use the following abbreviations in the names of the rules: “E” for “Emp-

ty move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for
“Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule
E. The other rules are the action rules, describing transformations of dynamic
expressions, which are built using particular algebraic operations. If we cannot
merge the rules with stochastic, immediate ans waiting multiactions in one rule for
some operation then we get the coupled action rules. In such cases, the names of
the action rules with stochastic multiactions have a suffix ‘s’, those with immediate
multiactions have a suffix ‘i’, and those with waiting multiactions have a suffix ‘w’.
For explanation of the rules in Table 3, see [50, 51].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned off) and their values become
irrelevant while the timers of all those preserving their enabledness continue running
with their stored values. Hence, we adapt the enabling memory policy [33, 60,
1, 2] when the process states are changed and the enabledness of deterministic
multiactions is possibly modified (immediate multiactions may be seen as those with
the timers displaying a single value 0, so we do not need to store their values). Then
the timer values of waiting multiactions are taken as the enabling memory variables.

Like in [22], we are interested in the dynamic expressions, inferred by applying
the inaction rules (also in the reverse direction) and action rules from the overlined
static expressions, such that no stamped (superscribed with the timer values) wai-
ting multiaction is a subexpression of them. The reason is to ensure that time pro-
ceeds uniformly and only enabled waiting multiactions are stamped. We call such
dynamic expressions reachable, like the reachable states of LDTSDPNs [50, 51].

Definition 12. A dynamic expression G is reachable, if there exists a static ex-
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Table 3: Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l )

{(α,♮0l )}−→ (α, ♮0l ) Bw (α, ♮θl )
1

{(α,♮θl )}−→ (α, ♮θl )

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H ]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H ]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f ]
f(Υ)
−→ G̃[f ]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F ]
Υ
→ [G̃ ∗E ∗ F ]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F ]≈))

[E ∗G ∗ F ]
Γ
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F ]
I
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F ]≈))

[E ∗G ∗ F ]
V
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l )}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl )}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a
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pression E without timer value superscripts, such that E ≈ G or E ≈ G0
Υ1→ H1 ≈

G1
Υ2→ . . .

Υn→ Hn ≈ G for some Υ1, . . . ,Υn ∈ N
SDL
fin .

We now consider the enabledness of the stamped waiting multiactions.

Proposition 2 ([50, 51]). Let G be a reachable dynamic expression. Then only
waiting multiactions from EnaWait([G]≈) are stamped in G.

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dynamic
expressions. The transition systems are used to define their operational semantics.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of activi-

ties executable in s is defined as Exec(s)={Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}. Here H

Υ
→ H̃

is an inference by the rules from Table 3. It can be proved by induction on the
structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈ s Υ ∈ Now(H). The
reverse statement does not hold, since the preconditions in the action rules disable
executions of the activities with the lower-priority types from every H ∈ s [50, 51].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ N

SL
fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,

hence, we may have Exec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ N

WL
fin \ {∅}. The state s is tangible, denoted by

tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ N
SL
fin ∪N

WL
fin . Again, for a tangible

state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the state s is
vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ N

IL
fin \ {∅}.

Definition 13. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H ]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃ ]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the
set of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all
tangible states from DR(G) is denoted by DRT (G) = DRST (G)∪DRWT (G). The
set of all vanishing states from DR(G) is denoted by DRV (G). Then DR(G) =
DRT (G) ∪DRV (G) = DRST (G) ∪DRWT (G) ∪DRV (G).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s) \ {∅}. The probability that the multiset of stochastic multiac-

tions Υ is ready for execution in s or the weight of the multiset of deterministic
multiactions Υ which is ready for execution in s is

PF (Υ, s)=





∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}

(1− χ), s∈DRST (G);

∑

(α,♮θ
l
)∈Υ

l, s∈DRWT (G)∪DRV (G).
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In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =





∏

{(β,χ)}∈Exec(s)

(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

Let Υ ∈ Exec(s). Besides Υ, other multisets of activities may be ready for exe-
cution in s, hence, a normalization is needed to calculate the execution probability.
The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Definition 14. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = N
SDL
fin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s

∃H̃ ∈ s̃ H
Υ
→ H̃};

• the initial state is sG = [G]≈.

The transition system TS(G) associated with a dynamic expression G describes
all the steps (parallel executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consis-
ting of stochastic (waiting, respectively) multiactions or the empty step (consisting
of the empty multiset of activities) occurs instantly after one discrete time unit
delay. Each step consisting of immediate multiactions occurs instantly without
any delay. The step can change the current state to a different one. The states
are the structural equivalence classes of dynamic expressions obtained by applica-
tion of action rules starting from the expressions belonging to [G]≈. A transition

(s, (Υ,P), s̃) ∈ TG will be written as s
Υ
→P s̃. It is interpreted as: the probability

to change from state s to s̃ as a result of executing Υ is P .
From every s-tangible state the empty multiset of activities can always be exe-

cuted by rule E. Hence, for s-tangible states, Υ may be the empty multiset, and
its execution only decrements by one the timer values (if any) of the current state.

Then we have a transition s
∅
→P	s from an s-tangible state s to the tangible state	

s = [	H ]≈ forH ∈ s∩SatOpRegDynExpr. Since structurally equivalent saturated
operative dynamic expressions remain so after decreasing by one their timers, 	 s
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is unique for each s and the definition is correct. Thus, 	s corresponds to applying
the empty move rule to an arbitrary saturated operative dynamic expression from
s, followed by taking the structural equivalence class of the result. We have to keep
track of such executions, called the empty moves, since they affect the timers and
have non-zero probabilities. This follows from the definition of PF (∅, s) and the fact
that the probabilities of stochastic multiactions belong to the interval (0; 1). When
it holds 	H = H for H ∈ s ∩ SatOpRegDynExpr, we obtain 	 s = s. Then the

empty move from s is in the form of s
∅
→P s, called the empty loop. For w-tangible

and vanishing states Υ cannot be the empty multiset, since we must execute some
immediate (waiting) multiactions from them at the current (next) moment.

