
RESEARCH ARTICLE

Embedding and elimination for performance analysis in

stochastic process algebra dtsdPBC

I. V. Tarasyuka

aLaboratory for Theory of Concurrent Processes, A.P. Ershov Institute of Informatics
Systems, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev pr. 6,
630090 Novosibirsk, Russian Federation

ARTICLE HISTORY

Compiled August 28, 2025

ABSTRACT

dtsdPBC extends the well-known algebra of parallel processes, Petri box calculus
(PBC), by incorporating discrete time stochastic and deterministic delays. To ana-
lyze performance in this extended calculus, the underlying semi-Markov chains, and
the related (complete) and reduced discrete time Markov chains of the process ex-
pressions are built. The semi-Markov chains are extracted using the embedding
method, which constructs the embedded discrete time Markov chains and calcu-
lates the sojourn time distributions in the states. The reductions of the discrete
time Markov chains are obtained through the elimination method, which removes
the vanishing states (those with zero sojourn times) and recalculates the transition
probabilities among the tangible states (those with positive sojourn times). We pro-
ve that the reduced semi-Markov chain coincides with the reduced discrete time
Markov chain, by demonstrating that an additional embedding into the reduced se-
mi-Markov chain is needed for the reduced embedded discrete time Markov chain
to match the embedded reduced discrete time Markov chain, and by comparing the
respective sojourn times.

Performance analysis in dtsdPBC

Preservation Elimination
(RDTMC=RSMC)

Embedding
(SMC)

Abstraction
(DTMC)

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

◗
◗◗s

KEYWORDS

Petri box calculus; stochastic and deterministic delays; Markov chain; performance
analysis; embedding; elimination

1. Introduction

Process calculi, like CSP [1], ACP [2] and CCS [3] are well-known formal models
for specification of computing systems and analysis of their behaviour. In such pro-
cess algebras (PAs), formulas describe processes, and verification of the functionality
properties of their behaviour is accomplished at a syntactic level via equivalences,
axioms and inference rules. In order to represent stochastic timing and analyze the

CONTACT I. V. Tarasyuk. Email: itar@iis.nsk.su

performance properties, stochastic extensions of PAs were proposed, like MTIPP [4],
PEPA [5,6] and EMPA [7]. Such stochastic process algebras (SPAs) specify actions
which can occur (qualitative features) and associate with the actions the distribution
parameters of their random delays (quantitative characteristics).

1.1. Petri box calculus (PBC)

Petri box calculus (PBC) [8–11] is a flexible and expressive process algebra developed
as a tool for specification of the Petri nets (PNs) structure and their interrelations.
Its goal was also to propose a compositional semantics for high level constructs of
concurrent programming languages in terms of elementary PNs. Formulas of PBC
are combined from multisets of elementary actions and their conjugates, called mul-
tiactions (basic formulas). The empty multiset of actions is interpreted as the silent
multiaction specifying an invisible activity. The operational semantics of PBC is of step
type, since its SOS rules have transitions with (multi)sets of activities, corresponding
to simultaneous executions of activities (steps). A denotational semantics of PBC was
proposed via a subclass of PNs with an interface and considered up to isomorphism,
called Petri boxes. The extensions of PBC with a deterministic, a nondeterministic or
a stochastic model of time exist.

1.2. Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri box
calculus (tPBC), was proposed in [12]. In tPBC, timing information is added by as-
sociating time intervals with instantaneous actions. tPBC has a step time operational
semantics in terms of labeled transition systems. Its denotational semantics was de-
fined in terms of a subclass of labeled time Petri nets (LtPNs), based on tPNs [13]
and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was
defined in [14,15]. It accommodates a deterministic model of time. In contrast to
tPBC, multiactions of TPBC are not instantaneous, but have time durations. TPBC
has a step timed operational semantics in terms of labeled transition systems. The
denotational semantics of TPBC was defined in terms of a subclass of labeled Timed
Petri nets (LTPNs), based on TPNs [16] and called Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC), was
constructed in [17,18]. It implements a nondeterministic time. In atPBC, multiactions
are associated with time delay intervals. atPBC has a step time operational semantics
in terms of labeled transition systems. Its denotational semantics was defined on a
subclass of labeled arc time Petri nets (atPNs), based of those from [19,20], where
time restrictions are associated with the arcs, called arc time Petri boxes (at-boxes).
tPBC, TPBC and atPBC, all adapt the discrete time approach, but TPBC has no
immediate (multi)actions (those with zero delays).

1.3. Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was pro-
posed in [21–23]. In sPBC, multiactions have stochastic delays that follow (negative)
exponential distribution. Each multiaction is equipped with a rate that is a parame-
ter of the corresponding exponential distribution. The (instantaneous) execution of a

2

stochastic multiaction is possible only after the corresponding stochastic time delay.
The calculus has an interleaving operational semantics defined via transition systems
labeled with multiactions and their rates. Its denotational semantics was defined on
a subclass of labeled continuous time stochastic PNs, based on CTSPNs [24,25] and
called stochastic Petri boxes (s-boxes). In sPBC, performance of the processes is eval-
uated by analyzing their underlying continuous time Markov chains (CTMCs).

sPBC was enriched with immediate multiactions having zero delay in [26,27]. We
call such an extension generalized sPBC (gsPBC). An interleaving operational se-
mantics of gsPBC was constructed via transition systems labeled with stochastic or
immediate multiactions together with their rates or probabilities. A denotational se-
mantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs,
based on GSPNs [24,25,28] and called generalized stochastic Petri boxes (gs-boxes).
The performance analysis in gsPBC is based on semi-Markov chains (SMCs).

In [29–32], we presented a discrete time stochastic extension dtsPBC of the algebra
PBC. In dtsPBC, the residence time in the process states is geometrically distributed.
A step operational semantics of dtsPBC was constructed via labeled probabilistic tran-
sition systems. Its denotational semantics was defined in terms of a subclass of labeled
discrete time stochastic PNs (LDTSPNs), based on DTSPNs [33,34] and called discre-
te time stochastic Petri boxes (dts-boxes). The performance evaluation in dtsPBC is
accomplished via the underlying discrete time Markov chains (DTMCs).

In [35–39], a calculus dtsiPBC was proposed as an extension with immediate mul-
tiactions of dtsPBC. Immediate multiactions increase the specification capability:
they can model logical conditions, probabilistic branching, instantaneous probabilistic
choices and activities whose durations are negligible in comparison with those of oth-
ers. They are also used to specify urgent activities and the ones that are not relevant for
performance evaluation. The step operational semantics of dtsiPBC was constructed
with the use of labeled probabilistic transition systems. Its denotational semantics was
defined in terms of a subclass of labeled discrete time stochastic and immediate PNs
(LDTSIPNs), called dtsi-boxes. The corresponding stochastic process, the underlying
SMC, was constructed and investigated, with the purpose of performance evaluation.
In addition, the alternative solution methods were developed, based on the underlying
ordinary and reduced DTMCs.

In [40–43], we defined dtsdPBC, an extension of dtsiPBC with deterministic mul-
tiactions. In dtsdPBC, besides the probabilities from the real-valued interval (0; 1),
applied to calculate discrete time delays of stochastic multiactions, also non-negati-
ve integers are used to specify fixed delays of deterministic multiactions (including
zero delay, which is the case of immediate multiactions). To resolve conflicts among
deterministic multiactions, they are additionally equipped with positive real-valued
weights. As argued in [44–46], a combination of deterministic and stochastic delays
fits well to model technical systems with constant (fixed) durations of the regular
non-random activities and probabilistically distributed (stochastic) durations of the
randomly occurring activities. dtsdPBC has a step operational semantics, defined via
labeled probabilistic transition systems. The denotational semantics of dtsdPBC was
defined in terms of a subclass of labeled discrete time stochastic and deterministic
Petri nets (LDTSDPNs), called dtsd-boxes.

3

1.4. Our contributions

As a basis model, we take discrete time stochastic and deterministic Petri box calculus
(dtsdPBC) [40–43], featuring a step operational semantics. Here we do not consider
the Petri net denotational semantics of the calculus, since it was extensively described
in [41]. In that paper, a consistency of the operational and denotational semantics with
respect to step stochastic bisimulation equivalence was proved. Hence, all the results es-
tablished for the former can be readily transferred to the latter up to that equivalence.

In [42], with the embedding method, based on the embedded DTMC (EDTMC)
specifying the state change probabilities, we constructed and solved the underlying
stochastic process, which is a semi-Markov chain (SMC). The obtained stationary
probability masses and average sojourn times in the states of the SMC were used
to calculate the performance measures (indices) of interest. The alternative solution
techniques were also developed, called abstraction and elimination, that are based
respectively on the corresponding discrete time Markov chain (DTMC) and its reduc-
tion (RDTMC) by eliminating vanishing states (those with zero sojourn times).

In this paper, we formally prove that the reduced SMC (RSMC) coincides with
the RDTMC. Interestingly, the proof of this very intuitive fact appears to be rather
involved. First, we demonstrate that an additional embedding (into RSMC) of the
reduced EDTMC is needed to coincide with the embedded RDTMC. Second, we cal-
culate the respective sojourn time distributions in the tangible states (those with
positive sojourn times) and check their coincidence. Hence, constructing the RDTMC
is more optimal than building the RSMC, since the former technique involves only one
computationally costly embedding. Thus, the main contributions of the paper are:

• Coincidence of the embedded reduced EDTMC with the embedded RDTMC.
• Identity of the respective sojourn times, hence, the RSMC and the RDTMC.

1.5. Structure of the paper

In Section 2, the syntax of algebra dtsdPBC is proposed. In Section 3, the operati-
onal semantics of the calculus in terms of labeled probabilistic transition systems is
presented. In Section 4, the underlying stochastic process (SMC) is defined, the alter-
native solution method via the corresponding RDTMC is outlined, and coincidence of
the reduced SMC (RSMC) with the RDTMC is established. Section 5 discusses the
results obtained and outlines future research. The concluding Section 6 summarizes
the presented and planned work.

2. Syntax

In this section, we define the syntax: activities, operations and expressions.

2.1. Activities and operations

Multiset is a set with allowed identical elements.

Definition 2.1. Let X be a set. A finite multiset (bag) M over X is a mapping
M :X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

The set of all finite multisets over a set X is NXfin. LetM,M ′ ∈ N
X
fin. The cardinality

4

of M is |M | =
∑

x∈XM(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′ if ∀x ∈
X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and (M − M ′)(x) =
max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M is seen as a proper set M ⊆ X.
The set of all subsets (powerset) of X is 2X .

Let Act= {a, b, . . .} be the set of elementary actions. Then Âct= {â, b̂, . . .} is the

set of conjugated actions (conjugates) with â 6= a and ˆ̂a= a. Let A=Act∪Âct be the
set of all actions, and L=N

A
fin be the set of all multiactions. Here ∅∈L specifies an

internal move, i.e. the execution of a multiaction without visible actions. The alphabet
of α ∈ L is A(α)={x ∈ A | α(x)>0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability
of the multiaction α. This probability is interpreted as that of independent execution
of the stochastic multiaction at the next discrete time moment. Such probabilities
are used to calculate those to execute (possibly empty) sets of stochastic multiactions
after one time unit delay. The probability 1 is left for (implicitly assigned to) waiting
multiactions, i.e. positively delayed deterministic multiactions (to be defined later),
which have weights to resolve conflicts with other waiting multiactions. Let SL be the
set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl), where α ∈ L, θ ∈ N is the non-ne-
gative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive real-valued
weight of the multiaction α. This weight is interpreted as a measure of importance
(urgency, interest) or a bonus reward associated with execution of the deterministic
multiaction at the moment when the corresponding delay has expired. Such weights
are used to calculate the probabilities to execute sets of deterministic multiactions
after their delays. An immediate multiaction is a deterministic multiaction with the
delay 0 while a waiting multiaction is a deterministic multiaction with a positive
delay. In case of no conflicts among waiting multiactions, whose remaining times to
execute (RTEs) are equal to one time unit, they are executed with probability 1
at the next moment. Deterministic multiactions have a priority over stochastic ones
while immediate multiactions have a priority over waiting ones. Different types of
multiactions cannot participate together in some step (parallel execution). Let DL be
the set of all deterministic multiactions, IL be the set of all immediate multiactions
and WL be the set of all waiting multiactions. We have DL = IL ∪WL.

The same multiaction α ∈ L may have different probabilities, (fixed) delays and
weights in the same specification. An activity is a stochastic or a deterministic multi-
action. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities. The alphabet
of an activity (α, κ) ∈ SDL is A(α, κ) = A(α). The alphabet of a multiset of activities
Υ ∈ N

SDL
fin is A(Υ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the operations of
sequence ;, choice [], parallelism ‖, relabeling [f] of actions, restriction rs over a single
action, synchronization sy on an action and its conjugate, and iteration [∗ ∗] with
three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard inter-
pretation, like in other PAs, but parallelism (parallel composition) does not include
synchronization, unlike the corresponding operation in CCS.

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈

A f(x̂) = f̂(x). Relabeling is extended to multiactions: for α ∈ L we define f(α) =∑
x∈α f(x) =

∑
x∈A α(x)f(x). Relabeling is extended to activities: for (α, κ) ∈ SDL

we define f(α, κ)=(f(α), κ). Relabeling is extended to the multisets of activities: for
Υ∈N

SDL
fin we define f(Υ)=

∑
(α,κ)∈Υ(f(α), κ).

