
Combining embedding and elimination

for performance analysis in

stochastic process algebra dtsdPBC

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences,

Acad. Lavrentiev pr. 6, 630090, Novosibirsk, Russian Federation
itar@iis.nsk.su

Abstract. Petri box calculus (PBC) is a well-known algebra of parallel
processes with a Petri net semantics. Discrete time stochastic and de-
terministic PBC (dtsdPBC) extends PBC with discrete time stochastic
and deterministic delays. dtsdPBC has a step operational semantics via
labeled probabilistic transition systems and a Petri net denotational se-
mantics via dtsd-boxes, a subclass of labeled discrete time stochastic and
deterministic Petri nets. To analyze performance in dtsdPBC, the under-
lying semi-Markov chains (SMCs) and (reduced) discrete time Markov
chains (DTMCs and RDTMCs) of the process expressions are built.
The underlying SMCs are extracted from the transition systems with the
embedding method that constructs the embedded DTMCs (EDTMCs)
and calculates the sojourn time distributions in the states. The reducti-
ons (RDTMCs) of the DTMCs are obtained with the elimination method
that removes the states with zero sojourn time (vanishing states) and re-
calculates the probabilities to change the (remaining) states with positive
sojourn time (tangible states). We prove that the reduced SMC (RSMC)
coincides with the RDTMC, by demonstrating that an additional em-
bedding (into RSMC) of the reduced EDTMC is needed to coincide with
the embedded RDTMC, and by comparing the respective sojourn times.

Keywords: stochastic process algebra, Petri box calculus, discrete time,
stochastic delay, deterministic delay, transition system, operational se-
mantics, Markov chain, performance analysis, embedding, elimination.

1 Introduction

Process calculi, like CSP [22], ACP [5] and CCS [37] are well-known formal
models for specification of computing systems and analysis of their behaviour. In
such process algebras (PAs), formulas describe processes, and verification of the
functionality properties of their behaviour is accomplished at a syntactic level
via equivalences, axioms and inference rules. In order to represent stochastic
timing and analyze the performance properties, stochastic extensions of PAs
were proposed, like MTIPP [19], PEPA [20,21] and EMPA [6]. Such stochastic
process algebras (SPAs) specify actions which can occur (qualitative features)

2 I.V. Tarasyuk

and associate with the actions the distribution parameters of their random delays
(quantitative characteristics).

1.1 Petri box calculus (PBC)

Petri box calculus (PBC) [8,10,9,7] is a flexible and expressive process algebra
developed as a tool for specification of the Petri nets (PNs) structure and their
interrelations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elementary
PNs. Formulas of PBC are combined from multisets of elementary actions and
their conjugates, called multiactions (basic formulas). The empty multiset of
actions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transitions
with (multi)sets of activities, corresponding to simultaneous executions of acti-
vities (steps). A denotational semantics of PBC was proposed via a subclass of
PNs with an interface and considered up to isomorphism, called Petri boxes.
The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time exist.

1.2 Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [24]. In tPBC, timing information is added
by associating time intervals with instantaneous actions. tPBC has a step time
operational semantics in terms of labeled transition systems. Its denotational
semantics was defined in terms of a subclass of labeled time Petri nets (LtPNs),
based on tPNs [36] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC),
was defined in [32,33]. It accommodates a deterministic model of time. In con-
trast to tPBC, multiactions of TPBC are not instantaneous, but have time du-
rations. TPBC has a step timed operational semantics in terms of labeled tran-
sition systems. The denotational semantics of TPBC was defined in terms of a
subclass of labeled Timed Petri nets (LTPNs), based on TPNs [43] and called
Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [41,42]. It implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC has a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was defined on a subclass of labeled arc time Petri nets (atPNs), based of
those from [11,17], where time restrictions are associated with the arcs, called arc
time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adapt the discrete time
approach, but TPBC has no immediate (multi)actions (those with zero delays).

1.3 Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC),
was proposed in [31,27,28]. In sPBC, multiactions have stochastic delays that

Combining embedding and elimination for performance analysis in dtsdPBC 3

follow (negative) exponential distribution. Each multiaction is equipped with
a rate that is a parameter of the corresponding exponential distribution. The
(instantaneous) execution of a stochastic multiaction is possible only after the
corresponding stochastic time delay. The calculus has an interleaving opera-
tional semantics defined via transition systems labeled with multiactions and
their rates. Its denotational semantics was defined on a subclass of labeled con-
tinuous time stochastic PNs, based on CTSPNs [34,2] and called stochastic Petri
boxes (s-boxes). In sPBC, performance of the processes is evaluated by analyzing
their underlying continuous time Markov chains (CTMCs).

sPBC was enriched with immediate multiactions having zero delay in
[29,30]. We call such an extension generalized sPBC (gsPBC). An interleaving
operational semantics of gsPBC was constructed via transition systems labeled
with stochastic or immediate multiactions together with their rates or proba-
bilities. A denotational semantics of gsPBC was defined via a subclass of labe-
led generalized stochastic PNs, based on GSPNs [34,2,3] and called generalized
stochastic Petri boxes (gs-boxes). The performance analysis in gsPBC is based
on semi-Markov chains (SMCs).

In [48,49,50,51], we presented a discrete time stochastic extension dtsPBC of
the algebra PBC. In dtsPBC, the residence time in the process states is geome-
trically distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was defined in
terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on
DTSPNs [38,39] and called discrete time stochastic Petri boxes (dts-boxes). The
performance evaluation in dtsPBC is accomplished via the underlying discrete
time Markov chains (DTMCs) of the algebraic processes.

In [56,57,58,59,60], a calculus dtsiPBC was proposed as an extension with
immediate multiactions of dtsPBC. Immediate multiactions increase the spec-
ification capability: they can model logical conditions, probabilistic branching,
instantaneous probabilistic choices and activities whose durations are negligible
in comparison with those of others. They are also used to specify urgent activ-
ities and the ones that are not relevant for performance evaluation. The step
operational semantics of dtsiPBC was constructed with the use of labeled prob-
abilistic transition systems. Its denotational semantics was defined in terms of
a subclass of labeled discrete time stochastic and immediate PNs (LDTSIPNs),
called dtsi-boxes. The corresponding stochastic process, the underlying SMC,
was constructed and investigated, with the purpose of performance evaluation.
In addition, the alternative solution methods were developed, based on the un-
derlying ordinary and reduced DTMCs.

In [52,53,54,55], we defined dtsdPBC, an extension of dtsiPBC with determi-
nistic multiactions. In dtsdPBC, besides the probabilities from the real-valued
interval (0; 1), applied to calculate discrete time delays of stochastic multiactions,
also non-negative integers are used to specify fixed delays of deterministic multi-
actions (including zero delay, which is the case of immediate multiactions). To re-
solve conflicts among deterministic multiactions, they are additionally equipped
with positive real-valued weights. As argued in [66,62,63], a combination of deter-

4 I.V. Tarasyuk

ministic and stochastic delays fits well to model technical systems with constant
(fixed) durations of the regular non-random activities and probabilistically dis-
tributed (stochastic) durations of the randomly occurring activities. dtsdPBC
has a step operational semantics, defined via labeled probabilistic transition sys-
tems. The denotational semantics of dtsdPBC was defined in terms of a subclass
of labeled discrete time stochastic and deterministic Petri nets (LDTSDPNs),
called dtsd-boxes.

1.4 Our contributions

As a basis model, we take discrete time stochastic and deterministic Petri box
calculus (dtsdPBC), presented in [52,53,54,55], featuring a step operational se-
mantics. Here we do not consider the Petri net denotational semantics of the
calculus, since it was extensively described in [53]. In that paper, a consistency
of the operational and denotational semantics with respect to step stochastic
bisimulation equivalence was proved. Hence, all the results established for the
former can be readily transferred to the latter up to that equivalence.

In [54], with the embedding method, based on the embedded DTMC
(EDTMC) specifying the state change probabilities, we constructed and solved
the underlying stochastic process, which is a semi-Markov chain (SMC). The
obtained stationary probability masses and average sojourn times in the states
of the SMC were used to calculate the performance measures (indices) of inter-
est. The alternative solution techniques were also developed, called abstraction
and elimination, that are based respectively on the corresponding discrete time
Markov chain (DTMC) and its reduction (RDTMC) by eliminating vanishing
states (those with zero sojourn times).

In this paper, we formally prove that the reduced SMC (RSMC) coincides
with the RDTMC. Interestingly, the proof of this very intuitive fact appears
to be rather involved. First, we demonstrate that an additional embedding
(into RSMC) of the reduced EDTMC is needed to coincide with the embedded
RDTMC. Second, we calculate the respective sojourn time distributions in the
tangible states (those with positive sojourn times) and check their coincidence.
Hence, constructing the RDTMC is more optimal than building the RSMC, since
the former technique involves only one computationally costly embedding.

Thus, the main contributions of the paper are:

– Coincidence of the embedded reduced EDTMC with the embedded RDTMC.
– Identity of the respective sojourn times, hence, the RSMC and the RDTMC.

1.5 Structure of the paper

In Section 2, the syntax of algebra dtsdPBC is proposed. In Section 3, the ope-
rational semantics of the calculus in terms of labeled probabilistic transition
systems is presented. In Section 4, the underlying stochastic process (SMC) is
defined, the alternative solution method via the corresponding RDTMC is out-
lined, and coincidence of the reduced SMC (RSMC) with the RDTMC is estab-
lished. Section 5 summarizes the results obtained and outlines future research.

Combining embedding and elimination for performance analysis in dtsdPBC 5

2 Syntax

In this section, we define the syntax: activities, operations and expressions.

2.1 Activities and operations

Multiset allows identical elements in a set.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M :X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

The set of all finite multisets over a set X is N
X
fin. Let M,M ′ ∈ N

X
fin. The

cardinality of M is |M | =
∑

x∈XM(x). We write x ∈ M if M(x) > 0 and
M ⊆ M ′ if ∀x ∈ X M(x) ≤ M ′(x). We define (M +M ′)(x) = M(x) +M ′(x)
and (M −M ′)(x) = max{0,M(x) −M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M is
seen as a proper set M ⊆ X . The set of all subsets (powerset) of X is 2X .

Let Act={a, b, . . .} be the set of elementary actions. Then Âct={â, b̂, . . .} is

the set of conjugated actions (conjugates) with â 6=a and ˆ̂a=a. Let A=Act∪Âct
be the set of all actions, and L=N

A
fin be the set of all multiactions. Here ∅∈L

specifies an internal move, i.e. the execution of a multiaction without visible
actions. The alphabet of α ∈ L is A(α)={x ∈ A | α(x)>0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probability 1 is left for
(implicitly assigned to) waiting multiactions, i.e. positively delayed deterministic
multiactions (to be defined later), which have weights to resolve conflicts with
other waiting multiactions. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl), where α ∈ L, θ ∈ N is the
non-negative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive
real-valued weight of the multiaction α. This weight is interpreted as a measure
of importance (urgency, interest) or a bonus reward associated with execution
of the deterministic multiaction at the moment when the corresponding delay
has expired. Such weights are used to calculate the probabilities to execute sets
of deterministic multiactions after their delays. An immediate multiaction is a
deterministic multiaction with the delay 0 while a waiting multiaction is a deter-
ministic multiaction with a positive delay. In case of no conflicts among waiting
multiactions, whose remaining times to execute (RTEs) are equal to one time
unit, they are executed with probability 1 at the next moment. Deterministic
multiactions have a priority over stochastic ones while immediate multiactions
have a priority over waiting ones. Different types of multiactions cannot par-
ticipate together in some step (parallel execution). Let DL be the set of all
deterministic multiactions, IL be the set of all immediate multiactions and WL
be the set of all waiting multiactions. We have DL = IL ∪WL.

6 I.V. Tarasyuk

The same multiaction α ∈ L may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a determinis-
tic multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities.
The alphabet of an activity (α, κ) ∈ SDL is A(α, κ) = A(α). The alphabet of a
multiset of activities Υ ∈ N

SDL
fin is A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the operations
of sequence ;, choice [], parallelism ‖, relabeling [f] of actions, restriction rs over
a single action, synchronization sy on an action and its conjugate, and iteration
[∗ ∗] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other PAs, but parallelism (parallel composition) does not
include synchronization, unlike the corresponding operation in CCS.

Relabeling functions f : A → A are bijections preserving conjugates, i.e.

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions: for α ∈ L we de-
fine f(α) =

∑
x∈α f(x) =

∑
x∈A α(x)f(x). Relabeling is extended to activities:

for (α, κ) ∈ SDL we define f(α, κ) = (f(α), κ). Relabeling is extended to the
multisets of activities: for Υ ∈N

SDL
fin we define f(Υ)=

∑
(α,κ)∈Υ (f(α), κ).