The step probabilities are in (0; 1], being 1 if the only transition from an s-tan-

gible state s is the empty move one s
∅
→1	s, or if there is a single transition from a

w-tangible or a vanishing state. We write s
Υ
→ s̃ if ∃P s

Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 15. Let for dynamic expressions G,G′, TS(G)=(SG, LG, TG, sG),
TS(G′)=(SG′ , LG′ , TG′ , sG′). A mapping β : SG → SG′ is an isomorphism between
TS(G) and TS(G′), denoted by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by
TS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Definition 16. Two dynamic expressions G and G′ are equivalent with respect to
transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Example 1. The expression Stop = ({h}, 12 ) rs h specifies the non-terminating
process that performs only empty loops with probability 1. Let E = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮

0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[] ({g}, ♮0l+m))) ∗ Stop], where

ρ, θ, φ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of the equivalence classes

s1=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s2=[[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s3=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s4=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s5=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
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In Figure 1, the transition system TS(E) is presented. The s-tangible and
w-tangible states are depicted in ordinary and double ovals, respectively, and the
vanishing ones are depicted in boxes.

This example demonstrates an infinite iteration loop. The loop is preceded with
the iteration initiation, modeled by a stochastic multiaction ({a}, ρ). The iteration
body that corresponds to the loop consists of a waiting multiaction ({b}, ♮1k), fol-
lowed (via sequential composition) by the probabilistic choice, modeled via three
conflicting immediate multiactions ({c}, ♮0l ), ({e}, ♮0m) and ({g}, ♮0l+m), such as
the first and second are followed by different stochastic multiactions ({d}, θ) and
({f}, φ), whereas the third has no follower. The iteration termination Stop demon-
strates an empty behaviour, assuring that the iteration does not reach its final state
after any number of repeated executions of its body.
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✆
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✡
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✠
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☛
✡

✟
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l
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), 1
2
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∅,1−ρ

∅,1−θ ∅,1−φ

Figure 1: The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l );

({d}, θ))[](({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

4 Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions
can be constructed and then used for performance evaluation.

4.1 Analysis of the underlying SMC (embedding)

For a dynamic expression G, a discrete random variable ξ(s) is associated with
every tangible state s ∈ DRT (G). The variable captures the residence (sojourn)
time in the state. One can interpret staying in a state at the next discrete time
moment as a failure and leaving it as a success in some trial series. It is easy to
see that ξ(s) is geometrically distributed with the parameter 1 − PM(s, s), since
the probability to stay in s for k − 1 time moments and leave it at the moment
k ≥ 1, called the probability mass function (PMF) of the residence time in s, is
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pξ(s)(k) = P(ξ(s) = k) = PM(s, s)k−1(1−PM(s, s)) (k ∈ N≥1) (the residence time
in s is k in this case). Hence, the probability distribution function (PDF) of the
residence time in s is Fξ(s)(k) = P(ξ(s) < k) = 1 − PM(s, s)k−1 (k ∈ N≥1) (the
probability that the residence time in s is less than k).

The deterministic residence time 1 in a tangible state s can be interpreted
as a random variable ξ(s) that is geometrically distributed with the parameter
1 = 1− PM(s, s). In that case, PM(s, s) = 0 and k = 1 is the only residence time
value with a positive probability. Hence, pξ(s)(1) = PM(s, s)1−1(1 − PM(s, s)) =
00 · 1 = 1, i.e. the probability that the residence time is 1 equals 1.

Further, the residence time∞ in an absorbing tangible state s can be interpreted
as a random variable ξ(s) that is geometrically distributed with the parameter 0 =
1− PM(s, s). In that case, PM(s, s) = 1 and there exists no finite residence time
value with a positive probability. Hence, pξ(s)(k) = PM(s, s)k−1(1 − PM(s, s)) =

1k−1 · 0 = 0 (k ∈ N≥1), i.e. the probability that the residence time is k equals 0 for
every k ≥ 1. Then we cannot leave s for a different state after any number of time
ticks and we stay in s for infinite time.

The mean value formula for the geometrical distribution allows us to calculate
the average sojourn time in s ∈ DRT (G) as SJ(s) = 1

1−PM(s,s) . The average

sojourn time in each vanishing state s ∈ DRV (G) is SJ(s) = 0. Let s ∈ DR(G).
The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector SJ of G has the elements SJ(s), s ∈ DR(G).
To evaluate performance of the system specified by a dynamic expression G,

we should investigate the stochastic process associated with it. The process is
the underlying semi-Markov chain (SMC) [42, 45, 23, 11, 59, 24, 43, 44], de-
noted by SMC(G), which can be analyzed by extracting from it the embedded
(absorbing) discrete time Markov chain (EDTMC) corresponding to G, denoted
by EDTMC(G). The construction of the latter is analogous to that applied
in the context of generalized stochastic PNs (GSPNs) in [32, 1, 2], and also in
the framework of discrete time deterministic and stochastic PNs (DTDSPNs) in
[65, 61, 62, 67, 68, 66], as well as within discrete deterministic and stochastic PNs
(DDSPNs) [63, 64]. EDTMC(G) only describes the state changes of SMC(G)
while ignoring its time characteristics. Thus, to construct the EDTMC, we should
abstract from all time aspects of behaviour of the SMC, i.e. from the sojourn time
in its states. The (local) sojourn time in every state of the EDTMC is deterministic
and it is equal to one discrete time unit. It is well-known that every SMC is fully
described by the EDTMC and the state sojourn time distributions (the latter can
be specified by the vector of PDFs of residence time in the states) [16, 45, 59, 24].

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system TS(G)
can have self-loops going from a state to itself which have a non-zero probability.
Clearly, the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is PM(s, s)k.
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Let s→ s̃ and s 6= s̃, i.e. PM(s, s) < 1. The probability to move from s to s̃ by
executing any multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
=

SL(s)PM(s, s̃), where SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise;

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops abstrac-
tion vector of G, denoted by SL, has the elements SL(s), s ∈ DR(G). The value
k = 0 in the summation above corresponds to the case when no self-loops occur.

Let s ∈ DRT (G). If there are self-loops from s (i.e. if s→ s) then PM(s, s) > 0
and SL(s) = 1

1−PM(s,s) = SJ(s). Otherwise, if there exist no self-loops from s then

PM(s, s) = 0 and SL(s) = 1 = 1
1−PM(s,s) = SJ(s). Thus, ∀s ∈ DRT (G) SL(s) =

SJ(s), hence, ∀s ∈ DRT (G) with PM(s, s)<1 it holds PM∗(s, s̃)=SJ(s)PM(s, s̃).
Note that the self-loops from tangible states are of the empty or non-empty type, the
latter produced by iteration, since empty loops are not possible from w-tangible
states, but they are possible from s-tangible states, while non-empty loops are
possible from both s-tangible and w-tangible states.

