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Abstract

We propose dtsdPBC, an extension with deterministically timed multiactions of discrete time stochastic
and immediate Petri box calculus (dtsiPBC), previously presented by I.V. Tarasyuk, H. Macià and V.
Valero. In dtsdPBC, non-negative integers specify deterministic multiactions with fixed (including zero)
time delays. The step operational semantics is constructed via labeled probabilistic transition systems. The
Petri net denotational semantics is defined via dtsd-boxes, a subclass of labeled discrete time stochastic Petri
nets with deterministic transitions. We also define step stochastic bisimulation equivalence of the algebraic
expressions, used to compare the qualitative and quantitative behaviour of the specified processes. The
consistency of the operational and denotational semantics of dtsdPBC up to that equivalence is established.

In order to evaluate performance in dtsdPBC, the underlying semi-Markov chains and (reduced) discrete
time Markov chains of the process-algebraic expressions are analyzed. We explain how step stochastic bisim-
ulation equivalence of the expressions can be used for quotienting their transition systems and corresponding
Markov chains, as well as to compare the stationary behaviour and residence time properties. We prove that
the equivalence guarantees coincidence of the functional and performance characteristics and therefore can
be used to simplify performance analysis of the algebraic processes. In a case study, a method of modeling,
performance evaluation and behaviour reduction for concurrent systems with discrete fixed and stochastic
delays is applied to the generalized shared memory system with maintenance. We also determine the main
advantages of dtsdPBC by comparing it with other well-known or similar SPAs.

Keywords: stochastic process algebra, stochastic Petri net, Petri box calculus, discrete time, stochastic
multiaction, deterministic multiaction, transition system, operational semantics, stochastic transition, de-
terministic transition, dtsd-box, denotational semantics, Markov chain, performance evaluation, reduction,
stochastic bisimulation, quotient, shared memory system.

Contents

1 Introduction 2
1.1 Petri box calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Time extensions of Petri box calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Stochastic extensions of Petri box calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Syntax 8
2.1 Activities and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Process expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Operational semantics 11
3.1 Inaction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Action and empty move rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Examples of transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



4 Denotational semantics 34
4.1 Labeled DTSDPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Algebra of dtsd-boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Examples of dtsd-boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Performance evaluation 51
5.1 Analysis of the underlying SMC (embedding) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Analysis of the DTMC (abstraction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Analysis of the reduced DTMC (elimination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Stochastic equivalences 66
6.1 Step stochastic bisimulation equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Interrelations of the stochastic equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Reduction modulo equivalences 70
7.1 Quotients of the transition systems and Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Interrelations of the standard and quotient behavioural structures . . . . . . . . . . . . . . . . . 77

8 Stationary behaviour 81
8.1 Steady state, residence time and equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Preservation of performance and simplification of its analysis . . . . . . . . . . . . . . . . . . . . 84

9 Generalized shared memory system with maintenance 85
9.1 The concrete system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.2 The abstract system and its reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10 Related work 105
10.1 Continuous time and interleaving semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 Continuous time and non-interleaving semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.3 Discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11 Discussion 108
11.1 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2 Concurrency interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.3 Application area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.4 Advantages of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

12 Conclusion 111

A Proofs 121
A.1 Proof of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Proof of Proposition 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.4 Proof of Proposition 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.5 Proof of Proposition 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.6 Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.7 Proof of Proposition 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

1 Introduction

Algebraic process calculi, like CSP [73], ACP [12] and CCS [107] are well-known formal models for specification
of computing systems and analysis of their behaviour. In such process algebras (PAs), systems and processes are
specified by formulas, and verification of their properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. In recent decades, stochastic extensions of PAs were proposed, such as MTIPP [70],
PEPA [72] and EMPA [22]. Unlike standard PAs, stochastic process algebras (SPAs) do not just specify actions
which can occur (qualitative features), but they associate with the actions the distribution parameters of their
random time delays (quantitative characteristics).
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1.1 Petri box calculus

PAs specify concurrent systems in a compositional way via an expressive formal syntax. On the other hand,
Petri nets (PNs) provide a graphical representation of such systems and capture explicit asynchrony in their
behaviour. To combine the advantages of both models, a semantics of algebraic formulas via PNs was defined.

Petri box calculus (PBC) [25, 27, 26] is a flexible and expressive process algebra developed as a tool for
specification of the PNs structure and their interrelations. Its goal was also to propose a compositional semantics
for high level constructs of concurrent programming languages in terms of elementary PNs. Formulas of PBC
are combined not from single (visible or invisible) actions and variables, like in CCS, but from multisets of
elementary actions and their conjugates, called multiactions (basic formulas). The empty multiset of actions is
interpreted as the silent multiaction specifying some invisible activity. In contrast to CCS, synchronization is
separated from parallelism (concurrent constructs). Synchronization is a unary multi-way stepwise operation,
based on communication of actions and their conjugates. This extends the CCS approach with conjugate
matching labels. Synchronization in PBC is asynchronous, unlike that in Synchronous CCS (SCCS) [107].
Other operations are sequence and choice (sequential constructs). The calculus includes also restriction and
relabeling (abstraction constructs). To specify infinite processes, refinement, recursion and iteration operations
were added (hierarchical constructs). Thus, unlike CCS, PBC has an additional iteration operation to specify
infinite behaviour when the semantic interpretation in finite PNs is possible. PBC has a step operational
semantics in terms of labeled transition systems, based on the rules of structural operational semantics (SOS).
The operational semantics of PBC is of step type, since its SOS rules have transitions with (multi)sets of
activities, corresponding to simultaneous executions of activities (steps). A denotational semantics of PBC
was proposed via a subclass of PNs equipped with an interface and considered up to isomorphism, called Petri
boxes. For more detailed comparison of PBC with other process algebras and the reasoning about importance
of non-interleaving semantics see [25, 26].

The extensions of PBC with a deterministic, a nondeterministic or a stochastic model of time were presented.

1.2 Time extensions of Petri box calculus

To specify systems with time constraints, deterministic (fixed) or nondeterministic (interval) delays are used.
A time extension of PBC with a nondeterministic time model, called time Petri box calculus (tPBC), was

proposed in [83]. In tPBC, timing information is added by associating time intervals (the earliest and the
latest firing time) with instantaneous actions. tPBC has a step time operational semantics in terms of labeled
transition systems. Its denotational semantics was defined in terms of a subclass of labeled time Petri nets
(LtPNs), based on tPNs [106] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was defined in [100, 101], it
accommodates a deterministic model of time. In contrast to tPBC, multiactions of TPBC are not instantaneous,
but have time durations. Additionally, in TPBC there exist no “illegal” multiaction occurrences, unlike tPBC.
The complexity of “illegal” occurrences mechanism was one of the main intentions to construct TPBC though
this calculus appeared to be more complicated than tPBC. TPBC has a step timed operational semantics in
terms of labeled transition systems. The denotational semantics of TPBC was defined in terms of a subclass
of labeled Timed Petri nets (LTPNs), based on TPNs [119] and called Timed Petri boxes (T-boxes). tPBC
and TPBC differ in ways they capture time information, and they are not in competition but complement
each other.

The third time extension of PBC, called arc time Petri box calculus (atPBC), was constructed in [113, 114],
and it implements a nondeterministic time. In atPBC, multiactions are associated with time delay intervals.
atPBC possesses a step time operational semantics in terms of labeled transition systems. Its denotational
semantics was defined on a subclass of labeled arc time Petri nets (atPNs), based of those from [28, 65], where
time restrictions are associated with the arcs, called arc time Petri boxes (at-boxes).

tPBC, TPBC and atPBC, all adapt the discrete time approach, but TPBC has no immediate (multi)actions
(those with zero delays).

1.3 Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or nondeterministic delays often differs drastically from
that for the timeless systems, hence, the analysis results for untimed systems may be not valid for the time
ones. To solve this problem, stochastic delays are considered, which are the random variables with a (discrete
or continuous) probability distribution. If the random variables governing delays have an infinite support then
the corresponding SPA can exhibit all the same behaviour as its underlying untimed PA.

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was proposed in [93, 89]. In
sPBC, multiactions have stochastic delays that follow (negative) exponential distribution. Each multiaction
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is equipped with a rate that is a parameter of the corresponding exponential distribution. The instantaneous
execution of a stochastic multiaction is possible only after the corresponding stochastic time delay. The calculus
has an interleaving operational semantics defined via transition systems labeled with multiactions and their rates.
Its denotational semantics was defined in terms of a subclass of labeled continuous time stochastic PNs, based on
CTSPNs [102, 8] and called stochastic Petri boxes (s-boxes). In sPBC, performance of the processes is evaluated
by analyzing their underlying continuous time Markov chains (CTMCs). In [90], a number of new equivalence
relations were proposed for regular terms of sPBC to choose later a suitable candidate for a congruence.

sPBC was enriched with immediate multiactions having zero delays in [91, 92]. We call such an extension
generalized sPBC (gsPBC). An interleaving operational semantics of gsPBC was constructed via transition
systems labeled with stochastic or immediate multiactions together with their rates or probabilities. A deno-
tational semantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs, based on GSPNs
[102, 8, 9] and called generalized stochastic Petri boxes (gs-boxes). The performance analysis in gsPBC is based
on the semi-Markov chains (SMCs).

PBC has a step operational semantics, whereas sPBC has an interleaving one. In step semantics, parallel
executions of activities (steps) are permitted while in interleaving semantics, we can execute only single activities.
Hence, a stochastic extension of PBC with a step semantics was needed to keep the concurrency degree of
behavioural analysis at the same level as in PBC. As mentioned in [109, 110], in contrast to continuous time
approach (used in sPBC), discrete time approach allows for constructing models of common clock systems
and clocked devices. In such models, multiple transition firings (or executions of multiple activities) at time
moments (ticks of the central clock) are possible, resulting in a step semantics. Moreover, employment of
discrete stochastic time fills the gap between the models with deterministic (fixed) time delays and those with
continuous stochastic time delays. As argued in [1], arbitrary delay distributions are much easier to handle in a
discrete time domain. In [98, 99, 96], discrete stochastic time was preferred to enable simultaneous expiration
of multiple delays.

In [125, 126, 127, 128], we presented a discrete time stochastic extension dtsPBC of the algebra PBC. In
dtsPBC, the residence time in the process states is geometrically distributed. A step operational semantics of
dtsPBC was constructed via labeled probabilistic transition systems. Its denotational semantics was defined
in terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs [109, 110] and
called discrete time stochastic Petri boxes (dts-boxes). The performance evaluation in dtsPBC is accomplished
via the underlying discrete time Markov chains (DTMCs) of the algebraic processes. A variety of stochastic
equivalences were proposed to identify stochastic processes with similar behaviour which are differentiated by
the semantic equivalence. The interrelations of all the introduced equivalences were studied. Since dtsPBC has
a discrete time semantics and geometrically distributed sojourn time in the process states, unlike sPBC with
continuous time semantics and exponentially distributed delays, the calculi apply two different approaches to
the stochastic extension of PBC, in spite of some similarity of their syntax and semantics inherited from PBC.
The main advantage of dtsPBC is that concurrency is treated like in PBC having step semantics, whereas in
sPBC parallelism is simulated by interleaving, obliging one to collect the information on causal independence
of activities before constructing the semantics.

In [130, 131, 132, 133, 134], an enhanced calculus dtsiPBC was proposed as an extension with immediate
multiactions of dtsPBC. Immediate multiactions increase the specification capability: they can model logical
conditions, probabilistic branching, instantaneous probabilistic choices and activities whose durations are negli-
gible in comparison with those of others. They are also used to specify urgent activities and the ones that are not
relevant for performance evaluation. Thus, immediate multiactions can be considered as a kind of instantaneous
dynamic state adjustment and, in many cases, they result in a simpler and more clear system representation.
The step operational semantics of dtsiPBC was constructed with the use of labeled probabilistic transition
systems. Its denotational semantics was defined in terms of a subclass of labeled discrete time stochastic and
immediate PNs (LDTSIPNs), based on the extension of DTSPNs [109, 110] with transition labeling and imme-
diate transitions, called dtsi-boxes. The corresponding stochastic process, the underlying SMC, was constructed
and investigated, with the purpose of performance evaluation. In addition, the alternative solution methods
were developed, based on the underlying ordinary and reduced DTMCs.

1.4 Equivalence relations

A notion of equivalence is very important in theory of computing systems. Equivalences are applied both to
compare behaviour of systems and reduce their structure. There is a wide diversity of behavioural equivalences,
and their interrelations are well explored in the literature. The best-known and widely used one is bisimula-
tion. Typically, the mentioned equivalences take into account only functional (qualitative) but not performance
(quantitative) aspects. Additionally, the equivalences are usually interleaving ones, i.e. they interpret concur-
rency as sequential nondeterminism. Interleaving equivalences permit to imitate parallel execution of actions
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via all possible occurrence sequences (interleavings) of them. Step equivalences require instead simulating such
a parallel execution by simultaneous occurrence (step) of all the involved actions. To respect quantitative
features of behaviour, probabilistic equivalences have additional requirement on execution probabilities. Two
equivalent processes must be able to execute the same sequences of actions, and for every such sequence, its
execution probabilities within both processes should coincide. In case of probabilistic bisimulation equivalence,
the states from which similar future behaviours start are grouped into equivalence classes that form elements
of the aggregated state space. From every two bisimilar states, the same actions can be executed, and the
subsequent states resulting from execution of an action belong to the same equivalence class. In addition, for
both states, the cumulative probabilities to move to the same equivalence class by executing the same action
coincide. A different kind of quantitative relations is called Markovian equivalences, which take rate (the pa-
rameter of exponential distribution that governs time delays) instead of probability. Note that the probabilistic
equivalences can be seen as discrete time analogues of the Markovian ones, since the latter are defined as the
continuous time relations.

Interleaving probabilistic weak trace equivalence was introduced in [45] on labeled probabilistic transition
systems. Interleaving probabilistic strong bisimulation equivalence was proposed in [87] on the same model.
Interleaving probabilistic equivalences were defined for probabilistic processes in [79, 60]. Interleaving Markovian
strong bisimulation equivalence was constructed in [70] for MTIPP, in [72] for PEPA and in [22, 21, 13] for EMPA.
Several variants of interleaving Markovian weak bisimulation equivalence were considered in [37] on Markovian
process algebras, in [39] on labeled CTSPNs and in [40] on labeled GSPNs. In [18, 19], interleaving probabilistic
and Markovian trace, testing and bisimulation equivalences on the respective sequential probabilistic (PPC)
and Markovian (MPC) process calculi were logically characterized. In [14, 15, 16], a comparison of interleaving
Markovian trace, test, strong and weak bisimulation equivalences was carried out on sequential (SMPC or MPC)
and concurrent (CMPC) Markovian process calculi. In [50], interleaving strong and branching probabilistic
bisimulation equivalences were defined on the calculus of Interactive Probabilistic Chains (IPC).

Further, in [23, 24, 17], a wide range of probabilistic and Markovian trace, testing and bisimulation equiv-
alences were investigated on Uniform Labeled Transition Systems (ULTraS) that capture different models of
concurrent processes, such as fully nondeterministic processes (labeled transition systems, LTSs), fully proba-
bilistic processes (labeled DTMCs), fully stochastic processes (labeled continuous time Markov chains, CTMCs),
nondeterministic and probabilistic processes (Markov decision processes, MDPs), nondeterministic and stochas-
tic processes (continuous time MDPs, CTMDPs). In [88], the bisimulation equivalences induced by some specific
labeled state-to Function Transition Systems (FuTSs) were shown to coincide with the equivalences underlying
the fragments of PEPA, Interactive Markov Language (IML) for Interactive Markov Chains (IMC) [69], Timed
Process Calculus (TPC) [2] and Markov Automata Language (MAL) for Markov Automata Process Algebra
(MAPA) [135]. In [94, 95], ordinary bisimulation (strong), quasi-lumping bisimulation (approximate strong) and
proportional bisimulation equivalences on the PEPA components were investigated that induce, respectively,
ordinary, quasi- and proportional lumpabilities on the corresponding CTMCs.

Nevertheless, no appropriate equivalence notion was defined for parallel SPAs. The non-interleaving bisim-
ulation equivalence in GSMPA [33, 31] uses ST-semantics for action particles while in Sπ [117] it is based on a
sophisticated labeling.

1.5 Our contributions

In this paper, we present an extension of dtsiPBC with deterministic multiactions, called discrete time stochastic
and deterministic Petri box calculus (dtsdPBC), which enhances the expressiveness of dtsiPBC and extends the
application area of the associated specification and analysis techniques. In dtsdPBC, besides the probabilities
from the real-valued interval (0; 1) that are used to calculate discrete time delays of stochastic multiactions,
also non-negative integers are used to specify fixed time delays of deterministic multiactions (including zero
delay, which is the case of immediate multiactions). To resolve conflicts among deterministic multiactions,
they are additionally equipped with positive real-valued weights. As argued in [143, 139, 140], a combination
of deterministic and stochastic delays fits well to model technical systems with constant (fixed) durations
of the regular non-random activities and probabilistically distributed (stochastic) durations of the randomly
occurring activities.

It should be stressed that dtsdPBC is rather a qualitative than merely a quantitative extension of dtsiPBC.
The main reason is that in the former calculus, the probability of transitions between markings (untimed states,
represented by overbars and underbars in the process expressions) generally depends both on the current mark-
ing and for how long the deterministic multiactions were enabled. Hence, the marking change probabilities
in dtsdPBC may not possess the Markov (memoryless) property. Thus, the timer values should be associated
with deterministic multiactions to specify the process states and then obtain the (semi-)Markovian state change
probabilities as a result of “unfolding” the discrete residence times at the markings. In other words, the longer
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that one delays at the markings should be splitted into one time units and be allocated with the consecutive pro-
cess states, in order to obtain a (semi-)Markovian model. Another reason is that, unlike dtsiPBC, the activities
of different types can be executed from the the same marking in dtsdPBC, depending on the (decreasing) timer
values of the enabled deterministic multiactions. In particular, the enabled stochastic multiactions may preempt
(interrupt) the enabled waiting (positively delayed deterministic) ones that cannot be executed at the next time
moment from a marking. Otherwise, only enabled waiting multiactions are executed from it. Note that the
stochastic multiactions interrupting the waiting ones with the non-expired timers can be used to model failures
while data transfer in communication protocols. Immediate multiactions are always executed first and sepa-
rately from other types of activities. It is supposed that the activities are ordered according to their priorities
as follows: immediate (highest priority), waiting (middle priority) and stochastic (lowest priority) multiactions.

Our novel approach was inspired by some ideas on combining deterministic and stochastic discrete time tran-
sition delays in DTSPNs [109, 110], discrete time deterministic and stochastic PNs (DTDSPNs) [143, 139, 140],
dts-nets [1], non-Markovian SPNs (NMSPNs) [76] and stochastic preemptive time PNs (spTPNs) [36] (all with
parallel step semantics), as well as in defective discrete phase SPNs (DDP-SPNs) [46], discrete deterministic
and stochastic PNs (DDSPNs) [141, 142] and DTDSPNs from [145, 146, 144] (all featuring interleaving seman-
tics). The key idea was to interpret the waiting multiactions with the timer values (remaining times to execute)
one as the (stochastic) transitions of DTSPNs [109, 110] with the conditional probability 1. Then the waiting
multiactions with the timer values greater than one are ignored, i.e. when enabled, they are executed with the
probability 0 at the next time moment.

The step operational semantics of dtsdPBC is constructed with the use of labeled probabilistic transition
systems. Its denotational semantics is defined in terms of a special interface-featured subclass of labeled discrete
time stochastic and deterministic Petri nets (LDTSPNs with deterministic transitions, LDTSDPNs), based on
the extension of DTSPNs [109, 110] with transition labeling and deterministic transitions, called dtsd-boxes.

With the purpose of performance evaluation in dtsdPBC, the corresponding stochastic process of the process
expressions is constructed and investigated, which is a semi-Markov chain (SMC). The obtained stationary
probability masses and average sojourn times in the states of the SMC are used to calculate the performance
measures (indices) of interest. We call that approach embedding, since the SMC is described by the embedded
DTMC (EDTMC) specifying the state change probabilities, together with the probability distribution functions
(PDFs) of the residence times in the states. In addition, the alternative solution methods are developed, based
on the underlying discrete time Markov chain (DTMC) and its reduction (RDTMC) by eliminating vanishing
states, i.e. those with zero sojourn (residence) times. The approach based on the DTMC allows one to avoid
the costly intermediate stages of building the EDTMC, weighting the probability masses in the states by their
average sojourn times (rescaling) and final normalization. We call that approach abstraction, since we abstract
from all vanishing states by taking into account only the (normalized) DTMC-based stationary probabilities
of the tangible states, i.e. those with positive sojourn times. The approach based on the RDTMC simplifies
performance analysis of large systems due to eliminating the non-stop transit (vanishing) states where only
instantaneous activities can be executed, resulting in a smaller model having only tangible states that can be
solved directly with less efforts. We call that approach elimination, since we eliminate all vanishing states.

In [129], we have reported the first results on the mentioned topics: the syntax, operational and denotational
semantics of dtsdPBC, as well as the methods of performance analysis within the calculus. The present paper is
an improvement and substantial (two times longer) extension of that work with the new results, described below.

We propose step stochastic bisimulation equivalence allowing one to identify algebraic processes with similar
behaviour that are however differentiated by the semantics of the calculus. It enhances the corresponding
relation from dtsiPBC, in that we now have to make difference between the states with positive sojourn times
(called tangible states) and those with zero sojourn times (called vanishing states). Therefore, in the definition
of step stochastic bisimulation for dtsdPBC, we add a condition stating that vanishing states may only be related
with vanishing states. We establish consistency of the operational and denotational semantics of dtsdPBC up
to step stochastic bisimulation equivalence, meaning that the transition systems of the process expressions are
equivalent to the reachability graphs of their dtsd-boxes. We examine the interrelations of the proposed notion
with other equivalences of the algebra. We describe how step stochastic bisimulation equivalence can be used to
reduce transition systems of the process expressions and their underlying SMCs while preserving the qualitative
and quantitative characteristics. We demonstrate isomorphism of the quotient (by that equivalence) SMCs
(derived from the transition systems) of the process expressions and (derived from the reachability graphs)
of their dtsd-boxes. We demonstrate that the reduced (by eliminating vanishing states) quotient transition
probability matrices (TPMs) coincide with the quotient reduced TPMs for DTMCs of the process expressions.
We prove that the mentioned equivalence guarantees identity of the stationary behaviour and residence time
properties in the equivalence classes. This implies coincidence of performance indices based on steady-state
probabilities of the modeled stochastic systems. The equivalences possessing the property can be used to reduce
the state space of a system and thus simplify its performance evaluation, what is usually a complex problem
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due to the state space explosion.
The theory developed is illustrated with a series of interesting and non-trivial examples that include the

travel system model. The examples demonstrate how to construct the transition systems of the expressions
with different types of multiactions (stochastic and deterministic, the latter consisting of immediate and wait-
ing) and various operations, as well as the reachability graphs of the corresponding dtsd-boxes. The resulted
transition systems and reachability graphs have all 3 possible kinds of states (stochastically tangible, waitingly
tangible and vanishing) and all 4 kinds of transitions (that capture executions of the empty multiset, stochas-
tic, waiting or immediate multiactions). From stochastically tangible (s-tangible) states, only the empty set
or stochastic multiactions can be executed at the next time moment (after one unit delay). From waitingly
tangible (w-tangible) states, only waiting multiactions can be executed at the next time moment. From van-
ishing states, only immediate multiactions can be executed at the same time moment (after zero delay). The
examples show the specification flexibility and expressive power of the calculus, the most important features and
peculiarities of its semantics, as well as application of step stochastic bisimulation to the performance analysis
methods within dtsdPBC.

We present a case study of a system consisting of two processors and a common shared memory with
maintenance that explains how to model concurrent systems within the calculus and analyze their performance,
as well as how to reduce the systems behaviour while preserving their performance indices and making easier
the performance evaluation. We consider a generalized variant of the shared memory system by treating the
probabilities and weights from the standard system’s specification as variables (parameters) that possess general
values. The quotients of the generalized system’s behaviour (represented by the transition systems, SMCs and
DTMCs) by the step stochastic bisimulation equivalence and reductions of the quotients by removing vanishing
states are constructed. The generalized probabilities of the reduced quotient DTMC are treated as parameters
to be adjusted for the performance optimization.

In the enhanced related work overview, strong points of dtsdPBC with respect to other SPAs are detected. If
we compare dtsdPBC with the classical SPAs MTIPP, PEPA and EMPA, the first main difference between them
comes from PBC, since dtsdPBC is based on this calculus: all algebraic operations and a notion of multiaction
are inherited from PBC. The second main difference is discrete probabilities of activities induced by the discrete
time approach, whereas action rates are used in the standard SPAs with continuous time. As a consequence,
dtsdPBC has a non-interleaving step operational semantics. This is in contrast to the classical SPAs, where
concurrency is modeled by interleaving because of the continuous probability distributions of action delays
and the race condition applied when several actions can be executed in a state. The third main difference
is deterministic (particularly, immediate) multiactions. There are no even instantaneous activities in MTIPP
and PEPA while immediate actions in EMPA can have different priority levels. In dtsdPBC, all immediate
(zero deterministic) multiactions have the same (highest) priority, and all waiting (positively deterministic)
multiactions have the same (medium) priority (leaving the lowest priority to stochastic multiactions). The
intention is to simplify the specification and analysis, since weights (assigned also to immediate actions in
EMPA) are enough to denote preferences among deterministic multiactions and to produce the conformable
probabilistic behaviours. The salient point of dtsdPBC is a combination of deterministic multiactions, discrete
stochastic time and step semantics in an SPA.

In the extensive discussion, analytical solution, concurrency interpretation, application area and general
advantages of dtsdPBC are explained.

Thus, the main contributions of the paper are the following.

• Syntax of new powerful and expressive discrete time SPA with deterministic activities, called dtsdPBC.

• Parallel step operational semantics of dtsdPBC in terms of labeled probabilistic transition systems.

• Petri net denotational semantics of dtsdPBC via discrete time stochastic and deterministic Petri nets.

• Performance analysis via underlying semi-Markov chains and (reduced) discrete time Markov chains.

• Stochastic bisimulation used for behaviour-preserving reduction that simplifies the performance evaluation.

• Extended case study of the shared memory system showing how to apply the theoretical results in practice.

1.6 Structure of the paper

The paper is organized as follows. In Section 2, the syntax of algebra dtsdPBC is presented. In Section 3, we
construct the step operational semantics of the calculus in terms of labeled probabilistic transition systems. In
Section 4, we propose the Petri net denotational semantics based on dtsd-boxes, a subclass of novel LDTSDPNs.
In Section 5, the underlying stochastic process (SMC) is defined and analyzed, then the alternative solution
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methods are outlined, based on the corresponding DTMCs and RDTMCs. Step stochastic bisimulation equiva-
lence, used to prove consistency of the both semantics, is defined and investigated in Section 6. In Section 7, we
explain how to reduce transition systems and underlying SMCs of process expressions modulo the equivalence.
In Section 8, the introduced equivalence is applied to the stationary behaviour comparison to verify the perfor-
mance preservation. In Section 9, the generalized shared memory system with maintenance is presented as a
case study. The difference between dtsdPBC and other well-known or similar SPAs is considered in Section 10.
The advantages of dtsdPBC are explained in Section 11. Finally, Section 12 summarizes the results obtained
and outlines research perspectives in this area. The long and complex proofs are moved to Appendix A.

2 Syntax

In this section, we propose the syntax of dtsdPBC.

2.1 Activities and operations

We recall a definition of multiset that is an extension of the set notion by allowing several identical elements.

Definition 2.1 Let X be a set. A finite multiset (bag) M over X is a mapping M : X → IN such that
|{x ∈ X |M(x) > 0}| <∞, i.e. it can contain a finite number of elements only.

We denote the set of all finite multisets over a set X by INX
fin. Let M,M ′ ∈ INX

fin. The cardinality of M is
defined as |M | =

∑
x∈XM(x). We write x ∈M if M(x) > 0 and M ⊆M ′ if ∀x ∈ X M(x) ≤M ′(x). We define

(M +M ′)(x) =M(x) +M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can
be interpreted as a proper set and denoted by M ⊆ X . The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated actions

(conjugates) such that â 6= a and ˆ̂a = a. Let A = Act ∪ Âct be the set of all actions, and L = INA
fin be the set

of all multiactions. Note that ∅ ∈ L, this corresponds to an internal move, i.e. the execution of a multiaction
that contains no visible action names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability of the multiaction
α. This probability is interpreted as that of independent execution of the stochastic multiaction at the next
discrete time moment. Such probabilities are used to calculate those to execute (possibly empty) sets of
stochastic multiactions after one time unit delay. The probabilities of stochastic multiactions are required not
to be equal to 1 to avoid extra model complexity, since in this case one should assign with them weights, needed
to make a choice when several stochastic multiactions with probability 1 can be executed from a state. The
difficulty is that when the stochastic multiactions with probability 1 occur in a step (parallel execution), all other
with the less probabilities do not. In this case, the conflicts resolving requires a special attention, as discussed
in [109, 110] within SPNs. This decision also allows us to avoid technical difficulties related to conditioning
events with probability 0. In [6], formal approaches to causality of probabilistic systems represented by DTMCs
were discussed and necessity of the positive probabilities of causes for the correct definition of conditional
probabilities was explained. The probability 1 is left for (implicitly assigned to) waiting multiactions (positively
delayed deterministic multiactions, to be defined later), which are delayed for at least one time unit before their
execution and have weights to resolve conflicts with other waiting multiactions. On the other hand, there is no
sense to allow probability 0 of stochastic multiactions, since they would never be performed in this case. Let
SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl ), where α ∈ L, θ ∈ IN is the non-negative integer-valued
(fixed) delay and l ∈ IR>0 = (0;∞) is the positive real-valued weight of the multiaction α. This weight is
interpreted as a measure of importance (urgency, interest) or a bonus reward associated with execution of
the deterministic multiaction at the discrete time moment when the corresponding delay has expired. Such
weights are used to calculate the probabilities to execute sets of deterministic multiactions after their time
delays. An immediate multiaction is a deterministic multiaction with the delay 0 while a waiting multiaction
is a deterministic multiaction with a positive delay. In case of no conflicts among waiting multiactions, whose
remaining times to execute (RTEs, to be explained later in more detail) are equal to one time unit, they are
executed with probability 1 at the next time moment. Deterministic multiactions have a priority over stochastic
ones while immediate multiactions have a priority over waiting ones. One can assume that all immediate
multiactions have (the highest) priority 2 and all waiting multiactions have (the medium) priority 1, whereas all
stochastic multiactions have (the lowest) priority 0. This means that in a state where all kinds of multiactions
can occur, immediate multiactions always occur before waiting ones that, in turn, are always executed before
stochastic ones. Different types of multiactions cannot participate together in some step (parallel execution),
i.e. just the steps consisting only of immediate multiactions or waiting ones, or those including only stochastic
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multiactions, are allowed. Let DL be the set of all deterministic multiactions, IL be the set of all immediate
multiactions and WL be the set of all waiting multiactions. Obviously, we have DL = IL ∪WL.

Let us note that the same multiaction α ∈ L may have different probabilities, (fixed) delays and weights
in the same specification. An activity is a stochastic or a deterministic multiaction. Let SDL = SL ∪ DL =
SL∪IL∪WL be the set of all activities. The alphabet of an activity (α, κ) ∈ SDL is defined as A(α, κ) = A(α).
The alphabet of a multiset of activities Υ ∈ INSDL

fin is defined as A(Υ) = ∪(α,κ)∈ΥA(α). For an activity
(α, κ) ∈ SDL, we define its multiaction part as L(α, κ) = α and its probability or weight part as Ω(α, κ) = κ if
κ ∈ (0; 1); or Ω(α, κ) = l if κ = ♮θl , θ ∈ IN, l ∈ IR>0. The multiaction part of a multiset of activities Υ ∈ INSIL

fin

is defined as L(Υ) =
∑

(α,κ)∈Υ α.

Activities are combined into formulas (process expressions) by the following operations: sequence ;, choice
[], parallelism ‖, relabeling [f ] of actions, restriction rs over a single action, synchronization sy on an action and
its conjugate, and iteration [ ∗ ∗ ] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (choice composition) have a standard interpretation, like in
other process algebras, but parallelism (parallel composition) does not include synchronization, unlike the
corresponding operation in CCS [107].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈ A f(x̂) = f̂(x). Relabeling is
extended to multiactions in the usual way: for α ∈ L we define f(α) =

∑
x∈α f(x). Relabeling is extended to

activities: for (α, κ) ∈ SDL, we define f(α, κ) = (f(α), κ). Relabeling is extended to the multisets of activities
as follows: for Υ ∈ INSDL

fin we define f(Υ) =
∑

(α,κ)∈Υ(f(α), κ).
Restriction over an elementary action a ∈ Act means that, for a given expression, any process behaviour

containing a or its conjugate â is not allowed.
Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act we have a ∈ α and â ∈ β, or

â ∈ α and a ∈ β. Then, synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require that α ⊕a β = α + β − {a, â}, i.e. we remove one exemplar of a and one exemplar
of â from the multiset sum α+ β, since the synchronization of a and â produces ∅. Activities are synchronized
with the use of their multiaction parts, i.e. the synchronization by a of two activities, whose multiaction parts
α and β possess the properties mentioned above, results in the activity with the multiaction part α ⊕a β. We
may synchronize activities of the same type only: either both stochastic multiactions or both deterministic ones
with the same delay, since stochastic, waiting and immediate multiactions have different priorities, and diverse
delays of waiting multiactions would contradict their joint timing. Hence, the multiactions of different types
cannot be executed together (note also that the execution of immediate multiactions takes no time, unlike that
of waiting or stochastic ones). Synchronization by a means that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists also the process behaviour that
differs from the former only in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more
times, and finally, the termination subprocess is executed.

2.2 Process expressions

Static expressions specify the structure of processes, i.e. how activities are combined by operations in order to
construct the composite process-algebraic formulas. As we shall see, static expressions correspond to unmarked
LDTSDPNs (LDTSDPNs are marked by definition). Remember that a marking is the allocation of tokens in
the places of a PN. Markings are used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated, whose value is the discrete
time amount left till the moment when the waiting multiaction can be executed. Therefore, besides standard
(unstamped) waiting multiactions in the form of (α, ♮θl ) ∈ WL, a special case of the stamped waiting multiactions
should be considered in the definition of static expressions. Each (time) stamped waiting multiaction in the
form of (α, ♮θl )

δ has an extra superscript δ ∈ {1, . . . , θ} assigned that specifies a time stamp indicating the latest
value of the countdown timer associated with that multiaction. The standard waiting multiactions have no time
stamps, to demonstrate irrelevance of the timer values for them (for example, their timers have not yet started
or have already finished their operation). The notions of the alphabet, multiaction part, weight part for (the
multisets of) stamped waiting multiactions are defined, respectively, like those for (the multisets of) unstamped
waiting multiactions.

By reasons of simplicity, we do not assign the timer value superscripts δ to immediate multiactions, which are
a special case of deterministic multiactions (α, ♮θl ) with the delay θ = 0 in the form of (α, ♮0l ), since their timer
values can only be equal to 0. Analogously, the superscript δ might be omitted for the waiting multiactions
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(α, ♮θl ) with the delay θ = 1 in the form of (α, ♮1l ), since the corresponding timer can only have a single value 1.
Nevertheless, to maintain syntactic uniformity among waiting multiactions, we leave the timer value superscripts
for those that are 1-delayed.

Definition 2.2 Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A static expression of dtsdPBC
is defined as

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To make the grammar above unambiguous, one can add parentheses in the productions with binary opera-

tions: (E;E), (E[]E), (E‖E). However, here and further we prefer the PBC approach and add them to resolve
ambiguities only.

To avoid technical difficulties with the iteration operator, we should not allow any concurrency at the
highest level of the second argument of iteration. This is not a severe restriction though, since we can always
prefix parallel expressions by an activity with the empty multiaction part. Later on, in Example 4.14, we shall
demonstrate that relaxing the restriction can result in LDTSDPNs which are not safe. Alternatively, we can
use a different, safe, version of the iteration operator, but its net translation has six arguments. See also [26] for
discussion on this subject. Remember that a PN is n-bounded (n ∈ IN) if for all its reachable (from the initial
marking by the sequences of transition firings) markings there are at most n tokens in every place, and a PN is
safe if it is 1-bounded.

Definition 2.3 Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A regular static expression of
dtsdPBC is defined as

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],

where D ::= (α, κ) | (α, ♮θl )
δ | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static expression ⇃E of E is obtained

by removing from it all timer value superscripts.
Further, the set of all stochastic multiactions (from the syntax) of E is SL(E) = {(α, ρ) | (α, ρ) is a

subexpression of E}. The set of all immediate multiactions (from the syntax) of E is IL(E) = {(α, ♮0l ) |
(α, ♮0l ) is a subexpression of E}. The set of all waiting multiactions (from the syntax) of E isWL(E) = {(α, ♮θl ) |
(α, ♮θl ) or (α, ♮

θ
l )
δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all deterministic multiactions

(from the syntax) of E is DL(E) = IL(E) ∪ WL(E) and the set of all activities (from the syntax) of E is
SDL(E) = SL(E) ∪DL(E) = SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. some particular stages of the process behaviour.
As we shall see, dynamic expressions correspond to LDTSDPNs (which are marked by default). Dynamic
expressions are obtained from static ones, by annotating them with upper or lower bars which specify the active
components of the system at the current moment of time. The dynamic expression with upper bar (the overlined
one) E denotes the initial, and that with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E.

For every overlined stamped waiting multiaction in the form of (α, ♮θl )
δ, the superscript δ ∈ {1, . . . , θ}

specifies the current value of the running countdown timer associated with the waiting multiaction. That
decreasing discrete timer is started with the initial value θ (equal to the delay of the waiting multiaction) at
the moment when the waiting multiaction becomes overlined. Then such a newly overlined stamped waiting

multiaction (α, ♮θl )
θ may be seen similar to the freshly overlined unstamped waiting multiaction (α, ♮θl ). Such

similarity will be captured by the structural equivalence, to be defined later.
While the stamped waiting multiaction stays overlined with the specified process execution, the timer decre-

ments by one discrete time unit with each global time tick until the timer value becomes 1. This fact indicates
that one unit of time remains till execution of that multiaction (the remaining time to execute, RTE, equals one).
Then its execution should follow in the next moment with probability 1, in case there are no conflicting with it
immediate multiactions or conflicting waiting multiactions whose RTEs equal to one, and it is not affected by
restriction. An activity is said to be affected by restriction, if it is within the scope of a restriction operation
with the argument action, such that it or its conjugate is contained in the multiaction part of that activity.

Definition 2.4 Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsdPBC is defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a | [G ∗ E ∗E] | [E ∗G ∗ E] | [E ∗ E ∗G].
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Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression ⌊G⌋ of G is obtained by removing

from it all upper and lower bars. Note that if the underlying static expression of a dynamic one is not regular,
the corresponding LDTSDPN can be non-safe but it is 2-bounded in the worst case, like shown for PNs in [26]).

Definition 2.5 A dynamic expression G is regular if its underlying static expression ⌊G⌋ is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dynamic expression ⇃G of G is

obtained by removing from it all timer value superscripts.
Further, the set of all stochastic multiactions (from the syntax) of G is SL(G) = SL(⌊G⌋). The set of all

immediate multiactions (from the syntax) of G is IL(G) = IL(⌊G⌋). The set of all waiting multiactions (from
the syntax) of G is WL(G) = WL(⌊G⌋). Thus, the set of all deterministic multiactions (from the syntax) of G
is DL(G) = IL(G)∪WL(G) and the set of all activities (from the syntax) of G is SDL(G) = SL(G)∪DL(G) =
SL(G) ∪ IL(G) ∪WL(G).

3 Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transformations in the form of G⇒ G̃ which
do not change the states of the specified processes. The goal of those syntactic transformations is to obtain the
well-structured resulting expressions called operative ones to which no inaction rules can be further applied. As
we shall see, the application of an inaction rule to a dynamic expression does not lead to any discrete time tick
or any transition firing in the corresponding LDTSDPN, hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any discrete time delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being overlined and underlined static
ones. In this table, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ}, E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule
suggests that the timer value of each newly overlined waiting multiaction is set to the delay of that waiting
multiaction.

Table 1: Inaction rules for overlined and underlined regular static expressions

(α, ♮θl ) ⇒ (α, ♮θl )
θ E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E‖F ⇒ E‖F E‖F ⇒ E‖F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a E sy a ⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the arbitrary form. In this table,
E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act. By reason of brevity, two distinct inaction
rules with the same premises are collated in some cases, resulting in the inaction rules with double conclusion.

Table 2: Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f ] ⇒ G̃[f ]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F ] ⇒ [G̃ ∗E ∗ F ]

G ⇒ G̃

[E ∗G ∗ F ] ⇒ [E ∗ G̃ ∗ F ], [E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]
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Example 3.1 Let E = ({a}, ♮31)[]({b},
1
3 ). The following inferences by the inaction rules are possible from E:

({a}, ♮31)[]({b},
1
3 ) ⇒ ({a}, ♮31)[]({b},

1
3 ) ⇒ ({a}, ♮31)

3[]({b}, 13 ), ({a}, ♮31)[]({b},
1
3 ) ⇒ ({a}, ♮31)[]({b},

1
3 ).

Definition 3.1 A regular dynamic expression G is operative if no inaction rule can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions of dtsdPBC.
Note that any dynamic expression can be always transformed into a (not necessarily unique) operative one

by using the inaction rules.
In the following, we consider regular expressions only and omit the word “regular”.

Definition 3.2 The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic expressions in dtsdPBC,
where ∗ is the reflexive and transitive closure operation. Thus, two dynamic expressions G and G′ are struc-
turally equivalent, denoted by G ≈ G′, if they can be reached from each other by applying the inaction rules in
a forward or a backward direction.

LetX be some set. We denote the Cartesian productX×X byX2. Let E ⊆ X2 be an equivalence relation on
X . Then the equivalence class (with respect to E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}.
The equivalence E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence class of G with respect to
the structural equivalence, called the (corresponding) state. Next, G is an initial dynamic expression, denoted
by init(G), if ∃E ∈ RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by final(G), if
∃E ∈ RegStatExpr G ∈ [E]≈.

Example 3.2 Let E be from Example 3.1. We have init(E) and [E]≈ = {({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)[]({b},

1
3 ),

({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)

3[]({b}, 13 ), ({a}, ♮
3
1)

3[]({b}, 13 ), {({a}, ♮
3
1)

3[]({b}, 13 )}. Then [E]≈ ∩OpRegDynExpr =

{({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)

3[]({b}, 13 ), ({a}, ♮
3
1)

3[]({b}, 13 )}.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic multiactions of s is
EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s ∩ OpRegDynExpr (α, ρ) is a subexpression of H}, i.e. it consists of
all stochastic multiactions that, being overlined, are the subexpressions of some operative dynamic expression
from the state s. Analogously, the set of all enabled immediate multiactions of s is EnaImm(s) = {(α, ♮0l ) ∈

IL | ∃H ∈ s∩OpRegDynExpr (α, ♮0l ) is a subexpression of H}. The set of all enabled waiting multiactions of s

is EnaWait(s) = {(α, ♮θl ) ∈ WL | ∃H ∈ s∩OpRegDynExpr (α, ♮θl )
δ, δ ∈ {1, . . . , θ}, is a subexpression of H},

i.e. it consists of all waiting multiactions that, being superscribed with the values of their timers and overlined,
are the subexpressions of some operative dynamic expression from the state s. The set of all newly enabled

waiting multiactions of s is EnaWaitNew(s) = {(α, ♮θl ) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl )
θ is a

subexpression of H}, i.e. it consists of all waiting multiactions that, being superscribed with the initial values
of their timers (delays of those waiting multiactions) and overlined, are the subexpressions of some operative
dynamic expression from the state s.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) = EnaImm(s) ∪ EnaWait(s)
and the set of all enabled activities of s is Ena(s) = EnaSto(s) ∪ EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪
EnaWait(s). As we shall see, Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions enabled
at the initial marking of the LDTSDPN corresponding to G. Note that the activities, resulted from synchro-
nization, are not present explicitly in the syntax of the dynamic expressions. Nevertheless, their enabledness
status can be recovered by observing that of the pair of synchronized activities from the syntax (they both
should be enabled for enabling their synchronous product), even if they are affected by restriction after the
synchronization.

Example 3.3 Let E be from Example 3.1. Then we have EnaSto([E]≈) = {({b}, 13 )}, EnaImm([E]≈) = ∅

and EnaWait([E]≈) = EnaWaitNew([E]≈) = {({a}, ♮31)}, hence, Ena([E]≈) = {({a}, ♮31), ({b},
1
3 )}.

Definition 3.3 An operative dynamic expression G is saturated (with the values of timers), if each enabled
waiting multiaction of [G]≈, being (certainly) superscribed with the value of its timer and possibly overlined, is
the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expressions of dtsdPBC.
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Proposition 3.1 Any operative dynamic expression can be always transformed into the saturated one by ap-
plying the inaction rules in a forward or a backward direction.