5

Restriction over an elementary action a ∈ Act means that, for a given expression,
any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act we
have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α and β by a is

defined as (α⊕a β)(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization by a of
two activities, whose multiaction parts α and β possess the above properties, results in
the activity with the multiaction part α⊕aβ. We may synchronize activities of the same
type only: either both stochastic multiactions or both deterministic ones with the same
delay, since stochastic, waiting and immediate multiactions have different priorities,
and diverse delays of waiting multiactions would contradict their joint timing. Note
that the execution of immediate multiactions takes no time, unlike that of waiting or
stochastic ones. Synchronization by a means that, for a given expression with a process
behaviour containing two concurrent activities that can be synchronized by a, there
exists also the behaviour that differs from the former only in that the two activities
are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is
performed zero or more times, and finally, the termination is executed.

2.2. Process expressions

Static expressions specify the structure of processes, i.e. how activities are combined
by operations to construct the composite process-algebraic formulas. As for the PN
intuition, static expressions correspond to unmarked LDTSDPNs [40,41]. A marking is
the allocation of tokens in the places of a PN. Markings are used to describe dynamic
behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated, whose
value is the time left till the moment when the waiting multiaction can be execu-
ted. Therefore, besides standard (unstamped) waiting multiactions (α, ♮θl) ∈ WL, a
special case of the stamped waiting multiactions should be considered in the definition
of static expressions. Each (time) stamped waiting multiaction (α, ♮θl)

δ has an extra
superscript δ ∈ {1, . . . , θ} that specifies a time stamp indicating the latest value of
the timer associated with that multiaction. The standard waiting multiactions have
no time stamps, to demonstrate irrelevance of the timer values for them (for example,
their timers have not yet started or have already finished). The notion of the alphabet
part for (the multisets of) stamped waiting multiactions is defined like that for (the
multisets of) unstamped waiting multiactions.

For simplicity, we do not assign the timer value superscripts δ to immediate multi-
actions, a special case of deterministic multiactions (α, ♮θl) with the delay θ = 0 in the
form of (α, ♮0l), since their timer values always equal to 0.

Definition 2.2. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl)
δ | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗E ∗E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical difficulties with the iteration operator, we should not allow con-

currency at the highest level of the second argument of iteration. This is not a severe

6

restriction, since we can always prefix parallel expressions by an activity with the
empty multiaction part.

Definition 2.3. Let (α, κ) ∈ SDL, (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) |(α, ♮θl)
δ |E;E |E[]E |E‖E |E[f] |E rs a |E sy a | [E ∗D ∗ E],

where D ::= (α, κ) |(α, ♮θl)
δ |D;E |D[]D |D[f] |D rs a |D sy a | [D ∗D ∗E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static ex-

pression ⇃E of E is obtained by removing all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) = {(α, ρ) |

(α, ρ) is a subexpression of E}. The set of all immediate multiactions (from the syn-
tax) of E is IL(E) = {(α, ♮0l) | (α, ♮

0
l) is a subexpression of E}. The set of all waiting

multiactions (from the syntax) of E is WL(E) = {(α, ♮θl) | (α, ♮
θ
l) or (α, ♮

θ
l)
δ is a

subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all deterministic multiactions
(from the syntax) of E is DL(E) = IL(E)∪WL(E) and the set of all activities (from
the syntax) of E is SDL(E) = SL(E) ∪DL(E) = SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages of the
process behaviour. As for the Petri net intuition, dynamic expressions correspond to
marked LDTSDPNs [40,41]. Dynamic expressions are obtained from static ones, by
annotating them with upper or lower bars which specify the active components of the
system at the current moment of time. The dynamic expression with upper bar (the
overlined one) E denotes the initial, and that with lower bar (the underlined one) E
denotes the final state of the process specified by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl)
δ, the superscript δ ∈

{1, . . . , θ} specifies the current value of the running countdown timer associated with
the waiting multiaction. That decreasing discrete timer is started with the initial value
θ (the waiting multiaction delay) at the moment when the waiting multiaction becomes

overlined. Then such a newly overlined stamped waiting multiaction (α, ♮θl)
θ is similar

to the freshly overlined unstamped waiting multiaction (α, ♮θl). Such similarity will be
captured by the structural equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process execution,
the timer decrements by one discrete time unit with each global time tick until the
timer value becomes 1. This means that one unit of time remains till execution of that
multiaction (the remaining time to execute, RTE, equals one). Its execution should
follow in the next moment with probability 1, in case there are no conflicting with
it immediate multiactions or conflicting waiting multiactions whose RTEs equal to
one, and it is not affected by restriction. An activity is affected by restriction, if it is
within the scope of a restriction operation with the argument action, such that it or
its conjugate is contained in the multiaction part of that activity.

Definition 2.4. Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsdPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression ⌊G⌋ of

7

Table 1. Inaction rules for overlined and underlined regular static expressions.

(α, ♮θl) ⇒ (α, ♮θl)
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f] ⇒ E[f] E[f] ⇒ E[f]

E rs a⇒ E rs a E rs a⇒ E rs a E sy a⇒ E sy a

E sy a⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

G is obtained by removing from it all upper and lower bars.

Definition 2.5. A dynamic expression G is regular if ⌊G⌋ is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dynamic

expression ⇃G of G is obtained by removing from it all timer value superscripts.
The set of all stochastic (immediate or waiting, respectively) multiactions (from

the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or WL(G) =
WL(⌊G⌋), respectively). Thus, the set of all deterministic multiactions (from the syn-
tax) of G is DL(G) = IL(G) ∪WL(G) and the set of all activities (from the syntax)
of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪ IL(G) ∪WL(G).

3. Operational semantics

In this section, we define the operational semantics via labeled transition systems.

3.1. Inaction rules

The inaction rules for dynamic expressions describe their structural transformations
in the form of G ⇒ G̃ which do not change the states of the specified processes.
The goal of those syntactic transformations is to obtain the well-structured resulting
expressions called operative ones to which no inaction rules can be further applied. The
application of an inaction rule to a dynamic expression does not lead to any discrete
time tick or any transition firing in the corresponding LDTSDPN [40,41], hence, its
current marking stays unchanged.

An application of every inaction rule does not require a delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being over-
lined and underlined static ones, where (α, ♮θl) ∈ WL, δ ∈ {1, . . . , θ}, E, F,K ∈
RegStatExpr and a∈Act. The first inaction rule suggests that the timer value of each
newly overlined waiting multiaction is set to its delay.

In Table 2, we introduce inaction rules for regular dynamic expressions in the ar-
bitrary form, where E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.
For brevity, two distinct inaction rules with the same premises are sometimes collated,
resulting in the inaction rules with double conclusion.

8

Table 2. Inaction rules for arbitrary regular dynamic expressions.

G⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G⇒ E ◦ G̃

G⇒ G̃

G‖H ⇒ G̃‖H, H‖G⇒ H‖G̃

G⇒ G̃

G[f] ⇒ G̃[f]

G⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a⇒ G̃ ◦ a

G⇒ G̃

[G ∗ E ∗ F] ⇒ [G̃ ∗E ∗ F]

G⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 3.1. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions of
dtsdPBC. Any dynamic expression can be always transformed into a (not necessarily
unique) operative one by using the inaction rules.

We shall consider regular expressions only and omit the word ‘regular’.

Definition 3.2. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic
expressions in dtsdPBC. Thus, two dynamic expressions G and G′ are structurally
equivalent, denoted by G ≈ G′, if they can be reached from each other by applying
the inaction rules in a forward or a backward direction.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equiv-
alence class of G with respect to the structural equivalence, called the (corre-
sponding) state. Next, G is an initial dynamic expression, denoted by init(G), if
∃E ∈ RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted
by final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic

multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s ∩OpRegDynExpr (α, ρ) is a
subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s) = {(α, ♮0l) ∈ IL | ∃H ∈ s ∩OpRegDynExpr (α, ♮0l) is a subexpression of

H}. The set of all enabled waiting multiactions of s is EnaWait(s) = {(α, ♮θl) ∈ WL |

∃H ∈ s ∩OpRegDynExpr (α, ♮θl)
δ, δ ∈ {1, . . . , θ}, is a subexpression of H}. The set

of all newly enabled waiting multiactions of s is EnaWaitNew(s) = {(α, ♮θl) ∈ WL |

∃H ∈ s ∩OpRegDynExpr (α, ♮θl)
θ is a subexpression of H}.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s) ∪ EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s)∪EnaDet(s) = EnaSto(s)∪EnaImm(s)∪EnaWait(s). Then Ena(s) =
Ena([G]≈) is an algebraic analogue of the set of all transitions enabled at the ini-
tial marking of the LDTSDPN [40,41] corresponding to G. The activities, resulted
from synchronization, are not present in the syntax of the dynamic expressions. Their
enabledness status can be recovered by observing that of the pair of synchronized ac-
tivities from the syntax (they both should be enabled for enabling their synchronous
product), even if they are affected by restriction after the synchronization.

Definition 3.3. An operative dynamic expression G is saturated (with the values of
timers), if each enabled waiting multiaction of [G]≈, being superscribed with the value
of its timer and possibly overlined, is the subexpression of G.

9

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expressi-
ons of dtsdPBC.

Proposition 3.4 ([40,41]). Any operative dynamic expression can be transformed into
the saturated one by a forward or a backward applying the inaction rules.

Thus, any dynamic expression can be transformed into a (not always unique) satu-
rated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	G denotes the timer
decrement operator 	, applied to G. The result is a saturated operative dynamic ex-
pression, obtained from G via decrementing by one all greater than 1 values of the
timers associated with all (if any) stamped waiting multiactions from the syntax of G.
Each such stamped waiting multiaction changes its timer value from δ ∈ N≥1 in G to
max{1, δ − 1} in 	G. The timer decrement operator affects the (possibly overlined or
underlined) stamped waiting multiactions being the subexpressions of G as: (α, ♮θl)

δ is

replaced with (α, ♮θl)
max{1,δ−1}, and similarly for the overlined or underlined ones.

Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the timer
value δ = 1 may remain unchanged for a stamped waiting multiaction that is not
executed by some reason at the next time moment, but stays stamped. For example,
that stamped waiting multiaction may be affected by restriction. If the timer values
cannot be decremented with a time tick for all stamped waiting multiactions (if any)
from G then 	G = G and we obtain so-called empty loop transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions, since
it may only decrease their timer values, and the stamped waiting multiactions stay
stamped (with their timer values, possibly decremented by one).

3.2. Action and empty move rules

The action rules are applied when some activities are executed. With these rules
we capture the prioritization among different types of multiactions. We also have
the empty move rule, used to capture a delay of one discrete time unit when no
immediate or waiting multiactions are executable. In this case, the empty multiset of
activities is executed. The action and empty move rules will be used later to deter-
mine all multisets of activities which can be executed from the structural equivalence
class of every dynamic expression (i.e. from the state of the corresponding process).
This information together with that about probabilities or delays and weights of the
activities to be executed from the current process state will be used to calculate the
probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions

describe dynamic expression transformations in the form of G
Γ
→ G̃ (G

I
→ G̃ or G

W
→ G̃,

respectively) due to execution of non-empty multisets Γ of stochastic (I of immediate
or W of waiting, respectively) multiactions. The rules represent possible state changes
of the specified processes when some non-empty multisets of stochastic (immediate or
waiting, respectively) multiactions are executed. The application of an action rule with
stochastic (immediate or waiting, respectively) multiactions to a dynamic expression
leads in the corresponding LDTSDPN [40,41] to a discrete time tick at which some
stochastic or waiting transitions fire (or to the instantaneous firing of some immediate
transitions) and possible change of the current marking. The current marking stays
unchanged only if there is a self-loop produced by the iterative execution of a non-
empty multiset, which must be one-element, since we allow no concurrency at the

10

highest level of the second argument of iteration.
The empty move rule (applicable only when no immediate or waiting multiactions

can be executed from the current state) describes dynamic expression transformati-

ons in the form of G
∅
→	G, called the empty moves, due to execution of the empty

multiset of activities at a discrete time tick. When no timer values are decremented
within G with the empty multiset execution at the next moment (for example, if G
contains no stamped waiting multiactions), we have 	 G = G. In such a case, the

empty move from G is in the form of G
∅
→ G, called the empty loop. The application

of the empty move rule to a dynamic expression leads to a discrete time tick in the
corresponding LDTSDPN [40,41] at which no transitions fire and the current marking
is not changed, but the timer values of the waiting transitions enabled at the marking
(if any) are decremented by one. This is a new rule that has no prototype among
inaction rules of PBC, since it represents a time delay.

