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Abstract

We propose dtsdPBC, an extension with deterministically timed multiactions of discrete time stochas-
tic and immediate Petri box calculus (dtsiPBC), previously presented by I.V. Tarasyuk, H. Macià and V.
Valero. In dtsdPBC, non-negative integers specify deterministic multiactions with fixed (including zero)
time delays. The step operational semantics is constructed via labeled probabilistic transition systems. The
denotational semantics is defined on the basis of a subclass of labeled discrete time stochastic Petri nets with
deterministic transitions. We also define step stochastic bisimulation equivalence of the algebraic expres-
sions, used to compare the qualitative and quantitative behaviour of the specified processes. The consistency
of the operational and denotational semantics of dtsdPBC up to that equivalence is established. In order
to evaluate performance, the corresponding semi-Markov chains and (reduced) discrete time Markov chains
are analyzed. We explain how step stochastic bisimulation equivalence of expressions can be used to reduce
their transition systems and underlying semi-Markov chains, as well as to compare the stationary behaviour.
We prove that the introduced equivalence guarantees coincidence of the functional and performance char-
acteristics and therefore can be used to simplify performance analysis of the algebraic processes. In a case
study, a method of modeling, performance evaluation and behaviour reduction for concurrent systems with
discrete fixed and stochastic delays is applied to the generalized shared memory system with maintenance.

Keywords: stochastic Petri net, stochastic process algebra, Petri box calculus, discrete time, stochastic
multiaction, deterministic multiaction, transition system, operational semantics, stochastic transition, de-
terministic transition, dtsd-box, denotational semantics, Markov chain, performance evaluation, stochastic
bisimulation, reduction, shared memory system.

1 Introduction

Algebraic process calculi like CSP [44], ACP [8] and CCS [66] are well-known formal models for specification of
computing systems and analysis of their behaviour. In such process algebras (PAs), systems and processes are
specified by formulas, and verification of their properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. In recent decades, stochastic extensions of PAs were proposed, such as MTIPP [41],
PEPA [43] and EMPA [14]. Unlike standard PAs, stochastic process algebras (SPAs) do not just specify actions
which can occur (qualitative features), but they associate with the actions the distribution parameters of their
random time delays (quantitative characteristics).

1.1 Petri box calculus

PAs specify concurrent systems in a compositional way via an expressive formal syntax. On the other hand,
Petri nets (PNs) provide a graphical representation of such systems and capture explicit asynchrony in their
behaviour. To combine the advantages of both models, a semantics of algebraic formulas via PNs was defined.

Petri box calculus (PBC) [15, 17, 16] is a flexible and expressive process algebra developed as a tool for
specification of the PNs structure and their interrelations. Its goal was also to propose a compositional semantics
for high level constructs of concurrent programming languages in terms of elementary PNs. Formulas of PBC
are combined not from single (visible or invisible) actions and variables, like in CCS, but from multisets of
elementary actions and their conjugates, called multiactions (basic formulas). The empty multiset of actions is
interpreted as the silent multiaction specifying some invisible activity. In contrast to CCS, synchronization is
separated from parallelism (concurrent constructs). Synchronization is a unary multi-way stepwise operation,
based on communication of actions and their conjugates. This extends the CCS approach with conjugate
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matching labels. Synchronization in PBC is asynchronous, unlike that in Synchronous CCS (SCCS) [66].
Other operations are sequence and choice (sequential constructs). The calculus includes also restriction and
relabeling (abstraction constructs). To specify infinite processes, refinement, recursion and iteration operations
were added (hierarchical constructs). Thus, unlike CCS, PBC has an additional iteration operation to specify
infinite behaviour when the semantic interpretation in finite PNs is possible. PBC has a step operational
semantics in terms of labeled transition systems, based on the rules of structural operational semantics (SOS).
The operational semantics of PBC is of step type, since its SOS rules have transitions with (multi)sets of
activities, corresponding to simultaneous executions of activities (steps). A denotational semantics of PBC
was proposed via a subclass of PNs equipped with an interface and considered up to isomorphism, called Petri
boxes. For more detailed comparison of PBC with other process algebras and the reasoning about importance
of non-interleaving semantics see [15, 16].

The extensions of PBC with a deterministic, a nondeterministic or a stochastic model of time were presented.

1.2 Time extensions of Petri box calculus

To specify systems with time constraints, deterministic (fixed) or nondeterministic (interval) delays are used.
A time extension of PBC with a nondeterministic time model, called time Petri box calculus (tPBC), was

proposed in [50]. In tPBC, timing information is added by associating time intervals (the earliest and the latest
firing time) with instantaneous actions. Its denotational semantics was defined in terms of a subclass of labeled
time Petri nets (LtPNs), based on tPNs [65] and called time Petri boxes (ct-boxes). tPBC has a step time
operational semantics in terms of labeled transition systems.

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was defined in [61, 62], it
accommodates a deterministic model of time. In contrast to tPBC, multiactions of TPBC are not instantaneous,
but have time durations. Additionally, in TPBC there exist no “illegal” multiaction occurrences, unlike tPBC.
The complexity of “illegal” occurrences mechanism was one of the main intentions to construct TPBC though
this calculus appeared to be more complicated than tPBC. The denotational semantics of TPBC was defined
in terms of a subclass of labeled Timed Petri nets (LTPNs), based on TPNs [74] and called Timed Petri boxes
(T-boxes). TPBC has a step timed operational semantics in terms of labeled transition systems. tPBC and
TPBC differ in ways they capture time information, and they are not in competition but complement each other.

The third time extension of PBC, called arc time Petri box calculus (atPBC), was constructed in [70, 71],
and it implements a nondeterministic time. In atPBC, multiactions are associated with time delay intervals.
Its denotational semantics was defined on a subclass of labeled arc time Petri nets (atPNs), based of those from
[18, 39], where time restrictions are associated with the arcs, called arc time Petri boxes (at-boxes). atPBC
possesses a step time operational semantics in terms of labeled transition systems.

tPBC, TPBC and atPBC, all adopt the discrete time approach, but TPBC has no immediate (multi)actions.

1.3 Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or nondeterministic delays often differs drastically from
that for the timeless systems, hence, the analysis results for untimed systems may be not valid for the time
ones. To solve this problem, stochastic delays are considered, which are the random variables with a (discrete
or continuous) probability distribution. If the random variables governing delays have an infinite support then
the corresponding SPA can exhibit all the same behaviour as its underlying untimed PA.

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was proposed in [56, 53]. In
sPBC, multiactions have stochastic delays that follow (negative) exponential distribution. Each multiaction
is equipped with a rate that is a parameter of the corresponding exponential distribution. The instantaneous
execution of a stochastic multiaction is possible only after the corresponding stochastic time delay. The calculus
has an interleaving operational semantics defined via transition systems labeled with multiactions and their
rates. Its denotational semantics was defined in terms of a subclass of labeled continuous time stochastic PNs,
based on CTSPNs [63, 5] and called stochastic Petri boxes (s-boxes). In sPBC, performance of the processes
is evaluated by analyzing their underlying continuous time Markov chains (CTMCs). In [54], a number of
new equivalence relations were proposed for regular terms of sPBC to choose later a suitable candidate for a
congruence. sPBC was enriched with immediate multiactions having zero delay in [55]. We call such an sPBC
extension generalized sPBC or gsPBC. An interleaving operational semantics of gsPBC was constructed via
transition systems labeled with stochastic or immediate multiactions together with their rates or probabilities.
A denotational semantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs, based on
GSPNs [63, 5, 6] and called generalized stochastic Petri boxes (gs-boxes). The performance analysis in gsPBC
is based on the semi-Markov chains (SMCs).
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PBC has a step operational semantics, whereas sPBC has an interleaving one. In step semantics, parallel
executions of activities (steps) are permitted while in interleaving semantics, we can execute only single activities.
Hence, a stochastic extension of PBC with a step semantics was needed to keep the concurrency degree of
behavioural analysis at the same level as in PBC. As mentioned in [67, 68], in contrast to continuous time
approach (used in sPBC), discrete time approach allows for constructing models of common clock systems
and clocked devices. In such models, multiple transition firings (or executions of multiple activities) at time
moments (ticks of the central clock) are possible, resulting in a step semantics. Moreover, employment of
discrete stochastic time fills the gap between the models with deterministic (fixed) time delays and those with
continuous stochastic time delays. As argued in [1], arbitrary delay distributions are much easier to handle in a
discrete time domain. In [59, 60, 57], discrete stochastic time was preferred to enable simultaneous expiration
of multiple delays.

In [76, 77, 78, 79], a discrete time stochastic extension dtsPBC of finite PBC was presented. In dtsPBC,
the residence time in the process states is geometrically distributed. A step operational semantics of dtsPBC
was constructed via labeled probabilistic transition systems. Its denotational semantics was defined in terms of
a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs [67, 68] and called discrete
time stochastic Petri boxes (dts-boxes). The performance evaluation in dtsPBC is accomplished via the un-
derlying discrete time Markov chains (DTMCs) of the algebraic processes. A variety of stochastic equivalences
were proposed to identify stochastic processes with similar behaviour which are differentiated by the semantic
equivalence. The interrelations of all the introduced equivalences were studied. Since dtsPBC has a discrete
time semantics and geometrically distributed sojourn time in the process states, unlike sPBC with continuous
time semantics and exponentially distributed delays, the calculi apply two different approaches to the stochastic
extension of PBC, in spite of some similarity of their syntax and semantics inherited from PBC. The main
advantage of dtsPBC is that concurrency is treated like in PBC having step semantics, whereas in sPBC paral-
lelism is simulated by interleaving, obliging one to collect the information on causal independence of activities
before constructing the semantics.

In [81, 82, 83, 84, 85], we presented an enhanced calculus dtsiPBC, an extension with immediate multiactions
of dtsPBC. Immediate multiactions increase the specification capability: they can model logical conditions,
probabilistic branching, instantaneous probabilistic choices and activities whose durations are negligible in
comparison with those of others. They are also used to specify urgent activities and the ones that are not
relevant for performance evaluation. Thus, immediate multiactions can be considered as a kind of instantaneous
dynamic state adjustment and, in many cases, they result in a simpler and more clear system representation.

1.4 Equivalence relations

A notion of equivalence is important in theory of computing systems. Equivalences are applied both to com-
pare behaviour of systems and reduce their structure. There is a wide diversity of behavioural equivalences,
and their interrelations are well explored in the literature. The best-known and widely used one is bisimula-
tion. Typically, the mentioned equivalences take into account only functional (qualitative) but not performance
(quantitative) aspects. Additionally, the equivalences are usually interleaving ones, i.e. they interpret concur-
rency as sequential nondeterminism. Interleaving equivalences permit to imitate parallel execution of actions
via all possible occurrence sequences (interleavings) of them. Step equivalences require instead simulating such
a parallel execution by simultaneous occurrence (step) of all the involved actions. To respect quantitative
features of behaviour, probabilistic equivalences have additional requirement on execution probabilities. Two
equivalent processes must be able to execute the same sequences of actions, and for every such sequence, its
execution probabilities within both processes should coincide. In case of probabilistic bisimulation equivalence,
the states from which similar future behaviours start are grouped into equivalence classes that form elements
of the aggregated state space. From every two bisimilar states, the same actions can be executed, and the
subsequent states resulting from execution of an action belong to the same equivalence class. In addition, for
both states, the cumulative probabilities to move to the same equivalence class by executing the same action
coincide. A different kind of quantitative relations is called Markovian equivalences, which take rate (the pa-
rameter of exponential distribution that governs time delays) instead of probability. Note that the probabilistic
equivalences can be seen as discrete time analogues of the Markovian ones, since the latter are defined as the
continuous time relations.

Interleaving probabilistic weak trace equivalence was introduced in [31] on labeled probabilistic transition
systems. Interleaving probabilistic strong bisimulation equivalence was proposed in [52] on the same model.
Interleaving Markovian strong bisimulation equivalence was constructed in [41] for MTIPP, in [43] for PEPA
and in [14, 13, 9] for EMPA. Interleaving probabilistic equivalences were defined for probabilistic processes in
[48, 37]. Some variants of interleaving Markovian weak bisimulation equivalence were considered in [24] on
Markovian process algebras, in [26] on labeled CTSPNs and in [27] on labeled GSPNs. In [10, 11], a comparison
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of interleaving Markovian trace, test, strong and weak bisimulation equivalences was carried out on sequential
and concurrent Markovian process calculi. Nevertheless, no appropriate equivalence notion was defined for
concurrent SPAs. The non-interleaving bisimulation equivalence in GSMPA [20, 19] uses ST-semantics for
action particles while in Sπ [73] it is based on a sophisticated labeling.

1.5 Our contributions

In this paper, we present an extension of dtsiPBC with deterministic multiactions, called discrete time stochastic
and deterministic Petri box calculus (dtsdPBC), which enhances the expressiveness of dtsiPBC and extends the
application area of the associated specification and analysis techniques. In dtsdPBC, besides the probabilities
from the real-valued interval (0; 1) that are used to calculate discrete time delays of stochastic multiactions, also
non-negative integers are used to specify fixed time delays of deterministic multiactions (including zero delay,
which is the case of immediate multiactions). To resolve conflicts among deterministic multiactions, they are
additionally equipped with positive real-valued weights. As argued in [88, 89], a combination of deterministic and
stochastic delays fits well to model technical systems with constant (fixed) durations of the regular non-random
activities and probabilistically distributed (stochastic) durations of the randomly occurring activities.

It should be stressed that dtsdPBC is rather a qualitative than merely a quantitative extension of dtsiPBC.
The main reason is that in the former calculus, the probability of transitions between markings (untimed
states, represented by overbars and underbars in the process expressions) generally depends both on the current
marking and for how long the deterministic multiactions were enabled. Hence, the marking change probabilities
in dtsdPBC may not possess the Markov (memoryless) property. Thus, the timer values should be associated
with deterministic multiactions to specify the process states and then obtain the (semi-)Markovian state change
probabilities as a result of “unfolding” the discrete residence times at the markings. Another reason is that,
unlike dtsiPBC, the activities of different types can be executed from the the same marking in dtsdPBC,
depending on the (decreasing) timer values of the enabled deterministic multiactions. In particular, the enabled
stochastic multiactions may preempt the enabled waiting (positively delayed deterministic) ones that cannot be
executed at the next time moment from a marking.

The step operational semantics of dtsdPBC is constructed with the use of labeled probabilistic transition
systems. The denotational semantics of dtsdPBC is defined in terms of a subclass of labeled discrete time
stochastic and deterministic Petri nets (LDTSPNs with deterministic transitions, LDTSDPNs), based on the
extension of DTSPNs with transition labeling and deterministic transitions, called dtsd-boxes. The correspond-
ing stochastic process, which is a semi-Markov chain (SMC), is constructed and investigated, with the purpose
of performance evaluation. In addition, the alternative solution methods are developed, based on the under-
lying discrete time Markov chain (DTMC) and its reduction (RDTMC) by eliminating vanishing states with
zero sojourn (residence) times. In [80], we have reported the first results on the mentioned topics: the syntax,
operational and denotational semantics of dtsdPBC, as well as the methods of performance analysis within the
calculus. The present paper is an improvement and substantial (two times longer) extension of that work with
the new results, described below.

We propose step stochastic bisimulation equivalence allowing one to identify algebraic processes with similar
behaviour that are however differentiated by the semantics of the calculus. It enhances the corresponding
relation from dtsiPBC, in that we now have to make difference between the states with positive deterministic
sojourn times (called w-tangible states) and those with zero sojourn times (called vanishing states). Therefore, in
the definition of step stochastic bisimulation for dtsdPBC, we add a condition stating that vanishing states may
only be related with vanishing states. We establish consistency of the operational and denotational semantics
of dtsdPBC up to step stochastic bisimulation equivalence, meaning that the transition systems of the process
expressions are equivalent to the reachability graphs of their dtsd-boxes. We examine the interrelations of
the proposed relation with other equivalences of the algebra. We describe how step stochastic bisimulation
equivalence can be used to reduce transition systems of the process expressions and their underlying SMCs while
preserving the qualitative and the quantitative characteristics. We demonstrate isomorphism of the quotient
(by that equivalence) SMCs (derived from the transition systems) of the process expressions and (derived from
the reachability graphs) of their dtsd-boxes. We prove that the mentioned equivalence guarantees identity of
the stationary behaviour and the residence time properties in the equivalence classes. This implies coincidence
of performance indices based on steady-state probabilities of the modeled stochastic systems. The equivalences
possessing the property can be used to reduce the state space of a system and thus simplify its performance
evaluation, what is usually a complex problem due to the state space explosion.

The theory developed is illustrated with a series of interesting and non-trivial examples that include the
travel system model. The examples demonstrate how to construct the transition systems of the expressions
with different types of multiactions (stochastic and deterministic, the latter consisting of immediate and wait-
ing) and various operations, as well as the reachability graphs of the corresponding dtsd-boxes. The resulted
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transition systems and reachability graphs have all 3 possible kinds of states (stochastically tangible, waitingly
tangible and vanishing) and all 4 kinds of transitions (that capture executions of the empty multiset, stochastic,
waiting or immediate multiactions). The examples show the specification flexibility and expressive power of the
calculus, the most important features and peculiarities of its semantics, as well as application of step stochastic
bisimulation to the performance analysis methods within dtsdPBC.

We present a case study of a system consisting of two processors and a common shared memory with
maintenance that explains how to model concurrent systems within the calculus and analyze their performance,
as well as how to reduce the systems behaviour while preserving their performance indices and making easier
the performance evaluation. We consider a generalized variant of the shared memory system by treating the
probabilities and weights from the standard system’s specification as variables (parameters) that possess general
values. The quotients of the generalized system’s behaviour (represented by the transition systems, SMCs and
DTMCs) by the step stochastic bisimulation equivalence and reductions of the quotients by removing vanishing
states are constructed. The generalized probabilities of the reduced quotient DTMC are treated as parameters
to be adjusted for the performance optimization.

Thus, the main contributions of the paper are the following.

• Syntax of new powerful and expressive discrete time SPA with deterministic activities, called dtsdPBC.

• Parallel step operational semantics of dtsdPBC in terms of labeled probabilistic transition systems.

• Petri net denotational semantics of dtsdPBC via discrete time stochastic and deterministic Petri nets.

• Performance analysis via underlying semi-Markov chains and (reduced) discrete time Markov chains.

• Stochastic bisimulation used for behaviour-preserving reduction that simplifies the performance evaluation.

• Extended case study of the shared memory system showing how to apply the theoretical results in practice.

1.6 Structure of the paper

The paper is organized as follows. In Section 2, the syntax of the extended calculus dtsdPBC is presented.
In Section 3, we construct the operational semantics of the algebra in terms of labeled probabilistic transition
systems. In Section 4, we propose the denotational semantics based on a subclass of LDTSDPNs. In Section
5, the corresponding stochastic process is defined and analyzed. Step stochastic bisimulation equivalence is
defined and investigated in Section 6. In Section 7, we explain how to reduce transition systems and underlying
SMCs of process expressions modulo the equivalence. In Section 8, the introduced equivalence is applied to the
stationary behaviour comparison to verify the performance preservation. In Section 9, the generalized shared
memory system with maintenance is presented as a case study. Finally, Section 10 summarizes the results
obtained and outlines research perspectives in this area.

2 Syntax

In this section, we propose the syntax of dtsdPBC. First, we recall a definition of multiset that is an extension
of the set notion by allowing several identical elements.

Definition 2.1 Let X be a set. A finite multiset (bag) M over X is a mapping M : X → IN such that
|{x ∈ X |M(x) > 0}| <∞, i.e. it can contain a finite number of elements only.

We denote the set of all finite multisets over a set X by INX
fin. Let M,M ′ ∈ INX

fin. The cardinality of M is
defined as |M | =

∑
x∈XM(x). We write x ∈M if M(x) > 0 and M ⊆M ′ if ∀x ∈ X M(x) ≤M ′(x). We define

(M +M ′)(x) =M(x) +M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can
be interpreted as a proper set and denoted by M ⊆ X . The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated actions

(conjugates) such that â 6= a and ˆ̂a = a. Let A = Act ∪ Âct be the set of all actions, and L = INA
fin be the set

of all multiactions. Note that ∅ ∈ L, this corresponds to an internal move, i.e. the execution of a multiaction
that contains no visible action names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability of the multiaction
α. This probability is interpreted as that of independent execution of the stochastic multiaction at the next
discrete time moment. Such probabilities are used to calculate those to execute (possibly empty) sets of
stochastic multiactions after one time unit delay. The probabilities of stochastic multiactions are required not
to be equal to 1 to avoid extra model complexity, since in this case one should assign with them weights, needed
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to make a choice when several stochastic multiactions with probability 1 can be executed from a state. The
difficulty is that when the stochastic multiactions with probability 1 occur in a step (parallel execution), all other
with the less probabilities do not. In this case, the conflicts resolving requires a special attention, as discussed
in [67, 68] within SPNs. This decision also allows us to avoid technical difficulties related to conditioning
events with probability 0. The probability 1 is left for (implicitly assigned to) waiting multiactions (positively
delayed deterministic multiactions, to be defined later), which are delayed for at least one time unit before their
execution and have weights to resolve conflicts with other waiting multiactions. On the other hand, there is no
sense to allow probability 0 of stochastic multiactions, since they would never be performed in this case. Let
SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl ), where α ∈ L, θ ∈ IN is the non-negative integer-valued
(fixed) delay and l ∈ IR>0 = (0;∞) is the positive real-valued weight of the multiaction α. This weight is
interpreted as a measure of importance (urgency, interest) or a bonus reward associated with execution of
the deterministic multiaction at the discrete time moment when the corresponding delay has expired. Such
weights are used to calculate the probabilities to execute sets of deterministic multiactions after their time
delays. An immediate multiaction is a deterministic multiaction with the delay 0 while a waiting multiaction
is a deterministic multiaction with a positive delay. In case of no conflicts among waiting multiactions, whose
remaining times to execute (RTEs, to be explained later in more detail) are equal to one time unit, they are
executed with probability 1 at the next time moment. Deterministic multiactions have a priority over stochastic
ones, and there is also difference in priorities between immediate and waiting multiactions. One can assume
that all immediate multiactions have (the highest) priority 2 and all waiting multiactions have (the medium)
priority 1, whereas all stochastic multiactions have (the lowest) priority 0. This means that in a state where
all kinds of multiactions can occur, immediate multiactions always occur before waiting ones that, in turn, are
always executed before stochastic ones. Different types of multiactions cannot participate together in some
step (parallel execution), i.e. just the steps consisting only of immediate multiactions or waiting ones, or those
including only stochastic multiactions, are allowed. Let DL be the set of all deterministic multiactions, IL
be the set of all immediate multiactions and WL be the set of all waiting multiactions. Obviously, we have
DL = IL ∪WL.

Let us note that the same multiaction α ∈ L may have different probabilities, (fixed) delays and weights
in the same specification. An activity is a stochastic or a deterministic multiaction. Let SDL = SL ∪ DL =
SL∪IL∪WL be the set of all activities. The alphabet of an activity (α, κ) ∈ SDL is defined as A(α, κ) = A(α).
The alphabet of a multiset of activities Υ ∈ INSDL

fin is defined as A(Υ) = ∪(α,κ)∈ΥA(α). For an activity
(α, κ) ∈ SDL, we define its multiaction part as L(α, κ) = α and its probability or weight part as Ω(α, κ) = κ if
κ ∈ (0; 1); or Ω(α, κ) = l if κ = ♮θl , θ ∈ IN, l ∈ IR>0. The multiaction part of a multiset of activities Υ ∈ INSIL

fin

is defined as L(Υ) =
∑

(α,κ)∈Υ α.

Activities are combined into formulas (process expressions) by the following operations: sequence ;, choice
[], parallelism ‖, relabeling [f ] of actions, restriction rs over a single action, synchronization sy on an action and
its conjugate, and iteration [ ∗ ∗ ] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (choice composition) have a standard interpretation, like in
other process algebras, but parallelism (parallel composition) does not include synchronization, unlike the
corresponding operation in CCS [66].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈ A f(x̂) = f̂(x). Relabeling is
extended to multiactions in the usual way: for α ∈ L we define f(α) =

∑
x∈α f(x). Relabeling is extended to

activities: for (α, κ) ∈ SDL, we define f(α, κ) = (f(α), κ). Relabeling is extended to the multisets of activities
as follows: for Υ ∈ INSDL

fin we define f(Υ) =
∑

(α,κ)∈Υ(f(α), κ).
Restriction over an elementary action a ∈ Act means that, for a given expression, any process behaviour

containing a or its conjugate â is not allowed.
Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act we have a ∈ α and â ∈ β, or

â ∈ α and a ∈ β. Then, synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require that α ⊕a β = α + β − {a, â}, i.e. we remove one exemplar of a and one exemplar
of â from the multiset sum α+ β, since the synchronization of a and â produces ∅. Activities are synchronized
with the use of their multiaction parts, i.e. the synchronization by a of two activities, whose multiaction parts
α and β possess the properties mentioned above, results in the activity with the multiaction part α ⊕a β. We
may synchronize activities of the same type only: either both stochastic multiactions or both deterministic ones
with the same delay, since stochastic, waiting and immediate multiactions have different priorities, and diverse
delays of waiting multiactions contradict their joint timing. Hence, the multiactions of different types cannot
be executed together (note also that the execution of immediate multiactions takes no time, unlike that of

6



waiting or stochastic ones). Synchronization by a means that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists also the process behaviour that
differs from the former only in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more
times, and finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expressions correspond to unmarked
LDTSDPNs (LDTSDPNs are marked by definition). Remember that a marking is the allocation of tokens in
the places of a PN and markings are used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated, whose value is the discrete
time amount left till the moment when the waiting multiaction can be executed. Therefore, besides standard
(unstamped) waiting multiactions in the form of (α, ♮θl ) ∈ WL, a special case of the stamped waiting multiactions
should be considered in the definition of static expressions. Each (time) stamped waiting multiaction in the
form of (α, ♮θl )

δ has an extra superscript δ ∈ {1, . . . , θ} assigned that specifies a time stamp indicating the latest
value of the countdown timer associated with that multiaction. The standard waiting multiactions have no time
stamps, to demonstrate irrelevance of the timer values for them (for example, their timers have not yet started
or have already finished their operation). The notions of the alphabet, multiaction part, weight part for (the
multisets of) stamped waiting multiactions are defined, respectively, like those for (the multisets of) unstamped
waiting multiactions.

By reasons of simplicity, we do not assign the timer value superscripts δ to immediate multiactions, which are
a special case of deterministic multiactions (α, ♮θl ) with the delay θ = 0 in the form of (α, ♮0l ), since their timer
values can only be equal to 0. Analogously, the superscript δ might be omitted for the waiting multiactions
(α, ♮θl ) with the delay θ = 1 in the form of (α, ♮1l ), since the corresponding timer can only have a single value 1.
Nevertheless, to maintain syntactic uniformity among waiting multiactions, we leave the timer value superscripts
for those that are 1-delayed.

Definition 2.2 Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A static expression of dtsdPBC
is defined as

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To make the grammar above unambiguous, one can add parentheses in the productions with binary opera-

tions: (E;E), (E[]E), (E‖E). However, here and further we prefer the PBC approach and add them to resolve
ambiguities only.

To avoid technical difficulties with the iteration operator, we should not allow any concurrency at the
highest level of the second argument of iteration. This is not a severe restriction though, since we can always
prefix parallel expressions by an activity with the empty multiaction part. Later on, in Example 4.14, we shall
demonstrate that relaxing the restriction can result in nets which are not safe. Alternatively, we can use a
different, safe, version of the iteration operator, but its net translation has six arguments. See also [16] for
discussion on this subject. Remember that a PN is n-bounded (n ∈ IN) if for all its reachable (from the initial
marking by the sequences of transition firings) markings there are at most n tokens in every place, and a PN is
safe if it is 1-bounded.

Definition 2.3 Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A regular static expression of
dtsdPBC is defined as

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],

where D ::= (α, κ) | (α, ♮θl )
δ | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static expression ⇃E of E is obtained

by removing from it all timer value superscripts.
Further, the set of all stochastic multiactions (from the syntax) of E is SL(E) = {(α, ρ) | (α, ρ) is a

subexpression of E}. The set of all immediate multiactions (from the syntax) of E is IL(E) = {(α, ♮0l ) |
(α, ♮0l ) is a subexpression of E}. The set of all waiting multiactions (from the syntax) of E isWL(E) = {(α, ♮θl ) |
(α, ♮θl ) or (α, ♮

θ
l )
δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all deterministic multiactions

(from the syntax) of E is DL(E) = IL(E) ∪ WL(E) and the set of all activities (from the syntax) of E is
SDL(E) = SL(E) ∪DL(E) = SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes. As we shall see, the expressions correspond to LDTS-
DPNs (which are marked by default). Dynamic expressions are obtained from static ones, by annotating them
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with upper or lower bars which specify the active components of the system at the current moment of time.
The dynamic expression with upper bar (the overlined one) E denotes the initial, and that with lower bar (the
underlined one) E denotes the final state of the process specified by a static expression E.

For every overlined stamped waiting multiaction in the form of (α, ♮θl )
δ, the superscript δ ∈ {1, . . . , θ}

specifies the current value of the running countdown timer associated with the waiting multiaction. That
decreasing discrete timer is started with the initial value θ (equal to the delay of the waiting multiaction) at
the moment when the waiting multiaction becomes overlined. Then such a newly overlined stamped waiting

multiaction (α, ♮θl )
θ may be seen similar to the freshly overlined unstamped waiting multiaction (α, ♮θl ). Such

similarity will be captured by the structural equivalence, to be defined later.
While the stamped waiting multiaction stays overlined with the specified process execution, the timer decre-

ments by one discrete time unit with each global time tick until the timer value becomes 1. This fact indicates
that one unit of time remains till execution of that multiaction (the remaining time to execute, RTE, equals one)
that should follow in the next moment with probability 1, in case the stamped waiting multiaction is still over-
lined and there are no conflicting with it waiting multiactions, whose RTEs equal to one, and it is not affected
by restriction. An activity is said to be affected by restriction, if it is within the scope of a restriction operation
with the argument action, such that it or its conjugate is contained in the multiaction part of that activity.

Definition 2.4 Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsdPBC is defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a | [G ∗ E ∗E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression ⌊G⌋ of G is obtained by removing

from it all upper and lower bars. Note that if the underlying static expression of a dynamic one is not regular,
the corresponding LDTSDPN can be non-safe (though, it is 2-bounded in the worst case [16]).

Definition 2.5 A dynamic expression G is regular if its underlying static expression ⌊G⌋ is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dynamic expression ⇃G of G is

obtained by removing from it all timer value superscripts.
Further, the set of all stochastic multiactions (from the syntax) of G is SL(G) = SL(⌊G⌋). The set of all

immediate multiactions (from the syntax) of G is IL(G) = IL(⌊G⌋). The set of all waiting multiactions (from
the syntax) of G is WL(G) = WL(⌊G⌋). Thus, the set of all deterministic multiactions (from the syntax) of G
is DL(G) = IL(G)∪WL(G) and the set of all activities (from the syntax) of G is SDL(G) = SL(G)∪DL(G) =
SL(G) ∪ IL(G) ∪WL(G).

3 Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transformations in the form of G⇒ G̃ which
do not change the states of the specified processes. The goal of those syntactic transformations is to obtain the
well-structured resulting expressions called operative ones to which no inaction rules can be further applied. As
we shall see, the application of an inaction rule to a dynamic expression does not lead to any discrete time tick
or any transition firing in the corresponding LDTSDPN, hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any discrete time delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being overlined and underlined static
ones. In this table, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ}, E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule
suggests that the timer value of each newly overlined waiting multiaction is set to the delay of that waiting
multiaction.

In Table 2, we introduce inaction rules for regular dynamic expressions in the arbitrary form. In this table,
E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act. By reason of brevity, two distinct inaction
rules with the same premises are collated in some cases, resulting in the inaction rules with double conclusion.
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Table 1: Inaction rules for overlined and underlined regular static expressions

(α, ♮θl ) ⇒ (α, ♮θl )
θ E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E‖F ⇒ E‖F E‖F ⇒ E‖F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ]

E rs a⇒ E rs a E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K]

Table 2: Inaction rules for arbitrary regular dynamic expressions

G⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G⇒ E ◦ G̃

G⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G⇒ G̃

G[f ] ⇒ G̃[f ]

G⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F ] ⇒ [G̃ ∗E ∗ F ]

G⇒ G̃

[E ∗G ∗ F ] ⇒ [E ∗ G̃ ∗ F ], [E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Example 3.1 Let E = ({a}, ♮31)[]({b},
1
3 ). The following inferences by the inaction rules are possible from E:

({a}, ♮31)[]({b},
1
3 ) ⇒ ({a}, ♮31)[]({b},

1
3 ) ⇒ ({a}, ♮31)

3[]({b}, 13 ), ({a}, ♮31)[]({b},
1
3 ) ⇒ ({a}, ♮31)[]({b},

1
3 ).

Definition 3.1 A regular dynamic expression G is operative if no inaction rule can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions of dtsdPBC.
Note that any dynamic expression can be always transformed into a (not necessarily unique) operative one

by using the inaction rules.
In the following, we consider regular expressions only and omit the word “regular”.

Definition 3.2 The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic expressions in dtsdPBC,
where ∗ is the reflexive and transitive closure operation. Thus, two dynamic expressions G and G′ are struc-
turally equivalent, denoted by G ≈ G′, if they can be reached from each other by applying the inaction rules in
a forward or a backward direction.

LetX be some set. We denote the Cartesian productX×X byX2. Let E ⊆ X2 be an equivalence relation on
X . Then the equivalence class (with respect to E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}.
The equivalence E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence class of G with respect to
the structural equivalence, called the (corresponding) state. Next, G is an initial dynamic expression, denoted
by init(G), if ∃E ∈ RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by final(G), if
∃E ∈ RegStatExpr G ∈ [E]≈.

Example 3.2 Let E be from Example 3.1. We have init(E) and [E]≈ = {({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)[]({b},

1
3 ),

({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)

3[]({b}, 13 ), ({a}, ♮
3
1)

3[]({b}, 13 ), {({a}, ♮
3
1)

3[]({b}, 13 )}. Then [E]≈ ∩OpRegDynExpr =

{({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)

3[]({b}, 13 ), ({a}, ♮
3
1)

3[]({b}, 13 )}.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic multiactions of s is
EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s ∩ OpRegDynExpr (α, ρ) is a subexpression of H}, i.e. it consists of
all stochastic multiactions that, being overlined, are the subexpressions of some operative dynamic expression
from the state s. Analogously, the set of all enabled immediate multiactions of s is EnaImm(s) = {(α, ♮0l ) ∈

IL | ∃H ∈ s∩OpRegDynExpr (α, ♮0l ) is a subexpression of H}. The set of all enabled waiting multiactions of s

is EnaWait(s) = {(α, ♮θl ) ∈ WL | ∃H ∈ s∩OpRegDynExpr (α, ♮θl )
δ, δ ∈ {1, . . . , θ}, is a subexpression of H},

i.e. it consists of all waiting multiactions that, being superscribed with the values of their timers and overlined,
are the subexpressions of some operative dynamic expression from the state s. The set of all newly enabled
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waiting multiactions of s is EnaWaitNew(s) = {(α, ♮θl ) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl )
θ is a

subexpression of H}, i.e. it consists of all waiting multiactions that, being superscribed with the initial values
of their timers (delays of those waiting multiactions) and overlined, are the subexpressions of some operative
dynamic expression from the state s.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) = EnaImm(s) ∪ EnaWait(s)
and the set of all enabled activities of s is Ena(s) = EnaSto(s) ∪ EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪
EnaWait(s). As we shall see, Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions enabled
at the initial marking of the LDTSDPN corresponding to G. Note that the activities, resulted from synchro-
nization, are not present explicitly in the syntax of the dynamic expressions. Nevertheless, their enabledness
status can be recovered by observing that of the pair of synchronized activities from the syntax (they both
should be enabled for enabling their synchronous product), even if they are affected by restriction after the
synchronization.

Example 3.3 Let E be from Example 3.1. Then we have EnaSto([E]≈) = {({b}, 13 )}, EnaImm([E]≈) = ∅

and EnaWait([E]≈) = EnaWaitNew([E]≈) = {({a}, ♮31)}, hence, Ena([E]≈) = {({a}, ♮31), ({b},
1
3 )}.

Definition 3.3 An operative dynamic expression G is saturated (with the values of timers), if each enabled
waiting multiaction of [G]≈, being (certainly) superscribed with the value of its timer and possibly overlined, is
the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expressions of dtsdPBC.

Proposition 3.1 Any operative dynamic expression can be always transformed into the saturated one by ap-
plying the inaction rules in a forward or a backward direction.

Proof. Let G be a dynamic expression, (α, ♮θl ) ∈ EnaWait([G]≈) and there exists H ∈ [G]≈ ∩OpRegDynExpr

that contains a subexpression (α, ♮θl )
δ, δ ∈ {1, . . . , θ − 1}. Then all operative dynamic expressions from [G]≈ ∩

OpRegDynExpr contain a subexpression (α, ♮θl )
δ or (α, ♮θl )

δ, i.e. the (possibly overlined) enabled waiting
multiaction (α, ♮θl ) with the (non-initial) timer value superscript δ ≤ θ−1. Note that the timer value superscript
δ is the same for all such structurally equivalent operative dynamic expressions. Indeed, all inaction rules,
besides the first one, do not change the values of timers, but those rules just modify the overlines and underlines
of dynamic expressions. The first inaction rule just sets up the timer of each overlined waiting multiaction

(α, ♮θl ) with the initial value δ = θ, equal to the delay of that waiting multiaction, as follows: (α, ♮θl )
θ. Then the

remaining inaction rules can shift out the overline of that enabled waiting multiaction before setting up its timer,
which results in a non-overlined enabled waiting multiaction without timer value superscript (α, ♮θl ). Thus, for

(α, ♮θl ) ∈ EnaWait([G]≈), it may happen that (α, ♮θl )
θ a subexpression of some H ∈ [G]≈ ∩ OpRegDynExpr

and (α, ♮θl ) is a subexpression of a different H ′ ∈ [G]≈ ∩OpRegDynExpr.
Let now G be an operative dynamic expression that is not saturated. By the arguments above, the saturation

can be violated only if G contains as a subexpression at least one newly enabled waiting multiaction (α, ♮θl )
of [G]≈ that is not superscribed with the timer value. By the definition of the new-enabling, there exists

H ∈ [G]≈ ∩ OpRegDynExpr such that (α, ♮θl )
θ is a subexpression of H . Since G ≈ H , there is a sequence

of the inaction rules applications (in a forward or a backward direction) that transforms G into H . Then
the reverse sequence transforms H into G. Let us remove from that reverse sequence the following backward

application of the first inaction rule: (α, ♮θl ) ⇐ (α, ♮θl )
θ. Then such a reduced reverse sequence will turn H into

G1 ∈ [G]≈ ∩OpRegDynExpr, obtained from G by replacing (α, ♮θl ) with (α, ♮θl )
θ.

Let us start from G1 and apply the above procedure to the remaining not superscribed with the timer
values newly enabled waiting multiactions of [G]≈ (which are also those of such kind of [G1]≈). After repeated
application of the mentioned procedure for all n ≥ 1 non-superscribed newly enabled waiting multiactions
of G, we shall get from it the saturated operative dynamic expression Gn = G̃ ∈ [G]≈ ∩ OpRegDynExpr.

Note that the presented transformation of G into G̃ does not change the enabling, since it does not change
any overlines or underlines in the syntax of the traversed operative dynamic expressions, but only iteratively
assigns the timer value superscripts to all newly enabled waiting multiactions of G. Hence, EnaWait([G]≈) =

EnaWait([G1]≈) = · · · = EnaWait([Gn]≈) = EnaWait([G̃]≈). ⊓⊔
Thus, any dynamic expression can be always transformed into a (not necessarily unique) saturated operative

one by (possibly reverse) applying the inaction rules.

Example 3.4 Let E be from Example 3.1. We have [E]≈ ∩ SaOpRegDynExpr = {({a}, ♮31)
3[]({b}, 13 ),

({a}, ♮31)
3[]({b}, 13 )}. Consider the sequence of inaction rules, applied (in a forward or a backward direction) in

the following transformation of a non-saturated G ∈ [E]≈ ∩OpRegDynExpr with the non-superscribed with the
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timer value (unstamped) enabled waiting multiaction ({a}, ♮31) into (a saturated) H ∈ [E]≈ ∩ OpRegDynExpr,
in which ({a}, ♮31) is stamped:

G = ({a}, ♮31)[]({b},
1
3 ) ≈ ({a}, ♮31)[]({b},

1
3 ) ≈ ({a}, ♮31)[]({b},

1
3 ) ≈ ({a}, ♮31)

3[]({b}, 13 ) = H.

The reduced reverse sequence of inaction rules induces the following transformations of H that result in a
saturated G1 = G̃ ∈ [E]≈ ∩OpRegDynExpr, in which ({a}, ♮31) is stamped:

H = ({a}, ♮31)
3[]({b}, 13 ) ≈ ({a}, ♮31)

3[]({b}, 13 ) ≈ ({a}, ♮31)
3[]({b}, 13 ) = G1 = G̃.

Let G be a saturated operative dynamic expression. Then 	G is written for the timer decrement operator
	, applied to G. It denotes a saturated operative dynamic expression, obtained from G via decrementing by
one time unit all greater than 1 values of the timers associated with all (if any) stamped waiting multiactions
from the syntax of G. Thus, each such stamped waiting multiaction changes its timer value from δ in G to
max{1, δ − 1} in 	 G, where δ ∈ IN≥1. More formally, the timer decrement operator affects the (possibly
overlined) stamped waiting multiactions being the subexpressions of G as follows. The overlined stamped

waiting multiaction (α, ♮θl )
δ is replaced with (α, ♮θl )

max{1,δ−1} while the stamped waiting multiaction without
overline or underline (α, ♮θl )

δ is replaced with (α, ♮θl )
max{1,δ−1}.

Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the timer value δ = 1 may remain
unchanged for a stamped waiting multiaction that is not executed by some reason at the next time moment,
but stays stamped. For example, that stamped waiting multiaction may be affected by restriction. If the
timer values cannot be decremented with a time tick for all stamped waiting multiactions (if any) from G then
	G = G and we obtain so-called empty loop transition that will be formally defined later.

Observe that the timer decrement operator keeps stamping of the waiting multiactions, since it does not
change any overlines or underlines, but it may only decrease their timer values, so that the stamped waiting
multiactions stay stamped (with their timer values, possibly decremented by one).

Example 3.5 Let E be from Example 3.1. We have Ena([E]≈) = {({a}, ♮31), ({b},
1
3 )} and Ena([E]≈)∩WL =

{({a}, ♮31)}. The following one time unit timer decrements are possible from the saturated operative dynamic
expressions belonging to [E]≈:

	(({a}, ♮31)
3[]({b}, 13 )) = ({a}, ♮31)

2[]({b}, 13 ), 	(({a}, ♮31)
3[]({b}, 13 )) = ({a}, ♮31)

2[]({b}, 13 ).