Proof. Let G be a dynamic expression, (α, ♮θl ) ∈ EnaWait([G]≈) and there exists H ∈ [G]≈ ∩OpRegDynExpr

that contains a subexpression (α, ♮θl )
δ, δ ∈ {1, . . . , θ − 1}. Then all operative dynamic expressions from [G]≈ ∩

OpRegDynExpr contain a subexpression (α, ♮θl )
δ or (α, ♮θl )

δ, i.e. the (possibly overlined) enabled waiting
multiaction (α, ♮θl ) with the (non-initial) timer value superscript δ ≤ θ−1. Note that the timer value superscript
δ is the same for all such structurally equivalent operative dynamic expressions. Indeed, all inaction rules,
besides the first one, do not change the values of timers, but those rules just modify the overlines and underlines
of dynamic expressions. The first inaction rule just sets up the timer of each overlined waiting multiaction

(α, ♮θl ) with the initial value δ = θ, equal to the delay of that waiting multiaction, as follows: (α, ♮θl )
θ. Then the

remaining inaction rules can shift out the overline of that enabled waiting multiaction before setting up its timer,
which results in a non-overlined enabled waiting multiaction without timer value superscript (α, ♮θl ). Thus, for

(α, ♮θl ) ∈ EnaWait([G]≈), it may happen that (α, ♮θl )
θ a subexpression of some H ∈ [G]≈ ∩ OpRegDynExpr

and (α, ♮θl ) is a subexpression of a different H ′ ∈ [G]≈ ∩OpRegDynExpr.
Let now G be an operative dynamic expression that is not saturated. By the arguments above, the saturation

can be violated only if G contains as a subexpression at least one newly enabled waiting multiaction (α, ♮θl )
of [G]≈ that is not superscribed with the timer value. By the definition of the new-enabling, there exists

H ∈ [G]≈ ∩ OpRegDynExpr such that (α, ♮θl )
θ is a subexpression of H . Since G ≈ H , there is a sequence

of the inaction rules applications (in a forward or a backward direction) that transforms G into H . Then
the reverse sequence transforms H into G. Let us remove from that reverse sequence the following backward

application of the first inaction rule: (α, ♮θl ) ⇐ (α, ♮θl )
θ. Then such a reduced reverse sequence will turn H

into G1 ∈ [G]≈ ∩ OpRegDynExpr, obtained from G by replacing (α, ♮θl ) with (α, ♮θl )
θ. Let us start from

G1 and apply the above procedure to the remaining not superscribed with the timer values newly enabled
waiting multiactions of [G]≈ = [G1]≈. After repeated application of the mentioned procedure for all n ≥ 1
non-superscribed newly enabled waiting multiactions of G, we shall get from it the saturated operative dynamic
expression Gn = G̃ ∈ [G]≈ ∩OpRegDynExpr. ⊓⊔

Thus, any dynamic expression can be always transformed into a (not necessarily unique) saturated operative
one by (possibly reverse) applying the inaction rules.

Example 3.4 Let E be from Example 3.1. We have [E]≈ ∩ SaOpRegDynExpr = {({a}, ♮31)
3[]({b}, 13 ),

({a}, ♮31)
3[]({b}, 13 )}. Consider the sequence of inaction rules, applied (in a forward or a backward direction) in

the following transformation of a non-saturated G ∈ [E]≈ ∩OpRegDynExpr with the non-superscribed with the
timer value (unstamped) enabled waiting multiaction ({a}, ♮31) into (a saturated) H ∈ [E]≈ ∩ OpRegDynExpr,
in which ({a}, ♮31) is stamped:

G = ({a}, ♮31)[]({b},
1
3 ) ≈ ({a}, ♮31)[]({b},

1
3 ) ≈ ({a}, ♮31)[]({b},

1
3 ) ≈ ({a}, ♮31)

3[]({b}, 13 ) = H.

The reduced reverse sequence of inaction rules induces the following transformations of H that result in a
saturated G1 = G̃ ∈ [E]≈ ∩OpRegDynExpr, in which ({a}, ♮31) is stamped:

H = ({a}, ♮31)
3[]({b}, 13 ) ≈ ({a}, ♮31)

3[]({b}, 13 ) ≈ ({a}, ♮31)
3[]({b}, 13 ) = G1 = G̃.

Let G be a saturated operative dynamic expression. Then 	G is written for the timer decrement operator
	, applied to G. It denotes a saturated operative dynamic expression, obtained from G via decrementing by
one time unit all greater than 1 values of the timers associated with all (if any) stamped waiting multiactions
from the syntax of G. Thus, each such stamped waiting multiaction changes its timer value from δ in G to
max{1, δ− 1} in 	G, where δ ∈ IN≥1. Formally, the timer decrement operator affects the (possibly overlined or
underlined) stamped waiting multiactions being the subexpressions of G as follows. The overlined stamped wai-

ting multiaction (α, ♮θl )
δ is replaced with (α, ♮θl )

max{1,δ−1}. The underlined stamped waiting multiaction (α, ♮θl )
δ

is replaced with (α, ♮θl )
max{1,δ−1}. The stamped waiting multiaction without overline or underline (α, ♮θl )

δ is

replaced with (α, ♮θl )
max{1,δ−1}.

Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the timer value δ = 1 may remain
unchanged for a stamped waiting multiaction that is not executed by some reason at the next time moment,
but stays stamped. For example, that stamped waiting multiaction may be affected by restriction. If the
timer values cannot be decremented with a time tick for all stamped waiting multiactions (if any) from G then
	G = G and we obtain so-called empty loop transition that will be formally defined later.
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Observe that the timer decrement operator keeps stamping of the waiting multiactions, since it may only
decrease their timer values, so that the stamped waiting multiactions stay stamped (with their timer values,
possibly decremented by one).

Example 3.5 Let E be from Example 3.1. We have Ena([E]≈) = {({a}, ♮31), ({b},
1
3 )} and Ena([E]≈)∩WL =

{({a}, ♮31)}. The following one time unit timer decrements are possible from the saturated operative dynamic
expressions belonging to [E]≈:

	(({a}, ♮31)
3[]({b}, 13 )) = ({a}, ♮31)

2[]({b}, 13 ), 	(({a}, ♮31)
3[]({b}, 13 )) = ({a}, ♮31)

2[]({b}, 13 ).

Let G be a dynamic expression. Then IG : WL(G) → IN≥1 is the timer valuation function of the waiting
multiactions of G, defined as follows. For (α, ♮θl ) ∈ WL(G), let IG((α, ♮θl )) = δ ∈ {1, . . . , θ}, if ∃H ∈ [G]≈ ∩

SatOpRegDynExpr (α, ♮θl )
δ or (α, ♮θl )

δ or (α, ♮θl )
δ is a subexpression of H . Otherwise, we let IG((α, ♮

θ
l )) = ∞,

where ‘∞’ denotes the undefined value (infinite time till the activity execution). The definition is correct by
the argumentation from the proof of Proposition 3.1. Indeed, for each waiting multiaction of G, its timer value
superscript (if any) is the same for every H ∈ [G]≈ ∩ SatOpRegDynExpr, in which that waiting multiaction,
possibly being superscribed with the value of its timer and overlined or underlined, is a subexpression. Note that
we may have IG((α, ♮

θ
l )) <∞ for (α, ♮θl ) ∈ WL(G) \EnaWait([G]≈), i.e. the non-enabled waiting multiactions

of [G]≈ may have finite timer valuations. The latter is allowed only in the “incomplete” specifications by the
compositionality reasons. It is assumed that all such non-enabled waiting multiactions have infinite timer values
in the “complete” specification, hence, all and only enabled waiting multiactions have finite timer values there.

Let G ∈ SatOpRegDynExpr. Then for all (α, ♮θl ) ∈ WL(G), we have I	G((α, ♮θl )) = max{1, IG((α, ♮θl ))−1}.

3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these rules we capture the prioritization
among different types of multiactions. We also have the empty move rule which is used to capture a delay
of one discrete time unit when no immediate or waiting multiactions are executable. In this case, the empty
multiset of activities is executed. The action and empty move rules will be used later to determine all multisets
of activities which can be executed from the structural equivalence class of every dynamic expression (i.e. from
the state of the corresponding process). This information together with that about probabilities or delays and
weights of the activities to be executed from the current process state will be used to calculate the probabilities
of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions describe dynamic expres-

sion transformations in the form of G
Γ
→ G̃ (G

I
→ G̃ or G

W
→ G̃, respectively) due to execution of non-empty

multisets Γ of stochastic (I of immediate or W of waiting, respectively) multiactions. The rules represent possi-
ble state changes of the specified processes when some non-empty multisets of stochastic (immediate or waiting,
respectively) multiactions are executed. As we shall see, the application of an action rule with stochastic (im-
mediate or waiting, respectively) multiactions to a dynamic expression leads in the corresponding LDTSDPN
to a discrete time tick at which some stochastic or waiting transitions fire (or to the instantaneous firing of
some immediate transitions) and possible change of the current marking. The current marking stays unchanged
only if there is a self-loop produced by the iterative execution of a non-empty multiset, which must be one-
element, i.e. a single stochastic (immediate or waiting, respectively) multiaction. The reason is the regularity
requirement that allows no concurrency at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting multiactions can be executed from

the current state) describes dynamic expression transformations in the form of G
∅
→	 G, called the empty

moves, due to execution of the empty multiset of activities at a discrete time tick. When no timer values are
decremented within G with the empty multiset execution at the next moment, we have 	G = G. For example,
this is the case if G contains no stamped waiting multiactions, or all their timers have decreased to value 1 while
those stamped waiting multiactions are either affected by restriction or not overlined). In such a case, the empty

move from G is in the form of G
∅
→ G, called the empty loop. As we shall see, the application of the empty

move rule to a dynamic expression leads to a discrete time tick in the corresponding LDTSDPN at which no
transitions fire and the current marking is not changed, but the timer values of the waiting transitions enabled
at the marking (if any) are decremented by one. This is a new rule that has no prototype among inaction rules

of PBC, since it represents a time delay, but no notion of time exists in PBC. The PBC rule G
∅
→ G from

[27, 26] in our setting would correspond to the rule G⇒ G that describes staying in the current state when no
time elapses. Since we do not need the latter rule to transform dynamic expressions into operative ones and it
can even destroy the definition of operative expressions, we do not introduce it in dtsdPBC.
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Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

Thus, an application of every action rule with stochastic or waiting multiactions or the empty move rule
requires one discrete time unit delay, i.e. the execution of a (possibly empty) multiset of stochastic or (non-
empty) multiset of waiting multiactions leading to the dynamic expression transformation described by the rule
is accomplished instantly after one time unit. An application of every action rule with immediate multiactions
does not take any time, i.e. the execution of a (non-empty) multiset of immediate multiactions is accomplished
instantly at the current moment of time.

Note that expressions of dtsdPBC can contain identical activities. To avoid technical difficulties, such as the
proper calculation of the state change probabilities for multiple transitions, we can always enumerate coinciding
activities from left to right in the syntax of expressions. The new activities, resulted from synchronization will
be annotated with concatenation of numberings of the activities they come from, hence, the numbering should
have a tree structure to reflect the effect of multiple synchronizations. We now define the numbering which
encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.4 The numbering of expressions is defined as ι ::= n | (ι)(ι), where n ∈ IN .

Let Num denote the set of all numberings of expressions.

Example 3.6 The numbering 1 encodes the binary tree depicted in Figure 1(a) with the root labeled by 1. The
numbering (1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two
leaves labeled by 1 and 2. The numbering (1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one
internal node, which is the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from synchronizations in different orders should be considered up to permutation
of their numbering. In this way, we shall recognize different instances of the same activity. If we compare the
contents of different numberings, i.e. the sets of natural numbers in them, we shall be able to identify the
mentioned instances.

The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions will become the proper sets. In
the following, we suppose that the identical activities are enumerated when needed to avoid ambiguity. This
enumeration is considered to be implicit.

Definition 3.5 Let G ∈ OpRegDynExpr. We now define the set of all non-empty multisets of activities which
can be potentially executed from G, denoted by Can(G). Let (α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈
OpRegDynExpr and a ∈ Act.

1. If final(G) then Can(G) = ∅.

2. If G = (α, κ)δ and κ = ♮θl , θ ∈ IN≥2, l ∈ IR>0, δ ∈ {2, . . . , θ}, then Can(G) = ∅.

3. If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ IR>0, then Can(G) = {{(α, κ)}}.

4. If G = (α, κ)1 and κ = ♮θl , θ ∈ IN≥1, l ∈ IR>0, then Can(G) = {{(α, κ)}}.

5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}), Υ ∈ Can(G‖H), Υ ∈ Can(H‖G),
f(Υ) ∈ Can(G[f ]), Υ ∈ Can(G rs a) (when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ+ Ξ ∈ Can(G‖H).
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7. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such that a ∈ α, â ∈ β, then

(a) Υ− {(α, κ), (β, λ)} + {(α⊕a β, κ · λ)} ∈ Can(G sy a) if κ, λ ∈ (0; 1);

(b) Υ− {(α, κ), (β, λ)} + {(α⊕a β, ♮θl+m)} ∈ Can(G sy a) if κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0.

When we synchronize the same multiset of activities in different orders, we obtain several activities
with the same multiaction and probability or delay and weight parts, but with different numberings
having the same content. Then we only consider a single one of the resulting activities to avoid
introducing redundant ones.

For example, the synchronization of stochastic multiactions (α, ρ)1 and (β, χ)2 in different orders
generates the activities (α ⊕a β, ρ · χ)(1)(2) and (β ⊕a α, χ · ρ)(2)(1). Similarly, the synchronization

of deterministic multiactions (α, ♮θl )1 and (β, ♮θm)2 in different orders generates the activities (α ⊕a
β, ♮θl+m)(1)(2) and (β ⊕a α, ♮θm+l)(2)(1). Since Cont((1)(2)) = {1, 2} = Cont((2)(1)), in both cases,
only the first activity (or, symmetrically, the second one) resulting from synchronization will appear
in a multiset from Can(G sy a).

Note that if Υ ∈ Can(G) then by definition of Can(G), ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only stochastic (immediate or waiting,

respectively) multiactions in the multisets from Can(G) then these stochastic (immediate or waiting, respec-
tively) multiactions can be executed from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the note above, there are non-empty
multisets of deterministic multiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ INDL

fin \ {∅}. In this case,
no stochastic multiactions can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones, and should be executed first.
Further, if there are no stochastic, but both waiting and immediate multiactions in the multisets from Can(G),
then, analogously, no waiting multiactions can be executed from G, since immediate multiactions have a priority
over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multisets from Can(G) then,
from above, only waiting ones can be executed from G. Then just maximal non-empty multisets of waiting
multiactions can be executed from G, since all non-conflicting waiting multiactions cannot wait anymore and
they should occur at the next time moment with probability 1. The next definition formalizes these requirements.

Definition 3.6 Let G ∈ OpRegDynExpr. The set of all non-empty multisets of activities which can be exe-
cuted from G is

Now(G) =





Can(G) ∩ INIL
fin, Can(G) ∩ INIL

fin 6= ∅;
{W ∈ Can(G) ∩ INWL

fin | ∀V ∈ Can(G) ∩ INWL
fin W ⊆ V ⇒ V =W}, (Can(G) ∩ INIL

fin = ∅)∧
(Can(G) ∩ INWL

fin 6= ∅);
Can(G), otherwise.

Consider an operative dynamic expression G ∈ OpRegDynExpr. The expression G is s-tangible (stochasti-
cally tangible), denoted by stang(G), if Now(G) ⊆ INSL

fin \{∅}. In particular, we have stang(G), if Now(G) = ∅.

The expression G is w-tangible (waitingly tangible), denoted by wtang(G), if ∅ 6= Now(G) ⊆ INWL
fin \ {∅}. The

expression G is tangible, denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (INSL
fin ∪ INWL

fin ) \ {∅}.
Again, we particularly have tang(G), if Now(G) = ∅. Otherwise, the expression G is vanishing, denoted by
vanish(G), and in this case ∅ 6= Now(G) ⊆ INIL

fin \ {∅}. Note that the operative dynamic expressions from [G]≈
may have different types in general. The following example demonstrates two operative dynamic expressions H
and H ′ with H ≈ H ′, such that vanish(H), but stang(H ′).

Example 3.7 Let G = (({a}, ♮01)[]({b}, ♮
0
2))‖({c},

1
2 ) and G

′ = (({a}, ♮01)[]({b}, ♮
0
2))‖({c},

1
2 ). Then G ≈ G′,

since G⇐ G′′ ⇒ G′ for G′′ = (({a}, ♮01)[]({b}, ♮
0
2))‖({c},

1
2 ), but Can(G) = {{({a}, ♮01)}, {({c},

1
2 )}, {({a}, ♮

0
1),

({c}, 12 )}}, Can(G
′) = {{({b}, ♮02)}, {({c},

1
2 )}, {({b}, ♮

0
2), ({c},

1
2 )}} and Now(G) = {{({a}, ♮01)}}, Now(G

′) =
{{({b}, ♮02)}}. Clearly, we have vanish(G) and vanish(G′). The executions like that of {({c}, 12 )} (and all
multisets including it) from G and G′ must be disabled using preconditions in the action rules, since immediate
multiactions have a priority over stochastic ones, hence, the former are always executed first.

Let H = ({a}, ♮01)[]({b},
1
2 ) and H ′ = ({a}, ♮01)[]({b},

1
2 ). Then H ≈ H ′, since H ⇐ H ′′ ⇒ H ′ for H ′′ =

({a}, ♮01)[]({b},
1
2 ), but Can(H) = Now(H) = {{({a}, ♮01)}} and Can(H ′) = Now(H ′) = {{({b}, 12 )}}. We have

vanish(H), but stang(H ′). To make the action rules correct under structural equivalence, the executions like
that of {({b}, 12 )} from H ′ must be disabled using preconditions in the action rules, since immediate multiactions
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have a priority over stochastic ones, hence, the choices between them are always resolved in favour of the former.

Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩ OpRegDynExpr stang(H). We write
wtang([G]≈), if ∃H ∈ [G]≈ ∩ OpRegDynExpr wtang(H) and ∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We
write tang([G]≈), if stang([G]≈) or wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈
[G]≈ ∩OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (α, ρ), (β, χ)∈ SL, (α, ♮0l ), (β, ♮
0
m) ∈ IL

and (α, ♮θl ), (β, ♮
θ
m) ∈ WL. Further, E,F ∈ RegStatExpr, G,H ∈ SatOpRegDynExpr, G̃, H̃ ∈RegDynExpr

and a ∈ Act. Moreover, Γ,∆ ∈ INSL
fin \ {∅}, Γ

′ ∈ INSL
fin, I, J ∈ INIL

fin \ {∅}, I
′ ∈ INIL

fin, V,W ∈ INWL
fin \ {∅}, V ′ ∈

INWL
fin and Υ ∈ INSDL

fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈ α) ∨ (â ∈ α)}.
We use the following abbreviations in the names of the rules from the table: “E” for “Empty move”, “B”

for “Basis case”, “S” for “Sequence”, “C” for “Choice”, “P” for “Parallel”, “L” for “reLabeling”, “R” for
“Restriction”, “I” for “Iteraton” and “Sy” for “Synchronization”. The first rule in the table is the empty
move rule E. The other rules are the action rules, describing transformations of dynamic expressions, which are
built using particular algebraic operations. If we cannot merge the rules with stochastic, immediate ans waiting
multiactions in one rule for some operation then we get the coupled action rules. In such cases, the names of
the action rules with stochastic multiactions have a suffix ‘s’, those with immediate multiactions have a suffix
‘i’, and those with waiting multiactions have a suffix ‘w’. To make presentation more compact, the action rules
with double conclusion are combined from two distinct action rules with the same premises.

Table 3: Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l )

{(α,♮0l )}−→ (α, ♮0l ) Bw (α, ♮θl )
1

{(α,♮θl )}−→ (α, ♮θl )

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H ]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H ]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f ]
f(Υ)
−→ G̃[f ]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F ]
Υ
→ [G̃ ∗ E ∗ F ]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F ]≈))

[E ∗G ∗ F ]
Γ
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F ]
I
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F ]≈))

[E ∗G ∗ F ]
V
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l )}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl )}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a

Almost all the rules in Table 3 (excepting E, Bw, P2s, P2i, P2w, R, Sy2s, Sy2i and Sy2w) resemble
those of gsPBC, but the former correspond to execution of multisets of activities, not of single activities, as in
the latter, and our rules have simpler preconditions (if any), since all immediate multiactions in dtsdPBC have
the same priority level, unlike those of gsPBC.

The preconditions in rules E, Cs, P1s, and I2s are needed to ensure that (possibly empty) multisets of
stochastic multiactions are executed only from s-tangible saturated operative dynamic expressions, such that
all dynamic expressions structurally equivalent to them are s-tangible as well. For example, assuming that
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stang([G]≈) in rule Cs, if init(G) then G ≈ F for some static expression F and G[]E ≈ F []E ≈ F []E ≈
F []E. Hence, it should be guaranteed that stang([F []E]≈), which holds iff stang([E]≈). The case E[]G is
treated similarly. Assuming that stang([G]≈) in rule P1s, it should be guaranteed that stang([G‖H ]≈) and
stang([H‖G]≈), which holds iff stang([H ]≈). The precondition in rule I2s is analogous to that in rule Cs.

Analogously, the preconditions in rules Cw, and I2w are needed to ensure that non-empty multisets of
waiting multiactions are executed only from w-tangible saturated operative dynamic expressions, such that all
dynamic expressions structurally equivalent to them are tangible. This requirement (about tangible expressions)
means that only (possibly empty) multisets of stochastic multiactions or non-empty multisets of waiting mul-
tiactions, and no immediate multiactions, can be executed from the subprocess that is composed alternatively
(in choice) with the subprocess G. Hence, the multiset W of waiting multiactions, executed from G, can also
be executed from the composition of G and that alternative subprocess, since immediate multiactions cannot
occur from the latter. Otherwise, it would prevent the execution of W from G in the composite process, by
disregarding the alternative choice of the branch specified by G, due to the zero delays and priority (captured
by all action rules) of immediate multiactions over all other multiaction types.

The precondition in rule P1w is an exception from the above. It also ensures that non-empty multisets of
waiting multiactions are executed only from w-tangible saturated operative dynamic expressions, such that all
dynamic expressions structurally equivalent to them are tangible, but all the expressions structurally equivalent
to H specifying parallel with G subprocess should be s-tangible. This stricter requirement (about s-tangible,
instead of just tangible, expressions) means that only (possibly empty) multisets of stochastic multiactions, and
no immediate or waiting multiactions, can be executed from the subprocess H that is composed concurrently
(in parallel) with the subprocess G. Hence, the multiset W of waiting multiactions, executed from G, is also a
maximal (by the inclusion relation) multiset that can be executed from the parallel composition of G and H .
The reason is that only the timers decrement by one time unit (by applying rule E) is actually possible in H
while executing W from G, due to priority (captured by all action rules) of waiting multiactions over stochastic
ones. Thus, taking the rule precondition stang([H ]≈) instead of tang([H ]≈) preserves maximality of the steps
consisting of waiting multiactions while applying parallel composition.

In rules P1s and P1w, the timer value decrementing by one 	 H , applied to the s-tangible saturated
operative dynamic expression H that is composed in parallel with G, from which stochastic multiactions are
executed at the next time tick, is used to maintain the time progress uniformity in the composite expression.
Although rules P1s and P1w can be merged, we have not done it, aiming to emphasize the exceptional
precondition in rule P1w.

In rulesCs, Ci andCw, the timer values discarding ⇃E, applied to the static expressionE that is composed in
choice with G, from which activities are executed, signifies that the timer values of the non-chosen subexpression
(branch) become irrelevant in the composite expression and thus may be removed. Analogously, in rules I2s, I2i
and I2w, the timer values discarding ⇃F is applied to the static expression F that is an alternative to G, from
which activities are executed, since the choice is always made between the body and termination subexpressions
of the composite iteration expression (between the second and third arguments of iteration).

Rule E corresponds to one discrete time unit delay (passage of one unit of time) while executing no activities
and therefore it has no analogues among the rules of gsPBC that adapts the continuous time model. Rule E is
a global one, i.e. it is applied only to the whole (topmost level of) expressions, rather than to their parts. The
reason is that all other action rules describe dynamic expressions transformations due to execution of non-empty
multisets of activities. Hence, the actionless time move described by rule E cannot “penetrate” with action rules
through the expressions structure. This guarantees that time progresses uniformly in all their subexpressions.

Rule Bw differs from the more standard ones Bs and Bi that both resemble rule B in gsPBC. The reason
is that in Bw, the overlined waiting multiaction has an extra superscript ‘1’, indicating that one time unit is
remained until the multiaction’s execution (RTE equals one) that should follow in the next moment.

Rules P2s, P2i and P2w have no similar rules in gsPBC, since interleaving semantics of the algebra allows
no simultaneous execution of activities. On the other hand, P2s, P2i and P2w have in PBC the analogous rule
PAR that is used to construct step semantics of the calculus, but the former two rules correspond to execution
of multisets of activities, unlike that of multisets of multiactions in the latter rule. Rules P2s, P2i and P2w
cannot be merged, since otherwise simultaneous execution of different types of multiactions would be allowed.

Rule R differs from the corresponding restriction rule in gsPBC, since it respects the maximality of the steps
of waiting multiactions that is maintained by all action rules, in particular, by P1w and P2w. In case Υ is
a multiset of waiting multiactions, no proper subset of Υ (such as that consisting of the activities not affected
by restriction over a) can be executed from G. Since we prefer to have the same restriction rule for stochastic,
immediate ans waiting multiactions, rule R should explicitly allow execution of the subset Υ−Υa from G rs a.

Rules Sy2s, Sy2i and Sy2w differ from the corresponding synchronization rules in gsPBC, since the prob-
ability or the weight of synchronization in the former rules and the rate or the weight of synchronization in
the latter rules are calculated in two distinct ways. Rules Sy2i and Sy2w cannot be merged, since otherwise
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synchronous execution of immediate and waiting multiactions would be allowed.
Rule Sy2s establishes that the synchronization of two stochastic multiactions is made by taking the product

of their probabilities, since we are considering that both must occur for the synchronization to happen, so
this corresponds, in some sense, to the probability of the independent event intersection, but the real situation
is more complex, since these stochastic multiactions can also be executed in parallel. Nevertheless, when
scoping (the combined operation consisting of synchronization followed by restriction over the same action [26])
is applied over a parallel execution, we get as final result just the simple product of the probabilities, since
no normalization is needed there. Multiplication is an associative and commutative binary operation that is
distributive over addition, i.e. it fulfills all practical conditions imposed on the synchronization operator in
[71]. Further, if both arguments of multiplication are from (0; 1) then the result belongs to the same interval,
hence, multiplication naturally maintains probabilistic compositionality in our model. Our approach is similar
to the multiplication of rates of the synchronized actions in MTIPP [70] in the case when the rates are less than
1. Moreover, for the probabilities ρ and χ of two stochastic multiactions to be synchronized we have ρ · χ <
min{ρ, χ}, i.e. multiplication meets the performance requirement stating that the probability of the resulting
synchronized stochastic multiaction should be less than the probabilities of the two ones to be synchronized.
While performance evaluation, it is usually supposed that the execution of two components together require more
system resources and time than the execution of each single one. This resembles the bounded capacity assumption
from [71]. Thus, multiplication is easy to handle with and it satisfies the algebraic, probabilistic, time and
performance requirements. Therefore, we have chosen the product of the probabilities for the synchronization.
See also [35, 34] for a discussion about binary operations producing the rates of synchronization in the continuous
time setting.

In rules Sy2i and Sy2w, we sum the weights of two synchronized immediate (waiting, respectively) multi-
actions, since the weights can be interpreted as the rewards [121], thus, we collect the rewards. Moreover, we
express that the synchronized execution of immediate (waiting) multiactions has more importance than that
of every single one. The weights of immediate and waiting (i.e. deterministic) multiactions can also be seen
as bonus rewards associated with transitions [20]. The rewards are summed during synchronized execution of
immediate (waiting) multiactions, since in that case all the synchronized activities can be seen as participated
in the execution. We prefer to collect more rewards, thus, the transitions providing greater rewards will have
a preference and they will be executed with a greater probability. In particular, since execution of immediate
multiactions takes no time, we prefer to collect in a step (parallel execution) as many synchronized immediate
multiactions as possible to get more significant progress in behaviour. Under behavioural progress we under-
stand an advance in executing activities, which does not always imply a progress in time, as in the case when the
activities are immediate multiactions. This aspect will be used later, while evaluating performance via analysis
of the embedded discrete time Markov chains (EDTMCs) of expressions. Since every state change in EDTMC
takes one unit of (its local) time, greater advance in operation of the EDTMC allows one to calculate quicker
many performance indices. As for waiting multiactions, only the maximal multisets of them, executable from
a state, occur with a time tick. The reason is that each waiting multiaction has a probability 1 to occur in the
next moment, when the remaining time of its timer (RTE) equals one and there exist no conflicting waiting
multiactions. Hence, all waiting multiactions with the RTE being one that are executable together from a state
must participate in a step from that state. Since there may exist different such maximal multisets of waiting
multiactions, a probabilistic choice among all possible steps is made, imposed by the weights of those multi-
actions. Thus, the steps of waiting multiactions always produce maximal overall weights, but they are mainly
used to calculate the probabilities of alternative maximal steps rather than the cumulative bonus rewards.

We do not have self-synchronization, i.e. synchronization of an activity with itself, since all the (enumerated)
activities executed together are considered to be different. This allows us to avoid rather cumbersome and
unexpected behaviour, as well as many technical difficulties [26].

Notice that the timers of all waiting multiactions that lose their enabledness when a state change occurs
become inactive (turned off) and their values become irrelevant while the timers of all those preserving their
enabledness continue running with their stored values. Hence, we adapt the enabling memory policy [103, 1, 8, 9]
when the process states are changed and the enabledness of deterministic multiactions is possibly modified
(remember that immediate multiactions may be seen as those with the timers displaying a single value 0, so
we do not need to store their values). Then the timer values of waiting multiactions are taken as the enabling
memory variables.

Similar in [83], we are mainly interested in the dynamic expressions, inferred by applying the inaction rules
(also in the reverse direction) and action rules from the overlined static expressions, such that no stamped
(i.e. superscribed with the timer values) waiting multiaction is a subexpression of them. The reason is to
ensure that time proceeds uniformly and only enabled waiting multiactions are stamped. We call such dynamic
expressions reachable, by analogy with the reachable states of LDTSDPNs, to be presented later. Formally, a
dynamic expression G is reachable, if there exists a static expression E without timer value superscripts, such
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Table 4: Comparison of inaction, action and empty move rules

Rules State change Time progress Activities execution

Inaction rules − − −
Action rules ± + +

(stochastic or waiting multiactions)
Action rules ± − +

(immediate multiactions)
Empty move rule − + −

that E ≈ G or E ≈ G0
Υ1→ H1 ≈ G1

Υ2→ . . .
Υn→ Hn ≈ G for some Υ1, . . . ,Υn ∈ INSDL

fin .

Therefore, we consider a dynamic expression G = ({a}, ♮21)
1[]({b}, ♮32)

1 as “illegal” and that H = ({a}, ♮21)
1[]

({b}, ♮32)
2 as “legal”, since the latter is obtained from the overlined static expression without timer value super-

scripts E = ({a}, ♮21)[]({b}, ♮
3
2) after one time tick. On the other hand, G is “illegal” only when it is intended to

specify a complete process, but it may become “legal” as a part of some complete specification, like G rs a, since
after two time ticks from E rs a, the timer values cannot be decreased further when the value 1 is approached.
Thus, we should allow the dynamic expressions like G, by assuming that they are incomplete specifications,

to be further composed. Further, a dynamic expression G = ({a}, 12 ); ({b}, ♮
2
1)

1 is “illegal”, since the waiting
multiaction ({b}, ♮21) is not enabled in [G]≈ and its timer cannot start before the stochastic multiaction ({a}, 12 )
is executed. Enabledness of the stamped waiting multiactions is considered in the next proposition.

Proposition 3.2 Let G be a reachable dynamic expression. Then only waiting multiactions from
EnaWait([G]≈) are stamped in G.

Proof. By the definition of reachability, there exists E ∈ StatExpr without stamped waiting multiactions, such
that G is derived from E by applying the inaction rules (also those reversed) and action rules.

In that derivation, only the first inaction rule can add timer value superscripts to the waiting multiactions
from WL(G) = WL(E) that are overlined. The other inaction rules (also reversed) can just “shift” the upper
bars from / to those stamped waiting multiactions while preserving the enabledness of all waiting multiactions
from WL(G). Thus, just the waiting multiactions from EnaWait([G]≈) become stamped in the subexpressions

of G, such as (α, ♮θl )
θ or (α, ♮θl )

θ.
Further, in the derivation, the action rules cannot add timer value superscripts to the waiting multiactions

from WL(G). Instead, the action rules can make such waiting multiactions non-enabled (disabled), i.e. belong-
ing to WL(G) \EnaWait([G]≈). Such “disabling” action rules correspond either to the executing an overlined
stamped (with the value 1) waiting multiaction (rule Bw) or to the choice of some alternative process branch
(rules Cs, Ci, Cw, I2s, I2i, I2w). In the both cases, all the disabled waiting multiactions loose their timer
value superscripts. Thus, only the waiting multiactions from EnaWait([G]≈) remain stamped in G.

Hence, E does not contain stamped waiting multiactions and in the derivation of G from it, only the waiting
multiactions from EnaWait([G]≈) become and remain stamped in G. Therefore, only waiting multiactions from
EnaWait([G]≈) are stamped in G. ⊓⊔

In Table 4, inaction rules, action rules (with stochastic or immediate, or waiting multiactions) and empty
move rule are compared according to the three questions about their application: whether it changes the current
state, whether it leads to a time progress, and whether it results in execution of some activities. Positive answers
to the questions are denoted by the plus sign while negative ones are specified by the minus sign. If both positive
and negative answers can be given to some of the questions in different cases then the plus-minus sign is written.
Notice that the process states are considered up to structural equivalence of the corresponding expressions, and
time progress is not regarded as a state change.

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dynamic expressions. The transition
systems are used to define the operational semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of activities executable in s is defined

as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}. Here H

Υ
→ H̃ is an inference by the rules from Table 3.

It can be proved by induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈ s Υ ∈
Now(H). The reverse statement does not hold in general, since the preconditions in the action rules disable
executions of the activities with the lower-priority types from every H ∈ s, as the next example shows.
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Example 3.8 Let H,H ′ be from Example 3.7 and s = [H ]≈ = [H ′]≈. We have Now(H) = {{({a}, ♮01)}} and
Now(H ′) = {{({b}, 12 )}}. Since only rules Ci and Bi can be applied to H while no action rule can be applied to
H ′, we get Exec(s) = {{({a}, ♮01)}}. Then, for H

′ ∈ s and Υ = {({b}, 12 )} ∈ Now(H ′), we obtain Υ 6∈ Exec(s).

The state s is s-tangible (stochastically tangible), denoted by stang(s), if Exec(s) ⊆ INSL
fin. For an s-tangible

state s we always have ∅ ∈ Exec(s) by rule E, hence, we may have Exec(s) = {∅}. The state s is w-tangible
(waitingly tangible), denoted by wtang(s), if Exec(s) ⊆ INWL

fin \{∅}. The state s is tangible, denoted by tang(s),

if stang(s) or wtang(s), i.e. Exec(s) ⊆ INSL
fin∪IN

WL
fin . Again, for a tangible state s we may have ∅ ∈ Exec(s) and

Exec(s) = {∅}. Otherwise, the state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ INIL
fin\{∅}.

Since for every H ∈ s, Now(H) containing the multisets of activities with the lower-priority types is not
included into Exec(s), and the types of states are determined from the highest-priority types of the executable
activities, the state type definitions based on Now(H), H ∈ s, and on Exec(s) are consistent.

Note that if Υ ∈ Exec(s) and Υ ∈ INSL
fin ∪ INIL

fin then by rules P2s, P2i, Sy2s, Sy2i and definition of

Exec(s) ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Exec(s), i.e. 2Υ \ {∅} ⊆ Exec(s).
Since the inaction rules only set the initial timer values or distribute and move upper and lower bars along

the syntax of dynamic expressions, all H ∈ s have the same timer-free underlying static expression F . Process
expressions always have a finite length, hence, the number of all (enumerated) activities and the number of
all operations in the syntax of F are finite as well. The action rules Sy2s, Sy2i and Sy2w are the only ones
that generate new activities. They result from the handshake synchronization of actions and their conjugates
belonging to the multiaction parts of the first and second constituent activity, respectively. Since we have a
finite number of operators sy in F and all the multiaction parts of the activities are finite multisets, the number
of the new synchronized activities is also finite. The action rules contribute to Exec(s) (in addition to the empty
set, if rule E is applicable) only the sets consisting both of activities from F and the new activities, produced by
Sy2s, Sy2i and Sy2w. Since we have a finite number n of all such activities, we get |Exec(s)| ≤ 2n <∞. Thus,
summation and multiplication by elements from the finite set Exec(s) are well-defined. Similar reasoning can
be used to demonstrate that for all dynamic expressions H (not just for those from s), Now(H) is a finite set.

Definition 3.7 The derivation set of a dynamic expression G, denoted by DR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H ]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the set of all w-tangible states
from DR(G) is denoted by DRWT (G). The set of all tangible states from DR(G) is denoted by DRT (G) =
DRST (G) ∪ DRWT (G). The set of all vanishing states from DR(G) is denoted by DRV (G). Obviously,
DR(G) = DRT (G) ⊎DRV (G) = DRST (G) ⊎DRWT (G) ⊎DRV (G), where ⊎ denotes disjoint union.

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s) \ {∅}. The probability that the multiset of stochastic multiactions Υ is ready for execution

in s or the weight of the multiset of deterministic multiactions Υ which is ready for execution in s is

PF (Υ, s) =

{ ∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1− χ), s ∈ DRST (G);∑

(α,♮θ
l
)∈Υ l, s ∈ DRWT (G) ∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

If s ∈ DRST (G) and Exec(s) 6= {∅} then PF (Υ, s) can be interpreted as a joint probability of independent
events (in a probability sense, i.e. the probability of intersection of these events is equal to the product of their
probabilities). Each such an event consists in the positive or the negative decision to be executed of a particular
stochastic multiaction. Every executable stochastic multiaction decides probabilistically (using its probabilistic
part) and independently (from others), if it wants to be executed in s. If Υ is a multiset of all executable
stochastic multiactions which have decided to be executed in s and Υ ∈ Exec(s) then Υ is ready for execution
in s. The multiplication in the definition is used because it reflects the probability of the independent event
intersection. Alternatively, when Υ 6= ∅, PF (Υ, s) can be interpreted as the probability to execute exclusively
the multiset of stochastic multiactions Υ in s, i.e. the probability of intersection of two events calculated using
the conditional probability formula in the form of P(X ∩ Y ) = P(X |Y )P(Y ). The event X consists in the
execution of Υ in s. The event Y consists in the non-execution in s of all the executable stochastic multiactions

21



not belonging to Υ. Since the mentioned non-executions are obviously independent events, the probability
of Y is a product of the probabilities of the non-executions: P(Y ) =

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1 − χ). The

conditioning ofX by Y makes the executions of the stochastic multiactions from Υ independent, since all of them
can be executed in parallel in s by definition of Exec(s). Hence, the probability to execute Υ under condition
that no executable stochastic multiactions not belonging to Υ are executed in s is a product of probabilities
of these stochastic multiactions: P(X |Y ) =

∏
(α,ρ)∈Υ ρ. Thus, the probability that Υ is executed and no

executable stochastic multiactions not belonging to Υ are executed in s is the probability of X conditioned by
Y multiplied by the probability of Y : P(X ∩Y ) = P(X |Y )P(Y ) =

∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1−χ).

When Υ = ∅, PF (Υ, s) can be interpreted as the probability not to execute in s any executable stochastic
multiactions, thus, PF (∅, s) =

∏
{(β,χ)}∈Exec(s)(1 − χ). When only the empty multiset of activities can be

executed in s, i.e. Exec(s) = {∅}, we take PF (∅, s) = 1, since nothing more can be executed in s in this
case. Since the probabilities of all stochastic multiactions are strictly less than 1, for s ∈ DRST (G) we have
PF (∅, s) ∈ (0; 1]. Hence, we always execute the empty multiset of activities in s at the next time moment with
a certain positive probability.

If s ∈ DRWT (G) ∪ DRV (G) then PF (Υ, s) could be interpreted as the overall (cumulative) weight of the
deterministic multiactions from Υ, i.e. the sum of all their weights. The summation here is used since the weights
can be seen as the rewards which are collected [121]. This means that concurrent execution of the deterministic
multiactions has more importance than that of every single one. The weights of deterministic multiactions
can also be interpreted as bonus rewards of transitions [20]. The rewards are summed when deterministic
multiactions are executed in parallel, because all of them participated in the execution. In particular, since
execution of immediate multiactions takes no time, we prefer to collect in a step (parallel execution of activities)
as many parallel immediate multiactions as possible to get more progress in behaviour. This aspect will be
used later, while while evaluating performance on the basis of the EDTMCs of expressions. Concerning waiting
multiactions, only the maximal multisets of them executable from a state occur in the next moment. Therefore,
the steps of waiting multiactions produce maximal overall weights, which are used to calculate probabilities of
alternative maximal steps rather than the cumulative bonuses. Note that this reasoning is the same as that used
to define the weight of synchronized immediate (waiting, respectively) multiactions in the rules Sy2i and Sy2w.

Note that the definition of PF (Υ, s) (as well as the definitions of other probability functions which we shall
present) is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). Besides Υ, some other multisets of activities may be ready for execution in s, hence, a
kind of conditioning or normalization is needed to calculate the execution probability. The probability to execute
the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

If s ∈ DRST (G) then PT (Υ, s) can be interpreted as the conditional probability to execute Υ in s calculated

using the conditional probability formula in the form of P(Z|W ) = P(Z∩W )
P(W ) . The event Z consists in the

exclusive execution of Υ in s, hence, P(Z) = PF (Υ, s). The event W consists in the exclusive execution of
any set (including the empty one) Ξ ∈ Exec(s) in s. Thus, W = ∪jZj , where ∀j, Zj are mutually exclusive
events (in a probability sense, i.e. intersection of these events is the empty event) and ∃i, Z = Zi. We have
P(W ) =

∑
j P(Zj) =

∑
Ξ∈Exec(s) PF (Ξ, s), because summation reflects the probability of the mutually exclusive

event union. Since Z ∩W = Zi∩ (∪jZj) = Zi = Z, we have P(Z|W ) = P(Z)
P(W ) = PF (Υ,s)∑

Ξ∈Exec(s) PF (Ξ,s) . One can also

treat PT (Υ, s) and PF (Υ, s) as the actual and potential probabilities to execute Υ in s, respectively, since we
have PT (Υ, s) = PF (Υ, s) only when all sets (including the empty one) consisting of the executable stochastic
multiactions can be executed in s. In this case, all the mentioned stochastic multiactions can be executed in
parallel in s and we have

∑
Ξ∈Exec(s) PF (Ξ, s) = 1, since this sum collects the products of all combinations

of the probability parts of the stochastic multiactions and the negations of these parts. But in general, for
example, for two stochastic multiactions (α, ρ) and (β, χ) executable in s, it may happen that they cannot be
executed in s together, in parallel, i.e. ∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but {(α, ρ), (β, χ)} 6∈ Exec(s). Note that
for s ∈ DRST (G) we have PT (∅, s) ∈ (0; 1], hence, there is a non-zero probability to execute the empty multiset
of activities in s at the next time moment.

If s ∈ DRWT (G) ∪ DRV (G) then PT (Υ, s) can be interpreted as the weight of the set of deterministic
multiactions Υ which is ready for execution in s normalized by the weights of all the sets executable in s.
This approach is analogous to that used in the EMPA definition of the probabilities of immediate actions
executable from the same process state [22] (inspired by way in which the probabilities of conflicting immediate
transitions in GSPNs are calculated [9]). The only difference is that we have a step semantics and, for every
set of deterministic multiactions executed in parallel, we should use its cumulative weight. To get the analogy

22



Table 5: Calculation of the probability functions PF, PT, PM for s1 ∈ DR(E) and E = ({a}, ρ)[]({a}, χ)

s1\Υ ∅ {({a}, ρ)} {({a}, χ)} Σ

PF (1− ρ)(1− χ) ρ(1− χ) χ(1− ρ) 1− ρχ

PT (1−ρ)(1−χ)
1−ρχ

ρ(1−χ)
1−ρχ

χ(1−ρ)
1−ρχ 1

PM (1−ρ)(1−χ)
1−ρχ (s1)

ρ+χ−2ρχ
1−ρχ (s2) 1

with EMPA possessing interleaving semantics, we should interpret the weights of immediate actions of EMPA
as the cumulative weights of the sets of deterministic multiactions of dtsdPBC.

The advantage of our two-stage approach to definition of the probability to execute a set of activities is that
the resulting probability formula PT (Υ, s) is valid both for (sets of) stochastic and deterministic multiactions.
It allows one to unify the notation used later while constructing the operational semantics and analyzing
performance.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations of G is equal
to 1. More formally, ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) = 1. This, obviously, follows from the definition of

PT (Υ, s), and guarantees that it defines a probability distribution.
The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

The summation in the definition above reflects the probability of the mutually exclusive event union,
since

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PT (Υ, s) = 1∑
Ξ∈Exec(s) PF (Ξ,s) ·

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PF (Υ, s), where for each

Υ, PF (Υ, s) is the probability of the exclusive execution of Υ in s. Note that ∀s ∈ DR(G)∑
{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H

Υ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ
→H̃}

∑
{Υ|∃H∈s ∃H̃∈s̃ H

Υ
→H̃}

PT (Υ, s) =
∑

Υ∈Exec(s) PT (Υ, s) = 1.

Example 3.9 Let E = ({a}, ρ)[]({a}, χ), where ρ, χ ∈ (0; 1). DR(E) consists of the equivalence classes s1 =
[E]≈ and s2 = [E]≈. We have DRT (E) = {s1, s2}. The execution probabilities are calculated as follows. Since
Exec(s1) = {∅, {({a}, ρ)}, {({a}, χ)}}, we get PF ({({a}, ρ)}, s1) = ρ(1−χ), PF ({({a}, χ)}, s1) = χ(1−ρ) and
PF (∅, s1) = (1 − ρ)(1 − χ). Then

∑
Ξ∈Exec(s1)

PF (Ξ, s1) = ρ(1 − χ) + χ(1 − ρ) + (1 − ρ)(1 − χ) = 1 − ρχ.

Thus, PT ({({a}, ρ)}, s1) = ρ(1−χ)
1−ρχ , PT ({({a}, χ)}, s1) = χ(1−ρ)

1−ρχ and PT (∅, s1) = PM(s1, s1) = (1−ρ)(1−χ)
1−ρχ .

Further, Exec(s2) = {∅}, hence,
∑

Ξ∈Exec(s2)
PF (Ξ, s2) = PF (∅, s2) = 1 and PT (∅, s2) = PM(s2, s2) =

1
1 = 1. Finally, PM(s1, s2) = PT ({({a}, ρ)}, s1) + PT ({({a}, χ)}, s1) = ρ(1−χ)

1−ρχ + χ(1−ρ)
1−ρχ = ρ+χ−2ρχ

1−ρχ . In

Table 5, the calculation of the probability functions PF (Υ, s1), PT (Υ, s1), PM(s1, s) is explained, where Υ ∈
Exec(s1), s ∈ {s1, s2} (the value of s is depicted in the parentheses near the value of PM(s1, s)) and Σ =∑

Ξ∈Exec(s1)
PX(Ξ, s1), PX ∈ {PF, PT, PM}.