Thus, an application of every action rule with stochastic or waiting multiactions
or the empty move rule requires one discrete time unit delay, i.e. the execution of
a (possibly empty) multiset of stochastic or (non-empty) multiset of waiting multi-
actions leading to the dynamic expression transformation described by the rule is
accomplished instantly after one time unit. An application of every action rule with
immediate multiactions does not take any time, i.e. the execution of a (non-empty)
multiset of immediate multiactions is accomplished instantly at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid technical
difficulties, such as calculation of the probabilities for multiple transitions, we can
enumerate coinciding activities from left to right in the syntax of expressions. The
new activities, resulted from synchronization, will be annotated with concatenation
of numberings of the activities they come from, hence, the numbering should have
a tree structure to reflect the effect of multiple synchronizations. We now define the
numbering which encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.5. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders should be con-

sidered up to permutation of their numbering. In this way, we shall recognize different
instances of the same activity. If we compare the contents of different numberings, i.e.
the sets of natural numbers in them, we shall identify the mentioned instances. The

content of a numbering ι ∈ Num is Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become proper
sets. We suppose that the identical activities are enumerated when needed to avoid
ambiguity. This enumeration is considered to be implicit.

Definition 3.6. Let G ∈ OpRegDynExpr. We define the set of all non-empty mul-
tisets of activities which can be potentially executed from G, denoted by Can(G). Let
(α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and a ∈ Act.

(1) If final(G) then Can(G) = ∅.

(2) If G = (α, κ)δ and κ = ♮θl , θ ∈ N≥2, l ∈ R>0, δ ∈ {2, . . . , θ}, then Can(G) = ∅.

(3) If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ R>0, then Can(G) = {{(α, κ)}}.

(4) If G = (α, κ)1 and κ = ♮θl , θ ∈ N≥1, l ∈ R>0, then Can(G) = {{(α, κ)}}.
(5) If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

11

Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ) ∈ Can(G[f]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

(6) If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).
(7) If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different, a ∈ α, â ∈ β, then

(a) Υ− {(α, κ), (β, λ)} + {(α⊕a β, κ · λ)} ∈ Can(G sy a) if κ, λ ∈ (0; 1);
(b) Υ− {(α, κ), (β, λ)} + {(α⊕a β, ♮

θ
l+m)} ∈ Can(G sy a) if κ = ♮θl , λ = ♮θm,

θ ∈ N, l,m ∈ R>0.
When we synchronize the same multiset of activities in different orders, we obtain
several activities with the same multiaction and probability or delay and weight
parts, but with different numberings having the same content. Then we only
consider a single one of the resulting activities.

If Υ ∈ Can(G) then by definition of Can(G), ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only stochas-

tic (immediate or waiting, respectively) multiactions in the multisets from Can(G)
then these stochastic (immediate or waiting, respectively) multiactions can be exe-
cuted from G. Otherwise, besides stochastic ones, there are also deterministic (imme-
diate and/or waiting) multiactions in the multisets from Can(G). By the note above,
there are non-empty multisets of deterministic multiactions in Can(G) as well, i.e.
∃Υ ∈ Can(G) Υ ∈ N

DL
fin \ {∅}. In this case, no stochastic multiactions can be executed

from G, even if Can(G) contains non-empty multisets of stochastic multiactions, since
deterministic multiactions have a priority over stochastic ones, and should be executed
first. Further, if there are no stochastic, but both waiting and immediate multiactions
in the multisets from Can(G), then, analogously, no waiting multiactions can be exe-
cuted from G, since immediate multiactions have a priority over waiting ones (besides
that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multisets
from Can(G) then only waiting ones can be executed from G. Then just maximal
non-empty multisets of waiting multiactions can be executed from G, since all non-
conflicting waiting multiactions cannot wait and they should occur at the next time
moment with probability 1.

Definition 3.7. Let G ∈ OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Now(G) =





Can(G) ∩N
IL
fin, Can(G) ∩ N

IL
fin 6= ∅;

{W ∈ Can(G) ∩N
WL
fin | (Can(G) ∩ N

IL
fin = ∅)∧

∀V ∈ Can(G) ∩ N
WL
fin W ⊆ V ⇒ V =W}, (Can(G) ∩ N

WL
fin 6= ∅);

Can(G), otherwise.

Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tangible),
denoted by stang(G), if Now(G) ⊆ N

SL
fin \ {∅}. In particular, we have stang(G),

if Now(G) = ∅. The expression G is w-tangible (waitingly tangible), denoted by
wtang(G), if ∅ 6= Now(G) ⊆ N

WL
fin \ {∅}. The expression G is tangible, denoted by

tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin ∪ N

WL
fin) \ {∅}. Again, we

particularly have tang(G), if Now(G) = ∅. Otherwise, the expression G is vanishing,
denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ N

IL
fin \ {∅}. Note that the

operative dynamic expressions from [G]≈ may have different types.
Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩OpRegDynExpr

12

stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩ OpRegDynExpr wtang(H) and
∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We write tang([G]≈), if stang([G]≈) or
wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈ [G]≈ ∩
OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (α, ρ), (β, χ) ∈
SL, (α, ♮0l), (β, ♮

0
m) ∈ IL and (α, ♮θl), (β, ♮

θ
m) ∈ WL. Further, E,F ∈ RegStatExpr,

G,H ∈ SatOpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act. Next, Γ,∆ ∈ NSL
fin \

{∅}, Γ′ ∈ N
SL
fin, I, J ∈ N

IL
fin \ {∅}, I ′ ∈ N

IL
fin, V,W ∈ N

WL
fin \ {∅}, V ′ ∈ N

WL
fin and

Υ ∈ N
SDL
fin \ {∅}.

We use the next abbreviations in the names of the rules: ‘E’ for ‘Empty move’,
‘B’ for ‘Basis case’, ‘S’ for ‘Sequence’, ‘C’ for ‘Choice’, ‘P’ for ‘Parallel’, ‘L’ for
‘reLabeling’, ‘R’ for ‘Restriction’, ‘I’ for ‘Iteraton’ and ‘Sy’ for ‘Synchronization’.
The first rule is the empty move rule E. The other rules are the action rules, describ-
ing transformations of dynamic expressions, which are built using particular algebraic
operations. If we cannot merge the rules with stochastic, immediate ans waiting mul-
tiactions in one rule for some operation then we get the coupled action rules. In such
cases, the names of the action rules with stochastic multiactions have a suffix ‘s’, those
with immediate multiactions have a suffix ‘i’, and those with waiting multiactions have
a suffix ‘w’. The rules in Table 3 are explained in [40,41].

Notice that the timers of all waiting multiactions that lose their enabledness when
a state change occurs become inactive (turned off) and their values become irrelevant
while the timers of all those preserving their enabledness continue running with their
stored values. Hence, we adapt the enabling memory policy [25,28,47,48] when the
process states are changed and the enabledness of deterministic multiactions is possibly
modified (immediate multiactions may be seen as those with the timers displaying a
single value 0, so we do not need to store their values). Then the timer values of waiting
multiactions are taken as the enabling memory variables.

Like in [12], we are interested in the dynamic expressions, inferred by applying the
inaction rules (also in the reverse direction) and action rules from the overlined sta-
tic expressions, such that no stamped (superscribed with the timer values) waiting
multiaction is a subexpression of them. The reason is to ensure that time proceeds
uniformly and only enabled waiting multiactions are stamped. We call such dynamic
expressions reachable, by analogy with the reachable states of LDTSDPNs [40,41].

Definition 3.8. A dynamic expression G is reachable, if there exists a static expres-

sion E without timer value superscripts, such that E ≈ G or E ≈ G0
Υ1→ H1 ≈ G1

Υ2→

. . .
Υn→ Hn ≈ G for some Υ1, . . . ,Υn ∈ N

SDL
fin .

We now consider the enabledness of the stamped waiting multiactions.

Proposition 3.9 ([40,41]). Let G be a reachable dynamic expression. Then only wait-
ing multiactions from EnaWait([G]≈) are stamped in G.

3.3. Transition systems

We now construct labeled probabilistic transition systems associated with dynamic
expressions. The transition systems are used to define the operational semantics of
dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of activities

13

Table 3. Action and empty move rules.

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l)

{(α,♮0l)}−→ (α, ♮0l) Bw (α, ♮θl)
1

{(α,♮θl)}−→ (α, ♮θl)

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f]
f(Υ)
−→ G̃[f]

R
G

Υ
→ G̃, a, â 6∈ A(Υ)

G rs a
Υ
→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F]≈))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F]≈))

[E ∗G ∗ F]
V
→ [E ∗ G̃∗⇃F], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l)}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮

0
l+m

)}
−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl)}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮

θ
l+m

)}
−−−−−−−−−−−−→ G̃ sy a

14

executable in s is defined as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}. Here H

Υ
→ H̃ is

an inference by the rules from Table 3. It can be proved by induction on the structure
of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈ s Υ ∈ Now(H). The reverse
statement does not hold, since the preconditions in the action rules disable executions
of the activities with the lower-priority types from every H ∈ s, see [40,41].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ N

SL
fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E, hence,

we may have Exec(s) = {∅}. The state s is w-tangible (waitingly tangible), denoted
by wtang(s), if Exec(s) ⊆ N

WL
fin \ {∅}. The state s is tangible, denoted by tang(s), if

stang(s) or wtang(s), i.e. Exec(s) ⊆ N
SL
fin∪N

WL
fin . Again, for a tangible state s we may

have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the state s is vanishing, denoted by
vanish(s), and in this case Exec(s) ⊆ N

IL
fin \ {∅}.

Definition 3.10. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the set of
all w-tangible states from DR(G) is denoted byDRWT (G). The set of all tangible states
from DR(G) is denoted by DRT (G) = DRST (G)∪DRWT (G). The set of all vanishing
states from DR(G) is denoted by DRV (G). Then DR(G) = DRT (G) ∪ DRV (G) =
DRST (G) ∪DRWT (G) ∪DRV (G).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiactions Υ

is ready for execution in s or the weight of the multiset of deterministic multiactions
Υ which is ready for execution in s is

PF (Υ, s)=





∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ)6∈Υ}

(1− χ), s∈DRST (G);

∑

(α,♮θl)∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =





∏

{(β,χ)}∈Exec(s)

(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

Let Υ ∈ Exec(s). Besides Υ, other multisets of activities may be ready for execution
in s, hence, a normalization is needed to calculate the execution probability. The
probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

15

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Definition 3.11. Let G be a dynamic expression. The (labeled probabilistic) transition
system of G is a quadruple TS(G) = (SG, LG,TG, sG), where

• the set of states is SG = DR(G);
• the set of labels is LG = N

SDL
fin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s

∃H̃ ∈ s̃ H
Υ
→ H̃};

• the initial state is sG = [G]≈.

The transition system TS(G) associated with a dynamic expression G describes
all the steps (parallel executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consisting of
stochastic (waiting, respectively) multiactions or the empty step (consisting of the
empty multiset of activities) occurs instantly after one discrete time unit delay. Each
step consisting of immediate multiactions occurs instantly without any delay. The step
can change the current state to a different one. The states are the structural equivalence
classes of dynamic expressions obtained by application of action rules starting from
the expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as

s
Υ
→P s̃. It is interpreted as: the probability to change from state s to s̃ as a result of

executing Υ is P.
From every s-tangible state the empty multiset of activities can always be executed

by rule E. Hence, for s-tangible states, Υ may be the empty multiset, and its execution
only decrements by one the timer values (if any) of the current state. Then we have

a transition s
∅
→P	 s from an s-tangible state s to the tangible state 	 s = [H]≈

for H ∈ s ∩ SatOpRegDynExpr. Since structurally equivalent saturated operative
dynamic expressions remain so after decreasing by one their timers, 	s is unique for
each s and the definition is correct. Thus, 	s corresponds to applying the empty move
rule to an arbitrary saturated operative dynamic expression from s, followed by taking
the structural equivalence class of the result. We have to keep track of such executions,
called the empty moves, since they affect the timers and have non-zero probabilities.
This follows from the definition of PF (∅, s) and the fact that the probabilities of
stochastic multiactions belong to the interval (0; 1). When it holds 	 H = H for
H ∈ s ∩ SatOpRegDynExpr, we obtain 	 s = s. Then the empty move from s is

in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing states

Υ cannot be the empty multiset, since we must execute some immediate (waiting)
multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 when the only transition

from an s-tangible state s is the empty move one s
∅
→1	 s, or if there is a single

transition from a w-tangible or a vanishing state. We write s
Υ
→ s̃ if ∃P s

Υ
→P s̃ and

s→ s̃ if ∃Υ s
Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.

Definition 3.12. Let for dynamic expressions G,G′, TS(G)=(SG, LG,TG, sG),
TS(G′) = (SG′ , LG′ ,TG′ , sG′). A mapping β : SG → SG′ is an isomorphism between

16

TS(G) and TS(G′), denoted by β : TS(G) ≃ TS(G′), if

(1) β is a bijection such that β(sG) = sG′ ;

(2) ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by
TS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Definition 3.13. Two dynamic expressions G and G′ are equivalent with respect to
transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Example 3.14. The expression Stop = ({h}, 12) rs h specifies the non-terminating
process that performs only empty loops with probability 1. Let E = [({a}, ρ) ∗
(({b}, ♮1k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[] ({g}, ♮0l+m))) ∗ Stop], where

ρ, θ, φ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of the equivalence classes

s1=[[({a}, ρ) ∗ (({b}, ♮
1
k); ((({c}, ♮

0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s2=[[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s3=[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s4=[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈,

s5=[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))[]({g}, ♮0l+m))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 1, the transition system TS(E) is presented. The s-tangible and w-tan-

gible states are depicted in ordinary and double ovals, respectively, and the vanishing
ones are depicted in boxes.