Let G be a dynamic expression. Then IG : WL(G) → IN≥1 is the timer valuation function of the waiting
multiactions of G, defined as follows. For (α, ♮θl ) ∈ WL(G), let IG((α, ♮θl )) = δ ∈ {1, . . . , θ}, if ∃H ∈ [G]≈ ∩

SatOpRegDynExpr (α, ♮θl )
δ or (α, ♮θl )

δ is a subexpression of H . Otherwise, we let IG((α, ♮
θ
l )) = ∞, where

‘∞’ denotes the undefined value (infinite time till the activity execution). The definition is correct by the
argumentation from the proof of Proposition 3.1. Indeed, for each waiting multiaction of G, its timer value
superscript (if any) is the same for every H ∈ [G]≈ ∩ SatOpRegDynExpr, in which that waiting multiaction,
possibly being superscribed with the value of its timer and overlined or underlined, is a subexpression. Note that
we may have IG((α, ♮

θ
l )) <∞ for (α, ♮θl ) ∈ WL(G) \EnaWait([G]≈), i.e. the non-enabled waiting multiactions

of [G]≈ may have finite timer valuations. The latter is allowed only in the “incomplete” specifications by the
compositionality reasons. It is assumed that all such non-enabled waiting multiactions have infinite timer values
in the “complete” specification, hence, all and only enabled waiting multiactions have finite timer values there.

Let G ∈ SatOpRegDynExpr. Then for all (α, ♮θl ) ∈ WL(G), we have I	G((α, ♮θl )) = max{1, IG((α, ♮θl ))−1}.

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these rules we capture the prioritization
among different types of multiactions. We also have the empty move rule which is used to capture a delay
of one discrete time unit when no immediate or waiting multiactions are executable. In this case, the empty
multiset of activities is executed. The action and empty move rules will be used later to determine all multisets
of activities which can be executed from the structural equivalence class of every dynamic expression (i.e. from
the state of the corresponding process). This information together with that about probabilities or delays and
weights of the activities to be executed from the current process state will be used to calculate the probabilities
of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions describe dynamic expres-

sion transformations in the form of G
Γ
→ G̃ (G

I
→ G̃ or G

W
→ G̃, respectively) due to execution of non-empty
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Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

multisets Γ of stochastic (I of immediate or W of waiting, respectively) multiactions. The rules represent possi-
ble state changes of the specified processes when some non-empty multisets of stochastic (immediate or waiting,
respectively) multiactions are executed. As we shall see, the application of an action rule with stochastic (im-
mediate or waiting, respectively) multiactions to a dynamic expression leads in the corresponding LDTSDPN
to a discrete time tick at which some stochastic or waiting transitions fire (or to the instantaneous firing of
some immediate transitions) and possible change of the current marking. The current marking stays unchanged
only if there is a self-loop produced by the iterative execution of a non-empty multiset, which must be one-
element, i.e. a single stochastic (immediate or waiting, respectively) multiaction. The reason is the regularity
requirement that allows no concurrency at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting multiactions can be executed from

the current state) describes dynamic expression transformations in the form of G
∅
→	 G, called the empty

moves, due to execution of the empty multiset of activities at a discrete time tick. When no timer values are
decremented within G with the empty multiset execution at the next moment (for example, if G contains no
stamped waiting multiactions), we have 	G = G. In such a case, the empty move from G is in the form of

G
∅
→ G, called the empty loop. As we shall see, the application of the empty move rule to a dynamic expression

leads to a discrete time tick in the corresponding LDTSDPN at which no transitions fire and the current marking
is not changed, but the timer values of the waiting transitions enabled at the marking (if any) are decremented
by one. This is a new rule that has no prototype among inaction rules of PBC, since it represents a time delay,

but no notion of time exists in PBC. The PBC rule G
∅
→ G from [17, 16] in our setting would correspond to the

rule G ⇒ G that describes staying in the current state when no time elapses. Since we do not need the latter
rule to transform dynamic expressions into operative ones and it can even destroy the definition of operative
expressions, we do not introduce it in dtsdPBC.

Thus, an application of every action rule with stochastic or waiting multiactions or the empty move rule
requires one discrete time unit delay, i.e. the execution of a (possibly empty) multiset of stochastic or (non-
empty) multiset of waiting multiactions leading to the dynamic expression transformation described by the rule
is accomplished instantly after one time unit. An application of every action rule with immediate multiactions
does not take any time, i.e. the execution of a (non-empty) multiset of immediate multiactions is accomplished
instantly at the current moment of time.

Note that expressions of dtsdPBC can contain identical activities. To avoid technical difficulties, such as the
proper calculation of the state change probabilities for multiple transitions, we can always enumerate coinciding
activities from left to right in the syntax of expressions. The new activities, resulted from synchronization will
be annotated with concatenation of numberings of the activities they come from, hence, the numbering should
have a tree structure to reflect the effect of multiple synchronizations. We now define the numbering which
encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.4 The numbering of expressions is defined as ι ::= n | (ι)(ι), where n ∈ IN .

Let Num denote the set of all numberings of expressions.

Example 3.6 The numbering 1 encodes the binary tree depicted in Figure 1(a) with the root labeled by 1. The
numbering (1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two
leaves labeled by 1 and 2. The numbering (1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one
internal node, which is the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from synchronizations in different orders should be considered up to permutation
of their numbering. In this way, we shall recognize different instances of the same activity. If we compare the
contents of different numberings, i.e. the sets of natural numbers in them, we shall be able to identify the
mentioned instances.
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The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions will become the proper sets. In
the following, we suppose that the identical activities are enumerated when needed to avoid ambiguity. This
enumeration is considered to be implicit.

Definition 3.5 Let G ∈ OpRegDynExpr. We now define the set of all non-empty multisets of activities which
can be potentially executed from G, denoted by Can(G). Let (α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈
OpRegDynExpr and a ∈ Act.

1. If final(G) then Can(G) = ∅.

2. If G = (α, κ)δ and κ = ♮θl , θ ∈ IN≥2, l ∈ IR>0, δ ∈ {2, . . . , θ}, then Can(G) = ∅.

3. If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ IR>0, then Can(G) = {{(α, κ)}}.

4. If G = (α, κ)1 and κ = ♮θl , θ ∈ IN≥1, l ∈ IR>0, then Can(G) = {{(α, κ)}}.

5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}), Υ ∈ Can(G‖H), Υ ∈ Can(H‖G),
f(Υ) ∈ Can(G[f ]), Υ ∈ Can(G rs a) (when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ+ Ξ ∈ Can(G‖H).

7. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such that a ∈ α, â ∈ β, then

(a) (Υ + {(α⊕a β, κ · λ)} − {(α, κ), (β, λ)}) ∈ Can(G sy a) if κ, λ ∈ (0; 1);

(b) (Υ + {(α⊕a β, ♮
θ
l+m)} − {(α, κ), (β, λ)}) ∈ Can(G sy a) if κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0.

When we synchronize the same multiset of activities in different orders, we obtain several activities
with the same multiaction and probability or delay and weight parts, but with different numberings
having the same content. Then we only consider a single one of the resulting activities to avoid
introducing redundant ones.

For example, the synchronization of stochastic multiactions (α, ρ)1 and (β, χ)2 in different orders
generates the activities (α ⊕a β, ρ · χ)(1)(2) and (β ⊕a α, χ · ρ)(2)(1). Similarly, the synchronization

of deterministic multiactions (α, ♮θl )1 and (β, ♮θm)2 in different orders generates the activities (α ⊕a
β, ♮θl+m)(1)(2) and (β ⊕a α, ♮θm+l)(2)(1). Since Cont((1)(2)) = {1, 2} = Cont((2)(1)), in both cases,
only the first activity (or, symmetrically, the second one) resulting from synchronization will appear
in a multiset from Can(G sy a).

Note that if Υ ∈ Can(G) then by definition of Can(G), ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only stochastic (immediate or waiting,

respectively) multiactions in the multisets from Can(G) then these stochastic (immediate or waiting, respec-
tively) multiactions can be executed from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the note above, there are non-empty
multisets of deterministic multiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ INDL

fin \ {∅}. In this case,
no stochastic multiactions can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones, and should be executed first.
Further, if there are no stochastic, but both waiting and immediate multiactions in the multisets from Can(G),
then, analogously, no waiting multiactions can be executed from G, since immediate multiactions have a priority
over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multisets from Can(G) then,
from above, only waiting ones can be executed from G. Then just maximal non-empty multisets of waiting
multiactions can be executed from G, since all non-conflicting waiting multiactions cannot wait anymore and
they should occur at the next time moment with probability 1. The next definition formalizes these requirements.

Definition 3.6 Let G ∈ OpRegDynExpr. The set of all non-empty multisets of activities which can be exe-
cuted from G is
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Now(G) =





Can(G) ∩ INIL
fin, Can(G) ∩ INIL

fin 6= ∅;
{W ∈ Can(G) ∩ INWL

fin | ∀V ∈ Can(G) ∩ INWL
fin W ⊆ V ⇒ V =W}, (Can(G) ∩ INIL

fin = ∅)∧
(Can(G) ∩ INWL

fin 6= ∅);
Can(G), otherwise.

Consider an operative dynamic expression G ∈ OpRegDynExpr. The expression G is s-tangible (stochasti-
cally tangible), denoted by stang(G), if Now(G) ⊆ INSL

fin \{∅}. In particular, we have stang(G), if Now(G) = ∅.

The expression G is w-tangible (waitingly tangible), denoted by wtang(G), if ∅ 6= Now(G) ⊆ INWL
fin \ {∅}. The

expression G is tangible, denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (INSL
fin ∪ INWL

fin ) \ {∅}.
Again, we particularly have tang(G), if Now(G) = ∅. Otherwise, the expression G is vanishing, denoted by
vanish(G), and in this case ∅ 6= Now(G) ⊆ INIL

fin \ {∅}. Note that the operative dynamic expressions from [G]≈
may have different types in general. The following example demonstrates two operative dynamic expressions H
and H ′ with H ≈ H ′, such that vanish(H), but stang(H ′).

Example 3.7 Let G = (({a}, ♮01)[]({b}, ♮
0
2))‖({c},

1
2 ) and G

′ = (({a}, ♮01)[]({b}, ♮
0
2))‖({c},

1
2 ). Then G ≈ G′,

since G⇐ G′′ ⇒ G′ for G′′ = (({a}, ♮01)[]({b}, ♮
0
2))‖({c},

1
2 ), but Can(G) = {{({a}, ♮01)}, {({c},

1
2 )}, {({a}, ♮

0
1),

({c}, 12 )}}, Can(G
′) = {{({b}, ♮02)}, {({c},

1
2 )}, {({b}, ♮

0
2), ({c},

1
2 )}} and Now(G) = {{({a}, ♮01)}}, Now(G

′) =
{{({b}, ♮02)}}. Clearly, we have vanish(G) and vanish(G′). The executions like that of {({c}, 12 )} (and all
multisets including it) from G and G′ must be disabled using preconditions in the action rules, since immediate
multiactions have a priority over stochastic ones, hence, the former are always executed first.

Let H = ({a}, ♮01)[]({b},
1
2 ) and H ′ = ({a}, ♮01)[]({b},

1
2 ). Then H ≈ H ′, since H ⇐ H ′′ ⇒ H ′ for H ′′ =

({a}, ♮01)[]({b},
1
2 ), but Can(H) = Now(H) = {{({a}, ♮01)}} and Can(H ′) = Now(H ′) = {{({b}, 12 )}}. We have

vanish(H), but stang(H ′). To make the action rules correct under structural equivalence, the executions like
that of {({b}, 12 )} from H ′ must be disabled using preconditions in the action rules, since immediate multiactions
have a priority over stochastic ones, hence, the choices between them are always resolved in favour of the former.

Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩ OpRegDynExpr stang(H). We write
wtang([G]≈), if ∃H ∈ [G]≈ ∩ OpRegDynExpr wtang(H) and ∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We
write tang([G]≈), if stang([G]≈) or wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈
[G]≈ ∩OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (α, ρ), (β, χ)∈ SL, (α, ♮0l ), (β, ♮
0
m) ∈ IL

and (α, ♮θl ), (β, ♮
θ
m) ∈ WL. Further, E,F ∈ RegStatExpr, G,H ∈ SatOpRegDynExpr, G̃, H̃∈RegDynExpr,

G[]E,E[]G, [E ∗ G ∗ F ], [E ∗ F ∗ G] ∈ SatOpRegDynExpr and a ∈ Act. Moreover, Γ,∆ ∈ INSL
fin \ {∅}, Γ′ ∈

INSL
fin, I, J ∈ INIL

fin \ {∅}, I ′ ∈ INIL
fin, V,W ∈ INWL

fin \ {∅}, V ′ ∈ INWL
fin and Υ ∈ INSDL

fin \ {∅}.
We use the following abbreviations in the names of the rules from the table: “E” for “Empty move”, “B”

for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for “Parallel”, “L” for “reLabeling”, “R” for
“Restriction”, “I” for “Iteraton” and “Sy” for “Synchronization”. The first rule in the table is the empty
move rule E. The other rules are the action rules, describing transformations of dynamic expressions, which are
built using particular algebraic operations. If we cannot merge the rules with stochastic, immediate ans waiting
multiactions in one rule for some operation then we get the coupled action rules. In such cases, the names of
the action rules with stochastic multiactions have a suffix ‘s’, those with immediate multiactions have a suffix
‘i’, and those with waiting multiactions have a suffix ‘w’. To make presentation more compact, the action rules
with double conclusion are combined from two distinct action rules with the same premises.

Almost all the rules in Table 3 (excepting E, Bw, P2s, P2i, P2w, Sy2s, Sy2i and Sy2w) resemble those
of gsPBC, but the former correspond to execution of multisets of activities, not of single activities, as in the
latter, and our rules have simpler preconditions (if any), since all immediate multiactions in dtsdPBC have the
same priority level, unlike those of gsPBC.

The preconditions in rules E, Cs, P1s, and I2s are needed to ensure that (possibly empty) multisets of
stochastic multiactions are executed only from s-tangible saturated operative dynamic expressions, such that
all dynamic expressions structurally equivalent to them are s-tangible as well. For example, assuming that
stang([G]≈) in rule Cs, if init(G) then G ≈ F for some static expression F and G[]E ≈ F []E ≈ F []E ≈
F []E. Hence, it should be guaranteed that stang([F []E]≈), which holds iff stang([E]≈). The case E[]G is
treated similarly. Assuming that stang([G]≈) in rule P1s, it should be guaranteed that stang([G‖H ]≈) and
stang([H‖G]≈), which holds iff stang([H ]≈). The precondition in rule I2s is analogous to that in rule Cs.

Analogously, the preconditions in rules Cw, and I2w are needed to ensure that non-empty multisets of
waiting multiactions are executed only from w-tangible saturated operative dynamic expressions, such that all
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Table 3: Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l )

{(α,♮0l )}−→ (α, ♮0l ) Bw (α, ♮θl )
1

{(α,♮θl )}−→ (α, ♮θl )

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H ]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H ]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f ]
f(Υ)
−→ G̃[f ]

R
G

Υ
→ G̃, a, â 6∈ A(Υ)

G rs a
Υ
→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F ]
Υ
→ [G̃ ∗ E ∗ F ]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F ]≈))

[E ∗G ∗ F ]
Γ
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F ]
I
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F ]≈))

[E ∗G ∗ F ]
V
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l )}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl )}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a

dynamic expressions structurally equivalent to them are tangible. This requirement (about tangible expressions)
means that only (possibly empty) multisets of stochastic multiactions or non-empty multisets of waiting mul-
tiactions, and no immediate multiactions, can be executed from the subprocess that is composed alternatively
(in choice) with the subprocess G. Hence, the multiset W of waiting multiactions, executed from G, can also
be executed from the composition of G and that alternative subprocess, since immediate multiactions cannot
occur from the latter. Otherwise, it would prevent the execution of W from G in the composite process, by
disregarding the alternative choice of the branch specified by G, due to the zero delays and priority (captured
by all action rules) of immediate multiactions over all other multiaction types.

The precondition in rule P1w is an exception from the above. It also ensures that non-empty multisets of
waiting multiactions are executed only from w-tangible saturated operative dynamic expressions, such that all
dynamic expressions structurally equivalent to them are tangible, but all the expressions structurally equivalent
to H specifying parallel with G subprocess should be s-tangible. This stricter requirement (about s-tangible,
instead of just tangible, expressions) means that only (possibly empty) multisets of stochastic multiactions, and
no immediate or waiting multiactions, can be executed from the subprocess H that is composed concurrently
(in parallel) with the subprocess G. Hence, the multiset W of waiting multiactions, executed from G, is also a
maximal (by the inclusion relation) multiset that can be executed from the parallel composition of G and H .
The reason is that only the timers decrement by one time unit (by applying rule E) is actually possible in H
while executing W from G, due to priority (captured by all action rules) of waiting multiactions over stochastic
ones. Thus, taking the rule precondition stang([H ]≈) instead of tang([H ]≈) preserves maximality of the steps
consisting of waiting multiactions while applying parallel composition.

In rules P1s and P1w, the timer value decrementing by one 	 H , applied to the s-tangible saturated
operative dynamic expression H that is composed in parallel with G, from which stochastic multiactions are
executed at the next time tick, is used to maintain the time progress uniformity in the composite expression.
Although rules P1s and P1w can be merged, we have not done it, aiming to emphasize the exceptional
precondition in rule P1w.

In rulesCs, Ci andCw, the timer values discarding ⇃E, applied to the static expressionE that is composed in
choice with G, from which activities are executed, signifies that the timer values of the non-chosen subexpression
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(branch) become irrelevant in the composite expression and thus may be removed. Analogously, in rules I2s, I2i
and I2w, the timer values discarding ⇃F is applied to the static expression F that is an alternative to G, from
which activities are executed, since the choice is always made between the body and termination subexpressions
of the composite iteration expression (between the second and third arguments of iteration).

Rule E corresponds to one discrete time unit delay (passage of one unit of time) while executing no activities
and therefore it has no analogues among the rules of gsPBC that adopts the continuous time model. Rule E is
a global one, i.e. it is applied only to the whole (topmost level of) expressions, rather than to their parts. The
reason is that all other action rules describe dynamic expressions transformations due to execution of non-empty
multisets of activities. Hence, the actionless time move described by rule E cannot “penetrate” with action rules
through the expressions structure. This guarantees that time progresses uniformly in all their subexpressions.

Rule Bw differs from the more standard ones Bs and Bi that both resemble rule B in gsPBC. The reason
is that in Bw, the overlined waiting multiaction has an extra superscript ‘1’, indicating that one time unit is
remained until the multiaction’s execution (RTE equals one) that should follow in the next moment.

Rules P2s, P2i and P2w have no similar rules in gsPBC, since interleaving semantics of the algebra allows
no simultaneous execution of activities. On the other hand, P2s, P2i and P2w have in PBC the analogous rule
PAR that is used to construct step semantics of the calculus, but the former two rules correspond to execution
of multisets of activities, unlike that of multisets of multiactions in the latter rule. Rules P2s, P2i and P2w
cannot be merged, since otherwise simultaneous execution of different types of multiactions would be allowed.

Rules Sy2s, Sy2i and Sy2w differ from the corresponding synchronization rules in gsPBC, since the prob-
ability or the weight of synchronization in the former rules and the rate or the weight of synchronization in
the latter rules are calculated in two distinct ways. Rules Sy2i and Sy2w cannot be merged, since otherwise
synchronous execution of immediate and waiting multiactions would be allowed.

Rule Sy2s establishes that the synchronization of two stochastic multiactions is made by taking the product
of their probabilities, since we are considering that both must occur for the synchronization to happen, so
this corresponds, in some sense, to the probability of the independent event intersection, but the real situation
is more complex, since these stochastic multiactions can also be executed in parallel. Nevertheless, when
scoping (the combined operation consisting of synchronization followed by restriction over the same action [16])
is applied over a parallel execution, we get as final result just the simple product of the probabilities, since
no normalization is needed there. Multiplication is an associative and commutative binary operation that is
distributive over addition, i.e. it fulfills all practical conditions imposed on the synchronization operator in
[42]. Further, if both arguments of multiplication are from (0; 1) then the result belongs to the same interval,
hence, multiplication naturally maintains probabilistic compositionality in our model. Our approach is similar
to the multiplication of rates of the synchronized actions in MTIPP [41] in the case when the rates are less than
1. Moreover, for the probabilities ρ and χ of two stochastic multiactions to be synchronized we have ρ · χ <
min{ρ, χ}, i.e. multiplication meets the performance requirement stating that the probability of the resulting
synchronized stochastic multiaction should be less than the probabilities of the two ones to be synchronized.
While performance evaluation, it is usually supposed that the execution of two components together require more
system resources and time than the execution of each single one. This resembles the bounded capacity assumption
from [42]. Thus, multiplication is easy to handle with and it satisfies the algebraic, probabilistic, time and
performance requirements. Therefore, we have chosen the product of the probabilities for the synchronization.
See also [22, 21] for a discussion about binary operations producing the rates of synchronization in the continuous
time setting.

In rules Sy2i and Sy2w, we sum the weights of two synchronized immediate (waiting, respectively) mul-
tiactions, since the weights can be interpreted as the rewards [75], thus, we collect the rewards. Moreover, we
express that the synchronized execution of immediate (waiting) multiactions has more importance than that
of every single one. The weights of immediate and waiting (i.e. deterministic) multiactions can also be seen
as bonus rewards associated with transitions [12]. The rewards are summed during synchronized execution of
immediate (waiting) multiactions, since in that case all the synchronized activities can be seen as participated
in the execution. We prefer to collect more rewards, thus, the transitions providing greater rewards will have
a preference and they will be executed with a greater probability. In particular, since execution of immediate
multiactions takes no time, we prefer to collect in a step (parallel execution) as many synchronized immediate
multiactions as possible to get more significant progress in behaviour. Under behavioural progress we under-
stand an advance in executing activities, which does not always imply a progress in time, as in the case when the
activities are immediate multiactions. This aspect will be used later, while evaluating performance via analysis
of the embedded discrete time Markov chains (EDTMCs) of expressions. Since every state change in EDTMC
takes one unit of (its local) time, greater advance in operation of the EDTMC allows one to calculate quicker
many performance indices. As for waiting multiactions, only the maximal multisets of them, executable from
a state, occur with a time tick. The reason is that each waiting multiaction has a probability 1 to occur in the
next moment, when the remaining time of its timer (RTE) equals one and there exist no conflicting waiting
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multiactions. Hence, all waiting multiactions with the RTE being one that are executable together from a state
must participate in a step from that state. Since there may exist different such maximal multisets of waiting
multiactions, a probabilistic choice among all possible steps is made, imposed by the weights of those multi-
actions. Thus, the steps of waiting multiactions always produce maximal overall weights, but they are mainly
used to calculate the probabilities of alternative maximal steps rather than the cumulative bonus rewards.

We do not have self-synchronization, i.e. synchronization of an activity with itself, since all the (enumerated)
activities executed together are considered to be different. This allows us to avoid rather cumbersome and
unexpected behaviour, as well as many technical difficulties [16].

Notice that the timers of all waiting multiactions that lose their enabledness when a state change occurs
become inactive (turned off) and their values become irrelevant while the timers of all those preserving their
enabledness continue running with their stored values. Hence, we adopt the enabling memory policy [64, 1, 5, 6]
when the process states are changed and the enabledness of deterministic multiactions is possibly modified
(remember that immediate multiactions may be seen as those with the timers displaying a single value 0, so
we do not need to store their values). Then the timer values of waiting multiactions are taken as the enabling
memory variables.

Similar in [50], we are mainly interested in the dynamic expressions, inferred by applying the inaction rules
(also in the reverse direction) and action rules from the overlined static expressions, such that no stamped (i.e.
superscribed with the timer values) waiting multiaction is a subexpression of them. The reason is to ensure that
time proceeds uniformly and only enabled waiting multiactions are stamped. We call such dynamic expressions
reachable, by analogy with the reachable states of LDTSDPNs, to be presented latter. Formally, a dynamic
expression G is reachable, if there exists a static expression E without timer value superscripts, such that E ≈ G

or E ≈ G0
Υ1→ H1 ≈ G1

Υ2→ . . .
Υn→ Hn ≈ G for some Υ1, . . . ,Υn ∈ INSDL

fin .

Therefore, we consider a dynamic expression G = ({a}, ♮21)
1[]({b}, ♮32)

1 as “illegal” and that H = ({a}, ♮21)
1[]

({b}, ♮32)
2 as “legal”, since the latter is obtained from the overlined static expression without timer value super-

scripts E = ({a}, ♮21)[]({b}, ♮
3
2) after one time tick. On the other hand, G is “illegal” only when it is intended to

specify a complete process, but it may become “legal” as a part of some complete specification, like G rs a, since
after two time ticks from E rs a, the timer values cannot be decreased further when the value 1 is approached.
Thus, we should allow the dynamic expressions like G, by assuming that they are incomplete specifications,

to be further composed. Further, a dynamic expression G = ({a}, 12 ); ({b}, ♮
2
1)

1 is “illegal”, since the waiting
multiaction ({b}, ♮21) is not enabled in [G]≈ and its timer cannot start before the stochastic multiaction ({a}, 12 )
is executed. Enabledness of the stamped waiting multiactions is considered in the next proposition.

Proposition 3.2 Let G be a reachable dynamic expression. Then only waiting multiactions from
EnaWait([G]≈) are stamped in G.

Proof. By the definition of reachability, there exists E ∈ StatExpr without stamped waiting multiactions, such
that G is derived from E by applying the inaction rules (also those reversed) and action rules.

In that derivation, only the first inaction rule can add timer value superscripts to the waiting multiactions
from WL(G) = WL(E) that are overlined. The other inaction rules (also reversed) can just “shift” the upper
bars from / to those stamped waiting multiactions while preserving the enabledness of all waiting multiactions
from WL(G). Thus, just the waiting multiactions from EnaWait([G]≈) become stamped in the subexpressions

of G, such as (α, ♮θl )
θ or (α, ♮θl )

θ.
Further, in the derivation, the action rules cannot add timer value superscripts to the waiting multiactions

from WL(G). Instead, the action rules can make such waiting multiactions non-enabled (disabled), i.e. belong-
ing to WL(G) \EnaWait([G]≈). Such “disabling” action rules correspond either to the executing an overlined
stamped (with the value 1) waiting multiaction (rule Bw) or to the choice of some alternative process branch
(rules Cs, Ci, Cw, I2s, I2i, I2w). In the both cases, all the disabled waiting multiactions loose their timer
value superscripts. Thus, only the waiting multiactions from EnaWait([G]≈) remain stamped in G.

Hence, E does not contain stamped waiting multiactions and in the derivation of G from it, only the waiting
multiactions from EnaWait([G]≈) become and remain stamped in G. Therefore, only waiting multiactions from
EnaWait([G]≈) are stamped in G. ⊓⊔

In Table 4, inaction rules, action rules (with stochastic or immediate, or waiting multiactions) and empty
move rule are compared according to the three questions about their application: whether it changes the current
state, whether it leads to a time progress, and whether it results in execution of some activities. Positive answers
to the questions are denoted by the plus sign while negative ones are specified by the minus sign. If both positive
and negative answers can be given to some of the questions in different cases then the plus-minus sign is written.
Notice that the process states are considered up to structural equivalence of the corresponding expressions, and
time progress is not regarded as a state change.
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Table 4: Comparison of inaction, action and empty move rules

Rules State change Time progress Activities execution

Inaction rules − − −
Action rules ± + +

(stochastic or waiting multiactions)
Action rules ± − +

(immediate multiactions)
Empty move rule − + −

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dynamic expressions. The transition
systems are used to define the operational semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of activities executable in s is defined

as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}. Here H

Υ
→ H̃ is an inference by the rules from Table 3.

It can be proved by induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈ s Υ ∈
Now(H). The reverse statement does not hold in general, since the preconditions in the action rules disable
executions of the activities with the lower-priority types from every H ∈ s, as the next example shows.

Example 3.8 Let H,H ′ be from Example 3.7 and s = [H ]≈ = [H ′]≈. We have Now(H) = {{({a}, ♮01)}} and
Now(H ′) = {{({b}, 12 )}}. Since only rules Ci and Bi can be applied to H while no action rule can be applied to
H ′, we get Exec(s) = {{({a}, ♮01)}}. Then, for H

′ ∈ s and Υ = {({b}, 12 )} ∈ Now(H ′), we obtain Υ 6∈ Exec(s).

The state s is s-tangible (stochastically tangible), denoted by stang(s), if Exec(s) ⊆ INSL
fin. For an s-tangible

state s we always have ∅ ∈ Exec(s) by rule E, hence, we may have Exec(s) = {∅}. The state s is w-tangible
(waitingly tangible), denoted by wtang(s), if Exec(s) ⊆ INWL

fin \{∅}. The state s is tangible, denoted by tang(s),

if stang(s) or wtang(s), i.e. Exec(s) ⊆ INSL
fin∪IN

WL
fin . Again, for a tangible state s we may have ∅ ∈ Exec(s) and

Exec(s) = {∅}. Otherwise, the state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ INIL
fin\{∅}.

Since for every H ∈ s, Now(H) containing the multisets of activities with the lower-priority types is not
included into Exec(s), and the types of states are determined from the highest-priority types of the executable
activities, the state type definitions based on Now(H), H ∈ s, and on Exec(s) are consistent.

Note that if Υ ∈ Exec(s) and Υ ∈ INSL
fin ∪ INIL

fin then by rules P2s, P2i, Sy2s, Sy2i and definition of

Exec(s) ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Exec(s), i.e. 2Υ \ {∅} ⊆ Exec(s).
Since the inaction rules only distribute and move upper and lower bars along the syntax of dynamic expres-

sions, all H ∈ s have the same underlying static expression F . Process expressions always have a finite length,
hence, the number of all (enumerated) activities and the number of all operations in the syntax of F are finite
as well. The action rules Sy2s, Sy2i and Sy2w are the only ones that generate new activities. They result
from the handshake synchronization of actions and their conjugates belonging to the multiaction parts of the
first and second constituent activity, respectively. Since we have a finite number of operators sy in F and all
the multiaction parts of the activities are finite multisets, the number of the new synchronized activities is also
finite. The action rules contribute to Exec(s) (in addition to the empty set, if rule E is applicable) only the
sets consisting both of activities from F and the new activities, produced by Sy2s, Sy2i and Sy2w. Since we
have a finite number n of all such activities, we get |Exec(s)| ≤ 2n < ∞. Thus, summation and multiplication
by elements from the finite set Exec(s) are well-defined. Similar reasoning can be used to demonstrate that for
all dynamic expressions H (not just for those from s), Now(H) is a finite set.

Definition 3.7 The derivation set of a dynamic expression G, denoted by DR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H ]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the set of all w-tangible states
from DR(G) is denoted by DRWT (G). The set of all tangible states from DR(G) is denoted by DRT (G) =
DRST (G) ∪ DRWT (G). The set of all vanishing states from DR(G) is denoted by DRV (G). Obviously,
DR(G) = DRT (G) ⊎DRV (G) = DRST (G) ⊎DRWT (G) ⊎DRV (G), where ⊎ denotes disjoint union.
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Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s) \ {∅}. The probability that the multiset of stochastic multiactions Υ is ready for execution

in s or the weight of the multiset of deterministic multiactions Υ which is ready for execution in s is

PF (Υ, s) =

{ ∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1− χ), s ∈ DRST (G);∑

(α,♮θ
l
)∈Υ l, s ∈ DRWT (G) ∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

If s ∈ DRST (G) and Exec(s) 6= {∅} then PF (Υ, s) can be interpreted as a joint probability of independent
events (in a probability sense, i.e. the probability of intersection of these events is equal to the product of their
probabilities). Each such an event consists in the positive or the negative decision to be executed of a particular
stochastic multiaction. Every executable stochastic multiaction decides probabilistically (using its probabilistic
part) and independently (from others), if it wants to be executed in s. If Υ is a multiset of all executable
stochastic multiactions which have decided to be executed in s and Υ ∈ Exec(s) then Υ is ready for execution
in s. The multiplication in the definition is used because it reflects the probability of the independent event
intersection. Alternatively, when Υ 6= ∅, PF (Υ, s) can be interpreted as the probability to execute exclusively
the multiset of stochastic multiactions Υ in s, i.e. the probability of intersection of two events calculated using
the conditional probability formula in the form of P(X ∩ Y ) = P(X |Y )P(Y ). The event X consists in the
execution of Υ in s. The event Y consists in the non-execution in s of all the executable stochastic multiactions
not belonging to Υ. Since the mentioned non-executions are obviously independent events, the probability
of Y is a product of the probabilities of the non-executions: P(Y ) =

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1 − χ). The

conditioning ofX by Y makes the executions of the stochastic multiactions from Υ independent, since all of them
can be executed in parallel in s by definition of Exec(s). Hence, the probability to execute Υ under condition
that no executable stochastic multiactions not belonging to Υ are executed in s is a product of probabilities
of these stochastic multiactions: P(X |Y ) =

∏
(α,ρ)∈Υ ρ. Thus, the probability that Υ is executed and no

executable stochastic multiactions not belonging to Υ are executed in s is the probability of X conditioned by
Y multiplied by the probability of Y : P(X ∩Y ) = P(X |Y )P(Y ) =

∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1−χ).

When Υ = ∅, PF (Υ, s) can be interpreted as the probability not to execute in s any executable stochastic
multiactions, thus, PF (∅, s) =

∏
{(β,χ)}∈Exec(s)(1 − χ). When only the empty multiset of activities can be

executed in s, i.e. Exec(s) = {∅}, we take PF (∅, s) = 1, since nothing more can be executed in s in this
case. Since the probabilities of all stochastic multiactions are strictly less than 1, for s ∈ DRST (G) we have
PF (∅, s) ∈ (0; 1]. Hence, we always execute the empty multiset of activities in s at the next time moment with
a certain positive probability.

If s ∈ DRWT (G) ∪ DRV (G) then PF (Υ, s) could be interpreted as the overall (cumulative) weight of the
deterministic multiactions from Υ, i.e. the sum of all their weights. The summation here is used since the weights
can be seen as the rewards which are collected [75]. This means that concurrent execution of the deterministic
multiactions has more importance than that of every single one. The weights of deterministic multiactions
can also be interpreted as bonus rewards of transitions [12]. The rewards are summed when deterministic
multiactions are executed in parallel, because all of them participated in the execution. In particular, since
execution of immediate multiactions takes no time, we prefer to collect in a step (parallel execution of activities)
as many parallel immediate multiactions as possible to get more progress in behaviour. This aspect will be
used later, while while evaluating performance on the basis of the EDTMCs of expressions. Concerning waiting
multiactions, only the maximal multisets of them executable from a state occur in the next moment. Therefore,
the steps of waiting multiactions produce maximal overall weights, which are used to calculate probabilities of
alternative maximal steps rather than the cumulative bonuses. Note that this reasoning is the same as that used
to define the weight of synchronized immediate (waiting, respectively) multiactions in the rules Sy2i and Sy2w.

Note that the definition of PF (Υ, s) (as well as the definitions of other probability functions which we shall
present) is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). Besides Υ, some other multisets of activities may be ready for execution in s, hence, a
kind of conditioning or normalization is needed to calculate the execution probability. The probability to execute
the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

If s ∈ DRST (G) then PT (Υ, s) can be interpreted as the conditional probability to execute Υ in s calculated

using the conditional probability formula in the form of P(Z|W ) = P(Z∩W )
P(W ) . The event Z consists in the
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exclusive execution of Υ in s, hence, P(Z) = PF (Υ, s). The event W consists in the exclusive execution of
any set (including the empty one) Ξ ∈ Exec(s) in s. Thus, W = ∪jZj , where ∀j, Zj are mutually exclusive
events (in a probability sense, i.e. intersection of these events is the empty event) and ∃i, Z = Zi. We have
P(W ) =

∑
j P(Zj) =

∑
Ξ∈Exec(s) PF (Ξ, s), because summation reflects the probability of the mutually exclusive

event union. Since Z ∩W = Zi ∩ (∪jZj) = Zi = Z, we have P(Z|W ) = P(Z)
P(W ) = PF (Υ,s)∑

Ξ∈Exec(s) PF (Ξ,s) . PF (Υ, s)

can also be seen as the potential probability to execute Υ in s, since we have PF (Υ, s) = PT (Υ, s) only
when all sets (including the empty one) consisting of the executable stochastic multiactions can be executed
in s. In this case, all the mentioned stochastic multiactions can be executed in parallel in s and we have∑

Ξ∈Exec(s) PF (Ξ, s) = 1, since this sum collects the products of all combinations of the probability parts of
the stochastic multiactions and the negations of these parts. But in general, for example, for two stochastic
multiactions (α, ρ) and (β, χ) executable in s, it may happen that they cannot be executed in s together, in
parallel, i.e. ∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but {(α, ρ), (β, χ)} 6∈ Exec(s). Note that for s ∈ DRST (G) we have
PT (∅, s) ∈ (0; 1], hence, there is a non-zero probability to execute the empty multiset of activities in s at the
next time moment.

If s ∈ DRWT (G) ∪ DRV (G) then PT (Υ, s) can be interpreted as the weight of the set of deterministic
multiactions Υ which is ready for execution in s normalized by the weights of all the sets executable in s.
This approach is analogous to that used in the EMPA definition of the probabilities of immediate actions
executable from the same process state [14] (inspired by way in which the probabilities of conflicting immediate
transitions in GSPNs are calculated [6]). The only difference is that we have a step semantics and, for every
set of deterministic multiactions executed in parallel, we should use its cumulative weight. To get the analogy
with EMPA possessing interleaving semantics, we should interpret the weights of immediate actions of EMPA
as the cumulative weights of the sets of deterministic multiactions of dtsdPBC.

The advantage of our two-stage approach to definition of the probability to execute a set of activities is that
the resulting probability formula PT (Υ, s) is valid both for (sets of) stochastic and deterministic multiactions.
It allows one to unify the notation used later while constructing the operational semantics and analyzing
performance.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations of G is equal
to 1. More formally, ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) = 1. This, obviously, follows from the definition of

PT (Υ, s), and guarantees that it defines a probability distribution.
The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

The summation in the definition above reflects the probability of the mutually exclusive event union,
since

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PT (Υ, s) = 1∑
Ξ∈Exec(s) PF (Ξ,s) ·

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PF (Υ, s), where for each

Υ, PF (Υ, s) is the probability of the exclusive execution of Υ in s. Note that ∀s ∈ DR(G)∑
{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H

Υ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ
→H̃}

∑
{Υ|∃H∈s ∃H̃∈s̃ H

Υ
→H̃}

PT (Υ, s) =∑
Υ∈Exec(s) PT (Υ, s) = 1.

Example 3.9 Let E = ({a}, ρ)[]({a}, χ), where ρ, χ ∈ (0; 1). DR(E) consists of the equivalence classes s1 =
[E]≈ and s2 = [E]≈. We have DRT (E) = {s1, s2}. The execution probabilities are calculated as follows. Since
Exec(s1) = {∅, {({a}, ρ)}, {({a}, χ)}}, we get PF ({({a}, ρ)}, s1) = ρ(1−χ), PF ({({a}, χ)}, s1) = χ(1−ρ) and
PF (∅, s1) = (1 − ρ)(1 − χ). Then

∑
Ξ∈Exec(s1)

PF (Ξ, s1) = ρ(1 − χ) + χ(1 − ρ) + (1 − ρ)(1 − χ) = 1 − ρχ.

Thus, PT ({({a}, ρ)}, s1) = ρ(1−χ)
1−ρχ , PT ({({a}, χ)}, s1) = χ(1−ρ)

1−ρχ and PT (∅, s1) = PM(s1, s1) = (1−ρ)(1−χ)
1−ρχ .

Further, Exec(s2) = {∅}, hence,
∑

Ξ∈Exec(s2)
PF (Ξ, s2) = PF (∅, s2) = 1 and PT (∅, s2) = PM(s2, s2) =

1
1 = 1. Finally, PM(s1, s2) = PT ({({a}, ρ)}, s1) + PT ({({a}, χ)}, s1) = ρ(1−χ)

1−ρχ + χ(1−ρ)
1−ρχ = ρ+χ−2ρχ

1−ρχ . In

Table 5, the calculation of the probability functions PF (Υ, s1), PT (Υ, s1), PM(s1, s) is explained, where Υ ∈
Exec(s1), s ∈ {s1, s2} (the value of s is depicted in the parentheses near the value of PM(s1, s)) and Σ =∑

Ξ∈Exec(s1)
PX(Ξ, s1), PX ∈ {PF, PT, PM}.

Let E′ = ({a}, ♮0l )[]({a}, ♮
0
m), where l,m ∈ IR>0. DR(E′) consists of the equivalence classes s′1 = [E′]≈ and

s′2 = [E′]≈. We have DRT (E′) = {s′2} and DRV (E′) = {s′1}. The execution probabilities are calculated as
follows. Since Exec(s′1) = {{({a}, ♮0l )}, {({a}, ♮

0
m)}}, we get PF ({({a}, ♮0l )}, s

′
1) = l and PF ({({a}, ♮0m)}, s

′
1) =

m. Then
∑

Ξ∈Exec(s′1)
PF (Ξ, s′1) = l +m. Thus, PT ({({a}, ♮0l )}, s

′
1) = l

l+m and PT ({({a}, ♮0m)}, s
′
1) = m

l+m .

Further, Exec(s′2) = {∅}, hence,
∑

Ξ∈Exec(s′2)
PF (Ξ, s′2) = PF (∅, s′2) = 1 and PT (∅, s′2) = PM(s′2, s

′
2) =

1
1 = 1.

Finally, PM(s′1, s
′
2) = PT ({({a}, ♮0l )}, s

′
1) + PT ({({a}, ♮0m)}, s

′
1) =

l
l+m + m

l+m = 1. In Table 6, the calculation
of the probability functions PF (Υ, s′1), PT (Υ, s

′
1), PM(s′1, s

′) is explained, where Υ ∈ Exec(s′1), s
′ ∈ {s′2} (the
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Table 5: Calculation of the probability functions PF, PT, PM for s1 ∈ DR(E) and E = ({a}, ρ)[]({a}, χ)

s1\Υ ∅ {({a}, ρ)} {({a}, χ)} Σ

PF (1− ρ)(1− χ) ρ(1− χ) χ(1− ρ) 1− ρχ

PT (1−ρ)(1−χ)
1−ρχ

ρ(1−χ)
1−ρχ

χ(1−ρ)
1−ρχ 1

PM (1−ρ)(1−χ)
1−ρχ (s1)

ρ+χ−2ρχ
1−ρχ (s2) 1

Table 6: Calculation of the probability functions PF, PT, PM for s′1 ∈ DR(E
′
) and E′ = ({a}, ♮0l )[]({a}, ♮

0
m)

s′1\Υ {({a}, ♮0l )} {({a}, ♮0m)} Σ

PF l m l+m

PT l
l+m

m
l+m 1

PM 1 (s′2) 1

value of s′ is depicted in the parentheses near the value of PM(s′1, s
′)) and Σ =

∑
Ξ∈Exec(s′1)

PX(Ξ, s′1), PX ∈

{PF, PT, PM}.

Definition 3.8 Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadru-
ple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSDL
fin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Υ
→ H̃};

• the initial state is sG = [G]≈.

Example 3.10 Let E be from Example 3.1. The next inferences by rule E are possible from the elements
of [E]≈:

({a}, ♮31)[]({b},
1
3 ) ≈ ({a}, ♮31)

3[]({b}, 13 )
∅
→ ({a}, ♮31)

2[]({b}, 13 ),

({a}, ♮31)[]({b},
1
3 ) ≈ ({a}, ♮31)

3[]({b}, 13 )
∅
→ ({a}, ♮31)

2[]({b}, 13 ).

The first and second inferences suggest the empty move transition [E]≈
∅
→ [({a}, ♮31)

2[]({b}, 13 )]≈ 6= [E]≈.
The intuition is that the timer of the enabled waiting multiaction ({a}, ♮31) is decremented by one time unit in
the both cases, whenever it is overlined or not. Later we shall see that in the both cases, the respective waiting
transition of the LDTSDPN corresponding to E will be enabled at a “common” marking (that also enables a
stochastic transition, matched up to ({b}, 13 )), so its timer should be decreased by one with a time tick while
staying at the same marking, and such a time move will lead to a different state of the LDTSDPN.