Let s ∈ DRV (G). We have ∀s ∈ DRV (G) SL(s) 6= SJ(s) = 0 and ∀s ∈
DRV (G) with PM(s, s) < 1 it holds PM∗(s, s̃) = SL(s)PM(s, s̃). If there exist

self-loops from s then PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) when PM(s, s) < 1. Otherwise,

if there exist no self-loops from s then PM∗(s, s̃) = PM(s, s̃). Note that the
self-loops from vanishing states are always of the non-empty type, produced by
iteration, since empty loops are not possible from vanishing states.

Note that after abstraction from the probabilities of transitions which do not
change the states, the remaining transition probabilities are normalized. In order to
calculate transition probabilities PT (Υ, s), we had to normalize PF (Υ, s). Then,
to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we have to
normalize PM(s, s̃). Thus, we have a two-stage normalization as a result.

Then PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such
that s is not an absorbing state (i.e. PM(s, s) < 1 and there are transitions to
different states after possible self-loops from it) we have

∑
{s̃|s→s̃, s6=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s6=s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

We shall not abstract from self-loops with probabilities 1 while constructing
EDTMCs, in order to maintain a probability distribution among transitions (actu-
ally, a single transition to the same state) from every state with such a self-loop.

Definition 17. Let G be a dynamic expression. The embedded (absorbing) discrete
time Markov chain (EDTMC) of G, denoted by EDTMC(G), has the state space
DR(G), the initial state [G]≈ and the transitions s ։P s̃, if s → s̃ and s 6= s̃,
where P = PM∗(s, s̃); or s։1 s, if PM(s, s) = 1.

The underlying SMC of G, denoted by SMC(G), has the EDTMC
EDTMC(G) and the sojourn time in every s ∈ DRT (G) is geometrically dis-
tributed with the parameter 1 − PM(s, s) (in particular, the sojourn time is 1
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when PM(s, s) = 0, and ∞ when PM(s, s) = 1) while the sojourn time in ev-
ery s ∈ DRV (G) is equal to 0.

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of

the (one-step) transition probability matrix (TPM) P∗ for EDTMC(G) are

P∗
ij =





PM∗(si, sj), si → sj , i 6= j;
1, PM(si, si) = 1, i = j;
0, otherwise.

The transient (k-step, k ∈ N) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for

EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ N).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC(G) is a solution of

{
ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n and 0 (1) is a row vector of n values 0 (1).
Note that the vector ψ∗ exists and is unique if EDTMC(G) is ergodic. Then

EDTMC(G) has a single steady state, and we have ψ∗ = limk→∞ ψ∗[k].
The steady-state PMF for the underlying semi-Markov chain SMC(G) is calcu-

lated via multiplication of every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time
SJ(si) in the state si, after which we normalize the resulting values. Remember
that for each tangible state s ∈ DRT (G) we have SJ(s) ≥ 1, and for each vanishing
state s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑

n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops with probabilities
less than 1 to get P∗ and then ψ∗, followed by weighting by SJ and normalization.
We call that technique embedding, since the embedded DTMC (EDTMC) is used
to specify the SMC state change probabilities. EDTMC(G) has no self-loops with
probabilities less than 1, unlike SMC(G), hence, the behaviour of EDTMC(G)
may stabilize quicker than that of SMC(G) (if each of them has a single steady
state), since P∗ has only zero (excepting the states having self-loops with proba-
bilities 1) elements at the main diagonal.
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Example 2. Let E be from Example 1. In Figure 2, the underlying SMC
SMC(E) is presented. The average sojourn times in the states of the underlying
SMC are written next to them in bold font.

The average sojourn time vector of E is

SJ =

(
1

ρ
, 1, 0,

1

θ
,
1

φ

)
.

The TPM for EDTMC(E) is

P∗ =




0 1 0 0 0
0 0 1 0 0
0 1

2 0 l
2(l+m)

m
2(l+m)

0 1 0 0 0
0 1 0 0 0



.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

2

5
,
2

5
,

l

5(l +m)
,

m

5(l+m)

)
.

The steady-state PMF ψ∗ weighted by SJ is

(
0,

2

5
, 0,

l

5θ(l +m)
,

m

5φ(l +m)

)
.

We normalize the steady-state weighted PMF by dividing it by its components sum

ψ∗SJT =
2θφ(l +m) + φl + θm

5θφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), 0, φl, θm).

Let G be a dynamic expression and s, s̃∈DR(G), S, S̃⊆DR(G). The next stan-
dard performance indices (measures) can be calculated based on the steady-state
PMF ϕ for SMC(G) and the average sojourn time vector SJ of G [38, 21].

• The average recurrence (return) time in the state s (i.e. the number of discrete
time units or steps required for this) is ReturnT ime(s) = 1

ϕ(s) .

• The fraction of residence time in the state s is T imeFract(s) = ϕ(s).

• The fraction of residence time in the set of states S or the probability of
the event determined by a condition that is true for all states from S is
T imeFract(S) =

∑
s∈S ϕ(s).
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Figure 2: The underlying SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l );

({d}, θ))[](({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

• The relative fraction of residence time in the set of states S with respect to

that in S̃ is RltT imeFract(S, S̃) =
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃) .

• The exit/entrance frequency (rate of leaving/entering, average number of ex-

its/entrances per unit of time) the state s is ExitFreq(s) = ϕ(s)
SJ(s) .

• The steady-state probability to perform a step with a multiset of activities Ξ
is ActsProb(Ξ) =

∑
s∈DR(G) ϕ(s)

∑
{Υ|Ξ⊆Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states
is Prob(r) =

∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

4.2 Analysis of the reduced DTMC (elimination)

Consider the method from [12, 13, 14, 33, 1, 3, 2] that eliminates vanishing states
from the EMC (EDTMC, in our terms) corresponding to the underlying SMC of
every GSPN N . The TPM for the resulting reduced EDTMC (REDTMC) has
smaller size than that for the EDTMC. The method demonstrates that there is a
transformation of the underlying SMC of N into a CTMC, whose states are the tan-
gible markings of N . This CTMC, which is essentially the reduced underlying SMC
(RSMC) of N , is constructed on the basis of the REDTMC. The CTMC can then
be directly solved to get both the transient and the steady-state PMFs over the tan-
gible markings of N . In [14], the program and computational complexities of such
an elimination method, based on the REDTMC, were evaluated and compared with
those of the preservation method that does not eliminate vanishing states and based
on the EDTMC. The preservation method for GSPNs corresponds in dtsdPBC to
the analysis of the underlying SMCs of expressions, called the embedding approach.