Restriction over an elementary action a ∈ Act means that, for a given ex-
pression, any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈
Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α

and β by a is defined as (α⊕a β)(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization
by a of two activities, whose multiaction parts α and β possess the above pro-
perties, results in the activity with the multiaction part α ⊕a β. We may syn-
chronize activities of the same type only: either both stochastic multiactions
or both deterministic ones with the same delay, since stochastic, waiting and
immediate multiactions have different priorities, and diverse delays of waiting
multiactions would contradict their joint timing. Note that the execution of
immediate multiactions takes no time, unlike that of waiting or stochastic ones.
Synchronization by ameans that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists
also the behaviour that differs from the former only in that the two activities
are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body
is performed zero or more times, and finally, the termination is executed.

2.2 Process expressions

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations to construct the composite process-algebraic formulas. As
for the PN intuition, static expressions correspond to unmarked LDTSDPNs
[52,53]. A marking is the allocation of tokens in the places of a PN. Markings
are used to describe dynamic behaviour of PNs in terms of transition firings.

Combining embedding and elimination for performance analysis in dtsdPBC 7

We assume that every waiting multiaction has a countdown timer associa-
ted, whose value is the time left till the moment when the waiting multiaction
can be executed. Therefore, besides standard (unstamped) waiting multiacti-
ons (α, ♮θl) ∈ WL, a special case of the stamped waiting multiactions should
be considered in the definition of static expressions. Each (time) stamped wait-
ing multiaction (α, ♮θl)

δ has an extra superscript δ ∈ {1, . . . , θ} that specifies a
time stamp indicating the latest value of the timer associated with that multi-
action. The standard waiting multiactions have no time stamps, to demonstrate
irrelevance of the timer values for them (for example, their timers have not yet
started or have already finished). The notion of the alphabet part for (the mul-
tisets of) stamped waiting multiactions is defined like that for (the multisets of)
unstamped waiting multiactions.

For simplicity, we do not assign the timer value superscripts δ to immediate
multiactions, a special case of deterministic multiactions (α, ♮θl) with the delay
θ = 0 in the form of (α, ♮0l), since their timer values always equal to 0.

Definition 2. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical difficulties with the iteration operator, we should not allow

concurrency at the highest level of the second argument of iteration. This is not
a severe restriction, since we can always prefix parallel expressions by an activity
with the empty multiaction part.

Definition 3. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) |(α, ♮θl)
δ |E;E |E[]E |E‖E |E[f] |E rs a |E sy a | [E ∗D ∗ E],

where D ::= (α, κ) |(α, ♮θl)
δ |D;E |D[]D |D[f] |D rs a |D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression ⇃E of E is obtained by removing all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) =

{(α, ρ) | (α, ρ) is a subexpression of E}. The set of all immediate multiactions
(from the syntax) of E is IL(E) = {(α, ♮0l) | (α, ♮0l) is a subexpression of E}.
The set of all waiting multiactions (from the syntax) of E is WL(E) = {(α, ♮θl) |
(α, ♮θl) or (α, ♮

θ
l)
δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all

deterministic multiactions (from the syntax) of E is DL(E)=IL(E) ∪WL(E)
and the set of all activities (from the syntax) of E is SDL(E)=SL(E)∪DL(E)=
SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages
of the process behaviour. As for the Petri net intuition, dynamic expressions
correspond to marked LDTSDPNs [52,53]. Dynamic expressions are obtained

8 I.V. Tarasyuk

from static ones, by annotating them with upper or lower bars which specify the
active components of the system at the current moment of time. The dynamic
expression with upper bar (the overlined one) E denotes the initial, and that
with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl)
δ, the superscript

δ ∈ {1, . . . , θ} specifies the current value of the running countdown timer as-
sociated with the waiting multiaction. That decreasing discrete timer is started
with the initial value θ (the waiting multiaction delay) at the moment when
the waiting multiaction becomes overlined. Then such a newly overlined stam-

ped waiting multiaction (α, ♮θl)
θ is similar to the freshly overlined unstamped

waiting multiaction (α, ♮θl). Such similarity will be captured by the structural
equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process
execution, the timer decrements by one discrete time unit with each global time
tick until the timer value becomes 1. This means that one unit of time remains
till execution of that multiaction (the remaining time to execute, RTE, equals
one). Its execution should follow in the next moment with probability 1, in case
there are no conflicting with it immediate multiactions or conflicting waiting
multiactions whose RTEs equal to one, and it is not affected by restriction. An
activity is affected by restriction, if it is within the scope of a restriction opera-
tion with the argument action, such that it or its conjugate is contained in the
multiaction part of that activity.

Definition 4. Let E∈StatExpr, a∈Act. A dynamic expression of dtsdPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.

Let G be a dynamic expression. The underlying static (line-free) expression
⌊G⌋ of G is obtained by removing from it all upper and lower bars.

Definition 5. A dynamic expression G is regular if ⌊G⌋ is regular.

RegDynExpr denotes the set of all regular dynamic expressions of dtsdPBC.

Let G be a regular dynamic expression. The underlying timer-free regular
dynamic expression ⇃G of G is got by removing all timer value superscripts.

The set of all stochastic (immediate or waiting, respectively) multiactions
(from the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or
WL(G) = WL(⌊G⌋), respectively). Thus, the set of all deterministic multiac-
tions (from the syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all
activities (from the syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪
IL(G) ∪WL(G).

Combining embedding and elimination for performance analysis in dtsdPBC 9

3 Operational semantics

In this section, we define the operational semantics via transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transfor-
mations in the form of G ⇒ G̃ which do not change the states of the specified
processes. The goal of those syntactic transformations is to obtain the well-
structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic ex-
pression does not lead to any discrete time tick or any transition firing in the
corresponding LDTSDPN [52,53], hence, its current marking stays unchanged.

An application of every inaction rule does not require a delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being
overlined and underlined static ones, where (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ},
E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule suggests that the
timer value of each newly overlined waiting multiaction is set to its delay.

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, ♮θl) ⇒ (α, ♮θl)
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f] ⇒ E[f] E[f] ⇒ E[f]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in
the arbitrary form, where E,F ∈RegStatExpr, G,H, G̃, H̃∈RegDynExpr and
a ∈ Act. For brevity, two distinct inaction rules with the same premises are
sometimes collated, resulting in the inaction rules with double conclusion.

Definition 6. A regular dynamic expression G is operative if no inaction rule
can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expres-
sions of dtsdPBC. Any dynamic expression can be always transformed into a
(not necessarily unique) operative one by using the inaction rules.

We shall consider regular expressions only and omit the word “regular”.

10 I.V. Tarasyuk

Table 2. Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f] ⇒ G̃[f]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G ⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dy-
namic expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are
structurally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in a forward or a backward direction.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ)
is a subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s)={(α, ♮0l)∈IL|∃H∈s∩OpRegDynExpr (α, ♮0l) is a subexpression
of H}. The set of all enabled waiting multiactions of s is EnaWait(s)={(α, ♮θl)∈

WL|∃H ∈s∩OpRegDynExpr (α, ♮θl)
δ, δ∈{1, . . . , θ}, is a subexpression of H}.

The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =

{(α, ♮θl) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl)
θ is a subexpression of H}.

The set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s)∪EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪ EnaWait(s). Then
Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions en-
abled at the initial marking of the LDTSDPN [52,53] corresponding to G. The
activities, resulted from synchronization, are not present in the syntax of the
dynamic expressions. Their enabledness status can be recovered by observing
that of the pair of synchronized activities from the syntax (they both should
be enabled for enabling their synchronous product), even if they are affected by
restriction after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the values
of timers), if each enabled waiting multiaction of [G]≈, being superscribed with
the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic
expressions of dtsdPBC.

Combining embedding and elimination for performance analysis in dtsdPBC 11

Proposition 1 ([52,53]). Any operative dynamic expression can be transfor-
med into the saturated one by a forward or a backward applying the inaction rules.

Thus, any dynamic expression can be transformed into a (not always unique)
saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	G denotes the
timer decrement operator 	, applied to G. The result is a saturated operative
dynamic expression, obtained from G via decrementing by one all greater than
1 values of the timers associated with all (if any) stamped waiting multiacti-
ons from the syntax of G. Each such stamped waiting multiaction changes its
timer value from δ ∈ N≥1 in G to max{1, δ − 1} in 	G. The timer decrement
operator affects the (possibly overlined or underlined) stamped waiting multiac-
tions being the subexpressions of G as: (α, ♮θl)

δ is replaced with (α, ♮θl)
max{1,δ−1},

and similarly for the overlined or underlined ones.
Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the

timer value δ = 1 may remain unchanged for a stamped waiting multiaction that
is not executed by some reason at the next time moment, but stays stamped.
For example, that stamped waiting multiaction may be affected by restriction. If
the timer values cannot be decremented with a time tick for all stamped waiting
multiactions (if any) from G then 	G = G and we obtain so-called empty loop
transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions,
since it may only decrease their timer values, and the stamped waiting multiac-
tions stay stamped (with their timer values, possibly decremented by one).

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these rules
we capture the prioritization among different types of multiactions. We also
have the empty move rule, used to capture a delay of one discrete time unit
when no immediate or waiting multiactions are executable. In this case, the
empty multiset of activities is executed. The action and empty move rules will
be used later to determine all multisets of activities which can be executed from
the structural equivalence class of every dynamic expression (i.e. from the state
of the corresponding process). This information together with that about pro-
babilities or delays and weights of the activities to be executed from the current
process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiac-

tions describe dynamic expression transformations in the form of G
Γ
→ G̃ (G

I
→ G̃

or G
W
→ G̃, respectively) due to execution of non-empty multisets Γ of stochastic

(I of immediate or W of waiting, respectively) multiactions. The rules represent
possible state changes of the specified processes when some non-empty multisets
of stochastic (immediate or waiting, respectively) multiactions are executed. The
application of an action rule with stochastic (immediate or waiting, respectively)

12 I.V. Tarasyuk

multiactions to a dynamic expression leads in the corresponding LDTSDPN
[52,53] to a discrete time tick at which some stochastic or waiting transitions
fire (or to the instantaneous firing of some immediate transitions) and possible
change of the current marking. The current marking stays unchanged only if
there is a self-loop produced by the iterative execution of a non-empty multiset,
which must be one-element, since we allow no concurrency at the highest level
of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting mul-
tiactions can be executed from the current state) describes dynamic expression

transformations in the form of G
∅
→	G, called the empty moves, due to execu-

tion of the empty multiset of activities at a discrete time tick. When no timer
values are decremented within G with the empty multiset execution at the next
moment (for example, if G contains no stamped waiting multiactions), we have

	G = G. In such a case, the empty move from G is in the form of G
∅
→ G, called

the empty loop. The application of the empty move rule to a dynamic expression
leads to a discrete time tick in the corresponding LDTSDPN [52,53] at which no
transitions fire and the current marking is not changed, but the timer values of
the waiting transitions enabled at the marking (if any) are decremented by one.
This is a new rule that has no prototype among inaction rules of PBC, since it
represents a time delay.

Thus, an application of every action rule with stochastic or waiting mul-
tiactions or the empty move rule requires one discrete time unit delay, i.e. the
execution of a (possibly empty) multiset of stochastic or (non-empty) multiset of
waiting multiactions leading to the dynamic expression transformation described
by the rule is accomplished instantly after one time unit. An application of every
action rule with immediate multiactions does not take any time, i.e. the executi-
on of a (non-empty) multiset of immediate multiactions is accomplished instantly
at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid tech-
nical difficulties, such as calculation of the probabilities for multiple transitions,
we can enumerate coinciding activities from left to right in the syntax of ex-
pressions. The new activities, resulted from synchronization, will be annotated
with concatenation of numberings of the activities they come from, hence, the
numbering should have a tree structure to reflect the effect of multiple synchro-
nizations. We now define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.

The new activities resulting from synchronizations in different orders sho-
uld be considered up to permutation of their numbering. In this way, we shall
recognize different instances of the same activity. If we compare the contents of
different numberings, i.e. the sets of natural numbers in them, we shall identify

Combining embedding and elimination for performance analysis in dtsdPBC 13

the mentioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become
proper sets. We suppose that the identical activities are enumerated when needed
to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G ∈ OpRegDynExpr. We define Can(G), the set of all
non-empty multisets of activities which can be potentially executed from G. Let
(α, κ)∈SDL, E, F ∈RegStatExpr, H∈OpRegDynExpr and a∈Act.