The definition of TS(G) is correct, i.e. for every state, the sum of the probabilities of all the transitions
starting from it is 1. This is guaranteed by the note after the definition of PT (Υ, s). Thus, we have defined
a generative model of probabilistic processes, according to the classification from [37]. The reason is that the
sum of the probabilities of the transitions with all possible labels should be equal to 1, not only of those with
the same labels (up to enumeration of activities they include) as in the reactive models, and we do not have a
nested probabilistic choice as in the stratified models.

The transition system TS(G) associated with a dynamic expression G describes all the steps (parallel
executions) that occur at discrete time moments with some (one-step) probability and consist of multisets of
activities. Every step consisting of stochastic (waiting, respectively) multiactions or the empty step (i.e. that
consisting of the empty multiset of activities) occurs instantly after one discrete time unit delay. Each step
consisting of immediate multiactions occurs instantly without any delay. The step can change the current
state to a different one. The states are the structural equivalence classes of dynamic expressions obtained by
application of action rules starting from the expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will
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be written as s
Υ
→P s̃. It is interpreted as follows: the probability to change the state s to s̃ as a result of

executing Υ is P .
Note that from every s-tangible state the empty multiset of activities can always be executed by ruleE. Hence,

for s-tangible states, Υ may be the empty multiset, and its execution only decrements by one the timer values (if

any) of the current state (i.e. the equivalence class). Then we may have a transition s
∅
→P	s from an s-tangible

state s to the tangible (i.e. s-tangible or w-tangible) state 	 s =
⋃
{[	H ]≈ | H ∈ s ∩ SatOpRegDynExpr}.

Thus, 	s is the union of the structural equivalence classes of all saturated operative dynamic expressions from
s, whose timer values have been decremented by one, prior to combining them into the equivalence classes. This
corresponds to applying the empty move rule to all saturated operative dynamic expressions from s, followed
by unifying the structural equivalence classes of all the resulting expressions. We have to keep track of such
executions, called the empty moves, because they affect the timers and have non-zero probabilities. The latter
follows from the definition of PF (∅, s) and the fact that the probabilities of stochastic multiactions cannot be
equal to 1 as they belong to the interval (0; 1). When it holds ∀H ∈ s ∩ SatOpRegDynExpr 	H = H , we

obtain 	s = s by definition of 	s. Then the empty move from s is in the form of s
∅
→P s, called the empty loop.

For w-tangible and vanishing states Υ cannot be the empty multiset, since we must execute some immediate
(waiting, respectively) multiactions from them at the current (next, respectively) time moment.

The step probabilities belong to the interval (0; 1], being 1 in the case when we cannot leave an s-tangible

state s and the only transition leaving it is the empty move one s
∅
→1	 s, or if there is just a single transition

from a w-tangible or a vanishing state to any other one.

We write s
Υ
→ s̃ if ∃P s

Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

The first equivalence we are going to introduce is isomorphism which is a coincidence of systems up to
renaming of their components or states.

Definition 3.9 Let G,G′ be dynamic expressions and TS(G)= (SG, LG, TG, sG), TS(G′)= (SG′, LG′ , TG′ , sG′)
be their transition systems. A mapping β : SG → SG′ is an isomorphism between TS(G) and TS(G′), denoted
by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)≃TS(G′), if ∃β :TS(G)≃TS(G′).

Transition systems of static expressions can be defined as well. For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 3.10 Two dynamic expressions G and G′ are equivalent with respect to transition systems, denoted
by G =ts G

′, if TS(G) ≃ TS(G′).

3.4 Semantic examples

We now present a series of examples that demonstrate how to construct the transition systems of the dynamic
expressions that include various compositions of stochastic, waiting and immediate multiactions.

Example 3.11 Let E = ({a}, ♮21)[]({b}, ♮
3
2). DR(E) consists of the equivalence classes

s1 = [({a}, ♮21)
2[]({b}, ♮32)

3]≈=[({a}, ♮21)
2[]({b}, ♮32)

3]≈, s2 = [({a}, ♮21)
1[]({b}, ♮32)

2]≈=[({a}, ♮21)
1[]({b}, ♮32)

2]≈,

s3 = [({a}, ♮21)[]({b}, ♮
3
2)]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅.
In Figure 2, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively. For simplicity of the graphical representation, the singleton multisets of
activities are written without outer braces.

This example demonstrates a choice between two waiting multiactions with different delays. It shows that the
waiting multiaction ({a}, ♮21) with a less delay 2 is always executed first, hence, the choice is resolved in favour
of it in any case and an absorbing state is then reached, so that the waiting multiaction ({b}, ♮32) with a greater
delay 3 is never executed.
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TS(E)

☛✡ ✟✠✞✝ ☎✆s2☛✡ ✟✠s3
❄✞✝ ✲ ({a},♮21),1

∅,1

❄∅,1

☛✡ ✟✠s1

Figure 2: The transition system of E for E = ({a}, ♮21)[]({b}, ♮
3
2)

TS(E)

☛✡ ✟✠
✚

✚❂
s2

☛✡ ✟✠s1

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠
s3

s4

❄

✞✝ ✲

∅, 2
3

∅, 2
3

∅,1

❩
❩⑦

❈
❈
❈
❈❈❲ ❄({a},♮31),1

({b}, 1
3
), 1

3

({b}, 1
3
),

1
3

Figure 3: The transition system of E for E = ({a}, ♮31)[]({b},
1
3 )

Example 3.12 Let E = ({a}, ♮31)[]({b},
1
3 ). DR(E) consists of the equivalence classes

s1 = [({a}, ♮31)
3[]({b}, 13 )]≈ = [({a}, ♮31)

3[]({b}, 13 )]≈, s2 = [({a}, ♮31)
2[]({b}, 13 )]≈ = [({a}, ♮31)

2[]({b}, 13 )]≈,

s3 = [({a}, ♮31)
1[]({b}, 13 )]≈ = [({a}, ♮31)

1[]({b}, 13 )]≈, s4 = [({a}, ♮31)[]({b},
1
3 )]≈.

We have DRST (E) = {s1, s2, s4}, DRWT (E) = {s3} and DRV (E) = ∅.
In Figure 3, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example demonstrates a choice between waiting and stochastic multiactions. It shows that the stochastic

multiaction ({b}, 13 ) can be executed until the timer value of the waiting multiaction ({a}, ♮31) becomes 1, after
which only the waiting multiaction can be executed in the next moment, leading to an absorbing state. Thus,
in our setting, a waiting multiaction that cannot be executed in the next time moment and whose timer is still
running may be interrupted (preempted) by executing a stochastic multiaction.

Example 3.13 Let E = (({a}, ♮31)[]({b},
1
3 )) rs a. DR(E) consists of the equivalence classes

s1 = [(({a}, ♮31)
3[]({b}, 13 )) rs a]≈ = [(({a}, ♮31)

3[]({b}, 13 )) rs a]≈,

s2 = [(({a}, ♮31)
2[]({b}, 13 )) rs a]≈ = [(({a}, ♮31)

2[]({b}, 13 )) rs a]≈,

s3 = [(({a}, ♮31)
1[]({b}, 13 )) rs a]≈ = [(({a}, ♮31)

1[]({b}, 13 )) rs a]≈,

s4 = [(({a}, ♮31)[]({b},
1
3 )) rs a]≈.

We have DRST (E) = {s1, s2, s3, s4} and DRWT (E) = ∅ = DRV (E).
In Figure 4, the transition system TS(E) is shown. The s-tangible states are depicted in ordinary ovals.
This example is a modification of the previous Example 3.12 by applying a restriction operation by action a

to the whole expression. The present example shows that the stochastic multiaction ({b}, 13 ) can be executed until
the timer value of the “restricted” waiting multiaction ({a}, ♮31) becomes 1, after which the waiting multiaction
also cannot be executed in the next moment, since it is affected by the restriction. Instead, the stochastic
multiaction ({b}, 13 ) can be executed again, leading to an absorbing state, or we return to the current state after
one time tick (the empty loop in that state). Thus, a waiting multiaction that cannot be executed because of
the restriction and whose timer runs until reaching its final value 1 may always be preempted by executing a
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✚

✚❂
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❈
❈
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3
), 1

3

({b}, 1
3
), 1

3

({b}, 1
3
),

1
3

Figure 4: The transition system of E for E = (({a}, ♮31)[]({b},
1
3 )) rs a

stochastic multiaction. To verify that the timer value 1 remains unchanged with the time progress, recall the
empty move rule E from Table 3 and the definition of 	G with max{1, δ − 1}=max{1, 0}=1 when δ=1.

Note that the timer decrement of the “restricted” waiting multiaction induces a partial (for the first 2 time
ticks) unfolding of the behaviour consisting in a choice between executing and non-executing the stochastic
multiaction. In our setting, the timer values are kept even for the waiting multiactions that cannot be executed
because of the restriction, since they can potentially participate in a synchronization, but the activities resulted
from synchronization do not appear explicitly in the syntax of the process expressions, and their timer values
can be detected only by observing those of the both synchronized waiting multiactions. Later we shall see an
importance of such a construction, particularly, in Examples 3.17 and 3.21.

Example 3.14 Let E = [({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]. DR(E) consists of the equivalence classes

s1 = [[({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]]≈,

s2 = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

3 ∗ ({c}, 13 )]]≈ = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

3 ∗ ({c}, 13 )]]≈,

s3 = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

2 ∗ ({c}, 13 )]]≈ = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

2 ∗ ({c}, 13 )]]≈,

s4 = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

1 ∗ ({c}, 13 )]]≈ = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

1 ∗ ({c}, 13 )]]≈,

s5 = [[({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]]≈.

We have DRST (E) = {s1, s2, s3, s5}, DRWT (E) = {s4} and DRV (E) = ∅.
In Figure 5, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example demonstrates an iteration loop with a waiting multiaction. The iteration initiation is modeled

by a (initiating) stochastic multiaction ({a}, 12 ). The iteration body that corresponds to the loop consists of a
(looping) waiting multiaction ({b}, ♮31). The iteration termination is represented by a (terminating) stochastic
multiaction ({c}, 13 ). The terminating stochastic multiaction can be executed until the timer value of the waiting
multiaction becomes 1, after which only the waiting multiaction can be executed in the next moment. Thus,
the iteration termination can either complete the repeated execution of the iteration body or break its execution
when the waiting multiaction timer shows some intermediate value (that is less than the initial value, being the
multiaction delay, but greater than 1). The execution of the waiting multiaction leads to the repeated start of
the iteration body. The execution of the terminating stochastic multiaction brings to the final absorbing state of
the iteration construction.

Example 3.15 Let E = ({a}, ♮01)‖({b}, ♮
2
2)‖({c}, ♮

3
3). DR(E) consists of the equivalence classes

s1 = [({a}, ♮01)‖({b}, ♮
2
2)

2‖({c}, ♮33)
3]≈, s2 = [({a}, ♮01)‖({b}, ♮

2
2)

2‖({c}, ♮33)
3]≈,

s3 = [({a}, ♮01)‖({b}, ♮
2
2)

1‖({c}, ♮33)
2]≈, s4 = [({a}, ♮01)‖({b}, ♮

2
2)‖({c}, ♮

3
3)

1]≈,

s5 = [({a}, ♮01)‖({b}, ♮
2
2)‖({c}, ♮

3
3)]≈.

We have DRST (E) = {s2, s5}, DRWT (E) = {s3, s4} and DRV (E) = {s1}.
In Figure 6, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively, and the vanishing ones are depicted in boxes.
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Figure 5: The transition system of E for E = [({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]

TS(E)

☛✡ ✟✠s2

☛✡ ✟✠s5

☛✡ ✟✠✞✝ ☎✆s4
❄

❄✞✝ ✲ ({c},♮33),1

∅,1

s3

❄({b},♮
2
2),1

☛✡ ✟✠✞✝ ☎✆∅,1
({a},♮01),1

s1

❄

Figure 6: The transition system of E for E = ({a}, ♮01)‖({b}, ♮
2
2)‖({c}, ♮

3
3)

This example demonstrates a parallel composition of an immediate and two waiting multiactions with different
delays. It shows that the immediate multiaction ({a}, ♮01) is always executed before any parallel with it waiting
multiaction. Further, from the two parallel waiting multiactions, that ({b}, ♮22) with a less delay 2 executed first in
any case. Finally, the execution of the waiting multiaction ({c}, ♮33) with a greater delay 3 leads to an absorbing
state. Thus, in spite of parallelism of those three deterministic multiactions, they are executed sequentially in
fact, in the increasing order of their (different) delays. That sequence also includes the empty set, executed after
the immediate multiaction, since the waiting multiaction with a less delay will then need a passage of one time
unit (one time tick) for its timer value (RTE) become 1 and it can be executed itself. Though the example is
not complex, it shows a transition system with all types of states: s-tangible, w-tangible and vanishing.

Example 3.16 Let E = ({a}, ♮31)‖({b},
1
3 ). DR(E) consists of the equivalence classes

s1 = [({a}, ♮31)
3‖({b}, 13 )]≈, s2 = [({a}, ♮31)

2‖({b}, 13 )]≈, s3 = [({a}, ♮31)
2‖({b}, 13 )]≈,

s4 = [({a}, ♮31)
1‖({b}, 13 )]≈, s5 = [({a}, ♮31)

1‖({b}, 13 )]≈, s6 = [({a}, ♮31)‖({b},
1
3 )]≈,

s7 = [({a}, ♮31)‖({b},
1
3 )]≈.

We have DRST (E) = {s1, s2, s3, s6, s7}, DRWT (E) = {s4, s5} and DRV (E) = ∅.
In Figure 7, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example demonstrates a parallel composition of waiting and stochastic multiactions. It shows that the

stochastic multiaction ({b}, 13 ) can be executed until the timer value of the waiting multiaction ({a}, ♮31) becomes
1, after which only the waiting multiaction can be executed in the next moment. The execution of the latter leads
to an absorbing state either directly or indirectly, via executing a possible empty loop, followed (via sequential
composition) by the stochastic multiaction that has not been executed in the preceding states.
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Figure 7: The transition system of E for E = ({a}, ♮31)‖({b},
1
3 )

Example 3.17 Let E = (({a}, ♮21)‖({â}, ♮
2
2)) sy a rs a. DR(E) consists of the equivalence classes

s1 = [(({a}, ♮21)
2‖({â}, ♮22)

2) sy a rs a]≈, s2 = [(({a}, ♮21)
1‖({â}, ♮22)

1) sy a rs a]≈,

s3 = [(({a}, ♮21)‖({â}, ♮
2
2)) sy a rs a]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅.
In Figure 8, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example demonstrates a parallel composition of two waiting multiactions ({a}, ♮21) and ({â}, ♮22), whose

multiaction parts are singleton multisets with an action a and its conjugate â, respectively. The resulting
composition is synchronized and then restricted by that action, which (and its conjugate) therefore “disappears”
from the composite process behaviour. From the initial state, only the empty multiset of activities is executed that
decrements by one the values of the timers. That evolution follows by the execution of a new waiting multiaction
(∅, ♮23) with the empty multiaction part, resulted from synchronization of the two waiting multiactions, which leads
to an absorbing state.

Note that the timer values of the two waiting multiactions and that of the new waiting multiaction (being their
synchronous product) coincide until all of them remain enabled with the time progress. Thus, it is very useful
that the expression syntax preserves such two enabled synchronized waiting multiactions, removed by restriction
from the behaviour, since their timer values suggest that of their synchronous product, which is not explicit in
the syntax. Thus, the timer values of those two “virtual” enabled waiting multiactions cannot just be marked
as undefined in the syntax, provided that one keeps track of the timer value of their synchronous product being
only implicit in the syntax.

If both synchronized waiting multiactions lose their enabledness with the time progress then their synchronous
product also loses its enabledness and all of them obviously loose their timer value annotations. It may happen
that one of the synchronized waiting multiactions loses its enabledness (for example, when a conflicting waiting
multiaction is executed) while the other one keeps its enabledness. Then their synchronous product also loses its
enabledness, together with its timer value annotation. In such a case, the timer value of the enabled synchronized
waiting multiaction does not suggest anymore that of the synchronous product. That “saved” timer value merely
decrements with every time tick unless it becomes equal to 1, after which either the enabled synchronized waiting
multiaction is executed or it cannot be executed by some reason (for example, when affected by restriction) and
then the timer value 1 remains unchanged with the time progress. To verify this, recall the empty move rule E
from Table 3 and the definition of 	G with max{1, δ − 1} = max{1, 0} = 1 when δ = 1.

Example 3.18 Let E = ((({a}, ♮11); ({b}, ♮
3
2))‖({b̂}, ♮

3
3)) sy b. DR(E) consists of the equivalence classes

s1 = [((({a}, ♮11)
1; ({b}, ♮32))‖({b̂}, ♮

3
3)

3) sy b]≈, s2 = [((({a}, ♮11); ({b}, ♮
3
2)

3)‖({b̂}, ♮33)
2) sy b]≈,

s3 = [((({a}, ♮11); ({b}, ♮
3
2)

2)‖({b̂}, ♮33)
1) sy b]≈, s4 = [((({a}, ♮11); ({b}, ♮

3
2)

1)‖({b̂}, ♮33)) sy b]≈,

s5 = [((({a}, ♮11); ({b}, ♮
3
2))‖({b̂}, ♮

3
3)) sy b]≈.

We have DRST (E) = {s2, s5}, DRWT (E) = {s1, s3, s4} and DRV (E) = ∅.
In Figure 9, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.

26



TS(E)

☛✡ ✟✠✞✝ ☎✆s2☛✡ ✟✠s3
❄✞✝ ✲ (∅,♮23),1

∅,1

❄∅,1

☛✡ ✟✠s1
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Figure 9: The transition system of E for E = ((({a}, ♮11); ({b}, ♮
3
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3
3)) sy b

This example demonstrates a parallel composition of two subprocesses. The first subprocess is a sequential
composition of two waiting multiactions ({a}, ♮11) and ({b}, ♮32). The second subprocess consists of a single waiting

multiaction ({b̂}, ♮33). The resulting composition is synchronized by the action b, which (and its conjugate)
therefore “disappears” from the behaviour of the synchronous product. From the initial state, only the waiting
multiaction ({a}, ♮11) is executed and the timer of the newly enabled ({b}, ♮32) starts with the value 3 while the

timer value 3 of ({b̂}, ♮33) is decreased by one and becomes 2. That evolution follows by the execution of the empty
multiset of activities that further decrements the values of those timers that become 2 and 1, respectively. Then
the waiting multiaction ({b̂}, ♮33) is executed and its timer value annotation disappears while the timer value of
({b}, ♮32) becomes 1. Then the execution of ({b}, ♮32) finally leads to an absorbing state.

Thus, the new waiting multiaction (∅, ♮35), resulted from synchronization of ({b}, ♮32) and ({b̂}, ♮33), cannot be
executed, since those synchronized waiting multiactions cannot be executed together (in parallel) in any reach-
able state. Note that a synchronous product cannot be executed even if one (the latest, in case the timers are
disbalanced) of the synchronized activities cannot be executed. Then only the maximum timer value of the two
synchronized waiting multiactions suggests the timer value of their synchronous product, until all of them remain
enabled with the time progress. The enabledness keeps the corresponding timer value annotations present in the
syntax and those values defined. Each defined timer value of ({b}, ♮32) is always less by one than that of ({b̂}, ♮33),
since the execution of the former waiting multiaction is delayed for one time unit due to the execution of the
preceding ({a}, ♮11). Then simultaneous starting the timers of the two synchronized waiting multiactions is pre-
vented, resulting in the disbalanced timers. If just one timer value of the two synchronized waiting multiactions
is undefined then that of their synchronous product is undefined too, since it is not enabled in that case.

Example 3.19 Let E = ((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]({c}, ♮

1
4))) sy x rs x. DR(E) consists of the equiva-

lence classes

s1 = [((({a}, ♮11)
1; ({b, x̂}, ♮02))‖(({x}, ♮

0
3)[]({c}, ♮

1
4)

1)) sy x rs x]≈ =

[((({a}, ♮11)
1; ({b, x̂}, ♮02))‖(({x}, ♮

0
3)[]({c}, ♮

1
4)

1)) sy x rs x]≈,

s2 = [((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]({c}, ♮

1
4))) sy x rs x]≈.

We have DRST (E) = {s2}, DRWT (E) = {s1} and DRV (E) = ∅.
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Figure 10: The transition system of E for E = ((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]({c}, ♮

1
4))) sy x rs x

In Figure 10, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in
ordinary and double ovals, respectively.

This example demonstrates a parallel composition of two subprocesses, synchronized and then restricted by
an auxiliary action that (and its conjugate) hereupon “disappears” from the composite process behaviour. The
first subprocess is a sequential composition of the waiting ({a}, ♮11) and immediate ({b, x̂}, ♮02) multiactions. The
second subprocess is a choice between the immediate ({x}, ♮03) and waiting ({c}, ♮14) multiactions. The immediate
multiactions in the first and second subprocesses are synchronized via an auxiliary action x that (and its conju-
gate) is then removed from the behaviour by the restriction operation. Since those immediate multiactions are
within coverage of restriction by the auxiliary action, they cannot be executed. The new immediate multiaction
({b}, ♮05), resulted from that synchronization can only be executed if the waiting multiaction (preceding it via se-
quential composition) in the first subprocess has occurred and the waiting multiaction (conflicting with it via the
choice composition) in the second subprocess has not occurred. Since only maximal multisets of parallel waiting
multiactions may be executed, the waiting multiactions in both the subprocesses must occur, thus preventing
execution of the new immediate multiaction, generated by synchronization.

Example 3.20 Let E = ((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x rs x. DR(E) consists of the equiva-

lence classes

s1 = [((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x rs x]≈ =

[((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x rs x]≈,

s2 = [((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x rs x]≈ =

[((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x rs x]≈,

s3 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

2)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x rs x]≈,

s4 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

1)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x rs x]≈.

We have DRST (E) = {s1, s3, s4}, DRWT (E) = {s2} and DRV (E) = ∅.
In Figure 11, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example is a modification of the previous Example 3.19 by replacing all the immediate multiactions

with the waiting ones and by setting to 2 the delays of all the waiting multiactions from the syntax. Thus,
we examine a compound process, constructed with parallelism, synchronization and restriction operations from
the following two subprocesses. The first subprocess is a sequential composition of two waiting multiactions
({a}, ♮21) and ({b, x̂}, ♮22). The second subprocess is a choice between other two waiting multiactions ({x}, ♮23)
and ({c}, ♮24). The second waiting multiaction in the first subprocess and the first waiting multiaction in the
second subprocess are synchronized via an auxiliary action x that (and its conjugate) is then removed from the
behaviour by the restriction operation. The new waiting multiaction ({b}, ♮25), resulted from that synchronization
has the same delay 2 as the two synchronized waiting multiactions. It can only be executed if the first waiting
multiaction (preceding it via sequential composition) in the first subprocess has occurred and the second waiting
multiaction (conflicting with it via the choice composition) in the second subprocess has not occurred. Since
only maximal multisets of parallel waiting multiactions may be executed, the mentioned (“first in first” and
“second in second”) waiting multiactions in both the subprocesses must occur, thus preventing execution of the
new waiting multiaction, generated by synchronization.

Note that the overlined second waiting multiaction in the first subprocess is within coverage of restriction
by the auxiliary action. Consider the state, reached from the initial state by execution of the empty multiset of
activities, followed by the parallel execution of the mentioned (‘first in first” and “second in second”) waiting
multiactions. After the empty multiset execution from the considered state, the associated timer value of that
overlined waiting multiaction is decremented to 1. Then an absorbing state is reached, from which only the
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TS(E)

☛✡ ✟✠✞✝ ☎✆s2
☛✡ ✟✠s4

❄

✞✝ ✲
{({a},♮21),({c},♮

2
4)},1

∅,1

☛✡ ✟✠s1

❄∅,1

☛✡ ✟✠s3

❄∅,1

Figure 11: The transition system of E for E = (((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x rs x

empty loop is possible, which leaves that timer value 1 unchanged though. To verify this, recall the empty move
rule E from Table 3 and the definition of 	G with max{1, δ − 1} = max{1, 0} = 1 when δ = 1.

Example 3.21 Let E = ((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x. DR(E) consists of the equivalence

classes

s1 = [((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x]≈ =

[((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x]≈,

s2 = [((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x]≈ =

[((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x]≈,

s3 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

2)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x]≈,

s4 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

1)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x]≈,

s5 = [((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x]≈.

We have DRST (E) = {s1, s3, s5}, DRWT (E) = {s2, s4} and DRV (E) = ∅.
In Figure 12, the transition system TS(E) is shown. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example is a modification of the previous Example 3.20 by removing restriction from the syntax. Thus,

we examine a compound process, constructed with parallelism and synchronization operations from the two
subprocesses being a sequential composition of two waiting multiactions ({a}, ♮21) and ({b, x̂}, ♮22) and a choice
between other two waiting multiactions ({x}, ♮23) and ({c}, ♮24), respectively. All the four waiting multiactions
have the same delay 2. The second waiting multiaction in the first subprocess and the first waiting multiaction
in the second subprocess are synchronized via an auxiliary action x. The new waiting multiaction ({b}, ♮25),
resulted from that synchronization has the same delay 2 as the two synchronized waiting multiactions. It can
only be executed if the first waiting multiaction (preceding it via sequential composition) in the first subprocess
has occurred and the second waiting multiaction (conflicting with it via the choice composition) in the second
subprocess has not occurred. Since only maximal multisets of parallel waiting multiactions may be executed, the
mentioned (“first in first” and “second in second”) waiting multiactions in the subprocesses must occur, thus
preventing execution of the new waiting multiaction, generated by synchronization. The alternative maximal
multiset of parallel waiting multiactions that may be executed from the same state consists of the “first in first”
and “first in second” waiting multiactions in the subprocesses, but the ‘first in second” waiting multiaction is
the second of the two synchronized waiting multiactions, and its occurrence also prevents execution of their
synchronous product.

Example 3.22 Consider the expression Stop = ({g}, 12 ) rs g specifying the special process that is only able to
perform empty loops with probability 1 and never terminates. We could actually use any arbitrary action from
A and any probability belonging to the interval (0; 1) in the definition of Stop. Note that Stop is analogous to the
one used in the examples within sPBC. The latter is a continuous time stochastic analogue of the stop process
proposed in [16]. Stop is a discrete time stochastic analogue of the stop.

Let E = [({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]. DR(E) consists of the equivalence classes
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TS(E)

☛✡ ✟✠✞✝ ☎✆s2

☛✡ ✟✠s5
✞✝ ✲

{({a},♮21),

({c},♮24)},
5
9

{({a},♮21),

({x},♮23)},
4
9

∅,1

☛✡ ✟✠s1

❄∅,1

☛✡ ✟✠s3

❄∅,1☛✡ ✟✠✞✝ ☎✆s4
❄({b,x̂},♮

2
2),1

✞
✝
☎
✆✲ ✛

Figure 12: The transition system of E for E = (((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x

TS(E)

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
s2

s3

☛✡ ✟✠
❄

s1
({a}, 1

2
), 1

2

({c},♮12), 2
3

✞✝ ✲
∅, 1

2✞✝ ✲
({b},♮11), 1

3✞✝ ✲
∅, 2

3

✘

✙✚

✛

({d}, 1
3
), 1

3

Figure 13: The transition system of E for E = [({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]

s1 = [[({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b}, ♮
1
1)

1[](({c}, ♮12)
1; ({d}, 13 ))) ∗ Stop]]≈ =

[[({a}, 12 ) ∗ (({b}, ♮
1
1)

1[](({c}, ♮12)
1; ({d}, 13 ))) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅.
In Figure 13, the transition system TS(E) is presented. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively.
This example demonstrates an infinite iteration loop. The loop is preceded with the iteration initiation,

modeled by a (first) stochastic multiaction ({a}, 12 ). The iteration body that corresponds to the loop consists of
the choice between two conflicting waiting multiactions ({b}, ♮11) and ({c}, ♮12) with the same delay 1, the second
of them followed (via sequential composition) by a (second) stochastic multiaction ({d}, 13 ). Hence, the iteration
loop actually consists of the two alternative subloops, such that the first one is a self-loop (one-state loop from
a state to itself) with the first waiting multiaction, and the second one is a two-state loop with an intermediate
state, reached after the second waiting multiaction has been executed, and from which the second stochastic
multiaction is then started. Thus, the iteration generates the self-loop with probability less than one (since the
two-state loop from the same state has a non-zero probability) from the state in which only waiting multiactions
are executed. The iteration termination Stop demonstrates an empty behaviour, assuring that the iteration does
not reach its final state after any number of repeated executions of its body.

Example 3.23 Let E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop], where ρ, θ, φ ∈

(0; 1) and k, l,m ∈ IR>0. DR(E) consists of the equivalence classes
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TS(E)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
({a},ρ),ρ

({b},♮1
k
),1

({c},♮0
l
),1

l
l+m

({e},♮0m),
m
l+m

({d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

Figure 14: The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗

Stop]

s1 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈ =

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 14, the transition system TS(E) is presented. The s-tangible and w-tangible states are depicted in

ordinary and double ovals, respectively, and the vanishing ones are depicted in boxes.
This example demonstrates an infinite iteration loop. The loop is preceded with the iteration initiation,

modeled by a stochastic multiaction ({a}, ρ). The iteration body that corresponds to the loop consists of a
waiting multiaction ({b}, ♮1k), followed (via sequential composition) by the probabilistic choice, modeled via two
conflicting immediate multiactions ({c}, ♮0l ) and ({e}, ♮0m), followed by different stochastic multiactions ({d}, θ)
and ({f}, φ). The iteration termination Stop demonstrates an empty behaviour, assuring that the iteration does
not reach its final state after any number of repeated executions of its body.

Note that, due to the time constraints and since waiting multiactions may be preempted by stochastic ones,
some simple dynamic expressions can have complex transition systems (Examples 3.11–3.16, 3.18, 3.21), or vice
versa (Examples 3.17, 3.19, 3.20, 3.22, 3.23).

4 Denotational semantics

In this section, we construct the denotational semantics in terms of a subclass of labeled discrete time stochastic
and deterministic PNs (LDTSDPNs), called discrete time stochastic and immediate Petri boxes (dtsd-boxes).

4.1 Labeled DTSDPNs

Let us introduce a class of labeled discrete time stochastic and deterministic PNs (LDTSDPNs), which are
essentially a subclass of DTSPNs [67, 68] (since we do not allow the stochastic transition probabilities to
be equal to 1) extended with transition labeling and deterministic transitions. LDTSDPNs resemble in part
discrete time deterministic and stochastic PNs (DTDSPNs) [88, 89, 91, 92], as well as discrete deterministic
and stochastic PNs (DDSPNs) [90]. DTDSPNs and DDSPNs are the extensions of DTSPNs with deterministic
transitions (having fixed delay that can be zero), inhibitor arcs, priorities and guards. In addition, while
stochastic transitions of DTDSPNs, like those of DTSPNs, have geometrically distributed delays, stochastic
transitions of DDSPNs have discrete time phase-type distributed delays. At the same time, LDTSDPNs are
not subsumed by DTDSPNs or DDSPNs, by the following reasons. First, in DTDSPNs from [88, 89], both
stochastic and deterministic (including immediate) transitions have probabilities and weights associated, but
in LDTSDPNs only stochastic transitions have probabilities and only immediate ones have weights, hence, the
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state change probabilities of the underlying Markov chains for those PN classes are calculated in two different
ways. Second, LDTSDPNs have a step semantics while DTDSPNs from [91, 92] and DDSPNs have interleaving
one, since in in the first PN class simultaneous transition firings are possible while in the second and third
PN classes only firings of single transitions are allowed. LDTSDPNs are somewhat similar to labeled weighted
DTSPNs (LWDTSPNs) from [28], but in LWDTSPNs there are no deterministic transitions, all (stochastic)
transitions have weights, the transition probabilities may be equal to 1 and only maximal fireable subsets of the
enabled transitions are fired.

Stochastic preemptive time PNs (spTPNs) [23] is a discrete time model with a maximal step semantics, where
both time ticks and instantaneous parallel firings of maximal transition sets are possible, but the transition steps
in LDTSDPNs are not obliged to be maximal (excepting the steps of waiting transitions). The transition delays
in spTPNs are governed by static general discrete distributions, associated with the transitions, while the
transitions of LDTSDPNs are only associated with probabilities, used later to calculate the step probabilities
after one unit (from tangible markings) or zero (from vanishing markings) delay. Further, LDTSDPNs have
just geometrically distributed or deterministic zero delays at the markings. Moreover, the discrete time tick
and concurrent transition firing are treated in spTPNs as different events while firing every (possibly empty)
set of stochastic or waiting transitions in LDTSDPNs requires one unit time delay. spTPNs are essentially a
modification and extension of unlabeled LWDTSPNs with additional facilities, such as inhibitor arcs, priorities,
resources, preemptions, schedulers etc. However, the price of such an expressiveness of spTPNs is that the
model is rather intricate and difficult to analyze.

Note also that guards in DTDSPNs and DDSPNs, inhibitor arcs and priorities in DTDSPNs, DDSPNs and
spTPNs, as well as the maximal step semantics of LWDTSPNs and spTPNs make all these models Turing
powerful, resulting in undecidability of many important behavioural properties.

First, we present a formal definition (construction, syntax) of LDTSDPNs. The set of all row vectors of
n ∈ IN≥1 elements from a set X is defined as Xn = {(x1, . . . , xn) | xi ∈ X (1 ≤ i ≤ n)}.

Definition 4.1 A labeled discrete time stochastic and deterministic PN (LDTSDPN) is a tuple
N = (PN , TN ,WN , DN ,ΩN ,LN , QN ), where

• PN and TN = TsN⊎TdN are finite sets of places and stochastic and deterministic transitions, respectively,
such that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN ) → IN is a function providing the weights of arcs between places and
transitions;

• DN : TdN → IN is the transition delay function imposing delays to deterministic transitions;

An immediate transition is a deterministic transition with the delay 0 while a waiting transition is that
with a positive delay. Then TdN = T iN ⊎ TwN consists of the sets of immediate and waiting transitions.

• ΩN is the transition probability and weight function such that

– ΩN |TsN : TsN → (0; 1) (it associates stochastic transitions with probabilities);

– ΩN |TdN : TdN → IR>0 (it associates deterministic transitions with weights);

• LN : TN → L is the transition labeling function assigning multiactions to transitions;

• QN = (MN , VN ) is the initial state, where MN ∈ INPN
fin is the initial marking (distribution of tokens in the

places) and VN : TwN → IN≥1 ∪ {∞} is the initial timer valuation function of the waiting transitions (in
the vector notation, VN ∈ (IN≥1 ∪ {∞})|TwN |), where ‘∞’ denotes the undefined value of inactive timers
(infinite time till the transition firing); we define ∀t ∈ TwN ∩ Ena(MN ) VN (t) = DN (t) (each enabled
waiting transition is initially valuated with its transition delay) and ∀t ∈ TwN \ Ena(MN ) VN (t) = ∞
(each non-enabled waiting transition is initially valuated with the undefined value), where Ena(M) denotes
the set of transitions enabled at the marking M , to be defined later.

The graphical representation of LDTSDPNs is like that for standard labeled PNs, but with probabilities
or delays and weights written near the corresponding transitions. Square boxes of normal thickness depict
stochastic transitions, and those with thick borders represent deterministic transitions. In the case the proba-
bilities or the delays and weights are not given in the picture, they are considered to be of no importance in the
corresponding examples. The weights of arcs are depicted with them. The names of places and transitions are
depicted near them when needed.

We now consider the semantics of LDTSDPNs.
Let N be an LDTSDPN and t ∈ TN , U ∈ INTN

fin. The precondition •t and the postcondition t• of t are
the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The precondition •U and the
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postcondition U• of U are the multisets of places defined as •U =
∑
t∈U

•t and U• =
∑

t∈U t
•. Note that for

U = ∅ we have •∅ = ∅ = ∅•.
Let N be an LDTSDPN and Q = (M,V ), Q̃ = (M̃, Ṽ ) ∈ INPN

fin × (IN≥1 ∪ {∞})|TwN | be its states.
Deterministic transitions have a priority over stochastic ones, and there is also difference in priorities between

immediate and waiting transitions. One can assume that all immediate transitions have (the highest) priority
2 and all waiting transitions have (the medium) priority 1, whereas all stochastic transitions have (the lowest)
priority 0. This means that at a marking where all kinds of transitions can occur, immediate transitions always
occur before waiting ones that, in turn, are always executed before stochastic ones.

A transition t ∈ TN is enabled at a marking M ∈ INPN
fin, if

•t ⊆M . In other words, a transition is enabled at
a marking if it has enough tokens in its input places (i.e. in the places from its precondition) at the marking.
Let Ena(M) be the set of all transitions enabled at M .

Firings of transitions are atomic operations, and transitions can fire in parallel by taking part in steps. We
assume that all transitions participating in a step should differ, hence, only the sets (not multisets) of transitions
may fire. Thus, we do not allow self-concurrency, i.e. firing of transitions in parallel to themselves. This restric-
tion is introduced to avoid some technical difficulties while calculating probabilities for multisets of transitions
as we shall see after the following formal definitions. Moreover, we do not need to consider self-concurrency,
since denotational semantics of expressions will be defined via dtsd-boxes which are safe LDTSDPNs (hence,
no self-concurrency is possible).

The following definition of fireability respects the prioritization among different types of transitions. A set
of transitions U ⊆ Ena(M) is fireable in a state Q = (M,V ), if •U ⊆M and one of the following holds:

1. ∅ 6= U ⊆ T iN ; or

2. ∅ 6= U ⊆ TwN and

• ∀t ∈ U V (t) = 1,

• Ena(M − •U) ∩ {u ∈ TwN | V (u) = 1} = ∅,

• Ena(M) ⊆ TwN ∪ TsN ; or

3. U ⊆ TsN and

• Ena(M) ⊆ TsN .

In other words, a set of transitions U is fireable in a state, if it has enough tokens in its input places at the
substituent marking M of the state and the following holds. If U consists of immediate transitions then it is
enabled, since no additional condition is needed for its fireability. If U consists of waiting transitions then the
countdown timer value (called remaining time to fire or RTF) of each transition from U equals one, U is a
maximal (by the inclusion relation) set of the enabled at M waiting transitions with the RTF equal to one and
enough tokens in its input places at M , and there exist no immediate transitions enabled at M . If U is empty
or it consists of stochastic transitions then there exist no immediate or waiting transitions enabled at M . Note
that the second condition of item 2 of the above definition means that no waiting transition (from Ena(M))
with the RTF being one can be added to U so that the resulting transition set will still have enough tokens in its
input places at M . This condition is equivalent to the following maximality requirement (informally mentioned
above): ∀T ⊆ Ena(M), (∀u ∈ T V (u) = 1) ∧ (•T ⊆ M) ∧ (U ⊆ T ) ⇒ T = U . Let Fire(Q) be the set of all
transition sets fireable in Q.

Thus, concerning the LDTSDPNs transitions fireable in a state, the enabled waiting transitions with the
RTF greater than one are ignored while those with the RTF being one are treated like (stochastic) transitions
of DTSPNs [67, 68] with the conditional probability 1, which have a priority in firing over the (stochastic)
transitions with the conditional probability less than 1.

By the definition of fireability, it follows that Fire(Q) ⊆ 2TiN \ {∅} or Fire(Q) ⊆ 2TwN \ {∅}, or Fire(Q) ⊆
2TsN (to be convinced of it, check the definition’s items in the reverse order). The state Q is s-tangible
(stochastically tangible), denoted by stang(Q), if Fire(Q) ⊆ 2TsN . For an s-tangible state Q we always have
∅ ∈ Fire(Q) by the definition of fireability (item 3), hence, we may have Fire(Q) = {∅}. The state Q is w-
tangible (waitingly tangible), denoted by wtang(Q), if Fire(Q) ⊆ 2TwN \ {∅}. The state Q is tangible, denoted
by tang(Q), if stang(Q) or wtang(Q), i.e. Fire(Q) ⊆ 2TsN ∪ 2TwN . Again, for a tangible state Q we may
have ∅ ∈ Fire(Q) and Fire(Q) = {∅}. Otherwise, the state Q is vanishing, denoted by vanish(Q), and in
this case Fire(Q) ⊆ 2TiN \ {∅}. A transition t ∈ Ena(M) is fireable in a state Q, denoted by t ∈ Fire(Q),
if {t} ∈ Fire(Q). If stang(Q) then a stochastic transition t ∈ Fire(Q) fires with probability ΩN (t) when
no different stochastic transition is fireable in Q, i.e. Fire(Q) = {∅, {t}}. By the definition of fireability, if
stang(Q) or vanish(Q) then ∀U ∈ Fire(Q) 2U \ {∅} ⊆ Fire(Q).
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Let U ∈ Fire(Q) and U 6= ∅. The probability that the set of stochastic transitions U is ready for firing in Q
or the weight of the set of deterministic transitions U which is ready for firing in Q is

PF (U,Q) =

{ ∏
t∈U ΩN (t) ·

∏
{u∈Fire(Q)|u6∈U}(1− ΩN (u)), stang(Q);∑

t∈U ΩN (t), wtang(Q) ∨ vanish(Q).

In the case U = ∅ and stang(Q) we define

PF (∅, Q) =

{ ∏
u∈Fire(Q)(1− ΩN (u)), F ire(Q) 6= {∅};

1, F ire(Q) = {∅}.

Let U ∈ Fire(Q). Besides U , some other sets of transitions may be ready for firing in Q, hence, a kind of
conditioning or normalization is needed to calculate the firing probability. The parallel firing of the transitions

from U changes the state Q = (M,V ) to another state Q̃ = (M̃, Ṽ ), denoted by Q
U
→P Q̃, where

1. M̃ =M − •U + U•;

2. ∀u ∈ TwN Ṽ (u) =





∞, u 6∈ Ena(M̃);

VN (u), u ∈ Ena(M̃) \ Ena(M − •U);
V (u), (u ∈ Ena(M − •U)) ∧ (U ⊆ T iN);
V (u)− 1, otherwise;

3. P = PT (U,Q) is the probability that the set of transitions U fires in Q defined as

PT (U,Q) =
PF (U,Q)∑

V ∈Fire(Q) PF (V,Q)
.

Let us explain the definition above in more detail. The first case of the item 2 demonstrates a waiting
transition u that is not enabled at the marking M̃ , regardless of whether it was enabled at the “intermediate”
marking M − •U (obtained by removing from M the input places of all transitions belonging to U , and that
should be examined, especially whenN has structural loops), and therefore the transition timer becomes inactive
(turned off) and it is set to the undefined value ∞. The second case of the item 2 describes a waiting transition

u that was not enabled at M − •U and has first been enabled at M̃ , hence, its timer is restored to the initial
value VN (u), which is the delay of that transition. The third case of the item 2 explains a waiting transition u

that was enabled atM − •U and, hence, still is enabled at M̃ , resulted from firing a set of immediate transitions
U instantly (in zero time), so the transition timer does not decrement and its value stays equal to V (u). The
fourth case of the item 2 corresponds to the remaining option, i.e. a waiting transition u that was enabled at
M − •U and, hence, still is enabled at M̃ , resulted from firing a set of stochastic (waiting) transitions U at a
time tick (in one time unit), so the transition timer decrements by one and its value becomes V (u)− 1.