This example demonstrates an infinite iteration loop. The loop is preceded with
the iteration initiation, modeled by a stochastic multiaction ({a}, ρ). The iteration
body that corresponds to the loop consists of a waiting multiaction ({b}, ♮1k), followed
(via sequential composition) by the probabilistic choice, modeled via three conflicting
immediate multiactions ({c}, ♮0l), ({e}, ♮0m), ({g}, ♮0l+m), such as the first and second
are followed by different stochastic multiactions ({d}, θ) and ({f}, φ), whereas the third
has no follower. The iteration termination Stop demonstrates an empty behaviour,
assuring that the iteration does not reach its final state after any number of repeated
executions of its body.

Example 3.15. Let us interpret E from Example 3.14 as a specification of the travel
system. A tourist visits regularly new cities. After seeing the sights of the current
city, he goes to the next city by the nearest train or bus available at the city station.
Buses depart less frequently than trains, but the next city is quicker reached by bus
than by train. We suppose that the stay duration in every city (being a constant),
the departure numbers of trains and buses, as well as their speeds do not depend on a
particular city, bus or train. The travel route has been planned so that the distances
between successive cities coincide.

The meaning of actions and activities from the syntax of E is as follows. The acti-
on a corresponds to the system activation after planning the travel route that takes
a time, geometrically distributed with a parameter ρ, the probability of the corres-
ponding stochastic multiaction ({a}, ρ). The action b represents coming to the city

17

TS(E)

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄✻

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1
({a},ρ),ρ

({b},♮1
k
),1

({c},♮0
l
),1

l
2(l+m)

({e},♮0m),
m

2(l+m)

({d},θ),
θ

({f},φ),
φ

({g},♮0
l+m

), 1
2

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

Figure 1. The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1
k
); ((({c}, ♮0

l
); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]

({g}, ♮0
l+m

))) ∗ Stop].

station after completion of looking round the current city that takes (for every city) a
fixed time equal to 1 (hour), the time delay of the corresponding waiting multiaction
({b}, ♮1k) with (resolving no choice) weight k. The actions c and e correspond to the
urgent (in zero time) getting on bus and train, respectively, and thus model the choice
between these two transport facilities. The weights of the two corresponding immediate
multiactions ({c}, ♮0l) and ({e}, ♮0m) suggest that every l departures of buses take the
same time as m departures of trains (l < m), hence, a bus departs with the probability
l

l+m while a train departs with the probability m
l+m . The actions d and f correspond

to coming in a city by bus and train, respectively, that takes a time, geometrically
distributed with the parameters θ and φ, respectively (θ > φ), the probabilities of
the corresponding stochastic multiactions ({d}, θ) and ({f}, φ). The action g specifies
instantaneous coming back to the (current) city (i.e. not getting on any transport)
from the station. The weight of the corresponding immediate multiaction ({g}, ♮0l+m)
suggests that choosing no transport facility has the same probability as choosing any
transport facility and equals l+m

2(l+m) =
1
2 = l

2(l+m) +
m

2(l+m) , where 2(l+m) = l+m+

(l+m) is the overall weight of all possible outcomes at the city station (bus departure,
train departure and coming back to the city).

The meaning of states from DR(E) is as follows. The s-tangible state s1 corresponds
to staying at home and planning the future travel. The w-tangible state s2 means
residence in a city for exactly one time unit (hour). The vanishing state s3 with zero
residence time represents instantaneous stay at the city station, signifying that the tou-
rist does not wait there as for departure of the transport, as before coming back to the
city. The s-tangible states s4 and s5 correspond to going by bus and train, respectively.

4. Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions
can be constructed and then used for performance evaluation.

18

4.1. Analysis of the underlying SMC (embedding)

For a dynamic expression G, a discrete random variable ξ(s) is associated with every
tangible state s ∈ DRT (G). The variable captures the residence (sojourn) time in
the state. One can interpret staying in a state at the next discrete time moment as
a failure and leaving it as a success in some trial series. It is easy to see that ξ(s)
is geometrically distributed with the parameter 1 − PM(s, s), since the probability
to stay in s for k − 1 time moments and leave it at the moment k ≥ 1, called the
probability mass function (PMF) of the residence time in s, is pξ(s)(k) = P(ξ(s) =

k) = PM(s, s)k−1(1 − PM(s, s)) (k ∈ N≥1) (the residence time in s is k in this
case). Hence, the probability distribution function (PDF) of the residence time in s

is Fξ(s)(k) = P(ξ(s) < k) = 1 − PM(s, s)k−1 (k ∈ N≥1) (the probability that the
residence time in s is less than k).

The deterministic residence time 1 in a tangible state s can be interpreted as a
random variable ξ(s) that is geometrically distributed with the parameter 1 = 1 −
PM(s, s). In that case, PM(s, s) = 0 and k = 1 is the only residence time value with
a positive probability. Hence, pξ(s)(1) = PM(s, s)1−1(1 − PM(s, s)) = 00 · 1 = 1, i.e.
the probability that the residence time is 1 equals 1.

Further, the residence time ∞ in an absorbing tangible state s can be interpreted
as a random variable ξ(s) that is geometrically distributed with the parameter 0 =
1−PM(s, s). In that case, PM(s, s) = 1 and there exists no finite residence time value
with a positive probability. Hence, pξ(s)(k) = PM(s, s)k−1(1−PM(s, s)) = 1k−1 · 0 =
0 (k ∈ N≥1), i.e. the probability that the residence time is k equals 0 for every k ≥ 1.
Then we cannot leave s for a different state after any number of time ticks and we
stay in s for infinite time.

The mean value formula for the geometrical distribution allows us to calculate the
average sojourn time in s ∈ DRT (G) as SJ(s) =

1
1−PM(s,s) . The average sojourn time

in each vanishing state s ∈ DRV (G) is SJ(s) = 0. Let s ∈ DR(G).
The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s),
s ∈ DR(G).

To evaluate performance of the system specified by a dynamic expression G, we
should investigate the stochastic process associated with it. The process is the under-
lying semi-Markov chain (SMC) [49–56], denoted by SMC(G), which can be analyzed
by extracting from it the embedded (absorbing) discrete time Markov chain (EDTMC)
corresponding to G, denoted by EDTMC(G). The construction of the latter is analo-
gous to that applied in the context of generalized stochastic PNs (GSPNs) in [24,25,28],
and also in the framework of discrete time deterministic and stochastic PNs (DTD-
SPNs) in [44–46,57–59], as well as within discrete deterministic and stochastic PNs
(DDSPNs) [60,61]. EDTMC(G) only describes the state changes of SMC(G) while
ignoring its time characteristics. Thus, to construct the EDTMC, we should abstract
from all time aspects of behaviour of the SMC, i.e. from the sojourn time in its states.
The (local) sojourn time in every state of the EDTMC is deterministic and it is equal
to one discrete time unit. It is well-known that every SMC is fully described by the
EDTMC and the state sojourn time distributions (the latter can be specified by the
vector of PDFs of residence time in the states) [50,53,54,62].

19

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system TS(G) can
have self-loops going from a state to itself which have a non-zero probability. Clearly,
the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is PM(s, s)k.
Let s → s̃ and s 6= s̃, i.e. PM(s, s) < 1. The probability to move from s to s̃ by

executing any multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
=

SL(s)PM(s, s̃), where SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise.

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops abstraction
vector of G, denoted by SL, has the elements SL(s), s ∈ DR(G). The value k = 0 in
the summation above corresponds to the case when no self-loops occur.

Let s ∈ DRT (G). If there are self-loops from s (i.e. if s → s) then PM(s, s) > 0
and SL(s) = 1

1−PM(s,s) = SJ(s). Otherwise, if there exist no self-loops from s then

PM(s, s) = 0 and SL(s) = 1 = 1
1−PM(s,s) = SJ(s). Thus, ∀s ∈ DRT (G) SL(s) =

SJ(s), hence, ∀s ∈ DRT (G) with PM(s, s)< 1 it holds PM∗(s, s̃)=SJ(s)PM(s, s̃).
Note that the self-loops from tangible states are of the empty or non-empty type, the
latter produced by iteration, since empty loops are not possible from w-tangible states,
but they are possible from s-tangible states, while non-empty loops are possible from
both s-tangible and w-tangible states.

Let s ∈ DRV (G). We have ∀s ∈ DRV (G) SL(s) 6= SJ(s) = 0 and ∀s ∈ DRV (G)
with PM(s, s) < 1 it holds PM∗(s, s̃) = SL(s)PM(s, s̃). If there exist self-loops from

s then PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) when PM(s, s) < 1. Otherwise, if there exist no self-

loops from s then PM∗(s, s̃) = PM(s, s̃). Note that the self-loops from vanishing
states are always of the non-empty type, produced by iteration, since empty loops are
not possible from vanishing states.

Note that after abstraction from the probabilities of transitions which do not change
the states, the remaining transition probabilities are normalized. In order to calculate
transition probabilities PT (Υ, s), we had to normalize PF (Υ, s). Then, to obtain
transition probabilities of the state-changing steps PM∗(s, s̃), we have to normalize
PM(s, s̃). Thus, we have a two-stage normalization as a result.

Then PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such that
s is not an absorbing state (i.e. PM(s, s) < 1 and there are transitions to dif-
ferent states after possible self-loops from it) we have

∑
{s̃|s→s̃, s 6=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s 6=s̃} PM(s, s̃) = 1

1−PM(s,s)(1− PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for con-
venience. Alternatively, we could take a state-changing step followed by self-loops or
a state-changing step preceded and followed by self-loops. In all these three cases our
sequence begins or/and ends with the loops which do not change states. At the same
time, the overall probabilities of the evolutions can differ, since self-loops have posi-
tive probabilities. To avoid inconsistency of definitions and too complex description, we
consider sequences ending with a state-changing step. It resembles in some sense a con-
struction of branching bisimulation [63] taking self-loops instead of silent transitions.
Further, we shall not abstract from self-loops with probabilities 1 while constructing
EDTMCs, in order to maintain a probability distribution among transitions (actually,

20

a single transition to the same state) from every state with such a self-loop.

Definition 4.1. Let G be a dynamic expression. The embedded (absorbing) discrete
time Markov chain (EDTMC) of G, denoted by EDTMC(G), has the state space
DR(G), the initial state [G]≈ and the transitions s ։P s̃, if s → s̃ and s 6= s̃, where
P = PM∗(s, s̃); or s։1 s, if PM(s, s) = 1.

The underlying SMC of G, denoted by SMC(G), has the EDTMC EDTMC(G)
and the sojourn time in every s ∈ DRT (G) is geometrically distributed with the pa-
rameter 1−PM(s, s) (in particular, the sojourn time is 1 when PM(s, s) = 0, and ∞
when PM(s, s) = 1) while the sojourn time in every s ∈ DRV (G) is equal to 0.

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of the

(one-step) transition probability matrix (TPM) P∗ for EDTMC(G) are

P∗
ij =





PM∗(si, sj), si → sj, i 6= j;
1, PM(si, si) = 1, i = j;
0, otherwise.

The transient (k-step, k ∈ N) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for

EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ N).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC(G) is a solution of
the equation system

{
ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is that
of n values 1.

Note that the vector ψ∗ exists and is unique if EDTMC(G) is ergodic. Then
EDTMC(G) has a single steady state, and we have ψ∗ = limk→∞ ψ∗[k].

The steady-state PMF for the underlying semi-Markov chain SMC(G) is calcula-
ted via multiplication of every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time SJ(si)
in the state si, after which we normalize the resulting values. Remember that for
each tangible state s ∈ DRT (G) we have SJ(s) ≥ 1, and for each vanishing state
s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑

n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops with probabilities less

21

than 1 to get P∗ and then ψ∗, followed by weighting by SJ and normalization. We call
that technique embedding, since the embedded DTMC (EDTMC) is used to specify the
SMC state change probabilities. EDTMC(G) has no self-loops with probabilities less
than 1, unlike SMC(G), hence, the behaviour of EDTMC(G) may stabilize quicker
than that of SMC(G) (if each of them has a single steady state), since P∗ has only
zero (excepting the states having self-loops with probabilities 1) elements at the main
diagonal.

Example 4.2. Let E be from Example 3.14. In Figure 2, the underlying SMC
SMC(E) is presented. The average sojourn times in the states of the underlying SMC
are written next to them in bold font.

The average sojourn time vector of E is

SJ =

(
1

ρ
, 1, 0,

1

θ
,
1

φ

)
.

The TPM for EDTMC(E) is

P∗ =




0 1 0 0 0
0 0 1 0 0

0 1
2 0 l

2(l+m)
m

2(l+m)

0 1 0 0 0
0 1 0 0 0



.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

2

5
,
2

5
,

l

5(l +m)
,

m

5(l +m)

)
.

The steady-state PMF ψ∗ weighted by SJ is

(
0,

2

5
, 0,

l

5θ(l +m)
,

m

5φ(l +m)

)
.

We normalize the steady-state weighted PMF, dividing it by its components sum

ψ∗SJT =
2θφ(l +m) + φl + θm

5θφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), 0, φl, θm).

Let G be a dynamic expression and s, s̃∈DR(G), S, S̃⊆DR(G). The next standard
performance indices (measures) can be calculated based on the steady-state PMF ϕ

for SMC(G) and the average sojourn time vector SJ of G [64,65].