1. If final(G) then Can(G) = ∅.

2. If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2,. . ., θ}, then Can(G)=∅.

3. If G=(α, κ) and κ∈(0; 1) or κ=♮0l , l∈R>0, then Can(G)={{(α, κ)}}.

4. If G=(α, κ)1 and κ=♮θl , θ∈N≥1, l∈R>0, then Can(G)={{(α, κ)}}.
5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ∈Can(G‖H), Υ∈Can(H‖G), f(Υ)∈Can(G[f]), Υ∈Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).
7. If Υ∈Can(G sy a) and (α, κ), (β, λ)∈Υ are different, a∈α, â∈β, then

(a) Υ−{(α, κ), (β, λ)}+{(α⊕a β, κ · λ)}∈Can(G sy a) if κ, λ∈(0; 1);
(b) Υ − {(α, κ), (β, λ)} + {(α⊕a β, ♮θl+m)} ∈ Can(G sy a) if κ = ♮θl ,

λ = ♮θm, θ ∈ N, l,m ∈ R>0.

When we synchronize a multiset of activities in different orders, we get sev-
eral activities with the same multiaction and probability or delay and weight
parts, but different numberings with the same content. Then we only consider
a single resulting activity.

If Υ∈Can(G) then by definition of Can(G), ∀Ξ⊆Υ, Ξ 6=∅, we get Ξ∈Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only

stochastic (immediate or waiting, respectively) multiactions in the multisets
from Can(G) then these stochastic (immediate or waiting, respectively) mul-
tiactions can be executed from G. Otherwise, besides stochastic ones, there are
also deterministic (immediate and/or waiting) multiactions in the multisets from
Can(G). By the note above, there are non-empty multisets of deterministic mul-
tiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ N

DL
fin \ {∅}. In this case, no

stochastic multiactions can be executed from G, even if Can(G) contains non-
empty multisets of stochastic multiactions, since deterministic multiactions have
a priority over stochastic ones, and should be executed first. Further, if there
are no stochastic, but both waiting and immediate multiactions in the multisets
from Can(G), then, analogously, no waiting multiactions can be executed from
G, since immediate multiactions have a priority over waiting ones (besides that
over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the
multisets from Can(G) then only waiting ones can be executed from G. Then

14 I.V. Tarasyuk

just maximal non-empty multisets of waiting multiactions can be executed from
G, since all non-conflicting waiting multiactions cannot wait and they should
occur at the next time moment with probability 1.

Definition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets
of activities which can be executed from G is

Now(G)=

Can(G) ∩ N
IL
fin, Can(G) ∩ N

IL
fin 6= ∅;

{W ∈Can(G)∩NWL
fin | (Can(G)∩NIL

fin=∅)∧
∀V ∈Can(G)∩NWL

fin W ⊆V ⇒V =W}, (Can(G)∩NWL
fin 6=∅);

Can(G), otherwise.

Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tan-
gible), denoted by stang(G), if Now(G) ⊆ N

SL
fin \ {∅}. In particular, we have

stang(G), if Now(G) = ∅. The expression G is w-tangible (waitingly tangible),
denoted by wtang(G), if ∅ 6= Now(G) ⊆ N

WL
fin \{∅}. The expression G is tangible,

denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin∪N

WL
fin)\{∅}.

Again, we particularly have tang(G), if Now(G) = ∅. Otherwise, the expression
G is vanishing, denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ N

IL
fin\{∅}.

Note that the operative dynamic expressions from [G]≈ may have different types.
Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩

OpRegDynExpr stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩
OpRegDynExpr wtang(H) and ∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We
write tang([G]≈), if stang([G]≈) or wtang([G]≈). Otherwise, we write
vanish([G]≈), and in this case ∃H ∈ [G]≈ ∩OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules, where (α, ρ), (β, χ)∈
SL, (α, ♮0l), (β, ♮

0
m) ∈ IL, (α, ♮θl), (β, ♮

θ
m) ∈ WL, E, F ∈ RegStatExpr,

G,H ∈ SatOpRegDynExpr, G̃, H̃ ∈ RegDynExpr, a ∈ Act, Γ,∆ ∈ N
SL
fin \

{∅}, Γ ′ ∈ N
SL
fin, I, J ∈ N

IL
fin \ {∅}, I ′ ∈ N

IL
fin, V,W ∈ N

WL
fin \ {∅}, V ′ ∈ N

WL
fin

and Υ ∈ N
SDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈ α) ∨ (â ∈ α)}.

We use the following abbreviations in the names of the rules: “E” for “Empty
move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for
“Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule
E. The other rules are the action rules, describing transformations of dynamic
expressions, which are built using particular algebraic operations. If we cannot
merge the rules with stochastic, immediate ans waiting multiactions in one rule
for some operation then we get the coupled action rules. In such cases, the names
of the action rules with stochastic multiactions have a suffix ‘s’, those with
immediate multiactions have a suffix ‘i’, and those with waiting multiactions
have a suffix ‘w’. For explanation of the rules in Table 3, see [52,53].

Notice that the timers of all waiting multiactions that lose their enabled-
ness when a state change occurs become inactive (turned off) and their values
become irrelevant while the timers of all those preserving their enabledness con-
tinue running with their stored values. Hence, we adapt the enabling memory
policy [35,1,2,3] when the process states are changed and the enabledness of

Combining embedding and elimination for performance analysis in dtsdPBC 15

Table 3. Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l)

{(α,♮0l)}−→ (α, ♮0l) Bw (α, ♮θl)
1

{(α,♮θl)}−→ (α, ♮θl)

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f]
f(Υ)
−→ G̃[f]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F]≈))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F]≈))

[E ∗G ∗ F]
V
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l)}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl)}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a

16 I.V. Tarasyuk

deterministic multiactions is possibly modified (immediate multiactions may be
seen as those with the timers displaying a single value 0, so we do not need to
store their values). Then the timer values of waiting multiactions are taken as
the enabling memory variables.

Like in [24], we are interested in the dynamic expressions, inferred by apply-
ing the inaction rules (also in the reverse direction) and action rules from the
overlined static expressions, such that no stamped (superscribed with the timer
values) waiting multiaction is a subexpression of them. The reason is to ensure
that time proceeds uniformly and only enabled waiting multiactions are stamped.
We call such dynamic expressions reachable, by analogy with the reachable states
of LDTSDPNs [52,53].

Definition 12. A dynamic expression G is reachable, if there exists a static

expression E without timer value superscripts, such that E ≈ G or E ≈ G0
Υ1→

H1 ≈ G1
Υ2→ . . .

Υn→ Hn ≈ G for some Υ1, . . . , Υn ∈ N
SDL
fin .

We now consider the enabledness of the stamped waiting multiactions.

Proposition 2 ([52,53]). Let G be a reachable dynamic expression. Then only
waiting multiactions from EnaWait([G]≈) are stamped in G.

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dy-
namic expressions. The transition systems are used to define the operational
semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of

activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

Here H
Υ
→ H̃ is an inference by the rules from Table 3. It can be proved by

induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈
s Υ ∈ Now(H). The reverse statement does not hold, since the preconditions in
the action rules disable executions of the activities with the lower-priority types
from every H ∈ s, see [52,53].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ N

SL
fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,

hence, we may haveExec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ N

WL
fin \ {∅}. The state s is tangible, denoted

by tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ N
SL
fin ∪ N

WL
fin . Again, for a

tangible state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the
state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ N

IL
fin\{∅}.

Definition 13. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

– [G]≈ ∈ DR(G);

– if [H]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

Combining embedding and elimination for performance analysis in dtsdPBC 17

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the
set of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all
tangible states from DR(G) is denoted by DRT (G) = DRST (G) ∪ DRWT (G).
The set of all vanishing states from DR(G) is denoted by DRV (G). Then
DR(G) = DRT (G) ∪DRV (G) = DRST (G) ∪DRWT (G) ∪DRV (G).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiac-

tions Υ is ready for execution in s or the weight of the multiset of deterministic
multiactions Υ which is ready for execution in s is

PF (Υ, s)=

∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}

(1− χ), s∈DRST (G);

∑

(α,♮θ
l
)∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =

∏

{(β,χ)}∈Exec(s)

(1 − χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

Let Υ ∈ Exec(s). Besides Υ , other multisets of activities may be ready for
execution in s, hence, a normalization is needed to calculate the execution prob-
ability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ |∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Definition 14. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);
– the set of labels is LG = N

SDL
fin × (0; 1];

– the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G),

∃H ∈ s ∃H̃ ∈ s̃ H
Υ
→ H̃};

– the initial state is sG = [G]≈.

The transition system TS(G) associated with a dynamic expression G des-
cribes all the steps (parallel executions) that occur at discrete time moments
with some (one-step) probability and consist of multisets of activities. Every
step consisting of stochastic (waiting, respectively) multiactions or the empty
step (consisting of the empty multiset of activities) occurs instantly after one

18 I.V. Tarasyuk

discrete time unit delay. Each step consisting of immediate multiactions occurs
instantly without any delay. The step can change the current state to a different
one. The states are the structural equivalence classes of dynamic expressions ob-
tained by application of action rules starting from the expressions belonging to

[G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as s
Υ
→P s̃. It is interpreted

as: the probability to change from state s to s̃ as a result of executing Υ is P .
From every s-tangible state the empty multiset of activities can always be

executed by rule E. Hence, for s-tangible states, Υ may be the empty multi-
set, and its execution only decrements by one the timer values (if any) of the

current state. Then we have a transition s
∅
→P	 s from an s-tangible state s

to the tangible state 	 s = [H]≈ for H ∈ s ∩ SatOpRegDynExpr. Since
structurally equivalent saturated operative dynamic expressions remain so after
decreasing by one their timers, 	 s is unique for each s and the definition is
correct. Thus, 	s corresponds to applying the empty move rule to an arbitrary
saturated operative dynamic expression from s, followed by taking the structural
equivalence class of the result. We have to keep track of such executions, called
the empty moves, since they affect the timers and have non-zero probabilities.
This follows from the definition of PF (∅, s) and the fact that the probabilities
of stochastic multiactions belong to the interval (0; 1). When it holds 	H = H

for H ∈ s∩SatOpRegDynExpr, we obtain 	s = s. Then the empty move from

s is in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing

states Υ cannot be the empty multiset, since we must execute some immediate
(waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 when the only

transition from an s-tangible state s is the empty move one s
∅
→1	s, or if there

is a single transition from a w-tangible or a vanishing state. We write s
Υ
→ s̃ if

∃P s
Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 15. Let for dynamic expressions G,G′, TS(G)=(SG, LG, TG, sG),
TS(G′) = (SG′ , LG′, TG′ , sG′). A mapping β : SG → SG′ is an isomorphism
between TS(G) and TS(G′), denoted by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by
TS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Definition 16. Two dynamic expressions G and G′ are equivalent with respect
to transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Example 1. The expression Stop = ({h}, 12) rs h specifies the non-terminating
process that performs only empty loops with probability 1. Let E = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[] ({g}, ♮0l+m))) ∗ Stop], where

ρ, θ, φ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of the equivalence classes

Combining embedding and elimination for performance analysis in dtsdPBC 19

s1=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s2=[[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s3=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s4=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s5=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 1, the transition system TS(E) is presented. The s-tangible and

w-tangible states are depicted in ordinary and double ovals, respectively, and
the vanishing ones are depicted in boxes.

This example demonstrates an infinite iteration loop. The loop is preceded
with the iteration initiation, modeled by a stochastic multiaction ({a}, ρ). The
iteration body that corresponds to the loop consists of a waiting multiaction
({b}, ♮1k), followed (via sequential composition) by the probabilistic choice, mode-
led via three conflicting immediate multiactions ({c}, ♮0l), ({e}, ♮

0
m), ({g}, ♮

0
l+m),

such as the first and second are followed by different stochastic multiactions
({d}, θ) and ({f}, φ), whereas the third has no follower. The iteration termination
Stop demonstrates an empty behaviour, assuring that the iteration does not
reach its final state after any number of repeated executions of its body.

TS(E)

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄✻

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1

({a},ρ),ρ

({b},♮1
k
),1

({c},♮0
l
),1

l
2(l+m)

({e},♮0m),
m

2(l+m)

({d},θ),
θ

({f},φ),
φ

({g},♮0
l+m

), 1
2

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

Fig. 1. The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

Example 2. Let us interpret E from Example 1 as a specification of the travel
system. A tourist visits regularly new cities. After seeing the sights of the current

20 I.V. Tarasyuk

city, he goes to the next city by the nearest train or bus available at the city
station. Buses depart less frequently than trains, but the next city is quicker
reached by bus than by train. We suppose that the stay duration in every city
(being a constant), the departure numbers of trains and buses, as well as their
speeds do not depend on a particular city, bus or train. The travel route has been
planned so that the distances between successive cities coincide.