We do not have to worry that for u ∈ TwN , such that u ∈ Ena(M − •U), where U ⊆ TsN ∪ TwN , the

value of Ṽ (u) = V (u)− 1 could become zero or negative, by the following reasons. Note that by the definition
of fireability, we have Ena(M) ⊆ TwN ∪ TsN . If V (u) = 1 then u must fire in the next time moment within
some maximal (by the inclusion relation) set of the enabled at M waiting transitions with the RTF equal
to one and enough tokens in the set’s input places at M . Then we get U ∈ Fire(Q) ⊆ 2TwN \ {∅}, hence,
∅ 6= U ⊆ TwN . Therefore, ∀t ∈ U V (t) = 1 and Ena(M − •U) ∩ {w ∈ TwN | V (w) = 1} = ∅, which
contradicts to u ∈ Ena(M − •U)∩{w ∈ TwN | V (w) = 1}. Thus, there exists no transition u ∈ TwN , such that

u ∈ Ena(M − •U) and V (u) = 1. In regard to the transitions t ∈ U ⊆ TwN with V (t) = 1, we have Ṽ (t) = ∞,

if t 6∈ Ena(M̃), or Ṽ (t) = VN (t), if t ∈ Ena(M̃) \ Ena(M − •U).

Note that when U = ∅ and stang(Q), we get M = M̃ and ∀u ∈ TwN Ṽ (u) =

{
∞, u 6∈ Ena(M);
V (u)− 1, u ∈ Ena(M).

Notice that the timers of all waiting transitions that are disabled when a marking change occurs become
inactive (turned off) and their values become undefined while the timers of all those staying enabled continue
running with their stored values. Hence, we adopt the enabling memory policy [64, 1, 5, 6] when the markings are
changed and the enabling of deterministic transitions is possibly modified (remember that immediate transitions
may be seen as those with the timers displaying a single value 0, so we do not need to store their values). Then
the timer values of waiting transitions are taken as the enabling memory variables.

The advantage of our two-stage approach to definition of the probability that a set of transitions fires is that
the resulting probability formula PT (U,Q) is valid both for (sets of) stochastic and deterministic transitions.
It allows one to unify the notation used later while constructing the denotational semantics and analyzing
performance.
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Note that for all states of an LDTSDPN N , the sum of outgoing probabilities is equal to 1. More formally,
∀Q = (M,V ) ∈ INPN

fin×(IN≥1∪{∞})|TwN |
∑

U∈Fire(Q) PT (U,Q) = 1. This obviously follows from the definition

of PT (U,Q) and guarantees that it defines a probability distribution.

We write Q
U
→ Q̃ if ∃P Q

U
→P Q̃ and Q→ Q̃ if ∃U Q

U
→ Q̃.

The probability to move from Q to Q̃ by firing any set of transitions is

PM(Q, Q̃) =
∑

{U|Q
U
→Q̃}

PT (U,Q).

Since PM(Q, Q̃) is the probability for any (including the empty one) transition set to change markingQ to Q̃, we

use summation in the definition. Note that ∀Q = (M,V ) ∈ INPN
fin× (IN≥1∪{∞})|TwN |

∑
{Q̃|Q→Q̃} PM(Q, Q̃) =∑

{Q̃|Q→Q̃}

∑
{U|Q

U
→Q̃}

PT (U,Q) =
∑

U∈Fire(Q) PT (U,Q) = 1.

Definition 4.2 Let N be an LDTSDPN. The reachability set of N , denoted by RS(N), is the minimal set of
markings such that

• QN ∈ RS(N);

• if Q ∈ RS(N) and Q→ Q̃ then Q̃ ∈ RS(N).

Definition 4.3 Let N be an LDTSDPN. The reachability graph of N is a (labeled probabilistic) transition
system RG(N) = (SN , LN , TN , sN ), where

• the set of states is SN = RS(N);

• the set of labels is LN = 2TN × (0; 1];

• the set of transitions is TN = {(Q, (U,P), Q̃) | Q, Q̃ ∈ RS(N), Q
U
→P Q̃};

• the initial state is sN = QN .

The set of all s-tangible markings from RS(N) is denoted by RSST (N), and the set of all w-tangible markings
from RS(N) is denoted by RSWT (N). The set of all tangible markings from RS(N) is denoted by RST (N) =
RSST (N) ∪ RSWT (N). The set of all vanishing markings from RS(N) is denoted by RSV (N). Obviously,
RS(N) = RST (N) ⊎RSV (N) = RSST (N) ⊎RSWT (N) ⊎RSV (N).

4.2 Algebra of dtsd-boxes

We now introduce discrete time stochastic and deterministic Petri boxes and the algebraic operations to define
a net representation of dtsdPBC expressions.

Definition 4.4 A discrete time stochastic and deterministic Petri box (dtsd-box) is a tuple
N = (PN , TN ,WN ,ΛN), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;

• WN : (PN × TN) ∪ (TN × PN ) → IN is a function providing the weights of arcs between places and
transitions;

• ΛN is the place and transition labeling function such that

– ΛN |PN : PN → {e, i, x} (it specifies entry, internal and exit places, respectively);

– ΛN |TN : TN → {̺ | ̺ ⊆ INSDL
fin × SDL} (it associates transitions with the relabeling relations on

activities).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•. In addition, for the set of entry places of N , defined as ◦N = {p ∈ PN |

ΛN (p) = e}, and for the set of exit places of N , defined as N◦ = {p ∈ PN | ΛN (p) = x}, the following conditions
hold: ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.
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A dtsd-box is plain if ∀t ∈ TN ∃(α, κ) ∈ SDL ΛN (t) = ̺(α,κ), where ̺(α,κ) = {(∅, (α, κ))} is a constant
relabeling that can be identified with the activity (α, κ). The set of waiting transitions of a plain dtsd-box N
is defined as TwN = {t ∈ TN | ΛN (t) = ̺(α,♮θ

l
), θ ∈ IN≥1, l ∈ IR>0}.

A (timer-)clocked plain dtsd-box is a pair (N, V ), where N = (PN , TN ,WN ,ΛN) is a plain dtsd-box and
V : TwN → IN≥1 ∪ {∞} is a timer valuation function of the waiting transitions of N , such that ∀t ∈ TwN
with ΛN(t) = ̺(α,♮θ

l
) (we say that the transition t corresponds to the activity (α, κ) in such a case) it holds

V (t) ∈ {1, . . . , θ} ∪ {∞}.
A marked and (timer-)clocked plain dtsd-box is a pair (N,Q), where N is a plain dtsd-box and Q = (M,V )

is its state. Here M ∈ INPN
fin is a marking of N and V : TwN → IN≥1 ∪ {∞} is a timer valuation function of

the waiting transitions of N , such that ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ
l
) it holds V (t) ∈ {1, . . . , θ} ∪ {∞} and

V (t) <∞, if t ∈ TwN ∩Ena(M).
Let (N,Q) be a marked and clocked plain dtsd-box. By the definition above, ∀t ∈ TwN∩Ena(M) V (t) <∞,

i.e. all enabled at M waiting transitions have finite timer values. Note that for some t ∈ TwN \ Ena(M) we
may have V (t) <∞, which is allowed in the “incomplete” box specifications for the reason of compositionality,
by assuming that t will be enabled at an “extended” marking of the “complete” box specification. The state
Q = (M,V ) is consistent, if ∀t ∈ TwN \Ena(M) V (t) = ∞, i.e. all non-enabled at M waiting transitions have
infinite timer values. It is assumed that the “complete” box specification always has consistent states, i.e. that
the underlying markings of those states are “large” enough to make enabled all waiting transitions with finite
timer values, thus leaving the infinite timer values just for the non-enabled waiting transitions. A plain dtsd-
box N = (PN , TN ,WN ,ΛN ) can be seen as a clocked plain dtsd-box (N, V∞), where ∀t ∈ TwN V∞(t) = ∞,
i.e. V∞ ≡ ∞. Next, a clocked plain dtsd-box (N, V ) can be treated as a marked and clocked plain dtsd-box
(N, (∅, V )). Thus, a plain dtsd-box N can be interpreted as a marked and clocked plain dtsd-box (N, (∅, V∞)).

Let (N, V ) be a clocked plain dtsd-box. We denote (N, V ) = (N,Q(N,V )), where Q(N,V ) = (◦N, V(N,V )) and

V
(N,V )

: TwN → IN≥1 ∪ {∞} is such that ∀t ∈ TwN with ΛN(t) = ̺(α,♮θ
l
):

V(N,V )(t) =

{
min{V (t), θ}, t ∈ TwN ∩ Ena(◦N);
V (t), t ∈ TwN \ Ena(◦N).

By definition of the timer valuation function, ∀t ∈ TwN (V (t) ≤ θ)∨ (V (t) = ∞). Hence, we may have V (t) > θ
only in case V (t) = ∞. The definition above implies V(N,V )(t) < ∞ for every t ∈ TwN ∩ Ena(◦N). Thus,

(N, V ) is a marked and clocked plain dtsd-box.
We also denote (N, V ) = (N,Q(N,V )), where Q(N,V ) = (N◦, V∞). Since Ena(N◦) = ∅, one can see that

(N, V ) is a marked and clocked plain dtsd-box. We call ◦N andN◦ the entry and exit markings ofN , respectively.
Note that a marked and clocked plain dtsd-box (PN , TN ,WN ,ΛN , Q) with the consistent state Q can be

interpreted as the LDTSDPN (PN , TN ,WN , DN ,ΩN ,LN , Q), where the functions DN , ΩN and LN are defined
as follows: ∀t ∈ TN with ΛN(t) = ̺(α,κ) it holds ΩN (t) = κ if κ ∈ (0; 1); or DN(t) = θ, ΩN (t) = l if

κ = ♮θl , θ ∈ IN, l ∈ IR>0; and LN (t) = α. Behaviour of the marked and clocked dtsd-boxes with consistent
states follows from the firing rule of LDTSDPNs. A plain dtsd-box N is n-bounded (n ∈ IN) if N is so, i.e.
∀Q = (M,V ) ∈ RS(N) ∀p ∈ PN M(p) ≤ n, and it is safe if it is 1-bounded. A plain dtsd-box N is clean if
∀Q = (M,V ) ∈ RS(N) ◦N ⊆ M ⇒ M = ◦N and N◦ ⊆ M ⇒ M = N◦, i.e. if there are tokens in all its
entry (exit) places then no other places have tokens.

The structure of the plain dtsd-box corresponding to a static expression without timer value superscripts
is constructed like in PBC [17, 16], i.e. we use simultaneous refinement and relabeling meta-operator (net
refinement) in addition to the operator dtsd-boxes corresponding to the algebraic operations of dtsdPBC and
featuring transformational transition relabelings. Operator dtsd-boxes specify n-ary functions from plain dtsd-
boxes to plain dtsd-boxes (we have 1 ≤ n ≤ 3 in dtsdPBC). Thus, as we shall see in Theorem 4.1, the resulting
plain dtsd-boxes are safe and clean. In the definition of the denotational semantics, we shall apply standard
constructions used for PBC. Let Θ denote operator box and u denote transition name from the PBC setting.

The relabeling relations ̺ ⊆ INSDL
fin × SDL are defined as follows:

• ̺id = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SDL} is the identity relabeling keeping the interface as it is;

• ̺(α,κ) = {(∅, (α, κ))} is the constant relabeling that can be identified with (α, κ) ∈ SDL itself;

• ̺[f ] = {({(α, κ)}, (f(α), κ)) | (α, κ) ∈ SDL};

• ̺rs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SDL, a, â 6∈ α};

• ̺sy a is the least relabeling relation containing ̺id such that if (Υ, (α, κ)), (Ξ, (β, λ)) ∈ ̺sy a and
a ∈ α, â ∈ β then
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Figure 15: The plain and operator dtsd-boxes

– (Υ + Ξ, (α⊕a β, κ · λ)) ∈ ̺sy a if κ, λ ∈ (0; 1);

– (Υ + Ξ, (α⊕a β, ♮θl+m)) ∈ ̺sy a if κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0.

The plain dtsd-boxes N(α,ρ)ι , N(α,♮θ
l
)ι , where ρ ∈ (0; 1), θ ∈ IN, l ∈ IR>0, and operator dtsd-boxes are

presented in Figure 15. Note that the label i of internal places is usually omitted.
In the case of the iteration, a decision that we must take is the selection of the operator box that we shall

use for it, since we have two proposals in plain PBC for that purpose [16]. One of them provides us with a
safe version with six transitions in the operator box, but there is also a simpler version, which has only three
transitions. In general, in PBC, with the latter version we may generate 2-bounded nets, which only occurs
when a parallel behavior appears at the highest level of the body of the iteration. Nevertheless, in our case,
and due to the syntactical restriction introduced for regular terms, this particular situation cannot occur, so
that the net obtained will be always safe.

Let (Ni, Vi) = (PNi , TNi ,WNi ,ΛNi , Vi) (1 ≤ i ≤ 3) be clocked plain dtsd-boxes. The operator dtsd-boxes
are extended so that they will specify the n-ary functions from/to clocked plain dtsd-boxes, as follows.

• Θ◦((N1, V1), (N2, V2)) = (Θ◦(N1, N2), V ), ◦ ∈ {; , [], ‖}, where

V (t) =

{
V1(t), t ∈ TN1;
V2(t), t ∈ TN2.

• Θ[f ](N1, V1) = (Θ[f ](N1), V ), where

V (t) = V1(t), t ∈ TN1.

• Θrs a(N1, V1) = (Θrs a(N1), V ), where

V (t) = V1(t), t ∈ TN1 , a, â 6∈ α, ΛN1(t) = ̺(α,κ).

• Θsy a(N1, V1) = (Θsy a(N1), V ), where

V (t) =

{
V1(t), t ∈ TwN1 ;
max{V1(v), V1(w)}, t results from synchronization of v, w ∈ TwN1 .

• Θ[ ∗ ∗ ]((N1, V1), (N2, V1), (N3, V1)) = (Θ[ ∗ ∗ ](N1, N2, N3), V ), where

V (t) =





V1(t), t ∈ TN1 ;
V2(t), t ∈ TN2 ;
V3(t), t ∈ TN3 .
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To define a semantic function that assigns a clocked plain dtsd-box to every static expression of dtsdPBC,
we introduce the enumeration function Enu : T → Num, which associates the numberings with transitions of a
clocked plain dtsd-box N = (P, T,W,Λ, V ) in accordance with those of activities. In the case of synchronization,
the function associates with the resulting new transition a concatenation of the parenthesized numberings of
the transitions it comes from.

We now define the enumeration function Enu for every operator of dtsdPBC. Let Boxdtsd(E) = (NE , VE) =
(PE , TE,WE ,ΛE, VE) be the clocked plain dtsd-box corresponding to a static expression E, and EnuE : TE →
Num be the enumeration function for (NE , VE). We shall use the analogous notation for static expressions F
and K.

• Boxdtsd((α, ρ)ι) = (N(α,ρ)ι , ∅). Since a single transition tι corresponds to the activity (α, ρ)ι ∈ SL, their
numberings coincide:

Enu(tι) = ι.

• Boxdtsd((α, ♮
0
l )ι) = (N(α,♮0

l
)ι , ∅). Since a single transition tι corresponds to the activity (α, ♮0l )ι ∈ IL, their

numberings coincide:

Enu(tι) = ι.

• Boxdtsd((α, ♮
θ
l )ι) = (N(α,♮θ

l
)ι , (tι,∞)). Since a single transition tι corresponds to the activity (α, ♮θl )ι ∈

WL, their numberings coincide:

Enu(tι) = ι.

• Boxdtsd((α, ♮
θ
l )
δ
ι ) = (N(α,♮θ

l
)ι , (tι, δ)). Since a single transition tι corresponds to the activity (α, ♮θl )ι ∈ WL,

their numberings coincide:

Enu(tι) = ι.

• Boxdtsd(E ◦ F ) = Θ◦(Boxdtsd(E), Boxdtsd(F )), ◦ ∈ {; , [], ‖}. Since we do not introduce new transitions,
we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdtsd(E[f ]) = Θ[f ](Boxdtsd(E)). Since we only replace the labels of some multiactions by a bijection,
we preserve the initial numbering:

Enu(t) = EnuE(t), t ∈ TE .

• Boxdtsd(E rs a) = Θrs a(Boxdtsd(E)). Since we remove all transitions labeled with multiactions containing
a or â, this does not change the numbering of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ α, ΛE(t) = ̺(α,κ).

• Boxdtsd(E sy a) = Θsy a(Boxdtsd(E)). Note that ∀v, w ∈ TE such that ΛE(v) = ̺(α,κ), ΛE(w) = ̺(β,λ)
and a ∈ α, â ∈ β, the new transition t resulting from synchronization of v and w has the label Λ(t) =
̺(α⊕aβ,κ·λ) if t is a stochastic transition (κ, λ ∈ (0; 1)); or Λ(t) = ̺(α⊕aβ,♮θl+m) if t is a deterministic one

(κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0); and the numbering Enu(t) = (EnuE(v))(EnuE(w)).

Thus, the enumeration function is defined as

Enu(t) =

{
EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from synchronization of v and w.

According to the definition of ̺sy a, the synchronization is only possible when all the transitions in the
set are stochastic (immediate or waiting, respectively). If we synchronize the same set of transitions in
different orders, we obtain several resulting transitions with the same label and probability or weight, but
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with the different numberings having the same content. Then, we only consider a single transition from
the resulting ones in the clocked plain dtsd-box to avoid introducing redundant transitions.

For example, if the transitions t and u are generated by synchronizing v and w in different orders, we
have Λ(t) = ̺(α⊕aβ,κ·λ) = Λ(u) for stochastic transitions (κ, λ ∈ (0; 1)) or Λ(t) = ̺(α⊕aβ,♮θl+m) = Λ(u)

for deterministic ones (κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0), but Enu(t) = (EnuE(v))(EnuE(w)) 6=
(EnuE(w))(EnuE(v)) = Enu(u), whereas Cont(Enu(t)) = Cont(Enu(v)) ∪ Cont(Enu(w)) =
Cont(Enu(u)). Then only one transition t (or u, symmetrically) will appear in Boxdtsd(E sy a).

• Boxdtsd([E ∗ F ∗ K]) = Θ[ ∗ ∗ ](Boxdtsd(E), Boxdtsd(F ), Boxdtsd(K)). Since we do not introduce new
transitions, we preserve the initial numbering:

Enu(t) =





EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

We now can formally define the denotational semantics as a homomorphism.

Definition 4.5 Let (α, ρ) ∈ SL, (α, ♮0l ) ∈ IL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ}, a ∈ Act and E,F,K ∈
RegStatExpr. The denotational semantics of dtsdPBC is a mapping Boxdtsd from RegStatExpr into the
domain of clocked plain dtsd-boxes, defined as follows:

1. Boxdtsd((α, ρ)ι) = (N(α,ρ)ι , ∅);

2. Boxdtsd((α, ♮
0
l )ι) = (N(α,♮0

l
)ι , ∅);

3. Boxdtsd((α, ♮
θ
l )ι) = (N(α,♮θ

l
)ι , (tι,∞));

4. Boxdtsd((α, ♮
θ
l )
δ
ι ) = (N(α,♮θ

l
)ι , (tι, δ));

5. Boxdtsd(E ◦ F ) = Θ◦(Boxdtsd(E), Boxdtsd(F )), ◦ ∈ {; , [], ‖};

6. Boxdtsd(E[f ]) = Θ[f ](Boxdtsd(E));

7. Boxdtsd(E ◦ a) = Θ◦a(Boxdtsd(E)), ◦ ∈ {rs, sy};

8. Boxdtsd([E ∗ F ∗K]) = Θ[ ∗ ∗ ](Boxdtsd(E), Boxdtsd(F ), Boxdtsd(K)).

The marked and clocked dtsd-boxes of dynamic expressions can be defined as well. For E ∈ RegStatExpr,
let Boxdtsd(E) = Boxdtsd(E) and Boxdtsd(E) = Boxdtsd(E). Note that this definition is compositional in
the sense that, for any arbitrary dynamic expression, we may decompose it in some inner dynamic and static
expressions, for which we may apply the definition, thus obtaining the corresponding clocked plain dtsd-boxes,
which can be joined according to the term structure (by definition of Boxdtsd), the resulting clocked plain box
being marked in the places that were marked in the argument nets.

Importantly, when composing marked and clocked dtsd-boxes of arbitrary dynamic expressions, we should
guarantee that the operations correctly propagate the timer values from the clocked to non-clocked operands.
For that, we have to respect the time spent in the entry markings and delays of the waiting transitions, which
become enabled at them when composing. The main idea is that the timer values in the composite marked and
clocked dtsd-boxes should be as close as possible to those in the substituent marked and clocked dtsd-boxes,
whose waiting transition timers should sometimes be decreased to maintain the time progress uniformity in the
resulting composition.

Let E,F ∈ RegStatExpr, G,H ∈ RegDynExpr and a ∈ Act. Then Boxdtsd(E) = (PE , TE ,WE ,ΛE , VE) =
(NE , VE) is the clocked plain dtsd-box of E, and analogously for F . The marked and clocked plain dtsd-box of
G is Boxdtsd(G) = (NG, (MG, VG)) (defined by induction on the structure of G, as will be descried below), and
similarly for H . Next, Boxdtsd(E) = (NE , VE) = (NE , (

◦NE , VE)) is the marked and clocked plain dtsd-box of
E, and analogously for F . Thus, ∀t ∈ TwE with ΛE(t) = ̺(α,♮θ

l
):

VE(t) =

{
min{VE(t), θ}, t ∈ TwE ∩ Ena(◦NE);
VE(t), t ∈ TwE \ Ena(◦NE).

Also, Boxdtsd(E)=(NE , VE)=(NE , (N
◦
E , V

∞)) is the marked and clocked plain dtsd-box of E, and similarly for F .

Let N,N ′ be two plain dtsd-boxes and p ∈ ◦N ∪N◦, p′ ∈ ◦N ′ ∪N ′◦ be their respective entry or exit places.
Then (p, p′) denotes the merging of p and p′ in the composed plain dtsd-box such that (p, p′) inherits all their
connectivities from the net structures of N and N ′.
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Let (N, (M,V )) be a marked and clocked plain dtsd-box, where T = Ts ⊎ T i ⊎ Tw consists of stochastic,
immediate and waiting transitions. The marking age of the state (M,V ) is defined as

�(M,V ) = max{η − V (u) | u ∈ Tw ∩Ena(M), Λ(u) = ̺(β,♮ηm)}.

We now inductively define the dtsd-boxes of arbitrary dynamic expressions.

• Boxdtsd(E) = Boxdtsd(E) and Boxdtsd(E) = Boxdtsd(E).

• Boxdtsd(G;E) = (Boxdtsd(⌊G⌋;E), (M,V )), whereM =

{
MG, MG 6= N◦

G;
N◦
G × ◦NE , MG = N◦

G;
and ∀t ∈ TwN with

ΛN(t) = ̺(α,♮θ
l
):

V (t) =





VG(t), t ∈ TwG;
min{VE(t), θ}, t ∈ TwE ∩Ena(M);
VE(t), t ∈ TwE \ Ena(M).

Thus, each waiting transition of NE enabled at the entry marking of it has set its timer to min{VE(t), θ}.

• Boxdtsd(E;G) = (Boxdtsd(E; ⌊G⌋), (M,V )), where M =

{
MG, MG 6= ◦NG;
N◦
E × ◦NG, MG = ◦NG;

and ∀t ∈ TwN :

V (t) =

{
VE(t), t ∈ TwE ;
VG(t), t ∈ TwG.

• Boxdtsd(G[]E) = (Boxdtsd(⌊G⌋[]E), (M,V )), where M =





MG, (MG 6= ◦NG) ∧ (MG 6= N◦
G);

◦NG × ◦NE , MG = ◦NG;
N◦
G ×N◦

E , MG = N◦
G;

and ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ
l
):

V (t) =





θ −min{�(MG, VG),�(◦NE , VE)}, ((t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG))∨
(t ∈ TwE ∩ Ena(M));

VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG))∨
(t ∈ TwG \ Ena(M));

VE(t), t ∈ TwE \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (MG, VG), such thatMG = ◦NG,
and (◦NE , VE) then each waiting transition, enabled at the marking M , has set its timer to θ − ζ, where
θ is the delay of that transition. The idea is to ensure that the time progresses uniformly, for which the
timer decrements of all waiting transitions, enabled atM , should be synchronized (equalized). Hence, the
subnet with the more time spent in its local marking should “wait” for the other subnet by modifying
appropriately (via increasing by the difference between residence times at MG and ◦NE) the timer values
of its waiting transitions, enabled at M .

Note that �(MG, VG) 6= �(◦NE , VE) cannot hold for any dynamic expression, obtained by applying action
rules, starting from an overlined static expression without timer value superscripts. The reason is that
all the action rules maintain the time progress uniformity, hence, ζ = �(MG, VG) = �(◦NE, VE) in that
case. Further, the inequality η − VG(u) < �(MG, VG) may only happen when the (β, ♮ηm) ∈ WL(G),
corresponding to u ∈ TwG ∩ Ena(MG), is later affected by restriction, so that the timer of that waiting
multiaction stops with the value 1 while the waiting multiaction can never be executed. The same holds
for �(◦NE , VE). Thus, if we start from an overlined static expression without time stamps and the waiting
multiaction corresponding to t is not subsequently affected by restriction then V (t) = θ − �(MG, VG) =
VG(t) for (t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG) and V (t) = θ − �(◦NE , VE) = min{VE(t), θ} for t ∈
TwE ∩ Ena(M), i.e. V (t) is defined like that for the case Boxdtsd(G;E).

The definition of Boxdtsd(E[]G) is similar.

• Boxdtsd(G‖H) = (Boxdtsd(⌊G⌋‖⌊H⌋), (M,V )), where M =MG ∪MH , and ∀t ∈ TwN with
ΛN(t) = ̺(α,♮θ

l
):

V (t) =





θ −min{�(MG, VG),�(MH , VH)}, t ∈ (TwG ∪ TwH) ∩ Ena(M);
VG(t), t ∈ TwG \ Ena(M);
VH(t), t ∈ TwH \ Ena(M).
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Thus, if ζ is the minimum of the times spent at the markings of the states (MG, VG) and (MH , VH) then
each waiting transition, enabled at the marking M , has set its timer to θ − ζ, where θ is the delay of
that transition. The idea is to ensure that the time progresses uniformly, for which the timer decrements
of all waiting transitions, enabled at M , should be synchronized (equalized). Hence, the subnet with
the more time spent in its local marking should “wait” for the other subnet by modifying appropriately
(via increasing by the difference between residence times at MG and MH) the timer values of its waiting
transitions, enabled at M .

Note that �(MG, VG) 6= �(MH , VH) cannot hold for any dynamic expression, obtained by applying action
rules, starting from an overlined static expression without timer value superscripts. The reason is that
all the action rules maintain the time progress uniformity, hence, ζ = �(MG, VG) = �(MH , VH) in that
case. Further, the inequality η − VG(u) < �(MG, VG) may only happen when the (β, ♮ηm) ∈ WL(G),
corresponding to u ∈ TwG ∩ Ena(MG), is later affected by restriction, so that the timer of that waiting
multiaction stops with the value 1 while the waiting multiaction can never be executed. The same holds
for �(MH , VH). Thus, if we start from an overlined static expression without time stamps and the waiting
multiaction corresponding to t is not subsequently affected by restriction then V (t) = θ − �(MG, VG) =
VG(t) for t ∈ TwG ∩ Ena(M) and V (t) = θ − �(MH , VH) = VH(t) for t ∈ TwH ∩ Ena(M), i.e. V (t) is
defined like that for the case Boxdtsd(E;G), if to replace E with H in the syntax of that definition.

• Boxdtsd(G[f ]) = (Boxdtsd(⌊G⌋[f ]), (M,V )), where M =MG, and ∀t ∈ TwN :

V (t) = VG(t), t ∈ TwG.

• Boxdtsd(G rs a) = (Boxdtsd(⌊G⌋ rs a), (M,V )), where M =MG, and ∀t ∈ TwN :

V (t) = VG(t), t ∈ TwG, a, â 6∈ α.

• Boxdtsd(G sy a) = (Boxdtsd(⌊G⌋ sy a), (M,V )), where M =MG, and ∀t ∈ TwN :

V (t) =

{
VG(t), t ∈ TwG;
max{VG(v), VG(w)}, t results from synchronization of v, w ∈ TwG.

Thus, the timer for the synchronous product of the waiting transitions v and w from NG is set to maximum
of their timer values. This means that we wait for the latest (being delayed for some reason) of the two
synchronized transitions, since their synchronous product cannot fire until they both can fire. If at least
one of the timers of v and w has the undefined value ∞ (i.e. the corresponding transition is not enabled
at MG) then the result of their synchronization also has the timer value ∞, since both the synchronized
transitions must be enabled at MG in order to enable their synchronous product.

• Boxdtsd([G∗E∗F ]) = (Boxdtsd(⌊G⌋∗E∗F ), (M,V )), whereM=

{
MG, MG 6=N◦

G;
N◦
G× (◦NE×N◦

E)×
◦NF ), MG=N◦

G;
and ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ

l
):

V (t) =





VG(t), t ∈ TwG;
θ −min{�(ME, VE),�(MF , VF )}, t ∈ (TwE ∪ TwF ) ∩ Ena(M);
VE(t), t ∈ TwE \ Ena(M);
VF (t), t ∈ TwF \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (ME , VE) and (MF , VF ) then
each waiting transition, enabled at the marking M , has set its timer to θ − ζ, where θ is the delay of
that transition. The idea is to ensure that the time progresses uniformly, for which the timer decrements
of all waiting transitions, enabled at M , should be synchronized (equalized). Hence, the subnet with
the more time spent in its local marking should “wait” for the other subnet by modifying appropriately
(via increasing by the difference between residence times at ME and MF ) the timer values of its waiting
transitions, enabled at M .

• Boxdtsd([E ∗G ∗ F ]) = (Boxdtsd(E ∗ ⌊G⌋ ∗ F ), (M,V )), where

M =

{
MG, (MG 6= ◦NG) ∧ (MG 6= N◦

G);
N◦
E × ((◦NG ×N◦

G)×
◦NF ), (MG = ◦NG) ∨ (MG = N◦

G);
and ∀t ∈ TwN with ΛN(t) = ̺(α,♮θ

l
):
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V (t) =





θ−min{�(MG, VG),�(◦NF , VF )}, ((t ∈ TwG ∩ Ena(M))∧((MG = ◦NG)∨(MG = N◦
G)))∨

(t ∈ TwF ∩ Ena(M));
VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG) ∧ (MG 6= N◦

G))∨
(t ∈ TwG \ Ena(M));

VF (t), t ∈ TwF \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (MG, VG), such that (MG =
◦NG) ∨ (MG = N◦

G), and (◦NF , VF ) then each waiting transition, enabled at the marking M , has set its
timer to θ − ζ, where θ is the delay of that transition. The idea is to ensure that the time progresses
uniformly, for which the timer decrements of all waiting transitions, enabled atM , should be synchronized
(equalized). Hence, the subnet with the more time spent in its local marking should “wait” for the other
subnet by modifying appropriately (via increasing by the difference between residence times at MG and
◦NF ) the timer values of its waiting transitions, enabled at M .

• Boxdtsd([E∗F∗G]) = (Boxdtsd(E∗F∗⌊G⌋), (M,V )), whereM=

{
MG, MG 6=◦NG;
N◦
E×((◦NF×N◦

F )×
◦NG), MG=◦NG;

and ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ
l
):

V (t) =





θ −min{�(◦NF , VF ),�(MG, VG)}, (t ∈ TwF ∩ Ena(M))∨
((t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG));

VF (t), t ∈ TwF \ Ena(M);
VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG))∨

(t ∈ TwG \ Ena(M)).

Thus, if ζ is the minimum of the times spent at the markings of the states (◦NF , VF ) and (MG, VG), such
thatMG = ◦NG, then each waiting transition, enabled at the markingM , has set its timer to θ−ζ, where
θ is the delay of that transition. The idea is to ensure that the time progresses uniformly, for which the
timer decrements of all waiting transitions, enabled atM , should be synchronized (equalized). Hence, the
subnet with the more time spent in its local marking should “wait” for the other subnet by modifying
appropriately (via increasing by the difference between residence times at ◦NF and MG) the timer values
of its waiting transitions, enabled at M .

Remember that for any H ∈ SatOpRegDynExpr, all waiting multiactions from EnaWait([H ]≈) have (finite)
timer value superscripts. Then for Boxdtsd(H) = (N, (M,V )) we have ∀t ∈ TwN ∩Ena(M) V (t) <∞. Hence,
if ΛN (t) = ̺(α,♮θ

l
) then min{V (t), θ} = V (t). Suppose that H is also obtained by applying action rules, starting

from an overlined static expression without timer value superscripts and the waiting multiactions corresponding
to each t ∈ TwN are not affected by restriction (note that the waiting multiactions affected by restriction in
H have no corresponding transitions in Boxdtsd(H)). In such a case, by the remarks on the �(M,V ) function
simplification in the constructions above, the timer valuation function V is obtained simply by combining those

of the subformulas of G. For example, if H = [G ∗ E ∗ F ] then V (t) =





VG(t), t ∈ TwG;
VE(t), t ∈ TwE;
VF (t), t ∈ TwF .

Theorem 4.1 For any static expression E, Boxdtsd(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC [17, 16], combining both refinement and relabeling.
Consequently, the dtsd-boxes thus obtained will be safe and clean. ⊓⊔

Proposition 4.1 For any static expression E without timer value superscripts, all states of RG(Boxdtsd(E))
(i.e. those from RS(Boxdtsd(E))) are consistent.

Proof. Let Boxdtsd(E) = (NE , VE). Since E is without timer value superscripts, VE = V∞ and Boxdtsd(E) =
(NE , V

∞). By construction of marked and clocked dtsd-boxes, we get Boxdtsd(E) = Boxdtsd(E) = (NE , V∞) =

(NE , (
◦NE, VE)), where VE(t) =

{
min{V∞(t), θ} = min{∞, θ} = θ, t ∈ TwE ∩ Ena(◦NE);
V∞(t) = ∞, t ∈ TwE \ Ena(◦NE).

Thus, the initial

state (◦NE , VE) of RG(Boxdtsd(E)) is consistent and (NE , (
◦NE, VE)) is an LDTSDPN.

By definition of the firing rule for LDTSDPNs, the waiting transitions that are not enabled in the next state
get (or keep) infinite timer values (item 2, case 1: the infinity value) while those enabled in the next state get
(or keep) finite timer values (item 2, cases 2–4: the new, old or decreased by one value). Thus, the firing rule
always transforms consistent states into consistent ones. Since the initial state of RG(Boxdtsd(E)) is consistent
and the subsequent states are added according to the firing rule, all states of RG(Boxdtsd(E)) are consistent. ⊓⊔
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Figure 16: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ({a}, ♮21)[]({b}, ♮
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2) and its reachability
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Figure 17: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ({a}, ♮31)[]({b},
1
3 ) and its reachability

graph

Example 4.1 Let E be from Example 3.11. In Figure 16, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t2)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.2 Let E be from Example 3.12. In Figure 17, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t1), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 4.3 Let E be from Example 3.13. In Figure 18, the marked and clocked dtsd-box N = Boxdtsd(E) and
its reachability graph RG(N) are presented. Since N has no waiting transitions (a single waiting multiaction in E
is affected by restriction), we may consider the substituent markings M as the whole states Q = (M, ε) ∈ RS(N),
where ε is the zero-element vector (empty sequence). Note that TS(E) and RG(N) are not isomorphic, but
bisimilar (i.e. related by step stochastic bisimulation equivalence, to be defined later).
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Figure 18: The marked and clocked dtsd-box N = Boxdtsd(E) for E = (({a}, ♮31)[]({b},
1
3 )) rs a and its reacha-

bility graph
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Figure 19: The marked and clocked dtsd-box N = Boxdtsd(E) for E = [({a}, 12 ) ∗ ({b}, ♮31) ∗ ({c}, 13 )] and its
reachability graph
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Example 4.4 Let E be from Example 3.14. In Figure 19, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t2), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 4.5 Let E be from Example 3.15. In Figure 20, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t2), V (t3)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.6 Let E be from Example 3.16. In Figure 21, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t1), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 4.7 Let E be from Example 3.17. In Figure 22, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t(1)(2)), placed under the corresponding marking

M . Note that TS(E) and RG(N) are isomorphic.
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Example 4.8 Let E be from Example 3.18. In Figure 23, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t2), V (t(2)(3)), V (t3)), placed under the corresponding marking

M . Note that TS(E) and RG(N) are isomorphic.

Example 4.9 Let E be from Example 3.19. In Figure 24, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t4)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.10 Let E be from Example 3.20. In Figure 25, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
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Figure 23: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ((({a}, ♮11); ({b}, ♮
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3)) sy b and

its reachability graph
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({c}, ♮14))) sy x rs x and its reachability graph
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({c}, ♮24))) sy x rs x and its reachability graph

function is described by the vector V = (V (t1), V (t(2)(3)), V (t4)), placed under the corresponding marking M .

Note that TS(E) and RG(N) are not isomorphic, but bisimilar (i.e. related by step stochastic bisimulation
equivalence, to be defined later).

Example 4.11 Let E be from Example 3.21. In Figure 26, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t2), V (t(2)(3)), V (t3), V (t4)), placed under the corresponding

marking M . Note that TS(E) and RG(N) are isomorphic.

Example 4.12 Let E be from Example 3.22. In Figure 27, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t2), V (t3)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.13 Let E be from Example 3.23. In Figure 28, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t2), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

In Examples 4.1–4.13, the marked and clocked dtsd-boxes N = Boxdtsd(E) are presented for E from Ex-
amples 3.11–3.23. Note that, due to the time constraints and since waiting multiactions may be preempted
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({c}, ♮24))) sy x and its reachability graph
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by stochastic ones, some dynamic expressions can have complex transition systems (reachability graphs) and
simple marked and clocked dtsd-boxes (Examples 4.1–4.7), or vice versa (Examples 4.8–4.13).

The following example demonstrates that without the syntactic restriction on regularity of expressions the
corresponding marked and clocked dtsd-boxes may be not safe.

Example 4.14 Let E = [(({a}, 12 )∗(({b},
1
2 )‖({c},

1
2 ))∗({d},

1
2 )]. In Figure 29, the marked and clocked dtsd-box

N = Boxdtsd(E) and its reachability graph RG(N) are presented. Since N has no waiting transitions, we may
consider the substituent markings M as the whole states Q = (M, ε) ∈ RS(N), where ε is the zero-element
vector (empty sequence). At the marking (0, 1, 1, 2, 0, 0) there are 2 tokens in the place p4. Symmetrically, at the
marking (0, 1, 1, 0, 2, 0) there are 2 tokens in the place p5. Thus, allowing concurrency in the second argument
of iteration in the expression E can lead to non-safeness of the corresponding marked and clocked dtsd-box N ,
though, it is 2-bounded in the worst case [16]. The origin of the problem is that N has as a self-loop with
two subnets which can function independently. Therefore, we have decided to consider regular expressions only,
since the alternative, which is a safe version of the iteration operator with six arguments in the corresponding
dtsd-box, like that from [16], is rather cumbersome and has too intricate PN interpretation. Our motivation was
to keep the algebraic and PN specifications as simple as possible.

5 Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions and dtsd-boxes can be
constructed and then used for performance evaluation.

5.1 Analysis of the underlying SMC

For a dynamic expression G, a discrete random variable ξ(s) is associated with every tangible state s ∈ DRT (G).
The variable captures the residence (sojourn) time in the state. One can interpret staying in a state at the
next discrete time moment as a failure and leaving it as a success in some trial series. It is easy to see that
ξ(s) is geometrically distributed with the parameter 1 − PM(s, s), since the probability to stay in s for k − 1
time moments and leave it at the moment k ≥ 1, called the probability mass function (PMF) of the residence
time in s, is pξ(s)(k) = P(ξ(s) = k) = PM(s, s)k−1(1 − PM(s, s)) (k ∈ IN≥1) (the residence time is k in this
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case). Hence, the probability distribution function (PDF) of the residence time in s is Fξ(s)(k) = P(ξ(s) < k) =

1− PM(s, s)k−1 (k ∈ IN≥1) (the probability that the residence time in s is less than k).
Note that the deterministic residence time 1 in a tangible state s can be interpreted as a variable ξ(s) that

is geometrically distributed with the parameter 1 = 1− PM(s, s). In that case, PM(s, s) = 0 and k = 1 is the
only residence time value with a positive probability. Hence, pξ(s)(1) = PM(s, s)1−1(1−PM(s, s)) = 00 ·1 = 1,
i.e. the probability that the residence time is 1 equals 1.

The mean value formula for the geometrical distribution allows us to calculate the average sojourn time in
s as SJ(s) = 1

1−PM(s,s) . The average sojourn time in each vanishing state s ∈ DRV (G) is SJ(s) = 0. Let

s ∈ DR(G).
The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s), s ∈ DR(G).
The sojourn time variance in the state s is

V AR(s) =

{
PM(s,s)

(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by V AR, has the elements V AR(s), s ∈ DR(G).
To evaluate performance of the system specified by a dynamic expression G, we should investigate the

stochastic process associated with it. The process is the underlying semi-Markov chain (SMC) [75, 51], denoted
by SMC(G), which can be analyzed by extracting from it the embedded (absorbing) discrete time Markov chain
(EDTMC) corresponding to G, denoted by EDTMC(G). The construction of the latter is analogous to that
applied in the context of generalized stochastic PNs (GSPNs) in [63, 5, 6], and also in the framework of discrete
time deterministic and stochastic PNs (DTDSPNs) in [88, 89, 91, 92], as well as within discrete deterministic
and stochastic PNs (DDSPNs) [90]. EDTMC(G) only describes the state changes of SMC(G) while ignoring
its time characteristics. Thus, to construct the EDTMC, we should abstract from all time aspects of behaviour
of the SMC, i.e. from the sojourn time in its states. The (local) sojourn time in every state of the EDTMC
is deterministic and it is equal to one discrete time unit. It is well-known that every SMC is fully described
by the EDTMC and the state sojourn time distributions (the latter can be specified by the vector of PDFs of
residence time in the states) [40].

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system TS(G) can have self-loops going
from a state to itself which have a non-zero probability. Clearly, the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is
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PM(s, s)k.

Let s → s̃ and s 6= s̃, i.e. PM(s, s) < 1. The probability to move from s to s̃ by executing any multiset of
activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
= SL(s)PM(s, s̃), where

SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise;

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops abstraction vector of G, denoted by
SL, has the elements SL(s), s ∈ DR(G). The value k = 0 in the summation above corresponds to the case
when no self-loops occur.

Let s ∈ DRT (G). If there exist self-loops from s (i.e. if s→ s) then PM(s, s) > 0 and SL(s) = 1
1−PM(s,s) =

SJ(s). Otherwise, if there exist no self-loops from s then PM(s, s) = 0 and SL(s) = 1 = 1
1−PM(s,s) = SJ(s).

Thus, ∀s ∈ DRT (G) SL(s) = SJ(s), hence, ∀s ∈ DRT (G) PM
∗(s, s̃) = SJ(s)PM(s, s̃). Note that the self-

loops from tangible states are of the empty or non-empty type, the latter produced by iteration, since empty
loops are not possible from w-tangible states, but they are possible from s-tangible states, while non-empty
loops are possible from both s-tangible and w-tangible states.

Let s ∈ DRV (G). We have ∀s ∈ DRV (G) SL(s) 6= SJ(s) = 0 and ∀s ∈ DRV (G) PM∗(s, s̃) =

SL(s)PM(s, s̃). If there exist self-loops from s then PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) . Otherwise, if there exist no

self-loops from s then PM∗(s, s̃) = PM(s, s̃). Note that the self-loops from vanishing states are always of the
non-empty type, produced by iteration, since empty loops are not possible from vanishing states.