Definition 18. Let G be a dynamic expression. The discrete time Markov chain
(DTMC) of G, denoted by DTMC(G), has the state space DR(G), the initial state



Embedding and elimination for performance analysis in dtsdPBC 25

[G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of
(one-step) transition probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), si → sj ;
0, otherwise.

Example 3. Let E be from Example 1. In Figure 3, the DTMC DTMC(E) is
presented. The TPM for DTMC(E) is

P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 1

2 0 l
2(l+m)

m
2(l+m)

0 θ 0 1− θ 0
0 φ 0 0 1− φ



.
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Figure 3: The DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
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l ); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ))[]({g}, ♮
0
l+m))) ∗ Stop]

The elimination method for GSPNs can be easily transferred to dtsdPBC, hence,
for every dynamic expression G, we can find a DTMC (since the sojourn time in
the tangible states from DR(G) is discrete and geometrically distributed) with
the states from DRT (G), which can be directly solved to find the transient and
the steady-state PMFs over the tangible states. We shall demonstrate that such
a reduced DTMC (RDTMC) of G, denoted by RDTMC(G), can be constructed
from DTMC(G), using the method analogous to that designed in [33, 1, 3, 2] in
the framework of GSPNs to transform EDTMC into REDTMC. Since the sojourn
time in the vanishing states is zero, the state changes of RDTMC(G) occur in
the moments of the global discrete time associated with SMC(G), unlike those of
EDTMC(G), which happen only when the current state changes to some different
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one, irrespective of the global time. Therefore, we can skip the stages of con-
structing the REDTMC of G, denoted by REDTMC(G), from EDTMC(G), and
recovering RSMC of G, denoted by RSMC(G), (which is the sought-for DTMC)
from REDTMC(G), since we shall have RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DTMC(G). We reorder
the states from DR(G) such that the first rows and columns of the modified matrix
Pr correspond to the states from DRV (G) and the last ones correspond to those
from DRT (G). Let |DR(G)|=n and |DRT (G)|=m. Then Pr is decomposed as:

Pr =

(
C D

E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D are
the probabilities to move from vanishing to tangible states. The elements of the
m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m × m submatrix F are the probabilities to move from
tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing to
vanishing states in any number of state changes, without traversal of tangible states.

If there are no loops among vanishing states then for any vanishing state there
exists a value l ∈ N such that every sequence of state changes that starts in a
vanishing state and is longer than l should reach a tangible state. Thus, ∃l ∈
N ∀k > l Ck = 0 and

∑∞
k=0 C

k =
∑l

k=0 C
k. If there are loops among vanishing

states then all such loops are supposed to be of “transient” rather than “absorbing”
type, since the latter is treated as a specification error to be corrected, like in [33, 2].
We have earlier required that SMC(G) has a single closed communication (which
is also ergodic) class of states. Remember that a communication class of states
is their equivalence class w.r.t. communication relation, i.e. a maximal subset of
communicating states. A communication class of states is closed if only the states
belonging to it are accessible from every its state.

The ergodic class cannot consist of vanishing states only, to avoid “absorbing”
loops among them, hence, it contains tangible states as well. Thus, any sequence of
vanishing state changes that starts in the ergodic class will reach a tangible state at
some time moment. All the states that do not belong to the ergodic class should be
transient. Hence, any sequence of vanishing state changes that starts in a transient
vanishing state will some time reach either a transient tangible state or a state from
the ergodic class [45, 23, 11, 59, 24, 43, 44]. In the latter case, a tangible state will be
reached as well, as argued above. Thus, every sequence of vanishing state changes
in SMC(G) that starts in a vanishing state will exit the set of all vanishing states
in the future. As a result, the probabilities to move from vanishing to vanishing
states in k ∈ N state changes, without traversal of tangible states, will lead to 0
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when k tends to ∞. Then we have limk→∞ Ck = limk→∞(I− (I−C))k = 0, hence,
I − C is a non-singular matrix, i.e. its determinant is not equal to zero. Thus,
the inverse matrix of I −C exists and may be expressed by a Neumann series as∑∞

k=0(I− (I−C))k =
∑∞

k=0 C
k = (I−C)−1. Therefore,

G =
∞∑

k=0

Ck =

{ ∑l
k=0 C

k, ∃l ∈ N ∀k > l Ck = 0, no vanishing states loops;
(I−C)−1, limk→∞ Ck = 0, vanishing states loops;

where 0 is the square matrix consisting only of zeros and I is the identity matrix,
both of order n−m.

For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n −m, let Fij be the elements of the matrix
F, Eik be those of E, Gkl be those of G and Dlj be those of D. By definition, the
elements P⋄

ij of the matrix P⋄ are calculated as

P⋄
ij=Fij+

n−m∑

k=1

n−m∑

l=1

EikGklDlj=Fij+
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj=Fij+
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to

the tangible state sj in any number of steps, without traversal of tangible states,
but possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj . The probability to move from s to
s̃ in any number of steps, without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .

Definition 19. Let G be a dynamic expression and [G]≈∈DRT (G). The reduced
discrete time Markov chain (RDTMC) of G, denoted by RDTMC(G), has the state
space DRT (G), the initial state [G]≈, the transitions s →֒P s̃, where P=PM⋄(s, s̃).

Let us define RSMC(G) as a “restriction” of SMC(G) to its tangible states.
Since the sojourn time in the tangible states of SMC(G) is discrete and geometrical-
ly distributed, we can see that RSMC(G) is a DTMC with the state spaceDRT (G),
the initial state [G]≈ and the transitions whose probabilities collect all those in
SMC(G) to move from the tangible to the tangible states, directly or indirectly,
i.e. by going through its vanishing states only. Thus, RSMC(G) should have the
transitions s →֒P s̃, where P = PM⋄(s, s̃), resulting in RSMC(G) = RDTMC(G).