The meaning of actions and activities from the syntax of E is as follows. The
action a corresponds to the system activation after planning the travel route that
takes a time, geometrically distributed with a parameter ρ, the probability of the
corresponding stochastic multiaction ({a}, ρ). The action b represents coming to
the city station after completion of looking round the current city that takes (for
every city) a fixed time equal to 1 (hour), the time delay of the corresponding
waiting multiaction ({b}, ♮1k) with (resolving no choice) weight k. The actions
c and e correspond to the urgent (in zero time) getting on bus and train, re-
spectively, and thus model the choice between these two transport facilities. The
weights of the two corresponding immediate multiactions ({c}, ♮0l) and ({e}, ♮0m)
suggest that every l departures of buses take the same time as m departures
of trains (l < m), hence, a bus departs with the probability l

l+m while a train
departs with the probability m

l+m . The actions d and f correspond to coming in
a city by bus and train, respectively, that takes a time, geometrically distributed
with the parameters θ and φ, respectively (θ > φ), the probabilities of the cor-
responding stochastic multiactions ({d}, θ) and ({f}, φ). The action g specifies
instantaneous coming back to the (current) city (i.e. not getting on any trans-
port) from the station. The weight of the corresponding immediate multiaction
({g}, ♮0l+m) suggests that choosing no transport facility has the same probability

as choosing any transport facility and equals l+m
2(l+m) = 1

2 = l
2(l+m) + m

2(l+m) ,

where 2(l+m) = l+m+(l+m) is the overall weight of all possible outcomes at
the city station (bus departure, train departure and coming back to the city).

The meaning of states from DR(E) is the following. The s-tangible state s1
corresponds to staying at home and planning the future travel. The w-tangible
state s2 means residence in a city for exactly one time unit (hour). The vanishing
state s3 with zero residence time represents instantaneous stay at the city station,
signifying that the tourist does not wait there as for departure of the transport,
as before coming back to the city. The s-tangible states s4 and s5 correspond to
going by bus and train, respectively.

4 Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expres-
sions can be constructed and then used for performance evaluation.

4.1 Analysis of the underlying SMC (embedding)

For a dynamic expression G, a discrete random variable ξ(s) is associated with
every tangible state s ∈ DRT (G). The variable captures the residence (sojourn)

Combining embedding and elimination for performance analysis in dtsdPBC 21

time in the state. One can interpret staying in a state at the next discrete time
moment as a failure and leaving it as a success in some trial series. It is easy to
see that ξ(s) is geometrically distributed with the parameter 1−PM(s, s), since
the probability to stay in s for k − 1 time moments and leave it at the moment
k ≥ 1, called the probability mass function (PMF) of the residence time in s, is
pξ(s)(k) = P(ξ(s) = k) = PM(s, s)k−1(1 − PM(s, s)) (k ∈ N≥1) (the residence
time in s is k in this case). Hence, the probability distribution function (PDF) of
the residence time in s is Fξ(s)(k) = P(ξ(s) < k) = 1 − PM(s, s)k−1 (k ∈ N≥1)
(the probability that the residence time in s is less than k).

The deterministic residence time 1 in a tangible state s can be interpreted
as a random variable ξ(s) that is geometrically distributed with the parameter
1 = 1−PM(s, s). In that case, PM(s, s) = 0 and k = 1 is the only residence time
value with a positive probability. Hence, pξ(s)(1) = PM(s, s)1−1(1−PM(s, s)) =
00 · 1 = 1, i.e. the probability that the residence time is 1 equals 1.

Further, the residence time ∞ in an absorbing tangible state s can be in-
terpreted as a random variable ξ(s) that is geometrically distributed with the
parameter 0 = 1 − PM(s, s). In that case, PM(s, s) = 1 and there exists
no finite residence time value with a positive probability. Hence, pξ(s)(k) =

PM(s, s)k−1(1 − PM(s, s)) = 1k−1 · 0 = 0 (k ∈ N≥1), i.e. the probability that
the residence time is k equals 0 for every k ≥ 1. Then we cannot leave s for a
different state after any number of time ticks and we stay in s for infinite time.

The mean value formula for the geometrical distribution allows us to calculate
the average sojourn time in s ∈ DRT (G) as SJ(s) = 1

1−PM(s,s) . The average

sojourn time in each vanishing state s ∈ DRV (G) is SJ(s) = 0. Let s ∈ DR(G).
The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s),
s ∈ DR(G).

To evaluate performance of the system specified by a dynamic expression
G, we should investigate the stochastic process associated with it. The process
is the underlying semi-Markov chain (SMC) [44,47,25,12,61,26,45,46], denoted
by SMC(G), which can be analyzed by extracting from it the embedded (ab-
sorbing) discrete time Markov chain (EDTMC) corresponding to G, denoted
by EDTMC(G). The construction of the latter is analogous to that applied
in the context of generalized stochastic PNs (GSPNs) in [34,2,3], and also in
the framework of discrete time deterministic and stochastic PNs (DTDSPNs) in
[66,62,63,68,69,67], as well as within discrete deterministic and stochastic PNs
(DDSPNs) [64,65]. EDTMC(G) only describes the state changes of SMC(G)
while ignoring its time characteristics. Thus, to construct the EDTMC, we should
abstract from all time aspects of behaviour of the SMC, i.e. from the sojourn
time in its states. The (local) sojourn time in every state of the EDTMC is de-
terministic and it is equal to one discrete time unit. It is well-known that every
SMC is fully described by the EDTMC and the state sojourn time distributions

22 I.V. Tarasyuk

(the latter can be specified by the vector of PDFs of residence time in the states)
[18,47,61,26].

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system
TS(G) can have self-loops going from a state to itself which have a non-zero
probability. Clearly, the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

PM(s, s)k.

Let s → s̃ and s 6= s̃, i.e. PM(s, s) < 1. The probability to move from s to s̃
by executing any multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
=

SL(s)PM(s, s̃), where SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise.

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops
abstraction vector of G, denoted by SL, has the elements SL(s), s ∈ DR(G).
The value k = 0 in the summation above corresponds to the case when no
self-loops occur.

Let s ∈ DRT (G). If there are self-loops from s (i.e. if s→ s) then PM(s, s) >
0 and SL(s) = 1

1−PM(s,s) = SJ(s). Otherwise, if there exist no self-loops

from s then PM(s, s) = 0 and SL(s) = 1 = 1
1−PM(s,s) = SJ(s). Thus,

∀s ∈ DRT (G) SL(s) = SJ(s), hence, ∀s ∈ DRT (G) with PM(s, s) < 1 it
holds PM∗(s, s̃)=SJ(s)PM(s, s̃). Note that the self-loops from tangible states
are of the empty or non-empty type, the latter produced by iteration, since
empty loops are not possible from w-tangible states, but they are possible from
s-tangible states, while non-empty loops are possible from both s-tangible and
w-tangible states.

Let s ∈ DRV (G). We have ∀s ∈ DRV (G) SL(s) 6= SJ(s) = 0 and ∀s ∈
DRV (G) with PM(s, s) < 1 it holds PM∗(s, s̃) = SL(s)PM(s, s̃). If there exist

self-loops from s then PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) when PM(s, s) < 1. Otherwise,

if there exist no self-loops from s then PM∗(s, s̃) = PM(s, s̃). Note that the
self-loops from vanishing states are always of the non-empty type, produced by
iteration, since empty loops are not possible from vanishing states.

Note that after abstraction from the probabilities of transitions which do not
change the states, the remaining transition probabilities are normalized. In order
to calculate transition probabilities PT (Υ, s), we had to normalize PF (Υ, s).
Then, to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we
have to normalize PM(s, s̃). Thus, we have a two-stage normalization as a result.

Then PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such
that s is not an absorbing state (i.e. PM(s, s) < 1 and there are transitions to dif-
ferent states after possible self-loops from it) we have

∑
{s̃|s→s̃, s6=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s6=s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

Combining embedding and elimination for performance analysis in dtsdPBC 23

We decided to consider self-loops followed only by a state-changing step just
for convenience. Alternatively, we could take a state-changing step followed by
self-loops or a state-changing step preceded and followed by self-loops. In all these
three cases our sequence begins or/and ends with the loops which do not change
states. At the same time, the overall probabilities of the evolutions can differ,
since self-loops have positive probabilities. To avoid inconsistency of definitions
and too complex description, we consider sequences ending with a state-changing
step. It resembles in some sense a construction of branching bisimulation [16]
taking self-loops instead of silent transitions. Further, we shall not abstract from
self-loops with probabilities 1 while constructing EDTMCs, in order to maintain
a probability distribution among transitions (actually, a single transition to the
same state) from every state with such a self-loop.

Definition 17. Let G be a dynamic expression. The embedded (absorbing) dis-
crete time Markov chain (EDTMC) of G, denoted by EDTMC(G), has the state
space DR(G), the initial state [G]≈ and the transitions s ։P s̃, if s → s̃ and
s 6= s̃, where P = PM∗(s, s̃); or s։1 s, if PM(s, s) = 1.

The underlying SMC of G, denoted by SMC(G), has the EDTMC
EDTMC(G) and the sojourn time in every s ∈ DRT (G) is geometrically dis-
tributed with the parameter 1 − PM(s, s) (in particular, the sojourn time is 1
when PM(s, s) = 0, and ∞ when PM(s, s) = 1) while the sojourn time in every
s ∈ DRV (G) is equal to 0.

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|)

of the (one-step) transition probability matrix (TPM) P∗ for EDTMC(G) are

P∗
ij =

PM∗(si, sj), si → sj , i 6= j;
1, PM(si, si) = 1, i = j;
0, otherwise.

The transient (k-step, k ∈ N) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for

EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ N).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC(G) is a solu-
tion of the equation system

{
ψ∗(P∗ − I) = 0
ψ∗1T = 1

,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1
is that of n values 1.

24 I.V. Tarasyuk

Note that the vector ψ∗ exists and is unique if EDTMC(G) is ergodic. Then
EDTMC(G) has a single steady state, and we have ψ∗ = limk→∞ ψ∗[k].

The steady-state PMF for the underlying semi-Markov chain SMC(G) is
calculated via multiplication of every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn
time SJ(si) in the state si, after which we normalize the resulting values. Re-
member that for each tangible state s ∈ DRT (G) we have SJ(s) ≥ 1, and for
each vanishing state s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑

n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops with probabilities
less than 1 to get P∗ and then ψ∗, followed by weighting by SJ and normaliza-
tion. We call that technique embedding, since the embedded DTMC (EDTMC)
is used to specify the SMC state change probabilities. EDTMC(G) has no self-
loops with probabilities less than 1, unlike SMC(G), hence, the behaviour of
EDTMC(G) may stabilize quicker than that of SMC(G) (if each of them has a
single steady state), since P∗ has only zero (excepting the states having self-loops
with probabilities 1) elements at the main diagonal.

Example 3. Let E be from Example 1. In Figure 2, the underlying SMC
SMC(E) is presented. The average sojourn times in the states of the underlying
SMC are written next to them in bold font.

The average sojourn time vector of E is

SJ =

(
1

ρ
, 1, 0,

1

θ
,
1

φ

)
.

The TPM for EDTMC(E) is

P∗ =

0 1 0 0 0
0 0 1 0 0
0 1

2 0 l
2(l+m)

m
2(l+m)

0 1 0 0 0
0 1 0 0 0

.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

2

5
,
2

5
,

l

5(l+m)
,

m

5(l +m)

)
.

The steady-state PMF ψ∗ weighted by SJ is

(
0,

2

5
, 0,

l

5θ(l +m)
,

m

5φ(l +m)

)
.

Combining embedding and elimination for performance analysis in dtsdPBC 25

We normalize the steady-state weighted PMF, dividing it by its components sum

ψ∗SJT =
2θφ(l +m) + φl + θm

5θφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), 0, φl, θm).

SMC(E)

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄✻

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1

1

11
2

l
2(l+m)

m
2(l+m)

1 1

s3

1

ρ

1

0

1

θ

1

φ

Fig. 2. The underlying SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

Let G be a dynamic expression and s, s̃∈DR(G), S, S̃⊆DR(G). The next stan-
dard performance indices (measures) can be calculated based on the steady-state
PMF ϕ for SMC(G) and the average sojourn time vector SJ of G [40,23].

– The average recurrence (return) time in the state s (i.e. the number of dis-
crete time units or steps required for this) is ReturnT ime(s) = 1

ϕ(s) .

– The fraction of residence time in the state s is T imeFract(s) = ϕ(s).
– The fraction of residence time in the set of states S or the probability of

the event determined by a condition that is true for all states from S is
T imeFract(S) =

∑
s∈S ϕ(s).