Let E′ = ({a}, ♮0l )[]({a}, ♮
0
m), where l,m ∈ IR>0. DR(E′) consists of the equivalence classes s′1 = [E′]≈ and

s′2 = [E′]≈. We have DRT (E′) = {s′2} and DRV (E′) = {s′1}. The execution probabilities are calculated as
follows. Since Exec(s′1) = {{({a}, ♮0l )}, {({a}, ♮

0
m)}}, we get PF ({({a}, ♮0l )}, s

′
1) = l and PF ({({a}, ♮0m)}, s

′
1) =

m. Then
∑

Ξ∈Exec(s′1)
PF (Ξ, s′1) = l +m. Thus, PT ({({a}, ♮0l )}, s

′
1) = l

l+m and PT ({({a}, ♮0m)}, s
′
1) = m

l+m .

Further, Exec(s′2) = {∅}, hence,
∑

Ξ∈Exec(s′2)
PF (Ξ, s′2) = PF (∅, s′2) = 1 and PT (∅, s′2) = PM(s′2, s

′
2) =

1
1 = 1.

Finally, PM(s′1, s
′
2) = PT ({({a}, ♮0l )}, s

′
1) + PT ({({a}, ♮0m)}, s

′
1) =

l
l+m + m

l+m = 1. In Table 6, the calculation
of the probability functions PF (Υ, s′1), PT (Υ, s

′
1), PM(s′1, s

′) is explained, where Υ ∈ Exec(s′1), s
′ ∈ {s′2} (the

value of s′ is depicted in the parentheses near the value of PM(s′1, s
′)) and Σ =

∑
Ξ∈Exec(s′1)

PX(Ξ, s′1), PX ∈

{PF, PT, PM}.

Definition 3.8 Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadru-
ple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSDL
fin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Υ
→ H̃};
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Table 6: Calculation of the probability functions PF, PT, PM for s′1 ∈ DR(E
′
) and E′ = ({a}, ♮0l )[]({a}, ♮

0
m)

s′1\Υ {({a}, ♮0l )} {({a}, ♮0m)} Σ

PF l m l+m

PT l
l+m

m
l+m 1

PM 1 (s′2) 1

• the initial state is sG = [G]≈.

Example 3.10 Let E be from Example 3.1. The next inferences by rule E are possible from the elements
of [E]≈:

({a}, ♮31)[]({b},
1
3 ) ≈ ({a}, ♮31)

3[]({b}, 13 )
∅
→ ({a}, ♮31)

2[]({b}, 13 ),

({a}, ♮31)[]({b},
1
3 ) ≈ ({a}, ♮31)

3[]({b}, 13 )
∅
→ ({a}, ♮31)

2[]({b}, 13 ).

The first and second inferences suggest the empty move transition [E]≈
∅
→ [({a}, ♮31)

2[]({b}, 13 )]≈ 6= [E]≈.
The intuition is that the timer of the enabled waiting multiaction ({a}, ♮31) is decremented by one time unit in
the both cases, whenever it is overlined or not. Later we shall see that in the both cases, the respective waiting
transition of the LDTSDPN corresponding to E will be enabled at a “common” marking (that also enables a
stochastic transition, matched up to ({b}, 13 )), so its timer should be decreased by one with a time tick while
staying at the same marking, and such a time move will lead to a different state of the LDTSDPN.

The definition of TS(G) is correct, i.e. for every state, the sum of the probabilities of all the transitions
starting from it is 1. This is guaranteed by the note after the definition of PT (Υ, s). Thus, we have defined
a generative model of probabilistic processes, according to the classification from [60]. The reason is that the
sum of the probabilities of the transitions with all possible labels should be equal to 1, not only of those with
the same labels (up to enumeration of activities they include) as in the reactive models, and we do not have a
nested probabilistic choice as in the stratified models.

The transition system TS(G) associated with a dynamic expression G describes all the steps (parallel
executions) that occur at discrete time moments with some (one-step) probability and consist of multisets of
activities. Every step consisting of stochastic (waiting, respectively) multiactions or the empty step (i.e. that
consisting of the empty multiset of activities) occurs instantly after one discrete time unit delay. Each step
consisting of immediate multiactions occurs instantly without any delay. The step can change the current
state to a different one. The states are the structural equivalence classes of dynamic expressions obtained by
application of action rules starting from the expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will

be written as s
Υ
→P s̃. It is interpreted as follows: the probability to change from state s to s̃ as a result of

executing Υ is P .
Note that from every s-tangible state the empty multiset of activities can always be executed by ruleE. Hence,

for s-tangible states, Υ may be the empty multiset, and its execution only decrements by one the timer values (if

any) of the current state (i.e. the equivalence class). Then we may have a transition s
∅
→P	s from an s-tangible

state s to the tangible (i.e. s-tangible or w-tangible) state 	s = [	H ]≈ for H ∈ s∩SatOpRegDynExpr. Since
structurally equivalent saturated operative dynamic expressions remain so after decreasing by one their timer
values, 	 s is unique for each s and the definition is correct. Thus, 	 s is the structural equivalence class of
an arbitrary saturated operative dynamic expression from s, where timer values have been decrements by one,
prior to taking the equivalence class of that expression. We cannot simply collect all the timer-decremented (by
one) saturated operative dynamic expressions from s, since 	s should be a state itself, i.e. it must contain all
structurally equivalent expressions.

Example 3.11 Let E be from Example 3.1 and s = [E]≈. Then 	s = [({a}, ♮31)
2[]({b}, 13 )]≈ =

[({a}, ♮31)
2[]({b}, 13 )]≈ = {({a}, ♮31)

2[]({b}, 13 ), ({a}, ♮
3
1)

2[]({b}, 13 ), ({a}, ♮
3
1)

2[]({b}, 13 )} = [({a}, ♮31)
2[]({b}, 13 )]≈.

The construction of 	 s corresponds to applying the empty move rule to an arbitrary saturated operative
dynamic expression from s, followed by taking the structural equivalence class of the resulting expression. We

have to keep track of the executions like s
∅
→P	s, called the empty moves, since they affect the timers and have

non-zero probabilities. The latter follows from the definition of PF (∅, s) and the fact that the probabilities of
stochastic multiactions cannot be equal to 1 as they belong to the interval (0; 1).

24



TS(E)

☛✡ ✟✠✞✝ ☎✆s2☛✡ ✟✠s3
❄✞✝ ✲ ({a},♮21),1

∅,1

❄∅,1

☛✡ ✟✠s1

Figure 2: The transition system of E for E = ({a}, ♮21)[]({b}, ♮
3
2)

When it holds 	H = H for H ∈ s ∩ SatOpRegDynExpr, we obtain 	 s = s by definition of 	 s. Then

the empty move from s is in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing states Υ

cannot be the empty multiset, since we must execute some immediate (waiting, respectively) multiactions from
them at the current (next, respectively) time moment.

The step probabilities belong to the interval (0; 1], being 1 in the case when we cannot leave an s-tangible

state s and the only transition leaving it is the empty move one s
∅
→1	 s, or if there is just a single transition

from a w-tangible or a vanishing state to any other one.

We write s
Υ
→ s̃ if ∃P s

Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

The first equivalence we are going to introduce is isomorphism which is a coincidence of systems up to
renaming of their components or states.

Definition 3.9 Let G,G′ be dynamic expressions and TS(G)= (SG, LG, TG, sG), TS(G′)= (SG′, LG′ , TG′ , sG′)
be their transition systems. A mapping β : SG → SG′ is an isomorphism between TS(G) and TS(G′), denoted
by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)≃TS(G′), if ∃β :TS(G)≃TS(G′).

Transition systems of static expressions can be defined as well. For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 3.10 Two dynamic expressions G and G′ are equivalent with respect to transition systems, denoted
by G =ts G

′, if TS(G) ≃ TS(G′).

3.4 Examples of transition systems

We now present a series of examples that demonstrate how to construct the transition systems of the dynamic
expressions that include various compositions of stochastic, waiting and immediate multiactions. In the transi-
tion systems, the s-tangible and w-tangible states are depicted in ordinary and double ovals, respectively, and
the vanishing ones are depicted in boxes. To simplify the graphical representation, the singleton multisets of
activities are written without outer braces.

Example 3.12 Let E = ({a}, ♮21)[]({b}, ♮
3
2). DR(E) consists of the equivalence classes

s1 = [({a}, ♮21)
2[]({b}, ♮32)

3]≈=[({a}, ♮21)
2[]({b}, ♮32)

3]≈, s2 = [({a}, ♮21)
1[]({b}, ♮32)

2]≈=[({a}, ♮21)
1[]({b}, ♮32)

2]≈,

s3 = [({a}, ♮21)[]({b}, ♮
3
2)]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅. In Figure 2, the transition system
TS(E) is shown.

This example demonstrates a choice between two waiting multiactions with different delays. It shows that the
waiting multiaction ({a}, ♮21) with a less delay 2 is always executed first, hence, the choice is resolved in favour
of it in any case and an absorbing state is then reached, so that the waiting multiaction ({b}, ♮32) with a greater
delay 3 is never executed.
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TS(E)

☛✡ ✟✠
✚

✚❂
s2

☛✡ ✟✠s1

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠
s3

s4

❄

✞✝ ✲

∅, 2
3

∅, 2
3

∅,1

❩
❩⑦

❈
❈
❈
❈❈❲ ❄({a},♮31),1

({b}, 1
3
), 1

3

({b}, 1
3
),

1
3

Figure 3: The transition system of E for E = ({a}, ♮31)[]({b},
1
3 )

Example 3.13 Let E = ({a}, ♮31)[]({b},
1
3 ) (E is from Example 3.1). DR(E) consists of the equivalence classes

s1 = [({a}, ♮31)
3[]({b}, 13 )]≈ = [({a}, ♮31)

3[]({b}, 13 )]≈, s2 = [({a}, ♮31)
2[]({b}, 13 )]≈ = [({a}, ♮31)

2[]({b}, 13 )]≈,

s3 = [({a}, ♮31)
1[]({b}, 13 )]≈ = [({a}, ♮31)

1[]({b}, 13 )]≈, s4 = [({a}, ♮31)[]({b},
1
3 )]≈.

We have DRST (E) = {s1, s2, s4}, DRWT (E) = {s3} and DRV (E) = ∅. In Figure 3, the transition system
TS(E) is shown.

This example demonstrates a choice between waiting and stochastic multiactions. It shows that the stochastic
multiaction ({b}, 13 ) can be executed until the timer value of the waiting multiaction ({a}, ♮31) becomes 1, after
which only the waiting multiaction can be executed in the next moment, leading to an absorbing state. Thus,
in our setting, a waiting multiaction that cannot be executed in the next time moment and whose timer is still
running may be interrupted (preempted) by executing a stochastic multiaction.

Example 3.14 Let E = (({a}, ♮31)[]({b},
1
3 )) rs a. DR(E) consists of the equivalence classes

s1 = [(({a}, ♮31)
3[]({b}, 13 )) rs a]≈ = [(({a}, ♮31)

3[]({b}, 13 )) rs a]≈,

s2 = [(({a}, ♮31)
2[]({b}, 13 )) rs a]≈ = [(({a}, ♮31)

2[]({b}, 13 )) rs a]≈,

s3 = [(({a}, ♮31)
1[]({b}, 13 )) rs a]≈ = [(({a}, ♮31)

1[]({b}, 13 )) rs a]≈,

s4 = [(({a}, ♮31)[]({b},
1
3 )) rs a]≈.

We have DRST (E) = {s1, s2, s3, s4} and DRWT (E) = ∅ = DRV (E). In Figure 4, the transition system
TS(E) is shown.

This example is a modification of the previous Example 3.13 by applying a restriction operation by action a
to the whole expression. The present example shows that the stochastic multiaction ({b}, 13 ) can be executed until
the timer value of the “restricted” waiting multiaction ({a}, ♮31) becomes 1, after which the waiting multiaction
also cannot be executed in the next moment, since it is affected by the restriction. Instead, the stochastic
multiaction ({b}, 13 ) can be executed again, leading to an absorbing state, or we return to the current state after
one time tick (the empty loop in that state). Thus, a waiting multiaction that cannot be executed because of
the restriction and whose timer runs until reaching its final value 1 may always be preempted by executing a
stochastic multiaction. To verify that the timer value 1 remains unchanged with the time progress, recall the
empty move rule E from Table 3 and the definition of 	G with max{1, δ − 1}=max{1, 0}=1 when δ=1.

Note that the timer decrement of the “restricted” waiting multiaction ({a}, ♮31) induces a partial (for the first
2 time ticks) unfolding of the behaviour consisting in a choice between executing and non-executing the stochastic
multiaction ({b}, 13 ). In our setting, the timer values are kept even for the waiting multiactions that cannot be
executed because of the restriction, since they can potentially participate in a synchronization, but the activities
resulted from synchronization do not appear explicitly in the syntax of the process expressions, and their timer
values can be detected only by observing those of the both synchronized waiting multiactions. Later we shall see
an importance of such a construction, particularly, in Examples 3.18 and 3.22.

Example 3.15 Let E = [({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]. DR(E) consists of the equivalence classes
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TS(E)

☛✡ ✟✠
✚

✚❂
s2

☛✡ ✟✠s1

☛✡ ✟✠☛✡ ✟✠
s3

s4

❄

✞✝ ✲
✞✝ ✲

∅, 2
3

∅, 2
3

∅,1

∅, 2
3 ❩

❩⑦

❈
❈
❈
❈❈❲ ❄({b}, 1

3
), 1

3

({b}, 1
3
), 1

3

({b}, 1
3
),

1
3

Figure 4: The transition system of E for E = (({a}, ♮31)[]({b},
1
3 )) rs a

TS(E)

☛✡ ✟✠
✚

✚❂
s3

☛✡ ✟✠s2

☛✡ ✟✠✞✝ ☎✆ ☛✡ ✟✠s4 s5
❄ ❅

❅❘

∅, 2
3

∅, 2
3

({c}, 1
3
),

1
3

({b},♮31),1 ∅,1

✓

✒

✲

✑

☛✡ ✟✠s1

❄
({a}, 1

2
), 1

2

✂ ✁✻

❇
❇
❇
❇❇◆

✞✝ ✲
∅, 1

2

({c}, 1
3
), 1

3

Figure 5: The transition system of E for E = [({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]

s1 = [[({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]]≈,

s2 = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

3 ∗ ({c}, 13 )]]≈ = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

3 ∗ ({c}, 13 )]]≈,

s3 = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

2 ∗ ({c}, 13 )]]≈ = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

2 ∗ ({c}, 13 )]]≈,

s4 = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

1 ∗ ({c}, 13 )]]≈ = [[({a}, 12 ) ∗ ({b}, ♮
3
1)

1 ∗ ({c}, 13 )]]≈,

s5 = [[({a}, 12 ) ∗ ({b}, ♮
3
1) ∗ ({c},

1
3 )]]≈.

We have DRST (E) = {s1, s2, s3, s5}, DRWT (E) = {s4} and DRV (E) = ∅. In Figure 5, the transition
system TS(E) is shown.

This example demonstrates an iteration loop with a waiting multiaction. The iteration initiation is modeled
by a (initiating) stochastic multiaction ({a}, 12 ). The iteration body that corresponds to the loop consists of a
(looping) waiting multiaction ({b}, ♮31). The iteration termination is represented by a (terminating) stochastic
multiaction ({c}, 13 ). The terminating stochastic multiaction can be executed until the timer value of the waiting
multiaction becomes 1, after which only the waiting multiaction can be executed in the next moment. Thus,
the iteration termination can either complete the repeated execution of the iteration body or break its execution
when the waiting multiaction timer shows some intermediate value (that is less than the initial value, being the
multiaction delay, but greater than 1). The execution of the waiting multiaction ({b}, ♮31) leads to the repeated
start of the iteration body. The execution of the terminating stochastic multiaction ({c}, 13 ) brings to the final
absorbing state of the iteration construction.

Example 3.16 Let E = ({a}, ♮01)‖({b}, ♮
2
2)‖({c}, ♮

3
3). DR(E) consists of the equivalence classes

s1 = [({a}, ♮01)‖({b}, ♮
2
2)

2‖({c}, ♮33)
3]≈, s2 = [({a}, ♮01)‖({b}, ♮

2
2)

2‖({c}, ♮33)
3]≈,

s3 = [({a}, ♮01)‖({b}, ♮
2
2)

1‖({c}, ♮33)
2]≈, s4 = [({a}, ♮01)‖({b}, ♮

2
2)‖({c}, ♮

3
3)

1]≈,

s5 = [({a}, ♮01)‖({b}, ♮
2
2)‖({c}, ♮

3
3)]≈.
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TS(E)

☛✡ ✟✠s2

☛✡ ✟✠s5

☛✡ ✟✠✞✝ ☎✆s4
❄

❄✞✝ ✲ ({c},♮33),1

∅,1

s3

❄({b},♮
2
2),1

☛✡ ✟✠✞✝ ☎✆∅,1
({a},♮01),1

s1

❄

Figure 6: The transition system of E for E = ({a}, ♮01)‖({b}, ♮
2
2)‖({c}, ♮

3
3)

We have DRST (E) = {s2, s5}, DRWT (E) = {s3, s4} and DRV (E) = {s1}. In Figure 6, the transition
system TS(E) is shown.

This example demonstrates a parallel composition of an immediate and two waiting multiactions with different
delays. It shows that the immediate multiaction ({a}, ♮01) is always executed before any parallel with it waiting
multiaction. Further, from the two parallel waiting multiactions, that ({b}, ♮22) with a less delay 2 executed first in
any case. Finally, the execution of the waiting multiaction ({c}, ♮33) with a greater delay 3 leads to an absorbing
state. Thus, in spite of parallelism of those three deterministic multiactions, they are executed sequentially in
fact, in the increasing order of their (different) delays. That sequence also includes the empty set, executed after
the immediate multiaction ({a}, ♮01), since the waiting multiaction ({b}, ♮22) with a less delay will then need a
passage of one time unit (one time tick) for its timer value (RTE) become 1 and it can be executed itself. Though
the example is not complex, it shows a transition system with all three types of states: s-tangible, w-tangible and
vanishing.

Example 3.17 Let E = ({a}, ♮31)‖({b},
1
3 ). DR(E) consists of the equivalence classes

s1 = [({a}, ♮31)
3‖({b}, 13 )]≈, s2 = [({a}, ♮31)

2‖({b}, 13 )]≈, s3 = [({a}, ♮31)
2‖({b}, 13 )]≈,

s4 = [({a}, ♮31)
1‖({b}, 13 )]≈, s5 = [({a}, ♮31)

1‖({b}, 13 )]≈, s6 = [({a}, ♮31)‖({b},
1
3 )]≈,

s7 = [({a}, ♮31)‖({b},
1
3 )]≈.

We have DRST (E) = {s1, s2, s3, s6, s7}, DRWT (E) = {s4, s5} and DRV (E) = ∅. In Figure 7, the transition
system TS(E) is shown.

This example demonstrates a parallel composition of waiting and stochastic multiactions. It shows that the
stochastic multiaction ({b}, 13 ) can be executed until the timer value of the waiting multiaction ({a}, ♮31) becomes
1, after which only the waiting multiaction can be executed in the next moment. The execution of the latter leads
to an absorbing state either directly or indirectly, via executing a possible empty loop, followed (via sequential
composition) by the stochastic multiaction ({b}, 13 ) that has not been executed in the preceding states.

Example 3.18 Let E = (({a}, ♮21)‖({â}, ♮
2
2)) sy a rs a. DR(E) consists of the equivalence classes

s1 = [(({a}, ♮21)
2‖({â}, ♮22)

2) sy a rs a]≈, s2 = [(({a}, ♮21)
1‖({â}, ♮22)

1) sy a rs a]≈,

s3 = [(({a}, ♮21)‖({â}, ♮
2
2)) sy a rs a]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅. In Figure 8, the transition system
TS(E) is shown.

This example demonstrates a parallel composition of two waiting multiactions ({a}, ♮21) and ({â}, ♮22), whose
multiaction parts are singleton multisets with an action a and its conjugate â, respectively. The resulting
composition is synchronized and then restricted by that action, which (and its conjugate) therefore “disappears”
from the composite process behaviour. From the initial state, only the empty multiset of activities is executed that
decrements by one the values of the timers. That evolution follows by the execution of a new waiting multiaction
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TS(E)

☛✡ ✟✠☛✡ ✟✠
✚

✚❂ ❅❅❘
s2 s3

☛✡ ✟✠s1

☛✡ ✟✠☛✡ ✟✠s6 s7

☛✡ ✟✠✞✝ ☎✆ ☛✡ ✟✠✞✝ ☎✆s4 s5
❄

❄

❄

❄
✲

❅
❅❘

✞✝ ✲ ☎✆✛

∅, 2
3

({b}, 1
3
), 1

3

∅, 2
3

({b}, 1
3
), 1

3 ∅,1

({a},♮31),1 ({a},♮31),1({b}, 1
3
), 1

3

∅, 2
3

∅,1

Figure 7: The transition system of E for E = ({a}, ♮31)‖({b},
1
3 )

TS(E)

☛✡ ✟✠✞✝ ☎✆s2☛✡ ✟✠s3
❄✞✝ ✲ (∅,♮23),1

∅,1

❄∅,1

☛✡ ✟✠s1

Figure 8: The transition system of E for E = (({a}, ♮21)‖({â}, ♮
2
2)) sy a rs a

(∅, ♮23) with the empty multiaction part, resulted from synchronization of the two waiting multiactions, which leads
to an absorbing state.

Note that the timer values of the two waiting multiactions and that of the new waiting multiaction (∅, ♮23)
(being their synchronous product) coincide until all of them remain enabled with the time progress. Thus, it is
very useful that the expression syntax preserves such two enabled synchronized waiting multiactions, removed by
restriction from the behaviour, since their timer values suggest that of their synchronous product, which is not
explicit in the syntax. Thus, the timer values of those two “virtual” enabled waiting multiactions cannot just be
marked as undefined in the syntax, provided that one keeps track of the timer value of their synchronous product
being only implicit in the syntax.

If both synchronized waiting multiactions lose their enabledness with the time progress then their synchronous
product (∅, ♮23) also loses its enabledness and all of them obviously loose their timer value annotations. It may
happen that one of the synchronized waiting multiactions loses its enabledness (for example, when a conflicting
waiting multiaction is executed) while the other one keeps its enabledness. Then their synchronous product also
loses its enabledness, together with its timer value annotation. In such a case, the timer value of the enabled
synchronized waiting multiaction does not suggest anymore that of the synchronous product. That “saved”
timer value merely decrements with every time tick unless it becomes equal to 1, after which either the enabled
synchronized waiting multiaction is executed or it cannot be executed by some reason (for example, when affected
by restriction) and then the timer value 1 remains unchanged with the time progress. To verify this, recall the
empty move rule E from Table 3 and the definition of 	G with max{1, δ − 1} = max{1, 0} = 1 when δ = 1.

Example 3.19 Let E = ((({a}, ♮11); ({b}, ♮
3
2))‖({b̂}, ♮

3
3)) sy b. DR(E) consists of the equivalence classes

s1 = [((({a}, ♮11)
1; ({b}, ♮32))‖({b̂}, ♮

3
3)

3) sy b]≈, s2 = [((({a}, ♮11); ({b}, ♮
3
2)

3)‖({b̂}, ♮33)
2) sy b]≈,

s3 = [((({a}, ♮11); ({b}, ♮
3
2)

2)‖({b̂}, ♮33)
1) sy b]≈, s4 = [((({a}, ♮11); ({b}, ♮

3
2)

1)‖({b̂}, ♮33)) sy b]≈,

s5 = [((({a}, ♮11); ({b}, ♮
3
2))‖({b̂}, ♮

3
3)) sy b]≈.

We have DRST (E) = {s2, s5}, DRWT (E) = {s1, s3, s4} and DRV (E) = ∅. In Figure 9, the transition
system TS(E) is shown.

This example demonstrates a parallel composition of two subprocesses. The first subprocess is a sequential
composition of two waiting multiactions ({a}, ♮11) and ({b}, ♮32). The second subprocess consists of a single waiting
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TS(E)

☛✡ ✟✠s2

☛✡ ✟✠s5

☛✡ ✟✠✞✝ ☎✆s4
❄

❄✞✝ ✲ ({b},♮32),1

∅,1

s3

❄({b̂},♮
3
3),1

☛✡ ✟✠✞✝ ☎✆∅,1
({a},♮11),1

☛✡ ✟✠✞✝ ☎✆s1
❄

Figure 9: The transition system of E for E = ((({a}, ♮11); ({b}, ♮
3
2))‖({b̂}, ♮

3
3)) sy b

multiaction ({b̂}, ♮33). The resulting composition is synchronized by the action b, which (and its conjugate)
therefore “disappears” from the behaviour of their synchronous product. From the initial state, only the waiting
multiaction ({a}, ♮11) is executed and the timer of the newly enabled waiting multiaction ({b}, ♮32) starts with the

value 3 while the timer value 3 of ({b̂}, ♮33) is decreased by one and becomes 2. That evolution follows by the
execution of the empty multiset of activities that further decrements the values of those timers that become 2
and 1, respectively. Then the waiting multiaction ({b̂}, ♮33) is executed and its timer value annotation disappears
while the timer value of ({b}, ♮32) becomes 1. Then the execution of the waiting multiaction ({b}, ♮32) finally leads
to an absorbing state.

Thus, the new waiting multiaction (∅, ♮35), resulted from synchronization of ({b}, ♮32) and ({b̂}, ♮33), cannot be
executed, since those synchronized waiting multiactions cannot be executed together (in parallel) in any reach-
able state. Note that a synchronous product cannot be executed even if one (the latest, in case the timers are
disbalanced) of the synchronized activities cannot be executed. Then only the maximum timer value of the two
synchronized waiting multiactions suggests the timer value of their synchronous product (∅, ♮35), until all of them
remain enabled with the time progress. The enabledness keeps the corresponding timer value annotations present
in the syntax and those values defined. Each defined timer value of ({b}, ♮32) is always less by one than that of

({b̂}, ♮33), since the execution of the former waiting multiaction is delayed for one time unit due to the execution
of the preceding ({a}, ♮11). Then simultaneous starting the timers of the two synchronized waiting multiactions
is prevented, resulting in the disbalanced timers. If just one timer value of the two synchronized waiting multi-
actions is undefined then that of their synchronous product is undefined too, since it is not enabled in that case.

Example 3.20 Let E = ((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]({c}, ♮

1
4))) sy x rs x. DR(E) consists of the equiva-

lence classes

s1 = [((({a}, ♮11)
1; ({b, x̂}, ♮02))‖(({x}, ♮

0
3)[]({c}, ♮

1
4)

1)) sy x rs x]≈ =

[((({a}, ♮11)
1; ({b, x̂}, ♮02))‖(({x}, ♮

0
3)[]({c}, ♮

1
4)

1)) sy x rs x]≈,

s2 = [((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]({c}, ♮

1
4))) sy x rs x]≈.

We have DRST (E) = {s2}, DRWT (E) = {s1} and DRV (E) = ∅. In Figure 10, the transition system
TS(E) is shown.

This example demonstrates a parallel composition of two subprocesses, synchronized and then restricted by
an auxiliary action that (and its conjugate) hereupon “disappears” from the composite process behaviour. The
first subprocess is a sequential composition of the waiting ({a}, ♮11) and immediate ({b, x̂}, ♮02) multiactions. The
second subprocess is a choice between the immediate ({x}, ♮03) and waiting ({c}, ♮14) multiactions. The immediate
multiactions ({b, x̂}, ♮02) and ({x}, ♮03) in the first and second subprocesses are synchronized via an auxiliary
action x that (and its conjugate) is then removed from the behaviour by the restriction operation. Since those
immediate multiactions are within coverage of restriction by the auxiliary action, they cannot be executed.
The new immediate multiaction ({b}, ♮05), resulted from that synchronization can only be executed if the waiting
multiaction ({a}, ♮11) (preceding it via sequential composition) in the first subprocess has occurred and the waiting
multiaction ({c}, ♮14) (conflicting with it via the choice composition) in the second subprocess has not occurred.
Since only maximal multisets of parallel waiting multiactions may be executed, the waiting multiactions in both
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TS(E)☛✡ ✟✠✞✝ ☎✆s1☛✡ ✟✠s2
❄✞✝ ✲{({a},♮11),({c},♮14)},1

∅,1

Figure 10: The transition system of E for E = ((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]({c}, ♮

1
4))) sy x rs x

the subprocesses must occur, thus preventing execution of the new immediate multiaction ({b}, ♮05), generated by
synchronization.

Example 3.21 Let E = ((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x rs x. DR(E) consists of the equiva-

lence classes

s1 = [((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x rs x]≈ =

[((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x rs x]≈,

s2 = [((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x rs x]≈ =

[((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x rs x]≈,

s3 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

2)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x rs x]≈,

s4 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

1)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x rs x]≈.

We have DRST (E) = {s1, s3, s4}, DRWT (E) = {s2} and DRV (E) = ∅. In Figure 11, the transition system
TS(E) is shown.

This example is a modification of the previous Example 3.20 by replacing all the immediate multiactions
with the waiting ones and by setting to 2 the delays of all the waiting multiactions from the syntax. Thus, we
examine a compound process, constructed with parallelism, synchronization and restriction operations from the
following two subprocesses. The first subprocess is a sequential composition of two waiting multiactions ({a}, ♮21)
and ({b, x̂}, ♮22). The second subprocess is a choice between other two waiting multiactions ({x}, ♮23) and ({c}, ♮24).
The second waiting multiaction ({b, x̂}, ♮22) in the first subprocess and the first waiting multiaction ({x}, ♮23) in the
second subprocess are synchronized via an auxiliary action x that (and its conjugate) is then removed from the
behaviour by the restriction operation. The new waiting multiaction ({b}, ♮25), resulted from that synchronization
has the same delay 2 as the two synchronized waiting multiactions. It can only be executed if the first waiting
multiaction ({a}, ♮21) (preceding it via sequential composition) in the first subprocess has occurred and the second
waiting multiaction ({c}, ♮24) (conflicting with it via the choice composition) in the second subprocess has not
occurred. Since only maximal multisets of parallel waiting multiactions may be executed, the mentioned (“first
in first” and “second in second”) waiting multiactions in both the subprocesses must occur, thus preventing
execution of the new waiting multiaction ({b}, ♮25), generated by synchronization.

Note that the overlined second waiting multiaction in the first subprocess is within coverage of restriction
by the auxiliary action. Consider the state, reached from the initial state by execution of the empty multiset of
activities, followed by the parallel execution of the mentioned (‘first in first” and “second in second”) waiting
multiactions. After the empty multiset execution from the considered state, the associated timer value of that
overlined waiting multiaction is decremented to 1. Then an absorbing state is reached, from which only the
empty loop is possible, which leaves that timer value 1 unchanged though. To verify this, recall the empty move
rule E from Table 3 and the definition of 	G with max{1, δ − 1} = max{1, 0} = 1 when δ = 1.

Example 3.22 Let E = ((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x. DR(E) consists of the equivalence

classes
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TS(E)

☛✡ ✟✠✞✝ ☎✆s2
☛✡ ✟✠s4

❄

✞✝ ✲
{({a},♮21),({c},♮24)},1

∅,1

☛✡ ✟✠s1

❄∅,1

☛✡ ✟✠s3

❄∅,1

Figure 11: The transition system of E for E = (((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x rs x

s1 = [((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x]≈ =

[((({a}, ♮21)
2; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

2[]({c}, ♮24)
2)) sy x]≈,

s2 = [((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x]≈ =

[((({a}, ♮21)
1; ({b, x̂}, ♮22))‖(({x}, ♮

2
3)

1[]({c}, ♮24)
1)) sy x]≈,

s3 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

2)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x]≈,

s4 = [((({a}, ♮21); ({b, x̂}, ♮
2
2)

1)‖(({x}, ♮23)[]({c}, ♮
2
4))) sy x]≈,

s5 = [((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x]≈.

We have DRST (E) = {s1, s3, s5}, DRWT (E) = {s2, s4} and DRV (E) = ∅. In Figure 12, the transition
system TS(E) is shown.

This example is a modification of the previous Example 3.21 by removing restriction from the syntax. Thus,
we examine a compound process, constructed with parallelism and synchronization operations from the two
subprocesses being a sequential composition of two waiting multiactions ({a}, ♮21) and ({b, x̂}, ♮22) and a choice
between other two waiting multiactions ({x}, ♮23) and ({c}, ♮24), respectively. All the four waiting multiactions
have the same delay 2. The second waiting multiaction ({b, x̂}, ♮22) in the first subprocess and the first waiting
multiaction ({x}, ♮23) in the second subprocess are synchronized via an auxiliary action x. The new waiting
multiaction ({b}, ♮25), resulted from that synchronization has the same delay 2 as the two synchronized waiting
multiactions. It can only be executed if the first waiting multiaction ({a}, ♮21) (preceding it via sequential compo-
sition) in the first subprocess has occurred and the second waiting multiaction ({c}, ♮24) (conflicting with it via the
choice composition) in the second subprocess has not occurred. Since only maximal multisets of parallel waiting
multiactions may be executed, the mentioned (“first in first” and “second in second”) waiting multiactions in
the subprocesses must occur, thus preventing execution of the new waiting multiaction ({b}, ♮25), generated by
synchronization. The alternative maximal multiset of parallel waiting multiactions that may be executed from
the same state consists of the “first in first” ({a}, ♮21) and “first in second” ({x}, ♮23) waiting multiactions in the
subprocesses, but the ‘first in second” waiting multiaction ({x}, ♮23) is the second of the two synchronized waiting
multiactions, and its occurrence also prevents execution of their synchronous product ({b}, ♮25).

Example 3.23 Consider the expression Stop = ({g}, 12 ) rs g specifying the special process that is only able to
perform empty loops with probability 1 and never terminates. We could actually use any arbitrary action from
A and any probability belonging to the interval (0; 1) in the definition of Stop. Note that Stop is analogous to the
one used in the examples within sPBC. The latter is a continuous time stochastic analogue of the stop process
proposed in [26]. Stop is a discrete time stochastic analogue of the stop.

Let E = [({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]. DR(E) consists of the equivalence classes

s1 = [[({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b}, ♮
1
1)

1[](({c}, ♮12)
1; ({d}, 13 ))) ∗ Stop]]≈ =

[[({a}, 12 ) ∗ (({b}, ♮
1
1)

1[](({c}, ♮12)
1; ({d}, 13 ))) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅. In Figure 13, the transition system
TS(E) is presented.
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TS(E)

☛✡ ✟✠✞✝ ☎✆s2

☛✡ ✟✠s5
✞✝ ✲

{({a},♮21),

({c},♮24)}, 5
9

{({a},♮21),

({x},♮23)}, 4
9

∅,1

☛✡ ✟✠s1

❄∅,1

☛✡ ✟✠s3

❄∅,1☛✡ ✟✠✞✝ ☎✆s4

❄({b,x̂},♮
2
2),1

✞
✝
☎
✆✲ ✛

Figure 12: The transition system of E for E = (((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]({c}, ♮

2
4))) sy x

TS(E)

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
s2

s3

☛✡ ✟✠
❄

s1
({a}, 1

2
), 1

2

({c},♮12), 2
3

✞✝ ✲
∅, 1

2✞✝ ✲
({b},♮11), 1

3✞✝ ✲
∅, 2

3

✘

✙✚

✛

({d}, 1
3
), 1

3

Figure 13: The transition system of E for E = [({a}, 12 ) ∗ (({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 ))) ∗ Stop]

This example demonstrates an infinite iteration loop. The loop is preceded with the iteration initiation,
modeled by a (first) stochastic multiaction ({a}, 12 ). The iteration body that corresponds to the loop consists of
the choice between two conflicting waiting multiactions ({b}, ♮11) and ({c}, ♮12) with the same delay 1, the second
of them followed (via sequential composition) by a (second) stochastic multiaction ({d}, 13 ). Hence, the iteration
loop actually consists of the two alternative subloops, such that the first one is a self-loop (one-state loop from a
state to itself) with the first waiting multiaction ({b}, ♮11), and the second one ({c}, ♮12) is a two-state loop with an
intermediate state, reached after the second waiting multiaction has been executed, and from which the second
stochastic multiaction ({d}, 13 ) is then started. Thus, the iteration generates the self-loop with probability less
than one (since the two-state loop from the same state has a non-zero probability) from the state in which only
waiting multiactions are executed. The iteration termination Stop demonstrates an empty behaviour, assuring
that the iteration does not reach its final state after any number of repeated executions of its body.

Example 3.24 Let E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop], where ρ, θ, φ ∈

(0; 1) and k, l,m ∈ IR>0. DR(E) consists of the equivalence classes

s1 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈ =

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}. In Figure 14, the transition
system TS(E) is presented.

This example demonstrates an infinite iteration loop. The loop is preceded with the iteration initiation,
modeled by a stochastic multiaction ({a}, ρ). The iteration body that corresponds to the loop consists of a
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TS(E)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
({a},ρ),ρ
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Figure 14: The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
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Stop]

waiting multiaction ({b}, ♮1k), followed (via sequential composition) by the probabilistic choice, modeled via two
conflicting immediate multiactions ({c}, ♮0l ) and ({e}, ♮0m), followed by different stochastic multiactions ({d}, θ)
and ({f}, φ). The iteration termination Stop demonstrates an empty behaviour, assuring that the iteration does
not reach its final state after any number of repeated executions of its body.

Note that, due to the time constraints and since waiting multiactions may be preempted by stochastic ones,
some simple dynamic expressions can have complex transition systems (Examples 3.12–3.17, 3.19, 3.22), or vice
versa (Examples 3.18, 3.20, 3.21, 3.23, 3.24).

4 Denotational semantics

In this section, we construct the denotational semantics in terms of a subclass of labeled discrete time stochastic
and deterministic PNs (LDTSDPNs), called discrete time stochastic and immediate Petri boxes (dtsd-boxes).

4.1 Labeled DTSDPNs

Let us introduce a class of labeled discrete time stochastic and deterministic PNs (LDTSDPNs), which are essen-
tially a subclass of DTSPNs [109, 110] (since we do not allow the stochastic transition probabilities to be equal
to 1) extended with transition labeling and deterministic transitions. LDTSDPNs resemble in part discrete time
deterministic and stochastic PNs (DTDSPNs) [143, 139, 140, 145, 146, 144], as well as discrete deterministic and
stochastic PNs (DDSPNs) [141, 142]. DTDSPNs and DDSPNs are the extensions of DTSPNs with determin-
istic transitions (having fixed delay that can be zero), inhibitor arcs, priorities and guards. In addition, while
stochastic transitions of DTDSPNs, like those of DTSPNs, have geometrically distributed delays, stochastic
transitions of DDSPNs have discrete time phase-type distributed delays. At the same time, LDTSDPNs are not
subsumed by DTDSPNs or DDSPNs, by the following reasons. First, in DTDSPNs from [143, 139, 140], both
stochastic and deterministic (including immediate) transitions have probabilities and weights associated, but
in LDTSDPNs only stochastic transitions have probabilities and only immediate ones have weights, hence, the
state change probabilities of the underlying Markov chains for those PN classes are calculated in two different
ways. Second, LDTSDPNs have a step semantics while DTDSPNs from [145, 146, 144] and DDSPNs have
interleaving one, since in in the first PN class simultaneous transition firings are possible while in the second
and third PN classes only firings of single transitions are allowed. LDTSDPNs are somewhat similar to la-
beled weighted DTSPNs (LWDTSPNs) from [41], but in LWDTSPNs there are no deterministic transitions, all
(stochastic) transitions have weights, the transition probabilities may be equal to 1 and only maximal fireable
subsets of the enabled transitions are fired.

Stochastic preemptive time PNs (spTPNs) [36] is a discrete time model with a maximal step semantics, where
both time ticks and instantaneous parallel firings of maximal transition sets are possible, but the transition
steps in LDTSDPNs are not obliged to be maximal (excepting the steps of waiting transitions). The transition
delays in spTPNs are governed by static general discrete distributions, associated with the transitions, while
the transitions of LDTSDPNs are only associated with probabilities (or delays and weights), used later to
calculate the step probabilities after one unit (from tangible states) or zero (from vanishing states) delay.
Further, LDTSDPNs have just geometrically distributed or deterministic zero delays at the states. Moreover,
the discrete time tick and concurrent transition firing are treated in spTPNs as different events while firing every
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(possibly empty) set of stochastic or waiting transitions in LDTSDPNs requires one unit time delay. spTPNs
are essentially a modification and extension of unlabeled LWDTSPNs with additional facilities, such as inhibitor
arcs, priorities, resources, preemptions, schedulers etc. However, the price of such an expressiveness of spTPNs
is that the model is rather intricate and difficult to analyze.

Note also that guards in DTDSPNs and DDSPNs, inhibitor arcs and priorities in DTDSPNs, DDSPNs and
spTPNs, as well as the maximal step semantics of LWDTSPNs and spTPNs make all these models Turing
powerful, resulting in undecidability of many important behavioural properties.

First, we present a formal definition (construction, syntax) of LDTSDPNs. The set of all row vectors of
n ∈ IN≥1 elements from a set X is defined as Xn = {(x1, . . . , xn) | xi ∈ X (1 ≤ i ≤ n)}.

Definition 4.1 A labeled discrete time stochastic and deterministic PN (LDTSDPN) is a tuple
N = (PN , TN ,WN , DN ,ΩN ,LN , QN ), where

• PN and TN = TsN⊎TdN are finite sets of places and stochastic and deterministic transitions, respectively,
such that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN ) → IN is a function providing the weights of arcs between places and
transitions;

• DN : TdN → IN is the transition delay function imposing delays to deterministic transitions;

An immediate transition is a deterministic transition with the delay 0 while a waiting transition is that
with a positive delay. Then TdN = T iN ⊎ TwN consists of the sets of immediate and waiting transitions.

• ΩN is the transition probability and weight function such that

– ΩN |TsN : TsN → (0; 1) (it associates stochastic transitions with probabilities);

– ΩN |TdN : TdN → IR>0 (it associates deterministic transitions with weights);

• LN : TN → L is the transition labeling function assigning multiactions to transitions;

• QN = (MN , VN ) is the initial state, where MN ∈ INPN
fin is the initial marking (distribution of tokens in the

places) and VN : TwN → IN≥1 ∪ {∞} is the initial timer valuation function of the waiting transitions (in
the vector notation, VN ∈ (IN≥1 ∪ {∞})|TwN |), where ‘∞’ denotes the undefined value of inactive timers
(infinite time till the transition firing); we define ∀t ∈ TwN ∩ Ena(MN ) VN (t) = DN (t) (each enabled
waiting transition is initially valuated with its transition delay) and ∀t ∈ TwN \ Ena(MN ) VN (t) = ∞
(each non-enabled waiting transition is initially valuated with the undefined value), where Ena(M) denotes
the set of transitions enabled at the marking M , to be defined later.

The graphical representation of LDTSDPNs is like that for standard labeled PNs, but with probabilities
or delays and weights written near the corresponding transitions. Square boxes of normal thickness depict
stochastic transitions, and those with thick borders represent deterministic transitions. In the case the proba-
bilities or the delays and weights are not given in the picture, they are considered to be of no importance in the
corresponding examples. The weights of arcs are depicted with them. The names of places and transitions are
depicted near them when needed.

We now consider the semantics of LDTSDPNs.
Let N be an LDTSDPN and t ∈ TN , U ∈ INTN

fin. The precondition •t and the postcondition t• of t are
the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The precondition •U and the
postcondition U• of U are the multisets of places defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. Note that for

U = ∅ we have •∅ = ∅ = ∅•.
Let N be an LDTSDPN and Q = (M,V ), Q̃ = (M̃, Ṽ ) ∈ INPN

fin × (IN≥1 ∪ {∞})|TwN | be its states.
Deterministic transitions have a priority over stochastic ones, and there is also difference in priorities between

immediate and waiting transitions. One can assume that all immediate transitions have (the highest) priority
2 and all waiting transitions have (the medium) priority 1, whereas all stochastic transitions have (the lowest)
priority 0. This means that at a marking where all kinds of transitions can occur, immediate transitions always
occur before waiting ones that, in turn, are always executed before stochastic ones.

A transition t ∈ TN is enabled at a marking M ∈ INPN
fin, if

•t ⊆M . In other words, a transition is enabled at
a marking if it has enough tokens in its input places (i.e. in the places from its precondition) at the marking.
Let Ena(M) be the set of all transitions enabled at M .

Firings of transitions are atomic operations, and transitions can fire in parallel by taking part in steps. We
assume that all transitions participating in a step should differ, hence, only the sets (not multisets) of transitions
may fire. Thus, we do not allow self-concurrency, i.e. firing of transitions in parallel to themselves. This restric-
tion is introduced to avoid some technical difficulties while calculating probabilities for multisets of transitions
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as we shall see after the following formal definitions. Moreover, we do not need to consider self-concurrency,
since denotational semantics of expressions will be defined via dtsd-boxes which are safe LDTSDPNs (hence,
no self-concurrency is possible).

The following definition of fireability respects the prioritization among different types of transitions. A set
of transitions U ⊆ Ena(M) is fireable in a state Q = (M,V ), if •U ⊆M and one of the following holds:

1. ∅ 6= U ⊆ T iN ; or

2. ∅ 6= U ⊆ TwN and

• ∀t ∈ U V (t) = 1,

• Ena(M − •U) ∩ {u ∈ TwN | V (u) = 1} = ∅,

• Ena(M) ⊆ TwN ∪ TsN ; or

3. U ⊆ TsN and

• Ena(M) ⊆ TsN .

In other words, a set of transitions U is fireable in a state, if it has enough tokens in its input places at the
substituent marking M of the state and the following holds. If U consists of immediate transitions then it is
enabled, since no additional condition is needed for its fireability. If U consists of waiting transitions then the
countdown timer value (called remaining time to fire or RTF) of each transition from U equals one, U is a
maximal (by the inclusion relation) set of the enabled at M waiting transitions with the RTF equal to one and
enough tokens in its input places at M , and there exist no immediate transitions enabled at M . If U is empty
or it consists of stochastic transitions then there exist no immediate or waiting transitions enabled at M . Note
that the second condition of item 2 of the above definition means that no waiting transition (from Ena(M))
with the RTF being one can be added to U so that the resulting transition set will still have enough tokens in its
input places at M . This condition is equivalent to the following maximality requirement (informally mentioned
above): ∀T ⊆ Ena(M), (∀u ∈ T V (u) = 1) ∧ (•T ⊆ M) ∧ (U ⊆ T ) ⇒ T = U . Let Fire(Q) be the set of all
transition sets fireable in Q.