22

SMC(E)

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄✻

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1

1

11
2

l
2(l+m)

m
2(l+m)

1 1

s3

1

ρ

1

0

1

θ

1

φ

Figure 2. The underlying SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1
k
); ((({c}, ♮0

l
); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]

({g}, ♮0
l+m

))) ∗ Stop].

• The average recurrence (return) time in the state s (i.e. the number of discrete
time units or steps required for this) is ReturnT ime(s) = 1

ϕ(s) .

• The fraction of residence time in the state s is T imeFract(s) = ϕ(s).
• The fraction of residence time in the set of states S or the probability of the event

determined by a condition that is true for all states from S is T imeFract(S) =∑
s∈S ϕ(s).

• The relative fraction of residence time in the set of states S with respect to that

in S̃ is RltT imeFract(S, S̃) =
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃) .

• The exit/entrance frequency (rate of leaving/entering, average number of ex-

its/entrances per unit of time) the state s is ExitFreq(s) = ϕ(s)
SJ(s) .

• The steady-state probability to perform a step with a multiset of activities Ξ is
ActsProb(Ξ) =

∑
s∈DR(G) ϕ(s)

∑
{Υ|Ξ⊆Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is
Prob(r) =

∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

Example 4.3. We now calculate the performance indices for the travel system
from Example 3.15. They are based on the steady-state PMF for SMC(E) ϕ =

1
2θφ(l+m)+φl+θm (0, 2θφ(l+m), 0, φl, θm) and the average sojourn time vector of E SJ =(
1
ρ
, 1, 0, 1

θ
, 1
φ

)
from Example 4.2.

• The average time between comings to the successive cities (mean sightseeing and

travel time) is ReturnT ime(s2) =
1

ϕ(s2)
= 1 + φl+θm

2θφ(l+m) .

• The fraction of time spent in a city (sightseeing time fraction) is

T imeFract(s2) = ϕ(s2) =
2θφ(l+m)

2θφ(l+m)+φl+θm .

• The fraction of time spent in a transport (travel time fraction) is

T imeFract({s4, s5}) = ϕ(s4) + ϕ(s5) =
φl+θm

2θφ(l+m)+φl+θm .

• The relative fraction of time spent in a city with respect to that spent in transport
(sightseeing relative to travel time fraction) is RltT imeFract({s2}, {s4, s5}) =

ϕ(s2)
ϕ(s4)+ϕ(s5)

= 2θφ(l+m)
φl+θm .

• The rate of leaving/entering a city (departure/arrival rate) is ExitFreq(s2) =
ϕ(s2)
SJ(s2)

= 2θφ(l+m)
θφ(l+m)+φl+θm .

23

4.2. Analysis of the reduced DTMC (elimination)

Let us now consider the method from [25,28,47,66–69] that eliminates vanishing states
from the EMC (EDTMC, in our terminology) corresponding to the underlying SMC of
every GSPN N . The TPM for the resulting reduced EDTMC (REDTMC) has smaller
size than that for the EDTMC. The method demonstrates that there exists a trans-
formation of the underlying SMC of N into a CTMC, whose states are the tangible
markings of N . This CTMC, which is essentially the reduced underlying SMC (RSMC)
of N , is constructed on the basis of the REDTMC. The CTMC can then be directly
solved to get both the transient and the steady-state PMFs over the tangible mark-
ings of N . In [68], the program and computational complexities of such an elimina-
tion method, based on the REDTMC, were evaluated and compared with those of
the preservation method that does not eliminate vanishing states and based on the
EDTMC. The preservation method for GSPNs corresponds in dtsdPBC to the analysis
of the underlying SMCs of expressions, called the embedding approach.

Definition 4.4. Let G be a dynamic expression. The discrete time Markov chain
(DTMC) of G, denoted by DTMC(G), has the state space DR(G), the initial state
[G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of
(one-step) transition probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), si → sj;
0, otherwise.

Example 4.5. Let E be from Example 3.14. In Figure 3, the DTMC DTMC(E) is
presented. The TPM for DTMC(E) is

P =




1− ρ ρ 0 0 0
0 0 1 0 0

0 1
2 0 l

2(l+m)
m

2(l+m)

0 θ 0 1− θ 0
0 φ 0 0 1− φ



.

The elimination method for GSPNs can be easily transferred to dtsdPBC, hence,
for every dynamic expression G, we can find a DTMC (since the sojourn time in the
tangible states from DR(G) is discrete and geometrically distributed) with the states
from DRT (G), which can be directly solved to find the transient and the steady-
state PMFs over the tangible states. We shall demonstrate that such a reduced DTMC
(RDTMC) of G, denoted by RDTMC(G), can be constructed from DTMC(G), using
the method analogous to that designed in [25,28,47,69] in the framework of GSPNs
to transform EDTMC into REDTMC. Since the sojourn time in the vanishing states
is zero, the state changes of RDTMC(G) occur in the moments of the global dis-
crete time associated with SMC(G), unlike those of EDTMC(G), which happen only
when the current state changes to some different one, irrespective of the global time.
Therefore, in our case, we can skip the stages of constructing the REDTMC of G,
denoted by REDTMC(G), from EDTMC(G), and recovering RSMC of G, denoted
by RSMC(G) (which is the sought-for DTMC), from REDTMC(G), since we shall

24

DTMC(E)

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄✻

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛
✡

✟
✠

❄

s1
ρ

11
2

l
2(l+m)

m
2(l+m)

θ φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

1−ρ

1−θ 1−φ

Figure 3. The DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1
k
); ((({c}, ♮0

l
); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]

({g}, ♮0
l+m

))) ∗ Stop].

have RSMC(G) = RDTMC(G).
Let G be a dynamic expression and P be the TPM for DTMC(G). We reorder

the states from DR(G) such that the first rows and columns of the modified matrix
Pr correspond to the states from DRV (G) and the last ones correspond to the states
from DRT (G). Let |DR(G)| = n and |DRT (G)| = m. The reordered matrix can be
decomposed as follows:

Pr =

(
C D

E F

)
.

The elements of the (n − m) × (n − m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D are the
probabilities to move from vanishing to tangible states. The elements of them×(n−m)
submatrix E are the probabilities to move from tangible to vanishing states, and those
of them×m submatrix F are the probabilities to move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing to
vanishing states in any number of state changes, without traversal of tangible states.

If there are no loops among vanishing states then for any vanishing state there exists
a value l ∈ N such that every sequence of state changes that starts in a vanishing state
and is longer than l should reach a tangible state. Thus, ∃l ∈ N ∀k > l Ck = 0 and∑∞

k=0C
k =

∑l
k=0C

k. If there are loops among vanishing states then all such loops are
supposed to be of ‘transient’ rather than ‘absorbing’ type, since the latter is treated
as a specification error to be corrected, like in [28,47]. We have earlier required that
SMC(G) has a single closed communication (which is also ergodic) class of states. A
communication class of states is their equivalence class w.r.t. communication relation,
i.e. a maximal subset of communicating states. A communication class of states is
closed if only the states belonging to it are accessible from every its state.

The ergodic class cannot consist of vanishing states only, to avoid ‘absorbing’ loops
among them, hence, it contains tangible states as well. Thus, any sequence of vanishing
state changes that starts in the ergodic class will reach a tangible state at some time
moment. All the states that do not belong to the ergodic class should be transient.

25

Hence, any sequence of vanishing state changes that starts in a transient vanishing
state will some time reach either a transient tangible state or a state from the ergodic
class [50–56]. In the latter case, a tangible state will be reached as well, as argued above.
Thus, every sequence of vanishing state changes in SMC(G) that starts in a vanishing
state will exit the set of all vanishing states in the future. As a result, the probabilities
to move from vanishing to vanishing states in k ∈ N state changes, without traversal
of tangible states, will lead to 0 when k tends to ∞. Then we have limk→∞Ck =
limk→∞(I− (I−C))k = 0, hence, I−C is a non-singular matrix, i.e. its determinant
is not equal to zero. Thus, the inverse matrix of I−C exists and may be expressed by
a Neumann series as

∑∞
k=0(I− (I−C))k =

∑∞
k=0C

k = (I−C)−1. Therefore,

G =

∞∑

k=0

Ck =

{ ∑l
k=0C

k, ∃l ∈ N ∀k > l Ck = 0, no vanishing states loops;
(I−C)−1, limk→∞Ck = 0, vanishing states loops;

where 0 is the square matrix consisting only of zeros and I is the identity matrix, both
of order n−m.

For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let Fij be the elements of the matrix F, Eik
be those of E, Gkl be those of G and Dlj be those of D. By definition, the elements
P⋄
ij of the matrix P⋄ are calculated as

P⋄
ij=Fij+

n−m∑

k=1

n−m∑

l=1

EikGklDlj=Fij+
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj=Fij+
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to

the tangible state sj in any number of steps, without traversal of tangible states, but
possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj. The probability to move from s to s̃ in
any number of steps, without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .

Definition 4.6. Let G be a dynamic expression and [G]≈ ∈ DRT (G). The reduced dis-
crete time Markov chain (RDTMC) of G, denoted by RDTMC(G), has the state space
DRT (G), the initial state [G]≈ and the transitions s →֒P s̃, where P = PM⋄(s, s̃).

Let us now define RSMC(G) as a ‘restriction’ of SMC(G) to its tangible sta-
tes. Since the sojourn time in the tangible states of SMC(G) is discrete and geo-
metrically distributed, we can see that RSMC(G) is a DTMC with the state space
DRT (G), the initial state [G]≈ and the transitions whose probabilities collect all those
in SMC(G) to move from the tangible to the tangible states, directly or indirect-
ly, i.e. by going through its vanishing states only. Thus, RSMC(G) should have the
transitions s →֒P s̃, where P = PM⋄(s, s̃), resulting in RSMC(G) = RDTMC(G).

Note that RDTMC(G) is constructed from DTMC(G) as follows. All vanishing
states and all transitions to, from and between them are removed. All transitions
between tangible states are preserved. The probabilities of transitions between tangi-
ble states may become greater and new transitions between tangible states may be
added, both iff there exist moves between these tangible states in any number of steps,
going through vanishing states only. Thus, for each sequence of transitions between
two tangible states in DTMC(G) there exists a (possibly shorter, since the eventual

26

passed through vanishing states are removed) sequence between the same states in
RDTMC(G) and vice versa. If DTMC(G) is irreducible then all its states (including
tangible ones) communicate, hence, all states of RDTMC(G) communicate as well
and it is irreducible. Since both DTMC(G) and RDTMC(G) are finite, they are
positive recurrent. Thus, in case of irreducibility of DTMC(G), each of them has
a single stationary PMF. Then DTMC(G) and/or RDTMC(G) may be periodic,
thus having a unique stationary distribution, but no steady-state (limiting) one. For
example, it may happen that DTMC(G) is aperiodic while RDTMC(G) is periodic
due to removing vanishing states from the former.

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step,
k ∈ N) PMF ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ N).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ

⋄(sm)) for RDTMC(G) is a solution of
the equation system

{
ψ⋄(P⋄ − I) = 0

ψ⋄1T = 1
,

where I is the identity matrix of order m and 0 is a row vector of m values 0, 1 is
that of m values 1.

Note that the vector ψ⋄ exists and is unique if RDTMC(G) is ergodic. Then
RDTMC(G) has a single steady state, and we have ψ⋄ = limk→∞ ψ⋄[k].

The zero sojourn time in the vanishing states guarantees that the state changes
of RDTMC(G) occur in the moments of the global discrete time associated with
SMC(G), i.e. every such state change occurs after one time unit delay. Hence, the so-
journ time in the tangible states is the same for RDTMC(G) and SMC(G). The state
change probabilities of RDTMC(G) are those to move from tangible to tangible states
in any number of steps, without traversal of the tangible states. Then RDTMC(G)
and SMC(G) have the same transient behaviour over the tangible states, thus, the
transient analysis of SMC(G) is possible using RDTMC(G).
The next proposition relates steady-state PMFs for SMC(G) and RDTMC(G) by
proving that their steady-state probabilities of the tangible states coincide.

Proposition 4.7 ([42]). Let G be a dynamic expression, ϕ be the steady-state PMF
for SMC(G) and ψ⋄ be the steady-state PMF for RDTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-state
probabilities of the tangible states, instead of abstracting from self-loops with proba-

27

bilities less than 1 to get P∗ and then ψ∗, followed by weighting by SJ and normal-
ization. We call that technique elimination, since we eliminate the vanishing states.
Hence, using RDTMC(G) instead of EDTMC(G) allows one to avoid such a mul-
tistage analysis, but constructing P⋄ also requires some efforts, including calculating
matrix powers or inverse matrices. Note that RDTMC(G) may have self-loops with
probabilities less than 1, unlike EDTMC(G), hence, the behaviour of RDTMC(G)
may stabilize slower than that of EDTMC(G) (if each of them has a single steady
state). On the other hand, P⋄ is generally smaller and denser matrix than P∗, since P⋄

may have additional non-zero elements not only at the main diagonal, but also many
of them outside it. Therefore, in most cases, we have less time-consuming numerical
calculation of ψ⋄ with respect to ψ∗. At the same time, the complexity of the analytical
calculation of ψ⋄ with respect to ψ∗ depends on the model structure, such as the num-
ber of vanishing states and loops among them, but usually it is lower, since the matrix
size reduction plays an important role in many cases. Hence, for the system models
with many immediate activities, we normally have a significant simplification of the so-
lution. At the abstraction level of SMCs, the elimination of vanishing states decreases
their impact to the solution complexity while allowing immediate activities to specify
a comprehensible logical structure of systems at the higher level of transition systems.