– The relative fraction of residence time in the set of states S with respect to

that in S̃ is RltT imeFract(S, S̃) =
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃) .

– The exit/entrance frequency (rate of leaving/entering, average number of

exits/entrances per unit of time) the state s is ExitFreq(s) = ϕ(s)
SJ(s) .

– The steady-state probability to perform a step with a multiset of activities Ξ
is ActsProb(Ξ) =

∑
s∈DR(G) ϕ(s)

∑
{Υ |Ξ⊆Υ} PT (Υ, s).

– The probability of the event determined by a reward function r on the states
is Prob(r) =

∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

26 I.V. Tarasyuk

Example 4. We now calculate the performance indices for the travel system
from Example 2. They are based on the steady-state PMF for SMC(E) ϕ =

1
2θφ(l+m)+φl+θm(0, 2θφ(l +m), 0, φl, θm) and the average sojourn time vector of

E SJ =
(

1
ρ
, 1, 0, 1

θ
, 1
φ

)
from Example 3.

– The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(s2) =

1
ϕ(s2)

= 1 + φl+θm
2θφ(l+m) .

– The fraction of time spent in a city (sightseeing time fraction) is

T imeFract(s2) = ϕ(s2) =
2θφ(l+m)

2θφ(l+m)+φl+θm .

– The fraction of time spent in a transport (travel time fraction) is
T imeFract({s4, s5}) = ϕ(s4) + ϕ(s5) =

φl+θm
2θφ(l+m)+φl+θm .

– The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({s2}, {s4, s5}) =
ϕ(s2)

ϕ(s4)+ϕ(s5)
= 2θφ(l+m)

φl+θm .

– The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(s2) =
ϕ(s2)
SJ(s2)

= 2θφ(l+m)
θφ(l+m)+φl+θm .

4.2 Analysis of the reduced DTMC (elimination)

Let us now consider the method from [13,14,15,35,2,4,3] that eliminates vanish-
ing states from the EMC (EDTMC, in our terminology) corresponding to the
underlying SMC of every GSPN N . The TPM for the resulting reduced EDTMC
(REDTMC) has smaller size than that for the EDTMC. The method demon-
strates that there exists a transformation of the underlying SMC of N into a
CTMC, whose states are the tangible markings of N . This CTMC, which is es-
sentially the reduced underlying SMC (RSMC) of N , is constructed on the basis
of the REDTMC. The CTMC can then be directly solved to get both the tran-
sient and the steady-state PMFs over the tangible markings of N . In [15], the
program and computational complexities of such an elimination method, based
on the REDTMC, were evaluated and compared with those of the preservation
method that does not eliminate vanishing states and based on the EDTMC. The
preservation method for GSPNs corresponds in dtsdPBC to the analysis of the
underlying SMCs of expressions, called the embedding approach.

Definition 18. Let G be a dynamic expression. The discrete time Markov chain
(DTMC) of G, denoted by DTMC(G), has the state space DR(G), the initial
state [G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of
(one-step) transition probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), si → sj ;
0, otherwise.

Combining embedding and elimination for performance analysis in dtsdPBC 27

Example 5. Let E be from Example 1. In Figure 3, the DTMC DTMC(E) is
presented. The TPM for DTMC(E) is

P =

1− ρ ρ 0 0 0
0 0 1 0 0
0 1

2 0 l
2(l+m)

m
2(l+m)

0 θ 0 1− θ 0
0 φ 0 0 1− φ

.

DTMC(E)

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄✻

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1
ρ

11
2

l
2(l+m)

m
2(l+m)

θ φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

1−ρ

1−θ 1−φ

Fig. 3. The DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m);

({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

The elimination method for GSPNs can be easily transferred to dtsdPBC,
hence, for every dynamic expression G, we can find a DTMC (since the sojourn
time in the tangible states fromDR(G) is discrete and geometrically distributed)
with the states from DRT (G), which can be directly solved to find the tran-
sient and the steady-state PMFs over the tangible states. We shall demonstrate
that such a reduced DTMC (RDTMC) of G, denoted by RDTMC(G), can be
constructed from DTMC(G), using the method analogous to that designed in
[35,2,4,3] in the framework of GSPNs to transform EDTMC into REDTMC.
Since the sojourn time in the vanishing states is zero, the state changes of
RDTMC(G) occur in the moments of the global discrete time associated with
SMC(G), unlike those of EDTMC(G), which happen only when the current
state changes to some different one, irrespective of the global time. Therefore,
in our case, we can skip the stages of constructing the REDTMC of G, denoted
by REDTMC(G), from EDTMC(G), and recovering RSMC of G, denoted by
RSMC(G) (which is the sought-for DTMC), from REDTMC(G), since we shall
have RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DTMC(G). We
reorder the states from DR(G) such that the first rows and columns of the

28 I.V. Tarasyuk

modified matrix Pr correspond to the states from DRV (G) and the last ones
correspond to the states from DRT (G). Let |DR(G)| = n and |DRT (G)| = m.
The reordered matrix can be decomposed as follows:

Pr =

(
C D
E F

)
.

The elements of the (n−m)×(n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D
are the probabilities to move from vanishing to tangible states. The elements of
the m × (n − m) submatrix E are the probabilities to move from tangible to
vanishing states, and those of the m ×m submatrix F are the probabilities to
move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from van-
ishing to vanishing states in any number of state changes, without traversal of
tangible states.

If there are no loops among vanishing states then for any vanishing state
there exists a value l ∈ N such that every sequence of state changes that starts
in a vanishing state and is longer than l should reach a tangible state. Thus,
∃l ∈ N ∀k > l Ck = 0 and

∑∞
k=0 C

k =
∑l
k=0 C

k. If there are loops among van-
ishing states then all such loops are supposed to be of “transient” rather than
“absorbing” type, since the latter is treated as a specification error to be cor-
rected, like in [35,3]. We have earlier required that SMC(G) has a single closed
communication (which is also ergodic) class of states. Remember that a commu-
nication class of states is their equivalence class w.r.t. communication relation,
i.e. a maximal subset of communicating states. A communication class of states
is closed if only the states belonging to it are accessible from every its state.

The ergodic class cannot consist of vanishing states only, to avoid “absorbing”
loops among them, hence, it contains tangible states as well. Thus, any sequence
of vanishing state changes that starts in the ergodic class will reach a tangible
state at some time moment. All the states that do not belong to the ergodic
class should be transient. Hence, any sequence of vanishing state changes that
starts in a transient vanishing state will some time reach either a transient
tangible state or a state from the ergodic class [47,25,12,61,26,45,46]. In the
latter case, a tangible state will be reached as well, as argued above. Thus, every
sequence of vanishing state changes in SMC(G) that starts in a vanishing state
will exit the set of all vanishing states in the future. As a result, the probabilities
to move from vanishing to vanishing states in k ∈ N state changes, without
traversal of tangible states, will lead to 0 when k tends to ∞. Then we have
limk→∞ Ck = limk→∞(I− (I−C))k = 0, hence, I−C is a non-singular matrix,
i.e. its determinant is not equal to zero. Thus, the inverse matrix of I−C exists
and may be expressed by a Neumann series as

∑∞
k=0(I−(I−C))k =

∑∞
k=0 C

k =
(I−C)−1. Therefore,

Combining embedding and elimination for performance analysis in dtsdPBC 29

G =

∞∑

k=0

Ck =

{∑l
k=0 C

k, ∃l ∈ N ∀k > l Ck = 0, no vanishing states loops;
(I−C)−1, limk→∞ Ck = 0, vanishing states loops;

where 0 is the square matrix consisting only of zeros and I is the identity matrix,
both of order n−m.

For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let Fij be the elements of the matrix
F, Eik be those of E, Gkl be those of G and Dlj be those of D. By definition,
the elements P⋄

ij of the matrix P⋄ are calculated as

P⋄
ij=Fij+

n−m∑

k=1

n−m∑

l=1

EikGklDlj=Fij+
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj=Fij+
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state

si to the tangible state sj in any number of steps, without traversal of tangible
states, but possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj . The probability to move from s

to s̃ in any number of steps, without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .

Definition 19. Let G be a dynamic expression and [G]≈ ∈ DRT (G). The re-
duced discrete time Markov chain (RDTMC) of G, denoted by RDTMC(G),
has the state space DRT (G), the initial state [G]≈ and the transitions s →֒P s̃,
where P = PM⋄(s, s̃).

Let us now define RSMC(G) as a “restriction” of SMC(G) to its tangi-
ble states. Since the sojourn time in the tangible states of SMC(G) is discrete
and geometrically distributed, we can see that RSMC(G) is a DTMC with the
state space DRT (G), the initial state [G]≈ and the transitions whose proba-
bilities collect all those in SMC(G) to move from the tangible to the tangible
states, directly or indirectly, i.e. by going through its vanishing states only. Thus,
RSMC(G) should have the transitions s →֒P s̃, where P = PM⋄(s, s̃), resulting
in RSMC(G) = RDTMC(G).

Note that RDTMC(G) is constructed from DTMC(G) as follows. All van-
ishing states and all transitions to, from and between them are removed. All
transitions between tangible states are preserved. The probabilities of transi-
tions between tangible states may become greater and new transitions between
tangible states may be added, both iff there exist moves between these tangible
states in any number of steps, going through vanishing states only. Thus, for
each sequence of transitions between two tangible states in DTMC(G) there
exists a (possibly shorter, since the eventual passed through vanishing states are
removed) sequence between the same states in RDTMC(G) and vice versa. If
DTMC(G) is irreducible then all its states (including tangible ones) communi-
cate, hence, all states of RDTMC(G) communicate as well and it is irreducible.

30 I.V. Tarasyuk

Since both DTMC(G) and RDTMC(G) are finite, they are positive recurrent.
Thus, in case of irreducibility of DTMC(G), each of them has a single station-
ary PMF. Then DTMC(G) and/or RDTMC(G) may be periodic, thus having a
unique stationary distribution, but no steady-state (limiting) one. For example,
it may happen that DTMC(G) is aperiodic while RDTMC(G) is periodic due
to removing vanishing states from the former.

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step,
k ∈ N) PMF ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ N).

The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ
⋄(sm)) for RDTMC(G) is a so-

lution of the equation system

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

,

where I is the identity matrix of order m and 0 is a row vector of m values 0, 1
is that of m values 1.

Note that the vector ψ⋄ exists and is unique if RDTMC(G) is ergodic. Then
RDTMC(G) has a single steady state, and we have ψ⋄ = limk→∞ ψ⋄[k].

The zero sojourn time in the vanishing states guarantees that the state
changes of RDTMC(G) occur in the moments of the global discrete time as-
sociated with SMC(G), i.e. every such state change occurs after one time unit
delay. Hence, the sojourn time in the tangible states is the same for RDTMC(G)
and SMC(G). The state change probabilities of RDTMC(G) are those to move
from tangible to tangible states in any number of steps, without traversal of
the tangible states. Then RDTMC(G) and SMC(G) have the same transient
behaviour over the tangible states, thus, the transient analysis of SMC(G) is
possible using RDTMC(G).

The next proposition relates steady-state PMFs for SMC(G) and RDTMC(G)
by proving that their steady-state probabilities of the tangible states coincide.

Proposition 3 ([54]). Let G be a dynamic expression, ϕ be the steady-state
PMF for SMC(G) and ψ⋄ be the steady-state PMF for RDTMC(G). Then
∀s ∈ DR(G)

ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Combining embedding and elimination for performance analysis in dtsdPBC 31

Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-
state probabilities of the tangible states, instead of abstracting from self-loops
with probabilities less than 1 to get P∗ and then ψ∗, followed by weighting
by SJ and normalization. We call that technique elimination, since we elimi-
nate the vanishing states. Hence, using RDTMC(G) instead of EDTMC(G)
allows one to avoid such a multistage analysis, but constructing P⋄ also re-
quires some efforts, including calculating matrix powers or inverse matrices.
Note that RDTMC(G) may have self-loops with probabilities less than 1, unlike
EDTMC(G), hence, the behaviour of RDTMC(G) may stabilize slower than
that of EDTMC(G) (if each of them has a single steady state). On the other
hand, P⋄ is generally smaller and denser matrix than P∗, since P⋄ may have
additional non-zero elements not only at the main diagonal, but also many of
them outside it. Therefore, in most cases, we have less time-consuming numerical
calculation of ψ⋄ with respect to ψ∗. At the same time, the complexity of the
analytical calculation of ψ⋄ with respect to ψ∗ depends on the model structure,
such as the number of vanishing states and loops among them, but usually it
is lower, since the matrix size reduction plays an important role in many cases.
Hence, for the system models with many immediate activities, we normally have
a significant simplification of the solution. At the abstraction level of SMCs, the
elimination of vanishing states decreases their impact to the solution complexity
while allowing immediate activities to specify a comprehensible logical structure
of systems at the higher level of transition systems.