Thus, concerning the LDTSDPNs transitions fireable in a state, the enabled waiting transitions with the
RTF greater than one are ignored while those with the RTF being one are treated like (stochastic) transitions
of DTSPNs [109, 110] with the conditional probability 1, which have a priority in firing over the (stochastic)
transitions with the conditional probability less than 1.

By the definition of fireability, it follows that Fire(Q) ⊆ 2TiN \ {∅} or Fire(Q) ⊆ 2TwN \ {∅}, or Fire(Q) ⊆
2TsN (to be convinced of it, check the definition’s items in the reverse order). The state Q is s-tangible
(stochastically tangible), denoted by stang(Q), if Fire(Q) ⊆ 2TsN . For an s-tangible state Q we always have
∅ ∈ Fire(Q) by the definition of fireability (item 3), hence, we may have Fire(Q) = {∅}. The state Q is w-
tangible (waitingly tangible), denoted by wtang(Q), if Fire(Q) ⊆ 2TwN \ {∅}. The state Q is tangible, denoted
by tang(Q), if stang(Q) or wtang(Q), i.e. Fire(Q) ⊆ 2TsN ∪ 2TwN . Again, for a tangible state Q we may
have ∅ ∈ Fire(Q) and Fire(Q) = {∅}. Otherwise, the state Q is vanishing, denoted by vanish(Q), and in
this case Fire(Q) ⊆ 2TiN \ {∅}. A transition t ∈ Ena(M) is fireable in a state Q, denoted by t ∈ Fire(Q),
if {t} ∈ Fire(Q). If stang(Q) then a stochastic transition t ∈ Fire(Q) fires with probability ΩN (t) when
no different stochastic transition is fireable in Q, i.e. Fire(Q) = {∅, {t}}. By the definition of fireability, if
stang(Q) or vanish(Q) then ∀U ∈ Fire(Q) 2U \ {∅} ⊆ Fire(Q).

Let U ∈ Fire(Q) and U 6= ∅. The probability that the set of stochastic transitions U is ready for firing in Q
or the weight of the set of deterministic transitions U which is ready for firing in Q is

PF (U,Q) =

{ ∏
t∈U ΩN (t) ·

∏
{u∈Fire(Q)|u6∈U}(1− ΩN (u)), stang(Q);∑

t∈U ΩN (t), wtang(Q) ∨ vanish(Q).

In the case U = ∅ and stang(Q) we define

PF (∅, Q) =

{ ∏
u∈Fire(Q)(1− ΩN (u)), F ire(Q) 6= {∅};

1, F ire(Q) = {∅}.

Let U ∈ Fire(Q). Besides U , some other sets of transitions may be ready for firing in Q, hence, a kind of
conditioning or normalization is needed to calculate the firing probability. The parallel firing of the transitions

from U changes the state Q = (M,V ) to another state Q̃ = (M̃, Ṽ ), denoted by Q
U
→P Q̃, where

1. M̃ =M − •U + U•;
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2. ∀u ∈ TwN Ṽ (u) =





∞, u 6∈ Ena(M̃);

VN (u), u ∈ Ena(M̃) \ Ena(M − •U);
V (u), (u ∈ Ena(M − •U)) ∧ (U ⊆ T iN);
V (u)− 1, otherwise;

3. P = PT (U,Q) is the probability that the set of transitions U fires in Q defined as

PT (U,Q) =
PF (U,Q)∑

V ∈Fire(Q) PF (V,Q)
.

Let us explain the definition above in more detail. The first case of the item 2 demonstrates a waiting transition
u that is not enabled at the marking M̃ , regardless of whether it was enabled at the “intermediate” marking
M − •U (obtained by removing from M the input places of all transitions belonging to U , and that should be
examined, especially when N has structural loops), and therefore the transition timer becomes inactive (turned
off) and it is set to the undefined value ∞. The second case of the item 2 describes a waiting transition u that

was not enabled at M − •U and has first been enabled at M̃ , hence, its timer is restored to the initial value
VN (u), which is the delay of that transition. The third case of the item 2 explains a waiting transition u that

was enabled at M − •U and, hence, still is enabled at M̃ , resulted from firing a set of immediate transitions
U instantly (in zero time), so the transition timer does not decrement and its value stays equal to V (u). The
fourth case of the item 2 corresponds to the remaining option, i.e. a waiting transition u that was enabled at
M − •U and, hence, still is enabled at M̃ , resulted from firing a set of stochastic (waiting) transitions U at a
time tick (in one time unit), so the transition timer decrements by one and its value becomes V (u)− 1.

We do not have to worry that for u ∈ TwN , such that u ∈ Ena(M − •U), where U ⊆ TsN ∪ TwN , the

value of Ṽ (u) = V (u)− 1 could become zero or negative, by the following reasons. Note that by the definition
of fireability, we have Ena(M) ⊆ TwN ∪ TsN . If V (u) = 1 then u must fire in the next time moment within
some maximal (by the inclusion relation) set of the enabled at M waiting transitions with the RTF equal
to one and enough tokens in the set’s input places at M . Then we get U ∈ Fire(Q) ⊆ 2TwN \ {∅}, hence,
∅ 6= U ⊆ TwN . Therefore, ∀t ∈ U V (t) = 1 and Ena(M − •U) ∩ {w ∈ TwN | V (w) = 1} = ∅, which
contradicts to u ∈ Ena(M − •U)∩{w ∈ TwN | V (w) = 1}. Thus, there exists no transition u ∈ TwN , such that

u ∈ Ena(M − •U) and V (u) = 1. In regard to the transitions t ∈ U ⊆ TwN with V (t) = 1, we have Ṽ (t) = ∞,

if t 6∈ Ena(M̃), or Ṽ (t) = VN (t), if t ∈ Ena(M̃) \ Ena(M − •U).

Note that when U = ∅ and stang(Q), we get M = M̃ and ∀u ∈ TwN Ṽ (u) =

{
∞, u 6∈ Ena(M);
V (u)− 1, u ∈ Ena(M).

Notice that the timers of all waiting transitions that are disabled when a marking change occurs become
inactive (turned off) and their values become undefined while the timers of all those staying enabled continue
running with their stored values. Hence, we adapt the enabling memory policy [103, 1, 8, 9] when the mark-
ings are changed and the enabling of deterministic transitions is possibly modified (remember that immediate
transitions may be seen as those with the timers displaying a single value 0, so we do not need to store their
values). Then the timer values of waiting transitions are taken as the enabling memory variables.

The advantage of our two-stage approach to definition of the probability that a set of transitions fires is that
the resulting probability formula PT (U,Q) is valid both for (sets of) stochastic and deterministic transitions.
It allows one to unify the notation used later while constructing the denotational semantics and analyzing
performance.

Note that for all states of an LDTSDPN N , the sum of outgoing probabilities is equal to 1. More formally,
∀Q = (M,V ) ∈ INPN

fin×(IN≥1∪{∞})|TwN |
∑

U∈Fire(Q) PT (U,Q) = 1. This obviously follows from the definition

of PT (U,Q) and guarantees that it defines a probability distribution.

We write Q
U
→ Q̃ if ∃P Q

U
→P Q̃ and Q→ Q̃ if ∃U Q

U
→ Q̃.

The probability to move from Q to Q̃ by firing any set of transitions is

PM(Q, Q̃) =
∑

{U|Q
U
→Q̃}

PT (U,Q).

Since PM(Q, Q̃) is the probability for any (including the empty one) transition set to change from state Q to Q̃,

we use summation in the definition. Note that ∀Q = (M,V ) ∈ INPN
fin×(IN≥1∪{∞})|TwN |

∑
{Q̃|Q→Q̃} PM(Q, Q̃) =∑

{Q̃|Q→Q̃}

∑
{U|Q

U
→Q̃}

PT (U,Q) =
∑

U∈Fire(Q) PT (U,Q) = 1.

Definition 4.2 Let N be an LDTSDPN. The reachability set of N , denoted by RS(N), is the minimal set of
states such that
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• QN ∈ RS(N);

• if Q ∈ RS(N) and Q→ Q̃ then Q̃ ∈ RS(N).

Definition 4.3 Let N be an LDTSDPN. The reachability graph of N is a (labeled probabilistic) transition
system RG(N) = (SN , LN , TN , sN ), where

• the set of states is SN = RS(N);

• the set of labels is LN = 2TN × (0; 1];

• the set of transitions is TN = {(Q, (U,P), Q̃) | Q, Q̃ ∈ RS(N), Q
U
→P Q̃};

• the initial state is sN = QN .

The set of all s-tangible states from RS(N) is denoted by RSST (N), and the set of all w-tangible states
from RS(N) is denoted by RSWT (N). The set of all tangible states from RS(N) is denoted by RST (N) =
RSST (N)∪RSWT (N). The set of all vanishing states from RS(N) is denoted by RSV (N). Obviously, RS(N) =
RST (N) ⊎RSV (N) = RSST (N) ⊎RSWT (N) ⊎RSV (N).

4.2 Algebra of dtsd-boxes

We now introduce discrete time stochastic and deterministic Petri boxes and the algebraic operations to define
a net representation of dtsdPBC expressions.

Definition 4.4 A discrete time stochastic and deterministic Petri box (dtsd-box) is a tuple
N = (PN , TN ,WN ,ΛN), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;

• WN : (PN × TN) ∪ (TN × PN ) → IN is a function providing the weights of arcs between places and
transitions;

• ΛN is the place and transition labeling function such that

– ΛN |PN : PN → {e, i, x} (it specifies entry, internal and exit places, respectively);

– ΛN |TN : TN → {̺ | ̺ ⊆ INSDL
fin × SDL} (it associates transitions with the relabeling relations on

activities).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•. In addition, for the set of entry places of N , defined as ◦N = {p ∈ PN |

ΛN (p) = e}, and for the set of exit places of N , defined as N◦ = {p ∈ PN | ΛN (p) = x}, the following conditions
hold: ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A dtsd-box is plain if ∀t ∈ TN ∃(α, κ) ∈ SDL ΛN (t) = ̺(α,κ), where ̺(α,κ) = {(∅, (α, κ))} is a constant
relabeling that can be identified with the activity (α, κ). The set of waiting transitions of a plain dtsd-box N
is defined as TwN = {t ∈ TN | ΛN (t) = ̺(α,♮θ

l
), θ ∈ IN≥1, l ∈ IR>0}.

A (timer-)clocked plain dtsd-box is a pair (N, V ), where N = (PN , TN ,WN ,ΛN) is a plain dtsd-box and
V : TwN → IN≥1 ∪ {∞} is a timer valuation function of the waiting transitions of N , such that ∀t ∈ TwN
with ΛN(t) = ̺(α,♮θ

l
) (we say that the transition t corresponds to the activity (α, κ) in such a case) it holds

V (t) ∈ {1, . . . , θ} ∪ {∞}.
A marked and (timer-)clocked plain dtsd-box is a pair (N,Q), where N is a plain dtsd-box and Q = (M,V )

is its state. Here M ∈ INPN
fin is a marking of N and V : TwN → IN≥1 ∪ {∞} is a timer valuation function of

the waiting transitions of N , such that ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ
l
) it holds V (t) ∈ {1, . . . , θ} ∪ {∞} and

V (t) <∞, if t ∈ TwN ∩Ena(M).
Let (N,Q) be a marked and clocked plain dtsd-box. By the definition above, ∀t ∈ TwN∩Ena(M) V (t) <∞,

i.e. all enabled at M waiting transitions have finite timer values. Note that for some t ∈ TwN \ Ena(M) we
may have V (t) <∞, which is allowed in the “incomplete” box specifications for the reason of compositionality,
by assuming that t will be enabled at an “extended” marking of the “complete” box specification. The state
Q = (M,V ) is consistent, if ∀t ∈ TwN \Ena(M) V (t) = ∞, i.e. all non-enabled at M waiting transitions have
infinite timer values. It is assumed that the “complete” box specification always has consistent states, i.e. that
the underlying markings of those states are “large” enough to make enabled all waiting transitions with finite
timer values, thus leaving the infinite timer values just for the non-enabled waiting transitions. A plain dtsd-
box N = (PN , TN ,WN ,ΛN ) can be seen as a clocked plain dtsd-box (N, V∞), where ∀t ∈ TwN V∞(t) = ∞,
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i.e. V∞ ≡ ∞. Next, a clocked plain dtsd-box (N, V ) can be treated as a marked and clocked plain dtsd-box
(N, (∅, V )). Thus, a plain dtsd-box N can be interpreted as a marked and clocked plain dtsd-box (N, (∅, V∞)).

Let (N, V ) be a clocked plain dtsd-box. We denote (N, V ) = (N,Q(N,V )), where Q(N,V ) = (◦N, V(N,V )) and

V(N,V ) : TwN → IN≥1 ∪ {∞} is such that ∀t ∈ TwN with ΛN(t) = ̺(α,♮θ
l
):

V(N,V )(t) =

{
min{V (t), θ}, t ∈ TwN ∩ Ena(◦N);
V (t), t ∈ TwN \ Ena(◦N).

By definition of the timer valuation function, ∀t ∈ TwN (V (t) ≤ θ)∨ (V (t) = ∞). Hence, we may have V (t) > θ
only in case V (t) = ∞. The definition above implies V(N,V )(t) < ∞ for every t ∈ TwN ∩ Ena(◦N). Thus,

(N, V ) is a marked and clocked plain dtsd-box.
We also denote (N, V ) = (N,Q(N,V )), where Q(N,V ) = (N◦, V∞). Since Ena(N◦) = ∅, one can see that

(N, V ) is a marked and clocked plain dtsd-box. We call ◦N andN◦ the entry and exit markings ofN , respectively.
Note that a marked and clocked plain dtsd-box (PN , TN ,WN ,ΛN , Q) with the consistent state Q can be

interpreted as the LDTSDPN (PN , TN ,WN , DN ,ΩN ,LN , Q), where the functions DN , ΩN and LN are defined
as follows: ∀t ∈ TN with ΛN(t) = ̺(α,κ) it holds ΩN (t) = κ if κ ∈ (0; 1); or DN(t) = θ, ΩN (t) = l if

κ = ♮θl , θ ∈ IN, l ∈ IR>0; and LN (t) = α. Behaviour of the marked and clocked dtsd-boxes with consistent
states follows from the firing rule of LDTSDPNs. A plain dtsd-box N is n-bounded (n ∈ IN) if N is so, i.e.
∀Q = (M,V ) ∈ RS(N) ∀p ∈ PN M(p) ≤ n, and it is safe if it is 1-bounded. A plain dtsd-box N is clean if
∀Q = (M,V ) ∈ RS(N) ◦N ⊆ M ⇒ M = ◦N and N◦ ⊆ M ⇒ M = N◦, i.e. if there are tokens in all its
entry (exit) places then no other places have tokens.

The structure of the plain dtsd-box corresponding to a static expression without timer value superscripts
is constructed like in PBC [27, 26], i.e. we use simultaneous refinement and relabeling meta-operator (net
refinement) in addition to the operator dtsd-boxes corresponding to the algebraic operations of dtsdPBC and
featuring transformational transition relabelings. Operator dtsd-boxes specify n-ary functions from plain dtsd-
boxes to plain dtsd-boxes (we have 1 ≤ n ≤ 3 in dtsdPBC). Thus, as we shall see in Theorem 4.1, the resulting
plain dtsd-boxes are safe and clean. In the definition of the denotational semantics, we shall apply standard
constructions used for PBC. Let Θ denote operator box and u denote transition name from the PBC setting.

The relabeling relations ̺ ⊆ INSDL
fin × SDL are defined as follows:

• ̺id = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SDL} is the identity relabeling keeping the interface as it is;

• ̺(α,κ) = {(∅, (α, κ))} is the constant relabeling that can be identified with (α, κ) ∈ SDL itself;

• ̺[f ] = {({(α, κ)}, (f(α), κ)) | (α, κ) ∈ SDL};

• ̺rs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SDL, a, â 6∈ α};

• ̺sy a is the least relabeling relation containing ̺id such that if (Υ, (α, κ)), (Ξ, (β, λ)) ∈ ̺sy a and
a ∈ α, â ∈ β then

– (Υ + Ξ, (α⊕a β, κ · λ)) ∈ ̺sy a if κ, λ ∈ (0; 1);

– (Υ + Ξ, (α⊕a β, ♮θl+m)) ∈ ̺sy a if κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0.

The plain dtsd-boxes N(α,ρ)ι , N(α,♮θ
l
)ι , where ρ ∈ (0; 1), θ ∈ IN, l ∈ IR>0, and operator dtsd-boxes are

presented in Figure 15. Note that the label i of internal places is usually omitted.
In the case of the iteration, a decision that we must take is the selection of the operator box that we shall

use for it, since we have two proposals in plain PBC for that purpose [26]. One of them provides us with a
safe version with six transitions in the operator box, but there is also a simpler version, which has only three
transitions. In general, in PBC, with the latter version we may generate 2-bounded nets, which only occurs
when a parallel behavior appears at the highest level of the body of the iteration. Nevertheless, in our case,
and due to the syntactical restriction introduced for regular terms, this particular situation cannot occur, so
that the net obtained will be always safe.

Let (Ni, Vi) = (PNi , TNi ,WNi ,ΛNi , Vi) (1 ≤ i ≤ 3) be clocked plain dtsd-boxes. The operator dtsd-boxes
are extended so that they will specify the n-ary functions from/to clocked plain dtsd-boxes, as follows.

• Θ◦((N1, V1), (N2, V2)) = (Θ◦(N1, N2), V ), ◦ ∈ {; , [], ‖}, where

V (t) =

{
V1(t), t ∈ TN1;
V2(t), t ∈ TN2.
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Figure 15: The plain and operator dtsd-boxes

• Θ[f ](N1, V1) = (Θ[f ](N1), V ), where

V (t) = V1(t), t ∈ TN1.

• Θrs a(N1, V1) = (Θrs a(N1), V ), where

V (t) = V1(t), t ∈ TN1 , a, â 6∈ α, ΛN1(t) = ̺(α,κ).

• Θsy a(N1, V1) = (Θsy a(N1), V ), where

V (t) =

{
V1(t), t ∈ TwN1 ;
max{V1(v), V1(w)}, t results from synchronization of v, w ∈ TwN1 .

• Θ[ ∗ ∗ ]((N1, V1), (N2, V1), (N3, V1)) = (Θ[ ∗ ∗ ](N1, N2, N3), V ), where

V (t) =





V1(t), t ∈ TN1 ;
V2(t), t ∈ TN2 ;
V3(t), t ∈ TN3 .

To define a semantic function that assigns a clocked plain dtsd-box to every static expression of dtsdPBC,
we introduce the enumeration function Enu : T → Num, which associates the numberings with transitions of a
clocked plain dtsd-box N = (P, T,W,Λ, V ) in accordance with those of activities. In the case of synchronization,
the function associates with the resulting new transition a concatenation of the parenthesized numberings of
the transitions it comes from.

We now define the enumeration function Enu for every operator of dtsdPBC. Let Boxdtsd(E) = (NE , VE) =
(PE , TE,WE ,ΛE, VE) be the clocked plain dtsd-box corresponding to a static expression E, and EnuE : TE →
Num be the enumeration function for (NE , VE). We shall use the analogous notation for static expressions F
and K.

• Boxdtsd((α, ρ)ι) = (N(α,ρ)ι , ∅). Since a single transition tι corresponds to the activity (α, ρ)ι ∈ SL, their
numberings coincide:

Enu(tι) = ι.

• Boxdtsd((α, ♮
0
l )ι) = (N(α,♮0

l
)ι , ∅). Since a single transition tι corresponds to the activity (α, ♮0l )ι ∈ IL, their

numberings coincide:

Enu(tι) = ι.
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• Boxdtsd((α, ♮
θ
l )ι) = (N(α,♮θ

l
)ι , (tι,∞)). Since a single transition tι corresponds to the activity (α, ♮θl )ι ∈

WL, their numberings coincide:

Enu(tι) = ι.

• Boxdtsd((α, ♮
θ
l )
δ
ι ) = (N(α,♮θ

l
)ι , (tι, δ)). Since a single transition tι corresponds to the activity (α, ♮θl )ι ∈ WL,

their numberings coincide:

Enu(tι) = ι.

• Boxdtsd(E ◦ F ) = Θ◦(Boxdtsd(E), Boxdtsd(F )), ◦ ∈ {; , [], ‖}. Since we do not introduce new transitions,
we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdtsd(E[f ]) = Θ[f ](Boxdtsd(E)). Since we only replace the labels of some multiactions by a bijection,
we preserve the initial numbering:

Enu(t) = EnuE(t), t ∈ TE .

• Boxdtsd(E rs a) = Θrs a(Boxdtsd(E)). Since we remove all transitions labeled with multiactions containing
a or â, this does not change the numbering of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ α, ΛE(t) = ̺(α,κ).

• Boxdtsd(E sy a) = Θsy a(Boxdtsd(E)). Note that ∀v, w ∈ TE such that ΛE(v) = ̺(α,κ), ΛE(w) = ̺(β,λ)
and a ∈ α, â ∈ β, the new transition t resulting from synchronization of v and w has the label Λ(t) =
̺(α⊕aβ,κ·λ) if t is a stochastic transition (κ, λ ∈ (0; 1)); or Λ(t) = ̺(α⊕aβ,♮θl+m) if t is a deterministic one

(κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0); and the numbering Enu(t) = (EnuE(v))(EnuE(w)).

Thus, the enumeration function is defined as

Enu(t) =

{
EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from synchronization of v and w.

According to the definition of ̺sy a, the synchronization is only possible when all the transitions in the
set are stochastic (immediate or waiting, respectively). If we synchronize the same set of transitions in
different orders, we obtain several resulting transitions with the same label and probability or weight, but
with the different numberings having the same content. Then, we only consider a single transition from
the resulting ones in the clocked plain dtsd-box to avoid introducing redundant transitions.

For example, if the transitions t and u are generated by synchronizing v and w in different orders, we
have Λ(t) = ̺(α⊕aβ,κ·λ) = Λ(u) for stochastic transitions (κ, λ ∈ (0; 1)) or Λ(t) = ̺(α⊕aβ,♮θl+m) = Λ(u)

for deterministic ones (κ = ♮θl , λ = ♮θm, θ ∈ IN, l,m ∈ IR>0), but Enu(t) = (EnuE(v))(EnuE(w)) 6=
(EnuE(w))(EnuE(v)) = Enu(u), whereas Cont(Enu(t)) = Cont(Enu(v)) ∪ Cont(Enu(w)) =
Cont(Enu(u)). Then only one transition t (or u, symmetrically) will appear in Boxdtsd(E sy a).

• Boxdtsd([E ∗ F ∗ K]) = Θ[ ∗ ∗ ](Boxdtsd(E), Boxdtsd(F ), Boxdtsd(K)). Since we do not introduce new
transitions, we preserve the initial numbering:

Enu(t) =





EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

We now can formally define the denotational semantics as a homomorphism.

Definition 4.5 Let (α, ρ) ∈ SL, (α, ♮0l ) ∈ IL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ}, a ∈ Act and E,F,K ∈
RegStatExpr. The denotational semantics of dtsdPBC is a mapping Boxdtsd from RegStatExpr into the
domain of clocked plain dtsd-boxes, defined as follows:
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1. Boxdtsd((α, ρ)ι) = (N(α,ρ)ι , ∅);

2. Boxdtsd((α, ♮
0
l )ι) = (N(α,♮0

l
)ι , ∅);

3. Boxdtsd((α, ♮
θ
l )ι) = (N(α,♮θ

l
)ι , (tι,∞));

4. Boxdtsd((α, ♮
θ
l )
δ
ι ) = (N(α,♮θ

l
)ι , (tι, δ));

5. Boxdtsd(E ◦ F ) = Θ◦(Boxdtsd(E), Boxdtsd(F )), ◦ ∈ {; , [], ‖};

6. Boxdtsd(E[f ]) = Θ[f ](Boxdtsd(E));

7. Boxdtsd(E ◦ a) = Θ◦a(Boxdtsd(E)), ◦ ∈ {rs, sy};

8. Boxdtsd([E ∗ F ∗K]) = Θ[ ∗ ∗ ](Boxdtsd(E), Boxdtsd(F ), Boxdtsd(K)).

The marked and clocked dtsd-boxes of dynamic expressions can be defined as well. For E ∈ RegStatExpr,
let Boxdtsd(E) = Boxdtsd(E) and Boxdtsd(E) = Boxdtsd(E). Note that this definition is compositional in
the sense that, for any arbitrary dynamic expression, we may decompose it in some inner dynamic and static
expressions, for which we may apply the definition, thus obtaining the corresponding clocked plain dtsd-boxes,
which can be joined according to the term structure (by definition of Boxdtsd), the resulting clocked plain box
being marked in the places that were marked in the argument nets.

Importantly, when composing marked and clocked dtsd-boxes of arbitrary dynamic expressions, we should
guarantee that the operations correctly propagate the timer values from the clocked to non-clocked operands.
For that, we have to respect the time spent in the entry markings and delays of the waiting transitions, which
become enabled at them when composing. The main idea is that the timer values in the composite marked and
clocked dtsd-boxes should be as close as possible to those in the substituent marked and clocked dtsd-boxes,
whose waiting transition timers should sometimes be decreased to maintain the time progress uniformity in the
resulting composition.

Let E,F ∈ RegStatExpr, G,H ∈ RegDynExpr and a ∈ Act. Then Boxdtsd(E) = (PE , TE ,WE ,ΛE , VE) =
(NE , VE) is the clocked plain dtsd-box of E, and analogously for F . The marked and clocked plain dtsd-box of
G is Boxdtsd(G) = (NG, (MG, VG)) (defined by induction on the structure of G, as will be descried below), and
similarly for H . Next, Boxdtsd(E) = (NE , VE) = (NE , (

◦NE , VE)) is the marked and clocked plain dtsd-box of
E, and analogously for F . Thus, ∀t ∈ TwE with ΛE(t) = ̺(α,♮θ

l
):

VE(t) =

{
min{VE(t), θ}, t ∈ TwE ∩ Ena(◦NE);
VE(t), t ∈ TwE \ Ena(◦NE).

Also, Boxdtsd(E)=(NE , VE)=(NE , (N
◦
E , V

∞)) is the marked and clocked plain dtsd-box of E, and similarly for F .

Let N,N ′ be two plain dtsd-boxes and p ∈ ◦N ∪N◦, p′ ∈ ◦N ′ ∪N ′◦ be their respective entry or exit places.
Then (p, p′) ∈ (◦N ∪N◦)× (◦N ′ ∪N ′◦) denotes the merging of p and p′ in the composed plain dtsd-box such
that (p, p′) inherits all their connectivities from the net structures of N and N ′.

Let (N, (M,V )) be a marked and clocked plain dtsd-box, where T = Ts ⊎ T i ⊎ Tw consists of stochastic,
immediate and waiting transitions. The marking age of the state (M,V ) is defined as

�(M,V ) = max{η − V (u) | u ∈ Tw ∩Ena(M), Λ(u) = ̺(β,♮ηm)}.

We now inductively define the dtsd-boxes of arbitrary dynamic expressions.

• Boxdtsd(E) = Boxdtsd(E) and Boxdtsd(E) = Boxdtsd(E).

• Boxdtsd(G;E) = (Boxdtsd(⌊G⌋;E), (M,V )), whereM =

{
MG, MG 6= N◦

G;
N◦
G × ◦NE , MG = N◦

G;
and ∀t ∈ TwN with

ΛN(t) = ̺(α,♮θ
l
):

V (t) =





VG(t), t ∈ TwG;
min{VE(t), θ}, t ∈ TwE ∩Ena(M);
VE(t), t ∈ TwE \ Ena(M).

Thus, each waiting transition of NE enabled at the entry marking of it has set its timer to min{VE(t), θ}.
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• Boxdtsd(E;G) = (Boxdtsd(E; ⌊G⌋), (M,V )), where M =

{
MG, MG 6= ◦NG;
N◦
E × ◦NG, MG = ◦NG;

and ∀t ∈ TwN :

V (t) =

{
VE(t), t ∈ TwE ;
VG(t), t ∈ TwG.

• Boxdtsd(G[]E) = (Boxdtsd(⌊G⌋[]E), (M,V )), where M =





MG, (MG 6= ◦NG) ∧ (MG 6= N◦
G);

◦NG × ◦NE , MG = ◦NG;
N◦
G ×N◦

E , MG = N◦
G;

and ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ
l
):

V (t) =





θ −min{�(MG, VG),�(◦NE , VE)}, ((t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG))∨
(t ∈ TwE ∩ Ena(M));

VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG))∨
(t ∈ TwG \ Ena(M));

VE(t), t ∈ TwE \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (MG, VG), such thatMG = ◦NG,
and (◦NE , VE) then each waiting transition, enabled at the marking M , has set its timer to θ − ζ, where
θ is the delay of that transition. The idea is to ensure that the time progresses uniformly, for which the
timer decrements of all waiting transitions, enabled atM , should be synchronized (equalized). Hence, the
subnet with the more time spent in its local marking should “wait” for the other subnet by modifying
appropriately (via increasing by the difference between residence times at MG and ◦NE) the timer values
of its waiting transitions, enabled at M .

Note that �(MG, VG) 6= �(◦NE , VE) cannot hold for any dynamic expression, obtained by applying action
rules, starting from an overlined static expression without timer value superscripts. The reason is that
all the action rules maintain the time progress uniformity, hence, ζ = �(MG, VG) = �(◦NE, VE) in that
case. Further, the inequality η − VG(u) < �(MG, VG) may only happen when the (β, ♮ηm) ∈ WL(G),
corresponding to u ∈ TwG ∩ Ena(MG), is later affected by restriction, so that the timer of that waiting
multiaction stops with the value 1 while the waiting multiaction can never be executed. The same holds
for �(◦NE , VE). Thus, if we start from an overlined static expression without time stamps and the waiting
multiaction corresponding to t is not subsequently affected by restriction then V (t) = θ − �(MG, VG) =
VG(t) for (t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG) and V (t) = θ − �(◦NE , VE) = min{VE(t), θ} for t ∈
TwE ∩ Ena(M), i.e. V (t) is defined like that for the case Boxdtsd(G;E).

The definition of Boxdtsd(E[]G) is similar.

• Boxdtsd(G‖H) = (Boxdtsd(⌊G⌋‖⌊H⌋), (M,V )), where M =MG ∪MH , and ∀t ∈ TwN with
ΛN(t) = ̺(α,♮θ

l
):

V (t) =





θ −min{�(MG, VG),�(MH , VH)}, t ∈ (TwG ∪ TwH) ∩ Ena(M);
VG(t), t ∈ TwG \ Ena(M);
VH(t), t ∈ TwH \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (MG, VG) and (MH , VH) then
each waiting transition, enabled at the marking M , has set its timer to θ − ζ, where θ is the delay of
that transition. The idea is to ensure that the time progresses uniformly, for which the timer decrements
of all waiting transitions, enabled at M , should be synchronized (equalized). Hence, the subnet with
the more time spent in its local marking should “wait” for the other subnet by modifying appropriately
(via increasing by the difference between residence times at MG and MH) the timer values of its waiting
transitions, enabled at M .

Note that �(MG, VG) 6= �(MH , VH) cannot hold for any dynamic expression, obtained by applying action
rules, starting from an overlined static expression without timer value superscripts. The reason is that
all the action rules maintain the time progress uniformity, hence, ζ = �(MG, VG) = �(MH , VH) in that
case. Further, the inequality η − VG(u) < �(MG, VG) may only happen when the (β, ♮ηm) ∈ WL(G),
corresponding to u ∈ TwG ∩ Ena(MG), is later affected by restriction, so that the timer of that waiting
multiaction stops with the value 1 while the waiting multiaction can never be executed. The same holds
for �(MH , VH). Thus, if we start from an overlined static expression without time stamps and the waiting
multiaction corresponding to t is not subsequently affected by restriction then V (t) = θ − �(MG, VG) =
VG(t) for t ∈ TwG ∩ Ena(M) and V (t) = θ − �(MH , VH) = VH(t) for t ∈ TwH ∩ Ena(M), i.e. V (t) is
defined like that for the case Boxdtsd(E;G), if to replace E with H in the syntax of that definition.

43



• Boxdtsd(G[f ]) = (Boxdtsd(⌊G⌋[f ]), (M,V )), where M =MG, and ∀t ∈ TwN :

V (t) = VG(t), t ∈ TwG.

• Boxdtsd(G rs a) = (Boxdtsd(⌊G⌋ rs a), (M,V )), where M =MG, and ∀t ∈ TwN :

V (t) = VG(t), t ∈ TwG, a, â 6∈ α.

• Boxdtsd(G sy a) = (Boxdtsd(⌊G⌋ sy a), (M,V )), where M =MG, and ∀t ∈ TwN :

V (t) =

{
VG(t), t ∈ TwG;
max{VG(v), VG(w)}, t results from synchronization of v, w ∈ TwG.

Thus, the timer for the synchronous product of the waiting transitions v and w from NG is set to maximum
of their timer values. This means that we wait for the latest (being delayed for some reason) of the two
synchronized transitions, since their synchronous product cannot fire until they both can fire. If at least
one of the timers of v and w has the undefined value ∞ (i.e. the corresponding transition is not enabled
at MG) then the result of their synchronization also has the timer value ∞, since both the synchronized
transitions must be enabled at MG in order to enable their synchronous product.

• Boxdtsd([G∗E∗F ]) = (Boxdtsd(⌊G⌋∗E∗F ), (M,V )), whereM=

{
MG, MG 6=N◦

G;
N◦
G× (◦NE×N◦

E)×
◦NF ), MG=N◦

G;
and ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ

l
):

V (t) =





VG(t), t ∈ TwG;
θ −min{�(ME, VE),�(MF , VF )}, t ∈ (TwE ∪ TwF ) ∩ Ena(M);
VE(t), t ∈ TwE \ Ena(M);
VF (t), t ∈ TwF \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (ME , VE) and (MF , VF ) then
each waiting transition, enabled at the marking M , has set its timer to θ − ζ, where θ is the delay of
that transition. The idea is to ensure that the time progresses uniformly, for which the timer decrements
of all waiting transitions, enabled at M , should be synchronized (equalized). Hence, the subnet with
the more time spent in its local marking should “wait” for the other subnet by modifying appropriately
(via increasing by the difference between residence times at ME and MF ) the timer values of its waiting
transitions, enabled at M .

• Boxdtsd([E ∗G ∗ F ]) = (Boxdtsd(E ∗ ⌊G⌋ ∗ F ), (M,V )), where

M =

{
MG, (MG 6= ◦NG) ∧ (MG 6= N◦

G);
N◦
E × ((◦NG ×N◦

G)×
◦NF ), (MG = ◦NG) ∨ (MG = N◦

G);
and ∀t ∈ TwN with ΛN(t) = ̺(α,♮θ

l
):

V (t) =





θ−min{�(MG, VG),�(◦NF , VF )}, ((t ∈ TwG ∩ Ena(M))∧((MG = ◦NG)∨(MG = N◦
G)))∨

(t ∈ TwF ∩ Ena(M));
VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG) ∧ (MG 6= N◦

G))∨
(t ∈ TwG \ Ena(M));

VF (t), t ∈ TwF \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states (MG, VG), such that (MG =
◦NG) ∨ (MG = N◦

G), and (◦NF , VF ) then each waiting transition, enabled at the marking M , has set its
timer to θ − ζ, where θ is the delay of that transition. The idea is to ensure that the time progresses
uniformly, for which the timer decrements of all waiting transitions, enabled atM , should be synchronized
(equalized). Hence, the subnet with the more time spent in its local marking should “wait” for the other
subnet by modifying appropriately (via increasing by the difference between residence times at MG and
◦NF ) the timer values of its waiting transitions, enabled at M .

• Boxdtsd([E∗F∗G]) = (Boxdtsd(E∗F∗⌊G⌋), (M,V )), whereM=

{
MG, MG 6=◦NG;
N◦
E×((◦NF×N

◦
F )×

◦NG), MG=◦NG;
and ∀t ∈ TwN with ΛN (t) = ̺(α,♮θ

l
):
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V (t) =





θ −min{�(◦NF , VF ),�(MG, VG)}, (t ∈ TwF ∩ Ena(M))∨
((t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG));

VF (t), t ∈ TwF \ Ena(M);
VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG))∨

(t ∈ TwG \ Ena(M)).

Thus, if ζ is the minimum of the times spent at the markings of the states (◦NF , VF ) and (MG, VG), such
thatMG = ◦NG, then each waiting transition, enabled at the markingM , has set its timer to θ−ζ, where
θ is the delay of that transition. The idea is to ensure that the time progresses uniformly, for which the
timer decrements of all waiting transitions, enabled atM , should be synchronized (equalized). Hence, the
subnet with the more time spent in its local marking should “wait” for the other subnet by modifying
appropriately (via increasing by the difference between residence times at ◦NF and MG) the timer values
of its waiting transitions, enabled at M .

Remember that for any H ∈ SatOpRegDynExpr, all waiting multiactions from EnaWait([H ]≈) have (finite)
timer value superscripts. Then for Boxdtsd(H) = (N, (M,V )) we have ∀t ∈ TwN ∩Ena(M) V (t) <∞. Hence,
if ΛN (t) = ̺(α,♮θ

l
) then min{V (t), θ} = V (t). Suppose that H is also obtained by applying action rules, starting

from an overlined static expression without timer value superscripts and the waiting multiactions corresponding
to each t ∈ TwN are not affected by restriction (note that the waiting multiactions affected by restriction in
H have no corresponding transitions in Boxdtsd(H)). In such a case, by the remarks on the �(M,V ) function
simplification in the constructions above, the timer valuation function V is obtained simply by combining those

of the subformulas of G. For example, if H = [G ∗ E ∗ F ] then V (t) =





VG(t), t ∈ TwG;
VE(t), t ∈ TwE;
VF (t), t ∈ TwF .

Theorem 4.1 For any static expression E, Boxdtsd(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC [27, 26], combining both refinement and relabeling.
Consequently, the dtsd-boxes thus obtained will be safe and clean. ⊓⊔

Proposition 4.1 For any static expression E without timer value superscripts, all states of RG(Boxdtsd(E))
(i.e. those from RS(Boxdtsd(E))) are consistent.

Proof. Let Boxdtsd(E) = (NE , VE). Since E is without timer value superscripts, VE = V∞ and Boxdtsd(E) =
(NE , V

∞). By construction of marked and clocked dtsd-boxes, we get Boxdtsd(E) = Boxdtsd(E) = (NE , V∞) =

(NE , (
◦NE, VE)), where VE(t) =

{
min{V∞(t), θ} = min{∞, θ} = θ, t ∈ TwE ∩ Ena(◦NE);
V∞(t) = ∞, t ∈ TwE \ Ena(◦NE).

Thus, the initial

state (◦NE , VE) of RG(Boxdtsd(E)) is consistent and (NE , (
◦NE, VE)) is an LDTSDPN.

By definition of the firing rule for LDTSDPNs, the waiting transitions that are not enabled in the next state
get (or keep) infinite timer values (item 2, case 1: the infinity value) while those enabled in the next state get
(or keep) finite timer values (item 2, cases 2–4: the new, old or decreased by one value). Thus, the firing rule
always transforms consistent states into consistent ones. Since the initial state of RG(Boxdtsd(E)) is consistent
and the subsequent states are added according to the firing rule, all states of RG(Boxdtsd(E)) are consistent. ⊓⊔

4.3 Examples of dtsd-boxes

We now present a series of examples that demonstrate how to construct the dtsd-boxes of the dynamic expres-
sions that include various compositions of stochastic, waiting and immediate multiactions. In the reachability
graphs of the dtsd-boxes, the s-tangible and w-tangible states are depicted in ordinary and double ovals, re-
spectively, and the vanishing ones are depicted in boxes. To simplify the graphical representation, the singleton
sets of transitions are written without outer braces.

Example 4.1 Let E be from Example 3.12. In Figure 16, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t2)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.2 Let E be from Example 3.13. In Figure 17, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t1), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.
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Figure 16: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ({a}, ♮21)[]({b}, ♮
3
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Figure 17: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ({a}, ♮31)[]({b},
1
3 ) and its reachability

graph

Example 4.3 Let E be from Example 3.14. In Figure 18, the marked and clocked dtsd-box N = Boxdtsd(E) and
its reachability graph RG(N) are presented. Since N has no waiting transitions (a single waiting multiaction in E
is affected by restriction), we may consider the substituent markings M as the whole states Q = (M, ε) ∈ RS(N),
where ε is the zero-element vector (empty sequence). Note that TS(E) and RG(N) are not isomorphic, but
bisimilar (i.e. related by step stochastic bisimulation equivalence, to be defined later).

Example 4.4 Let E be from Example 3.15. In Figure 19, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t2), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 4.5 Let E be from Example 3.16. In Figure 20, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t2), V (t3)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.
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Figure 19: The marked and clocked dtsd-box N = Boxdtsd(E) for E = [({a}, 12 ) ∗ ({b}, ♮31) ∗ ({c}, 13 )] and its
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Figure 22: The marked and clocked dtsd-box N = Boxdtsd(E) for E = (({a}, ♮21)‖({â}, ♮
2
2)) sy a rs a and its

reachability graph

Example 4.6 Let E be from Example 3.17. In Figure 21, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t1), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 4.7 Let E be from Example 3.18. In Figure 22, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t(1)(2)), placed under the corresponding marking

M . Note that TS(E) and RG(N) are isomorphic.

Example 4.8 Let E be from Example 3.19. In Figure 23, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t2), V (t(2)(3)), V (t3)), placed under the corresponding marking

M . Note that TS(E) and RG(N) are isomorphic.

Example 4.9 Let E be from Example 3.20. In Figure 24, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t4)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.10 Let E be from Example 3.21. In Figure 25, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t(2)(3)), V (t4)), placed under the corresponding marking M .

Note that TS(E) and RG(N) are not isomorphic, but bisimilar (i.e. related by step stochastic bisimulation
equivalence, to be defined later).

48



✍✌✎☞✍✌✎☞ ✉
❄ ❄

N

({b},♮32) ({b̂},♮33)(∅,♮35)

✍✌✎☞ ✍✌✎☞❄ ❄

◗
◗◗s

✑
✑✑✰

✚
✚

✚❂
❩
❩
❩⑦x x

e

✍✌✎☞✉
❄

({a},♮11)

❄

e

RG(N)

☛✡ ✟✠01100,
∞332

☛✡ ✟✠01001,
∞∞∞∞

☛✡ ✟✠✞✝ ☎✆01001,
∞1∞∞

❄

❄✞✝ ✲ t2,1

∅,1

01100,
∞221

❄
t3,1

☛✡ ✟✠✞✝ ☎✆∅,1
t1,1

☛✡ ✟✠✞✝ ☎✆10100,
1∞∞3

❄

p1

p2 p3

p4 p5

t1

t2 t(2)(3) t3

Figure 23: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ((({a}, ♮11); ({b}, ♮
3
2))‖({b̂}, ♮

3
3)) sy b and

its reachability graph

({a},♮11)

✍✌✎☞

✍✌✎☞
❄

❄

N

e

✍✌✎☞
❄

❄
x

✍✌✎☞

✍✌✎☞
e

x

❄

❄

✏✏✏✏✮

❍❍❍❍❥

✉

✉
({b},♮05) ({c},♮14)

RG(N)☛✡ ✟✠✞✝ ☎✆10100,
11☛✡ ✟✠01001,

∞∞

❄✞✝ ✲ {t1,t4},1

∅,1

p1

p2 p3

p4 p5

t1

t(2)(3) t4

Figure 24: The marked and clocked dtsd-box N = Boxdtsd(E) for E = ((({a}, ♮11); ({b, x̂}, ♮
0
2))‖(({x}, ♮

0
3)[]

({c}, ♮14))) sy x rs x and its reachability graph

({a},♮21)

✍✌✎☞

✍✌✎☞
❄

❄

N

e

✍✌✎☞
❄

❄
x

✍✌✎☞

✍✌✎☞
e

x

❄

❄

✏✏✏✏✮

❍❍❍❍❥

✉

✉
({b},♮25) ({c},♮24)

RG(N)

☛✡ ✟✠✞✝ ☎✆10100,
1∞1

❄✞✝ ✲ {t1,t4},1

∅,1

☛✡ ✟✠10100,
2∞2

❄∅,1

☛✡ ✟✠01001,
∞∞∞

p1

p2 p3

p4 p5

t1

t(2)(3) t4

Figure 25: The marked and clocked dtsd-box N = Boxdtsd(E) for E = (((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]

({c}, ♮24))) sy x rs x and its reachability graph

49



({a},♮21)

✍✌✎☞

✍✌✎☞
❄

❄

N

e

✍✌✎☞
❄

❄
x

✍✌✎☞

✍✌✎☞
e

x

❄

❄

✏✏✏✏✮

❍❍❍❍❥

✉

✉
({b},♮25) ({c},♮24)({b,x},♮22) ({x},♮23)

PPPPq

✟✟✟✟✙

✏✏✏✏✮

❍❍❍❍❥

RG(N)

☛✡ ✟✠✞✝ ☎✆10100,
1∞∞11

☛✡ ✟✠00011,
∞∞∞∞∞

✞✝ ✲

{t1,t4},

5
9

{t1,t3},

4
9

∅,1

☛✡ ✟✠10100,

2∞∞22

❄∅,1

☛✡ ✟✠01001,
∞2∞∞∞

❄∅,1☛✡ ✟✠✞✝ ☎✆01001,
∞1∞∞∞

❄
t2,1

✞
✝
☎
✆✲ ✛

p1

p2 p3

p4 p5

t1

t4t3t2 t(2)(3)

Figure 26: The marked and clocked dtsd-box N = Boxdtsd(E) for E = (((({a}, ♮21); ({b, x̂}, ♮
2
2))‖(({x}, ♮

2
3)[]

({c}, ♮24))) sy x and its reachability graph

({a}, 12 )

✍✌✎☞✉
❄

e

N

({d},13 )

✍✌✎☞
({b},♮11)

✍✌✎☞x

❄

({c},♮12)

��✠
❩❩⑦
✍✌✎☞✛ ✥

✦
❄

✠

✍

✲

❄

★
✧

RG(N)

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
0100,
11

0010,
∞∞

☛✡ ✟✠
❄

1000,
∞∞

t1,
1
2

t3,
2
3

✞✝ ✲
∅, 1

2✞✝ ✲
t2,

1
3✞✝ ✲

∅, 2
3

✘

✙✚

✛

t4,
1
3

t1

t2 t3

t4

p1

p2

p3

p4

Figure 27: The marked and clocked dtsd-box N = Boxdtsd(E) for E = [({a}, 12 )∗(({b}, ♮
1
1)[](({c}, ♮

1
2); ({d},

1
3 )))∗

Stop] and its reachability graph

Example 4.11 Let E be from Example 3.22. In Figure 26, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t1), V (t2), V (t(2)(3)), V (t3), V (t4)), placed under the corresponding

marking M . Note that TS(E) and RG(N) are isomorphic.