Note that RDTMC(G) is constructed fromDTMC(G) as follows. All vanishing
states and all transitions to, from and between them are removed. All transitions
between tangible states are preserved. The probabilities of transitions between tan-
gible states may become greater and new transitions between tangible states may
be added, both iff there exist moves between these tangible states in any number of
steps, going through vanishing states only. Thus, for each sequence of transitions
between two tangible states in DTMC(G) there exists a (possibly shorter, since
the eventual passed through vanishing states are removed) sequence between the
same states in RDTMC(G) and vice versa. If DTMC(G) is irreducible then all
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its states (including tangible ones) communicate, hence, all states of RDTMC(G)
communicate as well and it is irreducible. Since both DTMC(G) and RDTMC(G)
are finite, they are positive recurrent. Thus, in case of irreducibility of DTMC(G),
each of them has a single stationary PMF. Then DTMC(G) and/or RDTMC(G)
may be periodic, thus having a unique stationary distribution, but no steady-state
(limiting) one. For example, it may happen that DTMC(G) is aperiodic while
RDTMC(G) is periodic due to removing vanishing states from the former.
Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step,
k ∈ N) PMF ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ N).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ

⋄(sm)) for RDTMC(G) is a solution of

{
ψ⋄(P⋄ − I) = 0

ψ⋄1T = 1
,

where I is the identity matrix of orderm and 0 (1) is a row vector ofm values 0 (1).
Note that the vector ψ⋄ exists and is unique if RDTMC(G) is ergodic. Then

RDTMC(G) has a single steady state, and we have ψ⋄ = limk→∞ ψ⋄[k].
The zero sojourn time in the vanishing states guarantees that the state changes

of RDTMC(G) occur in the moments of the global discrete time associated with
SMC(G), i.e. every such state change occurs after one time unit delay. Hence,
the sojourn time in the tangible states is the same for RDTMC(G) and SMC(G).
The state change probabilities of RDTMC(G) are those to move from tangible
to tangible states in any number of steps, without traversal of the tangible states.
Then RDTMC(G) and SMC(G) have the same transient behaviour over the tan-
gible states, thus, the transient analysis of SMC(G) is possible using RDTMC(G).
The next proposition relates the steady-state PMFs for SMC(G) and RDTMC(G)
by proving that their steady-state probabilities of the tangible states coincide.

Proposition 3 ([52]). Let G be a dynamic expression, ϕ be the steady-state PMF
for SMC(G) and ψ⋄ be the steady-state PMF for RDTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-
state probabilities of the tangible states, instead of abstracting from self-loops with
probabilities less than 1 to get P∗ and then ψ∗, followed by weighting by SJ and
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normalization. We call that technique elimination, since we eliminate the vanishing
states. Hence, using RDTMC(G) instead of EDTMC(G) allows one to avoid such
a multistage analysis, but constructing P⋄ also requires some efforts, including
calculating matrix powers or inverse matrices. Note that RDTMC(G) may have
self-loops with probabilities less than 1, unlike EDTMC(G), hence, the behaviour
of RDTMC(G) may stabilize slower than that of EDTMC(G) (if each of them
has a single steady state). On the other hand, P⋄ is generally smaller and denser
matrix than P∗, since P⋄ may have additional non-zero elements not only at the
main diagonal, but also many of them outside it. Therefore, in most cases, we have
less time-consuming numerical calculation of ψ⋄ with respect to ψ∗. At the same
time, the complexity of the analytical calculation of ψ⋄ with respect to ψ∗ depends
on the model structure, such as the number of vanishing states and loops among
them, but usually it is lower, since the matrix size reduction plays an important role
in many cases. Hence, for the system models with many immediate activities, we
normally have a significant simplification of the solution. At the abstraction level
of SMCs, the elimination of vanishing states decreases their impact to the solution
complexity while allowing immediate activities to specify a comprehensible logical
structure of systems at the higher level of transition systems.

Example 4. Let E be from Example 1. Remember that DRT (E) = DRST (E) ∪
DRWT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. We reorder the states from
DR(E), by moving vanishing states to the first positions: s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =




0 0 1
2

l
2(l+m)

m
2(l+m)

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ



.

The result of the decomposing Pr are the matrices

C=0, D=

(
0,

1

2
,

l

2(l +m)
,

m

2(l +m)

)
, E=




0
1
0
0


 , F=




1− ρ ρ 0 0
0 0 0 0
0 θ 1− θ 0
0 φ 0 1− φ


.

Since C1 = 0, we have ∀k > 0 Ck = 0, hence, l = 0 and there are no loops
among vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.
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Further, the TPM for RDTMC(E) is

P⋄ = F+EGD = F+EID = F+ED =




1− ρ ρ 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 θ 1− θ 0
0 φ 0 1− φ


 .

In Figure 4, the reduced DTMC RDTMC(E) is presented. The steady-state
PMF for RDTMC(E) is

ψ⋄ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), φl, θm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)). By Proposition 3, we have

ϕ(s1) = 0, ϕ(s2) =
2θφ(l+m)

2θφ(l+m)+φl+θm , ϕ(s3) = 0,

ϕ(s4) =
φl

2θφ(l+m)+φl+θm , ϕ(s5) =
θm

2θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 2 with the use of ψ∗ and SJ .

RDTMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

ρ

θ φ

l
2(l+m)

m
2(l+m)

✞✝ ✲

✂ ✁✂ ✁✻

✄✂ ✲
1
2

1−ρ

1−θ 1−φ

Figure 4: The reduced DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l );

({d}, θ))[](({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

Example 5. In Figure 5, the reduced underlying SMC RSMC(E) is depicted.
The average sojourn times in the states of the reduced underlying SMC are written
next to them in bold font. In spite of the equality RSMC(E) = RDTMC(E),
the graphical representation of RSMC(E) differs from that of RDTMC(E), since
the former is based on the REDTMC(E), where each state is decorated with the
positive average sojourn time of RSMC(E) in it. REDTMC(E) is constructed
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from EDTMC(E) in the similar way as RDTMC(E) is obtained from DTMC(E).
By construction, the residence time in each state of RSMC(E) is geometrically
distributed. Hence, the associated parameter of geometrical distribution is uniquely
recovered from the average sojourn time in the state.

RSMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1
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s4 s5

1

1 1

l
l+m

m
l+m

1

ρ

2

1

θ

1

φ

Figure 5: The reduced SMC of E for E = [({a}, ρ)∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ))[]({g}, ♮
0
l+m))) ∗ Stop]

Let us now formally prove that RSMC coincides with RDTMC. Although this
assertion is very intuitive, its proof is rather involved.