Note that after abstraction from the probabilities of transitions which do not change the states, the remaining
transition probabilities are normalized. In order to calculate transition probabilities PT (Υ, s), we had to
normalize PF (Υ, s). Then, to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we now
have to normalize PM(s, s̃). Thus, we have a two-stage normalization as a result.

Notice that PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such that s is not a terminal state,
i.e. there are transitions to different states after possible self-loops from it, we have

∑
{s̃|s→s̃, s6=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s6=s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops or a state-changing step preceded and followed by
self-loops. In all these three cases our sequence begins or/and ends with the loops which do not change states.
At the same time, the overall probabilities of the evolutions can differ, since self-loops have positive probabilities.
To avoid inconsistency of definitions and too complex description, we consider sequences ending with a state-
changing step. It resembles in some sense a construction of branching bisimulation [36] taking self-loops instead
of silent transitions.

Definition 5.1 Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain
(EDTMC) of G, denoted by EDTMC(G), has the state space DR(G), the initial state [G]≈ and the transitions
s→→P s̃, if s→ s̃ and s 6= s̃, where P = PM∗(s, s̃).

The underlying SMC of G, denoted by SMC(G), has the EDTMC EDTMC(G) and the sojourn time in
every s ∈ DRT (G) is geometrically distributed with the parameter 1−PM(s, s) while the sojourn time in every
s ∈ DRV (G) is equal to 0.

EDTMCs and underlying SMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let
EDTMC(E) = EDTMC(E) and SMC(E) = SMC(E).

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of the (one-step) transition

probability matrix (TPM) P∗ for EDTMC(G) are defined as

P∗
ij =

{
PM∗(si, sj), si → sj, si 6= sj ;
0, otherwise.

The transient (k-step, k ∈ IN) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as
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ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC(G) is a solution of the equation system

{
ψ∗(P∗ − I) = 0
ψ∗1T = 1

,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is that of n values 1.
Note that the vector ψ∗ exists and is unique if EDTMC(G) is ergodic. Then EDTMC(G) has a single

steady state, and we have ψ∗ = limk→∞ ψ∗[k].
The steady-state PMF for the underlying semi-Markov chain SMC(G) is calculated via multiplication of

every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time SJ(si) in the state si, after which we normalize the resulting
values. Remember that for each tangible state s ∈ DRT (G) we have SJ(s) ≥ 1, and for each vanishing state
s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑
n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops to get P∗ and then ψ∗, followed by weighting by
SJ and normalization. EDTMC(G) has no self-loops, unlike SMC(G), hence, the behaviour of EDTMC(G)
stabilizes quicker than that of SMC(G) (if each of them has a single steady state), since P∗ has only zero
elements at the main diagonal.

Example 5.1 Let E be from Example 3.23. In Figure 30, the underlying SMC SMC(E) is presented. The
average sojourn times in the states of the underlying SMC are written next to them in bold font.

The average sojourn time vector of E is

SJ =

(
1

ρ
, 1, 0,

1

θ
,
1

φ

)
.

The sojourn time variance vector of E is

V AR =

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2
,
1− φ

φ2

)
.

The TPM for EDTMC(E) is

P∗ =




0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 1 0 0 0
0 1 0 0 0



.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

1

3
,
1

3
,

l

3(l +m)
,

m

3(l+m)

)
.

The steady-state PMF ψ∗ weighted by SJ is

(
0,

1

3
, 0,

l

3θ(l +m)
,

m

3φ(l +m)

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ∗SJT =
θφ(l +m) + φl + θm

3θφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).
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Figure 30: The underlying SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗

Stop]

In the case l = m and θ = φ we have

ϕ =
1

2(1 + θ)
(0, 2θ, 0, 1, 1).

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following standard performance
indices (measures) can be calculated based on the steady-state PMF ϕ for SMC(G) and the average sojourn
time vector SJ of G [69, 49].

• The average recurrence (return) time in the state s (i.e. the number of discrete time units or steps required
for this) is ReturnT ime(s) = 1

ϕ(s) .

• The fraction of residence time in the state s is T imeFract(s) = ϕ(s).

• The fraction of residence time in the set of states S or the probability of the event determined by a condition
that is true for all states from S is T imeFract(S) =

∑
s∈S ϕ(s).

• The relative fraction of residence time in the set of states S with respect to that in S̃ is

RltT imeFract(S, S̃) =
∑
s∈S ϕ(s)∑
s̃∈S̃ ϕ(s̃)

.

• The exit/entrance frequency (rate of leaving/entering, average number of exits/entrances per unit of time)

the state s is ExitFreq(s) = ϕ(s)
SJ(s) .

• The steady-state probability to perform a step with a multiset of activities Ξ is
ActsProb(Ξ) =

∑
s∈DR(G) ϕ(s)

∑
{Υ|Ξ⊆Υ} PT (Υ, s).

• The steady-state execution frequency (throughput) of the activity (α, κ) is

ExecFreq((α, κ)) =
∑

s∈DR(G)
ϕ(s)
SJ(s)

∑
{Υ|(α,κ)∈Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is
Prob(r) =

∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

Example 5.2 Let us interpret E from Example 3.23 as a specification of the travel system. A tourist visits
regularly new cities. After seeing the sights of the current city, he goes to the next city by the nearest train or
bus available at the city station. Buses depart less frequently than trains, but the next city is quicker reached by
bus than by train. We suppose that the stay duration in every city (being a constant), the departure numbers of
trains and buses, as well as their speeds do not depend on a particular city, bus or train. The travel route has
been planned so that the distances between successive cities coincide.

The meaning of actions from the syntax of E is as follows. The action a corresponds to the system activation
(the travel route has been planned) that takes a time, geometrically distributed with the parameter ρ. The action
b represents the completion of looking round the current city and coming to the city station that takes a fixed
time equal to 1 (say, one hour) for every city. The actions c and e correspond to the urgent getting on bus
and train, respectively, and thus model the choice between these two transport facilities. The weights of the
two corresponding immediate multiactions suggest that every l departures of buses take the same time as m
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Figure 31: The underlying SMC of N = Boxdtsd(E) for E = [({a}, ρ)∗(({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m);

({f}, φ)))) ∗ Stop]

departures of trains (l < m), hence, a bus departs with the probability l
l+m while a train departs with the

probability m
l+m . The actions d and f correspond to the coming in a city by bus and train, respectively, that

takes a time, geometrically distributed with the parameters θ and φ, respectively (θ > φ).
The meaning of states from DR(E) is the following. The s-tangible state s1 corresponds to staying at home

and planning the future travel. The w-tangible state s2 means residence in a city for exactly one time unit (hour).
The vanishing state s3 with zero residence time represents instantaneous stay at the city station, signifying that
the tourist does not wait there for departure of the transport. The s-tangible states s4 and s5 correspond to going
by bus and train, respectively.

Using Example 5.1, we now calculate the performance indices, based on the steady-state PMF for SMC(E)

ϕ = 1
θφ(l+m)+φl+θm(0, θφ(l +m), 0, φl, θm) and the average sojourn time vector of E SJ =

(
1
ρ , 1, 0,

1
θ ,

1
φ

)
.

• The average time between comings to the successive cities (mean sightseeing and travel time) is
ReturnT ime(s2) =

1
ϕ(s2)

= 1 + φl+θm
θφ(l+m) .

• The fraction of time spent in a city (sightseeing time fraction) is T imeFract(s2) = ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm .

• The fraction of time spent in a transport (travel time fraction) is T imeFract({s4, s5}) = ϕ(s4) +ϕ(s5) =
φl+θm

θφ(l+m)+φl+θm .

• The relative fraction of time spent in a city with respect to that spent in transport (sightseeing relative to

travel time fraction) is RltT imeFract({s2}, {s4, s5}) =
ϕ(s2)

ϕ(s4)+ϕ(s5)
= θφ(l+m)

φl+θm .

• The rate of leaving/entering a city (departure/arrival rate) is ExitFreq(s2) =
ϕ(s2)
SJ(s2)

= θφ(l+m)
θφ(l+m)+φl+θm .

Let N = (PN , TN ,WN , DN ,ΩN ,LN , QN) be a LDTSDPN and Q, Q̃ be its states. Then the average sojourn

time SJ(Q), the sojourn time variance V AR(Q), the probabilities PM∗(Q, Q̃), the transition relation Q→→P Q̃,
the EDTMC EDTMC(N), the underlying SMC SMC(N) and the steady-state PMF for it are defined like the
corresponding notions for dynamic expressions.

As we have mentioned earlier, every marked and clocked plain dtsd-box could be interpreted as the LDTS-
DPN. Therefore, we can evaluate performance with the LDTSDPNs corresponding to dtsd-boxes and then
transfer the results to the latter.

Example 5.3 Let E be from Example 3.23. In Figure 31, the underlying SMC SMC(N) is presented. Note
that SMC(E) and SMC(N) are isomorphic. Thus, both the transient and steady-state PMFs for SMC(N)
and SMC(E) coincide.

As mentioned in [88, 89], if is useful to consider performance measures over only the markings of DTDSPNs,
instead of their whole states, whose second components are the remaining firing time vectors. In the context of
dtsdPBC, such markings correspond to those of the dtsd-boxes of dynamic expressions, i.e. to the markings of
the respective LDTSDPNs, obtained from their states by abstracting from the second components, which are
the timer valuation functions.
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Let G be a dynamic expression. The underlying timer-free state of a state s ∈ DR(G) is defined as ⇃s =
[⇃H ]≈ for H ∈ s. Since structurally equivalent dynamic expressions obviously remain so after removing their
timer value annotations, ⇃s is unique for each s and its definition is correct. The timer-free states (i.e. those from
⇃DR(G) = {⇃s | s ∈ DR(G)}) correspond to the markings of the LDTSDPN N = Boxdtsd(G). Let s ∈ DR(G)
and s̄ =⇃s. The average sojourn time vector SJ , sojourn time variance vector V AR and steady-state PMF for
SMC(G) over the timer-free states of G are defined as follows: SJ(s̄) =

∑
{s∈DR(G)|⇃s=s̄} SJ(s), V AR(s̄) =∑

{s∈DR(G)|⇃s=s̄} V AR(s) and ϕ(s̄) =
∑

{s∈DR(G)|⇃s=s̄} ϕ(s). Then ϕ(s̄) and SJ(s̄) can be used to calculate the

standard performance indices over the timer-free states of G (hence, over the markings of N), by analogy with
the standard performance indices, defined over the arbitrary states of G. Then also the performance measures
that are specific for LDTSDPNs can be derived, based on the numbers of tokens in the places of N .

5.2 Analysis of the DTMC

Let us consider an alternative solution method, studying the DTMCs of expressions based on the state change
probabilities PM(s, s̃).

Definition 5.2 Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G, denoted by
DTMC(G), has the state space DR(G), the initial state [G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).
One can see that EDTMC(G) is constructed from DTMC(G) as follows. For each state of DTMC(G), we

remove a possible self-loop associated with it and then normalize the probabilities of the remaining transitions
from the state. Thus, EDTMC(G) and DTMC(G) differ only by existence of self-loops and magnitudes of the
probabilities of the remaining transitions. Hence, EDTMC(G) and DTMC(G) have the same communication
classes of states and EDTMC(G) is irreducible iff DTMC(G) is so. Since both EDTMC(G) and DTMC(G)
are finite, they are positive recurrent. Thus, in case of irreducibility, each of them has a single stationary
PMF. Note that both EDTMC(G) and DTMC(G) or just one of them may be periodic, thus having a unique
stationary distribution, but no steady-state (limiting) one. For example, it may happen that EDTMC(G) is
periodic while DTMC(G) is aperiodic due to self-loops associated with some states of the latter. The states
of SMC(G) are classified using EDTMC(G), hence, SMC(G) is irreducible (positive recurrent, aperiodic) iff
EDTMC(G) is so.

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition
probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), si → sj ;
0, otherwise.

The steady-state PMF ψ for DTMC(G) is defined like the corresponding notion ψ∗ for EDTMC(G).
Let us determine a relationship between steady-state PMFs for DTMC(G) and EDTMC(G). The following

theorem proposes the equation that relates the mentioned steady-state PMFs.
First, we introduce some helpful notation. For a vector v = (v1, . . . , vn), let Diag(v) be a diagonal matrix

of order n with the elements Diagij(v) (1 ≤ i, j ≤ n) defined as

Diagij(v) =

{
vi, i = j;
0, otherwise.

Theorem 5.1 Let G be a dynamic expression and SL be its self-loops abstraction vector. Then the steady-state
PMFs ψ for DTMC(G) and ψ∗ for EDTMC(G) are related as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

Proof. Let PSL be a vector with the elements

PSL(s) =

{
PM(s, s), s→ s;
0, otherwise.

By definition of PM∗(s, s̃), we have P∗ = Diag(SL)(P−Diag(PSL)). Further,

ψ∗(P∗ − I) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by Diag(SL)(P−Diag(PSL)) we obtain
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ψ∗Diag(SL)(P−Diag(PSL)) = ψ∗ and ψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) + I).

Note that ∀s ∈ DR(G) we have

SL(s)PSL(s) + 1 =

{
SL(s)PM(s, s) + 1 = PM(s,s)

1−PM(s,s) + 1 = 1
1−PM(s,s) , s→ s;

SL(s) · 0 + 1 = 1, otherwise;

}
= SL(s).

Hence, Diag(SL)Diag(PSL) + I = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then, for v = ψ∗Diag(SL), we have

vP = v and v(P− I) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing its elements by their sum, since
we should have ψ1T = 1 as a result:

ψ =
1

v1T
v =

1

ψ∗Diag(SL)1T
ψ∗Diag(SL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check that ψ is a solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

,

hence, it is indeed the steady-state PMF for DTMC(G). ⊓⊔
The following proposition relates the steady-state PMFs for SMC(G) and DTMC(G).

Proposition 5.1 Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G) and ψ be the steady-
state PMF for DTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

{
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
, s ∈ DRT (G);

0, s ∈ DRV (G).

Proof. Let s ∈ DRT (G). Remember that ∀s ∈ DRT (G) SL(s) = SJ(s) and ∀s ∈ DRV (G) SJ(s) = 0.

Then, by Theorem 5.1, we have ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

∑
s̃∈DRT (G)

(
ψ∗(s̃)SL(s̃)∑

s̆∈DR(G) ψ
∗(s̆)SL(s̆)

) = ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃) ·

∑
s̆∈DR(G) ψ

∗(s̆)SL(s̆)∑
s̃∈DRT (G) ψ

∗(s̃)SL(s̃) =
ψ∗(s)SL(s)∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃) =

ψ∗(s)SJ(s)∑
s̃∈DRT (G) ψ

∗(s̃)SJ(s̃) =
ψ∗(s)SJ(s)∑

s̃∈DR(G) ψ
∗(s̃)SJ(s̃) = ϕ(s). ⊓⊔

Thus, to calculate ϕ, one can only apply normalization to some elements of ψ (corresponding to the tan-
gible states), instead of abstracting from self-loops to get P∗ and then ψ∗, followed by weighting by SJ and
normalization. Hence, using DTMC(G) instead of EDTMC(G) allows one to avoid multistage analysis, but
the payment for it is more time-consuming numerical and more complex analytical calculation of ψ with respect
to ψ∗. The reason is that DTMC(G) has self-loops, unlike EDTMC(G), hence, the behaviour of DTMC(G)
stabilizes slower than that of EDTMC(G) (if each of them has a single steady state) and P is more dense matrix
than P∗, since P may additionally have non-zero elements at the main diagonal. Nevertheless, Proposition 5.1
is very important, since the relationship between ϕ and ψ it discovers will be used in Proposition 5.2 to relate
the steady-state PMFs for SMC(G) and the reduced DTMC(G).

Example 5.4 Let E be from Example 3.23. In Figure 32, the DTMC DTMC(E) is presented.
The TPM for DTMC(E) is
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P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 φ 0 0 1− φ



.

The steady-state PMF for DTMC(E) is

ψ =
1

2θφ(l +m) + φl + θm
(0, θφ(l +m), θφ(l +m), φl, θm).

Remember that DRT (E) = DRST (E) ∪DRWT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. Hence,

∑

s∈DRT (E)

ψ(s) = ψ(s1) + ψ(s2) + ψ(s4) + ψ(s5) =
θφ(l +m) + φl + θm

2θφ(l +m) + φl + θm
.

By Proposition 5.1, we have

ϕ(s1) = 0 · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = 0,

ϕ(s2) =
θφ(l+m)

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = θφ(l+m)

θφ(l+m)+φl+θm ,

ϕ(s3) = 0,

ϕ(s4) =
φl

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = φl

θφ(l+m)+φl+θm ,

ϕ(s5) =
θm

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = θm

θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 5.1 with the use of ψ∗ and SJ .

5.3 Analysis of the reduced DTMC

Let us now consider the method from [30, 32, 33, 64, 5, 7, 6] that eliminates vanishing states from the EMC
(EDTMC, in our terminology) corresponding to the underlying SMC of every GSPN N . The TPM for the
resulting reduced EDTMC (REDTMC) has smaller size than that for the EDTMC. The method demonstrates
that there exists a transformation of the underlying SMC of N into a CTMC, whose states are the tangible
markings of N . This CTMC, which is essentially the reduced underlying SMC (RSMC) of N , is constructed on
the basis of the REDTMC. The CTMC can then be directly solved to get both the transient and the steady-
state PMFs over the tangible markings of N . In [33], the program and computational complexities of such
an elimination method, based on the REDTMC, were evaluated and compared with those of the preservation
method that does not eliminate vanishing states and based on the EDTMC. The preservation method for GSPNs
corresponds in dtsdPBC to the analysis of the underlying SMCs of expressions.

56



The elimination method for GSPNs can be easily transferred to dtsdPBC, hence, for every dynamic ex-
pression G, we can find a DTMC (since the sojourn time in the tangible states from DR(G) is discrete and
geometrically distributed) with the states from DRT (G), which can be directly solved to find the transient and
the steady-state PMFs over the tangible states. We shall demonstrate that such a reduced DTMC (RDTMC)
of G, denoted by RDTMC(G), can be constructed from DTMC(G), using the method analogous to that de-
signed in [64, 5, 7, 6] in the framework of GSPNs to transform EDTMC into REDTMC. Since the sojourn
time in the vanishing states is zero, the state changes of RDTMC(G) occur in the moments of the global
discrete time associated with SMC(G), unlike those of EDTMC(G), which happen only when the current
state changes to some different one, irrespective of the global time. Therefore, in our case, we can skip the
stages of constructing the REDTMC of G, denoted by REDTMC(G), from EDTMC(G), and recovering
RSMC of G, denoted by RSMC(G), (which is the sought-for DTMC) from REDTMC(G), since we shall have
RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DTMC(G). We reorder the states from DR(G)
such that the first rows and columns of P will correspond to the states from DRV (G) and the last ones will
correspond to the states from DRT (G). Let |DR(G)| = n and |DRT (G)| = m. The resulting matrix can be
decomposed as follows:

P =

(
C D
E F

)
.

The elements of the (n−m)×(n−m) submatrix C are the probabilities to move from vanishing to vanishing
states, and those of the (n − m) × m submatrix D are the probabilities to move from vanishing to tangible
states. The elements of the m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m×m submatrix F are the probabilities to move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing to vanishing states in any
number of state changes, without traversal of the tangible states.

If there are no loops among vanishing states then for any vanishing state there exists a value l ∈ IN such
that every sequence of state changes that starts in a vanishing state and is longer than l should reach a tangible
state. Thus, ∃l ∈ IN ∀k > l Ck = 0 and

∑∞
k=0 C

k =
∑l

k=0 C
k. If there are loops among vanishing states

then all such loops are supposed to be of “transient” rather than “absorbing” type, since the latter is treated
as a specification error to be corrected, like in [64, 6]. We have earlier required that SMC(G) has a single
closed communication (which is also ergodic) class of states. Remember that a communication class of states
is their equivalence class w.r.t. communication relation, i.e. a maximal subset of communicating states. A
communication class of states is closed if only the states belonging to it are accessible from every its state. The
ergodic class cannot consist of vanishing states only to avoid “absorbing” loops among them, hence, it contains
tangible states as well. Thus, any sequence of vanishing state changes that starts in the ergodic class will reach
a tangible state at some time moment. All the states that do not belong to the ergodic class should be transient.
Hence, any sequence of vanishing state changes that starts in a transient vanishing state will some time reach
either a transient tangible state or a state from the ergodic class [51]. In the latter case, a tangible state will
be reached as well, as argued above. Thus, every sequence of vanishing state changes in SMC(G) that starts
in a vanishing state will exit the set of all vanishing states in the future. This implies that the probabilities to
move from vanishing to vanishing states in k ∈ IN state changes, without traversal of tangible states, will lead
to 0 when k tends to ∞. Then we have limk→∞ Ck = limk→∞(I− (I−C))k = 0, hence, I−C is a non-singular
matrix, i.e. its determinant is not equal to zero. Thus, the inverse matrix of I−C exists and may be expressed
by a Neumann series as

∑∞
k=0(I− (I−C))k =

∑∞
k=0 C

k = (I−C)−1. Therefore,

G =

∞∑

k=0

Ck =

{ ∑l
k=0 C

k, ∃l ∈ IN ∀k > l Ck = 0, no loops among vanishing states;
(I−C)−1, limk→∞ Ck = 0, loops among vanishing states;

where 0 is the square matrix consisting only of zeros and I is the identity matrix, both of order n−m.
For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let Fij be the elements of the matrix F, Eik be those of E, Gkl be

those of G and Dlj be those of D. By definition, the elements P⋄
ij of the matrix P⋄ are calculated as

P⋄
ij = Fij +

n−m∑

k=1

n−m∑

l=1

EikGklDlj = Fij +
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj = Fij +
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,
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i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to the tangible state sj in any

number of steps, without traversal of tangible states, but possibly going through vanishing states.
Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj . The probability to move from s to s̃ in any number of steps,

without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .

Definition 5.3 Let G be a dynamic expression and [G]≈ ∈ DRT (G). The reduced discrete time Markov chain
(RDTMC) of G, denoted by RDTMC(G), has the state space DRT (G), the initial state [G]≈ and the transitions
s →֒P s̃, where P = PM⋄(s, s̃).

RDTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let RDTMC(E) = RDTMC(E).
Let us now try to define RSMC(G) as a “restriction” of SMC(G) to its tangible states. Since the sojourn

time in the tangible states of SMC(G) is discrete and geometrically distributed, we can see that RSMC(G)
is a DTMC with the state space DRT (G), the initial state [G]≈ and the transitions whose probabilities collect
all those in SMC(G) to move from the tangible to the tangible states, directly or indirectly, namely, by going
through its vanishing states only. Thus, RSMC(G) has the transitions s →֒P s̃, where P = PM⋄(s, s̃), hence,
we get RSMC(G) = RDTMC(G).

One can see that RDTMC(G) is constructed from DTMC(G) as follows. All vanishing states and all tran-
sitions to, from and between them are removed. All transitions between tangible states are preserved. The pro-
babilities of transitions between tangible states may become greater and new transitions between tangible states
may be added, both iff there exist moves between these tangible states in any number of steps, going through
vanishing states only. Thus, for each sequence of transitions between two tangible states in DTMC(G) there
exists a (possibly shorter, since the eventual passed through vanishing states are removed) sequence between
the same states in RDTMC(G) and vice versa. If DTMC(G) is irreducible then all its states (including tan-
gible ones) communicate, hence, all states of RDTMC(G) communicate as well and it is irreducible. Since both
DTMC(G) and RDTMC(G) are finite, they are positive recurrent. Thus, in case of irreducibility ofDTMC(G),
each of them has a single stationary PMF. Note that DTMC(G) and/or RDTMC(G) may be periodic, thus
having a unique stationary distribution, but no steady-state (limiting) one. For example, it may happen that
DTMC(G) is aperiodic while RDTMC(G) is periodic due to removing vanishing states from the former.

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step, k ∈ IN) PMF ψ⋄[k] =
(ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ IN).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ

⋄(sm)) for RDTMC(G) is a solution of the equation system

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

,

where I is the identity matrix of order m and 0 is a row vector of m values 0, 1 is that of m values 1.
Note that the vector ψ⋄ exists and is unique if RDTMC(G) is ergodic. Then RDTMC(G) has a single

steady state, and we have ψ⋄ = limk→∞ ψ⋄[k].
The zero sojourn time in the vanishing states guarantees that the state changes of RDTMC(G) occur in

the moments of the global discrete time associated with SMC(G), i.e. every such state change occurs after one
time unit delay. Hence, the sojourn time in the tangible states is the same for RDTMC(G) and SMC(G). The
state change probabilities of RDTMC(G) are those to move from tangible to tangible states in any number of
steps, without traversal of the tangible states. Therefore, RDTMC(G) and SMC(G) have the same transient
behaviour over the tangible states, thus, the transient analysis of SMC(G) is possible to accomplish using
RDTMC(G).

The following proposition relates the steady-state PMFs for SMC(G) and RDTMC(G). It proves that the
steady-state probabilities of the tangible states coincide for them.

Proposition 5.2 Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G) and ψ⋄ be the
steady-state PMF for RDTMC(G). Then ∀s ∈ DR(G)
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ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Proof. To make the proof more clear, we use the following unified notation. I denotes the identity matrices
of any size. 0 denotes square matrices and row vectors of any size and length of values 0. 1 denotes square
matrices and row vectors of any size and length of values 1.

Let P be the reordered TPM for DTMC(G) and ψ be the steady-state PMF for DTMC(G), i.e. ψ is a
solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

.

Let |DR(G)| = n and |DRT (G)| = m. The decomposed P, P− I and ψ are

P =

(
C D
E F

)
, P− I =

(
C− I D
E F− I

)
and ψ = (ψV , ψT ),

where ψV = (ψ1, . . . , ψn−m) is the subvector of ψ with the steady-state probabilities of vanishing states and
ψT = (ψn−m+1, . . . , ψn) is that with the steady-state probabilities of tangible states.

Then the equation system for ψ is decomposed as follows:





ψV (C− I) + ψTE = 0
ψVD+ ψT (F− I) = 0
ψV 1

T + ψT1
T = 1

.

Further, let P⋄ be the TPM for RDTMC(G). Then ψ⋄ is a solution of the equation system

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

.

We have

P⋄ = F+EGD,

where the matrix G can have two different forms, depending on whether the loops among vanishing states exist,
hence, we consider the two following cases.

1. There exist no loops among vanishing states. We have ∃l ∈ IN ∀k > l Ck = 0 and G =
∑l

k=0 C
k.

Let us right-multiply the first equation of the decomposed equation system for ψ by G:

ψV (CG−G) + ψTEG = 0.

Taking into account that G =
∑l

k=0 C
k, we get

ψV

(
l∑

k=1

Ck +Cl+1 −C0 −
l∑

k=1

Ck

)
+ ψTEG = 0.

Since C0 = I and Cl+1 = 0, we obtain

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decomposed equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+EGD = P⋄, we have

ψT (P
⋄ − I) = 0.
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2. There exist loops among vanishing states. We have lim→∞ Ck = 0 and G = (I−C)−1.

Let us right-multiply the first equation of the decomposed equation system for ψ by G:

−ψV (I−C)G+ ψTEG = 0.

Taking into account that G = (I−C)−1, we get

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decomposed equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+EGD = P⋄, we have

ψT (P
⋄ − I) = 0.

The third equation ψV 1
T + ψT1

T = 1 of the decomposed equation system for ψ implies that if ψV has
nonzero elements then the sum of the elements of ψT is less than one. We normalize ψT by dividing its elements
by their sum:

v =
1

ψT1T
ψT .

It is easy to check that v is a solution of the equation system

{
v(P⋄ − I) = 0
v1T = 1

,

hence, it is the steady-state PMF for RDTMC(G) and we have

ψ⋄ = v =
1

ψT1T
ψT .

Note that ∀s ∈ DRT (G) ψT (s) = ψ(s). Then the elements of ψ⋄ are calculated as follows: ∀s ∈ DRT (G)

ψ⋄(s) =
ψT (s)∑

s̃∈DRT (G) ψT (s̃)
=

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

.

By Proposition 5.1, ∀s ∈ DRT (G) ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
.

Therefore, ∀s ∈ DRT (G)

ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
= ψ⋄(s).

⊓⊔
Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-state probabilities of the

tangible states, instead of abstracting from self-loops to get P∗ and then ψ∗, followed by weighting by SJ
and normalization. Hence, using RDTMC(G) instead of EDTMC(G) allows one to avoid such a multistage
analysis, but constructing P⋄ also requires some efforts, including calculating matrix powers or inverse matrices.
Note that RDTMC(G) has self-loops, unlike EDTMC(G), hence, the behaviour of RDTMC(G) may stabilize
slower than that of EDTMC(G) (if each of them has a single steady state). On the other hand, P⋄ is smaller
and denser matrix than P∗, since P⋄ has additional non-zero elements not only at the main diagonal, but also
many of them outside it. Therefore, in most cases, we have less time-consuming numerical calculation of ψ⋄

with respect to ψ∗. At the same time, the complexity of the analytical calculation of ψ⋄ with respect to ψ∗

depends on the model structure, such as the number of vanishing states and loops among them, but usually it is
lower, since the matrix size reduction plays an important role in many cases. Hence, for the system models with
many immediate activities, we normally have a significant simplification of the solution. At the abstraction level
of SMCs, the elimination of vanishing states decreases their impact to the solution complexity while allowing
immediate activities to specify a comprehensible logical structure of systems at the higher level of transition
systems.
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Example 5.5 Let E be from Example 3.23. Remember that DRT (E) = DRST (E)∪DRWT (E) = {s1, s2, s4, s5}
and DRV (E) = {s3}. We reorder the states from DR(E), by moving vanishing states to the first positions:
s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =




0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ



.

The result of the decomposing Pr are the matrices

C = 0, D =

(
0, 0,

l

l+m
,

m

l +m

)
, E =




0
1
0
0


 , F =




1− ρ ρ 0 0
0 0 0 0
0 θ 1− θ 0
0 φ 0 1− φ


 .

Since C1 = 0, we have ∀k > 0 Ck = 0, hence, l = 0 and there are no loops among vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.

Further, the TPM for RDTMC(E) is

P⋄ = F+EGD = F+EID = F+ED =




1− ρ ρ 0 0
0 0 l

l+m
m
l+m

0 θ 1− θ 0
0 φ 0 1− φ


 .

In Figure 33, the reduced DTMC RDTMC(E) is presented. The steady-state PMF for RDTMC(E) is

ψ⋄ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), φl, θm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)). By Proposition 5.2, we have

ϕ(s1) = 0,

ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm ,

ϕ(s3) = 0,

ϕ(s4) =
φl

θφ(l+m)+φl+θm ,

ϕ(s5) =
θm

θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 5.1 with the use of ψ∗ and SJ .

Example 5.6 In Figure 34, the reduced underlying SMC RSMC(E) is depicted. The average sojourn times
in the states of the reduced underlying SMC are written next to them in bold font. In spite of the equality
RSMC(E) = RDTMC(E), the graphical representation of RSMC(E) differs from that of RDTMC(E), since
the former is based on the REDTMC(E), where each state is decorated with the positive average sojourn time
of RSMC(E) in it. REDTMC(E) is constructed from EDTMC(E) in the similar way as RDTMC(E) is
obtained from DTMC(E). By construction, the residence time in each state of RSMC(E) is geometrically
distributed. Hence, the associated parameter of geometrical distribution is uniquely recovered from the average
sojourn time in the state.
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Figure 33: The reduced DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗

Stop]
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Figure 34: The reduced SMC of E for E = [({a}, ρ)∗(({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))))∗Stop]

Note that our reduction of the underlying SMC by eliminating its vanishing states, resulting in the reduced
DTMC, resembles the reduction from [58] by removing instantaneous states of stochastically discontinuous
Markov reward chains. The latter are “limits” of continuous time Markov chains with state rewards and fast
transitions when the rates (speeds) of these transitions tend to infinity, making them immediate. By analogy with
this work, we could consider DTMCs extended with instantaneous states instead of SMCs with geometrically
distributed or zero sojourn time in the states. However, within dtsdPBC, we have decided to take SMCs as the
underlying stochastic process to be able to consider not only geometrically distributed and zero residence time
in the states, but arbitrary fixed discrete time delays as well.

6 Stochastic equivalences

Consider the expressions E = ({a}, 12 ) and E′ = ({a}, 13 )1[]({a},
1
3 )2, for which E 6=ts E′, since TS(E) has

only one transition from the initial to the final state (with probability 1
2 ) while TS(E′) has two such ones

(with probabilities 1
4 ). On the other hand, all the mentioned transitions are labeled by activities with the same

multiaction part {a}. Moreover, the overall probabilities of the mentioned transitions of TS(E) and TS(E′)
coincide: 1

2 = 1
4 +

1
4 . Further, TS(E) (as well as TS(E

′)) has one empty loop transition from the initial state to
itself with probability 1

2 and one empty loop transition from the final state to itself with probability 1. The empty
loop transitions are labeled by the empty multiset of activities. For calculating the transition probabilities of
TS(E′), take ρ = χ = 1

3 in Example 3.9. Then you will see that the probability parts 1
3 and 1

3 of the activities
({a}, 13 )1 and ({a}, 13 )2 are “splitted” among probabilities 1

4 and 1
4 of the corresponding transitions and the

probability 1
2 of the empty loop transition. Unlike =ts, most of the probabilistic and stochastic equivalences

proposed in the literature do not differentiate between the processes such as those specified by E and E′. In
Figure 36(a), the marked dtsd-boxes corresponding to the dynamic expressions E and E′ are presented, i.e.
N = Boxdtsd(E) and N ′ = Boxdtsd(E′).

Since the semantic equivalence =ts is too discriminating in many cases, we need weaker equivalence notions.
These equivalences should possess the following necessary properties. First, any two equivalent processes must
have the same sequences of multisets of multiactions, which are the multiaction parts of the activities executed
in steps starting from the initial states of the processes. Second, for every such sequence, its execution prob-
abilities within both processes must coincide. Third, the desired equivalence should preserve the branching
structure of computations, i.e. the points of choice of an external observer between several extensions of a
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particular computation should be taken into account. In this section, we define one such notion: step stochastic
bisimulation equivalence.

6.1 Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular points of choice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisimulation as an equivalence relation that partitions the states
of the union of the transition systems TS(G) and TS(G′) of two dynamic expressions G and G′ to be compared.
For G and G′ to be bisimulation equivalent, the initial states [G]≈ and [G′]≈ of their transition systems should
be related by a bisimulation having the following transfer property: if two states are related then in each of
them the same multisets of multiactions can occur, leading with the identical overall probability from each of
the two states to the same equivalence class for every such multiset.

Thus, we follow the approaches of [48, 52, 41, 43, 14, 10], but we implement step semantics instead of
interleaving one considered in these papers. Recall also that we use the generative probabilistic transition
systems, like in [48], in contrast to the reactive model, treated in [52], and we take transition probabilities
instead of transition rates from [41, 43, 14, 10]. Thus, step stochastic bisimulation equivalence that we define
further is (in the probabilistic sense) comparable only with interleaving probabilistic bisimulation equivalence
from [48], and our equivalence is obviously stronger.

In the definition below, we consider L(Υ) ∈ INL
fin for Υ ∈ INSIL

fin , i.e. (possibly empty) multisets of
multiactions. The multiactions can be empty as well. In this case, L(Υ) contains the elements ∅, but it is not
empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈ DR(G) and A ∈ INL
fin, we write

s
A
→P H, where P = PMA(s,H) is the overall probability to move from s into the set of states H via steps with

the multiaction part A defined as

PMA(s,H) =
∑

{Υ|∃s̃∈H s
Υ
→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A
→ H if ∃P s

A
→P H. Further, we write s→P H if ∃A s

A
→ H, where P = PM(s,H) is the overall

probability to move from s into the set of states H via any steps defined as

PM(s,H) =
∑

{Υ|∃s̃∈H s
Υ
→s̃}

PT (Υ, s).

For s̃ ∈ DR(G), we write s
A
→P s̃ if s

A
→P {s̃} and s

A
→ s̃ if ∃P s

A
→P s̃.

To introduce a stochastic bisimulation between dynamic expressions G and G′, we should consider the
“composite” set of states DR(G) ∪ DR(G′), since we have to identify the probabilities to come from any two
equivalent states into the same “composite” equivalence class (with respect to the stochastic bisimulation).
Note that, for G 6= G′, transitions starting from the states of DR(G) (or DR(G′)) always lead to those from
the same set, since DR(G) ∩ DR(G′) = ∅, and this allows us to “mix” the sets of states in the definition of
stochastic bisimulation.

Definition 6.1 Let G and G′ be dynamic expressions. An equivalence relation R ⊆ (DR(G) ∪DR(G′))2 is a
step stochastic bisimulation between G and G′, denoted by R : G↔ssG

′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H ⇔ s2

A
→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent, denoted by G↔ssG
′, if

∃R : G↔ssG
′.

Note that the condition SJ(s1) = 0 ⇔ SJ(s2) = 0 in item 2 of the definition above is needed to make
difference between w-tangible states (all having at least one time unit sojourn times) and vanishing states
(all having zero sojourn times). The reason is that both from w-tangible and vanishing states, no empty
moves can be made, unlike s-tangible states, from which empty moves are always possible. When comparing
dynamic expressions for step stochastic bisimulation equivalence, we can use empty moves only to make difference
between s-tangible and other (w-tangible or vanishing) states. Without the mentioned condition, w-tangible
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Figure 35: The multiaction transition system of F for F = [({a}, ρ)∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

and vanishing states could be related by the bisimulation. We intend to avoid such the relationships, since
vanishing states are a special case that should be specifically treated in the proofs of our forthcoming results.

We now define the multiaction transition systems, whose transitions are labeled with the multisets of mul-
tiactions, extracted from the corresponding activities.

Definition 6.2 Let G be a dynamic expression. The (labeled probabilistic) multiaction transition system of G
is a quadruple TSL(G) = (SL, LL, TL, sL), where

• SL = DR(G);

• LL = INL
fin × (0; 1];

• TL = {(s, (A,PMA(s, {s̃})), s̃) | s, s̃ ∈ DR(G), s
A
→ s̃};

• sL = [G]≈.

The transition (s, (A,P), s̃) ∈ TL will be written as s
A
→P s̃.

The multiaction transition systems of static expressions can be defined as well. For E ∈ RegStatExpr let
TSL(E) = TSL(E).

Let G and G′ be dynamic expressions and R : G↔ssG
′. Then the relation R can be interpreted as a step

stochastic bisimulation between the transition systems TSL(G) and TSL(G
′), denoted by

R : TSL(G)↔ssTSL(G
′), which is defined by analogy (excepting step semantics) with interleaving probabilistic

bisimulation on generative probabilistic transition systems from [48].

Example 6.1 Let us consider an abstraction F of the static expression E from Example 3.23, such that
c = e, d = f, θ = φ, i.e.

F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m); ({d}, θ)2))) ∗ Stop].

Thus, in the specification F , we do not differentiates between the transport facilities (trains or buses) that
always have the same speed, but every l departures of the transport from the first platform take the same time as
m departures of the transport from the second platform, and the traveler can choose between the two platforms.

Then DR(F ) = {s1, s2, s3, s4, s5} is obtained from DR(E) via substitution of the symbols e, f, φ by
c, d, θ, respectively, in the specifications of the corresponding states from the latter set. We have DRT (F ) =
{s1, s2, s4, s5} and DRV (F ) = {s3}. In Figure 35, the multiaction transition system TSL(F ) is presented. To
simplify the graphical representation, the singleton multisets of multiactions are written without outer braces.

The following proposition states that every step stochastic bisimulation binds s-tangible states only with
s-tangible ones, and the same is valid for w-tangible states, as well as for vanishing states.

Proposition 6.1 Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R ⊆ (DRST (G) ∪DRST (G
′))2 ⊎ (DRWT (G) ∪DRWT (G

′))2 ⊎ (DRV (G) ∪DRV (G
′))2.
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Proof. By definition of transition systems of expressions, for every s-tangible state, there is an empty move
from it, and no empty move transitions are possible from w-tangible or vanishing states. Further, R preserves
empty moves. To verify this fact, first take A = ∅ in its definition to get ∀(s1, s2) ∈ R ∀H ∈ (DR(G) ∪

DR(G′))/R s1
∅
→P H ⇔ s2

∅
→P H. Thus, R makes difference between s-tangible and all other (i.e. w-tangible

or vanishing) states.
To verify that R also makes difference between w-tangible and vanishing states, we first notice that R

preserves zero sojourn times, since ∀(s1, s2) ∈ R SJ(s1) = 0 ⇔ SJ(s2) = 0. Then remember that the sojourn
time in each vanishing state is equal to 0 while that in each w-tangible state is greater or equal to 1. ⊓⊔

Note that Proposition 6.1 implies R ⊆ (DRT (G) ∪DRT (G′))2 ⊎ (DRV (G) ∪DRV (G′))2, since DRT (G) =
DRST (G) ⊎DRWT (G) and DRT (G

′) = DRST (G
′) ⊎DRWT (G

′). This fact will be used in (and is enough for)
the proofs of the results from Section 8 on the stationary behaviour preservation.

Let Rss(G,G
′) =

⋃
{R | R : G↔ssG

′} be the union of all step stochastic bisimulations between G and G′.
The following proposition proves that Rss(G,G

′) is also an equivalence and Rss(G,G
′) : G↔ssG

′.

Proposition 6.2 Let G and G′ be dynamic expressions and G↔ssG
′. Then Rss(G,G

′) is the largest step
stochastic bisimulation between G and G′.

Proof. See Appendix A.1. ⊓⊔
In [3], an algorithm for strong probabilistic bisimulation on labeled probabilistic transition systems (a re-

formulation of probabilistic automata) was proposed with time complexity O(n2m), where n is the number of
states and m is the number of transitions. In [4], a decision algorithm for strong probabilistic bisimulation on
generative labeled probabilistic transition systems was constructed with time complexity O(m log n) and space
complexity O(m + n). In [29], a polynomial algorithm for strong probabilistic bisimulation on probabilistic
automata was presented. The mentioned algorithms for interleaving probabilistic bisimulation equivalence can
be adapted for ↔ss using the method from [47], applied to get the decidability results for step bisimulation
equivalence. The method takes into account that transition systems in interleaving and step semantics differ
only by availability of the additional transitions corresponding to parallel execution of activities in the latter
(which is our case).

We now can establish a connection between operational and denotational semantics of dtsdPBC. Unlike the
situation in dtsiPBC, we do not have an isomorphism between the two semantics in dtsdPBC. In particular,
for an overlined static expression, multiple states of its transition system may be related to a single state of the
reachability graph of its dtsd-box. The reason is that the decreasing timer values of each enabled “restricted”
waiting multiaction from the the derived dynamic expressions generate different states in the transition system
while there exists no corresponding waiting transition (and the associated timer) in the dtsd-box, hence, its
respective state may stay the same with the time ticks. Thus, that reachability graph state relates to all such
“generic” transition system states that differ only by their timer values. In Example 3.13, three states s1, s2, s3

of TS(E), such that s1
∅
→ 2

3
s2

∅
→ 2

3
s3

∅
→ 2

3
s3, are all related to the initial state Q1 of RG(Boxdtsd(E)). Thus,

in dtsdPBC, like in tPBC [50], the deadlocked states are treated differently by the process-based operational
semantics and Petri net-based denotational semantics.

The following theorem shows that both the semantics are step stochastic bisimulation equivalent.

Theorem 6.1 For any static expression E,

TS(E)↔ssRG(Boxdtsd(E)).

Proof. See Appendix A.2. ⊓⊔

6.2 Interrelations of the stochastic equivalences

Now we compare the discrimination power of the stochastic equivalences.

Theorem 6.2 For dynamic expressions G and G′ the following strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. Let us check the validity of the implications.