Example 4.12 Let E be from Example 3.23. In Figure 27, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the vector V = (V (t2), V (t3)), placed under the corresponding marking M . Note that
TS(E) and RG(N) are isomorphic.

Example 4.13 Let E be from Example 3.24. In Figure 28, the marked and clocked dtsd-box N = Boxdtsd(E)
and its reachability graph RG(N) are presented. For each state Q = (M,V ) ∈ RS(N), the timer valuation
function is described by the one-element vector (scalar) V = V (t2), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

In Examples 4.1–4.13, the marked and clocked dtsd-boxes N = Boxdtsd(E) are presented for E from Ex-
amples 3.12–3.24. Note that, due to the time constraints and since waiting multiactions may be preempted
by stochastic ones, some dynamic expressions can have complex transition systems (reachability graphs) and
simple marked and clocked dtsd-boxes (Examples 4.1–4.7), or vice versa (Examples 4.8–4.13).
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Figure 28: The marked and clocked dtsd-box N = Boxdtsd(E) for E = [({a}, ρ)∗(({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[]
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The following example demonstrates that without the syntactic restriction on regularity of expressions the
corresponding marked and clocked dtsd-boxes may be not safe.

Example 4.14 Let E = [(({a}, 12 )∗(({b},
1
2 )‖({c},

1
2 ))∗({d},

1
2 )]. In Figure 29, the marked and clocked dtsd-box

N = Boxdtsd(E) and its reachability graph RG(N) are presented. Since N has no waiting transitions, we may
consider the substituent markings M as the whole states Q = (M, ε) ∈ RS(N), where ε is the zero-element
vector (empty sequence). At the marking (0, 1, 1, 2, 0, 0) there are 2 tokens in the place p4. Symmetrically, at the
marking (0, 1, 1, 0, 2, 0) there are 2 tokens in the place p5. Thus, allowing concurrency in the second argument
of iteration in the expression E can lead to non-safeness of the corresponding marked and clocked dtsd-box N ,
though, it is 2-bounded in the worst case [26]. The origin of the problem is that N has as a self-loop with
two subnets which can function independently. Therefore, we have decided to consider regular expressions only,
since the alternative, which is a safe version of the iteration operator with six arguments in the corresponding
dtsd-box, like that from [26], is rather cumbersome and has too intricate PN interpretation. Our motivation was
to keep the algebraic and PN specifications as simple as possible.

5 Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions and dtsd-boxes can be
constructed and then used for performance evaluation.

5.1 Analysis of the underlying SMC (embedding)

For a dynamic expression G, a discrete random variable ξ(s) is associated with every tangible state s ∈ DRT (G).
The variable captures the residence (sojourn) time in the state. One can interpret staying in a state at the
next discrete time moment as a failure and leaving it as a success in some trial series. It is easy to see
that ξ(s) is geometrically distributed with the parameter 1 − PM(s, s), since the probability to stay in s
for k − 1 time moments and leave it at the moment k ≥ 1, called the probability mass function (PMF) of
the residence time in s, is pξ(s)(k) = P(ξ(s) = k) = PM(s, s)k−1(1 − PM(s, s)) (k ∈ IN≥1) (the residence
time in s is k in this case). Hence, the probability distribution function (PDF) of the residence time in s is
Fξ(s)(k) = P(ξ(s) < k) = 1−PM(s, s)k−1 (k ∈ IN≥1) (the probability that the residence time in s is less than k).
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and its reachability graph

Note that the deterministic residence time 1 in a tangible state s can be interpreted as a random variable ξ(s)
that is geometrically distributed with the parameter 1 = 1 − PM(s, s). In that case, PM(s, s) = 0 and k = 1
is the only residence time value with a positive probability. Hence, pξ(s)(1) = PM(s, s)1−1(1 − PM(s, s)) =
00 · 1 = 1, i.e. the probability that the residence time is 1 equals 1.

Further, the residence time ∞ in an absorbing tangible state s can be interpreted as a random variable ξ(s)
that is geometrically distributed with the parameter 0 = 1 − PM(s, s). In that case, PM(s, s) = 1 and there
exists no finite residence time value with a positive probability. Hence, pξ(s)(k) = PM(s, s)k−1(1−PM(s, s)) =

1k−1 · 0 = 0 (k ∈ IN≥1), i.e. the probability that the residence time is k equals 0 for every k ≥ 1. Then we
cannot leave s for a different state after any number of time ticks and we stay in s for infinite time.

The mean value formula for the geometrical distribution allows us to calculate the average sojourn time
in s ∈ DRT (G) as SJ(s) = 1

1−PM(s,s) . The average sojourn time in each vanishing state s ∈ DRV (G) is

SJ(s) = 0. Let s ∈ DR(G).
The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s), s ∈ DR(G).
The sojourn time variance in the state s is

V AR(s) =

{
PM(s,s)

(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by V AR, has the elements V AR(s), s ∈ DR(G).
To evaluate performance of the system specified by a dynamic expression G, we should investigate the

stochastic process associated with it. The process is the underlying semi-Markov chain (SMC) [121, 124, 84, 30,
136, 85, 122, 123], denoted by SMC(G), which can be analyzed by extracting from it the embedded (absorbing)
discrete time Markov chain (EDTMC) corresponding to G, denoted by EDTMC(G). The construction of the
latter is analogous to that applied in the context of generalized stochastic PNs (GSPNs) in [102, 8, 9], and also
in the framework of discrete time deterministic and stochastic PNs (DTDSPNs) in [143, 139, 140, 145, 146, 144],
as well as within discrete deterministic and stochastic PNs (DDSPNs) [141, 142]. EDTMC(G) only describes
the state changes of SMC(G) while ignoring its time characteristics. Thus, to construct the EDTMC, we
should abstract from all time aspects of behaviour of the SMC, i.e. from the sojourn time in its states. The
(local) sojourn time in every state of the EDTMC is deterministic and it is equal to one discrete time unit. It
is well-known that every SMC is fully described by the EDTMC and the state sojourn time distributions (the
latter can be specified by the vector of PDFs of residence time in the states) [67, 124, 136, 85].
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Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system TS(G) can have self-loops going
from a state to itself which have a non-zero probability. Clearly, the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

PM(s, s)k.

The self-loops abstraction factor in the state s is

SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise.

The self-loops abstraction vector of G, denoted by SL, has the elements SL(s), s ∈ DR(G).
Let s → s̃ and s 6= s̃, i.e. PM(s, s) < 1. The probability to move from s to s̃ by executing any multiset of

activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
= SL(s)PM(s, s̃).

The value k = 0 in the summation above corresponds to the case when no self-loops occur.
Let s ∈ DRT (G). If there exist self-loops from s (i.e. if s→ s) then PM(s, s) > 0 and SL(s) = 1

1−PM(s,s) =

SJ(s). Otherwise, if there exist no self-loops from s then PM(s, s) = 0 and SL(s) = 1 = 1
1−PM(s,s) =

SJ(s). Thus, ∀s ∈ DRT (G) SL(s) = SJ(s), hence, ∀s ∈ DRT (G) with PM(s, s) < 1 it holds PM∗(s, s̃) =
SJ(s)PM(s, s̃). Note that the self-loops from tangible states are of the empty or non-empty type, the latter
produced by iteration, since empty loops are not possible from w-tangible states, but they are possible from
s-tangible states, while non-empty loops are possible from both s-tangible and w-tangible states.

Let s ∈ DRV (G). We have ∀s ∈ DRV (G) SL(s) 6= SJ(s) = 0 and ∀s ∈ DRV (G) with PM(s, s) < 1 it holds

PM∗(s, s̃) = SL(s)PM(s, s̃). If there exist self-loops from s then PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) when PM(s, s) < 1.

Otherwise, if there exist no self-loops from s then PM∗(s, s̃) = PM(s, s̃). Note that the self-loops from
vanishing states are always of the non-empty type, produced by iteration, since empty loops are not possible
from vanishing states. Further, we suppose that all (if any) loops among vanishing states are “transient” rather
than “absorbing”, as in [103, 9]. Then for each s with PM(s, s) = 1 (absorbing state) we have s ∈ DRT (G),
since there exist no absorbing vanishing states, hence, ∀s ∈ DRV (G) PM(s, s) < 1.

Note that after abstraction from the probabilities of transitions which do not change the states, the remaining
transition probabilities are normalized. In order to calculate transition probabilities PT (Υ, s), we had to
normalize PF (Υ, s). Then, to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we now
have to normalize PM(s, s̃). Thus, we have a two-stage normalization as a result.

Notice that PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such that s is not an absorbing
state (i.e. PM(s, s) < 1, hence, there are transitions to different states after possible self-loops from it) we have∑

{s̃|s→s̃, s6=s̃} PM
∗(s, s̃) = 1

1−PM(s,s)

∑
{s̃|s→s̃, s6=s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops or a state-changing step preceded and followed
by self-loops. In all these three cases our sequence begins or/and ends with the loops which do not change
states. At the same time, the overall probabilities of the evolutions can differ, since self-loops have positive
probabilities. To avoid inconsistency of definitions and too complex description, we consider sequences ending
with a state-changing step. It resembles in some sense a construction of branching bisimulation [59] taking
self-loops instead of silent transitions. Further, we shall not abstract from self-loops with probability 1 while
constructing EDTMCs, in order to maintain a probability distribution among transitions (actually, a single
transition to the same state) from every state with such a self-loop.

Definition 5.1 Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain
(EDTMC) of G, denoted by EDTMC(G), has the state space DR(G), the initial state [G]≈ and the transitions
s→→P s̃, if s→ s̃ and s 6= s̃, where P = PM∗(s, s̃); or s→→1 s, if PM(s, s) = 1.

The underlying SMC of G, denoted by SMC(G), has the EDTMC EDTMC(G) and the sojourn time in
every s ∈ DRT (G) is geometrically distributed with the parameter 1−PM(s, s) (in particular, the sojourn time
is 1 when PM(s, s) = 0, and ∞ when PM(s, s) = 1) while the sojourn time in every s ∈ DRV (G) is equal to 0.

EDTMCs and underlying SMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let
EDTMC(E) = EDTMC(E) and SMC(E) = SMC(E).

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of the (one-step) transition

probability matrix (TPM) P∗ for EDTMC(G) are defined as
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P∗
ij =





PM∗(si, sj), si → sj , i 6= j;
1, PM(si, si) = 1, i = j;
0, otherwise.

The transient (k-step, k ∈ IN) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC(G) is a solution of the equation system

{
ψ∗(P∗ − I) = 0
ψ∗1T = 1

,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is that of n values 1.
Note that the vector ψ∗ exists and is unique if EDTMC(G) is ergodic. Then EDTMC(G) has a single steady

state, and we have ψ∗ = limk→∞ ψ∗[k]. We shall consider only Markov chains with at most one steady state.
The steady-state PMF for the underlying semi-Markov chain SMC(G) is calculated via multiplication of

every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time SJ(si) in the state si, after which we normalize the resulting
values. Remember that for each tangible state s ∈ DRT (G) we have SJ(s) ≥ 1, and for each vanishing state
s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑
n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops with probability less than 1 to get P∗ and then
ψ∗, followed by weighting by SJ and normalization. We call that technique embedding, since the embedded
DTMC (EDTMC) is used to specify the SMC state change probabilities. EDTMC(G) has no self-loops with
probability less than 1, unlike SMC(G), hence, the behaviour of EDTMC(G) may stabilize quicker than that
of SMC(G) (if each of them has a single steady state), since P∗ has only zero (excepting the states having
self-loops with probability 1) elements at the main diagonal.

Example 5.1 Let E be from Example 3.24. In Figure 30, the underlying SMC SMC(E) is presented. The
average sojourn times in the states of the underlying SMC are written next to them in bold font.

The average sojourn time vector of E is

SJ =

(
1

ρ
, 1, 0,

1

θ
,
1

φ

)
.

The sojourn time variance vector of E is

V AR =

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2
,
1− φ

φ2

)
.

The TPM for EDTMC(E) is

P∗ =




0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 1 0 0 0
0 1 0 0 0



.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

1

3
,
1

3
,

l

3(l +m)
,

m

3(l+m)

)
.

The steady-state PMF ψ∗ weighted by SJ is
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(
0,

1

3
, 0,

l

3θ(l +m)
,

m

3φ(l +m)

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ∗SJT =
θφ(l +m) + φl + θm

3θφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

In the case l = m and θ = φ we have

ϕ =
1

2(1 + θ)
(0, 2θ, 0, 1, 1).

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following standard performance
indices (measures) can be calculated based on the steady-state PMF ϕ for SMC(G) and the average sojourn
time vector SJ of G [112, 80].

• The average recurrence (return) time in the state s (i.e. the number of discrete time units or steps required
for this) is ReturnT ime(s) = 1

ϕ(s) .

• The fraction of residence time in the state s is T imeFract(s) = ϕ(s).

• The fraction of residence time in the set of states S or the probability of the event determined by a condition
that is true for all states from S is T imeFract(S) =

∑
s∈S ϕ(s).

• The relative fraction of residence time in the set of states S with respect to that in S̃ is

RltT imeFract(S, S̃) =
∑
s∈S ϕ(s)∑
s̃∈S̃ ϕ(s̃)

.

• The exit/entrance frequency (rate of leaving/entering, average number of exits/entrances per unit of time)

the state s is ExitFreq(s) = ϕ(s)
SJ(s) .

• The steady-state probability to perform a step with a multiset of activities Ξ is
ActsProb(Ξ) =

∑
s∈DR(G) ϕ(s)

∑
{Υ|Ξ⊆Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is
Prob(r) =

∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.
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Example 5.2 Let us interpret E from Example 3.24 as a specification of the travel system. A tourist visits
regularly new cities. After seeing the sights of the current city, he goes to the next city by the nearest train or
bus available at the city station. Buses depart less frequently than trains, but the next city is quicker reached by
bus than by train. We suppose that the stay duration in every city (being a constant), the departure numbers of
trains and buses, as well as their speeds do not depend on a particular city, bus or train. The travel route has
been planned so that the distances between successive cities coincide.

The meaning of actions and activities from the syntax of E is as follows. The action a corresponds to the
system activation after planning the travel route that takes a time, geometrically distributed with a parameter ρ,
the probability of the corresponding stochastic multiaction ({a}, ρ). The action b represents coming to the city
station after completion of looking round the current city that takes (for every city) a fixed time equal to 1 (say,
one hour), the time delay of the corresponding waiting multiaction ({b}, ♮1k) with (resolving no choice) weight k.
The actions c and e correspond to the urgent (in zero time) getting on bus and train, respectively, and thus model
the choice between these two transport facilities. The weights of the two corresponding immediate multiactions
({c}, ♮0l ) and ({e}, ♮0m) suggest that every l departures of buses take the same time as m departures of trains
(l < m), hence, a bus departs with the probability l

l+m while a train departs with the probability m
l+m . The

actions d and f correspond to coming in a city by bus and train, respectively, that takes a time, geometrically
distributed with the parameters θ and φ, respectively (θ > φ), the probabilities of the corresponding stochastic
multiactions ({d}, θ) and ({f}, φ).

The meaning of states from DR(E) is the following. The s-tangible state s1 corresponds to staying at home
and planning the future travel. The w-tangible state s2 means residence in a city for exactly one time unit (hour).
The vanishing state s3 with zero residence time represents instantaneous stay at the city station, signifying that
the tourist does not wait there for departure of the transport. The s-tangible states s4 and s5 correspond to going
by bus and train, respectively.

Using Example 5.1, we now calculate the performance indices, based on the steady-state PMF for SMC(E)

ϕ = 1
θφ(l+m)+φl+θm(0, θφ(l +m), 0, φl, θm) and the average sojourn time vector of E SJ =

(
1
ρ , 1, 0,

1
θ ,

1
φ

)
.

• The average time between comings to the successive cities (mean sightseeing and travel time) is
ReturnT ime(s2) =

1
ϕ(s2)

= 1 + φl+θm
θφ(l+m) .

• The fraction of time spent in a city (sightseeing time fraction) is T imeFract(s2) = ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm .

• The fraction of time spent in a transport (travel time fraction) is T imeFract({s4, s5}) = ϕ(s4) +ϕ(s5) =
φl+θm

θφ(l+m)+φl+θm .

• The relative fraction of time spent in a city with respect to that spent in transport (sightseeing relative to

travel time fraction) is RltT imeFract({s2}, {s4, s5}) =
ϕ(s2)

ϕ(s4)+ϕ(s5)
= θφ(l+m)

φl+θm .

• The rate of leaving/entering a city (departure/arrival rate) is ExitFreq(s2) =
ϕ(s2)
SJ(s2)

= θφ(l+m)
θφ(l+m)+φl+θm .

Let N = (PN , TN ,WN , DN ,ΩN ,LN , QN) be a LDTSDPN and Q, Q̃ be its states. Then the average sojourn

time SJ(Q), the sojourn time variance V AR(Q), the probabilities PM∗(Q, Q̃), the transition relation Q→→P Q̃,
the EDTMC EDTMC(N), the underlying SMC SMC(N) and the steady-state PMF for it are defined like the
corresponding notions for dynamic expressions.

As we have mentioned earlier, every marked and clocked plain dtsd-box could be interpreted as the LDTS-
DPN. Therefore, we can evaluate performance with the LDTSDPNs corresponding to dtsd-boxes and then
transfer the results to the latter.

Example 5.3 Let E be from Example 3.24 and N = Boxdtsd(E). In Figure 31, the underlying SMC SMC(N)
is presented. Note that SMC(E) and SMC(N) are isomorphic. Thus, both the transient and steady-state
PMFs for SMC(N) and SMC(E) coincide.

As mentioned in [143, 139, 140], if is useful to consider performance measures over only the markings of
DTDSPNs, instead of their whole states, whose second components are the remaining firing time vectors. In the
context of dtsdPBC, such markings correspond to those of the dtsd-boxes of dynamic expressions, i.e. to the
markings of the respective LDTSDPNs, obtained from their states by abstracting from the second components,
which are the timer valuation functions.

Let G be a dynamic expression. The underlying timer-free state of a state s ∈ DR(G) is defined as ⇃s =
[⇃H ]≈ for H ∈ s. Note that only in the first inaction rule in Table 1 the left and right parts have different timer
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value annotations. After removing all timer values, the both parts will coincide. Since structurally equivalent
dynamic expressions remain so after removing their timer value annotations, ⇃s is unique for each s and the
definition is correct. Thus, ⇃s is the structural equivalence class of an arbitrary dynamic expression from s,
where timer values have been removed, prior to taking the equivalence class of that expression. We cannot
simply collect all the timer-discarded dynamic expressions from s, since ⇃s should be a state itself, i.e. it must
contain all structurally equivalent expressions.

Example 5.4 Let E be from Example 3.1 and s = [E]≈, s̃ =	s. Then ⇃s =⇃s̃ = [({a}, ♮31)[]({b},
1
3 )]≈ =

[({a}, ♮31)[]({b},
1
3 )]≈ = [({a}, ♮31)[]({b},

1
3 )}]≈ = {({a}, ♮31)[]({b},

1
3 ), ({a}, ♮

3
1)[]({b},

1
3 ), ({a}, ♮

3
1)[]({b},

1
3 ),

({a}, ♮31)
3[]({b}, 13 ), ({a}, ♮

3
1)

3[]({b}, 13 ), ({a}, ♮
3
1)

3[]({b}, 13 )}.

Hence, some enabled waiting multiactions of s may have the initial timer value superscripts. Actually, this
does not provide ⇃s with an extra timing information, since those superscripts are determined only by the delays
of the corresponding waiting multiactions and their enabling status. The elements of the set of all timer-free
states of G, defined as ⇃DR(G) = {⇃s | s ∈ DR(G)}), correspond to the reachable markings of the LDTSDPN
N = Boxdtsd(G).

Let s ∈ DR(G) and s̄ =⇃s. The steady-state PMF for SMC(G) over the timer-free states of G is defined as
follows: ϕ(s̄) =

∑
{s∈DR(G)|⇃s=s̄} ϕ(s). Then ϕ(s̄) can be used to calculate the standard performance indices over

the timer-free states of G (hence, over the markings of N), by analogy with the standard performance indices,
defined over the arbitrary states of G. Then also the performance measures that are specific for LDTSDPNs
can be derived, based on the numbers of tokens in the places of N .

5.2 Analysis of the DTMC (abstraction)

Let us consider an alternative solution method, studying the DTMCs of expressions based on the state change
probabilities PM(s, s̃).

Definition 5.2 Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G, denoted by
DTMC(G), has the state space DR(G), the initial state [G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).
One can see that EDTMC(G) is constructed from DTMC(G) as follows. For each state of DTMC(G), we

remove a possible self-loop with probability less than 1, associated with it and then normalize the probabilities
of the remaining transitions from the state. Thus, EDTMC(G) and DTMC(G) differ only by existence of
self-loops with probability less than 1 and magnitudes of the probabilities of the remaining transitions. Hence,
EDTMC(G) and DTMC(G) have the same communication classes of states and EDTMC(G) is irreducible iff
DTMC(G) is so. Since both EDTMC(G) and DTMC(G) are finite, they are positive recurrent. Thus, in case
of irreducibility, each of them has a single stationary PMF. Note that both EDTMC(G) and DTMC(G) or
just one of them may be periodic, thus having a unique stationary distribution, but no steady-state (limiting)
one. For example, it may happen that EDTMC(G) is periodic while DTMC(G) is aperiodic due to self-loops
associated with some states of the latter. The states of SMC(G) are classified using EDTMC(G), hence,
SMC(G) is irreducible (positive recurrent, aperiodic) iff EDTMC(G) is so.
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Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition
probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), si → sj ;
0, otherwise.

The steady-state PMF ψ for DTMC(G) is defined like the corresponding notion ψ∗ for EDTMC(G).
Let us determine a relationship between steady-state PMFs for DTMC(G) and EDTMC(G). The following

theorem proposes the equation that relates the mentioned steady-state PMFs.
First, we introduce some helpful notation. For a vector v = (v1, . . . , vn), let Diag(v) be a diagonal matrix

of order n with the elements Diagij(v) (1 ≤ i, j ≤ n) defined as

Diagij(v) =

{
vi, i = j;
0, otherwise.

Theorem 5.1 Let G be a dynamic expression and SL be its self-loops abstraction vector. Then the steady-state
PMFs ψ for DTMC(G) and ψ∗ for EDTMC(G) are related as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

Proof. Let there is an absorbing state si ∈ DR(G) (1 ≤ i ≤ n), i.e. PM(si, si) = 1. Then Pii = 1 in the
TPM P of DTMC(G) and P∗

ii = 1 in the TPM P∗ of EDTMC(G), by definitions of those TPMs. We have
earlier supposed that there exist no absorbing vanishing states, hence, si ∈ DRT (G) and SL(si) = ∞ = SJ(si).
We have also supposed at most one single steady state in the considered Markov chains, hence, {si} is a single
communication (and ergodic) class of states in both DTMC(G) and EDTMC(G). Then ψ(si) = 1 = ψ∗(si),
whereas ∀s ∈ DR(G) \ {si} SL(s) <∞, SJ(s) <∞ and ψ(s) = 0 = ψ∗(s). We thus get for si

ψ∗(si)SL(si)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)
=

1 · SL(si)

1 · SL(si)
=

1

1
= 1 = ψ(si),

whereas ∀s ∈ DR(G) \ {si}

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)
=

0 · SL(s)

1 · SL(si)
=

0

∞
= 0 = ψ(s).

Let there are no absorbing states, i.e. ∀s ∈ DR(G) PM(s, s) < 1. Let PSL be a vector with the elements

PSL(s) =

{
PM(s, s), s→ s;
0, otherwise.

By definition of PM∗(s, s̃), we have P∗ = Diag(SL)(P−Diag(PSL)). Further,

ψ∗(P∗ − I) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by Diag(SL)(P−Diag(PSL)) we obtain

ψ∗Diag(SL)(P−Diag(PSL)) = ψ∗ and ψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) + I).

Note that ∀s ∈ DR(G) we have

SL(s)PSL(s) + 1 =

{
SL(s)PM(s, s) + 1 = PM(s,s)

1−PM(s,s) + 1 = 1
1−PM(s,s) , s→ s;

SL(s) · 0 + 1 = 1, otherwise;

}
= SL(s).

Hence, Diag(SL)Diag(PSL) + I = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then, for v = ψ∗Diag(SL), we have

vP = v and v(P− I) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing its elements by their sum, since
we should have ψ1T = 1 as a result:
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ψ =
1

v1T
v =

1

ψ∗Diag(SL)1T
ψ∗Diag(SL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check that ψ is a solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

,

hence, it is indeed the steady-state PMF for DTMC(G). ⊓⊔
The following proposition relates the steady-state PMFs for SMC(G) and DTMC(G).

Proposition 5.1 Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G) and ψ be the steady-
state PMF for DTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

{
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
, s ∈ DRT (G);

0, s ∈ DRV (G).

Proof. Let s ∈ DRT (G). Remember that ∀s ∈ DRT (G) SL(s) = SJ(s) and ∀s ∈ DRV (G) SJ(s) = 0.

Then, by Theorem 5.1, we have ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)

∑
s̃∈DRT (G)

(
ψ∗(s̃)SL(s̃)∑

s̆∈DR(G) ψ
∗(s̆)SL(s̆)

) = ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃) ·

∑
s̆∈DR(G) ψ

∗(s̆)SL(s̆)∑
s̃∈DRT (G) ψ

∗(s̃)SL(s̃) =
ψ∗(s)SL(s)∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃) =

ψ∗(s)SJ(s)∑
s̃∈DRT (G) ψ

∗(s̃)SJ(s̃) =
ψ∗(s)SJ(s)∑

s̃∈DR(G) ψ
∗(s̃)SJ(s̃) = ϕ(s). ⊓⊔

Thus, to calculate ϕ, one can only apply normalization to some elements of ψ (corresponding to the tangible
states), instead of abstracting from self-loops with probability less than 1 to get P∗ and then ψ∗, followed by
weighting by SJ and normalization. We call that technique abstraction, since we abstract from the vanishing
states and consider only the (normalized) DTMC-based stationary probabilities of the tangible states. Hence,
using DTMC(G) instead of EDTMC(G) allows one to avoid multistage analysis, but the payment for it is
more time-consuming numerical and more complex analytical calculation of ψ with respect to ψ∗. The reason
is that DTMC(G) may have self-loops with probability less than 1, unlike EDTMC(G), hence, the behaviour
of DTMC(G) may stabilize slower than that of EDTMC(G) (if each of them has a single steady state) and P
is potentially more dense matrix than P∗, since P may have additional non-zero elements at the main diagonal.
Nevertheless, Proposition 5.1 is very important, since the relationship between ϕ and ψ it discovers will be used
in Proposition 5.2 to relate the steady-state PMFs for SMC(G) and the reduced DTMC(G).

Example 5.5 Let E be from Example 3.24. In Figure 32, the DTMC DTMC(E) is presented.
The TPM for DTMC(E) is

P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 φ 0 0 1− φ



.

The steady-state PMF for DTMC(E) is

ψ =
1

2θφ(l +m) + φl + θm
(0, θφ(l +m), θφ(l +m), φl, θm).

Remember that DRT (E) = DRST (E) ∪DRWT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. Hence,

∑

s∈DRT (E)

ψ(s) = ψ(s1) + ψ(s2) + ψ(s4) + ψ(s5) =
θφ(l +m) + φl + θm

2θφ(l +m) + φl + θm
.

By Proposition 5.1, we have
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DTMC(E)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
ρ

1

l
l+m

m
l+m

θ φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

1−ρ

1−θ 1−φ

Figure 32: The DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]

ϕ(s1) = 0 · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = 0,

ϕ(s2) =
θφ(l+m)

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = θφ(l+m)

θφ(l+m)+φl+θm ,

ϕ(s3) = 0,

ϕ(s4) =
φl

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = φl

θφ(l+m)+φl+θm ,

ϕ(s5) =
θm

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = θm

θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 5.1 with the use of ψ∗ and SJ .

5.3 Analysis of the reduced DTMC (elimination)

Let us now consider the method from [44, 47, 48, 103, 8, 11, 9] that eliminates vanishing states from the EMC
(EDTMC, in our terminology) corresponding to the underlying SMC of every GSPN N . The TPM for the
resulting reduced EDTMC (REDTMC) has smaller size than that for the EDTMC. The method demonstrates
that there exists a transformation of the underlying SMC of N into a CTMC, whose states are the tangible
markings of N . This CTMC, which is essentially the reduced underlying SMC (RSMC) of N , is constructed on
the basis of the REDTMC. The CTMC can then be directly solved to get both the transient and the steady-
state PMFs over the tangible markings of N . In [48], the program and computational complexities of such
an elimination method, based on the REDTMC, were evaluated and compared with those of the preservation
method that does not eliminate vanishing states and based on the EDTMC. The preservation method for GSPNs
corresponds in dtsdPBC to the analysis of the underlying SMCs of expressions, called the embedding approach.

The elimination method for GSPNs can be easily transferred to dtsdPBC, hence, for every dynamic ex-
pression G, we can find a DTMC (since the sojourn time in the tangible states from DR(G) is discrete and
geometrically distributed) with the states from DRT (G), which can be directly solved to find the transient and
the steady-state PMFs over the tangible states. We shall demonstrate that such a reduced DTMC (RDTMC)
of G, denoted by RDTMC(G), can be constructed from DTMC(G), using the method analogous to that de-
signed in [103, 8, 11, 9] in the framework of GSPNs to transform EDTMC into REDTMC. Since the sojourn
time in the vanishing states is zero, the state changes of RDTMC(G) occur in the moments of the global
discrete time associated with SMC(G), unlike those of EDTMC(G), which happen only when the current
state changes to some different one, irrespective of the global time. Therefore, in our case, we can skip the
stages of constructing the REDTMC of G, denoted by REDTMC(G), from EDTMC(G), and recovering
RSMC of G, denoted by RSMC(G), (which is the sought-for DTMC) from REDTMC(G), since we shall have
RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DTMC(G). We reorder the states from DR(G)
so that the first rows and columns of P will correspond to the states from DRV (G) and the last ones will
correspond to the states from DRT (G). Let |DR(G)| = n and |DRT (G)| = m. The resulting matrix can be
decomposed as follows:
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P =

(
C D
E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move from vanishing to vanishing
states, and those of the (n − m) × m submatrix D are the probabilities to move from vanishing to tangible
states. The elements of the m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m×m submatrix F are the probabilities to move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing to vanishing states in any
number of state changes, without traversal of the tangible states.

If there are no loops among vanishing states then for any vanishing state there exists a value l ∈ IN such
that every sequence of state changes that starts in a vanishing state and is longer than l should reach a tangible
state. Thus, ∃l ∈ IN ∀k > l Ck = 0 and

∑∞
k=0 C

k =
∑l
k=0 C

k. If there are loops among vanishing states then
all such loops are supposed to be of “transient” rather than “absorbing” type, since the latter is treated as a
specification error to be corrected, like in [103, 9]. We have earlier required that SMC(G) has a single closed
communication (which is also ergodic) class of states. Remember that a communication class of states is their
equivalence class with respect to communication relation, i.e. a maximal subset of communicating states. A
communication class of states is closed if only the states belonging to it are accessible from every its state. The
ergodic class cannot consist of vanishing states only to avoid “absorbing” loops among them, hence, it contains
tangible states as well. Thus, any sequence of vanishing state changes that starts in the ergodic class will reach
a tangible state at some time moment. All the states that do not belong to the ergodic class should be transient.
Hence, any sequence of vanishing state changes that starts in a transient vanishing state will some time reach
either a transient tangible state or a state from the ergodic class [124, 84, 30, 136, 85, 122, 123]. In the latter
case, a tangible state will be reached as well, as argued above. Thus, every sequence of vanishing state changes
in SMC(G) that starts in a vanishing state will exit the set of all vanishing states in the future. This implies
that the probabilities to move from vanishing to vanishing states in k ∈ IN state changes, without traversal of
tangible states, will lead to 0 when k tends to ∞. Then we have limk→∞ Ck = limk→∞(I − (I − C))k = 0,
hence, I−C is a non-singular matrix, i.e. its determinant is not equal to zero. Thus, the inverse matrix of I−C
exists and may be expressed by a Neumann series as

∑∞
k=0(I− (I−C))k =

∑∞
k=0 C

k = (I−C)−1. Therefore,

G =
∞∑

k=0

Ck =

{ ∑l
k=0 C

k, ∃l ∈ IN ∀k > l Ck = 0, no loops among vanishing states;
(I−C)−1, limk→∞ Ck = 0, loops among vanishing states;

where 0 is the square matrix consisting only of zeros and I is the identity matrix, both of order n−m.
For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let Fij be the elements of the matrix F, Eik be those of E, Gkl be

those of G and Dlj be those of D. By definition, the elements P⋄
ij of the matrix P⋄ are calculated as

P⋄
ij = Fij +

n−m∑

k=1

n−m∑

l=1

EikGklDlj = Fij +
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj = Fij +
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to the tangible state sj in any

number of steps, without traversal of tangible states, but possibly going through vanishing states.
Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj . The probability to move from s to s̃ in any number of steps,

without traversal of tangible states (if such a movement is possible, i.e. its probability is positive) is

PM⋄(s, s̃) = P⋄
ij .

Definition 5.3 Let G be a dynamic expression and [G]≈ ∈ DRT (G). The reduced discrete time Markov chain
(RDTMC) of G, denoted by RDTMC(G), has the state space DRT (G), the initial state [G]≈ and the transitions
s →֒P s̃, where P = PM⋄(s, s̃).

RDTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let RDTMC(E) = RDTMC(E).
Let us now try to define RSMC(G) as a “restriction” of SMC(G) to its tangible states. Since the sojourn

time in the tangible states of SMC(G) is discrete and geometrically distributed, we can see that RSMC(G)
is a DTMC with the state space DRT (G), the initial state [G]≈ and the transitions whose probabilities collect
all those in SMC(G) to move from the tangible to the tangible states, directly or indirectly, namely, by going
through its vanishing states only. Thus, RSMC(G) has the transitions s →֒P s̃, where P = PM⋄(s, s̃), hence,
we get RSMC(G) = RDTMC(G).
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One can see that RDTMC(G) is constructed from DTMC(G) as follows. All vanishing states and all tran-
sitions to, from and between them are removed. All transitions between tangible states are preserved. The pro-
babilities of transitions between tangible states may become greater and new transitions between tangible states
may be added, both iff there exist moves between these tangible states in any number of steps, going through
vanishing states only. Thus, for each sequence of transitions between two tangible states in DTMC(G) there
exists a (possibly shorter, since the eventual passed through vanishing states are removed) sequence between
the same states in RDTMC(G) and vice versa. If DTMC(G) is irreducible then all its states (including tan-
gible ones) communicate, hence, all states of RDTMC(G) communicate as well and it is irreducible. Since both
DTMC(G) and RDTMC(G) are finite, they are positive recurrent. Thus, in case of irreducibility ofDTMC(G),
each of them has a single stationary PMF. Note that DTMC(G) and/or RDTMC(G) may be periodic, thus
having a unique stationary distribution, but no steady-state (limiting) one. For example, it may happen that
DTMC(G) is aperiodic while RDTMC(G) is periodic due to removing vanishing states from the former.

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step, k ∈ IN) PMF ψ⋄[k] =
(ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ IN).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ

⋄(sm)) for RDTMC(G) is a solution of the equation system

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

,

where I is the identity matrix of order m and 0 is a row vector of m values 0, 1 is that of m values 1.
Note that the vector ψ⋄ exists and is unique if RDTMC(G) is ergodic. Then RDTMC(G) has a single

steady state, and we have ψ⋄ = limk→∞ ψ⋄[k].
The zero sojourn times in the vanishing states guarantee that the state changes of RDTMC(G) occur in the

moments of the global discrete time associated with SMC(G), i.e. every such state change occurs after one time
unit delay. Hence, the sojourn time in the tangible states is the same for RDTMC(G) and SMC(G). The state
change probabilities of RDTMC(G) are those to move from tangible to tangible states in any number of steps,
without traversal of the tangible states. Thus, RDTMC(G) and SMC(G) have the same transient behaviour
over the tangible states, thus, the transient analysis of SMC(G) is possible to accomplish using RDTMC(G).

The following proposition relates the steady-state PMFs for SMC(G) and RDTMC(G). It proves that the
steady-state probabilities of the tangible states coincide for them.

Proposition 5.2 Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G) and ψ⋄ be the
steady-state PMF for RDTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Proof. To make the proof more clear, we use the following unified notation. I denotes the identity matrices
of any size. 0 denotes square matrices and row vectors of any size and length of values 0. 1 denotes square
matrices and row vectors of any size and length of values 1.

Let P be the reordered TPM for DTMC(G) and ψ be the steady-state PMF for DTMC(G), i.e. ψ is a
solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

.

Let |DR(G)| = n and |DRT (G)| = m. The decomposed P, P− I and ψ are

P =

(
C D
E F

)
, P− I =

(
C− I D
E F− I

)
and ψ = (ψV , ψT ),

where ψV = (ψ1, . . . , ψn−m) is the subvector of ψ with the steady-state probabilities of vanishing states and
ψT = (ψn−m+1, . . . , ψn) is that with the steady-state probabilities of tangible states.

Then the equation system for ψ is decomposed as follows:
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ψV (C− I) + ψTE = 0
ψVD+ ψT (F− I) = 0
ψV 1

T + ψT1
T = 1

.

Further, let P⋄ be the TPM for RDTMC(G). Then ψ⋄ is a solution of the equation system

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

.

We have

P⋄ = F+EGD,

where the matrix G can have two different forms, depending on whether the loops among vanishing states exist,
hence, we consider the two following cases.

1. There exist no loops among vanishing states. We have ∃l ∈ IN ∀k > l Ck = 0 and G =
∑l

k=0 C
k.

Let us right-multiply the first equation of the decomposed equation system for ψ by G:

ψV (CG−G) + ψTEG = 0.

Taking into account that G =
∑l

k=0 C
k, we get

ψV

(
l∑

k=1

Ck +Cl+1 −C0 −
l∑

k=1

Ck

)
+ ψTEG = 0.

Since C0 = I and Cl+1 = 0, we obtain

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decomposed equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+EGD = P⋄, we have

ψT (P
⋄ − I) = 0.

2. There exist loops among vanishing states. We have lim→∞ Ck = 0 and G = (I−C)−1.

Let us right-multiply the first equation of the decomposed equation system for ψ by G:

−ψV (I−C)G+ ψTEG = 0.

Taking into account that G = (I−C)−1, we get

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decomposed equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+EGD = P⋄, we have

ψT (P
⋄ − I) = 0.
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The third equation ψV 1
T +ψT1

T = 1 of the decomposed equation system for ψ implies that if ψV has non-
zero elements then the sum of the elements of ψT is less than one. We normalize ψT by dividing its elements
by their sum:

v =
1

ψT1T
ψT .

It is easy to check that v is a solution of the equation system

{
v(P⋄ − I) = 0
v1T = 1

,

hence, it is the steady-state PMF for RDTMC(G) and we have

ψ⋄ = v =
1

ψT1T
ψT .

Note that ∀s ∈ DRT (G) ψT (s) = ψ(s). Then the elements of ψ⋄ are calculated as follows: ∀s ∈ DRT (G)

ψ⋄(s) =
ψT (s)∑

s̃∈DRT (G) ψT (s̃)
=

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

.

By Proposition 5.1, ∀s ∈ DRT (G) ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
.

Therefore, ∀s ∈ DRT (G)

ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
= ψ⋄(s).

⊓⊔
Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-state probabilities of the tangible

states, instead of abstracting from self-loops with probability less than 1 to get P∗ and then ψ∗, followed
by weighting by SJ and normalization. We call that technique elimination, since we eliminate the vanishing
states. Hence, using RDTMC(G) instead of EDTMC(G) allows one to avoid such a multistage analysis, but
constructing P⋄ also requires some efforts, including calculating matrix powers or inverse matrices. Note that
RDTMC(G) may have self-loops with probability less than 1, unlike EDTMC(G), hence, the behaviour of
RDTMC(G) may stabilize slower than that of EDTMC(G) (if each of them has a single steady state). On
the other hand, P⋄ is generally smaller and denser matrix than P∗, since P⋄ may have additional non-zero
elements not only at the main diagonal, but also many of them outside it. Therefore, in most cases, we have
less time-consuming numerical calculation of ψ⋄ with respect to ψ∗. At the same time, the complexity of the
analytical calculation of ψ⋄ with respect to ψ∗ depends on the model structure, such as the number of vanishing
states and loops among them, but usually it is lower, since the matrix size reduction plays an important role
in many cases. Hence, for the system models with many immediate activities, we normally have a significant
simplification of the solution. At the abstraction level of SMCs, the elimination of vanishing states decreases
their impact to the solution complexity while allowing immediate activities to specify a comprehensible logical
structure of systems at the higher level of transition systems.

Example 5.6 Let E be from Example 3.24. Remember that DRT (E) = DRST (E)∪DRWT (E) = {s1, s2, s4, s5}
and DRV (E) = {s3}. We reorder the states from DR(E), by moving vanishing states to the first positions:
s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =




0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ



.

The result of the decomposing Pr are the matrices

C = 0, D =

(
0, 0,

l

l+m
,

m

l +m

)
, E =




0
1
0
0


 , F =




1− ρ ρ 0 0
0 0 0 0
0 θ 1− θ 0
0 φ 0 1− φ


 .
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Figure 33: The reduced DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗

Stop]

Since C1 = 0, we have ∀k > 0 Ck = 0, hence, l = 0 and there are no loops among vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.

Further, the TPM for RDTMC(E) is

P⋄ = F+EGD = F+EID = F+ED =




1− ρ ρ 0 0
0 0 l

l+m
m
l+m

0 θ 1− θ 0
0 φ 0 1− φ


 .

In Figure 33, the reduced DTMC RDTMC(E) is presented. The steady-state PMF for RDTMC(E) is

ψ⋄ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), φl, θm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)). By Proposition 5.2, we have

ϕ(s1) = 0,

ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm ,

ϕ(s3) = 0,

ϕ(s4) =
φl

θφ(l+m)+φl+θm ,

ϕ(s5) =
θm

θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 5.1 with the use of ψ∗ and SJ .

Example 5.7 In Figure 34, the reduced underlying SMC RSMC(E) is depicted. The average sojourn times
in the states of the reduced underlying SMC are written next to them in bold font. In spite of the equality
RSMC(E) = RDTMC(E), the graphical representation of RSMC(E) differs from that of RDTMC(E), since
the former is based on the REDTMC(E), where each state is decorated with the positive average sojourn time
of RSMC(E) in it. REDTMC(E) is constructed from EDTMC(E) in the similar way as RDTMC(E) is
obtained from DTMC(E). By construction, the residence time in each state of RSMC(E) is geometrically
distributed. Hence, the associated parameter of geometrical distribution is uniquely recovered from the average
sojourn time in the state.

Note that our reduction of the underlying SMC by eliminating its vanishing states, resulting in the reduced
DTMC, partially resembles the hierarchical aggregation method from [49] for singularly perturbed finite state
Markov processes with rare transitions. The method constructs a sequence of increasingly simplified (with
consecutively reduced order) models and then combines them to approximate asymptotically the original process.
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Figure 34: The reduced SMC of E for E = [({a}, ρ)∗(({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ))))∗Stop]

Our reduction technique also resembles the method from [97] that removes instantaneous states of stochas-
tically discontinuous Markov reward chains. The latter are “limits” of continuous time Markov chains with
state rewards and fast transitions when the rates (speeds) of these transitions tend to infinity, making them
immediate. By analogy with this work, we could consider DTMCs extended with instantaneous states instead
of SMCs with geometrically distributed or zero sojourn times in the states. However, within dtsdPBC, we
have decided to take SMCs as the underlying stochastic process to be able to consider not only geometrically
distributed and zero residence time in the states, but arbitrary fixed discrete time delays as well.

6 Stochastic equivalences

Consider the expressions E = ({a}, 12 ) and E′ = ({a}, 13 )1[]({a},
1
3 )2, for which E 6=ts E′, since TS(E) has

only one transition from the initial to the final state (with probability 1
2 ) while TS(E′) has two such ones

(with probabilities 1
4 ). On the other hand, all the mentioned transitions are labeled by activities with the same

multiaction part {a}. Moreover, the overall probabilities of the mentioned transitions of TS(E) and TS(E′)
coincide: 1

2 = 1
4 +

1
4 . Further, TS(E) (as well as TS(E

′)) has one empty loop transition from the initial state to
itself with probability 1

2 and one empty loop transition from the final state to itself with probability 1. The empty
loop transitions are labeled by the empty multiset of activities. For calculating the transition probabilities of
TS(E′), take ρ = χ = 1

3 in Example 3.9. Then you will see that the probability parts 1
3 and 1

3 of the activities
({a}, 13 )1 and ({a}, 13 )2 are “splitted” among probabilities 1

4 and 1
4 of the corresponding transitions and the

probability 1
2 of the empty loop transition. Unlike =ts, most of the probabilistic and stochastic equivalences

proposed in the literature do not differentiate between the processes such as those specified by E and E′. In
Figure 36(a), the marked dtsd-boxes corresponding to the dynamic expressions E and E′ are presented, i.e.
N = Boxdtsd(E) and N ′ = Boxdtsd(E′).

Since the semantic equivalence =ts is too discriminating in many cases, we need weaker equivalence notions.
These equivalences should possess the following necessary properties. First, any two equivalent processes must
have the same sequences of multisets of multiactions, which are the multiaction parts of the activities executed
in steps starting from the initial states of the processes. Second, for every such sequence, its execution prob-
abilities within both processes must coincide. Third, the desired equivalence should preserve the branching
structure of computations, i.e. the points of choice of an external observer between several extensions of a
particular computation should be taken into account. In this section, we define one such notion: step stochastic
bisimulation equivalence.