The relation between DTMC and RDTMC is obtained using (the transition
function) PM⋄(s, s̃), based on PM(s, s̃). The relation between RDTMC and
the embedded RDTMC (ERDTMC) is obtained using (PM⋄)∗(s, s̃), based on
PM⋄(s, s̃). The relation betweenEDTMC and the reducedEDTMC (REDTMC)
is obtained using (PM∗)⋄(s, s̃), based on PM∗(s, s̃).

Let G be a dynamic expression. We shall prove that the TPM (P⋄)∗ for the em-
bedded RDTMC(G) (ERDTMC(G)), (forwardly) constructed by reduction (elim-
inating vanishing states) of DTMC(G), followed by embedding ERDTMC(G) into
RDTMC(G), coincides with the (finally) embedded TPM ((P∗)⋄)∗, (reversely) con-
structed by embedding EDTMC(G) into SMC(G), followed by reduction
REDTMC(G) of EDTMC(G), and final embedding EREDTMC(G) into
RSMC(G). The final embedding in the reverse construction is needed, since new
self-loops may arise after reducing EDTMC(G), i.e. REDTMC(G) may become
not an EDTMC, but a DTMC featuring self-loops with probabilities less than 1.

Note that for s, s̃ ∈ DRT (G), we have (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) in
ERDTMC(G). Here SL⋄(s) is the self-loops abstraction factor in s in
RDTMC(G). This corresponds to a different expression (PM∗)⋄(s, s̃) = (SL ·
PM)⋄(s, s̃) in REDTMC(G). In particular, SL⋄(s) > SL(s) when PM⋄(s, s) >
PM(s, s), being the reason for a new self-loop associated with s in RDTMC(G).
As we shall see, in that case (PM⋄)∗(s, s̃) > (PM∗)⋄(s, s̃).

The following theorem relates those finally embedded reduced embedded TPM
((P∗)⋄)∗ (i.e. the TPM for EREDTMC(G)) and embedded reduced TPM (P⋄)∗

(the TPM for ERDTMC(G)).

Theorem 1. Let G be a dynamic expression, (P⋄)∗ results from embedding the
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TPM P⋄ for RDTMC(G), and ((P∗)⋄)∗ results from reduction and final embedding
the TPM P∗ for EDTMC(G). Then

((P∗)⋄)∗ = (P⋄)∗.

Proof. Let Pr be the reordered (by moving vanishing states to the first positions)
TPM for DTMC(G). Like in Section 4, we reorder the states from DR(G) so that
the first rows and columns of Pr will correspond to the states from DRV (G) and
the last ones will correspond to the states from DRT (G). Let |DR(G)| = n and
|DRT (G)| = m. Then the reordered TPM for DTMC(G) can be decomposed as

Pr =

(
C D

E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D are
the probabilities to move from vanishing to tangible states. The elements of the
m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m × m submatrix F are the probabilities to move from
tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G =
∑∞

k=0 C
k are the probabilities to move from

vanishing to vanishing states in any number of state changes, without traversal
of tangible states, in DTMC(G). We define the matrix H = EGD. For s, s̃ ∈
DRT (G), let PMF (s, s̃) and PMH(s, s̃) be the probabilities to change from s to s̃
for the submatrix F and matrix H, respectively.

In a similar way, the reordered TPM for EDTMC(G) can be decomposed as

P∗
r =

(
C∗ D∗

E∗ F∗

)
.

The elements of the submatrices of P∗
r resemble those of the submatrices of Pr.

The TPM (P∗)⋄ for REDTMC(G) is the m×m matrix, calculated as

(P∗)⋄ = F∗ +E∗G′D∗,

where the elements of the matrix G′ =
∑∞
k=0(C

∗)k are the probabilities to move
from vanishing to vanishing states in any number of state changes, without traversal
of tangible states, in EDTMC(G). We define the matrix H′ = E∗G′D∗. For s, s̃ ∈
DRT (G), let PMH′(s, s̃) be the probability to change from s to s̃ for the matrix H′.

By the proof of Proposition 3 from [52], we have P∗
r = Diag(SLr)(Pr − I) + I,

where SLr is the reordered (by moving vanishing states to the first positions)
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self-loops abstraction vector of G in DTMC(G). Let SLC and SLF be the self-
loops abstraction subvectors of G for the submatrices C and F, respectively, i.e.
the “head” of length n − m and the “tail” of length m, taken from the vector
SLr, with the following elements: ∀s ∈ DRV (G) SLC(s) = SLr(s) and ∀s ∈
DRT (G) SLF (s) = SLr(s). Then we have

P∗
r =

(
Diag(SLC) 0

0 Diag(SLF )

)(
C− I D

E F− I

)
+

(
I 0

0 I

)
=

(
Diag(SLC)(C− I) + I Diag(SLC)D

Diag(SLF )E Diag(SLF )(F− I) + I

)
.

Hence, C∗=Diag(SLC)(C− I) + I, D∗=Diag(SLC)D, E
∗=Diag(SLF )E,

F∗ = Diag(SLF )(F−I)+I. Then (P∗)⋄ = F∗+E∗G′D∗ = Diag(SLF )(F−I)+I+
Diag(SLF )EG′Diag(SLC)D = Diag(SLF )((F+EG′Diag(SLC)D)− I) + I. Let
us explore the matrix G′Diag(SLC). The matrix G′ can have two different forms,
depending on whether the loops among vanishing states exist in EDTMC(G),
hence, we consider two cases.

1. There exist no loops among vanishing states in EDTMC(G). We have ∃l ∈

N ∀k > l (C∗)k = 0 and G′ =
∑l

k=0(C
∗)k.

Then there are no loops among different vanishing states in DTMC(G) (but
self-loops may exist in vanishing states), since no loop among different states
is removed and all self-loops (in the non-absorbing states) are removed in
EDTMC(G), with respect to DTMC(G).

Let there are no self-loops in vanishing states in DTMC(G). In such a case,
∀s ∈ DTV (G) SLC(s) = SL(s) = 1 and Diag(SLC) = I. We have C∗ =

Diag(SLC)(C−I)+I = I(C−I)+I = C andG′ =
∑l

k=0(C
∗)k =

∑l
k=0 C

k =
G. Thus, G′Diag(SLC) = GI = G.