Example 4.8. Let E be from Example 3.14. Remember that DRT (E) = DRST (E)∪
DRWT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. We reorder the states from DR(E),
by moving vanishing states to the first positions: s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =




0 0 1
2

l
2(l+m)

m
2(l+m)

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ



.

The result of the decomposing Pr are the matrices

C=0, D=

(
0,

1

2
,

l

2(l +m)
,

m

2(l +m)

)
, E=




0
1
0
0


 , F=




1− ρ ρ 0 0
0 0 0 0
0 θ 1− θ 0
0 φ 0 1− φ


.

Since C1 = 0, we have ∀k > 0 Ck = 0, hence, l = 0 and there are no loops among
vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.

Further, the TPM for RDTMC(E) is

P⋄ = F+EGD = F+EID = F+ED =




1− ρ ρ 0 0

0 1
2

l
2(l+m)

m
2(l+m)

0 θ 1− θ 0
0 φ 0 1− φ


 .

28

RDTMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

ρ

θ φ

l
2(l+m)

m
2(l+m)

✞✝ ✲

✂ ✁✂ ✁✻

✄✂ ✲
1
2

1−ρ

1−θ 1−φ

Figure 4. The reduced DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1
k
); ((({c}, ♮0

l
); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]

({g}, ♮0
l+m

))) ∗ Stop].

In Figure 4, the reduced DTMC RDTMC(E) is presented. The steady-state PMF
for RDTMC(E) is

ψ⋄ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), φl, θm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)). By Proposition 4.7, we have

ϕ(s1) = 0, ϕ(s2) =
2θφ(l+m)

2θφ(l+m)+φl+θm , ϕ(s3) = 0,

ϕ(s4) =
φl

2θφ(l+m)+φl+θm , ϕ(s5) =
θm

2θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

2θφ(l +m) + φl + θm
(0, 2θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 4.2 with the use of ψ∗ and SJ .

Example 4.9. In Figure 5, the reduced underlying SMC RSMC(E) is depicted. The
average sojourn times in the states of the reduced underlying SMC are written next
to them in bold font. In spite of the equality RSMC(E)=RDTMC(E), the graphical
representation of RSMC(E) differs from that of RDTMC(E), since the former is
based on the REDTMC(E), where each state is decorated with the positive average
sojourn time of RSMC(E) in it. REDTMC(E) is constructed from EDTMC(E)
in the similar way as RDTMC(E) is obtained from DTMC(E). By construction,
the residence time in each state of RSMC(E) is geometrically distributed. Hence,
the associated parameter of geometrical distribution is uniquely recovered from the
average sojourn time in the state.

Let us now formally prove that RSMC coincides with RDTMC. Although this as-
sertion is very intuitive, its proof is rather involved.

The relation between DTMC and RDTMC is obtained using the transition func-
tion PM⋄(s, s̃), based on PM(s, s̃). The relation between RDTMC and the embedded
RDTMC (ERDTMC) is obtained using the transition function (PM⋄)∗(s, s̃), based
on PM⋄(s, s̃). The relation between EDTMC and the reducedEDTMC (REDTMC)
is obtained using the transition function (PM∗)⋄(s, s̃), based on PM∗(s, s̃).

29

RSMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

1

1 1

l
l+m

m
l+m

1

ρ

2

1

θ

1

φ

Figure 5. The reduced SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1
k
); ((({c}, ♮0

l
); ({d}, θ))[](({e}, ♮0m); ({f}, φ))[]

({g}, ♮0
l+m

))) ∗ Stop].

Let G be a dynamic expression. We shall prove that the TPM (P⋄)∗ for the em-
bedded RDTMC(G) (ERDTMC(G)), (forwardly) constructed by reduction (elim-
inating vanishing states) of DTMC(G), followed by embedding ERDTMC(G)
into RDTMC(G), coincides with the (finally) embedded TPM ((P∗)⋄)∗, (rever-
sely) constructed by embedding EDTMC(G) into SMC(G), followed by reduc-
tion REDTMC(G) of EDTMC(G), and final embedding EREDTMC(G) into
RSMC(G). The final embedding in the reverse construction is needed, since new
self-loops may arise after reducing EDTMC(G), i.e. REDTMC(G) may become not
an EDTMC, but a DTMC featuring self-loops with probabilities less than 1.

Note that for s, s̃ ∈ DRT (G), we have (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) in
ERDTMC(G). Here SL⋄(s) is the self-loops abstraction factor in s in RDTMC(G).
This corresponds to a different expression (PM∗)⋄(s, s̃) = (SL · PM)⋄(s, s̃) in
REDTMC(G). In particular, SL⋄(s) > SL(s) when PM⋄(s, s) > PM(s, s), being
the reason for a new self-loop associated with s in RDTMC(G). As we shall see, in
that case (PM⋄)∗(s, s̃) > (PM∗)⋄(s, s̃).

The following theorem relates those finally embedded reduced embedded TPM
((P∗)⋄)∗ (i.e. the TPM for EREDTMC(G)) and embedded reduced TPM (P⋄)∗ (the
TPM for ERDTMC(G)).

Theorem 4.10. Let G be a dynamic expression, (P⋄)∗ results from embedding the
TPM P⋄ for RDTMC(G), and ((P∗)⋄)∗ results from reduction and final embedding
the TPM P∗ for EDTMC(G). Then

((P∗)⋄)∗ = (P⋄)∗.

Proof. Let Pr be the reordered (by moving vanishing states to the first positions)
TPM for DTMC(G). Like in Section 4, we reorder the states from DR(G) so that the
first rows and columns of Pr will correspond to the states from DRV (G) and the last
ones will correspond to the states fromDRT (G). Let |DR(G)| = n and |DRT (G)| = m.
Then the reordered TPM for DTMC(G) can be decomposed as

Pr =

(
C D

E F

)
.

The elements of the (n − m) × (n − m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n−m)×m submatrix D are the

30

probabilities to move from vanishing to tangible states. The elements of them×(n−m)
submatrix E are the probabilities to move from tangible to vanishing states, and those
of them×m submatrix F are the probabilities to move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G =
∑∞

k=0C
k are the probabilities to move from

vanishing to vanishing states in any number of state changes, without traversal of tan-
gible states, in DTMC(G). We define the matrix H = EGD. For s, s̃ ∈ DRT (G), let
PMF (s, s̃) and PMH(s, s̃) be the probabilities to change from s to s̃ for the submatrix
F and matrix H, respectively.

In a similar way, the reordered TPM for EDTMC(G) can be decomposed as

P∗
r =

(
C∗ D∗

E∗ F∗

)
.

The elements of the submatrices of P∗
r resemble those of the submatrices of Pr.

The TPM (P∗)⋄ for REDTMC(G) is the m×m matrix, calculated as

(P∗)⋄ = F∗ +E∗G′D∗,

where the elements of the matrix G′ =
∑∞

k=0(C
∗)k are the probabilities to move

from vanishing to vanishing states in any number of state changes, without traversal
of tangible states, in EDTMC(G). We define the matrix H′ = E∗G′D∗. For s, s̃ ∈
DRT (G), let PMH′(s, s̃) be the probability to change from s to s̃ for the matrix H′.

By the proof of Proposition 3 from [42], we have P∗
r = Diag(SLr)(Pr − I) + I,

where SLr is the reordered (by moving vanishing states to the first positions) self-loops
abstraction vector of G in DTMC(G). Let SLC and SLF be the self-loops abstraction
subvectors of G for the submatrices C and F, respectively, i.e. the ‘head’ of length
n−m and the ‘tail’ of length m, taken from the vector SLr, with the next elements:
∀s ∈ DRV (G) SLC(s) = SLr(s) and ∀s ∈ DRT (G) SLF (s) = SLr(s). Then we have

P∗
r =

(
Diag(SLC) 0

0 Diag(SLF)

)(
C− I D

E F− I

)
+

(
I 0

0 I

)
=

(
Diag(SLC)(C− I) + I Diag(SLC)D

Diag(SLF)E Diag(SLF)(F − I) + I

)
.

Hence, C∗=Diag(SLC)(C− I) + I, D∗=Diag(SLC)D, E
∗=Diag(SLF)E,

F∗ = Diag(SLF)(F − I) + I. Then (P∗)⋄ = F∗ + E∗G′D∗ = Diag(SLF)(F − I) +
I+Diag(SLF)EG′Diag(SLC)D = Diag(SLF)((F+EG′Diag(SLC)D)− I) + I. Let
us explore the matrix G′Diag(SLC). The matrix G′ can have two different forms,
depending on whether the loops among vanishing states exist in EDTMC(G), hence,
we consider two cases.

(1) There exist no loops among vanishing states in EDTMC(G). We have ∃l ∈

N ∀k > l (C∗)k = 0 and G′ =
∑l

k=0(C
∗)k.

Then there are no loops among different vanishing states in DTMC(G)
(but self-loops may exist in vanishing states), since no loop among different

31

states is removed and all self-loops (in the non-absorbing states) are removed in
EDTMC(G), with respect to DTMC(G).

Let there are no self-loops in vanishing states in DTMC(G). In such a case,
∀s ∈ DTV (G) SLC(s) = SL(s) = 1 and Diag(SLC) = I. We have C∗ =

Diag(SLC)(C−I)+I = I(C−I)+I = C andG′ =
∑l

k=0(C
∗)k =

∑l
k=0C

k = G.
Thus, G′Diag(SLC) = GI = G.

Let there are self-loops in vanishing states in DTMC(G). In such a case,
G = (I−C)−1. Note that C 6= I 6= C∗, since there exist no absorbing vanishing
states in DTMC(G). It is easy to prove by induction on l ∈ N that G′(I −

C∗) =
(∑l

k=0(C
∗)k

)
(I −C∗) = I− (C∗)l+1. Since (C∗)l+1 = 0, we get G′(I −

C∗) = I − 0 = I. In a similar way, we show that (I − C∗)G′ = I. We have
limk→∞(C∗)k = 0. Hence, G′ = (I−C∗)−1 = (I −Diag(SLC)(C− I)− I)−1 =
(Diag(SLC)(I − C))−1 = (I − C)−1Diag(SLC)

−1 = GDiag(SLC)
−1. Thus,

G′Diag(SLC) = GDiag(SLC)
−1Diag(SLC) = G.

(2) There exist loops among vanishing states in EDTMC(G). We have
limk→∞(C∗)k = 0 and G′ = (I−C∗)−1.

Then there are loops among vanishing states in DTMC(G), since no loop
among states is removed and self-loops are possibly added in DTMC(G), with
respect to EDTMC(G). Hence, limk→∞(C)k = 0 and G = (I−C)−1.

We have G′ = (I−C∗)−1 = (I−Diag(SLC)(C− I)− I)−1 = (Diag(SLC)(I−
C))−1 = (I − C)−1Diag(SLC)

−1 = GDiag(SLC)
−1. Thus, G′Diag(SLC) =

GDiag(SLC)
−1Diag(SLC) = G.

In the both cases above, we get G′Diag(SLC) = G. Hence, (P∗)⋄ =
Diag(SLF)((F + EG′Diag(SLC)D) − I) + I = Diag(SLF)((F + EGD) − I) + I =
Diag(SLF)(P

⋄ − I) + I.
Let s, s̃ ∈ DRT (G). The EDTMC for RDTMC(G) is denoted by ERDTMC(G)

and has the probabilities (PM⋄)∗(s, s̃) to change from s to s̃. The RDTMC for
EDTMC(G) is denoted by REDTMC(G) and has the probabilities (PM∗)⋄(s, s̃) to
change from s to s̃. The EDTMC for REDTMC(G) is denoted by EREDTMC(G)
and has the probabilities ((PM∗)⋄)∗(s, s̃) to change from s to s̃.

Let SLH and SLH′ be the self-loops abstraction vectors of G for the matrices
H and H′, respectively. We have (P∗)⋄ = F∗ + H′ = F∗ + Diag(SLF)EGD =
F∗ + Diag(SLF)H. Hence, H′ = Diag(SLF)H and ∀s, s̃ ∈ DRT (G) PMH′(s, s̃) =
SLF (s)PMH(s, s̃). Since there are no self-loops in F∗, we conclude that (SL∗)⋄ = SLH′

is the self-loops abstraction vector of G in REDTMC(G).

• Let PMF (s, s)+PMH(s, s) = PM⋄(s, s) < 1 and PMF (s, s), PMH (s, s) > 0, i.e.
s is non-absorbing in RDTMC(G) and there exist self-loops associated with s in
DTMC(G) and extra self-loops (in addition to those inherited from DTMC(G))
in RDTMC(G).

In ERDTMC(G), we have (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) = PM⋄(s,s̃)
1−PM⋄(s,s) =

PM⋄(s,s̃)
1−PMF (s,s)−PMH(s,s) =

PM⋄(s,s̃)

1−PMF (s,s)

1−
PMH (s,s̃)

1−PMF (s,s)

= SLF (s)PM⋄(s,s̃)
1−SLF (s)PMH(s,s) .