Example 6. Let E be from Example 1. Remember that DRT (E) = DRST (E) ∪
DRWT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. We reorder the states from
DR(E), by moving vanishing states to the first positions: s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =

0 0 1
2

l
2(l+m)

m
2(l+m)

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ

.

The result of the decomposing Pr are the matrices

C=0, D=

(
0,

1

2
,

l

2(l+m)
,

m

2(l +m)

)
, E=

0
1
0
0

 , F=

1− ρ ρ 0 0
0 0 0 0
0 θ 1− θ 0
0 φ 0 1− φ

.

Since C1 = 0, we have ∀k > 0 Ck = 0, hence, l = 0 and there are no loops
among vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.

32 I.V. Tarasyuk

Further, the TPM for RDTMC(E) is

P⋄ = F+ EGD = F+EID = F+ED =

1− ρ ρ 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 θ 1− θ 0
0 φ 0 1− φ

 .

In Figure 4, the reduced DTMC RDTMC(E) is presented. The steady-state
PMF for RDTMC(E) is

ψ⋄ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), φl, θm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)). By Proposition 3, we have

ϕ(s1) = 0, ϕ(s2) =
2θφ(l+m)

2θφ(l+m)+φl+θm , ϕ(s3) = 0,

ϕ(s4) =
φl

2θφ(l+m)+φl+θm , ϕ(s5) =
θm

2θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 3 with the use of ψ∗ and SJ .

RDTMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

ρ

θ φ

l
2(l+m)

m
2(l+m)

✞✝ ✲

✂ ✁✂ ✁✻

✄✂ ✲
1
2

1−ρ

1−θ 1−φ

Fig. 4. The reduced DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

Example 7. In Figure 5, the reduced underlying SMC RSMC(E) is depicted.
The average sojourn times in the states of the reduced underlying SMC are writ-
ten next to them in bold font. In spite of the equality RSMC(E)=RDTMC(E),
the graphical representation of RSMC(E) differs from that of RDTMC(E),

Combining embedding and elimination for performance analysis in dtsdPBC 33

since the former is based on the REDTMC(E), where each state is decorated
with the positive average sojourn time of RSMC(E) in it. REDTMC(E) is con-
structed from EDTMC(E) in the similar way as RDTMC(E) is obtained from
DTMC(E). By construction, the residence time in each state of RSMC(E) is
geometrically distributed. Hence, the associated parameter of geometrical dis-
tribution is uniquely recovered from the average sojourn time in the state.

RSMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

1

1 1

l
l+m

m
l+m

1

ρ

2

1

θ

1

φ

Fig. 5. The reduced SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]

Let us now formally prove that RSMC coincides with RDTMC. Although
this assertion is very intuitive, its proof is rather involved.

The relation between DTMC and RDTMC is obtained using the transi-
tion function PM⋄(s, s̃), based on PM(s, s̃). The relation between RDTMC

and the embedded RDTMC (ERDTMC) is obtained using the transition func-
tion (PM⋄)∗(s, s̃), based on PM⋄(s, s̃). The relation between EDTMC and
the reduced EDTMC (REDTMC) is obtained using the transition function
(PM∗)⋄(s, s̃), based on PM∗(s, s̃).

Let G be a dynamic expression. We shall prove that the TPM (P⋄)∗ for
the embedded RDTMC(G) (ERDTMC(G)), (forwardly) constructed by re-
duction (eliminating vanishing states) of DTMC(G), followed by embedding
ERDTMC(G) into RDTMC(G), coincides with the (finally) embedded TPM
((P∗)⋄)∗, (reversely) constructed by embedding EDTMC(G) into SMC(G),
followed by reduction REDTMC(G) of EDTMC(G), and final embedding
EREDTMC(G) into RSMC(G). The final embedding in the reverse construc-
tion is needed, since new self-loops may arise after reducing EDTMC(G), i.e.
REDTMC(G) may become not an EDTMC, but a DTMC featuring self-loops
with probabilities less than 1.

Note that for s, s̃ ∈ DRT (G), we have (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) in
ERDTMC(G). Here SL⋄(s) is the self-loops abstraction factor in s in
RDTMC(G). This corresponds to a different expression (PM∗)⋄(s, s̃) = (SL ·
PM)⋄(s, s̃) in REDTMC(G). In particular, SL⋄(s) > SL(s) when PM⋄(s, s) >
PM(s, s), being the reason for a new self-loop associated with s in RDTMC(G).
As we shall see, in that case (PM⋄)∗(s, s̃) > (PM∗)⋄(s, s̃).

34 I.V. Tarasyuk

The following theorem relates those finally embedded reduced embedded
TPM ((P∗)⋄)∗ (i.e. the TPM for EREDTMC(G)) and embedded reduced TPM
(P⋄)∗ (the TPM for ERDTMC(G)).

Theorem 1. Let G be a dynamic expression, (P⋄)∗ results from embedding the
TPM P⋄ for RDTMC(G), and ((P∗)⋄)∗ results from reduction and final em-
bedding the TPM P∗ for EDTMC(G). Then

((P∗)⋄)∗ = (P⋄)∗.

Proof. Let Pr be the reordered (by moving vanishing states to the first positions)
TPM forDTMC(G). Like in Section 4, we reorder the states fromDR(G) so that
the first rows and columns of Pr will correspond to the states from DRV (G) and
the last ones will correspond to the states from DRT (G). Let |DR(G)| = n and
|DRT (G)| = m. Then the reordered TPM for DTMC(G) can be decomposed as

Pr =

(
C D
E F

)
.

The elements of the (n−m)×(n−m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D
are the probabilities to move from vanishing to tangible states. The elements of
the m × (n − m) submatrix E are the probabilities to move from tangible to
vanishing states, and those of the m ×m submatrix F are the probabilities to
move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G =
∑∞
k=0 C

k are the probabilities to move
from vanishing to vanishing states in any number of state changes, without
traversal of tangible states, in DTMC(G). We define the matrix H = EGD.
For s, s̃ ∈ DRT (G), let PMF (s, s̃) and PMH(s, s̃) be the probabilities to change
from s to s̃ for the submatrix F and matrix H, respectively.

In a similar way, the reordered TPM for EDTMC(G) can be decomposed as

P∗
r =

(
C∗ D∗

E∗ F∗

)
.

The elements of the submatrices of P∗
r resemble those of the submatrices of Pr.

The TPM (P∗)⋄ for REDTMC(G) is the m×m matrix, calculated as

(P∗)⋄ = F∗ +E∗G′D∗,

where the elements of the matrix G′ =
∑∞

k=0(C
∗)k are the probabilities to

move from vanishing to vanishing states in any number of state changes, with-
out traversal of tangible states, in EDTMC(G). We define the matrix H′ =
E∗G′D∗. For s, s̃ ∈ DRT (G), let PMH′(s, s̃) be the probability to change from
s to s̃ for the matrix H′.

Combining embedding and elimination for performance analysis in dtsdPBC 35

By the proof of Proposition 3 from [54], we have P∗
r = Diag(SLr)(Pr−I)+I,

where SLr is the reordered (by moving vanishing states to the first positions)
self-loops abstraction vector of G in DTMC(G). Let SLC and SLF be the self-
loops abstraction subvectors of G for the submatrices C and F, respectively,
i.e. the “head” of length n − m and the “tail” of length m, taken from the
vector SLr, with the following elements: ∀s ∈ DRV (G) SLC(s) = SLr(s) and
∀s ∈ DRT (G) SLF (s) = SLr(s). Then we have

P∗
r =

(
Diag(SLC) 0

0 Diag(SLF)

)(
C− I D
E F− I

)
+

(
I 0
0 I

)
=

(
Diag(SLC)(C− I) + I Diag(SLC)D

Diag(SLF)E Diag(SLF)(F− I) + I

)
.

Hence, C∗=Diag(SLC)(C−I)+I, D∗=Diag(SLC)D, E
∗=Diag(SLF)E,

F∗ = Diag(SLF)(F − I) + I. Then (P∗)⋄ = F∗ + E∗G′D∗ = Diag(SLF)(F −
I) + I+Diag(SLF)EG′Diag(SLC)D = Diag(SLF)((F+EG′Diag(SLC)D)−
I) + I. Let us explore the matrix G′Diag(SLC). The matrix G′ can have two
different forms, depending on whether the loops among vanishing states exist in
EDTMC(G), hence, we consider two cases.

1. There exist no loops among vanishing states in EDTMC(G). We have ∃l ∈

N ∀k > l (C∗)k = 0 and G′ =
∑l
k=0(C

∗)k.
Then there are no loops among different vanishing states in DTMC(G) (but
self-loops may exist in vanishing states), since no loop among different states
is removed and all self-loops (in the non-absorbing states) are removed in
EDTMC(G), with respect to DTMC(G).
Let there are no self-loops in vanishing states in DTMC(G). In such a
case, ∀s ∈ DTV (G) SLC(s) = SL(s) = 1 and Diag(SLC) = I. We have

C∗ = Diag(SLC)(C − I) + I = I(C − I) + I = C and G′ =
∑l
k=0(C

∗)k =∑l
k=0 C

k = G. Thus, G′Diag(SLC) = GI = G.
Let there are self-loops in vanishing states in DTMC(G). In such a case,
G = (I − C)−1. Note that C 6= I 6= C∗, since there exist no absorbing
vanishing states in DTMC(G). It is easy to prove by induction on l ∈ N that

G′(I−C∗) =
(∑l

k=0(C
∗)k

)
(I−C∗) = I− (C∗)l+1. Since (C∗)l+1 = 0, we

getG′(I−C∗) = I−0 = I. In a similar way, we show that (I−C∗)G′ = I. We
have limk→∞(C∗)k = 0. Hence, G′ = (I−C∗)−1 = (I−Diag(SLC)(C−I)−
I)−1 = (Diag(SLC)(I−C))−1 = (I−C)−1Diag(SLC)

−1 = GDiag(SLC)
−1.

Thus, G′Diag(SLC) = GDiag(SLC)
−1Diag(SLC) = G.

2. There exist loops among vanishing states in EDTMC(G). We have
limk→∞(C∗)k = 0 and G′ = (I−C∗)−1.
Then there are loops among vanishing states in DTMC(G), since no loop
among states is removed and self-loops are possibly added in DTMC(G),
with respect to EDTMC(G). Hence, limk→∞(C)k = 0 and G = (I−C)−1.
We haveG′ = (I−C∗)−1 = (I−Diag(SLC)(C−I)−I)−1 = (Diag(SLC)(I−
C))−1 = (I−C)−1Diag(SLC)

−1 = GDiag(SLC)
−1. Thus,G′Diag(SLC) =

GDiag(SLC)
−1Diag(SLC) = G.

36 I.V. Tarasyuk

In the both cases above, we get G′Diag(SLC) = G. Hence, (P∗)⋄ =
Diag(SLF)((F+EG′Diag(SLC)D)−I)+I = Diag(SLF)((F+EGD)−I)+I =
Diag(SLF)(P

⋄ − I) + I.
Let s, s̃ ∈ DRT (G). The EDTMC for RDTMC(G) is denoted by

ERDTMC(G) and has the probabilities (PM⋄)∗(s, s̃) to change from s to s̃.
The RDTMC for EDTMC(G) is denoted by REDTMC(G) and has the proba-
bilities (PM∗)⋄(s, s̃) to change from s to s̃. The EDTMC for REDTMC(G) is
denoted by EREDTMC(G) and has the probabilities ((PM∗)⋄)∗(s, s̃) to change
from s to s̃.

Let SLH and SLH′ be the self-loops abstraction vectors of G for the matri-
cesH andH′, respectively. We have (P∗)⋄ = F∗+H′ = F∗+Diag(SLF)EGD =
F∗+Diag(SLF)H. Hence,H′ = Diag(SLF)H and ∀s, s̃ ∈ DRT (G) PMH′(s, s̃) =
SLF (s)PMH(s, s̃). Since there are no self-loops in F∗, we conclude that (SL∗)⋄ =
SLH′ is the self-loops abstraction vector of G in REDTMC(G).

– Let PMF (s, s) + PMH(s, s) = PM⋄(s, s) < 1 and PMF (s, s), PMH(s, s) >
0, i.e. s is non-absorbing in RDTMC(G) and there exist self-loops associated
with s in DTMC(G) and extra self-loops (in addition to those inherited from
DTMC(G)) in RDTMC(G).