Let there are self-loops in vanishing states in DTMC(G). In such a case,
G = (I − C)−1. Note that C 6= I 6= C∗, since there exist no absorbing
vanishing states in DTMC(G). It is easy to prove by induction on l ∈ N that

G′(I−C∗) =
(∑l

k=0(C
∗)k

)
(I−C∗) = I− (C∗)l+1. Since (C∗)l+1 = 0, we

get G′(I−C∗) = I−0 = I. In a similar way, we show that (I−C∗)G′ = I. We
have limk→∞(C∗)k = 0. Hence, G′ = (I−C∗)−1 = (I−Diag(SLC)(C−I)−
I)−1 = (Diag(SLC)(I−C))−1 = (I−C)−1Diag(SLC)

−1 = GDiag(SLC)
−1.

Thus, G′Diag(SLC) = GDiag(SLC)
−1Diag(SLC) = G.

2. There exist loops among vanishing states in EDTMC(G). We have
limk→∞(C∗)k = 0 and G′ = (I−C∗)−1.

Then there are loops among vanishing states in DTMC(G), since no loop
among states is removed and self-loops are possibly added in DTMC(G),
with respect to EDTMC(G). Hence, limk→∞(C)k = 0 and G = (I−C)−1.

We have G′ = (I−C∗)−1 = (I−Diag(SLC)(C−I)−I)−1 = (Diag(SLC)(I−
C))−1 = (I−C)−1Diag(SLC)

−1 = GDiag(SLC)
−1. Thus, G′Diag(SLC) =

GDiag(SLC)
−1Diag(SLC) = G.
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In the both cases above, we get G′Diag(SLC) = G. Hence, (P∗)⋄ =
Diag(SLF )((F+EG′Diag(SLC)D)− I) + I = Diag(SLF )((F+EGD)− I) + I =
Diag(SLF )(P

⋄ − I) + I.
Let s, s̃ ∈ DRT (G). The EDTMC for RDTMC(G) is denoted by

ERDTMC(G) and has the probabilities (PM⋄)∗(s, s̃) to change from s to s̃. The
RDTMC for EDTMC(G) is denoted by REDTMC(G) and has the probabilities
(PM∗)⋄(s, s̃) to change from s to s̃. The EDTMC for REDTMC(G) is denoted by
EREDTMC(G) and has the probabilities ((PM∗)⋄)∗(s, s̃) to change from s to s̃.

Further, let SLH and SLH′ be the self-loops abstraction vectors of G for the ma-
tricesH andH′, respectively. We have (P∗)⋄ = F∗+H′ = F∗+Diag(SLF )EGD =
F∗+Diag(SLF )H. Hence, H′ = Diag(SLF )H and ∀s, s̃ ∈ DRT (G) PMH′(s, s̃) =
SLF (s)PMH(s, s̃). Since there are no self-loops in F∗, we conclude that (SL∗)⋄ =
SLH′ is the self-loops abstraction vector of G in REDTMC(G).

• Let PMF (s, s)+PMH(s, s) = PM⋄(s, s) < 1 and PMF (s, s), PMH(s, s) > 0,
i.e. s is non-absorbing in RDTMC(G) and there exist self-loops associated
with s in DTMC(G) and extra self-loops (in addition to those inherited from
DTMC(G)) in RDTMC(G).

In ERDTMC(G), we have (PM⋄)∗(s, s̃)=SL⋄(s)PM⋄(s, s̃)= PM⋄(s,s̃)
1−PM⋄(s,s) =

PM⋄(s,s̃)
1−PMF (s,s)−PMH (s,s) =

PM⋄(s,s̃)
1−PMF (s,s)

1−
PMH (s,s̃)

1−PMF (s,s)

= SLF (s)PM⋄(s,s̃)
1−SLF (s)PMH (s,s) .

Then the self-loops abstraction factor in s in RDTMC(G) is SL⋄(s) =
SLF (s)

1−SLF (s)PMH (s,s) = SLF (s)SLH′(s), where SLH′(s) = 1
1−SLF (s)PMH (s,s) is

the self-loops abstraction factor in s in REDTMC(G). Thus, (PM⋄)∗(s, s̃)=
SLF (s)SLH′(s)PM⋄(s, s̃).

In EREDTMC(G), we have ((PM∗)⋄)∗(s, s̃) = (SL∗)⋄(s)(PM∗)⋄(s, s̃) =
SLH′(s)(PM∗)⋄(s, s̃) = SLH′(s)SLF (s)PM

⋄(s, s̃) = (PM⋄)∗(s, s̃).

The other three cases (no self-loops associated with s in DTMC(G), no ex-
tra self-loops associated with s in RDTMC(G), or no any self-loops associ-
ated with s in RDTMC(G)) are treated analogously, by replacing PMF (s, s)
or/and PMH(s, s) with zeros.

• Let PMF (s, s)+PMH(s, s) = PM⋄(s, s) = 1 and PMF (s, s), PMH(s, s) > 0,
i.e. s is absorbing in RDTMC(G) and there exist self-loops associated with
s in DTMC(G) and extra self-loops (in addition to those inherited from
DTMC(G)) in RDTMC(G).

In ERDTMC(G), we have (PM⋄)∗(s, s) = 1 by definition of the EDTMC,
since PM⋄(s, s) = 1.

In REDTMC(G), the probability of a self-loop associated with s is

(PM∗)⋄(s, s)=PMH′(s, s)=SLF (s)PMH(s, s)= PMH (s,s)
1−PMF (s,s) =

1−PMF (s,s)
1−PMF (s,s) =1.

In EREDTMC(G), we have ((PM∗)⋄)∗(s, s) = 1 = (PM⋄)∗(s, s) by defini-
tion of the EDTMC, since (PM∗)⋄(s, s) = 1.
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The other three cases (no self-loops associated with s in DTMC(G), no ex-
tra self-loops associated with s in RDTMC(G), or no any self-loops associ-
ated with s in RDTMC(G)) are treated analogously, by replacing PMF (s, s)
or/and PMH(s, s) with zeros.

Thus, ((P∗)⋄)∗ = (P⋄)∗ and EREDTMC(G) = ERDTMC(G).