6.1 Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular points of choice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisimulation as an equivalence relation that partitions the states
of the union of the transition systems TS(G) and TS(G′) of two dynamic expressions G and G′ to be compared.
For G and G′ to be bisimulation equivalent, the initial states [G]≈ and [G′]≈ of their transition systems should
be related by a bisimulation having the following transfer property: if two states are related then in each of
them the same multisets of multiactions can occur, leading with the identical overall probability from each of
the two states to the same equivalence class for every such multiset.

Thus, we follow the approaches of [79, 87, 70, 72, 22, 14, 15], but we implement step semantics instead
of interleaving one considered in these papers. Recall also that we use the generative probabilistic transition
systems, like in [79], in contrast to the reactive model, treated in [87], and we take transition probabilities instead
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of transition rates from [70, 72, 22, 14, 15]. Thus, step stochastic bisimulation equivalence that we define further
is (in the probabilistic sense) comparable only with interleaving probabilistic bisimulation equivalence from [79],
and our equivalence is obviously stronger.

In the definition below, we consider L(Υ) ∈ INL
fin for Υ ∈ INSIL

fin , i.e. (possibly empty) multisets of
multiactions. The multiactions can be empty as well. In this case, L(Υ) contains the elements ∅, but it is not
empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈ DR(G) and A ∈ INL
fin, we write

s
A
→P H, where P = PMA(s,H) is the overall probability to move from s into the set of states H via steps with

the multiaction part A defined as

PMA(s,H) =
∑

{Υ|∃s̃∈H s
Υ
→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A
→ H if ∃P s

A
→P H. Further, we write s→P H if ∃A s

A
→ H, where P = PM(s,H) is the overall

probability to move from s into the set of states H via any steps defined as

PM(s,H) =
∑

{Υ|∃s̃∈H s
Υ
→s̃}

PT (Υ, s).

For s̃ ∈ DR(G), we write s
A
→P s̃ if s

A
→P {s̃} and s

A
→ s̃ if ∃P s

A
→P s̃.

To introduce a stochastic bisimulation between dynamic expressions G and G′, we should consider the
“composite” set of states DR(G) ∪ DR(G′), since we have to identify the probabilities to come from any two
equivalent states into the same “composite” equivalence class (with respect to the stochastic bisimulation).
Note that, for G 6= G′, transitions starting from the states of DR(G) (or DR(G′)) always lead to those from
the same set, since DR(G) ∩ DR(G′) = ∅, and this allows us to “mix” the sets of states in the definition of
stochastic bisimulation.

Definition 6.1 Let G and G′ be dynamic expressions. An equivalence relation R ⊆ (DR(G) ∪DR(G′))2 is a
step stochastic bisimulation between G and G′, denoted by R : G↔ssG

′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H ⇔ s2

A
→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent, denoted by G↔ssG
′, if

∃R : G↔ssG
′.

Note that the condition SJ(s1) = 0 ⇔ SJ(s2) = 0 in item 2 of the definition above is needed to make
difference between w-tangible states (all having at least one time unit sojourn times) and vanishing states
(all having zero sojourn times). The reason is that both from w-tangible and vanishing states, no empty
moves can be made, unlike s-tangible states, from which empty moves are always possible. When comparing
dynamic expressions for step stochastic bisimulation equivalence, we can use empty moves only to make difference
between s-tangible and other (w-tangible or vanishing) states. Without the mentioned condition, w-tangible
and vanishing states could be related by the bisimulation. We intend to avoid such the relationships, since
vanishing states are a special case that should be specifically treated in the proofs of our forthcoming results.

We now define the multiaction transition systems, whose transitions are labeled with the multisets of mul-
tiactions, extracted from the corresponding activities.

Definition 6.2 Let G be a dynamic expression. The (labeled probabilistic) multiaction transition system of G
is a quadruple TSL(G) = (SL, LL, TL, sL), where

• SL = DR(G);

• LL = INL
fin × (0; 1];

• TL = {(s, (A,PMA(s, {s̃})), s̃) | s, s̃ ∈ DR(G), s
A
→ s̃};

• sL = [G]≈.
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Figure 35: The multiaction transition system of F for F = [({a}, ρ)∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

The transition (s, (A,P), s̃) ∈ TL will be written as s
A
→P s̃.

The multiaction transition systems of static expressions can be defined as well. For E ∈ RegStatExpr let
TSL(E) = TSL(E).

Let G and G′ be dynamic expressions and R : G↔ssG
′. Then the relation R can be interpreted as a step

stochastic bisimulation between the transition systems TSL(G) and TSL(G
′), denoted by

R : TSL(G)↔ssTSL(G
′), which is defined by analogy (excepting step semantics) with interleaving probabilistic

bisimulation on generative probabilistic transition systems from [79].

Example 6.1 Let us consider an abstraction F of the static expression E from Example 3.24, such that
c = e, d = f, θ = φ, i.e.

F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m); ({d}, θ)2))) ∗ Stop].

Then DR(F ) = {s′1, s
′
2, s

′
3, s

′
4, s

′
5} is obtained from DR(E) via substitution of the symbols e, f, φ by

c, d, θ, respectively, in the specifications of the corresponding states from the latter set. We have DRST (F ) =
{s′1, s

′
4, s

′
5}, DRWT (F ) = {s′2} and DRV (F ) = {s′3}. In Figure 35, the multiaction transition system TSL(F )

is presented. To simplify the graphical representation, the singleton multisets of multiactions are written without
outer braces.

Example 6.2 Let us interpret F from Example 6.1 as an abstraction of the travel system from Example 5.2.
In such an abstract travel system, we do not differentiate between the transport facilities (trains or buses) that
always have the same speed, but every l departures of the transport from the first platform take the same time as
m departures of the transport from the second platform, and the traveler can choose between the two platforms.

By taking θ = φ in Example 5.2, we now calculate following the performance indices, based on the steady-state

PMF for SMC(F ) ϕ = 1
1+θ

(
0, θ, 0, l

l+m ,
m
l+m

)
and the average sojourn time vector of F SJ =

(
1
ρ , 1, 0,

1
θ ,

1
θ

)
.

• The average time between comings to the successive cities (mean sightseeing and travel time) is
ReturnT ime(s′2) =

1
ϕ(s′2)

= 1 + θl+θm
θ2(l+m) = 1 + 1

θ .

• The fraction of time spent in a city (sightseeing time fraction) is T imeFract(s′2) = ϕ(s′2) =
θ2(l+m)

θ2(l+m)+θl+θm = θ
1+θ .

• The fraction of time spent in a transport (travel time fraction) is T imeFract({s′4, s
′
5}) = ϕ(s′4) +ϕ(s′5) =

θl+θm
θ2(l+m)+θl+θm = 1

1+θ .

• The relative fraction of time spent in a city with respect to that spent in transport (sightseeing relative to

travel time fraction) is RltT imeFract({s′2}, {s
′
4, s

′
5}) =

ϕ(s′2)
ϕ(s′4)+ϕ(s

′
5)

= θ2(l+m)
θl+θm = θ.

• The rate of leaving/entering a city (departure/arrival rate) is ExitFreq(s′2) =
ϕ(s′2)
SJ(s′2)

= θ2(l+m)
θ2(l+m)+θl+θm =

θ
1+θ .

68



The following proposition states that every step stochastic bisimulation binds s-tangible states only with
s-tangible ones, and the same is valid for w-tangible states, as well as for vanishing states.

Proposition 6.1 Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R ⊆ (DRST (G) ∪DRST (G
′))2 ⊎ (DRWT (G) ∪DRWT (G

′))2 ⊎ (DRV (G) ∪DRV (G
′))2.

Proof. By definition of transition systems of expressions, for every s-tangible state, there is an empty move
from it, and no empty move transitions are possible from w-tangible or vanishing states. Further, R preserves
empty moves. To verify this fact, first take A = ∅ in its definition to get ∀(s1, s2) ∈ R ∀H ∈ (DR(G) ∪

DR(G′))/R s1
∅
→P H ⇔ s2

∅
→P H. Thus, R makes difference between s-tangible and all other (i.e. w-tangible

or vanishing) states.
To verify that R also makes difference between w-tangible and vanishing states, we first notice that R

preserves zero sojourn times, since ∀(s1, s2) ∈ R SJ(s1) = 0 ⇔ SJ(s2) = 0. Then remember that the sojourn
time in each vanishing state is equal to 0 while that in each w-tangible state is greater or equal to 1. ⊓⊔

Note that Proposition 6.1 implies R ⊆ (DRT (G) ∪DRT (G′))2 ⊎ (DRV (G) ∪DRV (G′))2, since DRT (G) =
DRST (G) ⊎DRWT (G) and DRT (G

′) = DRST (G
′) ⊎DRWT (G

′). This fact will be used in (and is enough for)
the proofs of the results from Section 8 on the stationary behaviour preservation.

Let Rss(G,G
′) =

⋃
{R | R : G↔ssG

′} be the union of all step stochastic bisimulations between G and G′.
The following proposition proves that Rss(G,G

′) is also an equivalence and Rss(G,G
′) : G↔ssG

′.

Proposition 6.2 Let G and G′ be dynamic expressions and G↔ssG
′. Then Rss(G,G

′) is the largest step
stochastic bisimulation between G and G′.

Proof. See Appendix A.1. ⊓⊔
In [5], an algorithm for strong probabilistic bisimulation on labeled probabilistic transition systems (a re-

formulation of probabilistic automata) was proposed with time complexity O(n2m), where n is the number of
states and m is the number of transitions. In [7], a decision algorithm for strong probabilistic bisimulation on
generative labeled probabilistic transition systems was constructed with time complexity O(m log n) and space
complexity O(m + n). In [42], a polynomial algorithm for strong probabilistic bisimulation on probabilistic
automata was presented. The mentioned algorithms for interleaving probabilistic bisimulation equivalence can
be adapted for ↔ss using the method from [78], applied to get the decidability results for step bisimulation
equivalence. The method takes into account that transition systems in interleaving and step semantics differ
only by availability of the additional transitions corresponding to parallel execution of activities in the latter
(which is our case).

We now can establish a connection between operational and denotational semantics of dtsdPBC. Unlike the
situation in dtsiPBC, we do not have an isomorphism between the two semantics in dtsdPBC. In particular,
for an overlined static expression, multiple states of its transition system may be related to a single state of the
reachability graph of its dtsd-box. The reason is that the decreasing timer values of each enabled “restricted”
waiting multiaction from the the derived dynamic expressions generate different states in the transition system
while there exists no corresponding waiting transition (and the associated timer) in the dtsd-box, hence, its
respective state may stay the same with the time ticks. Thus, that reachability graph state relates to all such
“generic” transition system states that differ only by their timer values. In Example 3.14, three states s1, s2, s3

of TS(E), such that s1
∅
→ 2

3
s2

∅
→ 2

3
s3

∅
→ 2

3
s3, are all related to the initial state Q1 of RG(Boxdtsd(E)). Thus,

in dtsdPBC, like in tPBC [83], the deadlocked states are treated differently by the process expressions-based
operational semantics and Petri net-based denotational semantics.

The following theorem shows that both the semantics are step stochastic bisimulation equivalent.

Theorem 6.1 For any static expression E,

TS(E)↔ssRG(Boxdtsd(E)).

Proof. See Appendix A.2. ⊓⊔

6.2 Interrelations of the stochastic equivalences

We now compare the discrimination power of the stochastic equivalences.
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Figure 36: Dtsd-boxes of the dynamic expressions from equivalence examples of Theorem 6.2

Theorem 6.2 For dynamic expressions G and G′, the following strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. Let us check the validity of the implications.

• The implication =ts→ ↔ss is proved as follows. Let β : G =ts G
′. Then it is easy to see that R : G↔ssG

′,
where R = {(s, β(s)) | s ∈ DR(G)}.

• The implication ≈→=ts is valid, since the transition system of a dynamic formula is defined based on its
structural equivalence class.

Let us see that that the implications are strict, i.e. the reverse ones do not work, by the following coun-
terexamples.

(a) Let E = ({a}, 12 ) and E
′ = ({a}, 13 )1[]({a},

1
3 )2. Then E↔ssE

′, but E 6=ts E′, since TS(E) has only one

transition from the initial to the final state while TS(E′) has two such ones.

(b) Let E = ({a}, 12 ); ({â},
1
2 ) and E

′ = (({a}, 12 ); ({â},
1
2 )) sy a. Then E =ts E′, but E 6≈ E′, since E and E′

cannot be reached from each other by applying inaction rules. ⊓⊔

Example 6.3 In Figure 36, the marked dtsd-boxes corresponding to the dynamic expressions from equivalence
examples of Theorem 6.2 are presented, i.e. N = Boxdtsd(E) and N ′ = Boxdtsd(E′) for each picture (a)–(b).

7 Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsd-boxes). Reductions of graph-based models, like transition systems, reachability
graphs and SMCs, result in those with less states (the graph nodes). The goal of the reduction is to decrease
the number of states in the semantic representation of the modeled system while preserving its important qual-
itative and quantitative behavioural properties. Thus, the reduction allows one to simplify the functional and
performance analysis of systems.

7.1 Quotients of the transition systems and Markov chains

We now construct the quotient (by ↔ss) transition systems and Markov chains (SMCs, DTMCs and RDTMCs).
An autobisimulation is a bisimulation between an expression and itself. For a dynamic expression G and

a step stochastic autobisimulation on it R : G↔ssG, let K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈

DR(G)/R ∀A ∈ INL
fin s1

A
→P K̃ ⇔ s2

A
→P K̃. The previous equality is valid for all s1, s2 ∈ K, hence, we can

rewrite it as K
A
→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K
A
→ K̃ if ∃P K

A
→P K̃ and K → K̃ if ∃A K

A
→ K̃. The similar arguments allow us to write

K →P K̃, where P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).
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By the note after Proposition 6.1, R ⊆ (DRT (G))
2 ⊎ (DRV (G))

2. Hence, ∀K ∈ DR(G)/R, all states from
K are tangible, when K ∈ DRT (G)/R, or all of them are vanishing, when K ∈ DRV (G)/R.

The average sojourn time in the equivalence class (with respect to R) of states K is

SJR(K) =

{ 1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R) of states of G, denoted by
SJR, has the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (with respect to R) of states K is

V ARR(K) =

{
PM(K,K)

(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (with respect to R) of states of G, denoted by
V ARR, has the elements V ARR(K), K ∈ DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be the union of all step stochastic autobisimulations on G. By Proposition

6.2, Rss(G) is the largest step stochastic autobisimulation on G. Based on the equivalence classes with respect
to Rss(G), the quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying SMCs of expressions
can be defined. The mentioned equivalence classes become the quotient states. The average sojourn time
in a quotient state is that in the corresponding equivalence class. Every quotient transition between two such
composite states represents all steps (having the same multiaction part in case of the transition system quotient)
from the first state to the second one.

Definition 7.1 Let G be a dynamic expression. The quotient (by ↔ss) (labeled probabilistic) transition system
of G is a quadruple TS↔ss

(G) = (S↔ss
, L↔ss

, T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
= INL

fin × (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→P K̃.

The quotient (by ↔ss) transition systems of static expressions can be defined as well. For E ∈ RegStatExpr,
let TS↔ss

(E) = TS↔ss
(E).

Let G be a dynamic expression. We define the relationRLss(G) = {(s,K), (K, s) | s ∈ K ∈ DR(G)/Rss(G)}
+,

where + is the transitive closure operation. One can see that RLss(G) ⊆ (DR(G) ∪ DR(G)/Rss(G))
2 is an

equivalence relation that partitions the setDR(G)∪DR(G)/Rss(G) to the equivalence classes L1, . . . ,Ln, defined
as Li = Ki ∪ {Ki} (1 ≤ i ≤ n), where DR(G)/Rss(G) = {K1, . . . ,Kn}. The relation RLss(G) can be interpreted
as a step stochastic bisimulation between the transition systems TSL(G) and TS↔ss

(G), denoted by RLss(G) :
TSL(G)↔ssTS↔ss

(G), which is defined by analogy (excepting step semantics) with interleaving probabilistic
bisimulation on generative probabilistic transition systems from [79]. It is clear that from this viewpoint,
RLss(G) is also the union of all step stochastic bisimulations and largest step stochastic bisimulation between
TSL(G) and TS↔ss

(G).

Example 7.1 Let F be from Example 6.1. Then DR(F )/Rss(F ) = {K1,K2,K3,K4}, where K1 = {s′1}, K2 =

{s′2}, K3 = {s′3}, K4 = {s′4, s
′
5}. We have DRST (F )/Rss(F ) = {K1,K4}, DRWT (F )/Rss(F ) = {K2} and

DRV (F )/Rss(F ) = {K3}. Thus, Rss merges the states with the same “futures” from the different branches.

In Figure 37, the quotient transition system TS↔ss
(F ) is presented.

The quotient (by ↔ss) reachability graphs are defined similarly to the quotient transition systems. Let
≃ denote isomorphism between quotient transition systems and quotient reachability graphs that binds their
initial states. The following proposition establishes a connection between quotient (by ↔ss) transition systems
of the overlined static expressions and quotient reachability graphs of their dtsd-boxes.

Proposition 7.1 For any static expression E,

TS↔ss
(E) ≃ RG↔ss

(Boxdtsd(E)).
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TS↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

{a},ρ

{b},1

{d},θ

K3

✞✝ ✲
∅,1−ρ

❄✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
Figure 37: The quotient transition system of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

Proof. By definitions of the quotient (by ↔ss) transition systems and quotient reachability graphs, their
uniqueness up to isomorphism and Theorem 6.1. ⊓⊔

The quotient (by ↔ss) average sojourn time vector of G is defined as SJ↔ss
= SJRss(G).

The quotient (by ↔ss) sojourn time variance vector of G is defined as V AR↔ss
= V ARRss(G).

Let G be a dynamic expression and K, K̃ ∈ DR(G)/Rss(G). The transition system TS↔ss
(G) can have self-

loops going from an equivalence class to itself which have a non-zero probability. Clearly, the current equivalence
class remains unchanged in this case.

Let K → K. The probability to stay in K due to k (k ≥ 1) self-loops is

PM(K,K)k.

The quotient (by ↔ss) self-loops abstraction factor in the equivalence class K is

SL↔ss
(K) =

{ 1
1−PM(K,K) , K → K;

1, otherwise.

The quotient (by ↔ss) self-loops abstraction vector of G, denoted by SL↔ss
, has the elements SL↔ss

(K), K ∈
DR(G)/Rss(G).

Let K → K̃ and K 6= K̃, i.e. PM(K,K) < 1. The probability to move from K to K̃ by executing any multiset
of activities after possible self-loops is

PM∗(K, K̃) =

{
PM(K, K̃)

∑∞
k=0 PM(K,K)k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise;

}
= SL↔ss

(K)PM(K, K̃).

The value k = 0 in the summation above corresponds to the case when no self-loops occur.
Let K ∈ DRT (G)/Rss(G). If there exist self-loops from K (i.e. if K → K) then PM(K,K) > 0 and

SL↔ss
(K) = 1

1−PM(K,K) = SJ↔ss
(K). Otherwise, if there exist no self-loops from K then PM(K,K) = 0

and SL↔ss
(K) = 1 = 1

1−PM(K,K) = SJ↔ss
(K). Thus, ∀K ∈ DRT (G)/Rss(G) SL↔ss

(K) = SJ↔ss
(K), hence,

∀K ∈ DRT (G)/Rss(G) with PM(K,K) < 1 it holds PM∗(K, K̃) = SJ↔ss
(K)PM(K, K̃). Note that the self-

loops from the equivalence classes of tangible states are of the empty or non-empty type, the latter produced
by iteration, since empty loops are not possible from the equivalence classes of w-tangible states, but they are
possible from the equivalence classes of s-tangible states, while non-empty loops are possible from the equivalence
classes of both s-tangible and w-tangible states.

Let K ∈ DRV (G)/Rss(G). We have ∀K ∈ DRV (G)/Rss(G) SL↔ss
(K) 6= SJ↔ss

(K) = 0 and ∀K ∈

DRV (G)/Rss(G) with PM(K,K) < 1 it holds PM∗(K, K̃) = SL↔ss
(K)PM(K, K̃). If there exist self-loops

from K then PM∗(K, K̃) = PM(K,K̃)
1−PM(K,K) when PM(K,K) < 1. Otherwise, if there exist no self-loops from K

then PM∗(K, K̃) = PM(K, K̃). Note that the self-loops from the equivalence classes of vanishing states are
always of the non-empty type, produced by iteration, since empty loops are not possible from the equivalence
classes of vanishing states.
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Definition 7.2 Let G be a dynamic expression. The quotient (by ↔ss) EDTMC of G, denoted by

EDTMC↔ss
(G), has the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →→P K̃,

if K → K̃ and K 6= K̃, where P = PM∗(K, K̃); or K →→1 K, if PM(K,K) = 1.
The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss

(G), has the EDTMC EDTMC↔ss
(G)

and the sojourn time in every K ∈ DRT (G)/Rss(G) is geometrically distributed with the parameter 1−PM(K,K)
while the sojourn time in every K ∈ DRV (G)/Rss(G) is equal to zero.

The quotient (by ↔ss) underlying SMCs of static expressions can be defined as well. For E ∈ RegStatExpr,
let SMC↔ss

(E) = SMC↔ss
(E).

The steady-state PMFs ψ∗
↔ss

for EDTMC↔ss
(G) and ϕ↔ss

for SMC↔ss
(G) are defined like the corre-

sponding notions ψ∗ for EDTMC(G) and ϕ for SMC(G), respectively.

Example 7.2 Let F be from Example 6.1. In Figure 38, the quotient underlying SMC SMC↔ss
(F ) is presented.

The average sojourn times in the states of the underlying quotient SMC are written next to them in bold font.
The quotient average sojourn time vector of E is

SJ↔ss
=

(
1

ρ
, 1, 0,

1

θ

)
.

The quotient sojourn time variance vector of E is

V AR↔ss
=

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2

)
.

The TPM for EDTMC↔ss
(F ) is

P∗
↔ss

=




0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

The steady-state PMF for EDTMC↔ss
(F ) is

ψ∗
↔ss

=

(
0,

1

3
,
1

3
,
1

3

)
.

The steady-state PMF ψ∗
↔ss

weighted by SJ↔ss
is

(
0,

1

3
, 0,

l

3θ

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ∗
↔ss

SJT↔ss
=

1 + θ

3θ
.

Thus, the steady-state PMF for SMC↔ss
(F ) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

Example 7.3 Let F be from Example 6.1. We now calculate the following performance indices, based on
the steady-state PMF for SMC↔ss

(F ) ϕ↔ss
= 1

1+θ (0, θ, 0, 1) and the quotient average sojourn time vector of

F SJ↔ss
=
(

1
ρ , 1, 0,

1
θ

)
.

• The average time between comings to the successive cities (mean sightseeing and travel time) is
ReturnT ime(K2) =

1
ϕ(K2)

= 1 + 1
θ .

• The fraction of time spent in a city (sightseeing time fraction) is T imeFract(K2) = ϕ(K2) =
θ

1+θ .

• The fraction of time spent in a transport (travel time fraction) is T imeFract(K4) = ϕ(K4) =
1

1+θ .

• The relative fraction of time spent in a city with respect to that spent in transport (sightseeing relative to

travel time fraction) is RltT imeFract({K2}, {K4}) =
ϕ(K2)
ϕ(K4)

= θ.
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SMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

1

1

1

K3

❄

☞

✌

✛

1

✚

1
ρ

1

0

1
θ

Figure 38: The quotient underlying SMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

• The rate of leaving/entering a city (departure/arrival rate) is ExitFreq(K2) =
ϕ(K2)
SJ(K2)

= θ
1+θ .

One can see that the performance indices are the same for the “complete” and the “quotient” abstract
travel systems. The coincidence of the indices will illustrate the results of the forthcoming Proposition 8.1 and
Proposition 8.2 (both modified for RLss(F )).

Let ≃ denote isomorphism between SMCs that binds their initial states, where two SMCs are isomorphic if
their EDTMCs are so and the sojourn times in the isomorphic states of the EDTMCs are identically distributed.
The following proposition establishes a connection between quotient (by ↔ss) SMCs of the overlined static
expressions and quotient SMCs of their dtsd-boxes.

Proposition 7.2 For any static expression E

SMC↔ss
(E) ≃ SMC↔ss

(Boxdtsd(E)).

Proof. By definitions of the quotient (by ↔ss) underlying SMCs for dynamic expressions and LDTSDPNs and
Proposition 7.1, taking into account the following. First, for the associated SMCs, the average sojourn time
in the states is the same, since it is defined via the analogous probability functions. Second, the transition
probabilities of the associated SMCs are the sums of those belonging to the quotient transition systems or the
quotient reachability graphs.

For instance, observe that the probability functions PM(K, K̃) and PM∗(K, K̃) can be respectively defined

in the same way as PM(L, L̃) and PM∗(L, L̃), for the corresponding equivalence classes of the process states

and net states K and L, as well as K̃ and L̃. ⊓⊔
The quotients of both transition systems and underlying SMCs are the minimal reductions of the mentioned

objects modulo step stochastic bisimulations. The quotients can be used to simplify analysis of system properties
which are preserved by ↔ss, since potentially less states should be examined for it. Such reduction method
resembles that from [4] based on place bisimulation equivalence for PNs, excepting that the former method
merges states, while the latter one merges places.

Moreover, the algorithms exist to construct the quotients of transition systems by an equivalence (like
bisimulation one) [115] and those of (discrete or continuous time) Markov chains by ordinary lumping [55]. The
algorithms have time complexity O(m log n) and space complexity O(m + n), where n is the number of states
and m is the number of transitions. As mentioned in [138], the algorithm from [55] can be easily adjusted to
produce quotients of labeled probabilistic transition systems by the probabilistic bisimulation equivalence. In
[138], the symbolic partition refinement algorithm on state space of CTMCs was proposed. The algorithm can be
straightforwardly accommodated to DTMCs, interactive Markov chains (IMCs), Markov reward models, Markov
decision processes (MDPs), Kripke structures and labeled probabilistic transition systems. Such a symbolic
lumping uses memory efficiently due to compact representation of the state space partition. The symbolic
lumping is time efficient, since fast algorithm of the partition representation and refinement is applied. In [56],
a polynomial-time algorithm for minimizing behaviour of probabilistic automata by probabilistic bisimulation
equivalence was outlined that results in the canonical quotient structures. One can adapt the above algorithms
for our framework of transition systems, (reduced) DTMCs and SMCs.

Let us consider quotient (by ↔ss) DTMCs of expressions based on the state change probabilities PM(K, K̃).
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DTMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

ρ

1

θ

K3

✞✝ ✲
1− ρ

❄✞✝ ✲
1− θ

☞

✌

✛

1

✚
Figure 39: The quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l ); ({d}, θ)1)[](({c}, ♮

0
m); ({d}, θ)2))) ∗

Stop]

Definition 7.3 Let G be a dynamic expression. The quotient (by↔ss) DTMC of G, denoted by DTMC↔ss
(G),

has the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →P K̃, where P =

PM(K, K̃).

The quotient (by ↔ss) DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let
DTMC↔ss

(E) = DTMC↔ss
(E).

The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is defined like the corresponding notion ψ for DTMC(G).

Example 7.4 Let F be from Example 6.1. In Figure 39, the quotient DTMC DTMC↔ss
(F ) is presented.

The TPM for DTMC↔ss
(F ) is

P↔ss
=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

The steady-state PMF for DTMC↔ss
(F ) is

ψ↔ss
=

1

1 + 2θ
(0, θ, θ, 1).

Remember that DRT (F )/Rss(F ) = DRST (F )/Rss(F ) ∪DRWT (F )/Rss(F ) = {K1,K2,K4} and

DRV (F )/Rss(F ) = {K3}. Hence,

∑

K∈DRT (F )/Rss(F )

ψ(K) = ψ(K1) + ψ(K2) + ψ(K4) =
1 + θ

1 + 2θ
.

By the “quotient” analogue of Proposition 5.1, we have

ϕ↔ss
(K1) = 0 · 1+2θ

1+θ = 0,

ϕ↔ss
(K2) =

θ
1+2θ ·

1+2θ
1+θ = θ

1+θ ,

ϕ↔ss
(K3) = 0,

ϕ↔ss
(K4) =

1
1+2θ ·

1+2θ
1+θ = 1

1+θ .

Thus, the steady-state PMF for SMC↔ss
(F ) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 7.2 with the use of ψ∗
↔ss

and SJ↔ss
.

Eliminating equivalence classes (with respect to Rss(G)) of vanishing states from the quotient (by ↔ss)
DTMCs of expressions results in the reductions of such DTMCs.
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Definition 7.4 The reduced quotient (by ↔ss) DTMC of G, denoted by RDTMC↔ss
(G), is defined like

RDTMC(G) in Section 5, but it is constructed from DTMC↔ss
(G) instead of DTMC(G).

The reduced quotient (by ↔ss) DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr,
let RDTMC↔ss

(E) = RDTMC↔ss
(E).

The steady-state PMF ψ⋄
↔ss

for RDTMC↔ss
(G) is defined like the corresponding notion ψ⋄ for

RDTMC(G).

Example 7.5 Let F be from Example 6.1. Remember that DRT (F )/Rss(F ) = DRST (F )/Rss(F ) ∪

DRWT (F )/Rss(F ) = {K1,K2,K4} and DRV (F )/Rss(F ) = {K3}. We reorder the states from DR(F )/Rss(F ), by
moving vanishing states to the first positions: K3,K1,K2,K4.

The reordered TPM for DTMC↔ss
(F ) is

Pr↔ss
=




0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ


 .

The result of the decomposing P↔ssr
are the matrices

C↔ss
= 0, D↔ss

= (0, 0, 1), E↔ss
=




0
1
0


 , F↔ss

=




1− ρ ρ 0
0 0 0
0 θ 1− θ


 .

Since C1
↔ss

= 0, we have ∀k > 0 Ck
↔ss

= 0, hence, l = 0 and there are no loops among vanishing states.
Then

G↔ss
=

l∑

k=0

Ck
↔ss

= C0
↔ss

= I.

Further, the TPM for RDTMC↔ss
(F ) is

P⋄
↔ss

= F↔ss
+E↔ss

G↔ss
D↔ss

= F↔ss
+E↔ss

ID↔ss
= F↔ss

+E↔ss
D↔ss

=




1− ρ ρ 0
0 0 1
0 θ 1− θ


 .

In Figure 40, the reduced quotient DTMC RDTMC↔ss
(F ) is presented. The steady-state PMF for

RDTMC↔ss
(F ) is

ψ⋄
↔ss

=
1

1 + θ
(0, θ, 1).

Note that ψ⋄
↔ss

= (ψ⋄
↔ss

(K1), ψ
⋄
↔ss

(K2), ψ
⋄
↔ss

(K4)). By the “quotient” analogue of Proposition 5.2, we have

ϕ↔ss
(K1) = 0,

ϕ↔ss
(K2) =

θ
1+θ ,

ϕ↔ss
(K3) = 0,

ϕ↔ss
(K4) =

1
1+θ .

Thus, the steady-state PMF for SMC↔ss
(F ) is

ϕ↔ss
=

1

1 + θ
(0, θ, 0, 1).

This coincides with the result obtained in Example 7.2 with the use of ψ∗
↔ss

and SJ↔ss
.

Example 7.6 Let F be from Example 6.1. In Figure 41, the reduced quotient SMC RSMC↔ss
(F ) is depicted.

The average sojourn times in the states of the reduced quotient SMC are written next to them in bold font. In
spite of the equality RSMC↔ss

(F ) = RDTMC↔ss
(F ), the graphical representation of RSMC↔ss

(F ) differs

from that of RDTMC↔ss
(F ), since the former is based on the REDTMC↔ss

(F ), where each state is decorated

with the positive average sojourn time of RSMC↔ss
(F ) in it. REDTMC↔ss

(F ) can be constructed from
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RDTMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
K2

K4

☛✡ ✟✠
❄

K1

ρ

1

θ

✞✝ ✲
1− ρ

✞✝ ✲
1− θ

✛

✚

✏

✑
Figure 40: The reduced quotient DTMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮

0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

RSMC↔ss
(F )

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
K2

K4

☛✡ ✟✠
❄

K1

1

1

1

✛

✚

✏

✑

1
ρ

1

1
θ

Figure 41: The reduced quotient SMC of F for F = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ)1)[](({c}, ♮

0
m);

({d}, θ)2))) ∗ Stop]

EDTMC↔ss
(F ) in the similar way as RDTMC↔ss

(F ) can be obtained from DTMC↔ss
(F ). By construction,

the residence time in each state of RSMC↔ss
(F ) is geometrically distributed. Hence, the associated parameter

of geometrical distribution is uniquely recovered from the average sojourn time in the state.

Obviously, the relationships between the steady-state PMFs ψ↔ss
and ψ∗

↔ss
, ϕ↔ss

and ψ↔ss
, as well as ϕ↔ss

and ψ⋄
↔ss

, are the same as those determined between their “non-quotient” versions in Theorem 5.1, Proposition
5.1 and Proposition 5.2, respectively.

7.2 Interrelations of the standard and quotient behavioural structures

In Figure 42, the cube of interconnections by the relation “constructed from” is depicted for both the standard
and quotient transition systems and Markov chains (SMCs, DTMCs and RDTMCs) of the process expressions.
Note that the relations between SMC and SMC↔ss

, between DTMC and DTMC↔ss
, as well as between

RDTMC and RDTMC↔ss
, can be obtained using the following corresponding transition functions, defined by

analogy with those already introduced: PM∗(K, K̃), based on PM∗(s, s̃), then PM(K, K̃), based on PM(s, s̃),

as well as PM⋄(K, K̃), based on PM⋄(s, s̃). In a similar way, the relations between SMC and RDTMC, as well
as between SMC↔ss

and RDTMC↔ss
, can be obtained using the following corresponding transition functions:

PM⋄(s, s̃), based on PM∗(s, s̃), through (PM∗)⋄(s, s̃), as well as PM⋄(K, K̃), based on PM∗(K, K̃), through

(PM∗)⋄(K, K̃).
In Figure 42, the relation (depicted by arrow) between DTMC and DTMC↔ss

is obtained using the

transition function PM(K, K̃), based on PM(s, s̃). Let G be a dynamic expression. We shall prove that the
(quotient) TPM P↔ss

for DTMC↔ss
(G), (forwardly) constructed by quotienting (by ↔ss) TS(G), followed

by extracting DTMC↔ss
(G) from TS↔ss

(G), coincides with the TPM (P)↔ss
, (reversely) constructed by

extracting DTMC(G) from TS(G), followed by quotienting DTMC(G). The following proposition relates
those quotient extracted TPM (P)↔ss

and extracted quotient TPM P↔ss
.

Proposition 7.3 Let G be a dynamic expression, P↔ss
be the TPM for DTMC↔ss

(G) and (P)↔ss
results

from quotienting (by ↔ss) the TPM P for DTMC(G). Then

(P)↔ss
= P↔ss

.
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Figure 42: The cube of interrelations for the standard and quotient transition systems and Markov chains of
the process expressions

Proof. Let K, K̃ ∈ DR(G)/Rss(G) and s ∈ K. We have PM(K, K̃) = PM(s, K̃) =
∑

{Υ|∃s̃∈K̃ s
Υ
→s̃}

PT (Υ, s) and
∑

A∈INL
fin

PMA(K, K̃) =
∑

A∈INL
fin

PMA(s, K̃) =
∑

A∈INL
fin

∑
{Υ|∃s̃∈K̃ s

Υ
→s̃, L(Υ)=A}

PT (Υ, s) =
∑

{Υ|∃s̃∈K̃ s
Υ
→s̃}

PT (Υ, s) =
∑

s̃∈K̃

∑
{Υ|s

Υ
→s̃}

PT (Υ, s) =
∑

s̃∈K̃ PM(s, s̃). Thus, (P)↔ss
= P↔ss

. ⊓⊔

In Figure 42, the relation (depicted by arrow) between SMC and SMC↔ss
is obtained using the tran-

sition function PM∗(K, K̃), based on PM∗(s, s̃). Let G be a dynamic expression. We shall prove that the
(quotient) TPM P∗

↔ss
for EDTMC↔ss

(G), (forwardly) constructed by quotienting (by ↔ss) TS(G), follo-

wed by embedding EDTMC↔ss
(G) into SMC↔ss

(G), extracted from TS↔ss
(G), coincides with the (finally)

embedded TPM (P∗)∗↔ss
, (reversely) constructed by embedding EDTMC(G) into SMC(G), extracted from

TS(G), followed by quotienting EDTMC(G), and final embedding a new EDTMC EDTMC′(G) into the
quotient of EDTMC(G). The final embedding in the reverse construction is needed, since new self-loops
may arise after quotienting EDTMC(G), i.e. it may become not an EDTMC, but a DTMC featuring self-

loops with probability less than 1. Note that for K ∈ DR(G)/Rss(G) and s ∈ K, we have PM∗(K, K̃) =

SL↔ss
(K)PM(K, K̃) = SL↔ss

(K)PM(s, K̃) in EDTMC↔ss
(G). This corresponds to a different expressi-

on
∑
s̃∈K̃ PM

∗(s, s̃) =
∑
s̃∈K̃ SL(s)PM(s, s̃) = SL(s)

∑
s̃∈K̃ PM(s, s̃) = SL(s)PM(s, K̃) in the quotient of

EDTMC(G). In particular, SL↔ss
(K) > SL(s) when PM(s,K \ {s}) > 0, which is the reason for a new self-

loop associated with s in the quotient of EDTMC(G). The following proposition relates those finally embedded
quotient embedded TPM (P∗)∗↔ss

(i.e. the TPM for EDTMC′(G)) and embedded quotient TPM P∗
↔ss

.

Proposition 7.4 Let G be a dynamic expression, P∗
↔ss

be the TPM for EDTMC↔ss
(G) and (P∗)∗↔ss

results

from quotienting (by ↔ss) and final embedding the TPM P∗ for EDTMC(G). Then

(P∗)∗↔ss
= P∗

↔ss
.

Proof. See Appendix A.3. ⊓⊔
By Proposition 7.4, EDTMC′(G) = EDTMC↔ss

(G). The sojourn time in every K ∈ DRT (G)/Rss(G) is

geometrically distributed with the parameter 1
SL(s)SL′(s,K) =

1
SL↔ss

(K) , where SL
′(s,K) = 1

1−SL(s)PM(s,K\{s}) ,

while the sojourn time in every K ∈ DRV (G)/Rss(G) is equal to 0. Hence, SMC′(G) = SMC↔ss
(G), where

SMC′(G) is the SMC with the EDTMC EDTMC′(G), such that 1
SL(s)SL′(s,K) is the geometrical distribution

parameter of the sojourn time in every K ∈ DRT (G)/Rss(G) while the sojourn time is zero in every K ∈
DRV (G)/Rss(G).

Let G be a dynamic expression. We now construct the quotient (by ↔ss) of the TPM for DTMC(G) using
special collector and distributor matrices. Let DR(G) = {s1, . . . , sn} and DR(G)/Rss(G) = {K1, . . . ,Kl}.

The elements (P↔ss
)rs (1 ≤ r, s ≤ l) of the TPM P↔ss

for DTMC↔ss
(G) are defined as

(P↔ss
)rs =

{
PM(Kr,Ks), Kr → Ks;
0, otherwise.

Like it has been done for strong performance bisimulation on labeled CTSPNs in [39], the l × l TPM P↔ss

for DTMC↔ss
(G) can be constructed from the n×n TPM P for DTMC(G) using the n× l collector matrix V

for the largest step stochastic autobisimulation Rss(G) on G and the l×n distributor matrix W for V. Then W
should be a non-negative matrix (i.e. all its elements must be non-negative) with the elements of each its row
summed to one, such that WV = I, where I is the identity matrix of order l, i.e. W is a left-inverse matrix for
V. It is known that for each collector matrix there is at least one distributor matrix, in particular, the matrix
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obtained by transposing V and subsequent normalizing its rows, to guarantee that the elements of each row of
the transposed matrix are summed to one. We now present the formal definitions.

The elements Vir (1 ≤ i ≤ n, 1 ≤ r ≤ l) of the collector matrix V for the largest step stochastic autobisim-
ulation Rss(G) on G are defined as

Vir =

{
1, si ∈ Kr;
0, otherwise.

Thus, all the elements of V are non-negative, as required. The row elements of V are summed to one, since
for each si (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such that si ∈ Kr. Hence,

V1T = 1T ,

where 1 on the left side is the row vector of l values 1 while 1 on the right side is the row vector of n values 1.
The distributor matrix W for the collector matrix V is defined as

W = (Diag(VT1T ))−1VT ,

where 1 is the row vector of n values 1. One can check that WV = I, where I is the identity matrix of order l.
The elements (PV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix PV are

(PV)is =
n∑

j=1

PijVjs =
∑

{j|1≤j≤n, sj∈Ks}

PM(si, sj) = PM(si,Ks).

As we know, for each si (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such that si ∈ Kr. For all
si ∈ Kr we have PM(Kr,Ks) = PM(si,Ks) (1 ≤ i ≤ n, 1 ≤ r, s ≤ l). Then the elements (VP↔ss

)is (1 ≤ i ≤
n, 1 ≤ s ≤ l) of the matrix VP↔ss

are

(VP↔ss
)is =

l∑

r=1

Vir(P↔ss
)rs =

∑

{r|1≤r≤l, si∈Kr}

PM(Kr,Ks) = PM(si,Ks).

Therefore, we have

PV = VP↔ss
, WPV = P↔ss

.

Example 7.7 Let F be from Example 6.1. The TPMs for DTMC(F ) and DTMC↔ss
(F ) are

P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 θ 0 0 1− θ



, P↔ss

=




1− ρ ρ 0 0
0 0 1 0
0 0 0 1
0 θ 0 1− θ


 .

The collector matrix V for Rss(F ) and the distributor matrix W for V are

V =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1



, W =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2


 .

Then it is easy to check that

WPV = P↔ss
.

In Figure 42, the relation (depicted by arrow) between RDTMC and RDTMC↔ss
is obtained using the

transition function PM⋄(K, K̃), based on PM⋄(s, s̃). Let G be a dynamic expression. We shall prove that the
TPM P⋄

↔ss
, (forwardly) constructed by quotienting (by ↔ss) TPM P for DTMC(G), followed by reduction

(eliminating vanishing states) of the (quotient) TPM P↔ss
forDTMC↔ss

(G), coincides with the TPM (P⋄)↔ss
,

(reversely) constructed by reduction of the TPM P for DTMC(G), followed by quotienting the (reduced) TPM
P⋄ for RDTMC(G). The following proposition relates those quotient reduced TPM (P⋄)↔ss

and reduced
quotient TPM P⋄

↔ss
.
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Proposition 7.5 Let G be a dynamic expression, P⋄
↔ss

be the TPM for RDTMC↔ss
(G) and (P⋄)↔ss

results

from quotienting (by ↔ss) the TPM P⋄ for RDTMC(G). Then

(P⋄)↔ss
= P⋄

↔ss
.

Proof. See Appendix A.4. ⊓⊔
Thus, quotienting and reduction are permutable for DTMCs of the process expressions. This may simplify the

performance evaluation when eliminating vanishing states makes the subsequent quotienting more efficient. The
reverse construction (reduction first) is particularly preferable in case of small equivalence classes of vanishing
states when quotienting does not merge many of them before eliminating.

Example 7.8 Let F be from Example 6.1. The reordered TPMs for DTMC(F ) and DTMC↔ss
(F ) are

Pr =




0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 θ 0 1− θ



, Pr↔ss

=




0 0 0 1
0 1− ρ ρ 0
1 0 0 0
0 0 θ 1− θ


 .

The reordered collector matrix Vr for Rss(F ) and the reordered distributor matrix Wr for Vr are

Vr =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1



, Wr =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2


 .

Then it is easy to check that

WrPrVr = Pr↔ss
.

Example 7.9 Let F be from Example 6.1. The TPMs for RDTMC(F ) and RDTMC↔ss
(F ) are

P⋄ =




1− ρ ρ 0 0
0 0 l

l+m
m
l+m

0 θ 1− θ 0
0 θ 0 1− θ


 , P⋄

↔ss
=




1− ρ ρ 0
0 0 1
0 θ 1− θ


 .

The result of the decomposing the reordered collector matrix Vr for Rss(F ) and the reordered distributor
matrix Wr for Vr are the matrices

VC = 1, VF =




1 0 0
0 1 0
0 0 1
0 0 1


 , WC = 1, WF =




1 0 0 0
0 1 0 0
0 0 1

2
1
2


 .

Then it is easy to check that

(P⋄)↔ss
= WFP

⋄VF = P⋄
↔ss

.

In [38], the ordinary, exact and strict lumpability relations on finite DTMCs are explored. It is investigated
which properties of transient and stationary behaviour of DTMCs are preserved by aggregation with respect to
the three mentioned kinds of lumping and their approximate “nearly” versions. It is proved that irreducibility is
preserved by aggregation with respect to any partition (or equivalence relation) on the states of DTMCs. Since
only finite irreducible DTMCs are considered (with a finite number of states), these all are positive recurrent.
Aggregation can only decrease the number of states, hence, the aggregated DTMCs are also finite and positive
recurrence is preserved by every aggregation. It is known [121, 124, 84, 30, 136, 85, 122, 123] that irreducible
and positive recurrent DTMCs have a single stationary PMF. Note that the original and aggregated DTMCs
may be periodic, thus having a unique stationary distribution, but no steady-state (limiting) one. For example,
it may happen that the original DTMC is aperiodic while the aggregated DTMC is periodic due to merging
some states of the former. Thus, both finite irreducible DTMCs and their arbitrary aggregates have a single
stationary PMF. Then the relationship between stationary probabilities of DTMCs and their aggregates with
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respect to ordinary, exact and strict lumpability is established in [38]. In particular, it is shown that for every
DTMC aggregated by ordinary lumpability, the stationary probability of each aggregate state is a sum of the
stationary probabilities of all its constituent states from the original DTMC. The information about individual
stationary probabilities of the original DTMC is lost after such a summation, but in many cases, the stationary
probabilities of the aggregated DTMC are enough to calculate performance measures of the high-level model,
from which the original DTMC is extracted. As mentioned in [38], in some practical applications, the aggregated
DTMC can be extracted directly from the high-level model. Thus, the aggregation techniques based on lumping
are of practical importance, since they allow one to reduce the state space of the modeled systems, hence, the
computational costs for evaluating their performance.