In ERDTMC(G), we have (PM⋄)∗(s, s̃)=SL⋄(s)PM⋄(s, s̃)= PM⋄(s,s̃)
1−PM⋄(s,s) =

PM⋄(s,s̃)
1−PMF (s,s)−PMH (s,s) =

PM⋄(s,s̃)
1−PMF (s,s)

1−
PMH (s,s̃)

1−PMF (s,s)

= SLF (s)PM⋄(s,s̃)
1−SLF (s)PMH (s,s) .

Then the self-loops abstraction factor in s in RDTMC(G) is SL⋄(s) =
SLF (s)

1−SLF (s)PMH (s,s) = SLF (s)SLH′ (s), where SLH′(s) = 1
1−SLF (s)PMH (s,s) is

the self-loops abstraction factor in s in REDTMC(G). Thus, (PM⋄)∗(s, s̃)=
SLF (s)SLH′(s)PM⋄(s, s̃).
In EREDTMC(G), we have ((PM∗)⋄)∗(s, s̃) = (SL∗)⋄(s)(PM∗)⋄(s, s̃) =
SLH′(s)(PM∗)⋄(s, s̃) = SLH′(s)SLF (s)PM

⋄(s, s̃) = (PM⋄)∗(s, s̃).
The other three cases (no self-loops associated with s in DTMC(G), no extra
self-loops associated with s in RDTMC(G), or no any self-loops associated
with s in RDTMC(G)) are treated analogously, by replacing PMF (s, s)
or/and PMH(s, s) with zeros.

– Let PMF (s, s) + PMH(s, s) = PM⋄(s, s) = 1 and PMF (s, s), PMH(s, s) >
0, i.e. s is absorbing in RDTMC(G) and there exist self-loops associated
with s in DTMC(G) and extra self-loops (in addition to those inherited
from DTMC(G)) in RDTMC(G).
In ERDTMC(G), we have (PM⋄)∗(s, s) = 1 by definition of the EDTMC,
since PM⋄(s, s) = 1.
In REDTMC(G), the probability of a self-loop associated with s is

(PM∗)⋄(s, s) = PMH′(s, s) = SLF (s)PMH(s, s) = PMH (s,s)
1−PMF (s,s) =

1−PMF (s,s)
1−PMF (s,s) = 1.

In EREDTMC(G), we have ((PM∗)⋄)∗(s, s) = 1 = (PM⋄)∗(s, s) by defi-
nition of the EDTMC, since (PM∗)⋄(s, s) = 1.
The other three cases (no self-loops associated with s in DTMC(G), no extra
self-loops associated with s in RDTMC(G), or no any self-loops associated

Combining embedding and elimination for performance analysis in dtsdPBC 37

with s in RDTMC(G)) are treated analogously, by replacing PMF (s, s)
or/and PMH(s, s) with zeros.

Thus, ((P∗)⋄)∗ = (P⋄)∗ and EREDTMC(G) = ERDTMC(G). ⊓⊔

Thus, reduction before embedding is more optimal computationally for DTMCs
of the process expressions, since only one embedding is needed in that case. This
is especially important when the DTMCs have many loops from tangible states
via (one or more) vanishing states only. Such loops remain after the first em-
bedding, and they become self-loops after the subsequent reduction, which are
removed just after the second embedding.

We can now explain the inequality presented above Theorem 1, by using its
proof. Let s, s̃ ∈ DRT (G). Then SLF (s)SLH′(s) = SL⋄(s) > SL(s) = SLF (s)
implies SLH′(s) > 1. Thus, (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) =
SLF (s)SLH′ (s)PM⋄(s, s̃) > SLF (s)PM

⋄(s, s̃) = (PM∗)⋄(s, s̃).

Definition 20. Let G be a dynamic expression, s ∈ DRT (G) while SLF (s) is
the self-loops abstraction factor in s for the submatrix F (from the equation P⋄ =
F+EGD calculating the TPM for RDTMC(G)) and SLH′(s) is the self-loops
abstraction factor in s in REDTMC(G) (for the matrix H′ = Diag(SLF)EGD,
whose elements are the probabilities to move from tangible to tangible states, via
any positive number of vanishing states, without traversal of tangible states, in
EDTMC(G)).

The reduced SMC (RSMC) of G, denoted by RSMC(G), has the EDTMC
EREDTMC(G) and the sojourn time in every s ∈ DRT (G) is geometrically
distributed with the parameter 1

SLF (s)SLH′(s)
.

The following proposition demonstrates coincidence of RSMC and RDTMC.

Proposition 4. Let G be a dynamic expression. Then RSMC(G)=RDTMC(G).

Proof. By Theorem 1, EREDTMC(G) = ERDTMC(G). The sojourn time in
every s∈DRT (G) is geometrically distributed with the parameter 1

SLF (s)SLH′(s)
=

1
SL⋄(s) = 1 − PM⋄(s, s) = 1 − PMF (s, s) − PMH(s, s), where SLH′(s) =

1
1−SLF (s)PMH (s,s) . Here PMH(s, s) is the self-loop probability in s for the ma-

trix H = EGD (from the equation P⋄ = F + EGD calculating the TPM for
RDTMC(G)). Remember that SL⋄(s) is the self-loops abstraction factor in s

in RDTMC(G). Hence, RSMC(G) = RDTMC(G). ⊓⊔

Example 8. Let E be from Example 1. The TPMs for RDTMC(E) and
ERDTMC(E) are

P⋄ =

1− ρ ρ 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 θ 1− θ 0
0 φ 0 1− φ

 , (P⋄)∗ =

0 1 0 0
0 0 l

l+m
m
l+m

0 1 0 0
0 1 0 0

 .

38 I.V. Tarasyuk

The TPMs for REDTMC(E) and EREDTMC(E) are

(P∗)⋄ =

0 1 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 1 0 0
0 1 0 0

 , ((P∗)⋄)∗ =

0 1 0 0
0 0 l

l+m
m
l+m

0 1 0 0
0 1 0 0

 .

The self-loops abstraction subvector ofE for the submatrix F (see Example 6)

is SLF =
(

1
ρ
, 1, 1

θ
, 1
φ

)
. The self-loops abstraction vector of E in REDTMC(E)

(for the matrix H′, see below) is (SL∗)⋄ = SLH′ = (1, 2, 1, 1). The self-loops
abstraction vector of E in RDTMC(E) is SL⋄ = 1Diag(SLF)Diag(SLH′) =(

1
ρ
, 2, 1

θ
, 1
φ

)
, where 1 is a row vector of n values 1.

The elements of the matrix H′ are the probabilities to move from tangible to
tangible states, via any positive number of vanishing states, without traversal of
tangible states, in EDTMC(G). We have H′ = Diag(SLF)H, where elements
of the matrix H = EGD (see Example 6) are the probabilities to move from
tangible to tangible states, via any positive number of vanishing states, without
traversal of tangible states, in DTMC(G). The matrices H and H′ are

H =

0 0 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 0 0 0
0 0 0 0

 , H′ =

0 0 0 0
0 1

2
l

2(l+m)
m

2(l+m)

0 0 0 0
0 0 0 0

 .

Then it is easy to check that

((P∗)⋄)∗ = Diag(SLH′)Diag(SLF)(P
⋄−I)+I = Diag(SL⋄)(P⋄−I)+I = (P⋄)∗.

5 Conclusion

In this paper, we have considered a discrete time stochastic extension dtsdPBC of
PBC, enriched with deterministic multiactions. The calculus has a parallel step
operational semantics, based on labeled probabilistic transition systems and a
denotational semantics in terms of a subclass of LDTSDPNs [52,53]. A technique
of performance evaluation within the calculus has been presented (embedding)
that explores the underlying stochastic process, which is a semi-Markov chain
(SMC). In such an SMC, the sojourn time in every tangible state is geometrically
distributed (being one or infinity, as special cases) while the sojourn time in every
vanishing state is zero. The corresponding discrete time Markov chain (DTMC)
or its reduction (RDTMC) by eliminating vanishing states may alternatively be
studied for that purpose (the abstraction and elimination methods) [54].

We have formally proved that the reduced SMC (RSMC) coincides with the
RDTMC. The proof of this very intuitive fact appeared to be rather involved.
First, we have shown that an additional embedding (into RSMC) of the reduced

Combining embedding and elimination for performance analysis in dtsdPBC 39

EDTMC is needed to coincide with the embedded RDTMC. Second, we have
calculated the respective sojourn times in the tangible states (those with positive
sojourn times) and have checked their coincidence. It is more optimal to con-
struct the RDTMC than to build the RSMC, since the former approach involves
only one embedding that requires a lot of computations. This is very important
for the DTMCs having many loops starting from tangible states via (one or more)
vanishing states only, since such loops are not removed by the first embedding.

Future work consists in constructing a congruence relation for dtsdPBC, i.e.
the equivalence that withstands application of all operations of the algebra.
A possible candidate is a stronger version of the equivalence with respect to
transition systems, with two extra transitions skip and redo, like in sPBC [28].
The recursion operation could be added to dtsdPBC to increase specification
power of the algebra. We also plan to extend dtsdPBC with discrete phase type
multiaction delays that are described by arbitrary finite absorbing DTMCs and
include geometric and non-Markovian (like deterministic) delays as special cases.

References

1. W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time
stochastic Petri nets, Statistica Neerlandica, 54:2 (2000), 237–255.

2. G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Sci-
ence, 2090 (2001), 84–155.

3. G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in Com-
puter Science, 4486 (2007), 83–131.

4. F. Bause, P.S. Kritzinger, Stochastic Petri nets: an introduction to the theory, Fri-
edrich Vieweg and Sohn, Braunschweig / Wiesbaden, Germany, 2002.

5. J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction,
Theoretical Computer Science, 37 (1985), 77–121.

6. M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time, Theoretical Computer
Science, 202:1–2 (1998), 1–54.

7. E. Best, R. Devillers, Petri net primer: a compendium on the core model,
analysis, and synthesis, Computer Science Foundations and Applied Logic Series
(CSFAL), Springer International Publishing / Birkhäuser, 2024.

8. E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with
multi-label communication, Lecture Notes in Computer Science, 609 (1992), 21–69.

9. E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on The-
oretical Computer Science, Springer, 2001.

10. E. Best, M. Koutny, A refined view of the box algebra, Lecture Notes in Computer
Science, 935 (1995), 1–20.

11. T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc.
IFIP WG6.1 10th Int. Symposium on Protocol Specification, Testing and Verificati-
on (PSTV) 1990 (L. Logrippo, R.L. Probert, H. Ural, eds.), Ottawa, Canada, 395–
408, Elsevier Science Publishers (North-Holland), Amsterdam, The Netherlands
1990.

12. A.A. Borovkov, Probability theory, Universitext (UTX) series, Springer, 2013.
13. G. Chiola, A software package for the analysis of generalized stochastic Petri net

models, Proc. 1st Int. Workshop on Timed Petri Nets 1985, Turin, Italy, IEEE
Computer Society Press, 1985.

https://doi.org/10.1111/1467-9574.00139
https://doi.org/10.1111/1467-9574.00139
https://doi.org/10.1007/3-540-44667-2_3
https://doi.org/10.1007/978-3-540-72522-0_3
https://ls4-www.cs.tu-dortmund.de/download/typo3/de/home/bause/bause_kritzinger_spn_book_screen.pdf
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/S0304-3975(97)00127-8
https://doi.org/10.1016/S0304-3975(97)00127-8
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/3-540-55610-9_167
https://doi.org/10.1007/3-540-55610-9_167
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/3-540-60029-9_29
https://dl.acm.org/doi/abs/10.5555/645833.670383
https://doi.org/10.1007/978-1-4471-5201-9

40 I.V. Tarasyuk

14. G. Ciardo, J.K. Muppala, K.S. Trivedi, SPNP: stochastic Petri net package, Proc.
3rd Int. Workshop on Petri Nets and Performance Models (PNPM) 1989, Kyoto,
Japan, 142–151, IEEE Computer Society Press, 1989.

15. G. Ciardo, J.K. Muppala, K.S. Trivedi, On the solution of GSPN reward models,
Performance Evaluation, 12:4 (1991), 237–253.

16. R.J. van Glabbeek, The linear time – branching time spectrum II: the semantics
of sequential systems with silent moves. Extended abstract, Lecture Notes in Com-
puter Science, 715 (1993), 66–81.

17. H.M. Hanish, Analysis of place/transition nets with timed-arcs and its
application to batch process control, Lecture Notes in Computer Science, 691
(1993), 282–299.

18. B.R. Haverkort, Markovian models for performance and dependability evaluation,
Lecture Notes in Computer Science, 2090 (2001), 38–83.