Hence, reduction before embedding is more optimal computationally for DTMCs
of the process expressions, since only one embedding is needed in that case. This
is especially important when the DTMCs have many loops from tangible states via
(one or more) vanishing states only. Such loops remain after the first embedding,
and they become self-loops after the subsequent reduction, which are removed just
after the second embedding.

We can now explain the inequality presented above Theorem 1, by using its
proof. Let s, s̃ ∈ DRT (G). Then SLF (s)SLH′(s) = SL⋄(s) > SL(s) = SLF (s)
implies SLH′(s) > 1. Thus, (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) =
SLF (s)SLH′(s)PM⋄(s, s̃) > SLF (s)PM

⋄(s, s̃) = (PM∗)⋄(s, s̃).

Definition 20. Let G be a dynamic expression, s ∈ DRT (G) while SLF (s) is
the self-loops abstraction factor in s for the submatrix F (from the equation P⋄ =
F + EGD calculating the TPM for RDTMC(G)) and SLH′(s) is the self-loops
abstraction factor in s in REDTMC(G) (for the matrix H′ = Diag(SLF )EGD,
whose elements are the probabilities to move from tangible to tangible states, via
any positive number of vanishing states, without traversal of tangible states, in
EDTMC(G)).

The reduced SMC (RSMC) of G, denoted by RSMC(G), has the EDTMC
EREDTMC(G) and the sojourn time in every s ∈ DRT (G) is geometrically dis-
tributed with the parameter 1

SLF (s)SLH′(s)
.

The following proposition demonstrates coincidence of RSMC and RDTMC.

Proposition 4. Let G be a dynamic expression. Then RSMC(G) = RDTMC(G).

Proof. By Theorem 1, EREDTMC(G) = ERDTMC(G). The sojourn time in ev-
ery s ∈ DRT (G) is geometrically distributed with the parameter 1

SLF (s)SLH′(s)
=

1
SL⋄(s) , where SLH′(s) = 1

1−SLF (s)PMH (s,s) . Here PMH(s, s) is the self-loop proba-

bility in s for the matrix H = EGD (from the equation P⋄ = F+EGD calculating
the TPM for RDTMC(G)). Remember that SL⋄(s) is the self-loops abstraction
factor in s in RDTMC(G). Hence, RSMC(G) = RDTMC(G).

Example 6. Let E be from Example 1. The TPMs for RDTMC(E) and
ERDTMC(E) are

P⋄ =




1− ρ ρ 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 θ 1− θ 0
0 φ 0 1− φ


 , (P⋄)∗ =




0 1 0 0
0 0 l

l+m
m
l+m

0 1 0 0
0 1 0 0


 .
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The TPMs for REDTMC(E) and EREDTMC(E) are

(P∗)⋄ =




0 1 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 1 0 0
0 1 0 0


 , ((P∗)⋄)∗ =




0 1 0 0
0 0 l

l+m
m
l+m

0 1 0 0
0 1 0 0


 .

The self-loops abstraction subvector of E for the submatrix F (see Example 4)

is SLF =
(

1
ρ
, 1, 1

θ
, 1
φ

)
. The self-loops abstraction vector of E in REDTMC(E) (for

the matrixH′, see below) is (SL∗)⋄ = SLH′ = (1, 2, 1, 1). The self-loops abstraction

vector of E in RDTMC(E) is SL⋄ = 1Diag(SLF )Diag(SLH′) =
(

1
ρ
, 2, 1

θ
, 1
φ

)
,

where 1 is a row vector of n values 1.
The elements of the matrix H′ are the probabilities to move from tangible to

tangible states, via any positive number of vanishing states, without traversal of
tangible states, in EDTMC(G). We have H′ = Diag(SLF )H, where elements of
the matrix H = EGD (see Example 4) are the probabilities to move from tangible
to tangible states, via any positive number of vanishing states, without traversal of
tangible states, in DTMC(G). The matrices H and H′ are

H =




0 0 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 0 0 0
0 0 0 0


 , H′ =




0 0 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 0 0 0
0 0 0 0


 .

Then it is easy to check that

((P∗)⋄)∗ = Diag(SLH′)Diag(SLF )(P
⋄ − I)+ I = Diag(SL⋄)(P⋄ − I)+ I = (P⋄)∗.

5 Conclusion

In this paper, we have considered a discrete time stochastic extension dtsdPBC
of PBC, enriched with deterministic multiactions. The calculus has a parallel step
operational semantics, based on labeled probabilistic transition systems and a deno-
tational semantics in terms of a subclass of LDTSDPNs [51]. A technique of perfor-
mance evaluation within the calculus has been presented (embedding) that explores
the underlying stochastic process, which is a semi-Markov chain (SMC). In such an
SMC, the sojourn time in every tangible state is geometrically distributed (being
one or infinity, as special cases) while the sojourn time in every vanishing state
is zero. The corresponding discrete time Markov chain (DTMC) or its reduction
(RDTMC) by eliminating vanishing states may alternatively be studied for that
purpose (the abstraction and elimination methods) [52].

We have formally proved that the reduced SMC (RSMC) coincides with the
RDTMC. The proof of this very intuitive fact appeared to be rather involved. First,



Embedding and elimination for performance analysis in dtsdPBC 37

we have shown that an additional embedding (into RSMC) of the reduced EDTMC
is needed to coincide with the embedded RDTMC. Second, we have calculated the
respective sojourn times in the tangible states (those with positive sojourn times)
and check their coincidence. It is more optimal to construct the RDTMC than
to build the RSMC, since the former approach involves only one embedding that
requires a lot of computations. This is very important for the DTMCs having many
loops from tangible states via (one or more) vanishing states only, since such loops
are not removed by the first embedding.

Future work consists in constructing a congruence relation for dtsdPBC, i.e.
the equivalence that withstands application of all operations of the algebra. A pos-
sible candidate is a stronger version of the equivalence with respect to transition
systems, with two extra transitions skip and redo, like in sPBC [26]. The recursion
operation could be added to dtsdPBC to increase specification power of the algebra.
We also plan to extend dtsdPBC with discrete phase type multiaction delays that
are described by arbitrary finite absorbing DTMCs and include geometric and non-
Markovian (like deterministic) delays as special cases.
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[56] Tarasyuk, I. V., Macià S., H., and Valero R., V. Performance analysis of
concurrent systems in algebra dtsiPBC. Programming and Computer Software,
40:229–249, 2014. DOI: 10.1134/S0361768814050089.
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