• The implication =ts→ ↔ss is proved as follows. Let β : G =ts G
′. Then it is easy to see that R : G↔ssG

′,
where R = {(s, β(s)) | s ∈ DR(G)}.
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Figure 36: Dtsd-boxes of the dynamic expressions from equivalence examples of Theorem 6.2

• The implication ≈→=ts is valid, since the transition system of a dynamic formula is defined based on its
structural equivalence class.

Let us see that that the implications are strict, i.e. the reverse ones do not work, by the following coun-
terexamples.

(a) Let E = ({a}, 12 ) and E
′ = ({a}, 13 )1[]({a},

1
3 )2. Then E↔ssE

′, but E 6=ts E′, since TS(E) has only one

transition from the initial to the final state while TS(E′) has two such ones.

(b) Let E = ({a}, 12 ); ({â},
1
2 ) and E

′ = (({a}, 12 ); ({â},
1
2 )) sy a. Then E =ts E′, but E 6≈ E′, since E and E′

cannot be reached from each other by applying inaction rules. ⊓⊔

Example 6.2 In Figure 36, the marked dtsd-boxes corresponding to the dynamic expressions from equivalence
examples of Theorem 6.2 are presented, i.e. N = Boxdtsd(E) and N ′ = Boxdtsd(E′) for each picture (a)–(b).

7 Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsd-boxes). Reductions of graph-based models, like transition systems, reachability
graphs and SMCs, result in those with less states (the graph nodes). The goal of the reduction is to decrease
the number of states in the semantic representation of the modeled system while preserving its important quali-
tative and quantitative properties. Thus, the reduction allows one to simplify the behavioural and performance
analysis of systems.

An autobisimulation is a bisimulation between an expression and itself. For a dynamic expression G and
a step stochastic autobisimulation on it R : G↔ssG, let K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈

DR(G)/R ∀A ∈ INL
fin s1

A
→P K̃ ⇔ s2

A
→P K̃. The previous equality is valid for all s1, s2 ∈ K, hence, we can

rewrite it as K
A
→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→ K̃ if ∃P K

A
→P K̃ and K → K̃ if ∃A K

A
→ K̃. The similar arguments allow us to write

K →P K̃, where P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).
By the note after Proposition 6.1, R ⊆ (DRT (G))

2 ⊎ (DRV (G))
2. Hence, ∀K ∈ DR(G)/R, all states from

K are tangible, when K ∈ DRT (G)/R, or all of them are vanishing, when K ∈ DRV (G)/R.
The average sojourn time in the equivalence class (with respect to R) of states K is

SJR(K) =

{ 1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R) of states of G, denoted by
SJR, has the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (with respect to R) of states K is

V ARR(K) =

{
PM(K,K)

(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

66



TS↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

{a},ρ

{b},1

{d},θ

K3

✞✝ ✲
∅,1−ρ

❄✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
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The sojourn time variance vector for the equivalence classes (with respect to R) of states of G, denoted by
V ARR, has the elements V ARR(K), K ∈ DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be the union of all step stochastic autobisimulations on G. By Proposition

6.2, Rss(G) is the largest step stochastic autobisimulation on G. Based on the equivalence classes with respect
to Rss(G), the quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying SMCs of expressions
can be defined. The mentioned equivalence classes become the quotient states. The average sojourn time
in a quotient state is that in the corresponding equivalence class. Every quotient transition between two such
composite states represents all steps (having the same multiaction part in case of the transition system quotient)
from the first state to the second one.

Definition 7.1 Let G be a dynamic expression. The quotient (by ↔ss) (labeled probabilistic) transition system
of G is a quadruple TS↔ss

(G) = (S↔ss
, L↔ss

, T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
= INL

fin × (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→P K̃.

The quotient (by ↔ss) transition systems of static expressions can be defined as well. For E ∈ RegStatExpr,
let TS↔ss

(E) = TS↔ss
(E).

Let G be a dynamic expression. We define the relationRLss(G) = {(s,K), (K, s) | s ∈ K ∈ DR(G)/Rss(G)}
+,

where + is the transitive closure operation. One can see that RLss(G) ⊆ (DR(G) ∪ DR(G)/Rss(G))
2 is an

equivalence relation that partitions the setDR(G)∪DR(G)/Rss(G) to the equivalence classes L1, . . . ,Ln, defined
as Li = Ki ∪ {Ki} (1 ≤ i ≤ n), where DR(G)/Rss(G) = {K1, . . . ,Kn}. The relation RLss(G) can be interpreted
as a step stochastic bisimulation between the transition systems TSL(G) and TS↔ss

(G), denoted by RLss(G) :
TSL(G)↔ssTS↔ss

(G), which is defined by analogy (excepting step semantics) with interleaving probabilistic
bisimulation on generative probabilistic transition systems from [48]. It is clear that from this viewpoint,
RLss(G) is also the union of all step stochastic bisimulations and largest step stochastic bisimulation between
TSL(G) and TS↔ss

(G).

Example 7.1 Let F be from Example 6.1. Then DR(F )/Rss(F ) = {K1,K2,K3,K4}, where K1 = {s1}, K2 =

{s2}, K3 = {s3}, K4 = {s4, s5}. We have DRST (F )/Rss(F ) = {K1,K4}, DRWT (F )/Rss(F ) = {K2} and

DRV (F )/Rss(F ) = {K3}. Thus, Rss merges the states with the same “futures” from the different branches.

In Figure 37, the quotient transition system TS↔ss
(F ) is presented.

The quotient (by ↔ss) reachability graphs are defined similarly to the quotient transition systems. Let
≃ denote isomorphism between quotient transition systems and quotient reachability graphs that binds their
initial states. The following proposition establishes a connection between quotient (by ↔ss) transition systems
of the overlined static expressions and quotient reachability graphs of their dtsd-boxes.
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Proposition 7.1 For any static expression E,

TS↔ss
(E) ≃ RG↔ss

(Boxdtsd(E)).

Proof. By definitions of the quotient (by ↔ss) transition systems and quotient reachability graphs, their
uniqueness up to isomorphism and Theorem 6.1. ⊓⊔

The quotient (by ↔ss) average sojourn time vector of G is defined as SJ↔ss
= SJRss(G).

The quotient (by ↔ss) sojourn time variance vector of G is defined as V AR↔ss
= V ARRss(G).

Let K → K̃ and K 6= K̃. The probability to move from K to K̃ by executing any multiset of activities after
possible self-loops is

PM∗(K, K̃) =

{
PM(K, K̃)

∑∞
k=0 PM(K,K)k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise.

The value k = 0 in the summation above corresponds to the case when no self-loops occur.
Let K ∈ DRT (G)/Rss(G). If there exist self-loops from K (i.e. if K → K) then PM(K,K) > 0 and

SJ↔ss
(K) = 1

1−PM(K,K) , hence, PM
∗(K, K̃) = SJ↔ss

(K)PM(K, K̃). Otherwise, if there exist no self-loops

from K then PM(K,K) = 0 and SJ↔ss
(K) = 1

1−PM(K,K) = 1. Thus, ∀s ∈ DRT (G) PM
∗(K, K̃) =

SJ↔ss
(K)PM(K, K̃). Note that the self-loops from the equivalence classes of tangible states are of the empty or

non-empty type, the latter produced by iteration, since empty loops are not possible from the equivalence classes
of w-tangible states, but they are possible from the equivalence classes of s-tangible states, while non-empty
loops are possible from the equivalence classes of both s-tangible and w-tangible states.

Let K ∈ DRV (G)/Rss(G). Then we have SJ↔ss
(K) = 0. If there exist self-loops from K then PM∗(K, K̃) =

PM(K,K̃)
1−PM(K,K) . Otherwise, if there exist no self-loops from K then PM∗(K, K̃) = PM(K, K̃). Note that the self-

loops from the equivalence classes of vanishing states are always of the non-empty type, produced by iteration,
since empty loops are not possible from the equivalence classes of vanishing states.

Definition 7.2 Let G be a dynamic expression. The quotient (by ↔ss) EDTMC of G, denoted by

EDTMC↔ss
(G), has the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →→P K̃,

if K → K̃ and K 6= K̃, where P = PM∗(K, K̃).
The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss

(G), has the EDTMC EDTMC↔ss
(G)

and the sojourn time in every K ∈ DRT (G)/Rss(G) is geometrically distributed with the parameter 1−PM(K,K)
while the sojourn time in every K ∈ DRV (G)/Rss(G) is equal to zero.

The quotient (by ↔ss) underlying SMCs of static expressions can be defined as well. For E ∈ RegStatExpr,
let SMC↔ss

(E) = SMC↔ss
(E).

The steady-state PMFs ψ∗
↔ss

for EDTMC↔ss
(G) and ϕ↔ss

for SMC↔ss
(G) are defined like the corre-

sponding notions ψ∗ for EDTMC(G) and ϕ for SMC(G), respectively.

Example 7.2 Let F be from Example 6.1. In Figure 38, the quotient underlying SMC SMC↔ss
(F ) is presented.

The average sojourn times in the states of the underlying quotient SMC are written next to them in bold font.
The quotient average sojourn time vector of E is

SJ↔ss
=

(
1

ρ
, 1, 0,

1

θ

)
.

The quotient sojourn time variance vector of E is

V AR↔ss
=

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2

)
.

The TPM for EDTMC↔ss
(F ) is

P∗
↔ss

=




0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

The steady-state PMF for EDTMC↔ss
(F ) is
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ψ∗
↔ss

=

(
0,

1

3
,
1

3
,
1

3

)
.

The steady-state PMF ψ∗
↔ss

weighted by SJ↔ss
is

(
0,

1

3
, 0,

l

3θ

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ∗
↔ss

SJT↔ss
=

1 + θ

3θ
.

Thus, the steady-state PMF for SMC↔ss
(F ) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

Let ≃ denote isomorphism between SMCs that binds their initial states, where two SMCs are isomorphic if
their EDTMCs are so and the sojourn times in the isomorphic states of the EDTMCs are identically distributed.
The following proposition establishes a connection between quotient (by ↔ss) SMCs of the overlined static
expressions and quotient SMCs of their dtsd-boxes.

Proposition 7.2 For any static expression E

SMC↔ss
(E) ≃ SMC↔ss

(Boxdtsd(E)).

Proof. By definitions of the quotient (by ↔ss) underlying SMCs for dynamic expressions and LDTSDPNs and
Proposition 7.1, taking into account the following. First, for the associated SMCs, the average sojourn time
in the states is the same, since it is defined via the analogous probability functions. Second, the transition
probabilities of the associated SMCs are the sums of those belonging to the quotient transition systems or the
quotient reachability graphs.

For instance, observe that the probability functions PM(K, K̃) and PM∗(K, K̃) can be respectively defined

in the same way as PM(L, L̃) and PM∗(L, L̃), for the corresponding equivalence classes of the process states

and net states K and L, as well as K̃ and L̃. ⊓⊔
The quotients of both transition systems and underlying SMCs are the minimal reductions of the mentioned

objects modulo step stochastic bisimulations. The quotients can be used to simplify analysis of system properties
which are preserved by ↔ss, since less states should be examined for it. Such reduction method resembles that
from [2] based on place bisimulation equivalence for PNs, excepting that the former method merges states, while
the latter one merges places.

Moreover, the algorithms exist to construct the quotients of transition systems by an equivalence (like
bisimulation one) [72] and those of (discrete or continuous time) Markov chains by ordinary lumping [34]. The
algorithms have time complexity O(m log n) and space complexity O(m + n), where n is the number of states
and m is the number of transitions. As mentioned in [87], the algorithm from [34] can be easily adjusted to
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produce quotients of labeled probabilistic transition systems by the probabilistic bisimulation equivalence. In
[87], the symbolic partition refinement algorithm on state space of CTMCs was proposed. The algorithm can
be straightforwardly accommodated to DTMCs, interactive MCs, Markov reward models, Markov decision pro-
cesses, Kripke structures and labeled probabilistic transition systems. Such a symbolic lumping uses memory
efficiently due to compact representation of the state space partition. The symbolic lumping is time efficient,
since fast algorithm of the partition representation and refinement is applied. In [35], a polynomial-time algo-
rithm for minimizing behaviour of probabilistic automata by probabilistic bisimulation equivalence was outlined
that results in the canonical quotient structures. One could adapt the above algorithms for our framework of
transition systems, (reduced) DTMCs and SMCs.

Let us consider quotient (by ↔ss) DTMCs of expressions based on the state change probabilities PM(K, K̃).

Definition 7.3 Let G be a dynamic expression. The quotient (by↔ss) DTMC of G, denoted by DTMC↔ss
(G),

has the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →P K̃, where P =

PM(K, K̃).

The quotient (by ↔ss) DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let
DTMC↔ss

(E) = DTMC↔ss
(E).

The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is defined like the corresponding notion ψ for DTMC(G).

Example 7.3 Let F be from Example 6.1. In Figure 39, the quotient DTMC DTMC↔ss
(F ) is presented.

The TPM for DTMC↔ss
(F ) is

P↔ss
=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

The steady-state PMF for DTMC↔ss
(F ) is

ψ↔ss
=

1

1 + 2θ
(0, θ, θ, 1).

Remember that DRT (F )/Rss(F ) = DRST (F )/Rss(F ) ∪DRWT (F )/Rss(F ) = {K1,K2,K4} and

DRV (F )/Rss(F ) = {K3}. Hence,

∑

K∈DRT (F )/Rss(F )

ψ(K) = ψ(K1) + ψ(K2) + ψ(K4) =
1 + θ

1 + 2θ
.

By the “quotient” analogue of Proposition 5.1, we have

ϕ↔ss
(K1) = 0 · 1+2θ

1+θ = 0,

ϕ↔ss
(K2) =

θ
1+2θ ·

1+2θ
1+θ = θ

1+θ ,

ϕ↔ss
(K3) = 0,

ϕ↔ss
(K4) =

1
1+2θ ·

1+2θ
1+θ = 1

1+θ .

Thus, the steady-state PMF for SMC↔ss
(F ) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 7.2 with the use of ψ∗
↔ss

and SJ↔ss
.

Eliminating equivalence classes (with respect to Rss(G)) of vanishing states from the quotient (by ↔ss)
DTMCs of expressions results in the reductions of such DTMCs.

Definition 7.4 The reduced quotient (by ↔ss) DTMC of G, denoted by RDTMC↔ss
(G), is defined like

RDTMC(G) in Section 5, but it is constructed from DTMC↔ss
(G) instead of DTMC(G).

The reduced quotient (by ↔ss) DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr,
let RDTMC↔ss

(E) = RDTMC↔ss
(E).

The steady-state PMF ψ⋄
↔ss

for RDTMC↔ss
(G) is defined like the corresponding notion ψ⋄ for

RDTMC(G).
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Figure 39: The quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
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Example 7.4 Let F be from Example 6.1. Remember that DRT (F )/Rss(F ) = DRST (F )/Rss(F ) ∪

DRWT (F )/Rss(F ) = {K1,K2,K4} and DRV (F )/Rss(F ) = {K3}. We reorder the states from DR(F )/Rss(F ), by
moving vanishing states to the first positions: K3,K1,K2,K4.

The reordered TPM for DTMC↔ss
(F ) is

Pr↔ss
=




0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ


 .

The result of the decomposing P↔ssr
are the matrices

C↔ss
= 0, D↔ss

= (0, 0, 1), E↔ss
=




0
1
0


 , F↔ss

=




1− ρ ρ 0
0 0 0
0 θ 1− θ


 .

Since C1
↔ss

= 0, we have ∀k > 0 Ck
↔ss

= 0, hence, l = 0 and there are no loops among vanishing states.
Then

G↔ss
=

l∑

k=0

Ck
↔ss

= C0
↔ss

= I.

Further, the TPM for RDTMC↔ss
(F ) is

P⋄
↔ss

= F↔ss
+E↔ss

G↔ss
D↔ss

= F↔ss
+E↔ss

ID↔ss
= F↔ss

+E↔ss
D↔ss

=




1− ρ ρ 0
0 0 1
0 θ 1− θ


 .

In Figure 40, the reduced quotient DTMC of RDTMC↔ss
(F ) is presented. The steady-state PMF for

RDTMC↔ss
(F ) is

ψ⋄
↔ss

=
1

1 + θ
(0, θ, 1).

Note that ψ⋄
↔ss

= (ψ⋄
↔ss

(K1), ψ
⋄
↔ss

(K2), ψ
⋄
↔ss

(K4)). By the “quotient” analogue of Proposition 5.2, we have

ϕ↔ss
(K1) = 0,

ϕ↔ss
(K2) =

θ
1+θ ,

ϕ↔ss
(K3) = 0,

ϕ↔ss
(K4) =

1
1+θ .

Thus, the steady-state PMF for SMC↔ss
(F ) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

71



RDTMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
K2

K4

☛✡ ✟✠
❄

K1

ρ

1

θ

✞✝ ✲
1− ρ

✞✝ ✲
1− θ

✛

✚

✏

✑
Figure 40: The reduced quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

RSMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
K2

K4

☛✡ ✟✠
❄

K1

1

1

1

✛

✚

✏

✑

1
ρ

1

1
θ

Figure 41: The reduced quotient SMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

This coincides with the result obtained in Example 7.2 with the use of ψ∗
↔ss

and SJ↔ss
.

Example 7.5 Let F be from Example 6.1. In Figure 41, the reduced quotient SMC RSMC↔ss
(F ) is depicted.

The average sojourn times in the states of the reduced quotient SMC are written next to them in bold font. In
spite of the equality RSMC↔ss

(F ) = RDTMC↔ss
(F ), the graphical representation of RSMC↔ss

(F ) differs

from that of RDTMC↔ss
(F ), since the former is based on the REDTMC↔ss

(F ), where each state is decorated

with the positive average sojourn time of RSMC↔ss
(F ) in it. REDTMC↔ss

(F ) can be constructed from

EDTMC↔ss
(F ) in the similar way as RDTMC↔ss

(F ) can be obtained from DTMC↔ss
(F ). By construction,

the residence time in each state of RSMC↔ss
(F ) is geometrically distributed. Hence, the associated parameter

of geometrical distribution is uniquely recovered from the average sojourn time in the state.

Obviously, the relationships between the steady-state PMFs ψ↔ss
and ψ∗

↔ss
, ϕ↔ss

and ψ↔ss
, as well as ϕ↔ss

and ψ⋄
↔ss

, are the same as those determined between their “non-quotient” versions in Theorem 5.1, Proposition
5.1 and Proposition 5.2, respectively.

In Figure 42, the cube of interrelations w.r.t. the relation “constructed from” is depicted for both standard
and quotient transition systems and Markov chains (SMCs, DTMCs and RDTMCs) of expressions. Note that
the relations between SMC and SMC↔ss

, between DTMC and DTMC↔ss
, as well as between RDTMC

and RDTMC↔ss
, can be obtained using the following corresponding transition functions, defined by analogy

with those already introduced: PM∗(K, K̃), based on PM∗(s, s̃), then PM(K, K̃), based on PM(s, s̃), as well

as PM⋄(K, K̃), based on PM⋄(s, s̃). In a similar way, the relations between SMC and RDTMC, as well as
between SMC↔ss

and RDTMC↔ss
, can be obtained using the following corresponding transition functions:

PM⋄(s, s̃), based on PM∗(s, s̃), through (PM∗)⋄(s, s̃), as well as PM⋄(K, K̃), based on PM∗(K, K̃), through

(PM∗)⋄(K, K̃).
In [25], the ordinary, exact and strict lumpability relations on finite DTMCs are explored. It is investigated

which properties of transient and stationary behaviour of DTMCs are preserved by aggregation w.r.t. the
three mentioned kinds of lumping and their approximate “nearly” versions. It is proved that irreducibility is
preserved by aggregation w.r.t. any partition (or equivalence relation) on the states of DTMCs. Since only finite
irreducible DTMCs are considered (with a finite number of states), these all are positive recurrent. Aggregation
can only decrease the number of states, hence, the aggregated DTMCs are also finite and positive recurrence is
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Figure 42: The cube of interrelations for standard and quotient transition systems and Markov chains of
expressions

preserved by every aggregation. It is known [75, 51] that irreducible and positive recurrent DTMCs have a single
stationary PMF. Note that the original and aggregated DTMCs may be periodic, thus having a unique stationary
distribution, but no steady-state (limiting) one. For example, it may happen that the original DTMC is aperiodic
while the aggregated DTMC is periodic due to merging some states of the former. Thus, both finite irreducible
DTMCs and their arbitrary aggregates have a single stationary PMF. Then the relationship between stationary
probabilities of DTMCs and their aggregates w.r.t. ordinary, exact and strict lumpability is established in [25].
In particular, it is shown that for every DTMC aggregated by ordinary lumpability, the stationary probability
of each aggregate state is a sum of the stationary probabilities of all its constituent states from the original
DTMC. The information about individual stationary probabilities of the original DTMC is lost after such a
summation, but in many cases, the stationary probabilities of the aggregated DTMC are enough to calculate
performance measures of the high-level model, from which the original DTMC is extracted. As mentioned in
[25], in some practical applications, the aggregated DTMC can be extracted directly from the high-level model.
Thus, the aggregation techniques based on lumping are of practical importance, since they allow one to reduce
the state space of the modeled systems, hence, the computational costs for evaluating their performance.

Let G be a dynamic expression. By definition of ↔ss, the relation Rss(G) on TS(G) induces ordinary
lumping on SMC(G), i.e. if the states of TS(G) are related by Rss(G) then the same states in SMC(G)
are related by ordinary lumping. The quotient (maximal aggregate) of SMC(G) by such an induced ordinary
lumping is SMC↔ss

(G). Since we consider only finite SMCs, irreducibility of SMC(G) will imply irreducibility
of SMC↔ss

(G) and they both are positive recurrent. Then a unique quotient stationary PMF of SMC↔ss
(G)

can be calculated from a unique original stationary PMF of SMC(G) by summing some elements of the latter, as
described in [25]. Similar arguments demonstrate that the same results hold for DTMC(G) and DTMC↔ss

(G),
as well as for RDTMC(G) and RDTMC↔ss

(G).

8 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour of stochastic processes
in their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior,
i.e. expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness
of behaviour, since there can exist a deadlock (blocking) within the body (the second argument) of iteration
when the corresponding subprocess does not reach its final state by some reasons. In particular, if the body of
iteration contains the Stop expression, then the iteration will be “broken”. On the other hand, the iteration
body can be left after a finite number of its repeated executions and then the iteration termination is started.
To avoid executing any activities after the iteration body, we take Stop as the termination argument of iteration.

Like in the framework of SMCs, in LDTSDPNs the most common systems for performance analysis are
ergodic (irreducible, positive recurrent and aperiodic) ones. For ergodic LDTSDPNs, the steady-state marking
probabilities exist and can be determined. In [68], the following sufficient (but not necessary) conditions for
ergodicity of DTSPNs are stated: liveness (for each transition and any reachable marking there exists a sequence
of markings from it leading to the marking enabling that transition), boundedness (for any reachable marking
the number of tokens in every place is not greater than some fixed number) and nondeterminism (the transition
probabilities are strictly less than 1). However, it has been shown in [7] that even live, safe and nondeterministic
DTSPNs (as well as live and safe CTSPNs and GSPNs) may be non-ergodic.

In this section, we consider only the process expressions such that their underlying SMCs contain exactly
one closed communication class of states, and this class should also be ergodic to ensure uniqueness of the
stationary distribution, which is also the limiting one. The states not belonging to that class do not disturb
the uniqueness, since the closed communication class is single, hence, they all are transient. Then, for each
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transient state, the steady-state probability to be in it is zero while the steady-state probability to enter into
the ergodic class starting from that state is equal to one.

8.1 Steady state, residence time and equivalences

The following proposition demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class coincide. One can also interpret the result stating that the mean
recurrence time for an equivalence class is the same for both expressions.

Proposition 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the steady-state PMF for

SMC(G), ϕ′ be the steady-state PMF for SMC(G′). Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

Proof. See Appendix A.3. ⊓⊔
Let G be a dynamic expression and ϕ be the steady-state PMF for SMC(G), ϕ↔ss

be the steady-state
PMF for SMC↔ss

(G). By Proposition 8.1 (modified for RLss(G)), we have ∀K ∈ DR(G)/Rss(G) ϕ↔ss
(K) =∑

s∈K ϕ(s). Thus, for every equivalence class K ∈ DR(G)/Rss(G), the value of ϕ↔ss
corresponding to K is

the sum of all values of ϕ corresponding to the states from K. Hence, using SMC↔ss
(G) instead of SMC(G)

simplifies the analytical solution, since we have less states, but constructing the TPM for EDTMC↔ss
(G),

denoted by P∗
↔ss

, also requires some efforts, including determining Rss(G) and calculating the probabilities to

move from one equivalence class to other. The behaviour of EDTMC↔ss
(G) stabilizes quicker than that of

EDTMC(G) (if each of them has a single steady state), since P∗
↔ss

is denser matrix than P∗ (the TPM for

EDTMC(G)) due to the fact that the former matrix is smaller and the transitions between the equivalence
classes “include” all the transitions between the states belonging to these equivalence classes.

By Proposition 8.1, ↔ss preserves the quantitative properties of the stationary behaviour (the level of
SMCs). Now we intend to demonstrate that the qualitative properties of the stationary behaviour based on the
multiaction labels are preserved as well (the level of transition systems).

Definition 8.1 A derived step trace of a dynamic expression G is a chain Σ = A1 · · ·An ∈ (INL
fin)

∗, where

∃s ∈ DR(G) s
Υ1→ s1

Υ2→ · · ·
Υn→ sn, L(Υi) = Ai (1 ≤ i ≤ n). Then the probability to execute the derived step

trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···
Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏

i=1

PT (Υi, si−1).

The following theorem demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class and start a derived step trace from it coincide.

Theorem 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the steady-state PMF for SMC(G),

ϕ′ be the steady-state PMF for SMC(G′) and Σ be a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪
DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ϕ′(s′)PT (Σ, s′).

Proof. See Appendix A.4. ⊓⊔
Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G), ϕ↔ss

be the steady-state PMF
for SMC↔ss

(G) and Σ be a derived step trace of G. By Theorem 8.1 (modified for RLss(G)), we have
∀K ∈ DR(G)/Rss(G) ϕ↔ss

(K)PT (Σ,K) =
∑

s∈K ϕ(s)PT (Σ, s), where ∀s ∈ K PT (Σ,K) = PT (Σ, s).
We now present a result that does not concern the steady-state probabilities, but it reveals two very important

properties of residence time in the equivalence classes. The following proposition demonstrates that, for two
dynamic expressions related by ↔ss, the sojourn time averages in an equivalence class coincide, as well as the
sojourn time variances in it.

Proposition 8.2 Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).
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Proof. See Appendix A.5. ⊓⊔

Example 8.1 Let

E = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop],

E′ = [({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop].

We have E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈.

The steady-state PMFs ϕ for SMC(E) and ϕ′ for SMC(E′) are

ϕ =

(
0,

1

2
,
1

2

)
, ϕ′ =

(
0,

1

2
,
1

4
,
1

4

)
.

Consider the equivalence class (with respect to Rss(E,E′)) H = {s3, s′3, s
′
4}. One can see that the steady-state

probabilities for H coincide:
∑

s∈H∩DR(E) ϕ(s) = ϕ(s3) =
1
2 = 1

4 + 1
4 = ϕ′(s′3) + ϕ′(s′4) =

∑
s′∈H∩DR(E′) ϕ

′(s′).

Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence class H and start the derived
step trace Σ from it coincide as well: ϕ(s3)(PT ({({c},

1
3 )1}, s3) + PT ({({c}, 13 )2}, s3)) = 1

2

(
1
4 + 1

4

)
= 1

4 =
1
4 · 1

2 + 1
4 · 1

2 = ϕ′(s′3)PT ({({c},
1
2 )1}, s

′
3) + ϕ′(s′4)PT ({({c},

1
2 )2}, s

′
4).

Further, the sojourn time averages in the equivalence class H coincide: SJRss(E,E′)∩(DR(E))2(H∩DR(G)) =

SJRss(E,E′)∩(DR(E))2({s3}) =
1

1−PM({s3},{s3})
= 1

1−PM(s3,s3)
= 1

1− 1
2

= 2 = 1
1− 1

2

= 1
1−PM(s′3,s

′
3)

=
1

1−PM(s′4,s
′
4)

= 1
1−PM({s′3,s

′
4},{s

′
3,s

′
4})

= SJRss(E,E′)∩(DR(E′))2({s
′
3, s

′
4}) = SJRss(E,E′)∩(DR(E′))2(H ∩DR(G′)).

Next, the sojourn time variances in the equivalence class H coincide: V ARRss(E,E′)∩(DR(E))2(H∩DR(G)) =

V ARRss(E,E′)∩(DR(E))2({s3}) =
PM({s3},{s3})

(1−PM({s3},{s3}))2
= PM(s3,s3)

(1−PM(s3,s3))2
=

1
2

(1− 1
2 )

2 = 2 =
1
2

(1− 1
2 )

2 =

PM(s′3,s
′
3)

(1−PM(s′3,s
′
3))

2 =
PM(s′4,s

′
4)

(1−PM(s′4,s
′
4))

2 =
PM({s′3,s

′
4},{s

′
3,s

′
4})

(1−PM({s′3,s
′
4},{s

′
3,s

′
4}))

2 = V ARRss(E,E′)∩(DR(E′))2({s
′
3, s

′
4}) =

V ARRss(E,E′)∩(DR(E′))2(H ∩DR(G′)).
In Figure 43, the marked dtsd-boxes corresponding to the dynamic expressions above are presented, i.e.

N = Boxdtsd(E) and N ′ = Boxdtsd(E′).

8.2 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter into a set of similar states or,
after coming in it, to start a derived step trace from this set. Some of the indices are calculated using the
average or the variance of sojourn time in a set of similar states. The similarity of states is usually captured
by an equivalence relation, hence, the sets are often the equivalence classes. Proposition 8.1, Theorem 8.1 and
Proposition 8.2 guarantee coincidence of the mentioned indices for the expressions related by ↔ss. Thus, ↔ss

(hence, all the stronger equivalences we have considered) preserves performance of stochastic systems modeled
by expressions of dtsdPBC.

In addition, it is easier to evaluate performance using an SMC with less states, since in this case the size of
the transition probability matrix will be smaller, and we shall solve systems of less equations to calculate steady-
state probabilities. The reasoning above validates the following method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsdPBC.

2. The transition system of the expression is constructed.
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Figure 43: ↔ss preserves steady-state behaviour and sojourn time properties in the equivalence classes

3. After treating the transition system for self-similarity, a step stochastic autobisimulation equivalence for
the expression is determined.

4. The quotient underlying SMC is constructed from the quotient transition system.

5. Stationary probabilities and performance indices are calculated using the SMC.

The limitation of the method above is its applicability only to the expressions such that their underlying
SMCs contain exactly one closed communication class of states, and this class should also be ergodic to ensure
uniqueness of the stationary distribution. If an SMC contains several closed communication classes of states
that are all ergodic then several stationary distributions may exist, which depend on the initial PMF. There is
an analytical method to determine stationary probabilities for SMCs of this kind as well [51]. Note that the
underlying SMC of every process expression has only one initial PMF (that at the time moment 0), hence, the
stationary distribution will be unique in this case too. The general steady-state probabilities are then calculated
as the sum of the stationary probabilities of all the ergodic classes of states, weighted by the probabilities to
enter into these classes, starting from the initial state and passing through some transient states. In addition,
it is worth applying the method only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can further reduce the quotient underlying SMC, using the
algorithm from [64, 5, 6] that eliminates vanishing states from the corresponding EDTMC and thereby de-
creases the size of its TPM. For SMCs reduction we can also apply an analogue of the deterministic barrier
partitioning method described in [38] for semi-Markov processes (SMPs), which allows one to perform quicker
the first passage-time analysis. Another option is the method of stochastic state classes proposed in [45, 46] for
generalized SMPs (GSMPs) reduction, which allows one to simplify transient performance analysis (the analysis
based on the transient probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow us to simplify the steps 4 and 5 of the method above by
constructing the reduced quotient DTMC (instead of the quotient underlying SMC) from the quotient transition
system, followed by calculating the stationary probabilities of the quotient underlying SMC using this DTMC,
and then obtaining the performance indices. We first merge the equivalent states in transition systems and only
then eliminate the vanishing states in Markov chains. The reason is that transition systems, being a higher-level
formalism than Markov chains, describe both functional (qualitative) and performance (quantitative) aspects of
behaviour while Markov chains represent only performance ones. Thus, eliminating vanishing states first would
destroy the functional behaviour (which is respected by the equivalence used for quotienting), since the steps
with different multiaction parts may lead to or start from different vanishing states.

Figure 44 presents the main stages of the standard and alternative equivalence-based simplification of per-
formance evaluation described above.
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Figure 44: Equivalence-based simplification of performance evaluation
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Figure 45: The diagram of the shared memory system with maintenance

9 Generalized shared memory system with maintenance

Let us consider a model of two processors accessing a common shared memory described in [64, 5, 6] in the
continuous time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic
setting of dtsdPBC, where concurrent execution of activities is possible, while no two transitions of a GSPN
may fire simultaneously (in parallel). We also add to the system a feature of the memory maintenance. Our
generalized model parameterizes the standard shared memory system by treating the probabilities and weights
from its specification as variables (parameters). The model behaves as follows. After activation of the system
(turning the computer on), two processors are active, and the common memory is available. Each processor
can request an access to the memory after which the instantaneous decision is made, if the memory is available.
When the decision is made in favour of a processor, it starts acquisition of the memory and the other processor
should wait until the former one ends its memory operations, and the system returns to the state with both active
processors and available common memory. If the memory is available and not required then its maintenance
can be initiated, followed by the memory service works (for example, HDD is checked for errors that are
then corrected) during a fixed period of time, after which the memory becomes available again. If the memory
requirement and its maintenance initiation happen at the same time then the service works start and no decision
on the memory allocation is made while the memory is maintained. The diagram of the system is depicted in
Figure 45.

9.1 The concrete system

The meaning of actions from the dtsdPBC expressions which will specify the system modules is as follows. The
action a corresponds to the system activation. The action c specifies the memory maintenance initiation. The
action e means the memory service taking a fixed time of 2 time units. The actions ri (1 ≤ i ≤ 2) represent
the common memory request (whose probability is 10 times greater than that of the maintenance initiation) of
processor i. The actions di correspond to the instantaneous decision on the memory allocation in favour of the
processor i. The actions mi represent the common memory access of processor i. The other actions are used
for communication purposes only via synchronization, and we abstract from them later using restriction. For
a1, . . . , an ∈ Act (n ∈ IN), we shall abbreviate sy a1 · · · sy an rs a1 · · · rs an to sr (a1, . . . , an).

We take general values for all multiaction probabilities and weights in the specification. Let all stochastic
multiactions have the same generalized probability ρ ∈ (0; 1) and all deterministic ones have the same generalized
weight l ∈ IR>0. The resulting specification K of the generalized shared memory system with maintenance is
as follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l ); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l ); ({m2, z2}, ρ)) ∗ Stop].
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The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ

10
); ({e}, ♮2l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with maintenance is

K = (K1‖K2‖K3) sr (x1, x2, y1, y2, z1, z2).

Let us illustrate an effect of synchronization. As a result of the synchronization of immediate multiactions
({di, yi}, ♮0l ) and ({ŷi}, ♮0l ) we get ({di}, ♮2l) (1 ≤ i ≤ 2). The synchronization of stochastic multiactions
({mi, zi}, ρ) and ({ẑi}, ρ) produces ({mi}, ρ2) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2}, ρ)
with ({x1}, ρ) is ({a, x̂2}, ρ

2), and that of synchronization of ({a, x̂1, x̂2}, ρ) with ({x2}, ρ) is ({a, x̂1}, ρ
2). After

applying synchronization to ({a, x̂2}, ρ2) and ({x2}, ρ), as well as to ({a, x̂1}, ρ2) and ({x1}, ρ), we get the same
activity ({a}, ρ3).

DR(K) consists of the equivalence classes

s̃1 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃2 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃3 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l )

2)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃4 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃5 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃6 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃7 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃8 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃9 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,
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s̃10 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃11 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃12 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃13 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃14 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

2
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

We haveDRST (K) = {s̃1, s̃2, s̃3, s̃10, s̃11, s̃13, s̃14}, DRWT (K) = {s̃6, s̃7, s̃8, s̃9} andDRV (K) = {s̃4, s̃5, s̃12}.
The states are interpreted as follows: s̃1 is the initial state; s̃2: the system is activated and the memory is

not requested and its maintenance is not initiated; s̃3: the memory maintenance is initiated; s̃4: the memory is
requested by the first processor; s̃5: the memory is requested by the second processor; s̃6: the memory service
works are continued for 1 time unit; s̃7: the memory service works are continued for 1 time unit and the memory
is requested by the first processor; s̃8: the memory service works are continued for 1 time unit and the memory is
requested by the second processor; s̃9: the memory service works are continued for 1 time unit and the memory
is requested by two processors; s̃10: the memory is allocated to the first processor; s̃11: the memory is allocated
to the second processor; s̃12: the memory is requested by two processors; s̃13: the memory is allocated to the
first processor and requested by the second processor; s̃14: the memory is allocated to the second processor and
requested by the first processor.

In Figure 46, the transition system TS(K) is presented. In Figure 47, the underlying SMC SMC(K) is
depicted. Note that, in step semantics, we can execute the following activities in parallel: ({r1}, ρ), ({r2}, ρ), as
well as ({r1}, ρ), ({m2}, ρ

2), and ({r2}, ρ), ({m1}, ρ
2). We can also execute in parallel ({r1}, ρ), ({c},

ρ
10 ), as well

as ({r2}, ρ), ({c},
ρ
10 ), and even ({r1}, ρ), ({r2}, ρ), ({c},

ρ
10 ). The states s̃9 and s̃12 only exist in step semantics,

since they are reachable exclusively by executing ({r1}, ρ) and ({r2}, ρ) (and possibly ({c}, ρ10 )) in parallel.

The average sojourn time vector of K is

S̃J =

(
1

ρ3
,

10

ρ(21− 12ρ+ ρ2)
, 1, 0, 0, 1, 1, 1, 1,

1

ρ(1 + ρ− ρ2)
,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K is

Ṽ AR =
(

1−ρ3

ρ6 , 10(10−ρ)(1−ρ)2

ρ2(21−12ρ+ρ2)2 , 0, 0, 0, 0, 0, 0, 0,
(1−ρ2)(1−ρ)
ρ2(1+ρ−ρ2)2 ,

(1−ρ2)(1−ρ)
ρ2(1+ρ−ρ2)2 , 0,

1−ρ2

ρ4 , 1−ρ
2

ρ4

)
.

Let us denote χ = 21− 12ρ+ ρ2 and θ = 1 + ρ− ρ2. The TPM for EDTMC(K) is

79



✛
✚
✘
✙s̃1

✛
✚
✘
✙s̃2

✛
✚
✘
✙s̃10

✛
✚
✘
✙s̃13

✛
✚
✘
✙s̃11

✛
✚
✘
✙s̃14

❄

❄ ❄

TS(K)

s̃4 s̃5

s̃12

✲✞✝

✲✞✝ ☎✆✛

☎✆✛

✝ ✆✻

✛
✚
✘
✙s̃3

❄

✛
✚
✘
✙s̃9

❄

✛
✚
✘
✙s̃7

✛
✚
✘
✙s̃8

✻ ✻

✓
✒
✏
✑

✓
✒
✏
✑

✓
✒
✏
✑

✛
✚
✘
✙s̃6

✓
✒
✏
✑

❄

✛ ✲

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄✎

✂
✂
✂
✂
✂
✂
✂✌

✛ ✲
❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✌

❇
❇
❇
❇
❇
❇
❇❇

✂
✂
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇
❇
❇❇

✄
✄
✄
✄
✄
✄
✄
✄
✄✗

▲
▲
▲
▲
▲
▲

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇▼

❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙❙♦
�

�
�

�
�

�
�✠

❅
❅
❅
❅
❅
❅
❅❘

✞ ☎
❄

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

❅
❅

❅
❅

❅
❅

❅❅■

�
�
�
�
�
�
��✒

({a},ρ3),ρ3

({r2},ρ),

ρ(1−ρ2)

({r1},ρ),

ρ(1−ρ2)

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(10−ρ)(1−ρ)2

10

({r1},ρ),

ρ(10−ρ)(1−ρ)
10

({r2},ρ),

ρ(10−ρ)(1−ρ)
10

{({r1},ρ),

({c},
ρ
10

)},

ρ2(1−ρ)
10

{({r2},ρ),

({c},
ρ
10

)},

ρ2(1−ρ)
10

({c},
ρ
10

),

ρ(1−ρ)2

10

{({r1},ρ),

({r2},ρ),

({c}, ρ
10

)}, ρ
3

10

{({r1},ρ),

({r2},ρ)},

ρ2(10−ρ)
10

∅,(1−ρ)2

{({r1},ρ),

({r2},ρ)},

ρ2

({r1},ρ),

ρ(1−ρ)

({r2},ρ),

ρ(1−ρ)

({d1},♮02l),1 ({d2},♮02l),1

({e},♮2
l
),

1

({e},♮2
l
),1 ({e},♮2

l
),1

({e},♮2
l
),1

({m1},ρ2),

ρ2(1−ρ)

({m2},ρ2),

ρ2(1−ρ)

{({r2},ρ),

({m1},ρ2)},

ρ3

{({r1},ρ),

({m2},ρ2)},

ρ3

({d1},♮02l),
1
2

({d2},♮02l),
1
2

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

Figure 46: The transition system of the generalized shared memory system with maintenance
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Figure 47: The underlying SMC of the generalized shared memory system with maintenance
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P̃∗=




0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 (1−ρ)2

χ
(10−ρ)(1−ρ)

χ
(10−ρ)(1−ρ)

χ
0 ρ(1−ρ)

χ
ρ(1−ρ)
χ

ρ2

χ
0 0 ρ(10−ρ)

χ
0 0

0 0 0 0 0 (1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) ρ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 ρ(1−ρ)
θ

0 0 ρ2

θ
0 0 0 0 0 0 0 1−ρ2

θ
0

0 ρ(1−ρ)
θ

0 ρ2

θ
0 0 0 0 0 0 0 0 0 1−ρ2

θ
0 0 0 0 0 0 0 0 0 0 0 0 1

2
1
2

0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0




.

The steady-state PMF for EDTMC(K) is

ψ̃∗ = 1
2(60+39ρ−108ρ2+24ρ3+12ρ4−8ρ5+ρ6) (0, 2ρ(1− ρ)(21− 12ρ+ ρ2), 2ρ(1− ρ)3,

(2 − ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), (2 − ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), 2ρ(1− ρ)5,
2ρ2(1− ρ)2(2− 2ρ+ ρ2), 2ρ3(1− ρ)(2 − 2ρ+ ρ2), (2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5),

(2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), 2ρ2(1 − ρ)(10 + ρ− 2ρ2 + ρ3),
(1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

The steady-state PMF ψ̃∗ weighted by S̃J is

1
2ρ2(60+39ρ−108ρ2+24ρ3+12ρ4−8ρ5+ρ6) (0, 20ρ

2(1− ρ), 2ρ3(1 − ρ)3, 0, 0, 2ρ3(1 − ρ)5, 2ρ4(1− ρ)2(2 − 2ρ+ ρ2),

2ρ4(1− ρ)2(2− 2ρ+ ρ2), 2ρ5(1− ρ)(2 − 2ρ+ ρ2), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), 0,
(1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ̃∗S̃J
T
=

20 + 12ρ− 13ρ2 − 10ρ3 + ρ4 + ρ5 − ρ6

ρ2(60 + 39ρ− 108ρ2 + 24ρ3 + 12ρ4 − 8ρ5 + ρ6)
.