Let G be a dynamic expression. By definition of ↔ss, the relation Rss(G) on TS(G) induces ordinary
lumping on SMC(G), i.e. if the states of TS(G) are related by Rss(G) then the same states in SMC(G)
are related by ordinary lumping. The quotient (maximal aggregate) of SMC(G) by such an induced ordinary
lumping is SMC↔ss

(G). Since we consider only finite SMCs, irreducibility of SMC(G) will imply irreducibility
of SMC↔ss

(G) and they both are positive recurrent. Then a unique quotient stationary PMF of SMC↔ss
(G)

can be calculated from a unique original stationary PMF of SMC(G) by summing some elements of the latter, as
described in [38]. Similar arguments demonstrate that the same results hold for DTMC(G) and DTMC↔ss

(G),
as well as for RDTMC(G) and RDTMC↔ss

(G).

8 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour of stochastic processes
in their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior,
i.e. expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness
of behaviour, since there can exist a deadlock (blocking) within the body (the second argument) of iteration
when the corresponding subprocess does not reach its final state by some reasons. In particular, if the body of
iteration contains the Stop expression, then the iteration will be “broken”. On the other hand, the iteration
body can be left after a finite number of its repeated executions and then the iteration termination is started.
To avoid executing any activities after the iteration body, we take Stop as the termination argument of iteration.

Like in the framework of SMCs, in LDTSDPNs the most common systems for performance analysis are
ergodic (irreducible, positive recurrent and aperiodic) ones. For ergodic LDTSDPNs, the steady-state marking
probabilities exist and can be determined. In [109, 110], the following sufficient (but not necessary) conditions
for ergodicity of DTSPNs are stated: liveness (for each transition and any reachable marking there exists a
sequence of markings from it leading to the marking enabling that transition), boundedness (for any reachable
marking the number of tokens in every place is not greater than some fixed number) and nondeterminism (the
transition probabilities are strictly less than 1). However, it has been shown in [11] that even live, safe and
nondeterministic DTSPNs (as well as live and safe CTSPNs and GSPNs) may be non-ergodic.

In this section, we consider only the process expressions such that their underlying SMCs contain exactly
one closed communication class of states, and this class should also be ergodic to ensure uniqueness of the
stationary distribution, which is also the limiting one. The states not belonging to that class do not disturb
the uniqueness, since the closed communication class is single, hence, they all are transient. Then, for each
transient state, the steady-state probability to be in it is zero while the steady-state probability to enter into
the ergodic class starting from that state is equal to one.

8.1 Steady state, residence time and equivalences

The following proposition demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class coincide. One can also interpret the result stating that the mean
recurrence time for an equivalence class is the same for both expressions.

Proposition 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the steady-state PMF for

SMC(G), ϕ′ be the steady-state PMF for SMC(G′). Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

Proof. See Appendix A.5. ⊓⊔
Let G be a dynamic expression and ϕ be the steady-state PMF for SMC(G), ϕ↔ss

be the steady-state
PMF for SMC↔ss

(G). By Proposition 8.1 (modified for RLss(G)), we have ∀K ∈ DR(G)/Rss(G)
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ϕ↔ss
(K) =

∑

s∈K

ϕ(s).

Thus, for every equivalence class K ∈ DR(G)/Rss(G), the value of ϕ↔ss
corresponding to K is the sum of all

values of ϕ corresponding to the states from K.
Let V be the collector matrix for Rss(G). One can see that

ϕV = ϕ↔ss
.

Hence, using SMC↔ss
(G) instead of SMC(G) may simplify the analytical solution, since we may have less

states, but constructing the TPM for EDTMC↔ss
(G), denoted by P∗

↔ss
, also requires some efforts, including

determiningRss(G) and calculating the probabilities to move from one equivalence class to other. The behaviour
of EDTMC↔ss

(G) may stabilize quicker than that of EDTMC(G) (if each of them has a single steady state),
since P∗

↔ss
is generally denser matrix than P∗ (the TPM for EDTMC(G)) due to the fact that the former

matrix is usually smaller and the transitions between the equivalence classes “include” all the transitions between
the states belonging to these equivalence classes.

By Proposition 8.1, ↔ss preserves the quantitative properties of the stationary behaviour (the level of
SMCs). We now intend to demonstrate that the qualitative properties of the stationary behaviour based on the
multiaction labels are preserved as well (the level of transition systems).

Definition 8.1 A derived step trace of a dynamic expression G is a chain Σ = A1 · · ·An ∈ (INL
fin)

∗, where

∃s ∈ DR(G) s
Υ1→ s1

Υ2→ · · ·
Υn→ sn, L(Υi) = Ai (1 ≤ i ≤ n). Then the probability to execute the derived step

trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···
Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏

i=1

PT (Υi, si−1).

The following theorem demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class and start a derived step trace from it coincide.

Theorem 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ϕ be the steady-state PMF for SMC(G),

ϕ′ be the steady-state PMF for SMC(G′) and Σ be a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪
DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ϕ′(s′)PT (Σ, s′).

Proof. See Appendix A.6. ⊓⊔
Let G be a dynamic expression, ϕ be the steady-state PMF for SMC(G), ϕ↔ss

be the steady-state PMF
for SMC↔ss

(G) and Σ be a derived step trace of G. By Theorem 8.1 (modified for RLss(G)), we have
∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K)PT (Σ,K) =

∑

s∈K

ϕ(s)PT (Σ, s),

where ∀s ∈ K PT (Σ,K) = PT (Σ, s).
Let DR(G) = {s1, . . . , sn} and DR(G)/Rss(G) = {K1, . . . ,Kl} while V be the collector matrix for Rss(G)

and W be the distributor matrix for V. We denote PT (Σ) = (PT (Σ, s1), . . . , PT (Σ, sn)) and PT↔ss
(Σ) =

(PT (Σ,K1), . . . , PT (Σ,Kl)). One can see that Diag(PT (Σ))V = VDiag(PT↔ss
(Σ)) and WDiag(PT (Σ))V =

Diag(PT↔ss
(Σ)). Then we have

ϕDiag(PT (Σ))V = ϕVDiag(PT↔ss
(Σ)) = ϕ↔ss

Diag(PT↔ss
(Σ)).

We now present a result that does not concern the steady-state probabilities, but it reveals two very important
properties of residence time in the equivalence classes. The following proposition demonstrates that, for two
dynamic expressions related by ↔ss, the sojourn time averages in an equivalence class coincide, as well as the
sojourn time variances in it.
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Proposition 8.2 Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).

Proof. See Appendix A.7. ⊓⊔

Example 8.1 Let

E = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop],

E′ = [({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop].

We have E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈.

The steady-state PMFs ϕ for SMC(E) and ϕ′ for SMC(E′) are

ϕ =

(
0,

1

2
,
1

2

)
, ϕ′ =

(
0,

1

2
,
1

4
,
1

4

)
.

Consider the equivalence class (with respect to Rss(E,E′)) H = {s3, s′3, s
′
4}. One can see that the steady-state

probabilities for H coincide:
∑

s∈H∩DR(E) ϕ(s) = ϕ(s3) =
1
2 = 1

4 + 1
4 = ϕ′(s′3) + ϕ′(s′4) =

∑
s′∈H∩DR(E′) ϕ

′(s′).

Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence class H and start the derived
step trace Σ from it coincide as well: ϕ(s3)(PT ({({c},

1
3 )1}, s3) + PT ({({c}, 13 )2}, s3)) = 1

2

(
1
4 + 1

4

)
= 1

4 =
1
4 · 1

2 + 1
4 · 1

2 = ϕ′(s′3)PT ({({c},
1
2 )1}, s

′
3) + ϕ′(s′4)PT ({({c},

1
2 )2}, s

′
4).

Further, the sojourn time averages in the equivalence class H coincide: SJRss(E,E′)∩(DR(E))2(H∩DR(G)) =

SJRss(E,E′)∩(DR(E))2({s3}) =
1

1−PM({s3},{s3})
= 1

1−PM(s3,s3)
= 1

1− 1
2

= 2 = 1
1− 1

2

= 1
1−PM(s′3,s

′
3)

=
1

1−PM(s′4,s
′
4)

= 1
1−PM({s′3,s

′
4},{s

′
3,s

′
4})

= SJRss(E,E′)∩(DR(E′))2({s
′
3, s

′
4}) = SJRss(E,E′)∩(DR(E′))2(H ∩DR(G′)).

Next, the sojourn time variances in the equivalence class H coincide: V ARRss(E,E′)∩(DR(E))2(H∩DR(G)) =

V ARRss(E,E′)∩(DR(E))2({s3}) =
PM({s3},{s3})

(1−PM({s3},{s3}))2
= PM(s3,s3)

(1−PM(s3,s3))2
=

1
2

(1− 1
2 )

2 = 2 =
1
2

(1− 1
2 )

2 =

PM(s′3,s
′
3)

(1−PM(s′3,s
′
3))

2 =
PM(s′4,s

′
4)

(1−PM(s′4,s
′
4))

2 =
PM({s′3,s

′
4},{s

′
3,s

′
4})

(1−PM({s′3,s
′
4},{s

′
3,s

′
4}))

2 = V ARRss(E,E′)∩(DR(E′))2({s
′
3, s

′
4}) =

V ARRss(E,E′)∩(DR(E′))2(H ∩DR(G′)).
In Figure 43, the marked dtsd-boxes corresponding to the dynamic expressions above are presented, i.e.

N = Boxdtsd(E) and N ′ = Boxdtsd(E′).

Example 8.2 Let F be from Example 6.1. Consider the equivalence class (with respect to Rss(F )) K4 =
{s4, s5}. Then the value of ϕ↔ss

corresponding to K4 is the sum of all values of ϕ corresponding to the states

from K4 : ϕ↔ss
(K4) =

1
1+θ = l

(l+m)(1+θ) +
m

(l+m)(1+θ) = ϕ(s4) + ϕ(s5) =
∑

s∈K4
ϕ(s).

Let Σ = {{d}}. Then we have ϕ↔ss
(K4)PT (Σ,K4) =

1
1+θ · θ =

θ
1+θ = l

(l+m)(1+θ) · θ +
m

(l+m)(1+θ) · θ =

ϕ(s4)PT ({({d}, θ)1}, s4)+ϕ(s5)PT ({({d}, θ)2}, s5) = ϕ(s4)PT (Σ, s4)+ϕ(s5)PT (Σ, s5) =
∑
s∈K4

ϕ(s)PT (Σ, s),
where PT (Σ,K4) = PT (Σ, s4) = PT (Σ, s5) = θ.

The sojourn time average in K4 is SJ↔ss
(K4) =

1
1−PM(K4,K4)

= 1
1−(1−θ) = 1

θ = 1
1−(1−θ) = 1

1−PM(s4,s4)
=

1
1−PM(s5,s5)

= 1
1−PM({s4,s5},{s4,s5})

= SJ↔ss
({s4, s5}).

The sojourn time variance in K4 is V AR↔ss
(K4) = PM(K4,K4)

(1−PM(K4,K4))2
= 1−θ

(1−(1−θ))2 = 1−θ
θ2 = 1−θ

(1−(1−θ))2 =
PM(s4,s4)

(1−PM(s4,s4))2
= PM(s5,s5)

(1−PM(s5,s5))2
= PM({s4,s5}

(1−PM({s4,s5},{s4,s5}))2
= V AR↔ss

({s4, s5}).
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Figure 43: ↔ss preserves steady-state behaviour and sojourn time properties in the equivalence classes

8.2 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter into a set of similar states or,
after coming in it, to start a derived step trace from this set. Some of the indices are calculated using the
average or the variance of sojourn time in a set of similar states. The similarity of states is usually captured
by an equivalence relation, hence, the sets are often the equivalence classes. Proposition 8.1, Theorem 8.1 and
Proposition 8.2 guarantee coincidence of the mentioned indices for the expressions related by ↔ss. Thus, ↔ss

(hence, all the stronger equivalences we have considered) preserves performance of stochastic systems modeled
by expressions of dtsdPBC.

In addition, it is easier to evaluate performance using an SMC with less states, since in this case the size of
the transition probability matrix will be smaller, and we shall solve systems of less equations to calculate steady-
state probabilities. The reasoning above validates the following method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsdPBC.

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similarity, a step stochastic autobisimulation equivalence for
the expression is determined.

4. The quotient underlying SMC is constructed from the quotient transition system.

5. Stationary probabilities and performance indices are calculated using the SMC.

The limitation of the method above is its applicability only to the expressions such that their underlying
SMCs contain exactly one closed communication class of states, and this class should also be ergodic to ensure
uniqueness of the stationary distribution. If an SMC contains several closed communication classes of states
that are all ergodic then several stationary distributions may exist, which depend on the initial PMF. There is
an analytical method to determine stationary probabilities for SMCs of this kind as well [84]. Note that the
underlying SMC of every process expression has only one initial PMF (that at the time moment 0), hence, the
stationary distribution will be unique in this case too. The general steady-state probabilities are then calculated
as the sum of the stationary probabilities of all the ergodic classes of states, weighted by the probabilities to
enter into these classes, starting from the initial state and passing through some transient states. In addition,
it is worth applying the method only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can further reduce the quotient underlying SMC, using the
algorithm from [103, 8, 9] that eliminates vanishing states from the corresponding EDTMC and thereby de-
creases the size of its TPM. For SMCs reduction we can also apply an analogue of the deterministic barrier
partitioning method described in [62] for semi-Markov processes (SMPs), which allows one to perform quicker
the first passage-time analysis. Another option is the method of stochastic state classes proposed in [74, 75] for
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Figure 44: Equivalence-based simplification of performance evaluation
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Figure 45: The diagram of the shared memory system with maintenance

generalized SMPs (GSMPs) reduction, which allows one to simplify transient performance analysis (the analysis
based on the transient probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow us to simplify the steps 4 and 5 of the method above by
constructing the reduced quotient DTMC (instead of the quotient underlying SMC) from the quotient transition
system, followed by calculating the stationary probabilities of the quotient underlying SMC using that DTMC,
and then obtaining the performance indices. In more detail, the quotient transition system TS↔ss

(E) provides

the information both about the probabilities to move between the equivalence classes of states PM(K, K̃) and
about the equivalence classes of vanishing states DRV (E)/Rss(E). That information is used to construct the

reordered quotient TPM Pr↔ss
, from which the TPM P⋄

↔ss
for RDTMC↔ss

(E) is further obtained.
We first merge the equivalent states in transition systems and only then eliminate the vanishing states in

Markov chains. The reason is that transition systems, being a higher-level formalism than Markov chains,
describe both functional (qualitative) and performance (quantitative) aspects of behaviour while Markov chains
represent only performance ones. Thus, eliminating vanishing states first would destroy the functional behaviour
(which is respected by the equivalence used for quotienting), since the steps with different multiaction parts
may lead to or start from different vanishing states.

Figure 44 presents the main stages of the standard and alternative equivalence-based simplification of per-
formance evaluation described above.

9 Generalized shared memory system with maintenance

Let us consider a model of two processors accessing a common shared memory described in [103, 8, 9] in the
continuous time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic
setting of dtsdPBC, where concurrent execution of activities is possible, while no two transitions of a GSPN
may fire simultaneously (in parallel). We also add to the system a feature of the memory maintenance. Our
generalized model parameterizes the standard shared memory system by treating the probabilities and weights
from its specification as variables (parameters). The model behaves as follows. After activation of the system
(turning the computer on), two processors are active, and the common memory is available. Each processor
can request an access to the memory after which the instantaneous decision is made, if the memory is available.
When the decision is made in favour of a processor, it starts acquisition of the memory and the other processor
should wait until the former one ends its memory operations, and the system returns to the state with both active
processors and available common memory. If the memory is available and not required then its maintenance can
be initiated, followed by the short memory service works (for example, the checksum test) during a fixed period
of time, after which the memory becomes available again. If the memory requirement and its maintenance
initiation happen at the same time then the service works start and no decision on the memory allocation is
made while the memory is maintained. The diagram of the system is depicted in Figure 45.
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9.1 The concrete system

The meaning of actions from the dtsdPBC expressions which will specify the system modules is as follows. The
action a corresponds to the system activation. The action c specifies the memory maintenance initiation. The
action e means the short memory service (taking a fixed time of 1 unit). The actions ri (1 ≤ i ≤ 2) represent
the common memory request (whose probability is 10 times greater than that of the maintenance initiation)
of processor i. The actions di correspond to the (instantaneous) decision on the memory allocation in favour
of the processor i. The actions mi represent the common memory access of processor i. The other actions are
used for communication purposes only via synchronization, and we abstract from them later using restriction.
For a1, . . . , an ∈ Act (n ∈ IN), we shall abbreviate sy a1 · · · sy an rs a1 · · · rs an to sr (a1, . . . , an).

We take general values for all multiaction probabilities and weights in the specification. Let all stochastic
multiactions have the same generalized probability ρ ∈ (0; 1) and all deterministic ones have the same generalized
weight l ∈ IR>0. The resulting specification K of the generalized shared memory system with maintenance is
as follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l ); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l ); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ

10
); ({e}, ♮1l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with maintenance is

K = (K1‖K2‖K3) sr (x1, x2, y1, y2, z1, z2).

Let us illustrate an effect of synchronization. As a result of the synchronization of immediate multiactions
({di, yi}, ♮0l ) and ({ŷi}, ♮0l ) we get ({di}, ♮2l) (1 ≤ i ≤ 2). The synchronization of stochastic multiactions
({mi, zi}, ρ) and ({ẑi}, ρ) produces ({mi}, ρ2) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2}, ρ)
with ({x1}, ρ) is ({a, x̂2}, ρ2), and that of synchronization of ({a, x̂1, x̂2}, ρ) with ({x2}, ρ) is ({a, x̂1}, ρ2). After
applying synchronization to ({a, x̂2}, ρ2) and ({x2}, ρ), as well as to ({a, x̂1}, ρ2) and ({x1}, ρ), we get the same
activity ({a}, ρ3).

DR(K) consists of the equivalence classes

s̃1 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃2 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃3 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮
0
l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃4 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃5 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,
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s̃6 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l )

1)[](({ŷ1}, ♮
0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃7 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃8 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l )

1)[](({ŷ1}, ♮0l ); ({ẑ1}, ρ))[](({ŷ2}, ♮
0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃9 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃10 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮
0
l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃11 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃12 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s̃13 = [([({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, ♮0l ); ({m1, z1}, ρ)) ∗ Stop]‖

[({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, ♮0l ); ({m2, z2}, ρ)) ∗ Stop]‖

[({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ
10 ); ({e}, ♮

1
l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

We have DRST (K) = {s̃1, s̃2, s̃10, s̃11, s̃12, s̃13}, DRWT (K) = {s̃3, s̃6, s̃7, s̃8} and DRV (K) = {s̃4, s̃5, s̃9}.
The states are interpreted as follows: s̃1 is the initial state in which the system is not activated; s̃2: the

system is activated and the memory is not requested and its maintenance is not initiated; s̃3: the memory
maintenance is initiated; s̃4: the memory is requested by the first processor; s̃5: the memory is requested by
the second processor; s̃6: the memory maintenance is initiated and the memory is requested by two processors;
s̃7: the memory maintenance is initiated and the memory is requested by the first processor; s̃8: the memory
maintenance is initiated and the memory is requested by the second processor; s̃9: the memory is requested by
two processors; s̃10: the memory is allocated to the first processor; s̃11: the memory is allocated to the second
processor; s̃12: the memory is allocated to the first processor and requested by the second processor; s̃13: the
memory is allocated to the second processor and requested by the first processor.

In Figure 46, the transition system TS(K) is presented. In Figure 47, the underlying SMC SMC(K) is
depicted. Note that, in step semantics, we can execute the following activities in parallel: ({r1}, ρ), ({r2}, ρ), as
well as ({r1}, ρ), ({m2}, ρ2), and ({r2}, ρ), ({m1}, ρ2). We can also execute in parallel ({r1}, ρ), ({c},

ρ
10 ), as well

as ({r2}, ρ), ({c},
ρ
10 ), and even ({r1}, ρ), ({r2}, ρ), ({c},

ρ
10 ). The states s̃6, s̃7, s̃8, s̃9 only exist in step semantics,

since they are reachable exclusively by executing all three activities ({r1}, ρ), ({r2}, ρ), ({c},
ρ
10 ) or any pair of

them in parallel.
The average sojourn time vector of K is
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Figure 46: The transition system of the generalized shared memory system with maintenance
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Figure 47: The underlying SMC of the generalized shared memory system with maintenance
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S̃J =

(
1

ρ3
,

10

ρ(21− 12ρ+ ρ2)
, 1, 0, 0, 1, 1, 1, 0,

1

ρ(1 + ρ− ρ2)
,

1

ρ(1 + ρ− ρ2)
,
1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K is

Ṽ AR =
(

1−ρ3

ρ6 , 10(10−ρ)(1−ρ)2

ρ2(21−12ρ+ρ2)2 , 0, 0, 0, 0, 0, 0, 0,
(1−ρ2)(1−ρ)
ρ2(1+ρ−ρ2)2 ,

(1−ρ2)(1−ρ)
ρ2(1+ρ−ρ2)2 ,

1−ρ2

ρ4 , 1−ρ
2

ρ4

)
.

Let us denote χ = 21− 12ρ+ ρ2 and θ = 1 + ρ− ρ2. The TPM for EDTMC(K) is

P̃∗ =




0 1 0 0 0 0 0 0 0 0 0 0 0

0 0
(1−ρ)2

χ

(10−ρ)(1−ρ)
χ

(10−ρ)(1−ρ)
χ

ρ2

χ

ρ(1−ρ)
χ

ρ(1−ρ)
χ

ρ(10−ρ)
χ

0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

2
1
2

0
ρ(1−ρ)

θ
0 0 ρ2

θ
0 0 0 0 0 0 1−ρ2

θ
0

0 ρ(1−ρ)
θ

0 ρ2

θ
0 0 0 0 0 0 0 0 1−ρ2

θ
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0




.

The steady-state PMF for EDTMC(K) is

ψ̃∗ = 1
60+32ρ−94ρ2+23ρ3−ρ4 (0, ρ(1− ρ)(21− 12ρ+ ρ2), ρ(1− ρ)3, 5(2− ρ)(1 + ρ− ρ2), 5(2− ρ)(1 + ρ− ρ2),

ρ3(1− ρ), ρ2(1− ρ)2, ρ2(1− ρ)2, 10ρ2(1− ρ), 5(2− ρ)(1 + ρ− ρ2), 5(2− ρ)(1 + ρ− ρ2), 5(1− ρ)(2 + ρ),
5(1− ρ)(2 + ρ)).

The steady-state PMF ψ̃∗ weighted by S̃J is

1
ρ2(60+32ρ−94ρ2+23ρ3−ρ4) (0, 10ρ

2(1− ρ), ρ3(1 − ρ)3, 0, 0, ρ5(1− ρ), ρ4(1− ρ)2, ρ4(1 − ρ)2, 0, 5ρ(2− ρ),

5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ̃∗S̃J
T
=

20 + 10ρ− 10ρ2 − 9ρ3 − ρ4

ρ2(60 + 32ρ− 94ρ2 + 23ρ3 − ρ4)
.

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1 − ρ)3, 0, 0, ρ5(1− ρ), ρ4(1− ρ)2, ρ4(1 − ρ)2, 0, 5ρ(2− ρ),

5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

Otherwise, from TS(K), we can construct the DTMC of K, DTMC(K), and then calculate ϕ̃ using it.
In Figure 48, the DTMC DTMC(K) is depicted.
The TPM for DTMC(K) is

P̃=




1 − ρ3 ρ3 0 0 0 0 0 0 0 0 0 0 0

0
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2

1
2

0 ρ2(1 − ρ) 0 0 ρ3 0 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

0 ρ2(1 − ρ) 0 ρ3 0 0 0 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)
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.

The steady-state PMF for DTMC(K) is
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Figure 48: The DTMC of the generalized shared memory system with maintenance
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ψ̃ = 1
20+10ρ+10ρ2+ρ3−21ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 5ρ2(2− ρ)(1 + ρ− ρ2), 5ρ2(2− ρ)(1 + ρ− ρ2), ρ5(1− ρ),

ρ4(1− ρ)2, ρ4(1− ρ)2, 10ρ4(1 − ρ), 5ρ(2− ρ), 5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

Remember that DRT (K) = DRST (K)∪DRWT (K) = {s̃1, s̃2, s̃3, s̃6, s̃7, s̃8, s̃10, s̃11, s̃12, s̃13} and DRV (K) =
{s̃4, s̃5, s̃9}. Hence,

∑
s̃∈DRT (K) ψ̃(s̃) = ψ̃(s̃1) + ψ̃(s̃2) + ψ̃(s̃3) + ψ̃(s̃6) + ψ̃(s̃7) + ψ̃(s̃8) + ψ̃(s̃10) + ψ̃(s̃11) + ψ̃(s̃12) + ψ̃(s̃13) =

20+10ρ−10ρ2−9ρ3−ρ4

20+10ρ+10ρ2+ρ3−21ρ4 .

By Proposition 5.1, we have

ϕ̃(s̃1) = 0 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 0,

ϕ̃(s̃2) =
10ρ2(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃3) =
ρ3(1−ρ)3

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃4) = 0,

ϕ̃(s̃5) = 0,

ϕ̃(s̃6) =
ρ5(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ5(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃7) =
ρ4(1−ρ)2

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃8) =
ρ4(1−ρ)2

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃9) = 0,

ϕ̃(s̃10) =
5ρ(2−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃11) =
5ρ(2−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃12) =
5(1−ρ)(2+ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃13) =
5(1−ρ)(2+ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 5(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1 − ρ)3, 0, 0, ρ5(1− ρ), ρ4(1− ρ)2, ρ4(1 − ρ)2, 0, 5ρ(2− ρ),

5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .
Alternatively, from TS(K), we can construct the reduced DTMC of K, RDTMC(K), and then calculate

ϕ̃ using it.
Remember thatDRST (K) = {s̃1, s̃2, s̃10, s̃11, s̃12, s̃13}, DRWT (K) = {s̃3, s̃6, s̃7, s̃8}, DRV (K) = {s̃4, s̃5, s̃9}.

We reorder the elements of DR(K), by moving vanishing states to the first positions and s-tangible states to
the last positions: s̃4, s̃5, s̃9, s̃3, s̃6, s̃7, s̃8, s̃1, s̃2, s̃10, s̃11, s̃12, s̃13.

The reordered TPM for DTMC(K) is

P̃r=




0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 − ρ3 ρ3 0 0 0 0

ρ(10−ρ)(1−ρ)
10

ρ(10−ρ)(1−ρ)
10

ρ2(10−ρ)
10

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10
0

(10−ρ)(1−ρ)2

10
0 0 0 0

0 ρ3 0 0 0 0 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

ρ3 0 0 0 0 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 ρ2 0 0 0 0 0 0 0 0 0 1 − ρ2 0

ρ2 0 0 0 0 0 0 0 0 0 0 0 1 − ρ2




.

The result of the decomposing P̃r are the matrices
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C̃ =




0 0 0
0 0 0
0 0 0


 , D̃ =




0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

2
1
2


 , Ẽ =




0 0 0
0 0 1
1 0 0
0 1 0
0 0 0

ρ(10−ρ)(1−ρ)
10

ρ(10−ρ)(1−ρ)
10

ρ2(10−ρ)
10

0 ρ
3 0

ρ
3 0 0
0 ρ

2 0
ρ
2 0 0




,

F̃=




0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1− ρ

3
ρ
3 0 0 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10
0 (10−ρ)(1−ρ)2

10
0 0 0 0

0 0 0 0 0 ρ
2(1− ρ) (1 − ρ)(1 − ρ

2) 0 ρ(1− ρ
2) 0

0 0 0 0 0 ρ
2(1− ρ) 0 (1− ρ)(1 − ρ

2) 0 ρ(1 − ρ
2)

0 0 0 0 0 0 0 0 1− ρ
2 0

0 0 0 0 0 0 0 0 0 1− ρ
2




.

Since C̃1 = 0, we have ∀k > 0, C̃k = 0, hence, l = 0 and there are no loops among vanishing states. Then

G̃ =

l∑

k=0

C̃k = C̃0 = I.

Further, the TPM for RDTMC(K) is

P̃⋄ = F̃+ ẼG̃D̃ = F̃+ ẼID̃ = F̃+ ẼD̃ =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

2
1
2

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1− ρ

3
ρ
3 0 0 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

10
ρ2(1−ρ)

10
0 (10−ρ)(1−ρ)2

10
ρ(10−ρ)(1−ρ)

10
ρ(10−ρ)(1−ρ)

10
ρ2(10−ρ)

20
ρ2(10−ρ)

20
0 0 0 0 0 ρ

2(1− ρ) (1− ρ)(1− ρ
2) ρ

3
ρ(1 − ρ

2) 0
0 0 0 0 0 ρ

2(1− ρ) ρ
3 (1 − ρ)(1 − ρ

2) 0 ρ(1 − ρ
2)

0 0 0 0 0 0 0 ρ
2 1− ρ

2 0
0 0 0 0 0 0 ρ

2 0 0 1− ρ
2




.

In Figure 49, the reduced DTMC RDTMC(K) is presented.
Then the steady-state PMF for RDTMC(K) is

ψ̃⋄ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (ρ

3(1− ρ)3, ρ5(1 − ρ), ρ4(1− ρ)2, ρ4(1− ρ)2, 0, 10ρ2(1− ρ), 5ρ(2− ρ), 5ρ(2− ρ),

5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

Note that ψ̃⋄ = (ψ̃⋄(s̃3), ψ̃
⋄(s̃6), ψ̃

⋄(s̃7), ψ̃
⋄(s̃8), ψ̃

⋄(s̃1), ψ̃
⋄(s̃2), ψ̃

⋄(s̃10), ψ̃
⋄(s̃11), ψ̃

⋄(s̃12), ψ̃
⋄(s̃13)). By Propo-

sition 5.2, we have

ϕ̃(s̃1) = 0, ϕ̃(s̃2) =
10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃3) =
ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃4) = 0, ϕ̃(s̃5) = 0, ϕ̃(s̃6) =
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃7) =
ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃8) =
ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃9) = 0,

ϕ̃(s̃10) =
5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃11) =
5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃(s̃12) =
(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃(s̃13) =
(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC(K) is

ϕ̃ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1 − ρ)3, 0, 0, ρ5(1− ρ), ρ4(1− ρ)2, ρ4(1 − ρ)2, 0, 5ρ(2− ρ),

5ρ(2− ρ), 5(1− ρ)(2 + ρ), 5(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .
We can now calculate the main performance indices.
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❄
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Figure 49: The reduced DTMC of the generalized shared memory system with maintenance

• The average recurrence time in the state s̃2, where no processor requests the memory and its maintenance

is not initiated, called the average system run-through, is 1
ϕ̃2

= 20+10ρ−10ρ2−9ρ3−ρ4

10ρ2(1−ρ) .

• The system is not activated only in the state s̃1. Then the steady-state probability that the system is
activated is 1 − ϕ̃1 = 1 − 0 = 1. The common memory is available only in the states s̃2, s̃4, s̃5, s̃9. Then

the steady-state probability that the memory is available is ϕ̃2 + ϕ̃4 + ϕ̃5 + ϕ̃9 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 +

0+0+0 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 . The common memory is maintained only in the states s̃3, s̃6, s̃7, s̃8. Then

the steady-state probability that the memory is maintained is ϕ̃3 + ϕ̃6 + ϕ̃7 + ϕ̃8 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 +
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 + ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 + ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 . Thus, the steady-

state probability that the memory is used (i.e. neither available nor maintained), called the shared memory

utilization, is 1− 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 − ρ3(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 = 10(2+ρ−2ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

• After activation of the system, we leave the state s̃1 for ever, and the common memory is either requested
or allocated or maintained in every remaining state, with exception of s̃2. Thus, the rate with which the
necessity (also for maintenance) of shared memory emerges coincides with the rate of leaving s̃2, calculated

as ϕ̃2

S̃J2
= 10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 · ρ(21−12ρ+ρ2)
10 = ρ3(1−ρ)(21−12ρ+ρ2)

20+10ρ−10ρ2−9ρ3−ρ4 .

• The parallel common memory request of two processors {({r1}, ρ), ({r2}, ρ)} is only possible from the
state s̃2. In this state, the request probability is the sum of the execution probabilities for all multisets of
activities containing both ({r1}, ρ) and ({r2}, ρ). The steady-state probability of the shared memory request

from two processors is ϕ̃2

∑
{Υ|({({r1},ρ),({r2},ρ)}⊆Υ} PT (Υ, s̃2) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ2(10−ρ)

10 + ρ3

10

)
=

10ρ4(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 .

• The common memory request of the first processor ({r1}, ρ) is only possible from the states s̃2, s̃11. In
each of the states, the request probability is the sum of the execution probabilities for all sets of activities
containing ({r1}, ρ). The steady-state probability of the shared memory request from the first processor is
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Figure 50: The marked dtsd-boxes of the generalized two processors, shared memory and shared memory system
with maintenance

ϕ̃2

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃2) + ϕ̃11

∑
{Υ|({r1},ρ)∈Υ} PT (Υ, s̃11) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ(10−ρ)(1−ρ)

10 +

ρ2(1−ρ)
10 + ρ2(10−ρ)

10 + ρ3

10

)
+ 5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1− ρ2) + ρ3) = 5ρ2(2+ρ−2ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

In Figure 50, the marked dtsd-boxes corresponding to the dynamic expressions of the generalized two proces-
sors, shared memory and shared memory system with maintenance are presented, i.e. Ni = Boxdtsd(Ki) (1 ≤
i ≤ 3) and N = Boxdtsd(K).

9.2 The abstract system and its reduction

Let us consider a modification of the generalized shared memory system with maintenance via abstraction from
identifiers of the processors, i.e. such that the processors are indistinguishable. For example, we can just see that
a processor requires memory or the memory is allocated to it but cannot observe which processor is it. We call
this system the abstract generalized shared memory system with maintenance. To implement the abstraction,
we replace the actions ri, di,mi (1 ≤ i ≤ 2) in the system specification by r, d,m, respectively.

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, ♮
0
l ); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, ♮
0
l ); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({c},
ρ

10
); ({e}, ♮1l ))[](({ŷ1}, ♮

0
l ); ({ẑ1}, ρ))[](({ŷ2}, ♮

0
l ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with maintenance is

L = (L1‖L2‖L3) sr (x1, x2, y1, y2, z1, z2).

DR(L) = {s̃′1, . . . , s̃
′
13} resembles DR(K), and TS(L) is similar to TS(K). We have SMC(L) ≃ SMC(K).

Thus, the average sojourn time vectors of L and K, as well as the TPMs and the steady-state PMFs for
EDTMC(L) and EDTMC(K), coincide.
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The first, second, third and fourth performance indices are the same for the generalized system and its
abstract modification. Let us consider the following performance index which is specific to the abstract system.

• The common memory request of a processor ({r}, ρ) is only possible from the states s̃′2, s̃
′
10, s̃

′
11. In each

of the states, the request probability is the sum of the execution probabilities for all sets of activities
containing ({r}, ρ). The steady-state probability of the shared memory request from a processor is
ϕ̃2

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃

′
2) + ϕ̃10

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃

′
10) + ϕ̃11

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃

′
11) =

10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ(10−ρ)(1−ρ)

10 + ρ(10−ρ)(1−ρ)
10 + ρ2(1−ρ)

10 + ρ2(1−ρ)
10 + ρ2(10−ρ)

10 + ρ3

10

)
+

5ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1− ρ2) + ρ3) + 5ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1− ρ2) + ρ3) = 10ρ2(2−ρ)(1+ρ−ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6, K̃7, K̃8, K̃9}, where K̃1 = {s̃′1} (the initial state in which

the system is not activated), K̃2 = {s̃′2} (the system is activated and the memory is not requested and its

maintenance is not initiated), K̃3 = {s̃′3} (the memory maintenance is initiated), K̃4 = {s̃′4, s̃
′
5} (the memory

is requested by a processor), K̃5 = {s̃′6} (the memory maintenance is initiated and the memory is requested

by two processors), K̃6 = {s̃′7, s̃
′
8} (the memory maintenance is initiated and the memory is requested by a

processor), K̃7 = {s̃′9} (the memory is requested by two processors), K̃8 = {s̃′10, s̃
′
11} (the memory is allocated

to a processor), K̃9 = {s̃′12, s̃
′
13} (the memory is allocated to a processor and requested by another processor).

We haveDRST (L)/Rss(L)
={K̃1, K̃2, K̃8, K̃9}, DRWT (L)/Rss(L)

={K̃3, K̃5, K̃6}, DRV (L)/Rss(L)
={K̃4, K̃7}.

In Figure 51, the quotient transition system TS↔ss
(L) is presented. In Figure 52, the quotient underlying

SMC SMC↔ss
(L) is depicted. Note that, in step semantics, we may execute the following multiactions in

parallel: {r}, {r}, as well as {r}, {m}. We can also execute in parallel {r}, {c}, and even {r}, {r}, {c}. The states

K̃5, K̃6, K̃7 only exist in step semantics, since they are reachable exclusively by executing all three multiactions
{r}, {r}, {c} or any pair of them in parallel.

The quotient average sojourn time vector of F is

S̃J
′
=

(
1

ρ3
,

10

ρ(21− 12ρ+ ρ2)
, 1, 0, 1, 1, 0,

1

ρ(1 + ρ− ρ2)
,
1

ρ2

)
.

The quotient sojourn time variance vector of F is

Ṽ AR
′
=

(
1− ρ3

ρ6
,
10(10− ρ)(1 − ρ)2

ρ2(21− 12ρ+ ρ2)2
, 0, 0, 0, 0, 0,

(1 − ρ2)(1− ρ)

ρ2(1 + ρ− ρ2)2
,
1− ρ2

ρ4

)
.

The TPM for EDTMC↔ss
(L) is

P̃′∗ =




0 1 0 0 0 0 0 0 0

0 0 (1−ρ)2

21−12ρ+ρ2
2(10−ρ)(1−ρ)
21−12ρ+ρ2

ρ2

21−12ρ+ρ2
2ρ(1−ρ)

21−12ρ+ρ2
ρ(10−ρ)

21−12ρ+ρ2 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0




.

The steady-state PMF for EDTMC↔ss
(L) is

ψ̃′∗ = 1
60+32ρ−94ρ2+23ρ3−ρ4 (0, ρ(1− ρ)(21− 12ρ+ ρ2), ρ(1− ρ)3, 10(2− ρ)(1 + ρ− ρ2), ρ3(1 − ρ), 2ρ2(1 − ρ)2,

10ρ2(1− ρ), 10(2− ρ)(1 + ρ− ρ2), 10(1− ρ)(2 + ρ)).

The steady-state PMF ψ̃′∗ weighted by S̃J
′
is

1
60+32ρ−94ρ2+23ρ3−ρ4 (0, 10(1− ρ), ρ(1 − ρ)3, 0, ρ3(1 − ρ), 2ρ2(1− ρ)2, 0, 10(2− ρ), 10(1− ρ)(2 + ρ)).

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components
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Figure 51: The quotient transition system of the abstract generalized shared memory system with maintenance
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Figure 52: The quotient underlying SMC of the abstract generalized shared memory system with maintenance
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Figure 53: The quotient DTMC of the abstract generalized shared memory system with maintenance

ψ̃′∗S̃J
′T

=
20 + 10ρ− 10ρ2 − 9ρ3 − ρ4

ρ2(60 + 32ρ− 94ρ2 + 23ρ3 − ρ4)
.

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, ρ5(1− ρ), 2ρ4(1− ρ)2, 0, 10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

Otherwise, from TS↔ss
(L), we can construct the quotient DTMC of L, DTMC↔ss

(L), and then calculate ϕ̃′

using it.
In Figure 53, the quotient DTMC DTMC↔ss

(L) is depicted.

The TPM for DTMC↔ss
(L) is

P̃′ =




1− ρ3 ρ3 0 0 0 0 0 0 0

0 (10−ρ)(1−ρ)2

10
ρ(1−ρ)2

10
ρ(10−ρ)(1−ρ)

5
ρ3

10
ρ2(1−ρ)

5
ρ2(10−ρ)

10 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 ρ2(1− ρ) 0 ρ3 0 0 0 (1− ρ)(1− ρ2) ρ(1− ρ2)
0 0 0 ρ2 0 0 0 0 1− ρ2




.
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The steady-state PMF for DTMC↔ss
(L) is

ψ̃′ = 1
20+10ρ+10ρ2+ρ3−21ρ4 (0, 10ρ

2(1 − ρ), ρ3(1− ρ)3, 10ρ2(2− ρ)(1 + ρ− ρ2), ρ5(1 − ρ), 2ρ4(1 − ρ)2,

10ρ4(1− ρ), 10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

Remember that DRT (L)/Rss(L)
= DRST (L)/Rss(L)

∪DRWT (L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃5, K̃6, K̃8, K̃9} and

DRV (L)/Rss(L)
= {K̃4, K̃7}. Hence,

∑
K̃∈DRT (L)/Rss(L)

ψ̃′(K̃) = ψ̃′(K̃1) + ψ̃′(K̃2) + ψ̃′(K̃3) + ψ̃′(K̃5) + ψ̃′(K̃6) + ψ̃′(K̃8) + ψ̃′(K̃9) =

20+10ρ−10ρ2−9ρ3−ρ4

20+10ρ+10ρ2+ρ3−21ρ4 .

By the “quotient” analogue of Proposition 5.1, we have

ϕ̃′(K̃1) = 0 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 0,

ϕ̃′(K̃2) =
10ρ2(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃3) =
ρ3(1−ρ)3

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃4) = 0,

ϕ̃′(K̃5) =
ρ5(1−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = ρ5(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃6) =
2ρ4(1−ρ)2

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃7) = 0,

ϕ̃′(K̃8) =
10ρ(2−ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10ρ(2−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃9) =
10(1−ρ)(2+ρ)

20+10ρ+10ρ2+ρ3−21ρ4 · 20+10ρ+10ρ2+ρ3−21ρ4

20+10ρ−10ρ2−9ρ3−ρ4 = 10(1−ρ)(2+ρ)
20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, ρ5(1− ρ), 2ρ4(1− ρ)2, 0, 10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

Alternatively, from TS↔ss
(L), we can construct the reduced quotient DTMC of L, RDTMC↔ss

(L), and
then calculate ϕ̃′ using it.

Remember that DRST (L)/Rss(L)
= {K̃1, K̃2, K̃8, K̃9}, DRWT (L)/Rss(L)

= {K̃3, K̃5, K̃6}, DRV (L)/Rss(L)
=

{K̃4, K̃7}. We reorder the elements of DR(L)/Rss(L)
, by moving the equivalence classes of vanishing states to

the first positions and those of s-tangible states to the last positions: K̃4, K̃7, K̃3, K̃5, K̃6, K̃1, K̃2, K̃8, K̃9.
The reordered TPM for DTMC↔ss

(L) is

P̃′
r =




0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1− ρ3 ρ3 0 0

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

5 0 (10−ρ)(1−ρ)2

10 0 0
ρ3 0 0 0 0 0 ρ2(1− ρ) (1 − ρ)(1− ρ2) ρ(1− ρ2)
ρ2 0 0 0 0 0 0 0 1− ρ2




.

The result of the decomposing P̃′
r are the matrices
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C̃′ =

(
0 0
0 0

)
, D̃′ =

(
0 0 0 0 0 1 0
0 0 0 0 0 0 1

)
, Ẽ′ =




0 0
0 1
1 0
0 0

ρ(10−ρ)(1−ρ)
5

ρ2(10−ρ)
10

ρ3 0
ρ2 0




,

F̃′ =




0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1− ρ3 ρ3 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

5 0 (10−ρ)(1−ρ)2

10 0 0
0 0 0 0 ρ2(1− ρ) (1 − ρ)(1− ρ2) ρ(1− ρ2)
0 0 0 0 0 0 1− ρ2




.

Since C̃′1 = 0, we have ∀k > 0, C̃′k = 0, hence, l = 0 and there are no loops among vanishing states. Then

G̃′ =

l∑

k=0

C̃′l = C̃′0 = I.

Further, the TPM for RDTMC↔ss
(L) is

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′ID̃′ = F̃′ + Ẽ′D̃′ =


0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1− ρ3 ρ3 0 0

ρ(1−ρ)2

10
ρ3

10
ρ2(1−ρ)

5 0 (10−ρ)(1−ρ)2

10
ρ(10−ρ)(1−ρ)

5
ρ2(10−ρ)

10
0 0 0 0 ρ2(1− ρ) 1− ρ− ρ2 + 2ρ3 ρ(1− ρ2)
0 0 0 0 0 ρ2 1− ρ2




.

In Figure 54, the reduced quotient DTMC RDTMC↔ss
(L) is presented.

Then the steady-state PMF for RDTMC↔ss
(L) is

ψ̃′⋄ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (ρ

3(1 − ρ)3, ρ5(1− ρ), 2ρ4(1 − ρ)2, 0, 10ρ2(1 − ρ), 10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

Note that ψ̃′⋄ = (ψ̃′⋄(K̃3), ψ̃
′⋄(K̃5), ψ̃

′⋄(K̃6), ψ̃
′⋄(K̃1), ψ̃

′⋄(K̃2), ψ̃
′⋄(K̃8), ψ̃

′⋄(K̃9)). By the “quotient” analogue
of Proposition 5.2, we have

ϕ̃′(K̃1) = 0, ϕ̃′(K̃2) =
10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃′(K̃3) =
ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃4) = 0, ϕ̃′(K̃5) =
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃′(K̃6) =
2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′(K̃7) = 0, ϕ̃′(K̃8) =
10ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃′(K̃9) =
10(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 .

Thus, the steady-state PMF for SMC↔ss
(L) is

ϕ̃′ = 1
20+10ρ−10ρ2−9ρ3−ρ4 (0, 10ρ

2(1− ρ), ρ3(1− ρ)3, 0, ρ5(1− ρ), 2ρ4(1− ρ)2, 0, 10ρ(2− ρ), 10(1− ρ)(2 + ρ)).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where no processor requests the memory and its maintenance

is not initiated, called the average system run-through, is 1
ϕ̃′

2
= 20+10ρ−10ρ2−9ρ3−ρ4

10ρ2(1−ρ) .

• The system is not activated only in the state K̃1. Then the steady-state probability that the system
is activated is 1 − ϕ̃′

1 = 1 − 0 = 1. The common memory is available only in the states K̃2, K̃4, K̃7.