19. H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences and axioms for
MTIPP, Proc. 2nd Int. Workshop on Process Algebras and Performance Modelling
(PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany,
Arbeitsberichte des IMMD, 27:4 (1994), 71–88.

20. J. Hillston, A compositional approach to performance modelling, Ph.D. thesis, De-
partment of Computer Science, University of Edinburgh, UK, 1994.

21. J. Hillston, A compositional approach to performance modelling, Cambridge Uni-
versity Press, Cambridge, UK, 1996.

22. C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK,
1985.

23. J.-P. Katoen, Quantitative and qualitative extensions of event structures, Ph.D.
thesis, CTIT Ph.D.-thesis series, 96-09, Centre for Telematics and Information
Technology, University of Twente, Enschede, The Netherlands, 1996.

24. M. Koutny, A compositional model of time Petri nets, Lecture Notes in Computer
Science, 1825 (2000), 303–322.

25. V.G. Kulkarni, Modeling and analysis of stochastic systems, Texts in Statistical
Science, 84, Chapman and Hall / CRC Press, 2010.

26. L. Lakatos, L. Szeidl, M. Telek, Introduction to queueing systems with
telecommunication applications, Springer Nature, Cham, Switzerland, 2019.

27. H. Macià, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in
sPBC, Lecture Notes in Computer Science, 3235 (2004), 292–308.

28. H. Macià, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC,
Formal Methods in System Design, 32:2 (2008), 85–128.

29. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of
Petri box calculus with immediate multiactions, Fundamenta Informaticae, 87:3–4
(2008), 367–406.

30. H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, I.V. Tarasyuk, Modelling a video
conference system with sPBC, Applied Mathematics and Information Sciences
10:2 (2016), 475–493.

31. H. Macià, V. Valero, D. de Frutos, sPBC: a Markovian extension of finite Petri
box calculus, Proc. 9th IEEE Int. Workshop on Petri Nets and Performance Models
(PNPM) 2001, Aachen, Germany, 207–216, IEEE Computer Society Press, 2001.

32. O. Marroqúın, D. de Frutos, TPBC: timed Petri box calculus, Technical Report, De-
partamento de Sistemas Infofmáticos y Programación, Universidad Complutense
de Madrid, Spain, 2000 (in Spanish).

33. O. Marroqúın, D. de Frutos, Extending the Petri box calculus with time, Lecture
Notes in Computer Science, 2075 (2001), 303–322.

https://doi.org/10.1109/PNPM.1989.68548
https://doi.org/10.1016/0166-5316(91)90003-L
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-56863-8_52
https://doi.org/10.1007/3-540-56863-8_52
https://doi.org/10.1007/3-540-44667-2_2
https://doi.org/10.1017/CBO9780511569951
http://www.usingcsp.com/cspbook.pdf
https://doi.org/10.3990/1.9789036507998
https://doi.org/10.1007/3-540-44988-4_18
https://doi.org/10.1201/9781315367910
https://doi.org/10.1007/978-1-4614-5317-8
https://doi.org/10.1007/978-1-4614-5317-8
https://doi.org/10.1007/978-3-540-30232-2_19
https://doi.org/10.1007/978-3-540-30232-2_19
https://doi.org/10.1007/s10703-007-0045-2
https://dl.acm.org/doi/abs/10.5555/1494710.1494718
https://dl.acm.org/doi/abs/10.5555/1494710.1494718
https://doi.org/10.18576/amis/100210
https://doi.org/10.18576/amis/100210
https://doi.org/10.1109/PNPM.2001.953370
https://doi.org/10.1109/PNPM.2001.953370
https://doi.org/10.1007/3-540-45740-2_18

Combining embedding and elimination for performance analysis in dtsdPBC 41

34. M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes in
Computer Science, 424 (1990), 1–29.

35. M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with
generalised stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley
and Sons, 1995.

36. Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols:
implications of a theoretical study, IEEE Transactions on Communications, 24:9
(1976), 1036–1043.

37. R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle
River, NJ, USA, 1989.

38. M.K. Molloy, On the integration of the throughput and delay measures in distributed
processing models, Ph.D. thesis, Report, CSD-810-921 (1981), University of Ca-
lifornia, Los Angeles, CA, USA.

39. M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software
Engineering, 11:4 (1985), 417–423.

40. T.N. Mudge, H.B. Al-Sadoun, A semi-Markov model for the performance of
multiple-bus systems, IEEE Transactions on Computers, C-34:10 (1985), 934–942.

41. A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture No-
tes in Computer Science, 3407 (2005), 447–462.

42. A. Niaouris, M. Koutny,An algebra of timed-arc Petri nets, Technical Report,CS-
TR-895 (2005), School of Computer Science, University of Newcastle upon Tyne,
UK.

43. Ch. Ramchandani, Performance evaluation of asynchronous concurrent systems
by timed Petri nets, Ph.D. thesis, Department of Electrical Engineering, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1973.

44. S.M. Ross, Stochastic processes, John Wiley and Sons, New York, USA, 1996.
45. S.M. Ross, Introduction to probability models, Academic Press, Elsevier, UK, 2019.
46. A.N. Shiryaev, Probability-2, Springer, New York, 2019.
47. W.J. Stewart, Probability, Markov chains, queues, and simulation. The

mathematical basis of performance modeling, Princeton University Press, Prince-
ton, NJ, USA, 2009.

48. I.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem De-
partment für Informatik, 3/05, Carl von Ossietzky Universität Oldenburg, Ger-
many, 2005.

49. I.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of
the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue, 24
(2006), 129–148.

50. I.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta Infor-
maticae, 76:1–2 (2007), 189–218.

51. I.V. Tarasyuk, Equivalence relations for modular performance evaluation in
dtsPBC, Mathematical Structures in Computer Science, 24:1 (2014), e240103.

52. I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus,
arXiv: 1905.00456, Computing Research Repository, Cornell University Library,
Ithaca, NY, USA, 2019.

53. I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus
dtsdPBC, Siberian Electronic Mathematical Reports, 17 (2020), 1598–1679.

54. I.V. Tarasyuk, Performance evaluation in stochastic process algebra dtsdPBC, Si-
berian Electronic Mathematical Reports, 18:2 (2021), 1105–1145.

55. I.V. Tarasyuk, Performance preserving equivalence for stochastic process algebra
dtsdPBC, Siberian Electronic Mathematical Reports, 20:2 (2023), 646–699.

https://doi.org/10.1007/3-540-52494-0_23
http://www.di.unito.it/~greatspn/GSPN-Wiley/
http://www.di.unito.it/~greatspn/GSPN-Wiley/
https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1109/TCOM.1976.1093424
https://www.research.ed.ac.uk/en/publications/communication-and-concurrency
https://doi.org/10.1109/TSE.1985.232230
https://doi.org/10.1109/TC.1985.6312197
https://doi.org/10.1109/TC.1985.6312197
https://doi.org/10.1007/978-3-540-31862-0_32
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf
https://doi.org/10.1016/C2017-0-01324-1
https://doi.org/10.1007/978-0-387-72208-5
https://press.princeton.edu/books/hardcover/9780691140629/probability-markov-chains-queues-and-simulation
https://press.princeton.edu/books/hardcover/9780691140629/probability-markov-chains-queues-and-simulation
http://itar.iis.nsk.su/files/itar/pages/dtspbcib_cov.pdf
http://bulletin.iis.nsk.su/files/article/tarasyuk_2.pdf
http://itar.iis.nsk.su/files/itar/pages/dtspbcfi.pdf
https://doi.org/10.1017/S0960129513000029
https://doi.org/10.1017/S0960129513000029
https://doi.org/10.48550/arXiv.1905.00456
https://doi.org/10.33048/semi.2020.17.112
https://doi.org/10.33048/semi.2020.17.112
https://doi.org/10.33048/semi.2021.18.085
https://doi.org/10.33048/semi.2023.20.039
https://doi.org/10.33048/semi.2023.20.039

42 I.V. Tarasyuk

56. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus
with immediate multiactions, Technical Report, DIAB-10-03-1, Department of
Computer Systems, High School of Computer Science Engineering, University of
Castilla - La Mancha, Albacete, Spain, 2010.

57. I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus
with immediate multiactions dtsiPBC, Proc. 6th Int. Workshop on Practical Appli-
cations of Stochastic Modelling (PASM) 2012 and 11th Int. Workshop on Parallel
and Distributed Methods in Verification (PDMC) 2012 (J. Bradley, K. Heljanko,
W. Knottenbelt, N. Thomas, eds.), London, UK, Electronic Notes in Theoretical
Computer Science, 296 (2013), 229–252.

58. I.V. Tarasyuk, H. Macià, V. Valero, Performance analysis of concurrent systems
in algebra dtsiPBC, Programming and Computer Software, 40:5 (2014), 229–249.

59. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic process reduction for performance
evaluation in dtsiPBC, Siberian Electronic Mathematical Reports, 12 (2015), 513–
551.

60. I.V. Tarasyuk, H. Macià, V. Valero, Stochastic equivalence for performance
analysis of concurrent systems in dtsiPBC, Siberian Electronic Mathematical Re-
ports, 15 (2018), 1743–1812.

61. K.S. Trivedi, Probability and statistics with reliability, queuing, and computer
science applications, John Wiley and Sons, Hoboken, NJ, USA, 2016.

62. R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Work-
shop on Quality of Communication-Based Systems 1994, Technical University of
Berlin, Germany, 123–136, Kluwer Academic Publishers, 1995.

63. R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D.
thesis, Technical University of Berlin, Germany, 1997.

64. R. Zijal, G. Ciardo, Discrete deterministic and stochastic Petri nets, ICASE Re-
port, 96-72, Institute for Computer Applications in Science and Engineering
(ICASE), NASA, Langley Research Centre, Hampton, VA, USA, 1996.

65. R. Zijal, G. Ciardo, G. Hommel, Discrete deterministic and stochastic Petri nets,
Proc. 9th ITG/GI Professional Meeting on Measuring, Modeling and Evaluation
of Computer and Communication Systems (MMB) 1997 (K. Irmscher, Ch. Mit-
tasch, K. Richter, eds.), Freiberg, Germany, 103–117, VDE-Verlag, Berlin, Ger-
many, 1997.

66. R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc.
11th Int. Conf. on Analysis and Optimization of Systems, Discrete Event Systems
(DES) 1994 (G. Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, Lecture
Notes in Control and Information Sciences, 199 (1994), 198–204.

67. A. Zimmermann, Modeling and evaluation of stochastic Petri nets with TimeNET
4.1, Proc. 6th Int. ICST Conf. on Performance Evaluation Methodologies and Tools
(VALUETOOLS) 2012 (B. Gaujal, A. Jean-Marie, E. Jorswieck, A. Seuret, eds.),
Cargèse, France, 1–10, IEEE Computer Society Press, 2012.

68. A. Zimmermann, J. Freiheit, R. German, G. Hommel, Petri net modelling and
performability evaluation with TimeNET 3.0, Lecture Notes in Computer Science,
1786 (2000), 188–202.

69. A. Zimmermann, J. Freiheit, G. Hommel, Discrete time stochastic Petri nets for
modeling and evaluation of real-time systems, Proc. 9th Int. Workshop on Parallel
and Distributed Real Time Systems (WPDRTS) 2001, San Francisco, USA, 282–
286, 2001.

http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf
http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf
https://doi.org/10.1016/j.entcs.2013.07.015
https://doi.org/10.1016/j.entcs.2013.07.015
https://doi.org/10.1134/S0361768814050089
https://doi.org/10.1134/S0361768814050089
https://doi.org/10.17377/semi.2015.12.044
https://doi.org/10.17377/semi.2015.12.044
https://doi.org/10.33048/semi.2018.15.144
https://doi.org/10.33048/semi.2018.15.144
https://doi.org/10.1002/9781119285441
https://doi.org/10.1002/9781119285441
https://doi.org/10.1007/978-94-011-0187-5_8
http://www.cs.odu.edu/~mln/ltrs-pdfs/icase-1996-72.pdf
http://www.cs.ucr.edu/~ciardo/pubs/1997MMB-DDSPN.pdf
https://doi.org/10.1007/BFb0033549
https://doi.org/10.4108/valuetools.2012.250263
https://doi.org/10.4108/valuetools.2012.250263
https://doi.org/10.1007/3-540-46429-8_14
https://doi.org/10.1007/3-540-46429-8_14
http://pdv.cs.tu-berlin.de/~azi/texte/WPDRTS01.pdf
http://pdv.cs.tu-berlin.de/~azi/texte/WPDRTS01.pdf

	Combining embedding and elimination for performance analysis in stochastic process algebra dtsdPBC