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (0, 20ρ

2(1− ρ), 2ρ3(1− ρ)3, 0, 0, 2ρ3(1− ρ)5, 2ρ4(1− ρ)2(2− 2ρ+ ρ2),

2ρ4(1− ρ)2(2− 2ρ+ ρ2), 2ρ5(1− ρ)(2 − 2ρ+ ρ2), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), 0,
(1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

Otherwise, from TS(K), we can construct the DTMC of K, DTMC(K), and then calculate ϕ̃ using it.
In Figure 48, the DTMC DTMC(K) is depicted.

The TPM for DTMC(K) is P̃ =




1 − ρ3 ρ3 0 0 0 0 0 0 0 0 0 0 0 0

0
(10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
ρ(10−ρ)(1−ρ)

10
ρ(10−ρ)(1−ρ)

10
0

ρ2(1−ρ)
10

ρ2(1−ρ)
10

ρ3

10
0 0

ρ2(10−ρ)
10

0 0

0 0 0 0 0 (1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) ρ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 ρ2(1 − ρ) 0 0 ρ3 0 0 0 0 (1 − ρ)(1 − ρ2) 0 0 ρ(1 − ρ2) 0

0 ρ2(1 − ρ) 0 ρ3 0 0 0 0 0 0 (1 − ρ)(1 − ρ2) 0 0 ρ(1 − ρ2)

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 ρ2 0 0 0 0 0 0 0 1 − ρ2 0

0 0 0 ρ2 0 0 0 0 0 0 0 0 0 1 − ρ2




.

The steady-state PMF for DTMC(K) is

ψ̃ = 1
2(20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7) (0, 20ρ

2(1 − ρ), 2ρ3(1− ρ)3,

ρ2(2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), ρ2(2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), 2ρ3(1− ρ)5,
2ρ4(1− ρ)2(2− 2ρ+ ρ2), 2ρ4(1− ρ)2(2− 2ρ+ ρ2), 2ρ5(1− ρ)(2− 2ρ+ ρ2), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3),

ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), 2ρ4(1− ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3),
(1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).
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Figure 48: The DTMC of the generalized shared memory system with maintenance
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Remember that DRT (K) = DRST (K) ∪DRWT (K) = {s̃1, s̃2, s̃3, s̃6, s̃7, s̃8, s̃9, s̃10, s̃11, s̃13, s̃14} and
DRV (K) = {s̃4, s̃5, s̃12}. Hence,

∑
s̃∈DRT (K) ψ̃(s̃) = ψ̃(s̃1) + ψ̃(s̃2) + ψ̃(s̃3) + ψ̃(s̃6) + ψ̃(s̃7) + ψ̃(s̃8) + ψ̃(s̃9) + ψ̃(s̃10) + ψ̃(s̃11) + ψ̃(s̃13) + ψ̃(s̃14) =

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7
.

By Proposition 5.1, we have

ϕ̃(s̃1) = 0 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 0,

ϕ̃(s̃2) =
10ρ2(1−ρ)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃(s̃3) =
ρ3(1−ρ)3

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃(s̃4) = 0,

ϕ̃(s̃5) = 0,

ϕ̃(s̃6) =
ρ3(1−ρ)5

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃(s̃7) =
ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ4(1−ρ)2(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃(s̃8) =
ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ4(1−ρ)2(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃(s̃9) =
ρ5(1−ρ)(2−2ρ+ρ2)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ5(1−ρ)(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃(s̃10) =
ρ(2−ρ)(10+ρ−2ρ2+ρ3)

2(20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7) ·
20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ(2−ρ)(10+ρ−2ρ2+ρ3)
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) ,

ϕ̃(s̃11) =
ρ(2−ρ)(10+ρ−2ρ2+ρ3)

2(20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7) ·
20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ(2−ρ)(10+ρ−2ρ2+ρ3)
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) ,

ϕ̃(s̃12) = 0,

ϕ̃(s̃13) =
(1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

2(20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7) ·
20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = (1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) ,

ϕ̃(s̃14) =
(1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

2(20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7) ·
20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = (1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) .

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (0, 20ρ

2(1− ρ), 2ρ3(1− ρ)3, 0, 0, 2ρ3(1− ρ)5, 2ρ4(1− ρ)2(2− 2ρ+ ρ2),

2ρ4(1− ρ)2(2− 2ρ+ ρ2), 2ρ5(1− ρ)(2 − 2ρ+ ρ2), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), 0,
(1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .
Alternatively, from TS(K), we can construct the reduced DTMC of K, RDTMC(K), and then calculate

ϕ̃ using it.
Remember that DRST (K) = {s̃1, s̃2, s̃3, s̃10, s̃11, s̃13, s̃14}, DRWT (K) = {s̃6, s̃7, s̃8, s̃9} and DRV (K) =

{s̃4, s̃5, s̃12}. We reorder the elements of DR(K), by moving vanishing states to the first positions and s-tangible
states to the last positions: s̃4, s̃5, s̃12, s̃6, s̃7, s̃8, s̃9, s̃1, s̃2, s̃3, s̃10, s̃11, s̃13, s̃14.

The reordered TPM for DTMC(K) is P̃r =




0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 − ρ3 ρ3 0 0 0 0 0

ρ(10−ρ)(1−ρ)
10

ρ(10−ρ)(1−ρ)
10

ρ2(10−ρ)
10

0
ρ2(1−ρ)

10
ρ2(1−ρ)

10
ρ3

10
0

(10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
0 0 0 0

0 0 0 (1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) ρ2 0 0 0 0 0 0 0

0 ρ3 0 0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

ρ3 0 0 0 0 0 0 0 ρ2(1 − ρ) 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 ρ2 0 0 0 0 0 0 0 0 0 0 1 − ρ2 0

ρ2 0 0 0 0 0 0 0 0 0 0 0 0 1 − ρ2




.

The result of the decomposing P̃r are the matrices
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C̃ =




0 0 0
0 0 0
0 0 0


 , D̃ =




0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

2
1
2


 , Ẽ =




0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

ρ(10−ρ)(1−ρ)
10

ρ(10−ρ)(1−ρ)
10

ρ2(10−ρ)
10

0 0 0
0 ρ3 0
ρ3 0 0
0 ρ2 0
ρ2 0 0




,

F̃=




0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 − ρ3 ρ3 0 0 0 0 0

0 ρ2(1−ρ)
10

ρ2(1−ρ)
10

ρ3

10 0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10 0 0 0 0
(1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) ρ2 0 0 0 0 0 0 0

0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0
0 0 0 0 0 ρ2(1 − ρ) 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)
0 0 0 0 0 0 0 0 0 1 − ρ2 0
0 0 0 0 0 0 0 0 0 0 1 − ρ2




.

Since C̃1 = 0, we have ∀k > 0, C̃k = 0, hence, l = 0 and there are no loops among vanishing states. Then

G̃ =
l∑

k=0

C̃k = C̃0 = I.

Further, the TPM for RDTMC(K) is

P̃⋄ = F̃+ ẼG̃D̃ = F̃+ ẼID̃ = F̃+ ẼD̃ =


0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

2
1
2

0 0 0 0 1 − ρ3 ρ3 0 0 0 0 0

0 ρ2(1−ρ)
10

ρ2(1−ρ)
10

ρ3

10 0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
ρ(10−ρ)(1−ρ)

10
ρ(10−ρ)(1−ρ)

10
ρ2(10−ρ)

20
ρ2(10−ρ)

20

(1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) ρ2 0 0 0 0 0 0 0
0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) ρ3 ρ(1 − ρ2) 0
0 0 0 0 0 ρ2(1 − ρ) 0 ρ3 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)
0 0 0 0 0 0 0 0 ρ2 1 − ρ2 0
0 0 0 0 0 0 0 ρ2 0 0 1 − ρ2




.

In Figure 49, the reduced DTMC RDTMC(K) is presented.
Then the steady-state PMF for RDTMC(K) is

ψ̃⋄ = 1
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (2ρ

3(1− ρ)5, 2ρ4(1 − ρ)2(2− 2ρ+ ρ2), 2ρ4(1 − ρ)2(2− 2ρ+ ρ2),

2ρ5(1− ρ)(2 − 2ρ+ ρ2), 0, 20ρ2(1− ρ), 2ρ3(1− ρ)3, ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3),
ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3), (1 − ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

Note that ψ̃⋄ = (ψ̃⋄(s̃6), ψ̃
⋄(s̃7), ψ̃

⋄(s̃8), ψ̃
⋄(s̃9), ψ̃

⋄(s̃1), ψ̃
⋄(s̃2), ψ̃

⋄(s̃3), ψ̃
⋄(s̃10), ψ̃

⋄(s̃11), ψ̃
⋄(s̃13), ψ̃

⋄(s̃14)). By
Proposition 5.2, we have

ϕ̃(s̃1) = 0, ϕ̃(s̃2) =
10ρ2(1−ρ)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃(s̃3) =

ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
,

ϕ̃(s̃4) = 0, ϕ̃(s̃5) = 0, ϕ̃(s̃6) =
ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
,

ϕ̃(s̃7) =
ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃(s̃8) =

ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃(s̃9) =

ρ5(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
,

ϕ̃(s̃10) =
ρ(2−ρ)(10+ρ−2ρ2+ρ3)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃11) =

ρ(2−ρ)(10+ρ−2ρ2+ρ3)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃12) = 0,

ϕ̃(s̃13) =
(1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃14) =

(1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

2(2+ρ−ρ2−ρ3)
.

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (0, 20ρ

2(1− ρ), 2ρ3(1− ρ)3, 0, 0, 2ρ3(1− ρ)5, 2ρ4(1− ρ)2(2− 2ρ+ ρ2),

2ρ4(1− ρ)2(2− 2ρ+ ρ2), 2ρ5(1− ρ)(2 − 2ρ+ ρ2), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), 0,
(1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).
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Figure 49: The reduced DTMC of the generalized shared memory system with maintenance

This coincides with the result obtained with the use of ψ̃∗ and S̃J .
We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where no processor requests the memory and its maintenance

is not initiated, called the average system run-through, is 1
ϕ̃2

= 20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

10ρ2(1−ρ) .

• The common memory is available only in the states s̃2, s̃4, s̃5, s̃12. Then the steady-state probabil-

ity that the memory is available is ϕ̃2 + ϕ̃4 + ϕ̃5 + ϕ̃12 = 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 + 0 + 0 + 0 =

10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 . The common memory is maintained only in the states s̃3, s̃6, s̃7, s̃8, s̃9. Then
the steady-state probability that the memory is maintained is ϕ̃3 + ϕ̃6 + ϕ̃7 + ϕ̃8 + ϕ̃9 =

ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 + ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 + ρ4(1−ρ)2(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 +

ρ4(1−ρ)2(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 + ρ5(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ3(1−ρ)(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 . Thus, the steady-

state probability that the memory is used (i.e. neither available nor maintained), called the shared memory

utilization, is 1− 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 − ρ3(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 20+12ρ−23ρ2−2ρ3+5ρ4−2ρ5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

• After activation of the system, we leave the state s̃1 for ever, and the common memory is either requested
or allocated or maintained in every remaining state, with exception of s̃2. Thus, the rate with which the
necessity (also for maintenance) of shared memory emerges coincides with the rate of leaving s̃2, calculated

as ϕ̃2

S̃J2
= 10ρ2(1−ρ)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 · ρ(21−12ρ+ρ2)
10 = ρ3(1−ρ)(21−12ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

• The parallel common memory request of two processors {({r1}, ρ), ({r2}, ρ)} is only possible from the states
s̃2, s̃3. In these states, the request probability is the sum of the execution probabilities for all multisets of
activities containing both ({r1}, ρ) and ({r2}, ρ). The steady-state probability of the shared memory request
from two processors is ϕ̃2

∑
{Υ|({({r1},ρ),({r2},ρ)}⊆Υ} PT (Υ, s̃2)+ ϕ̃3

∑
{Υ|({({r1},ρ),({r2},ρ)}⊆Υ} PT (Υ, s̃3) =

10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

(
ρ2(10−ρ)

10 + ρ3

10

)
+ ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ·ρ
2 = ρ4(1−ρ)(10+ρ−2ρ2+ρ3)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

• The common memory request of the first processor ({r1}, ρ) is only possible from the states s̃2, s̃3, s̃11.
In each of the states, the request probability is the sum of the execution probabilities for all sets of ac-
tivities containing ({r1}, ρ). The steady-state probability of the shared memory request from the first pro-
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Figure 50: The marked dtsd-boxes of two processors, shared memory and the generalized shared memory system
with maintenance

cessor is ϕ̃2

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃2)+ ϕ̃3

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃3)+ ϕ̃11

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃11) =

10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

(
ρ(10−ρ)(1−ρ)

10 + ρ2(1−ρ)
10 + ρ2(10−ρ)

10 + ρ3

10

)
+ ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (ρ(1− ρ)+

ρ2) + ρ(2−ρ)(10+ρ−2ρ2+ρ3)
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (ρ(1− ρ2) + ρ3) = ρ2(20+12ρ−23ρ2−2ρ3+5ρ4−2ρ5)

2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) .

In Figure 50, the marked dtsd-boxes corresponding to the dynamic expressions of two processors, shared
memory and the generalized shared memory system with maintenance are presented, i.e. Ni = Boxdtsd(Ki) (1 ≤
i ≤ 3) and N = Boxdtsd(K).

9.2 The abstract generalized system and its reduction

Let us consider a modification of the generalized shared memory system with maintenance via abstraction from
identifiers of the processors, i.e. such that the processors are indistinguishable. For example, we can just see that
a processor requires memory or the memory is allocated to it but cannot observe which processor is it. We call
this system the abstract generalized shared memory system with maintenance. To implement the abstraction,
we replace the actions ri, di,mi (1 ≤ i ≤ 2) in the system specification by r, d,m, respectively.

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, ♮
0
l ); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, ♮
0
l ); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ

10
); ({e}, ♮2l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with maintenance is

L = (L1‖L2‖L3) sr (x1, x2, y1, y2, z1, z2).

DR(L) resembles DR(K), and TS(L) is similar to TS(K). We have SMC(L) ≃ SMC(K). Thus, the
average sojourn time vectors of L and K, as well as the TPMs and the steady-state PMFs for EDTMC(L) and
EDTMC(K), coincide.
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The first, second, third and fourth performance indices are the same for the generalized system and its
abstract modification. Let us consider the following performance index which is again specific to the abstract
system.

• The common memory request of a processor ({r}, ρ) is only possible from the states s̃2, s̃3, s̃10, s̃11.
In each of the states, the request probability is the sum of the execution probabilities for all sets of
activities containing ({r}, ρ). The steady-state probability of the shared memory request from a pro-
cessor is ϕ̃2

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃2) + ϕ̃3

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃3) + ϕ̃10

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃10) +

ϕ̃11

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃11) =

10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

(
ρ(10−ρ)(1−ρ)

10 + ρ(10−ρ)(1−ρ)
10 + ρ2(1−ρ)

10 +

ρ2(1−ρ)
10 + ρ2(10−ρ)

10 + ρ3

10

)
+ ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (ρ(1− ρ) + ρ(1− ρ) + ρ2) +

ρ(2−ρ)(10+ρ−2ρ2+ρ3)
2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (ρ(1− ρ2) + ρ3) + ρ(2−ρ)(10+ρ−2ρ2+ρ3)

2(20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6) (ρ(1− ρ2) + ρ3) =
ρ2(2−ρ)(10+11ρ−11ρ2−2ρ3+3ρ4−ρ5)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6, K̃7, K̃8, K̃9, K̃10}, where K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and the memory is not requested and its maintenance is not initiated),

K̃3 = {s̃3} (the memory maintenance is initiated), K̃4 = {s̃4, s̃5} (the memory is requested by a processor),

K̃5 = {s̃6} (the memory service works are continued for 1 time unit), K̃6 = {s̃7, s̃8} (the memory service works

are continued for 1 time unit and the memory is requested by a processor), K̃7 = {s̃9} (the memory service

works are continued for 1 time unit and the memory is requested by two processors), K̃8 = {s̃10, s̃11} (the

memory is allocated to a processor), K̃9 = {s̃12} (the memory is requested by two processors), K̃10 = {s̃13, s̃14}
(the memory is allocated to a processor and requested by another processor).

We also have DRST (L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃8, K̃10}, DRWT (L)/Rss(L)

= {K̃5, K̃6, K̃7} and

DRV (L)/Rss(L)
= {K̃4, K̃9}.

In Figure 51, the quotient transition system TS↔ss
(L) is presented. In Figure 52, the quotient underlying

SMC SMC↔ss
(L) is depicted. Note that, in step semantics, we may execute the following multiactions in

parallel: {r}, {r}, as well as {r}, {m}. We can also execute in parallel {r}, {c}, as well as {r}, {r}, {c}. The

states K̃7 and K̃9 only exist in step semantics, since they are reachable exclusively by executing {r} and {r}
(and possibly {c}) in parallel.

The quotient average sojourn time vector of F is

S̃J
′
=

(
1

ρ3
,

10

ρ(21− 12ρ+ ρ2)
, 1, 0, 1, 1, 1,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ2

)
.

The quotient sojourn time variance vector of F is

Ṽ AR
′
=

(
1− ρ3

ρ6
,
10(10− ρ)(1 − ρ)2

ρ2(21− 12ρ+ ρ2)2
, 0, 0, 0, 0, 0,

(1− ρ2)(1− ρ)

ρ2(1 + ρ− ρ2)2
, 0,

1− ρ2

ρ4

)
.

The TPM for EDTMC↔ss
(L) is

P̃′∗ =




0 1 0 0 0 0 0 0 0 0

0 0 (1−ρ)2

21−12ρ+ρ2
2(10−ρ)(1−ρ)

21−12ρ+ρ2
0 2ρ(1−ρ)

21−12ρ+ρ2
ρ2

21−12ρ+ρ2
0 ρ(10−ρ)

21−12ρ+ρ2
0

0 0 0 0 (1− ρ)2 2ρ(1− ρ) ρ2 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

0 ρ(1−ρ)

1+ρ−ρ2
0 ρ2

1+ρ−ρ2
0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0




.

The steady-state PMF for EDTMC↔ss
(L) is

ψ̃′∗ = 1
60+39ρ−108ρ2+24ρ3+12ρ4−8ρ5+ρ6 (0, ρ(1− ρ)(21− 12ρ+ ρ2), ρ(1− ρ)3,

(2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), ρ(1− ρ)5, 2ρ2(1 − ρ)2(2− 2ρ+ ρ2), ρ3(1− ρ)(2 − 2ρ+ ρ2),
(2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), ρ2(1− ρ)(10 + ρ− 2ρ2 + ρ3), (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).
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Figure 51: The quotient transition system of the abstract generalized shared memory system with maintenance

89



✛
✚
✘
✙K̃1

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃8

✛
✚
✘
✙K̃10

❄

❄

SMC↔ss
(L)

K̃4

K̃9

✛
✚
✘
✙K̃3

❄

✛
✚
✘
✙K̃7

❄

✛
✚
✘
✙K̃6

✻

✓
✒
✏
✑

✓
✒
✏
✑

✛
✚
✘
✙K̃5

✓
✒
✏
✑

❄

✛

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄✎

✂
✂
✂
✂
✂
✂
✂✌

✛
❇
❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇
❇
❇❇

✄
✄
✄
✄
✄
✄
✄
✄
✄✗

▲
▲
▲
▲
▲
▲

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

�
�

�
�

�
�

�✠

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

❅
❅

❅
❅

❅
❅

❅❅■

1

1−ρ2

1+ρ−ρ2

2(10−ρ)(1−ρ)

21−12ρ+ρ2

2ρ(1−ρ)

21−12ρ+ρ2

(1−ρ)2

21−12ρ+ρ2

ρ2

21−12ρ+ρ2

ρ(10−ρ)

21−12ρ+ρ2

(1−ρ)2

ρ2

2ρ(1−ρ)

1

1

1

1

ρ(1−ρ)

1+ρ−ρ2
ρ2

1+ρ−ρ2

1

1

1
ρ3

10
ρ(21−12ρ+ρ2)

0

1

1

1
ρ(1+ρ−ρ2)

1

1
ρ2 1

0

✂
✂
✂
✂
✂
✂
✂✂✍

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❖

❇
❇
❇
❇
❇
❇
❇❇

Figure 52: The quotient underlying SMC of the abstract generalized shared memory system with maintenance

90



The steady-state PMF ψ̃′∗ weighted by S̃J
′
is

1
ρ2(60+39ρ−108ρ2+24ρ3+12ρ4−8ρ5+ρ6)(0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, ρ3(1− ρ)5, 2ρ4(1 − ρ)2(2− 2ρ+ ρ2),

ρ5(1 − ρ)(2− 2ρ+ ρ2), ρ(2 − ρ)(10 + ρ− 2ρ2 + ρ3), 0, (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ̃′∗S̃J
′T

=
20 + 12ρ− 13ρ2 − 10ρ3 + ρ4 + ρ5 − ρ6

ρ2(60 + 39ρ− 108ρ2 + 24ρ3 + 12ρ4 − 8ρ5 + ρ6)
.

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, ρ3(1− ρ)5, 2ρ4(1 − ρ)2(2− 2ρ+ ρ2),

ρ5(1 − ρ)(2− 2ρ+ ρ2), ρ(2 − ρ)(10 + ρ− 2ρ2 + ρ3), 0, (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

Otherwise, from TS↔ss
(L), we can construct the quotient DTMC of L, DTMC↔ss

(L), and then calculate ϕ̃′

using it.
In Figure 53, the quotient DTMC DTMC↔ss

(L) is depicted.

The TPM for DTMC↔ss
(L) is

P̃′ =




1 − ρ3 ρ3 0 0 0 0 0 0 0 0

0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
ρ(10−ρ)(1−ρ)

5 0 ρ2(1−ρ)
5

ρ3

10 0 ρ2(10−ρ)
10 0

0 0 0 0 (1 − ρ)2 2ρ(1 − ρ) ρ2 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 ρ2(1 − ρ) 0 ρ3 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)
0 0 0 0 0 0 0 0 0 1
0 0 0 ρ2 0 0 0 0 0 1 − ρ2




.

The steady-state PMF for DTMC↔ss
(L) is

ψ̃′ = 1
20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3,

ρ2(2− ρ)(10 + 11ρ− 11ρ2 − 2ρ3 + 3ρ4 − ρ5), ρ3(1− ρ)5, 2ρ4(1− ρ)2(2− 2ρ+ ρ2), ρ5(1− ρ)(2− 2ρ+ ρ2),
ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), ρ4(1− ρ)(10 + ρ− 2ρ2 + ρ3), (1 − ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3).

Remember that DRT (L)/Rss(L)
= DRST (L)/Rss(L)

∪DRWT (L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃5, K̃6, K̃7, K̃8, K̃10}

and DRV (L)/Rss(L)
= {K̃4, K̃9}. Hence,

∑
K̃∈DRT (L)/Rss(L)

ψ̃′(K̃) = ψ̃′(K̃1) + ψ̃′(K̃2) + ψ̃′(K̃3) + ψ̃′(K̃5) + ψ̃′(K̃6) + ψ̃′(K̃7) + ψ̃′(K̃8) + ψ̃′(K̃10) =

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 .

By the “quotient” analogue of Proposition 5.1, we have

ϕ̃′(K̃1) = 0 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 0,

ϕ̃′(K̃2) =
10ρ2(1−ρ)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′(K̃3) =
ρ3(1−ρ)3

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′(K̃4) = 0,

ϕ̃′(K̃5) =
ρ3(1−ρ)5

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′(K̃6) =
2ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 2ρ4(1−ρ)2(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′(K̃7) =
ρ5(1−ρ)(2−2ρ+ρ2)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ5(1−ρ)(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′(K̃8) =
ρ(2−ρ)(10+ρ−2ρ2+ρ3)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ(2−ρ)(10+ρ−2ρ2+ρ3)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′(K̃9) = 0,

ϕ̃′(K̃10) =
(1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7 · 20+12ρ+7ρ2+2ρ3−22ρ4−ρ5+4ρ6−2ρ7

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = (1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .
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Figure 53: The quotient DTMC of the abstract generalized shared memory system with maintenance
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Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, ρ3(1− ρ)5, 2ρ4(1 − ρ)2(2− 2ρ+ ρ2),

ρ5(1 − ρ)(2− 2ρ+ ρ2), ρ(2 − ρ)(10 + ρ− 2ρ2 + ρ3), 0, (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

Alternatively, from TS↔ss
(L), we can construct the reduced quotient DTMC of L, RDTMC↔ss

(L), and
then calculate ϕ̃′ using it.

Remember that DRST (L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃8, K̃10}, DRWT (L)/Rss(L)

= {K̃5, K̃6, K̃7} and

DRV (L)/Rss(L)
= {K̃4, K̃9}. We reorder the elements of DR(L)/Rss(L)

, by moving the equivalence classes of

vanishing states to the first positions and those of s-tangible states to the last positions: K̃4, K̃9, K̃5, K̃6, K̃7, K̃1,
K̃2, K̃3, K̃8, K̃10.

The reordered TPM for DTMC↔ss
(L) is

P̃′
r =




0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 − ρ3 ρ3 0 0 0

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10 0 ρ2(1−ρ)

5
ρ3

10 0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10 0 0
0 0 (1 − ρ)2 2ρ(1 − ρ) ρ2 0 0 0 0 0
ρ3 0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) ρ(1 − ρ2)
ρ2 0 0 0 0 0 0 0 0 1 − ρ2




.

The result of the decomposing P̃′
r are the matrices

C̃′ =

(
0 0
0 0

)
, D̃′ =

(
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
, Ẽ′ =




0 0
1 0
0 1
0 0

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10

0 0
ρ3 0
ρ2 0




,

F̃′ =




0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1− ρ3 ρ3 0 0 0

0 ρ2(1−ρ)
5

ρ3

10 0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10 0 0
(1 − ρ)2 2ρ(1− ρ) ρ2 0 0 0 0 0

0 0 0 0 ρ2(1− ρ) 0 (1− ρ)(1 − ρ2) ρ(1 − ρ2)
0 0 0 0 0 0 0 1− ρ2




.

Since C̃′1 = 0, we have ∀k > 0, C̃′k = 0, hence, l = 0 and there are no loops among vanishing states. Then

G̃′ =

l∑

k=0

C̃′l = C̃′0 = I.

Further, the TPM for RDTMC↔ss
(L) is

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′ID̃′ = F̃′ + Ẽ′D̃′ =


0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1− ρ3 ρ3 0 0 0

0 ρ2(1−ρ)
5

ρ3

10 0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
ρ(10−ρ)(1−ρ)

5
ρ2(10−ρ)

10
(1− ρ)2 2ρ(1− ρ) ρ2 0 0 0 0 0

0 0 0 0 ρ2(1− ρ) 0 1− ρ− ρ2 + 2ρ3 ρ(1− ρ2)
0 0 0 0 0 0 ρ2 1− ρ2




.
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Figure 54: The reduced quotient DTMC of the abstract generalized shared memory system with maintenance

In Figure 54, the reduced quotient DTMC RDTMC↔ss
(L) is presented.

Then the steady-state PMF for RDTMC↔ss
(L) is

ψ̃′⋄ = 1
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (ρ

3(1 − ρ)5, 2ρ4(1− ρ)2(2 − 2ρ+ ρ2), ρ5(1− ρ)(2 − 2ρ+ ρ2), 0, 10ρ2(1− ρ),

ρ3(1− ρ)3, ρ(2− ρ)(10 + ρ− 2ρ2 + ρ3), (1 − ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

Note that ψ̃′⋄ = (ψ̃′⋄(K̃5), ψ̃
′⋄(K̃6), ψ̃

′⋄(K̃7), ψ̃
′⋄(K̃1), ψ̃

′⋄(K̃2), ψ̃
′⋄(K̃3), ψ̃

′⋄(K̃8), ψ̃
′⋄(K̃10)). By the “quotient”

analogue of Proposition 5.2, we have

ϕ̃′(K̃1)=0, ϕ̃′(K̃2)=
10ρ2(1−ρ)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃′(K̃3)=

ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
,

ϕ̃′(K̃4)=0, ϕ̃′(K̃5)=
ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃′(K̃6)=

2ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
,

ϕ̃′(K̃7)=
ρ5(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃′(K̃8)=

ρ(2−ρ)(10+ρ−2ρ2+ρ3)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
, ϕ̃′(K̃9)=0,

ϕ̃′(K̃10)=
(1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6
.

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 0, ρ3(1− ρ)5, 2ρ4(1 − ρ)2(2− 2ρ+ ρ2),

ρ5(1 − ρ)(2− 2ρ+ ρ2), ρ(2 − ρ)(10 + ρ− 2ρ2 + ρ3), 0, (1− ρ)(2 + ρ)(10 + ρ− 2ρ2 + ρ3)).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where no processor requests the memory and its maintenance

is not initiated, called the average system run-through, is 1
ϕ̃′

2
= 20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

10ρ2(1−ρ) .

• The common memory is available only in the states K̃2, K̃4, K̃9. Then the steady-state probability that the

memory is available is ϕ̃′
2+ϕ̃

′
4+ϕ̃

′
9 = 10ρ2(1−ρ)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 +0+0 = 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 . The
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common memory is maintained only in the states K̃3, K̃5, K̃6, K̃7. Then the steady-state probability that

the memory is maintained is ϕ̃′
3+ϕ̃

′
5+ϕ̃

′
6+ϕ̃

′
7 = ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 +
ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 +
2ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 + ρ5(1−ρ)(2−2ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = ρ3(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 . Thus, the steady-

state probability that the memory is used (i.e. neither available nor maintained), called the shared memory

utilization, is 1− 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 − ρ3(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 = 20+12ρ−23ρ2−2ρ3+5ρ4−2ρ5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

• After activation of the system, we leave the state K̃1 for ever, and the common memory is either requested
or allocated or maintained in every remaining state, with exception of K̃2. Thus, the rate with which
the necessity (also for maintenance) of shared memory emerges coincides with the rate of leaving K̃2,

calculated as
ϕ̃′

2

S̃J
′

2

= 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 · ρ(21−12ρ+ρ2)

10 = ρ3(1−ρ)(21−12ρ+ρ2)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

• The parallel common memory request of two processors {{r}, {r}} is only possible from the states

K̃2, K̃3. In these states, the request probability is the sum of the execution probabilities for all multi-
sets of multiactions containing {r} twice. The steady-state probability of the shared memory request from

two processors is ϕ̃′
2

∑
{A,K̃|{{r},{r}}⊆A, K̃2

A
→K̃}

PMA(K̃2, K̃)+ϕ̃′
3

∑
{A,K̃|{{r},{r}}⊆A, K̃3

A
→K̃}

PMA(K̃3, K̃) =

10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

(
ρ2(10−ρ)

10 + ρ3

10

)
+ ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ·ρ
2 = ρ4(1−ρ)(10+ρ−2ρ2+ρ3)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

• The common memory request of a processor {r} is only possible from the states K̃2, K̃3, K̃8. In each of the
states, the request probability is the sum of the execution probabilities for all multisets of multiactions
containing {r}. The steady-state probability of the shared memory request from a processor is

ϕ̃′
2

∑
{A,K̃|{r}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) + ϕ̃′
3

∑
{A,K̃|{r}∈A, K̃3

A
→K̃}

PMA(K̃3, K̃) +

ϕ̃′
8

∑
{A,K̃|{r}∈A, K̃8

A
→K̃}

PMA(K̃8, K̃)= 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6

(
ρ(10−ρ)(1−ρ)

5 + ρ2(1−ρ)
5 + ρ2(10−ρ)

10 + ρ3

10

)
+

ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (2ρ(1− ρ) + ρ2) + ρ(2−ρ)(10+ρ−2ρ2+ρ3)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 (ρ(1 − ρ2) + ρ3) =

ρ2(2−ρ)(10+11ρ−11ρ2−2ρ3+3ρ4−ρ5)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 .

One can see that the performance indices are the same for the complete and the quotient abstract generalized
shared memory systems with maintenance. The coincidence of the first, second and third performance indices
obviously illustrates the results of Proposition 8.1 and Proposition 8.2 (both modified for RLss(L)). The
coincidence of the fourth performance index is due to Theorem 8.1 (modified for RLss(L)): one should just
apply its result to the derived step traces {{r}, {r}} and {{r}, {r}, {c}} of the expression L and itself, and
then sum the left and right parts of the two resulting equalities. The coincidence of the fifth performance
index is due to Theorem 8.1 (modified for RLss(L)): one should just apply its result to the derived step traces
{{r}}, {{r}, {c}}, {{r}, {r}}, {{r}, {r}, {c}}, {{r}, {m}} of the expression L and itself, and then sum the left
and right parts of the five resulting equalities.

Let us consider what is the effect of quantitative changes of the parameter ρ upon performance of the quotient
abstract generalized shared memory system with maintenance in its steady state. Remember that ρ ∈ (0; 1) is
the probability of every stochastic multiaction in the specification of the system. The closer is ρ to 0, the less
is the probability to execute some activities at every discrete time tick, hence, the system will most probably
stand idle. The closer is ρ to 1, the greater is the probability to execute some activities at every discrete time
tick, hence, the system will most probably operate.

Since ϕ̃′
1 = ϕ̃′

4 = ϕ̃′
9 = 0, only ϕ̃′

2 = 10ρ2(1−ρ)
20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 , ϕ̃

′
3 = ρ3(1−ρ)3

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′
5 = ρ3(1−ρ)5

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 , ϕ̃
′
6 = 2ρ4(1−ρ)2(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 , ϕ̃
′
7 = ρ5(1−ρ)(2−2ρ+ρ2)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 ,

ϕ̃′
8 = ρ(2−ρ)(10+ρ−2ρ2+ρ3)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 , ϕ̃
′
10 = (1−ρ)(2+ρ)(10+ρ−2ρ2+ρ3)

20+12ρ−13ρ2−10ρ3+ρ4+ρ5−ρ6 depend on ρ. In Figure 55, the plots of

ϕ̃′
2, ϕ̃

′
8, ϕ̃

′
10 (large probability masses) as functions of ρ are depicted. In Figure 56, the plots of ϕ̃′

3, ϕ̃
′
5, ϕ̃

′
6, ϕ̃

′
7

(small probability masses) as functions of ρ are drawn. Notice that, however, we do not allow ρ = 0 or ρ = 1.
One can see that ϕ̃′

2, ϕ̃
′
3, ϕ̃

′
5, ϕ̃

′
6, ϕ̃

′
7, ϕ̃

′
8 tend to 0 and ϕ̃′

10 tends to 1 when ρ approaches 0. Thus, when
ρ is closer to 0, the probability that the memory is allocated to a processor and the memory is requested by
another processor increases, hence, we have more unsatisfied memory requests.

Further, ϕ̃′
2, ϕ̃

′
3, ϕ̃

′
5, ϕ̃

′
6, ϕ̃

′
7, ϕ̃

′
10 tend to 0 and ϕ̃′

8 tends to 1 when ρ approaches 1. Thus, when ρ is closer
to 1, the probability that the memory is allocated to a processor (and not requested by another one) increases,
hence, we have less unsatisfied memory requests.

The maximal value 0.0788 of ϕ̃′
2 is reached when ρ ≈ 0.7450. In this case, the probability that the system

is activated and the memory is not requested and its maintenance is not initiated is maximal, i.e. the maximal
shared memory availability is about 8%.
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Figure 55: Steady-state probabilities ϕ̃′
2, ϕ̃

′
8, ϕ̃

′
10 (large probability masses) as functions of the parameter ρ

The maximal value 0.0007 of ϕ̃′
3 is reached when ρ ≈ 0.5170. In this case, the probability that the memory

maintenance is initiated is maximal, i.e. the maximal shared memory maintenance demand is about 0.1%.
The maximal value 0.0002 of ϕ̃′

5 is reached when ρ ≈ 0.3774. In this case, the probability that the memory
service works are continued for 1 time unit (and the memory is not requested) is maximal, i.e. the maximal
empty demand (non-demand) of shared memory during its maintenance is about 0.02%.

The maximal value 0.0025 of ϕ̃′
6 is reached when ρ ≈ 0.6796. In this case, the probability that the memory

service works are continued for 1 time unit and the memory is requested by a (single) processor is maximal, i.e.
the maximal single demand of shared memory during its maintenance is about 0.3%.

The maximal value 0.0045 of ϕ̃′
7 is reached when ρ ≈ 0.8682. In this case, the probability that the memory

service works are continued for 1 time unit and the memory is requested by two processors is maximal, i.e. the
maximal double (parallel) demand of shared memory during its maintenance is about 0.5%.

In Figure 57, the plot of the average system run-through, calculated as 1
ϕ̃′

2
, as a function of ρ is depicted.

One can see that the run-through tends to ∞ when ρ approaches 0 or 1. Its minimal value 12.6872 is reached
when ρ ≈ 0.7450. To speed up operation of the system, one should take the parameter ρ closer to 0.7450.

The first curve in Figure 58 represents the shared memory utilization, calculated as 1− ϕ̃′
2−9, where ϕ̃

′
2−9 =

ϕ̃′
2 + ϕ̃′

3 + ϕ̃′
4 + ϕ̃′

5 + ϕ̃′
6 + ϕ̃′

7 + ϕ̃′
9, as a function of ρ. One can see that the utilization tends to 1 both when ρ

approaches 0 and when ρ approaches 1. The minimal value 0.9149 of the utilization is reached when ρ ≈ 0.7495.
Thus, the minimal shared memory utilization is about 91%. To increase the utilization, one should take the
parameter ρ closer to 0 or 1.

The second curve in Figure 58 represents the rate with which the necessity of shared memory emerges,

calculated as
ϕ̃′

2

S̃J
′

2

, as a function of ρ. One can see that the rate tends to 0 both when ρ approaches 0 and when

ρ approaches 1. The maximal value 0.0746 of the rate is reached when ρ ≈ 0.7739. Thus, the maximal rate with
which the necessity of shared memory emerges is about 1

13 . To decrease the mentioned rate, one should take
the parameter ρ closer to 0 or 1.

The third curve in Figure 58 represents the steady-state probability of the shared memory request from
two processors, calculated as ϕ̃′

2S̃
′
2 + ϕ̃′

3S̃
′
3, where S̃ ′

i =
∑

{A,K̃|{{r},{r}}⊆A, K̃i
A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 3}, as

function of ρ. One can see that the probability tends to 0 both when ρ approaches 0 and when ρ approaches 1.
The maximal value 0.0514 of the probability is reached when ρ ≈ 0.8486. To decrease the mentioned probability,
one should take the parameter ρ closer to 0 or 1.

The fourth curve in Figure 58 represents the steady-state probability of the shared memory request from a
processor, calculated as ϕ̃′

2Σ̃
′
2 + ϕ̃′

3Σ̃
′
3 + ϕ̃′

8Σ̃
′
8, where Σ̃′

i =
∑

{A,K̃|{r}∈A, K̃i
A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 3, 8}, as

a function of ρ. One can see that the probability tends to 0 when ρ approaches 0 and it tends to 1 when ρ
approaches 1. To increase the mentioned probability, one should take the parameter ρ closer to 1.
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Figure 56: Steady-state probabilities ϕ̃′
3, ϕ̃

′
5, ϕ̃
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6, ϕ̃
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7 (small probability masses) as functions of the parameter ρ
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Figure 57: Average system run-through 1
ϕ̃′

2
as a function of the parameter ρ
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Figure 58: Some performance indices as functions of the parameter ρ

10 Conclusion

In this paper, we have proposed a discrete time stochastic extension dtsdPBC of PBC, enriched with deter-
ministic multiactions. The calculus has a parallel step operational semantics, based on labeled probabilistic
transition systems and a denotational semantics in terms of a subclass of LDTSDPNs. A technique of perfor-
mance evaluation in the framework of the calculus has been presented that explores the corresponding stochastic
process, which is a semi-Markov chain (SMC). It has been proved that the underlying discrete time Markov
chain (DTMC) or its reduction (RDTMC) by eliminating vanishing states may alternatively and suitably be
studied for that purpose. Step stochastic bisimulation equivalence of process expressions has been defined, used
to establish the consistency of the operational and denotational semantics, and its interrelations with other
equivalences of the calculus have been investigated. We have explained how to reduce transition systems and
underlying SMCs of expressions with respect to the introduced equivalence. We have proved that the mentioned
equivalence guarantees identity of the stationary behaviour and the sojourn time properties, and thus preserves
performance measures. The theory presented has been illustrated with an extensive series of examples, among
which is the travel system application example demonstrating performance analysis within dtsdPBC. In addi-
tion, a case study of a generalization of the shared memory system with maintenance by allowing for variable
probabilities in its specification has been presented. The case study is an example of modeling, performance
evaluation and performance preserving reduction within the calculus.

The advantage of our framework is twofold. First, one can specify in it concurrent composition and synchro-
nization of (multi)actions, whereas this is not possible in classical Markov chains. Second, algebraic formulas
represent processes in a more compact way than PNs and allow one to apply syntactic transformations and
comparisons. Process algebras are compositional by definition and their operations naturally correspond to
operators of programming languages. Hence, it is much easier to construct a complex model in the algebraic
setting than in PNs. The complexity of PNs generated for practical models in the literature demonstrates that it
is not straightforward to construct such PNs directly from the system specifications. dtsdPBC is well suited for
the discrete time applications, whose discrete states change with a global time tick, such as business processes,
neural and transportation networks, computer and communication systems, timed web services [86], as well as
for those, in which the distributed architecture or the concurrency level should be preserved while modeling
and analysis (remember that, in step semantics, we have additional transitions due to concurrent executions).
dtsdPBC is also capable to model and analyze parallel systems with fixed durations of the typical activities
(loading, processing, transfer, repair) and stochastic durations of the randomly occurring activities (arrival,
departure, failure), including industrial, manufacturing, queueing, computing and network systems.

In particular, we have adopted for dtsdPBC all examples of the expressions, ct-boxes and inferences by
the transition rules from tPBC [50]. Whereas the examples from that paper explore only some selected state-
transition sequences (paths), we always construct the complete transition systems of the expressions. We
have observed that in our framework we have no difficulties like those in tPBC, which have forced to allow
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illegal transition sequences. In tPBC, the increasing timers are associated with the overlines and underlines
of multiactions and suggest the ages of the corresponding markings in the respective boxes. In dtsdPBC, the
decreasing (up to the value 1) timers are associated with the enabled waiting multiactions and specify their
remaining times to execute (RTEs), like the timers of the enabled deterministic transitions in DTDSPNs from
[91, 92]. Besides such a PNs intuition, making difference between markings (overlines and underlines) and timers
of (waiting) multiactions offers us more syntactical flexibility to express their progress in time. The decreasing
timers allow us to avoid problems with infinitely growing timer values in the deadlocked and final (absorbing)
states. Each decreasing timer should start with a particular value that cannot be suggested by the current
marking, but such an initial value is the delay of the waiting multiaction the timer is associated with.

It is known that the attempts to combine time restrictions, parallelism and compositionality usually lead
to many technical difficulties, so that the formal models possessing all the mentioned properties have almost
not been proposed in the literature, in spite of the investigations in the related areas (for example, discrete
time, generally distributed delays, non-interleaving functional semantics in the SPA framework). To solve the
mentioned problem, some new (not existing in dtsiPBC) notions and constructions have been introduced in dts-
dPBC, such as deterministic multiactions, decreasing timers of waiting multiactions, enabledness of activities,
saturation with the timer values, timers discarding and decreasing operations, extended Can and Now func-
tions, s-tangible and w-tangible dynamic expressions and states, inaction and action rules respecting waiting
multiactions, empty moves, reachability of dynamic expressions, transition systems with 3 types of states and 4
types of transitions (unlike 2 types of states and 3 types of transitions in dtsiPBC). Thus, the main advantages
of dtsdPBC are the flexible multiaction labels, deterministic multiactions, powerful operations, as well as a step
operational and a Petri net denotational semantics allowing for concurrent execution of activities (transitions),
together with an ability for analytical and parametric performance evaluation.