Then the self-loops abstraction factor in s in RDTMC(G) is SL⋄(s) =
SLF (s)

1−SLF (s)PMH(s,s) = SLF (s)SLH′(s), where SLH′(s) = 1
1−SLF (s)PMH(s,s) is the

self-loops abstraction factor in s in REDTMC(G). Thus, (PM⋄)∗(s, s̃) =
SLF (s)SLH′(s)PM⋄(s, s̃).

In EREDTMC(G), we have ((PM∗)⋄)∗(s, s̃) = (SL∗)⋄(s)(PM∗)⋄(s, s̃) =

32

SLH′(s)(PM∗)⋄(s, s̃) = SLH′(s)SLF (s)PM
⋄(s, s̃) = (PM⋄)∗(s, s̃).

The other three cases (no self-loops associated with s in DTMC(G), no ex-
tra self-loops associated with s in RDTMC(G), or no any self-loops associated
with s in RDTMC(G)) are treated analogously, by replacing PMF (s, s) or/and
PMH(s, s) with zeros.

• Let PMF (s, s) + PMH(s, s) = PM⋄(s, s) = 1 and PMF (s, s), PMH(s, s) > 0,
i.e. s is absorbing in RDTMC(G) and there exist self-loops associated with s in
DTMC(G) and extra self-loops (in addition to those inherited from DTMC(G))
in RDTMC(G).

In ERDTMC(G), we have (PM⋄)∗(s, s) = 1 by definition of the EDTMC,
since PM⋄(s, s) = 1.

In REDTMC(G), the probability of a self-loop associated with s is

(PM∗)⋄(s, s) = PMH′(s, s) = SLF (s)PMH(s, s) =
PMH(s,s)

1−PMF (s,s)=
1−PMF (s,s)
1−PMF (s,s)=1.

In EREDTMC(G), we have ((PM∗)⋄)∗(s, s) = 1 = (PM⋄)∗(s, s) by defini-
tion of the EDTMC, since (PM∗)⋄(s, s) = 1.

The other three cases (no self-loops associated with s in DTMC(G), no ex-
tra self-loops associated with s in RDTMC(G), or no any self-loops associated
with s in RDTMC(G)) are treated analogously, by replacing PMF (s, s) or/and
PMH(s, s) with zeros.

Thus, ((P∗)⋄)∗ = (P⋄)∗ and EREDTMC(G) = ERDTMC(G).

Thus, reduction before embedding is more optimal computationally for DTMCs of the
process expressions, since only one embedding is needed in that case. This is very im-
portant when the DTMCs have many loops from tangible states via (one or more) vani-
shing states only. Such loops remain after the first embedding, and they become self-lo-
ops after the subsequent reduction, which are removed just after the second embedding.

We can now explain the inequality presented above Theorem 4.10, by using its
proof. Let s, s̃ ∈ DRT (G). Then SLF (s)SLH′(s) = SL⋄(s) > SL(s) = SLF (s) implies
SLH′(s) > 1. Thus, (PM⋄)∗(s, s̃) = SL⋄(s)PM⋄(s, s̃) = SLF (s)SLH′(s)PM⋄(s, s̃) >
SLF (s)PM

⋄(s, s̃) = (PM∗)⋄(s, s̃).

Definition 4.11. Let G be a dynamic expression, s ∈ DRT (G) while SLF (s) is
the self-loops abstraction factor in s for the submatrix F (from the equation P⋄ =
F + EGD calculating the TPM for RDTMC(G)) and SLH′(s) is the self-loops ab-
straction factor in s in REDTMC(G) (for the matrix H′ = Diag(SLF)EGD, whose
elements are the probabilities to move from tangible to tangible states, via any positive
number of vanishing states, without traversal of tangible states, in EDTMC(G)).

The reduced SMC (RSMC) of G, denoted by RSMC(G), has the EDTMC
EREDTMC(G) and the sojourn time in every s ∈ DRT (G) is geometrically dis-
tributed with the parameter 1

SLF (s)SLH′ (s) .

The following proposition demonstrates coincidence of RSMC and RDTMC.

Proposition 4.12. Let G be a dynamic expression. Then RSMC(G)=RDTMC(G).

Proof. By Theorem 4.10, EREDTMC(G) = ERDTMC(G). The sojourn time in
every s ∈ DRT (G) is geometrically distributed with the parameter 1

SLF (s)SLH′ (s) =
1

SL⋄(s) =1−PM⋄(s, s)=1−PMF (s, s)−PMH(s, s), where SLH′(s)= 1
1−SLF (s)PMH(s,s) .

Here PMH(s, s) is the self-loop probability in s for the matrix H = EGD (from the

33

equation P⋄ = F + EGD calculating the TPM for RDTMC(G)). Remember that
SL⋄(s) is the self-loops abstraction factor in s in RDTMC(G). Hence, RSMC(G) =
RDTMC(G).

Example 4.13. Let E be from Example 3.14. The TPMs for RDTMC(E) and
ERDTMC(E) are

P⋄ =




1− ρ ρ 0 0

0 1
2

l
2(l+m)

m
2(l+m)

0 θ 1− θ 0
0 φ 0 1− φ


 , (P⋄)∗ =




0 1 0 0

0 0 l
l+m

m
l+m

0 1 0 0
0 1 0 0


 .

The TPMs for REDTMC(E) and EREDTMC(E) are

(P∗)⋄ =




0 1 0 0

0 1
2

l
2(l+m)

m
2(l+m)

0 1 0 0
0 1 0 0


 , ((P∗)⋄)∗ =




0 1 0 0

0 0 l
l+m

m
l+m

0 1 0 0
0 1 0 0


 .

The self-loops abstraction subvector of E for the submatrix F (see Example 4.8)

is SLF =
(
1
ρ
, 1, 1

θ
, 1
φ

)
. The self-loops abstraction vector of E in REDTMC(E) (for

the matrix H′, see below) is (SL∗)⋄ = SLH′ = (1, 2, 1, 1). The self-loops abstraction

vector of E in RDTMC(E) is SL⋄ = 1Diag(SLF)Diag(SLH′) =
(
1
ρ , 2,

1
θ ,

1
φ

)
, where

1 is a row vector of n values 1.
The elements of the matrixH′ are the probabilities to move from tangible to tangible

states, via any positive number of vanishing states, without traversal of tangible states,
in EDTMC(G). We have H′ = Diag(SLF)H, where elements of the matrix H =
EGD (see Example 4.8) are the probabilities to move from tangible to tangible states,
via any positive number of vanishing states, without traversal of tangible states, in
DTMC(G). The matrices H and H′ are

H =




0 0 0 0

0 1
2

l
2(l+m)

m
2(l+m)

0 0 0 0
0 0 0 0


 , H′ =




0 0 0 0

0 1
2

l
2(l+m)

m
2(l+m)

0 0 0 0
0 0 0 0


 .

Then it is easy to check that

((P∗)⋄)∗ = Diag(SLH′)Diag(SLF)(P
⋄ − I) + I = Diag(SL⋄)(P⋄ − I) + I = (P⋄)∗.

5. Discussion

In this paper, we have considered a discrete time stochastic extension dtsdPBC of
PBC, enriched with deterministic multiactions. The calculus has a parallel step ope-
rational semantics, based on labeled probabilistic transition systems and a denotati-

34

Performance evaluation

Preservation Elimination
(RDTMC=RSMC)

Embedding
(SMC)

Abstraction
(DTMC)

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

◗
◗◗s

Figure 6. Performance analysis methods in dtsdPBC.

onal semantics in terms of a subclass of LDTSDPNs [40,41]. A technique of perfor-
mance evaluation within the calculus has been presented (embedding) that explores
the underlying stochastic process, which is a semi-Markov chain (SMC). In such an
SMC, the sojourn time in every tangible state is geometrically distributed (being one
or infinity, as special cases) while the sojourn time in every vanishing state is zero.
The corresponding discrete time Markov chain (DTMC) or its reduction (RDTMC)
by eliminating vanishing states may alternatively be studied for that purpose (the
abstraction and elimination methods). Since both embedding and abstraction preserve
vanishing states, they are classified as the preservation methods [42].

We have formally proved that the reduced SMC (RSMC) coincides with the
RDTMC. The proof of this very intuitive fact appeared to be rather involved. First,
we have shown that an additional embedding (into RSMC) of the reduced EDTMC
is needed to coincide with the embedded RDTMC. Second, we have calculated the
respective sojourn times in the tangible states (those with positive sojourn times) and
have checked their coincidence. It is more optimal to construct the RDTMC than to
build the RSMC, since the former approach involves only one embedding that requires
a lot of computations. This is especially important for the DTMCs having many loops
starting from (and ending in the same) tangible states and going via (one or more)
vanishing states only, since such loops are not removed by the first embedding. Figure
6 depicts the performance analysis methods in dtsdPBC with our coincidence result.

In the continuous time setting, the embedding of the EDTMC into an SMC with
only exponential and zero sojourn times is not hard to construct. Such SMCs resemble
CTMCs, in that their behaviour is not changed at presence of self-loops (the average
sojourn times are kept). The EDTMC transition probabilities are obtained by normali-
zing the rates of the transitions from each state to the different ones. Only the embed-
ding of the reduced EDTMC into the RSMC (actually being a CTMC) requires more
computations. In our discrete time setting, we cannot simply abstract from self-loops,
since each of them takes one time unit and thereby influences the average sojourn time.
Then avoiding the additional embedding allows us to decrease the computation costs.

Future work consists in constructing a congruence relation for dtsdPBC, i.e. the
equivalence that withstands application of all operations of the algebra. A possible
candidate is a stronger version of the equivalence with respect to transition systems,
with two extra transitions skip and redo, like in sPBC [23]. The recursion operation
could be added to dtsdPBC to increase specification power of the algebra. We also
plan to extend dtsdPBC with discrete phase type multiaction delays that are described
by arbitrary finite absorbing DTMCs and include geometric and non-Markovian (like
deterministic) delays as special cases.

35

6. Conclusion

To sum up, we have extended Petri box calculus by incorporating discrete time stochas-
tic and deterministic delays, allowing for more precise modeling of parallel processes.
We have introduced a performance evaluation technique based on semi-Markov chains
and have demonstrated that the reduced semi-Markov chain is identical to the reduced
discrete time Markov chain. This finding simplifies computations in complex systems,
particularly those with many loops through vanishing states. Future work will focus
on enhancing the calculus by introducing a congruence relation, recursion operation,
and extending the delay types to include more general cases.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Hoare CAR. Communicating sequential processes. Prentice-Hall, London, UK; 1985.
[2] Bergstra JA, Klop JW. Algebra of communicating processes with abstraction. Theor

Comput Sci. 1985;37:77–121.
[3] Milner RAJ. Communication and concurrency. Prentice-Hall, Upper Saddle River, NJ,

USA; 1989.
[4] Hermanns H, Rettelbach M. Syntax, semantics, equivalences and axioms for MTIPP.

In: Herzog U, Rettelbach M, editors. Proc. 2nd Int. Workshop on Process Algebra and
Performance Modelling (PAPM) 1994; (Arbeitsberichte des IMMD; Vol. 27); Regensberg
/ Erlangen, Germany. Universität Erlangen-Nürnberg, Germany; 1994. p. 71–88.

[5] Hillston J. A compositional approach to performance modelling [dissertation]. Edinburgh,
UK: Department of Computer Science, University of Edinburgh; 1994.

[6] Hillston J. A compositional approach to performance modelling. Cambridge University
Press, Cambridge, UK; 1996.

[7] Bernardo M, Gorrieri R. A tutorial on EMPA: a theory of concurrent processes with
nondeterminism, priorities, probabilities and time. Theor Comput Sci. 1998;202:1–54.

[8] Best E, Devillers R, Hall JG. The box calculus: a new causal algebra with multi-label
communication. In: Rozenberg G, editor. Advances in Petri Nets (APN) 1992; (Lect.
Notes Comp. Sci.; Vol. 609). Springer; 1992. p. 21–69.

[9] Best E, Koutny M. A refined view of the box algebra. In: Michelis GD, Diaz M, editors.
Proc. 16th Int. Conf. on Application and Theory of Petri Nets (ICATPN) 1995; (Lect.
Notes Comp. Sci.; Vol. 935). Springer; 1995. p. 1–20.

[10] Best E, Devillers R, Koutny M. Petri net algebra. Springer; 2001. EATCS Monographs
on Theor. Comput. Sci.

[11] Best E, Devillers R. Petri net primer: a compendium on the core model, analysis, and
synthesis. 1st ed. Springer International Publishing, Cham, Switzerland / Birkhäuser,
Germany; 2024. Computer Science Foundations and Applied Logic Series (CSFAL).

[12] Koutny M. A compositional model of time Petri nets. In: Nielsen M, Simpson D, editors.
Proc. 21st Int. Conf. on Application and Theory of Petri Nets (ICATPN) 2000; (Lect.
Notes Comp. Sci.; Vol. 1825). Springer; 2000. p. 303–322.

[13] Merlin PM, Farber DJ. Recoverability of communication protocols: implications of a the-
oretical study. IEEE Trans Communications. 1976;24:1036–1043.

[14] Marroqúın A O, de Frutos E D. TPBC: timed Petri box calculus. Madrid, Spain: Depar-
tamento de Sistemas Infofmáticos y Programación, Universidad Complutense de Madrid;
2000. Technical report. In Spanish.