Future work could consist in constructing a congruence relation for dtsdPBC, i.e. the equivalence that
withstands application of all operations of the algebra. The first possible candidate is a stronger version of
↔ss, defined via transition systems equipped with two extra transitions skip and redo, like those from sPBC
[54]. Moreover, recursion operation could be added to dtsdPBC to increase further specification power of the
algebra. It would be very interesting to implement the class of DTSDPNs, to be able to specify them and then
model their behaviour by constructing the reahability graphs. Note that even DTSPNs of M.K. Molloy [67, 68]
have never been implemented. Mostly interleaving and continuous-time variants of stochastic or timed PNs
have been implemented so far.
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[58] Markovski J., Sokolova A., Trčka N., de Vink E.P. Compositionality for Markov reward chains
with fast and silent transitions. Performance Evaluation 66, p. 435–452, 2009.

[59] Markovski J., de Vink E.P. Extending timed process algebra with discrete stochastic time. Proceedings
of 12th International Conference on Algebraic Methodology and Software Technology - 08 (AMAST’08),
Urbana, IL, USA, Lecture Notes of Computer Science 5140, p. 268–283, 2008.

[60] Markovski J., de Vink E.P. Performance evaluation of distributed systems based on a discrete real- and
stochastic-time process algebra. Fundamenta Informaticae 95(1), p. 157–186, IOS Press, Amsterdam, The
Netherlands, 2009.

[61] Marroqúın A.O., de Frutos E.D. TPBC: timed Petri box calculus. Technical Report, Departamento
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A Proofs

A.1 Proof of Proposition 6.2

Like it has been done for strong equivalence in Proposition 8.2.1 from [43], we shall prove the following fact
about step stochastic bisimulation. Let us have ∀j ∈ J Rj : G↔ssG

′ for some index set J . Then the transitive
closure of the union of all relations R = (∪j∈JRj)

+ is also an equivalence and R : G↔ssG
′.
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Since ∀j ∈ J Rj is an equivalence, by definition of R, we get that R is also an equivalence.
Let j ∈ J , then, by definition ofR, (s1, s2) ∈ Rj implies (s1, s2) ∈ R. Hence, ∀Hjk ∈ (DR(G)∪DR(G′))/Rj

∃H ∈ (DR(G) ∪DR(G′))/R Hjk ⊆ H. Moreover, ∃J ′ H = ∪k∈J ′Hjk.
We denote R(n) = (∪j∈JRj)

n. Let (s1, s2) ∈ R, then, by definition of R, ∃n > 0 (s1, s2) ∈ R(n). We shall
prove that R : G↔ssG

′ by induction on n.
It is clear that ∀j ∈ J Rj : G↔ssG

′ implies ∀j ∈ J ([G]≈, [G
′]≈) ∈ Rj and we have ([G]≈, [G

′]≈) ∈ R by
definition of R.

It remains to prove that (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R
∀A ∈ INL

fin PMA(s1,H) = PMA(s2,H).

• n = 1

In this case, (s1, s2) ∈ R implies ∃j ∈ J (s1, s2) ∈ Rj . Since Rj : G↔ssG
′, we get SJ(s1) = 0 ⇔

SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

PMA(s1,H) =
∑

k∈J ′

PMA(s1,Hjk) =
∑

k∈J ′

PMA(s2,Hjk) = PMA(s2,H).

• n→ n+ 1

Suppose that ∀m ≤ n (s1, s2) ∈ R(m) implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G)∪DR(G′))/R
∀A ∈ INL

fin PMA(s1,H) = PMA(s2,H).

Then (s1, s2) ∈ R(n + 1) implies ∃j ∈ J (s1, s2) ∈ Rj ◦ R(n), i.e. ∃s3 ∈ (DR(G) ∪ DR(G′)) such that
(s1, s3) ∈ Rj and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get SJ(s1) = 0 ⇔ SJ(s3) = 0 and PMA(s1,H) = PMA(s3,H). By
the induction hypothesis, we get SJ(s3) = 0 ⇔ SJ(s2) = 0 and PMA(s3,H) = PMA(s2,H). Thus,
SJ(s1) = 0 ⇔ SJ(s3) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL

fin

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition, Rss(G,G
′) is at least as large as the largest step stochastic bisimulation between G and G′. It

follows from the proved above that Rss(G,G
′) is an equivalence and Rss(G,G

′) : G↔ssG
′, hence, it is the

largest step stochastic bisimulation between G and G′. ⊓⊔

A.2 Proof of Theorem 6.1

At some points, the present proof for dtsdPBC goes along the lines from the respective proofs for PBC [17, 16],
tPBC [50] and sPBC [54].

Let N = Boxdtsd(E). We define a relation R = ({([G]≈, QG), (QG, [G]≈) | [G]≈ ∈ DR(E), (N,QG) =
Boxdtsd(G)})+, where + is the transitive closure operation. It is easy to see that R is equivalence, since by
construction it is symmetric, transitive and reflexive (just apply transitivity to each pair ([G]≈, QG), (QG, [G]≈)).
We shall demonstrate that R : TS(E)↔ssRG(Boxdtsd(E)).

Clearly, [E]≈ ∈ DR(E) and Boxdtsd(E) = Boxdtsd(E) = N = (N,QN ) = (N,QE). Hence, ([E]≈, QE) ∈ R.
It remains to check the step stochastic bisimulation transfer property. Let ([G]≈, QG) ∈ R. By Proposition

3.1, we can suppose that G ∈ SaOpRegDynExpr, i.e. all enabled waiting multiactions from G (even those not
overlined or underlined) have the consistent timer value superscripts, which is very important when composing
the subexpressions.

Then for a process state [G]≈ ∈ DR(E), the related net state QG = (MG, VG) ∈ RS(N) is consistent and
has the following properties. First, MG is the marking of the marked and clocked dtsd-box (N, (MG, VG)) =
Boxdtsd(G) (which is an LDTSDPN, since G ∈ SaOpRegDynExpr). Second, by construction of the timer
valuation functions VG and IG, for each waiting transition t ∈ TwN with ΛN(t) = ̺(α,♮θ

l
), if (α, ♮

θ
l ) ∈ WL(G)

then we have VG(t) = IG((α, ♮
θ
l )). Otherwise, if (α, ♮θl ) 6∈ WL(G) then either t is obtained from a relabeling

f of some transition v ∈ TN , and we have VG(t) = VH(v) for a subexpression H [f ] of G; or t is resulted from
synchronization on an action a of some transitions v, w ∈ TN and we have VG(t) = max{VH(v), VH (w)} for
a subexpression H sy a of G. In the both cases, VG(t) is completely defined by the timer valuation function
VH , applied to some transitions of the marked and clocked dtsd-box Boxdtsd(H). Then by induction of the
expression structure, we can finally prove that VG(t) is completely defined by IG, applied to some waiting
multiactions from WL(G). Note that any waiting multiaction affected by restriction in G has no corresponding
transition in Boxdtsd(G). Therefore, IG (hence, [G]≈) may contain even more information (namely, the timer
values of the restricted waiting multiactions) than needed to define VG. Thus, several process states (which
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differ just in the timer value superscripts of the restricted waiting multiactions) may be related to one net state,
as the example above this theorem demonstrates.

Let us prove by induction on the structure of dynamic expressions and corresponding dtsd-boxes that
Exec([G]≈) and Fire(QG) are isomorphic. This means that for every Υ ∈ Exec([G]≈) there exists U ∈
Fire(QG) such that U consists of the transitions corresponding to the activities from Υ and vice versa: (α, κ)ι ∈
Υ ⇔ tι ∈ U , where ΛN (tι) = ̺(α,κ). Thus, the corresponding activities and transitions have the same
probabilities (in case of stochastic multiactions and transitions), or delays and weights (in case of deterministic
multiactions and transitions), as well as the same multiaction labels and numberings. We can write U = U(Υ)
and Υ = Υ(U), to indicate such a correspondence.

Actually, each Υ and the corresponding U are completely defined by the sets of their numberings Num(Υ) =
{ι | (α, κ)ι ∈ Υ} = {ι | tι ∈ U} = Num(U), since each activity and transition have a unique numbering. More-
over, Exec([G]≈) and Fire(QG) are completely defined by the sets of their numberings Num(Exec([G]≈)) =
{Num(Υ) | Υ ∈ Exec([G]≈)} = {Num(U) | U ∈ Fire(QG)} = Num(Fire(QG)).

• If final(G) then G ≈ E, stang([G]≈) and Exec([G]≈) = Exec([E]≈) = {∅}. On the other hand,
Boxdtsd(G) = Boxdtsd(E) = N = (N,QN ) = (N,QE) and Fire(QG) = Fire(QE) = {∅} = Exec([G]≈).

• If G = (α, ♮θl )
δ
ι and θ ∈ IN≥2, l ∈ IR>0, δ ∈ {2, . . . , θ}, then stang([G]≈) and Exec([G]≈) = {∅}.

On the other hand, Boxdtsd(G) = (N(α,♮θ
l
)δι
, (•tι, (tι, δ))), where ΛN (tι) = ̺(α,♮θ

l
), and Fire(QG) =

Fire((•tι, (tι, δ))) = {∅} = Exec([G]≈).

• If G = (α, ρ)ι and ρ ∈ (0; 1) then stang([G]≈) and Exec([G]≈) = {∅, {(α, ρ)ι}}. On the other hand,
Boxdtsd(G) = (N(α,ρ)ι , (

•tι, (tι, ∅))), where ΛN(tι) = ̺(α,ρ), and Fire(QG) = Fire((•tι, (tι, ∅)))={∅, {tι}},
which is isomorphic to Exec([G]≈).

• If G = (α, ♮0l )ι and l ∈ IR>0 then vanish([G]≈) and Exec([G]≈) = {{(α, ♮0l )ι}}. On the other hand,
Boxdtsd(G) = (N(α,♮0

l
)ι , (

•tι, (tι, ∅))), where ΛN(tι) = ̺(α,♮0
l
), and Fire(QG) = Fire((•tι, (tι, ∅))) = {{tι}},

which is isomorphic to Exec([G]≈).

• If G = (α, ♮θl )
1
ι and θ ∈ IN≥1, l ∈ IR>0, then wtang([G]≈) and Exec([G]≈) = {{(α, ♮θl )ι}}. On the other

hand, Boxdtsd(G) = (N(α,♮θ
l
)1ι
, (•tι, (tι, 1))), where ΛN (tι) = ̺(α,♮θ

l
), and Fire(QG) = Fire((•tι, (tι, 1))) =

{{tι}}, which is isomorphic to Exec([G]≈).

• If G = H ;E, where H ∈ SaOpRegDynExpr, E ∈ RegStatExpr, then

Exec([H ;E]≈) =

{
Exec([H ]≈), ¬final(H);
Exec([E]≈) final(H).

On the other hand, Boxdtsd(G) = Boxdtsd(H ;E) = (Boxdtsd(⌊H⌋;E), QH;E), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), Boxdtsd(E) = NE = (NE , QNE ), we have

Fire(QH;E) =

{
Fire(QH), MH 6= N◦

H ;
Fire(QNE ), MH = N◦

H ;

which is isomorphic to Exec([H ;E]≈).

• If G = E;H , where E ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([E;H ]≈) = Exec([H ]≈).

On the other hand, Boxdtsd(G) = Boxdtsd(E;H) = (Boxdtsd(E; ⌊H⌋), QE;H), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QE;H) = Fire(QH);

which is isomorphic to Exec([E;H ]≈).

• If G = H []E, where H ∈ SaOpRegDynExpr, E ∈ RegStatExpr, then
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Exec([H []E]≈) =





Exec([H ]≈), ¬init(H)∨
(init(H) ∧ wtang([H ]≈) ∧ stang([E]≈))∨
(init(H) ∧ vanish([H ]≈) ∧ tang([E]≈));

Exec([E]≈), (init(H) ∧ stang([H ]≈) ∧ wtang([E]≈))∨
(init(H) ∧ tang([H ]≈) ∧ vanish([E]≈));

Exec([H ]≈) ∪ Exec([E]≈), (init(H) ∧ stang([H ]≈) ∧ stang([E]≈))∨
(init(H) ∧ wtang([H ]≈) ∧wtang([E]≈))∨
(init(H) ∧ vanish([H ]≈) ∧ vanish([E]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd(H []E) = (Boxdtsd(⌊H⌋[]E), QH[]E), and for Boxdtsd(H) =

(Boxdtsd(⌊H⌋), QH), Boxdtsd(E) = NE = (NE , QNE ), we have

Fire(QH[]E) =





Fire(QH), MH 6= ◦NH∨
(MH = ◦NH ∧ wtang(QH) ∧ stang(QNE))∨
(MH = ◦NH ∧ vanish(QH) ∧ tang(QNE));

Fire(QNE), (MH = ◦NH ∧ stang(QH) ∧wtang(QNE ))∨
(MH = ◦NH ∧ tang(QH) ∧ vanish(QNE));

Fire(QH) ∪ Fire(QNE ), (MH = ◦NH ∧ stang(QH) ∧ stang(QNE))∨
(MH = ◦NH ∧ wtang(QH) ∧ wtang(QNE ))∨
(MH = ◦NH ∧ vanish(QH) ∧ vanish(QNE ));

which is isomorphic to Exec([H []E]≈).

If G = E[]H , where E ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then the constructions are similar.

• If G = H‖Z, where H,Z ∈ SaOpRegDynExpr, then

Exec([H‖Z]≈) =





Exec([H ]≈), (wtang([H ]≈) ∧ stang([Z]≈))∨
(vanish([H ]≈) ∧ tang([Z]≈));

Exec([Z]≈), (stang([H ]≈) ∧ wtang([Z]≈))∨
(tang([H ]≈) ∧ vanish([Z]≈));

Exec([H ]≈)⊙ Exec([Z]≈), wtang([H ]≈) ∧ wtang([Z]≈);

Exec([H ]≈) ∪ Exec([Z]≈)∪
(Exec([H ]≈)⊙ Exec([Z]≈)), (stang([H ]≈) ∧ stang([Z]≈))∨

(vanish([H ]≈) ∧ vanish([Z]≈)),

where Exec([H ]≈)⊙ Exec([Z]≈) = {Υ+Φ | Υ ∈ Exec([H ]≈), Φ ∈ Exec([Z]≈)}.

On the other hand, Boxdtsd(G) = Boxdtsd(H‖Z) = (Boxdtsd(⌊H⌋‖Z), QH‖Z), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), Boxdtsd(Z) = (Boxdtsd(⌊Z⌋), QZ), we have

Fire(QH‖Z) =





Fire(QH), (wtang(QH) ∧ stang(QZ)) ∨ (vanish(QH) ∧ tang(QZ));

Fire(QZ), (stang(QH) ∧ wtang(QZ)) ∨ (tang(QH) ∧ vanish(QZ));

Fire(QH)⊙ Fire(QZ), wtang(QH) ∧ wtang(QZ);

Fire(QH) ∪ Fire(QZ)∪
(Fire(QH)⊙ Fire(QZ)), (stang(QH) ∧ stang(QZ))∨(vanish(QH) ∧ vanish(QZ)),

where Fire(QH) ⊙ Fire(QZ) = {U ∪ T | U ∈ Fire(QH), T ∈ Fire(QZ)}; which is isomorphic to
Exec([H‖Z]≈).

• If G = H [f ], where H ∈ SaOpRegDynExpr, then

Exec([H [f ]]≈) = {f(Υ) | Υ ∈ Exec([H ]≈)}.

On the other hand, Boxdtsd(G) = Boxdtsd(H [f ]) = (Boxdtsd(⌊H⌋[f ]), QH[f ]), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QH[f ]) = {f(U) | U ∈ Fire(QH)},

where f(U) = {tι ∈ U | ΛH(tι) = ̺(α,κ), ΛH[f ](tι) = ̺(f(α),κ)}; which is isomorphic to Exec([H [f ]]≈).
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• If G = H rs a, where H ∈ SaOpRegDynExpr, then

Exec([H rs a]≈) = {Υ−Υa | Υ ∈ Exec([H ]≈)},

where Υa = {(α, κ)ι ∈ Υ | (a ∈ α) ∨ (â ∈ α)}, a ∈ Act.

On the other hand, Boxdtsd(G) = Boxdtsd(H rs a) = (Boxdtsd(⌊H⌋ rs a), QH rs a), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QH rs a) = {U \ Ua | U ∈ Fire(QH)},

where Ua = {tι ∈ U | ΛH(tι) = ̺(α,κ), (a ∈ α)∨(â ∈ α)}, a ∈ Act; which is isomorphic to Exec([H rs a]≈).

• If G = H sy a, where H ∈ SaOpRegDynExpr, then

Exec([H sy a]≈) =





Exec([H ]≈) ∪ {Υ+ {(α⊕a β, ρ · χ)(ι1)(ι2)} |
Υ+ {(α, ρ)ι1}+ {(β, χ)ι2} ∈ Exec([H ]≈), a ∈ α, â ∈ β}, stang([H ]≈);

Exec([H ]≈) ∪ {Υ+ {(α⊕a β, ♮θl+m)(ι1)(ι2)} |
Υ+ {(α, ♮θl )ι1}+ {(β, ♮θm)ι2} ∈ Exec([H ]≈), a ∈ α, â ∈ β}, wtang([H ]≈);

Exec([H ]≈) ∪ {Υ+ {(α⊕a β, ♮
0
l+m)(ι1)(ι2)} |

Υ+ {(α, ♮0l )ι1}+ {(β, ♮0m)ι2} ∈ Exec([H ]≈), a ∈ α, â ∈ β}, vanish([H ]≈).

On the other hand, Boxdtsd(G) = Boxdtsd(H sy a) = (Boxdtsd(⌊H⌋ sy a), QH sy a), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QH sy a) =





Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2)) = ̺(α⊕aβ,ρ·χ),
U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1) = ̺(α,ρ), ΛH(wι2) = ̺(β,χ),
a ∈ α, â ∈ β}, stang(QH);

Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2)) = ̺(α⊕aβ,♮θl+m),

U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1) = ̺(α,♮θ
l
), ΛH(wι2) = ̺(β,♮θm),

a ∈ α, â ∈ β}, wtang(QH);

Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2)) = ̺(α⊕aβ,♮0l+m),

U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1) = ̺(α,♮0
l
), ΛH(wι2) = ̺(β,♮0m),

a ∈ α, â ∈ β}, vanish(QH);

which is isomorphic to Exec([H sy a]≈).

• If G = [H ∗ E ∗ F ], where H ∈ SaOpRegDynExpr, E, F ∈ RegStatExpr, then

Exec([[H ∗ E ∗ F ]]≈) =





Exec([H ]≈), ¬final(H);

Exec([E]≈), (final(H) ∧ wtang([E]≈) ∧ stang([F ]≈))∨
(final(H) ∧ vanish([E]≈) ∧ tang([F ]≈));

Exec([F ]≈), (final(H) ∧ stang([E]≈) ∧wtang([F ]≈))∨
(final(H) ∧ tang([E]≈) ∧ vanish([F ]≈));

Exec([E]≈) ∪ Exec([F ]≈), (final(H) ∧ stang([E]≈) ∧ stang([F ]≈))∨
(final(H) ∧ wtang([E]≈) ∧ wtang([F ]≈))∨
(final(H) ∧ vanish([E]≈) ∧ vanish([F ]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd([H ∗ E ∗ F ]) = (Boxdtsd(⌊H⌋ ∗ E ∗ F ), Q[H∗E∗F ]), and for

Boxdtsd(H) = (Boxdtsd(⌊H⌋), QH), Boxdtsd(E) = NE = (NE , QNE ), Boxdtsd(F ) = NF = (NF , QNF ),
we have
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Fire(Q[H∗E∗F ]) =





Fire(QH), MH 6= N◦
H ;

Fire(QNE ), (MH = N◦
H ∧ wtang(QNE ) ∧ stang(QNF ))∨

(MH = N◦
H ∧ vanish(QNE) ∧ tang(QNF ));

Fire(QNF ), (MH = N◦
H ∧ stang(QNE) ∧ wtang(QNF ))∨

(MH = N◦
H ∧ tang(QNE) ∧ vanish(QNF ));

Fire(QNE ) ∪ Fire(QNF ), (MH = N◦
H ∧ stang(QNE) ∧ stang(QNF ))∨

(MH = N◦
H ∧ wtang(QNE ) ∧wtang(QNF ))∨

(MH = N◦
H ∧ vanish(QNE) ∧ vanish(QNF ));

which is isomorphic to Exec([[H ∗ E ∗ F ]]≈).

• If G = [E ∗H ∗ F ], where E,F ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([[E∗H∗F ]]≈)=





Exec([H ]≈), (¬init(H) ∧ ¬final(H))∨
((init(H)∨final(H))∧wtang([H ]≈)∧stang([F ]≈))∨
((init(H)∨final(H))∧vanish([H ]≈)∧tang([F ]≈));

Exec([F ]≈), ((init(H)∨final(H))∧stang([H ]≈)∧wtang([F ]≈))∨
((init(H)∨final(H))∧tang([H ]≈)∧vanish([F ]≈));

Exec([H ]≈)∪Exec([F ]≈), ((init(H)∨final(H))∧stang([H ]≈)∧stang([F ]≈))∨
((init(H)∨final(H))∧wtang([H ]≈)∧wtang([F ]≈))∨
((init(H)∨final(H))∧vanish([H ]≈)∧vanish([F ]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd([E ∗ H ∗ F ]) = (Boxdtsd(E ∗ ⌊H⌋ ∗ F ), Q[E∗H∗F ]), and for

Boxdtsd(H) = (Boxdtsd(⌊H⌋), QH), Boxdtsd(F ) = NF = (NF , QNF ), we have

Fire(Q[E∗H∗F ])=





Fire(QH), (MH 6= ◦NH ∧MH 6= N◦
H)∨

((MH = ◦NH ∨MH = N◦
H)∧wtang(QH)∧stang(QNF ))∨

((MH = ◦NH ∨MH = N◦
H) ∧ vanish(QH) ∧ tang(QNF ));

Fire(QNF ), ((MH = ◦NH ∨MH = N◦
H)∧stang(QH)∧wtang(QNF ))∨

((MH = ◦NH ∨MH = N◦
H) ∧ tang(QH) ∧ vanish(QNF ));

Fire(QH)∪Fire(QNF ), ((MH = ◦NH∨MH = N◦
H) ∧ stang(QH) ∧ stang(QNF ))∨

((MH = ◦NH∨MH = N◦
H)∧wtang(QH)∧wtang(QNF ))∨

((MH = ◦NH∨MH = N◦
H)∧vanish(QH)∧vanish(QNF ));

which is isomorphic to Exec([[E ∗H ∗ F ]]≈).

• If G = [E ∗ F ∗H ], where E,F ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([[E ∗ F ∗H ]]≈) =





Exec([F ]≈), (wtang([F ]≈) ∧ init(H) ∧ stang([H ]≈))∨
(vanish([F ]≈) ∧ init(H) ∧ tang([H ]≈));

Exec([H ]≈), ¬init(H)∨
(stang([F ]≈) ∧ init(H) ∧ wtang([H ]≈))∨
(tang([F ]≈) ∧ init(H) ∧ vanish([H ]≈));

Exec([F ]≈) ∪ Exec([H ]≈), (stang([F ]≈) ∧ init(H) ∧ stang([H ]≈))∨
(wtang([F ]≈) ∧ init(H) ∧wtang([H ]≈))∨
(vanish([F ]≈) ∧ init(H) ∧ vanish([H ]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd([E ∗ F ∗ H ]) = (Boxdtsd(E ∗ F ∗ ⌊H⌋), Q[E∗F∗H]), and for

Boxdtsd(F ) = NF = (NF , QNF ), Boxdtsd(H) = (Boxdtsd(⌊H⌋), QH), we have
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Fire(Q[E∗F∗H]) =





Fire(QNF ), (wtang(QNF ) ∧MH = ◦NH ∧ stang(QH))∨
(vanish(QNF ) ∧MH = ◦NH ∧ tang(QH));

Fire(QH), MH 6= ◦NH∨
(stang(QNF ) ∧MH = ◦NH ∧ wtang(QH))∨
(tang(QNF ) ∧MH = ◦NH ∧ vanish(QH));

Fire(QNF ) ∪ Fire(QH), (stang(QNF ) ∧MH = ◦NH ∧ stang(QH))∨
(wtang(QNF ) ∧MH = ◦NH ∧ wtang(QH))∨
(vanish(QNF ) ∧MH = ◦NH ∧ vanish(QH));

which is isomorphic to Exec([[E ∗ F ∗H ]]≈).

Thus, we have proved that Exec([G]≈) and Fire(QG) are isomorphic. Note that the probability functions
PF (Υ, [G]≈) and PT (Υ, [G]≈) depend only on the structure of Exec([G]≈), as well on as the probabilities of
stochastic multiactions and weights of deterministic multiactions from its elements. Analogously, PF (U,QG)
and PT (U,QG) depend only on the structure of Fire(QG), as well as the probabilities of stochastic transi-
tions and weights of deterministic transitions from its elements. Further, PF (Υ, [G]≈) and PT (Υ, [G]≈) are
respectively defined in the same way (using the same formulas and cases) as PF (U,QG) and PT (U,QG), for
each pair of the corresponding (multi)set of activities Υ and transition set U . Obviously, the isomorphism of
Exec([G]≈) and Fire(QG) guarantees coincidence of their structure as well as the mentioned probabilities and
weights. Hence, if U corresponds to Υ then PF (Υ, [G]≈) = PF (U,QG) and PT (Υ, [G]≈) = PT (U,QG).

We also have L(Υ) = L(U), where L(U) =
∑

{t∈U|ΛG(t)=̺(α,κ)}
α is the multiaction part of a set of transitions

U ⊆ TN . Thus, each transition [G]≈
Υ
→P s̃ in TS(E) has a corresponding one QG

U
→P Q̃ in RG(N) with

L(Υ) = L(U) and vice versa. Observe that the structure of the plain and operator dtsd-boxes in dtsdPBC
is similar to that of the plain and operator boxes in PBC. Hence, like in PBC [17, 16], we can prove that

s̃ = [G̃]≈ and Q̃ = QG̃ = (MG̃, VG̃) with (N,QG̃) = Boxdtsd(G̃) for the dynamic expression G̃ such that

G
Υ
→ G̃. The only fine point here is to check that IG̃ and VG̃ are respectively obtained from IG and VG just

by exploring Ena([G̃]≈) and Ena(MG̃) (which are similar up to restricted activities, with a care of relabeling
and synchronization, as based on the corresponding overlinings and markings), as well as by checking whether
vanish([G]≈) and vanish(QG) (which are correlated, as defined via the isomorphic Exec([G]≈) and Fire(QG)).

Therefore, by construction of R, we get ([G̃]≈, QG̃) ∈ R.
The step stochastic bisimulation transfer property states that if ([G]≈, QG) ∈ R then (SJ([G]≈) = 0 ⇔

SJ(QG) = 0) and ∀H ∈ (DR(G) ∪RS(NG))/R ∀A ∈ INL
fin it holds [G]≈

A
→P H ⇔ QG

A
→P H.

The fact SJ([G]≈) = 0 ⇔ SJ(QG) = 0 follows from isomorphism of Exec([G]≈) and Fire(QG), since
SJ([G]≈) = 0 ⇔ vanish([G]≈) and SJ(QG) = 0 ⇔ vanish(QG).

Let H ∈ (DR(G)∪RS(NG))/R. We have PMA([G]≈,H) =
∑

{Υ|∃[G̃]≈∈H [G]≈
Υ
→[G̃]≈, L(Υ)=A}

PT (Υ, [G]≈) =∑n
i=1 PT (Υi, [G]≈). Then we take the corresponding sets of transitions U1, . . . , Un ⊆ TN , such that A =

L(Υi) = L(Ui) and PT (Υi, [G]≈) = PT (Ui, QG) (1 ≤ i ≤ n), hence, PMA([G]≈,H) =
∑n
i=1 PT (Υi, [G]≈) =∑n

i=1 PT (Ui, QG) ≤
∑

{U|∃Q
G̃
∈H QG

U
→Q

G̃
, L(U)=A}

PT (U,QG) = PMA(QG,H). By symmetry of the correspon-

dence between the (multi)sets of activities and sets of transitions, we get PMA([G]≈,H) ≥ PMA(QG,H), hence,

PMA([G]≈,H) = PMA(QG,H). Thus, we conclude that [G]≈
A
→P H ⇔ QG

A
→P H. ⊓⊔

A.3 Proof of Proposition 8.1

By Proposition 6.1, (DR(G) ∪DR(G′))/R = ((DRT (G) ∪DRT (G′))/R) ⊎ ((DRV (G) ∪DRV (G′))/R). Hence,
∀H ∈ (DR(G)∪DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G)∪DRT (G′))/R, or all of them
are vanishing, when H ∈ (DRV (G) ∪DRV (G

′))/R.
By definition of the steady-state PMFs for SMCs, ∀s ∈ DRV (G) ϕ(s) = 0 and ∀s′ ∈ DRV (G

′) ϕ′(s′) = 0.
Thus, ∀H ∈ (DRV (G)∪DRV (G′))/R

∑
s∈H∩DR(G) ϕ(s) =

∑
s∈H∩DRV (G) ϕ(s) = 0 =

∑
s′∈H∩DRV (G′) ϕ

′(s′) =∑
s′∈H∩DR(G′) ϕ

′(s′).

By Proposition 5.1, ∀s ∈ DRT (G) ϕ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃)

and ∀s′ ∈ DRT (G
′) ϕ′(s′) = ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′) ,

where ψ and ψ′ are the steady-state PMFs for DTMC(G) and DTMC(G′), respectively. Thus, ∀H, H̃ ∈

(DRT (G) ∪DRT (G′))/R
∑

s∈H∩DR(G) ϕ(s) =
∑
s∈H∩DRT (G) ϕ(s) =

∑
s∈H∩DRT (G)

(
ψ(s)∑

s̃∈DRT (G) ψ(s̃)

)
=

∑
s∈H∩DRT (G) ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=
∑
s∈H∩DRT (G) ψ(s)∑

H̃

∑
s̃∈H̃∩DRT (G)

ψ(s̃) and
∑

s′∈H∩DR(G′) ϕ
′(s′) =

∑
s′∈H∩DRT (G′) ϕ

′(s′) =

∑
s′∈H∩DRT (G′)

(
ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′)

)
=

∑
s′∈H∩DRT (G′) ψ

′(s′)∑
s̃′∈DRT (G′) ψ

′(s̃′) =
∑
s′∈H∩DRT (G′) ψ

′(s′)∑
H̃

∑
s̃′∈H̃∩DRT (G′) ψ

′(s̃′) .
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It remains to prove that ∀H ∈ (DRT (G)∪DRT (G
′))/R

∑
s∈H∩DRT (G) ψ(s) =

∑
s′∈H∩DRT (G′) ψ

′(s′). Since

(DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G′))/R) ⊎ ((DRV (G) ∪ DRV (G′))/R), the previous equality is a
consequence of the following one: ∀H ∈ (DR(G) ∪DR(G′))/R

∑
s∈H∩DR(G) ψ(s) =

∑
s′∈H∩DR(G′) ψ

′(s′).
Standard proof continuation.

It is sufficient to prove the previous statement for transient PMFs only, since ψ = limk→∞ ψ[k] and ψ′ =
limk→∞ ψ′[k]. We proceed by induction on k.

• k = 0

Note that the only nonzero values of the initial PMFs of DTMC(G) and DTMC(G′) are ψ[0]([G]≈) and
ψ[0]([G′]≈). Let H0 be the equivalence class containing [G]≈ and [G′]≈. Then

∑
s∈H0∩DR(G) ψ[0](s) =

ψ[0]([G]≈) = 1 = ψ′[0]([G′]≈) =
∑

s′∈H0∩DR(G′) ψ
′[0](s′).

As for other equivalence classes, ∀H ∈ ((DR(G) ∪DR(G′))/R) \ H0 we have∑
s∈H∩DR(G) ψ[0](s) = 0 =

∑
s′∈H∩DR(G′) ψ

′[0](s′).

• k → k + 1

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT (Υ, s1) =
∑
A∈INL

fin

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =
∑
A∈INL

fin
PMA(s1, H̃) =

∑
A∈INL

fin
PMA(s2, H̃) =

∑
A∈INL

fin

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we

have the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃).
Note that transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈

DR(G) PM(s, H̃) = PM(s, H̃ ∩DR(G)). The same is true for DR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ[k](s) =
∑
s′∈H∩DR(G′) ψ

′[k](s′). Further,∑
s̃∈H̃∩DR(G) ψ[k + 1](s̃) =

∑
s̃∈H̃∩DR(G)

∑
s∈DR(G) ψ[k](s)PM(s, s̃) =∑

s∈DR(G)

∑
s̃∈H̃∩DR(G) ψ[k](s)PM(s, s̃) =

∑
s∈DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G)

∑
{Υ|s

Υ
→s̃}

PT (Υ, s) =∑
H

∑
s∈H∩DR(G) ψ[k](s)

∑
{Υ|∃s̃∈H̃∩DR(G) s

Υ
→s̃}

PT (Υ, s) =
∑

H

∑
s∈H∩DR(G) ψ[k](s)PM(s, H̃) =

∑
H

∑
s∈H∩DR(G) ψ[k](s)PM(H, H̃) =

∑
H PM(H, H̃)

∑
s∈H∩DR(G) ψ[k](s) =

∑
H PM(H, H̃)

∑
s′∈H∩DR(G′) ψ

′[k](s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)PM(H, H̃) =
∑

H

∑
s′∈H′∩DR(G′) ψ

′[k](s′)PM(s′, H̃) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

{Υ|∃s̃′∈H̃∩DR(G′) s′
Υ
→s̃′}

PT (Υ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′)

∑
{Υ|∃s̃′ s′

Υ
→s̃′}

PT (Υ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑
s′∈DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =
∑

s′∈DR(G′)

∑
s̃′∈H̃∩DR(G′) ψ

′[k](s′)PM(s′, s̃′) =∑
s̃′∈H̃∩DR(G′)

∑
s′∈DR(G′) ψ

′[k](s′)PM(s′, s̃′) =
∑
s̃′∈H̃∩DR(G′) ψ

′[k + 1](s̃′). ⊓⊔

Alternative proof continuation.
Thus, we should now prove that ∀H ∈ (DR(G) ∪DR(G′))/R

∑
{i|si∈H∩DR(G)} ψi =

∑
{j|s′j∈H∩DR(G′)} ψ

′
j .

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is a solution of the linear equation system

{
ψP = ψ
ψ1T = 1

.

Then, for all i (1 ≤ i ≤ n), we have

{ ∑n
j=1 Pjiψj = ψi∑n
j=1 ψj = 1

.

By definition of Pij (1 ≤ i, j ≤ n) we have

{ ∑n
j=1 PM(sj , si)ψj = ψi∑n
j=1 ψj = 1

.

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT (Υ, s1) =
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∑
A∈INL

fin

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =
∑

A∈INL
fin

PMA(s1, H̃) =
∑

A∈INL
fin

PMA(s2, H̃) =
∑

A∈INL
fin

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we have

the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃). Note that

transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈ DR(G) PM(s, H̃) =

PM(s, H̃ ∩DR(G)). The same is true for DR(G′).
Let H ∈ (DR(G)∪DR(G′))/R. We sum the left and right sides of the first equation from the system above

for all i such that si ∈ H ∩DR(G). The resulting equation is

∑

{i|si∈H∩DR(G)}

n∑

j=1

PM(sj, si)ψj =
∑

{i|si∈H∩DR(G)}

ψi.

Let us denote the aggregate steady-state PMF for DTMC(G) by ψH∩DR(G) =
∑

{i|si∈H∩DR(G)} ψi. Then,
for the left-hand side of the equation above, we get∑

{i|si∈H∩DR(G)}

∑n
j=1 PM(sj, si)ψj =

∑n
j=1 ψj

∑
{i|si∈H∩DR(G)} PM(sj, si) =

∑n
j=1 PM(sj ,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(sj ,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(H̃,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)

∑
{j|sj∈H̃∩DR(G)} ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψH̃∩DR(G).

For the left-hand side of the second equation from the system above, we have∑n
j=1 ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G).

Thus, the aggregate linear equation system for DTMC(G) is

{ ∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψH̃∩DR(G) = ψH∩DR(G)∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G) = 1
.

Let us denote the aggregate steady-state PMFs for DTMC(G′) by ψ′
H∩DR(G′) =

∑
{j|s′j∈H∩DR(G′)} ψ

′
j .

Then, in a similar way, the aggregate linear equation system for DTMC(G′) is

{ ∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψ′
H̃∩DR(G′)

= ψ′
H∩DR(G′)∑

H̃∈(DR(G)∪DR(G′))/R
ψ′
H̃∩DR(G′)

= 1
.

Let (DR(G) ∪DR(G′))/R = {H1, . . . ,Hl}. Then the aggregate steady-state PMFs ψHk∩DR(G) and
ψ′
Hk∩DR(G′) (1 ≤ k ≤ l) satisfy the same aggregate system of l + 1 linear equations with l independent equa-

tions and l unknowns. The aggregate linear equation system has a unique solution, when a single aggregate
steady-state PMF exists. This is the case here, since in Section 5 we have demonstrated that DTMC(G)
has a single steady state iff SMC(G) has, and aggregation preserves this property [25]. Hence, ψHk∩DR(G) =
ψ′
Hk∩DR(G′) (1 ≤ k ≤ l). ⊓⊔

A.4 Proof of Theorem 8.1

Let H ∈ (DR(G) ∪ DR(G′))/R and s, s̄ ∈ H. We have ∀H̃ ∈ (DR(G) ∪ DR(G′))/R ∀A ∈ INL
fin s

A
→P H̃ ⇔

s̄
A
→P H̃. The previous equality is valid for all s, s̄ ∈ H, hence, we can rewrite it as H

A
→P H̃ and denote

PMA(H, H̃) = PMA(s, H̃) = PMA(s̄, H̃). Note that transitions from the states of DR(G) always lead to those

from the same set, hence, ∀s ∈ DR(G) PMA(s, H̃) = PMA(s, H̃ ∩DR(G)). The same is true for DR(G′).

Let Σ = A1 · · ·An be a derived step trace of G and G′. Then ∃H0, . . . ,Hn ∈ (DR(G)∪DR(G′))/R H0
A1→P1

H1
A2→P2 · · ·

An→Pn Hn. Now we intend to prove that the sum of probabilities of all the paths starting in every
s0 ∈ H0 and going through the states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn:

∑

{Υ1,...,Υn|s0
Υ1
→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

PT (Υi, si−1) =
n∏

i=1

PMAi(Hi−1,Hi).

We prove this equality by induction on the derived step trace length n.

• n = 1
∑

{Υ1|s0
Υ1→s1, L(Υ1)=A1, s1∈H1}

PT (Υ1, s0) = PMA1(s0,H1) = PMA1(H0,H1).
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• n→ n+ 1
∑

{Υ1,...,Υn,Υn+1|s0
Υ1→···

Υn→sn
Υn+1
→ sn+1, L(Υi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT (Υi, si−1) =

∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∑
{Υn+1|sn

Υn+1
→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}∏n

i=1 PT (Υi, si−1)PT (Υn+1, sn) =∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}[∏n

i=1 PT (Υi, si−1)
∑

{Υn+1|sn
Υn+1
→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT (Υn+1, sn)

]
=

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1(sn,Hn+1) =

∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1(Hn,Hn+1) =

PMAn+1(Hn,Hn+1)
∑

{Υ1,...,Υn|s0
Υ1→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =

PMAn+1(Hn,Hn+1)
∏n
i=1 PMAi(Hi−1,Hi) =

∏n+1
i=1 PMAi(Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have
PT (A1 · · ·An, s0) =

∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =∑

H1,...,Hn

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =

∑
H1,...,Hn

∏n
i=1 PMAi(Hi−1,Hi) =∑

H1,...,Hn

∑
{Υ1,...,Υn|s̄0

Υ1→···
Υn→ s̄n, L(Υi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) =

∑
{Υ1,...,Υn|s̄0

Υ1
→···

Υn→ s̄n, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) = PT (A1 · · ·An, s̄0).

Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote PT (A1 · · ·An,H0) =
PT (A1 · · ·An, s0) = PT (A1 · · ·An, s̄0).

By Proposition 8.1,
∑
s∈H∩DR(G) ϕ(s) =

∑
s′∈H∩DR(G′) ϕ

′(s′). Now we can complete the proof:∑
s∈H∩DR(G) ϕ(s)PT (Σ, s) =

∑
s∈H∩DR(G) ϕ(s)PT (Σ,H) = PT (Σ,H)

∑
s∈H∩DR(G) ϕ(s) =

PT (Σ,H)
∑
s′∈H∩DR(G′) ϕ

′(s′) =
∑
s′∈H∩DR(G′) ϕ

′(s′)PT (Σ,H) =
∑

s′∈H∩DR(G′) ϕ
′(s′)PT (Σ, s′). ⊓⊔

A.5 Proof of Proposition 8.2

Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, (DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G
′))/R) ⊎ ((DRV (G) ∪ DRV (G

′))/R).
Hence, ∀H ∈ (DR(G) ∪DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G) ∪DRT (G

′))/R,
or all of them are vanishing, when H ∈ (DRV (G) ∪DRV (G′))/R.

2. Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT (Υ, s1) =
∑
A∈INL

fin

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =
∑
A∈INL

fin
PMA(s1, H̃) =

∑
A∈INL

fin
PMA(s2, H̃) =

∑
A∈INL

fin

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we

have the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃).
Note that transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈

DR(G) PM(s, H̃) = PM(s, H̃ ∩DR(G)). The same is true for DR(G′). Hence, for all s ∈ H ∩DR(G),

we obtain PM(H, H̃) = PM(s, H̃) = PM(s, H̃ ∩DR(G)) = PM(H ∩DR(G), H̃ ∩DR(G)). The same is

true for DR(G′). Finally, PM(H∩DR(G), H̃ ∩DR(G)) = PM(H, H̃) = PM(H∩DR(G′), H̃ ∩DR(G′)).

Let us now prove the proposition statement for the sojourn time averages.

• Let H ∈ (DRV (G) ∪DRV (G′))/R.

Then we have H∩DR(G) = H∩DRV (G) ∈ DRV (G)/R and H∩DR(G′) = H∩DRV (G′) ∈ DRV (G
′)/R.

By definition of the average sojourn time in an equivalence class of states, we get
SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G))2(H ∩DRV (G)) = 0 = SJR∩(DR(G′))2(H ∩DRV (G

′)) =
SJR∩(DR(G′))2(H ∩DR(G′)).

• Let H ∈ (DRT (G) ∪DRT (G′))/R.

Then we have H∩DR(G) = H∩DRT (G) ∈ DRT (G)/R and H∩DR(G′) = H∩DRT (G′) ∈ DRT (G
′)/R.

By definition of the average sojourn time in an equivalence class of states, we get
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SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G))2(H ∩DRT (G)) =
1

1−PM(H∩DRT (G),H∩DRT (G)) =
1

1−PM(H∩DR(G),H∩DR(G)) =
1

1−PM(H,H) =
1

1−PM(H∩DR(G′),H∩DR(G′)) =
1

1−PM(H∩DRT (G′),H∩DRT (G′)) =

SJR∩(DR(G′))2(H ∩DRT (G′)) = SJR∩(DR(G′))2(H ∩DR(G′)).

Thus, ∀H ∈ (DR(G) ∪DR(G′))/R we have SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)).
The proposition statement for the sojourn time variances is proved similarly to that for the averages. ⊓⊔
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