36

[15] Marroqúın A O, de Frutos E D. Extending the Petri box calculus with time. In: Colom JM,
Koutny M, editors. Proc. 22nd Int. Conf. on Applications and Theory of Petri Nets
(ICATPN) 2001; (Lect. Notes Comp. Sci.; Vol. 2075). Springer; 2001. p. 303–322.

[16] Ramchandani C. Perfomance evaluation of asynchronous concurrent systems by timed
Petri nets [dissertation]. Cambridge, USA: Massachusetts Institute of Technology; 1973.

[17] Niaouris A. An algebra of Petri nets with arc-based time restrictions. In: Liu Z, Araki K,
editors. Proc. 1st Int. Colloquium on Theoretical Aspects of Computing (ICTAC) 2004;
(Lect. Notes Comp. Sci.; Vol. 3407). Springer; 2005. p. 447–462.

[18] Niaouris A, Koutny M. An algebra of timed-arc Petri nets. Newcastle upon Tyne, UK:
School of Computer Science, University of Newcastle upon Tyne; 2005. Technical Report
CS-TR-895. Available from: http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf.

[19] Bolognesi T, Lucidi F, Trigila S. From timed Petri nets to timed LOTOS. In: Logrippo L,
Probert RL, Ural H, editors. Proc. IFIP WG6.1 10th Int. Symposium on Protocol Specifi-
cation, Testing and Verification (PSTV) 1990; Ottawa, Ontario, Canada. Elsevier Science
Publishers (North-Holland), Amsterdam, The Netherlands; 1990. p. 395–408.

[20] Hanish HM. Analysis of place/transition nets with timed-arcs and its application to batch
process control. In: Marsan MA, editor. Proc. 14th Int. Conf. on Application and Theory
of Petri Nets (ICATPN) 1993; (Lect. Notes Comp. Sci.; Vol. 691). Springer; 1993. p.
282–299.

[21] Macià S H, Valero R V, de Frutos E D. sPBC: a Markovian extension of finite Petri
box calculus. In: Proc. 9th IEEE Int. Workshop on Petri Nets and Performance Models
(PNPM) 2001; Aachen, Germany. IEEE Computer Society Press; 2001. p. 207–216.

[22] Macià S H, Valero R V, Cazorla L DC, et al. Introducing the iteration in sPBC. In:
de Frutos E D, Núñez G M, editors. Proc. 24th Int. Conf. on Formal Techniques for
Networked and Distributed Systems (FORTE) 2004; (Lect. Notes Comp. Sci.; Vol. 3235).
Springer; 2004. p. 292–308.

[23] Macià S H, Valero R V, Cuartero G F, et al. A congruence relation for sPBC. Form
Methods Syst Des. 2008;32:85–128.

[24] Marsan MA. Stochastic Petri nets: an elementary introduction. In: Rozenberg G, editor.
Advances in Petri Nets (APN) 1989; (Lect. Notes Comp. Sci.; Vol. 424). Springer; 1990.
p. 1–29.

[25] Balbo G. Introduction to stochastic Petri nets. In: Brinksma E, Hermanns H, Katoen JP,
editors. Proc. 1st EEF/Euro Summer School of Trends in Comp. Sci. 2000; (Lect. Notes
Comp. Sci.; Vol. 2090). Springer; 2001. p. 84–155.

[26] Macià S H, Valero R V, Cuartero G F, et al. sPBC: a Markovian extension of Petri box
calculus with immediate multiactions. Fundam Inform. 2008;87:367–406.

[27] Macià S H, Valero R V, Cuartero G F, et al. Modelling a video conference system with
sPBC. Appl Math Inf Sci. 2016;10:475–493.

[28] Balbo G. Introduction to generalized stochastic Petri nets. In: Bernardo M, Hillston J,
editors. Formal Methods for Performance Evaluation. Proc. 7th Int. School on Formal
Methods for the Design of Computer, Communication, and Software Systems (SFM)
2007; (Lect. Notes Comp. Sci.; Vol. 4486). Springer; 2007. p. 83–131.

[29] Tarasyuk IV. Discrete time stochastic Petri box calculus. Oldenburg, Germany: Carl
von Ossietzky Universität Oldenburg; 2005. Berichte aus dem Department für Informatik
3/05. Available from: http://itar.iis.nsk.su/files/itar/pages/dtspbcib cov.pdf.

[30] Tarasyuk IV. Iteration in discrete time stochastic Petri box calculus. Bull Nov Comp
Center, Comp Science, IIS Special Issue. 2006;24:129–148.Available from: http://bulletin.
iis.nsk.su/files/article/tarasyuk 2.pdf.

[31] Tarasyuk IV. Stochastic Petri box calculus with discrete time. Fundam Inform. 2007;
76:189–218.

[32] Tarasyuk IV. Equivalence relations for modular performance evaluation in dtsPBC. Math
Struct Comp Sci. 2014;24:78–154 (e240103).

[33] Molloy MK. On the integration of the throughput and delay measures in distributed
processing models [dissertation]. Los Angeles, CA, USA: University of California; 1981.

37

[34] Molloy MK. Discrete time stochastic Petri nets. IEEE Trans Software Eng. 1985;11:417–
423.

[35] Tarasyuk IV, Macià S H, Valero R V. Discrete time stochastic Petri box calculus with
immediate multiactions. Albacete, Spain: Department of Computer Systems, High School
of Computer Science Engineering, University of Castilla - La Mancha; 2010. Technical
Report DIAB-10-03-1. Available from: http://www.dsi.uclm.es/descargas/
technicalreports/DIAB-10-03-1/dtsipbc.pdf.

[36] Tarasyuk IV, Macià S H, Valero R V. Discrete time stochastic Petri box calculus with im-
mediate multiactions dtsiPBC. In: Bradley J, Heljanko K, Knottenbelt W, et al., editors.
Proc. 6th Int. Workshop on Practical Applications of Stochastic Modelling (PASM) 2012
and 11th Int. Workshop on Parallel and Distributed Methods in Verification (PDMC)
2012; (Electronic Notes in Theor. Comp. Sci.; Vol. 296); London, UK. Elsevier; 2013. p.
229–252.

[37] Tarasyuk IV, Macià S H, Valero R V. Performance analysis of concurrent systems in
algebra dtsiPBC. Programming and Computer Software. 2014;40:229–249.

[38] Tarasyuk IV, Macià S H, Valero R V. Stochastic process reduction for performance eval-
uation in dtsiPBC. Siberian Electronic Mathematical Reports. 2015;12:513–551.

[39] Tarasyuk IV, Macià S H, Valero R V. Stochastic equivalence for performance analysis of
concurrent systems in dtsiPBC. Siberian Electronic Mathematical Reports. 2018;15:1743–
1812.

[40] Tarasyuk IV. Discrete time stochastic and deterministic Petri box calculus. Ithaca,
NY, USA: Computing Research Repository, Cornell University Library; 2019. CoRR
abs/1905.00456.

[41] Tarasyuk IV. Discrete time stochastic and deterministic Petri box calculus dtsdPBC.
Siberian Electronic Mathematical Reports. 2020;17:1598–1679.

[42] Tarasyuk IV. Performance evaluation in stochastic process algebra dtsdPBC. Siberian
Electronic Mathematical Reports. 2021;18:1105–1145.

[43] Tarasyuk IV. Performance preserving equivalence for stochastic process algebra dtsdPBC.
Siberian Electronic Mathematical Reports. 2023;20:646–699.

[44] Zijal R, German R. A new approach to discrete time stochastic Petri nets. In: Cohen G,
Quadrat JP, editors. Proc. 11th Int. Conf. on Analysis and Optimization of Systems,
Discrete Event Systems (DES) 1994; (Lecture Notes in Control and Information Sciences;
Vol. 199); Sophia-Antipolis, France. Springer; 1994. p. 198–204.

[45] Zijal R. Discrete time deterministic and stochastic Petri nets. In: Hommel G, editor. Proc.
Int. Workshop on Quality of Communication-Based Systems 1994; Technical University
of Berlin, Germany. Kluwer Academic Publishers; 1995. p. 123–136.

[46] Zijal R. Analysis of discrete time deterministic and stochastic Petri nets [dissertation].
Berlin, Germany: Technical University of Berlin; 1997.

[47] Marsan MA, Balbo G, Conte G, et al. Modelling with generalized stochastic Petri nets.
John Wiley and Sons; 1995. Wiley Series in Parallel Computing.

[48] van der Aalst WMP, van Hee KM, Reijers HA. Analysis of discrete-time stochastic Petri
nets. Statistica Neerlandica. 2000;54:237–255.

[49] Ross SM. Stochastic processes. 2nd ed. John Wiley and Sons, New York, USA; 1996.
[50] Stewart WJ. Probability, Markov chains, queues, and simulation. the mathematical basis

of performance modeling. Princeton University Press, Princeton, NJ, USA; 2009.
[51] Kulkarni VG. Modeling and analysis of stochastic systems. 2nd ed. Chapman and Hall /

CRC Press; 2010. Texts in Statistical Science.
[52] Borovkov AA. Probability theory. 5th ed. Springer London; 2013. Universitext (UTX).
[53] Trivedi KS. Probability and statistics with reliability, queuing, and computer science

applications. 2nd ed. John Wiley and Sons, Hoboken, NJ, USA; 2016.
[54] Lakatos L, Szeidl L, Telek M. Introduction to queueing systems with telecommunication

applications. 2nd ed. Springer Nature, Cham, Switzerland; 2019.
[55] Ross SM. Introduction to probability models. 12th ed. Academic Press, Elsevier, UK;

2019.

38

[56] Shiryaev AN. Probability-2. 3rd ed. (Graduate Texts in Mathematics (GTM); Vol. 95).
Springer, New York; 2019.

[57] Zimmermann A, Freiheit J, German R, et al. Petri net modelling and performability
evaluation with TimeNET 3.0. In: Haverkort BR, Bohnenkamp HC, Smith CU, editors.
Proc. 11th Int. Conf. on Modelling Techniques and Tools for Computer Performance
Evaluation (TOOLS) 2000; (Lect. Notes Comp. Sci.; Vol. 1786). Springer; 2000. p. 188–
202.

[58] Zimmermann A, Freiheit J, Hommel G. Discrete time stochastic Petri nets for model-
ing and evaluation of real-time systems. In: Proc. 9th Int. Workshop on Parallel and
Distributed Real Time Systems (WPDRTS) 2001; San Francisco, USA; 2001. p. 282–286.

[59] Zimmermann A. Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In:
Gaujal B, Jean-Marie A, Jorswieck E, et al., editors. Proc. 6th Int. ICST Conf. on Per-
formance Evaluation Methodologies and Tools (VALUETOOLS) 2012; Cargèse, France.
IEEE Computer Society Press; 2012. p. 1–10.

[60] Zijal R, Ciardo G. Discrete deterministic and stochastic Petri nets. Hampton, VA, USA:
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley
Research Center; 1996. ICASE Report 96-72. Available from: http://www.cs.odu.edu/
˜mln/ltrs-pdfs/icase-1996-72.pdf.

[61] Zijal R, Ciardo G, Hommel G. Discrete deterministic and stochastic Petri nets. In: Irm-
scher K, Mittasch C, Richter K, editors. Proc. 9th ITG/GI Professional Meeting on Mea-
suring, Modeling and Evaluation of Computer and Communication Systems (MMB) 1997,
Volume 1; Freiberg, Germany. VDE-Verlag, Berlin, Germany; 1997. p. 103–117.

[62] Haverkort BR. Markovian models for performance and dependability evaluation. In:
Brinksma E, Hermanns H, Katoen JP, editors. Proc. 1st EEF/Euro Summer School of
Trends in Comp. Sci. 2000; (Lect. Notes Comp. Sci.; Vol. 2090). Springer; 2001. p. 38–83.

[63] van Glabbeek RJ. The linear time – branching time spectrum II: the semantics of sequen-
tial systems with silent moves. Extended abstract. In: Best E, editor. Proc. 4th Int. Conf.
on Concurrency Theory (CONCUR) 1993; (Lect. Notes Comp. Sci.; Vol. 715). Springer;
1993. p. 66–81.

[64] Mudge TN, Al-Sadoun HB. A semi-Markov model for the performance of multiple-bus
systems. IEEE Trans Computers. 1985;C-34:934–942.

[65] Katoen JP. Quantinative and qualitative extensions of event structures [dissertation]. En-
schede, The Netherlands: Centre for Telematics and Information Technology, University
of Twente; 1996.

[66] Chiola G. A software package for the analysis of generalized stochastic Petri net models.
In: Proc. 1st Int. Workshop on Timed Petri Nets 1985; Turin, Italy. IEEE Computer
Society Press; 1985. p. 136–143.

[67] Ciardo G, Muppala JK, Trivedi KS. Analysis of deterministic and stochastic Petri nets.
In: Proc. 3rd Int. Workshop on Petri Nets and Performance Models (PNPM) 1989; Kyoto,
Japan. IEEE Computer Society Press; 1989. p. 142–151.

[68] Ciardo G, Muppala JK, Trivedi KS. On the solution of GSPN reward models. Perform
Eval. 1991;12:237–253.

[69] Bause F, Kritzinger PS. Stochastic Petri nets: an introduction to the theory. 2nd ed.
Friedrich Vieweg and Sohn, Braunschweig / Wiesbaden, Germany; 2002.

39