Then the steady-state probability that the memory is available is ϕ̃′
2 + ϕ̃′

4 + ϕ̃′
7 = 10ρ2(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 +
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Figure 54: The reduced quotient DTMC of the abstract generalized shared memory system with maintenance

0 + 0 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 . The common memory is maintained only in the states K̃3, K̃5, K̃6. Then

the steady-state probability that the memory is maintained is ϕ̃′
3 + ϕ̃′

5 + ϕ̃′
6 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 +
ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 + 2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 = ρ3(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 . Thus, the steady-state probability that

the memory is used (i.e. neither available nor maintained), called the shared memory utilization, is

1− 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 − ρ3(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 = 10(2+ρ−2ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

• After activation of the system, we leave the state K̃1 for ever, and the common memory is either requested
or allocated or maintained in every remaining state, with exception of K̃2. Thus, the rate with which
the necessity (also for maintenance) of shared memory emerges coincides with the rate of leaving K̃2,

calculated as
ϕ̃′

2

S̃J
′

2

= 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 · ρ(21−12ρ+ρ2)

10 = ρ3(1−ρ)(21−12ρ+ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

• The parallel common memory request of two processors {{r}, {r}} is only possible from the state K̃2. In
this state, the request probability is the sum of the execution probabilities for all multisets of multiactions
containing {r} twice. The steady-state probability of the shared memory request from two processors is

ϕ̃′
2

∑
{A,K̃|{{r},{r}}⊆A, K̃2

A
→K̃}

PMA(K̃2, K̃) = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4

(
ρ2(10−ρ)

10 + ρ3

10

)
= 10ρ4(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 .

• The common memory request of a processor {r} is only possible from the states K̃2, K̃8. In each of the
states, the request probability is the sum of the execution probabilities for all multisets of multiactions
containing {r}. The steady-state probability of the shared memory request from a processor is

ϕ̃′
2

∑
{A,K̃|{r}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) + ϕ̃′
8

∑
{A,K̃|{r}∈A, K̃8

A
→K̃}

PMA(K̃8, K̃) = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 ·

(
ρ(10−ρ)(1−ρ)

5 + ρ2(1−ρ)
5 + ρ2(10−ρ)

10 + ρ3

10

)
+ 10ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 (ρ(1 − ρ2) + ρ3) = 10ρ2(2−ρ)(1+ρ−ρ2)
20+10ρ−10ρ2−9ρ3−ρ4 .

One can see that the performance indices are the same for the “complete” and the “quotient” abstract gen-
eralized shared memory systems with maintenance. The coincidence of the first, second and third performance
indices obviously illustrates the results of Proposition 8.1 and Proposition 8.2 (both modified for RLss(L)).
The coincidence of the fourth performance index is due to Theorem 8.1 (modified for RLss(L)): one should
just apply its result to the derived step traces {{r}, {r}} and {{r}, {r}, {c}} of the expression L and itself,
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Figure 55: Steady-state probabilities ϕ̃′
2, ϕ̃

′
8, ϕ̃

′
9 (large probability masses) as functions of the parameter ρ

and then sum the left and right parts of the two resulting equalities. The coincidence of the fifth performance
index is due to Theorem 8.1 (modified for RLss(L)): one should just apply its result to the derived step traces
{{r}}, {{r}, {c}}, {{r}, {r}}, {{r}, {r}, {c}}, {{r}, {m}} of the expression L and itself, and then sum the left
and right parts of the five resulting equalities.

Let us consider what is the effect of quantitative changes of the parameter ρ upon performance of the
“quotient” abstract generalized shared memory system with maintenance in its steady state. Remember that
ρ ∈ (0; 1) is the probability of every stochastic multiaction in the specification of the system. The closer is ρ
to 0, the less is the probability to execute some activities at every discrete time tick, hence, the system will
most probably stand idle. The closer is ρ to 1, the greater is the probability to execute some activities at every
discrete time tick, hence, the system will most probably operate.

Since ϕ̃′
1= ϕ̃

′
4= ϕ̃

′
7=0, only ϕ̃′

2 = 10ρ2(1−ρ)
20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃

′
3 = ρ3(1−ρ)3

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′
5 = ρ5(1−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 ,

ϕ̃′
6 = 2ρ4(1−ρ)2

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′
8 = 10ρ(2−ρ)

20+10ρ−10ρ2−9ρ3−ρ4 , ϕ̃
′
9 = 10(1−ρ)(2+ρ)

20+10ρ−10ρ2−9ρ3−ρ4 depend on ρ. In Figure 55,

the plots of ϕ̃′
2, ϕ̃

′
8, ϕ̃

′
9 (large probability masses) as functions of ρ are depicted. In Figure 56, the plots of

ϕ̃′
3, ϕ̃

′
5, ϕ̃

′
6 (small probability masses) as functions of ρ are drawn. Notice that, however, we do not allow ρ = 0

or ρ = 1.
One can see that ϕ̃′

2, ϕ̃
′
3, ϕ̃

′
5, ϕ̃

′
6, ϕ̃

′
8 tend to 0 and ϕ̃′

9 tends to 1 when ρ approaches 0. Thus, when ρ
is closer to 0, the probability that the memory is allocated to a processor and requested by another processor
increases, hence, we have more unsatisfied memory requests.

Further, ϕ̃′
2, ϕ̃

′
3, ϕ̃

′
5, ϕ̃

′
6, ϕ̃

′
9 tend to 0 and ϕ̃′

8 tends to 1 when ρ approaches 1. Thus, when ρ is closer to 1,
the probability that the memory is allocated to a processor (and not requested by another processor) increases,
hence, we have less unsatisfied memory requests.

The maximal value 0.0792 of ϕ̃′
2 is reached when ρ ≈ 0.7427. In this case, the probability that the system

is activated and the memory is not requested and its maintenance is not initiated is maximal, i.e. the maximal
shared memory availability is about 8%.

The maximal value 0.0007 of ϕ̃′
3 is reached when ρ ≈ 0.5158. In this case, the probability that the memory

maintenance is initiated is maximal, i.e. the maximal shared memory maintenance necessity is about 0.1%.
The maximal value 0.0044 of ϕ̃′

5 is reached when ρ ≈ 0.8724. In this case, the probability that the memory
maintenance is initiated and the memory is requested by two processors is maximal, i.e. the maximal double
(parallel) demand of shared memory during its maintenance is about 0.4%.

The maximal value 0.0023 of ϕ̃′
6 is reached when ρ ≈ 0.7015. In this case, the probability that the memory

maintenance is initiated and the memory is requested by a (single) processor is maximal, i.e. the maximal single
demand of shared memory during its maintenance is about 0.2%.

In Figure 57, the plot of the average system run-through, calculated as 1
ϕ̃′

2
, as a function of ρ is depicted.

One can see that the run-through tends to ∞ when ρ approaches 0 or 1. Its minimal value 12.6259 is reached
when ρ ≈ 0.7427. To speed up operation of the system, one should take the parameter ρ closer to 0.7427.
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Figure 58: Some performance indices as functions of the parameter ρ

The first curve in Figure 58 represents the shared memory utilization, calculated as 1− ϕ̃′
2−7, where ϕ̃

′
2−7 =

ϕ̃′
2 + ϕ̃′

3 + ϕ̃′
4 + ϕ̃′

5 + ϕ̃′
6 + ϕ̃′

7, as a function of ρ. One can see that the utilization tends to 1 both when ρ
approaches 0 and when ρ approaches 1. The minimal value 0.9149 of the utilization is reached when ρ ≈ 0.7494.
Thus, the minimal shared memory utilization is about 91%. To increase the utilization, one should take the
parameter ρ closer to 0 or 1.

The second curve in Figure 58 represents the rate with which the necessity of shared memory emerges,

calculated as
ϕ̃′

2

S̃J
′

2

, as a function of ρ. One can see that the rate tends to 0 both when ρ approaches 0 and when

ρ approaches 1. The maximal value 0.0749 of the rate is reached when ρ ≈ 0.7723. Thus, the maximal rate with
which the necessity of shared memory emerges is about 1

13 . To decrease the mentioned rate, one should take
the parameter ρ closer to 0 or 1.

The third curve in Figure 58 represents the steady-state probability of the shared memory request from two
processors, calculated as ϕ̃′

2S̃
′
2, where S̃ ′

2 =
∑

{A,K̃|{{r},{r}}⊆A, K̃2
A
→K̃}

PMA(K̃2, K̃), as function of ρ. One can

see that the probability tends to 0 both when ρ approaches 0 and when ρ approaches 1. The maximal value
0.0514 of the probability is reached when ρ ≈ 0.8486. To decrease the mentioned probability, one should take
the parameter ρ closer to 0 or 1.

The fourth curve in Figure 58 represents the steady-state probability of the shared memory request from a
processor, calculated as ϕ̃′

2Σ̃
′
2 + ϕ̃′

8Σ̃
′
8, where Σ̃′

i =
∑

{A,K̃|{r}∈A, K̃i
A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 8}, as a function

of ρ. One can see that the probability tends to 0 when ρ approaches 0 and it tends to 1 when ρ approaches 1.
To increase the mentioned probability, one should take the parameter ρ closer to 1.

10 Related work

In this section, we consider in detail differences and similarities between dtsdPBC and other well-known or
similar SPAs for the purpose of subsequent determining the specific advantages of dtsdPBC.

10.1 Continuous time and interleaving semantics

Let us compare dtsdPBC with classical SPAs: Markovian Timed Processes for Performance Evaluation (MTIPP)
[70], Performance Evaluation Process Algebra (PEPA) [72], Extended Markovian Process Algebra (EMPA) [22].

In MTIPP, every activity is a pair consisting of the action name (including the symbol τ for the internal,
invisible action) and the parameter of exponential distribution of the action delay (the rate). The operations
are prefix, choice, parallel composition including synchronization on the specified action set and recursion. It is
possible to specify processes by recursive equations as well. The interleaving semantics is defined on the basis
of Markovian (i.e. extended with the specification of rates) labeled transition systems. Note that we have the
interleaving behaviour here because the exponential PDF is a continuous one, and a simultaneous execution of
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any two activities has zero probability according to the properties of continuous distributions. CTMCs can be
derived from the mentioned transition systems to analyze performance.

In PEPA, activities are the pairs consisting of action types (including the unknown, unimportant type τ)
and activity rates. The rate is either the parameter of exponential distribution of the activity duration or it is
unspecified, denoted by ⊤. An activity with unspecified rate is passive by its action type. The set of operations
includes prefix, choice, cooperation, hiding and constants whose meaning is given by the defining equations
including the recursive ones. The cooperation is accomplished on the set of action types (the cooperation set)
on which the components must synchronize or cooperate. If the cooperation set is empty, the cooperation
operator turns into the parallel combinator. The semantics is interleaving, it is defined via the extension of
labeled transition systems with a possibility to specify activity rates. Based on the transition systems, the
continuous time Markov processes (CTMPs) are generated which are used for performance evaluation with the
help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can be external or internal (denoted
by τ) according to types. There are three kinds of actions according to rates: timed ones with exponentially
distributed durations (essentially, the actions from MTIPP and PEPA), immediate ones with priorities and
weights (the actions analogous to immediate transitions of GSPNs) and passive ones (similar to passive actions
of PEPA). Timed actions specify activities that are relevant for performance analysis. Immediate actions model
logical events and the activities that are irrelevant from the performance viewpoint or much faster than others.
Passive actions model activities waiting for the synchronization with timed or immediate ones, and express
nondeterministic choice. The set of operators consist of prefix, functional abstraction, functional relabeling,
alternative composition and parallel composition ones. Parallel composition includes synchronization on the set
of action types like in TCSP [73]. The syntax also includes recursive definitions given by means of constants.
The semantics is interleaving and based on the labeled transition systems enriched with the information about
action rates. For the exponentially timed kernel of the algebra (the sublanguage including only exponentially
timed and passive actions), it is possible to construct CTMCs from the transition systems of the process terms
to analyze the performance.

In dtsdPBC, every activity is a pair consisting of the multiaction (not just an action, as in the classical
SPAs) as a first element. The second element is either the probability (not the rate, as in the classical SPAs) to
execute the multiaction independently (the activity is called a stochastic multiaction in this case) or a combined
specification of the (fixed) delay and weight expressing how important is the execution of this multiaction (the
activity is called a deterministic multiaction in this case). Immediate (zero delay deterministic) multiactions in
dtsdPBC are similar to immediate actions in EMPA, but all the immediate multiactions in dtsdPBC have the
same (implicit) priority 2. The purpose is to execute them always before waiting (positive delay deterministic)
multiactions with the same (implicit) priority 1, and stochastic multiactions with the same (implicit) priority
0. The immediate actions in EMPA can have different priority levels. Associating the same priority with all
immediate (or waiting) multiactions in dtsdPBC results in the simplified specification and analysis, and such
a decision is also appropriate to the calculus. The reason is that, as mentioned in [66], weights (assigned also
to immediate actions in EMPA) are enough to denote preferences among immediate multiactions (designating
their advantages or prescribing sub-priorities to them) and to produce the conformable probabilistic behaviours
when one has to make a choice among several immediate multiactions executable in some state. There are no
deterministic actions in MTIPP and PEPA. Immediate actions are available only in iPEPA [68], where they are
analogous to immediate multiactions in dtsdPBC, and in a variant of TIPP [61] discussed while constructing
the calculus PM-TIPP in [120], but there immediate activities are used just to specify probabilistic branching
and they cannot be synchronized.

dtsdPBC has the sequence operation, in contrast to the prefix one in the classical SPAs. One can combine
arbitrary expressions with the sequence operator, i.e. it is more flexible than the prefix one, where the first
argument should be a single activity. The choice operation in dtsdPBC is analogous to that in MTIPP and
PEPA, as well as to the alternative composition in EMPA, in the sense that the choice is probabilistic, but a
discrete probability function is used in dtsdPBC, unlike continuous ones in the classical calculi. Concurrency and
synchronization in dtsdPBC are different operations (this feature is inherited from PBC), unlike the situation
in the classical SPAs where parallel composition (combinator) has a synchronization capability. Relabeling in
dtsdPBC is analogous to that in EMPA, but it is additionally extended to conjugated actions. The restriction
operation in dtsdPBC differs from hiding in PEPA and functional abstraction in EMPA, where the hidden actions
are labeled with a symbol of “silent” action τ . In dtsdPBC, restriction by an action means that, for a given
expression, any process behaviour containing the action or its conjugate is not allowed. The synchronization
on an elementary action in dtsdPBC collects all the pairs consisting of this elementary action and its conjugate
which are contained in the multiactions from the synchronized activities. The operation produces new activities
such that the first element of every resulting activity is the union of the multiactions from which all the mentioned
pairs of conjugated actions are removed. The second element is either the product of the probabilities of the
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synchronized stochastic multiactions or a specification of the joint delay and the sum of the weights of the
synchronized deterministic multiactions with the same delay. This differs from the way synchronization is
applied in the classical SPAs where it is accomplished over identical action names, and every resulting activity
consists of the same action name and the rate calculated via some expression (including sums, minimums and
products) on the rates of the initial activities, such as the apparent rate in PEPA. dtsdPBC has no recursion
operation or recursive definitions, but it includes the iteration operation to specify infinite looping behaviour
with the explicitly defined start and termination.

dtsdPBC has a discrete time semantics, and residence time in the tangible states is geometrically distributed,
unlike the classical SPAs with continuous time semantics and exponentially distributed activity delays. As a
consequence, the semantics of dtsdPBC is the step one, in contrast to the interleaving semantics of the classical
SPAs. The performance is investigated via the underlying SMCs and (reduced) DTMCs extracted from the
labeled probabilistic transition systems associated with expressions of dtsdPBC. In the classical SPAs, CTMCs
are usually used for performance evaluation. In [58], a denotational semantics of PEPA has been proposed via
PEPA nets that are high-level CTSPNs with coloured tokens (coloured CTSPNs), from which the underlying
CTMCs can be retrieved. In [21, 13], a denotational semantics of EMPA based on GSPNs has been defined, from
which one can also extract the underlying SMCs and CTMCs (when both immediate and timed transitions are
present) or DTMCs (but when there are only immediate transitions). dtsdPBC has a denotational semantics
in terms of LDTSIPNs from which the underlying SMCs and (reduced) DTMCs can be derived.

10.2 Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were considered among non-Markovian ones [81, 32]. The semantics of
all Markovian calculi is interleaving and their action delays have exponential distribution, which is the only
continuous probability distribution with memoryless (Markovian) property.

In [35], Generalized Stochastic Process Algebra (GSPA) was introduced. It has a true-concurrent denotatio-
nal semantics in terms of generalized stochastic event structures (GSESs) with non-Markovian stochastic delays
of events. In that paper, no operational semantics or performance evaluation methods for GSPA were presented.
In [82], generalized semi-Markov processes (GSMPs) were extracted from GSESs to analyze performance.

In [116, 117], generalized Stochastic π-calculus (Sπ) with general continuous distributions of activity delays
was defined. It has a proved operational semantics with transitions labeled by encodings of their deduction
trees. No well-established underlying performance model for this version of Sπ was described.

In [33, 31], Generalized Semi-Markovian Process Algebra (GSMPA) was developed with an ST-operational
semantics and non-Markovian action delays. The performance analysis in GSMPA is accomplished via GSMPs.

Again, the first fundamental difference between dtsdPBC and the calculi GSPA, Sπ and GSMPA is that
dtsdPBC is based on PBC, whereas GSPA is an extension of simple Process Algebra (PA) from [35], Sπ extends
π-calculus [108] and GSMPA is an enrichment of EMPA. Therefore, both GSPA and GSMPA have prefixing,
choice (alternative composition), parallel composition, renaming (relabeling) and hiding (abstraction) operations,
but only GSMPA permits constants. Unlike dtsdPBC, GSPA has neither iteration or recursion, GSMPA allows
only recursive definitions, whereas Sπ additionally has operations to specify mobility. Note also that GSPA, Sπ
and GSMPA do not specify even instantaneous events or activities while dtsdPBC has deterministic multiactions.

The second significant difference is that geometrically distributed or zero delays are associated with process
states in dtsdPBC, unlike generally distributed delays assigned to events in GSPA or to activities in Sπ and
GSMPA. As a consequence, dtsdPBC has a discrete time operational semantics allowing for concurrent execu-
tion of activities in steps. GSPA has no operational semantics while Sπ and GSMPA have continuous time ones.
In continuous time semantics, concurrency is simulated by interleaving, since simultaneous occurrence of any
two events has zero probability according to the properties of continuous probability distributions. Therefore,
interleaving transitions are often annotated with an additional information to keep concurrency data. The tran-
sition labels in the operational semantics of Sπ encode the action causality information and allow one to derive
the enabling relations and the firing distributions of concurrent transitions from the transition sequences. At the
same time, abstracting from stochastic delays leads to the classical early interleaving semantics of π-calculus.
The ST-operational semantics of GSMPA is based on decorated transition systems governed by transition rules
with rather complex preconditions. There are two types of transitions: the choice (action beginning) and the
termination (action ending) ones. The choice transitions are labeled by weights of single actions chosen for
execution while the termination transitions have no labels. Only single actions can begin, but several actions
can end in parallel. Thus, the choice transitions happen just sequentially while the termination transitions can
happen simultaneously. As a result, the decorated interleaving / step transition systems are obtained. dtsdPBC
has an SPN-based denotational semantics. In comparison with event structures, PNs are more expressive and
visually tractable formalism, capable of finitely specifying an infinite behaviour. Recursion in GSPA produces
infinite GSESs while dtsdPBC has iteration operation with a finite SPN semantics. Identification of infinite
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GSESs that can be finitely represented in GSPA was left for a future research.

10.3 Discrete time

In [1], a class of compositional DTSPNs with generally distributed discrete time transition delays was proposed,
called dts-nets. The denotational semantics of a stochastic extension (we call it stochastic ACP or sACP) of a
subset of Algebra of Communicating Processes (ACP) [12] can be constructed via dts-nets. There are two types
of transitions in dts-nets: immediate (timeless) ones, with zero delays, and time ones, whose delays are random
variables having general discrete distributions. The top-down synthesis of dts-nets consists in the substitution
of their transitions by blocks (dts-subnets) corresponding to the sequence, choice, parallelism and iteration
operators. It was explained how to calculate the throughput time of dts-nets using the service time (defined
as holding time or delay) of their transitions. For this, the notions of service distribution for the transitions
and throughput distribution for the building blocks were defined. Since the throughput time of the parallelism
block was calculated as the maximal service time for its two constituting transitions, the analogue of the step
semantics approach was implemented.

In [98, 99], an SPA called Theory of Communicating Processes with discrete stochastic time (TCP dst)
was introduced, later in [96] called Theory of Communicating Processes with discrete real and stochastic time
(TCP drst). It has discrete real time (deterministic) delays (including zero delays) and discrete stochastic time
delays. The algebra generalizes real time processes to discrete stochastic time ones by applying real time
properties to stochastic time and imposing race condition to real time semantics. TCP dst has an interleaving
operational semantics in terms of stochastic transition systems. The performance is analyzed via discrete time
probabilistic reward graphs which are essentially the reward transition systems with probabilistic states having
finite number of outgoing probabilistic transitions and timed states having a single outgoing timed transition.
The mentioned graphs can be transformed by unfolding or geometrization into discrete time Markov reward
chains (DTMRCs) appropriate for transient or stationary analysis.

The first difference between dtsdPBC and the algebras sACP and TCP dst is that dtsdPBC is based on
PBC, but sACP and TCP dst are the extensions of ACP [12]. sACP has taken from ACP only sequence, choice,
parallelism and iteration operations, whereas dtsdPBC has additionally relabeling, restriction and synchroniza-
tion ones, inherited from PBC. In TCP dst, besides standard action prefixing, alternative, parallel composition,
encapsulation (similar to restriction) and recursive variables, there are also timed delay prefixing, dependent
delays scope and the maximal time progress operators, which are new both for ACP and dtsdPBC.

The second difference is that dtsdPBC, sACP and TCP dst, all have zero delays, however, discrete time
delays in dtsdPBC are zeros or geometrically distributed (being 1 or ∞ as special cases) and associated with
process states. The zero delays are possible just in vanishing states while geometrically distributed delays are
possible only in tangible states. For each s-tangible (w-tangible) state, the parameter of geometric distribution
governing the delay in the state is completely determined by the probabilities (weights) of all stochastic (waiting)
multiactions executable from it. In sACP and TCP dst, delays are generally distributed, but they are assigned
to transitions in sACP and separated from actions (excepting zero delays) in TCP dst. Moreover, a special
attention is given to zero delays in sACP and deterministic delays in TCP dst. In sACP, immediate (timeless)
transitions with zero delays serve as source and sink transitions of the dts-subnets corresponding to the choice,
parallelism and iteration operators. In TCP dst, zero delays of actions are specified by undelayable action
prefixes while positive deterministic delays of processes are specified with timed delay prefixes. Neither formal
syntax nor operational semantics for sACP are defined and it is not explained how to derive Markov chains
from the algebraic expressions or the corresponding dts-nets to analyze performance. It is not stated explicitly,
which type of semantics (interleaving or step) is accommodated in sACP. In spite of the discrete time approach,
operational semantics of TCP dst is still interleaving, unlike that of dtsdPBC. In addition, no denotational
semantics was defined for TCP dst.

Table 7 summarizes the SPAs comparison above and that from Section 1 (the calculi sPBC, gsPBC, dtsPBC
and dtsiPBC), by classifying the SPAs according to the concept of time, the presence of (arbitrary) determin-
istic or (only) immediate (multi)actions, and the operational semantics type. The names of SPAs with the
denotational semantics based on SPNs are printed in bold font. The underlying stochastic process (if defined)
for each presented SPA is specified in parentheses near its name.

11 Discussion

Let us now discuss which advantages has dtsdPBC in comparison with the SPAs described in Section 10.
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Table 7: Classification of stochastic process algebras

Time Deterministic Interleaving semantics Non-interleaving semantics
(multi)actions

Continuous Non-exist MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ,
sPBC (CTMC) GSMPA (GSMP)

Immediate EMPA (SMC, CTMC), —
gsPBC (SMC)

Discrete Non-exist — dtsPBC (DTMC)
Immediate — dtsiPBC (SMC, DTMC)
Arbitrary TCP dst (DTMRC) sACP, dtsdPBC (SMC, DTMC)

11.1 Analytical solution

An important aspect is the analytical tractability of the underlying stochastic process, used for performance
evaluation in SPAs. The underlying CTMCs in MTIPP and PEPA, as well as SMCs in EMPA, are treated
analytically, but these continuous time SPAs have interleaving semantics. GSPA, Sπ and GSMPA are the
continuous time models, for which a non-interleaving semantics is constructed, but for the underlying GSMPs
in GSPA and GSMPA, only simulation and numerical methods are applied, whereas no performance model
for Sπ is defined. sACP and TCP dst are the discrete time models with the associated analytical methods for
the throughput calculation in sACP or for the performance evaluation based on the underlying DTMRCs in
TCP dst, but both models have interleaving semantics. dtsdPBC is a discrete time model with a non-interleaving
semantics, where analytical methods are applied to the underlying SMCs. Hence, if an interleaving model is
appropriate as a framework for the analytical solution towards performance evaluation then one has a choice
between the continuous time SPAs MTIPP, PEPA, EMPA and the discrete time ones sACP, TCP dst. Otherwise,
if one needs a non-interleaving model with the associated analytical methods for performance evaluation and
the discrete time approach is feasible then dtsdPBC is the right choice.

The existence of an analytical solution also permits to interpret quantitative values (rates, probabilities,
weights etc.) from the system specifications as parameters, which can be adjusted to optimize the system perfor-
mance, like in dtsPBC, dtsiPBC and dtsdPBC. The DTMCs whose transition probabilities are parameters were
introduced in [52]. The parameters can also be adjusted in parametric probabilistic transition systems (PTSs)
[86], i.e. in the DTMCs whose transition probabilities may be real-valued parameters. Parametric CTMCs with
the transition rates treated as parameters were investigated in [64]. Parametric probabilistic timed automata
(PTAs) were defined in [43]. Parametric DTMCs with the transition probabilities being polynomials over real-
valued parameters were investigated in [63]. In [77], a new method of computing the reachability probabilities
was proposed for parametric DTMCs whose state change probabilities are the fractions of polynomials over the
set of parameters. The parameter value synthesis problem was studied in [54] for parametric interval DTMCs
(IDTMCs), in which the parameters are the borders of the transition probability intervals. In [118], a new
parameter synthesis technique called lifting was proposed for three parametric models: stochastic games (SGs),
Markov decision processes (MDPs) and DTMCs. Parametric verification for concurrent systems modeled by
parametric versions of timed automata (TAs), interval Markov chains (IMCs) and PNs was surveyed in [3].
For parametric verification with logic PCTL in [51], uncertain MDPs (UMDPs) were applied whose parameters
may be either controlled (as in the standard parametric MDPs) or uncontrolled (being random values with the
probability distributions), aiming to specify uncertainty of the transition probabilities and reward functions.

On the other hand, no parameters in formulas of SPAs were considered in the literature so far. In dtsdPBC
we can easily construct examples with more parameters than we did in our case study. The performance indices
will be then interpreted as functions of several variables. The advantage of our approach is that, unlike of
the method from [86] and other works, we should not impose to the parameters any special conditions needed
to guarantee that the real values, interpreted as the transition probabilities, always lie in the interval [0; 1].
To be convinced of this fact, just remember that, as we have demonstrated, the positive probability functions
PF, PT, PM, PM∗, PM⋄ define probability distributions, hence, they always return values belonging to
(0; 1] for any probability parameters from (0; 1) and weight parameters from IR>0. In addition, the transition
constraints (their probabilities, rates and guards), calculated using the parameters, in our case should not
always be polynomials over variables-parameters, as often required in the mentioned papers, but they may also
be fractions of polynomials, like in our case study.
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11.2 Concurrency interpretation

One can see that the stochastic process calculi proposed in the literature are based on interleaving, as a rule,
and parallelism is simulated by synchronous or asynchronous execution. As a semantic domain, the interle-
aving formalism of transition systems is often used. However, to properly support intuition of the behaviour
of concurrent and distributed systems, their semantics should treat parallelism as a primitive concept that
cannot be reduced to nondeterminism. Moreover, in interleaving semantics, some important properties of these
systems cannot be expressed, such as simultaneous occurrence of concurrent transitions [53] or local deadlock
in the spatially distributed processes [111]. Therefore, investigation of stochastic extensions for more expressive
and powerful algebraic calculi is an important issue. The development of step or “true concurrency” (such that
parallelism is considered as a causal independence) SPAs is an interesting and nontrivial problem, which has
attracted special attention last years. Nevertheless, not so many formal stochastic models of parallel systems
were defined whose underlying stochastic processes are based on DTMCs. As mentioned in [57], such models
are more difficult to analyze, since several events can occur simultaneously in discrete time systems (the models
have a step semantics) and the probability of a set of events cannot be easily related to the probability of the
single ones. Therefore, parallel executions of actions are often not considered also in the discrete time SPAs,
such as TCP dst, whose underlying stochastic process is DTMCs with rewards (DTMRCs). As observed in [75],
even for stochastic models with generally distributed time delays, some restrictions on the concurrency degree
were imposed to simplify their analysis techniques. In particular, the enabling restriction requires that no two
generally distributed transitions are enabled in any reachable marking. Hence, their activity periods do not
intersect and no two such transitions can fire simultaneously, this results in interleaving semantics of the model.

Stochastic models with discrete time and step semantics have the following important advantage over those
having just an interleaving semantics. The underlying Markov chains of parallel stochastically timed pro-
cesses have the additional transitions corresponding to the simultaneous execution of concurrent (i.e. non-
synchronized) activities. The transitions of that kind allow one to bypass a lot of intermediate states, which
otherwise should be visited when interleaving semantics is accommodated. When step semantics is used, the
intermediate states can also be visited with some probability (this is an advantage, since some alternative sys-
tem’s behaviour may start from these states), but this probability is not greater than the corresponding one
in case of interleaving semantics. While in interleaving semantics, only the empty or singleton (multi)sets of
activities can be executed, in step semantics, generally, the (multi)sets of activities with more than one ele-
ment can be executed as well. Hence, in step semantics, there are more variants of execution from each state
than in the interleaving case and the executions probabilities, whose sum should be equal to 1, are distributed
among more possibilities. Therefore, the systems with parallel stochastic processes usually have smaller average
run-through. In case the underlying Markov chains of the processes are ergodic, they will generally take less
discrete time units to stabilize the behaviour, since their TPMs will be usually denser because of additional
non-zero elements outside the main diagonal. Hence, both the first passage-time performance indices based on
the transient probabilities and the steady-state performance indices based on the stationary probabilities can be
potentially computed quicker, resulting in mostly faster quantitative analysis of the systems. On the other hand,
step semantics, induced by simultaneous firing several transitions at each step, is natural for Petri nets and
allows one to exploit full power of the model. Therefore, it is important to respect the probabilities of parallel
executions of activities in discrete time SPAs, especially in those with a Petri net denotational semantics.

11.3 Application area

From the application viewpoint, one considers what kind of systems are more appropriate to be modeled and
analyzed within SPAs. MTIPP and PEPA are well-suited for the interleaving continuous time systems such that
the activity rates or the average sojourn time in the states are known in advance and exponential distribution
approximates well the activity delay distributions, whereas EMPA can be used to model the mentioned systems
with the activity delays of different duration order or the extended systems, in which purely probabilistic choices
or urgent activities must be implemented. GSPA and GSMPA fit well for modeling the continuous time systems
with a capability to keep the activity causality information, and with the known activity delay distributions,
which cannot be approximated accurately by exponential distribution, while Sπ can additionally model mobility
in such systems. TCP dst is a good choice for interleaving discrete time systems with deterministic (fixed) and
generalized stochastic delays, whereas sACP is capable to model non-interleaving systems as well, but it offers
not enough performance analysis methods.

dtsdPBC is consistent for the step discrete time systems such that the independent execution probabilities
of activities are known and geometrical distribution approximates well the state residence time distributions.
These include Dirac distribution of the positive deterministic sojourn time, which is then splitted into one time
units and allocated with the consecutive process states. In addition, dtsdPBC can model the mentioned systems
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Figure 59: Performance evaluation methods in dtsdPBC

featuring very scattered activity delays, or even more complex systems with instantaneous probabilistic choice
or urgency. Hence, dtsdPBC can be taken as a non-interleaving discrete time counterpart of TCP dst.

11.4 Advantages of our approach

The main advantages of dtsdPBC are the flexible multiaction labels, stochastic and deterministic multiactions,
powerful operations, as well as a step operational and a Petri net denotational semantics allowing for concurrent
execution of activities (transitions), together with an ability for analytical and parametric performance evalua-
tion. The uniqueness of our approach consists in applying a parallel semantics for the process expressions and
preserving the concurrency level in the extracted performance models (SMC, DTMC and RDTMC) through
their state changes corresponding to the simultaneous executions.

12 Conclusion

In this paper, we have proposed a discrete time stochastic extension dtsdPBC of PBC, enriched with determinis-
tic multiactions. The calculus has a parallel step operational semantics, based on labeled probabilistic transition
systems and a denotational semantics in terms of a subclass of LDTSDPNs. A technique of performance evalua-
tion in the framework of the calculus has been presented (embedding) that explores the corresponding stochastic
process, which is a semi-Markov chain (SMC). In such an SMC, the sojourn time in every tangible state is geo-
metrically distributed (with the special cases of being one or infinity) while the sojourn time in every vanishing
state is zero. It has been proved that the underlying discrete time Markov chain (DTMC) or its reduction
(RDTMC) by eliminating vanishing states may alternatively and suitably be studied for that purpose (abstrac-
tion and elimination, respectively). Since vanishing states are preserved by both the embedding and abstraction,
the latter can be seen as an alternative (to the former) preservation method [48]. In Figure 59, a classification
of the techniques for performance analysis within dtsdPBC is presented.

Further, step stochastic bisimulation equivalence of process expressions has been defined, used to establish
the consistency of the operational and denotational semantics, and its interrelations with other equivalences of
the calculus have been investigated. We have explained how to reduce transition systems and underlying SMCs
of expressions with respect to the introduced equivalence. We have proved that the mentioned equivalence gua-
rantees identity of the stationary behaviour and the sojourn time properties, and thus preserves performance
measures. The theory presented has been illustrated with an extensive series of examples, among which is the tra-
vel system application demonstrating performance analysis within dtsdPBC. A case study of a generalization of
the shared memory system with maintenance, by allowing for variable probabilities in its specification, has been
presented. The case study is an example of modeling, performance evaluation and performance preserving reduc-
tion in the calculus. We have also determined the advantages of dtsdPBC by comparing it with other SPAs. We
have discussed the SPAs approaches to the analytical solution, concurrency interpretation and application area.

Table 8 contains a classification of the (labeled) SPNs classes mentioned in this paper, according to the
concept of time (continuous or discrete) and presence of (besides stochastic) immediate or deterministic (i.e.
immediate and waiting) transitions. For completeness, we also consider a continuous time model of deterministic
stochastic Petri nets (DSPNs) [104, 105] with stochastic (exponential) and deterministic transitions. In the
parentheses under the SPNs classes, the names of the SPAs discussed here are written whose denotational
semantics is based on the corresponding types of SPNs. For example, denotational semantics of PEPA is
constructed using (labeled) CTSPNs while that of dtsiPBC is defined via dtsi-boxes, a special subclass of
LDTSIPNs. The names of the SPNs and SPAs, defined by us, are printed in bold font. In the table, all the
SPNs with continuous time have interleaving semantics whereas those with discrete time have non-interleaving
(step) semantics.

The advantage of our framework is twofold. First, one can specify in it concurrent composition and synchro-
nization of (multi)actions, whereas this is not possible in classical Markov chains. As argued in [136], (stochastic)
PNs represent the systems structure more concisely and can be an intermediate formalism for their more intuitive
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Table 8: Classification of stochastic Petri nets

Time Stochastic Stochastic and Stochastic and
transitions immediate transitions deterministic transitions

Continuous (L)CTSPNs (L)GSPNs DSPNs
(PEPA, sPBC) (EMPA, gsPBC) —

Discrete (L)WDTSPNs, (L)DTSPNs spTPNs, (L)DTSIPNs DTDSPNs, (L)DTSDPNs
(dtsPBC) (dtsiPBC) (dtsdPBC)

translation into Markov chains. Second, algebraic formulas represent processes in a more compact way than
PNs and allow one to apply syntactic transformations and comparisons. Process algebras are compositional by
definition and their operations naturally correspond to operators of programming languages. Hence, it is much
easier to construct a complex model in the algebraic setting than in PNs. The complexity of PNs generated
for practical models in the literature demonstrates that it is not straightforward to construct such PNs directly
from the system specifications. dtsdPBC is well suited for the discrete time applications, whose discrete states
change with a global time tick, such as business processes, neural and transportation networks, computer and
communication systems, timed web services [137], as well as for those, in which the distributed architecture or
the concurrency level should be preserved while modeling and analysis, such as genetic regulatory and cellular
signalling networks (featuring maximal parallelism) in biology [29, 10] (remember that, in step semantics, we
have additional transitions due to concurrent executions). dtsdPBC is also capable to model and analyze parallel
systems with fixed durations of the typical activities (loading, processing, transfer, repair, low-level events,
message delivery) and stochastic durations of the randomly occurring activities (arrival, departure, failure,
packet loss, message collision), including industrial, manufacturing, queueing, computing and network systems.

In particular, we have adapted for dtsdPBC all examples of the expressions, ct-boxes and inferences by
the transition rules from tPBC [83]. Whereas the examples from that paper explore only some selected state-
transition sequences (paths), we always construct the complete transition systems of the expressions. We
have observed that in our framework we have no difficulties like those in tPBC, which have forced to allow
illegal transition sequences. In tPBC, the increasing timers are associated with the overlines and underlines
of multiactions and suggest the ages of the corresponding markings in the respective boxes. In dtsdPBC, the
decreasing (up to the value 1) timers are associated with the enabled waiting multiactions and specify their
remaining times to execute (RTEs), like the timers of the enabled deterministic transitions in DTDSPNs from
[145, 146, 144]. Besides such a PNs intuition, making difference between markings (overlines and underlines)
and timers of (waiting) multiactions offers us more syntactical flexibility to express their progress in time. The
decreasing timers allow us to avoid problems with infinitely growing timer values in the deadlocked and final
(absorbing) states. Each decreasing timer should start with a particular value that cannot be suggested by the
current marking, but such an initial value is the delay of the waiting multiaction the timer is associated with.

It is known that the attempts to combine time restrictions, parallelism and compositionality usually lead
to many technical difficulties, so that the formal models possessing all the mentioned properties have almost
not been proposed in the literature, in spite of the investigations in the related areas (for example, discrete
time, generally distributed delays, non-interleaving functional semantics in the SPA framework). To solve the
mentioned problem, some new (not existing in dtsiPBC) notions and constructions have been introduced in dts-
dPBC, such as deterministic multiactions, decreasing timers of waiting multiactions, enabledness of activities,
saturation with the timer values, timers discarding and decreasing operations, extended Can and Now func-
tions, s-tangible and w-tangible dynamic expressions and states, inaction and action rules respecting waiting
multiactions, empty moves, reachability of dynamic expressions, transition systems with 3 types of states and 4
types of transitions (unlike 2 types of states and 3 types of transitions in dtsiPBC). Thus, the main advantages
of dtsdPBC are the flexible multiaction labels, deterministic multiactions, powerful operations, as well as a
step operational and a Petri net denotational semantics allowing for parallel executions of activities (firings
of the PNs transitions), together with an ability for analytical and parametric performance evaluation. The
uniqueness of our approach consists in applying a parallel semantics for the process expressions and preserving
the concurrency level in the extracted performance models (SMC, DTMC and RDTMC) through their state
changes corresponding to the simultaneous executions.

Future work could consist in constructing a congruence relation for dtsdPBC, i.e. the equivalence that
withstands application of all operations of the algebra. The first possible candidate is a stronger version of step
stochastic bisimulation equivalence, defined via transition systems equipped with two extra transitions skip and
redo, like those from sPBC [90]. Moreover, recursion operation could be added to dtsdPBC to increase further
specification power of the algebra. It would be very interesting to implement the class of DTSDPNs, to be
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able to specify them and then model their behaviour by constructing the reahability graphs. Note that even
DTSPNs of M.K. Molloy [109, 110] have never been implemented. Mostly interleaving and continuous-time
variants of stochastic or timed PNs have been implemented so far.
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A Proofs

A.1 Proof of Proposition 6.2

Like it has been done for strong equivalence in Proposition 8.2.1 from [72], we shall prove the following fact
about step stochastic bisimulation. Let us have ∀j ∈ J Rj : G↔ssG

′ for some index set J . Then the transitive
closure of the union of all relations R = (∪j∈JRj)

+ is also an equivalence and R : G↔ssG
′.

Since ∀j ∈ J Rj is an equivalence, by definition of R, we get that R is also an equivalence.
Let j ∈ J , then, by definition ofR, (s1, s2) ∈ Rj implies (s1, s2) ∈ R. Hence, ∀Hjk ∈ (DR(G)∪DR(G′))/Rj

∃H ∈ (DR(G) ∪DR(G′))/R Hjk ⊆ H. Moreover, ∃J ′ H = ∪k∈J ′Hjk.
We denote R(n) = (∪j∈JRj)

n. Let (s1, s2) ∈ R, then, by definition of R, ∃n > 0 (s1, s2) ∈ R(n). We shall
prove that R : G↔ssG

′ by induction on n.
It is clear that ∀j ∈ J Rj : G↔ssG

′ implies ∀j ∈ J ([G]≈, [G
′]≈) ∈ Rj and we have ([G]≈, [G

′]≈) ∈ R by
definition of R.

It remains to prove that (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R
∀A ∈ INL

fin PMA(s1,H) = PMA(s2,H).

• n = 1

In this case, (s1, s2) ∈ R implies ∃j ∈ J (s1, s2) ∈ Rj . Since Rj : G↔ssG
′, we get SJ(s1) = 0 ⇔

SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

PMA(s1,H) =
∑

k∈J ′

PMA(s1,Hjk) =
∑

k∈J ′

PMA(s2,Hjk) = PMA(s2,H).

• n→ n+ 1

Suppose that ∀m ≤ n (s1, s2) ∈ R(m) implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G)∪DR(G′))/R
∀A ∈ INL

fin PMA(s1,H) = PMA(s2,H).

Then (s1, s2) ∈ R(n + 1) implies ∃j ∈ J (s1, s2) ∈ Rj ◦ R(n), i.e. ∃s3 ∈ (DR(G) ∪ DR(G′)) such that
(s1, s3) ∈ Rj and (s3, s2) ∈ R(n).
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Then, like for the case n = 1, we get SJ(s1) = 0 ⇔ SJ(s3) = 0 and PMA(s1,H) = PMA(s3,H). By
the induction hypothesis, we get SJ(s3) = 0 ⇔ SJ(s2) = 0 and PMA(s3,H) = PMA(s2,H). Thus,
SJ(s1) = 0 ⇔ SJ(s3) = 0 ⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL

fin

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition, Rss(G,G
′) is at least as large as the largest step stochastic bisimulation between G and G′. It

follows from the proved above that Rss(G,G
′) is an equivalence and Rss(G,G

′) : G↔ssG
′, hence, it is the

largest step stochastic bisimulation between G and G′. ⊓⊔

A.2 Proof of Theorem 6.1

At some points, the present proof for dtsdPBC goes along the lines from the respective proofs for PBC [27, 26],
tPBC [83] and sPBC [90].

Let N = Boxdtsd(E). We define a relation R = ({([G]≈, QG), (QG, [G]≈) | [G]≈ ∈ DR(E), (N,QG) =
Boxdtsd(G)})+, where + is the transitive closure operation. It is easy to see that R is equivalence, since by
construction it is symmetric, transitive and reflexive (just apply transitivity to each pair ([G]≈, QG), (QG, [G]≈)).
We shall demonstrate that R : TS(E)↔ssRG(Boxdtsd(E)).

Clearly, [E]≈ ∈ DR(E) and Boxdtsd(E) = Boxdtsd(E) = N = (N,QN ) = (N,QE). Hence, ([E]≈, QE) ∈ R.
It remains to check the step stochastic bisimulation transfer property. Let ([G]≈, QG) ∈ R. By Proposition

3.1, we can suppose that G ∈ SaOpRegDynExpr, i.e. all enabled waiting multiactions from G (even those not
overlined or underlined) have the consistent timer value superscripts, which is very important when composing
the subexpressions.

Then for a process state [G]≈ ∈ DR(E), the related net state QG = (MG, VG) ∈ RS(N) is consistent and
has the following properties. First, MG is the marking of the marked and clocked dtsd-box (N, (MG, VG)) =
Boxdtsd(G) (which is an LDTSDPN, since G ∈ SaOpRegDynExpr). Second, by construction of the timer
valuation functions VG and IG, for each waiting transition t ∈ TwN with ΛN(t) = ̺(α,♮θ

l
), if (α, ♮

θ
l ) ∈ WL(G)

then we have VG(t) = IG((α, ♮
θ
l )). Otherwise, if (α, ♮θl ) 6∈ WL(G) then either t is obtained from a relabeling

f of some transition v ∈ TN , and we have VG(t) = VH(v) for a subexpression H [f ] of G; or t is resulted from
synchronization on an action a of some transitions v, w ∈ TN and we have VG(t) = max{VH(v), VH (w)} for
a subexpression H sy a of G. In the both cases, VG(t) is completely defined by the timer valuation function
VH , applied to some transitions of the marked and clocked dtsd-box Boxdtsd(H). Then by induction of the
expression structure, we can finally prove that VG(t) is completely defined by IG, applied to some waiting
multiactions from WL(G). Note that any waiting multiaction affected by restriction in G has no corresponding
transition in Boxdtsd(G). Therefore, IG (hence, [G]≈) may contain even more information (namely, the timer
values of the restricted waiting multiactions) than needed to define VG. Thus, several process states (which
differ just in the timer value superscripts of the restricted waiting multiactions) may be related to one net state,
as the example above this theorem demonstrates.

Let us prove by induction on the structure of dynamic expressions and corresponding dtsd-boxes that
Exec([G]≈) and Fire(QG) are isomorphic. This means that for every Υ ∈ Exec([G]≈) there exists U ∈
Fire(QG) such that U consists of the transitions corresponding to the activities from Υ and vice versa: (α, κ)ι ∈
Υ ⇔ tι ∈ U , where ΛN (tι) = ̺(α,κ). Thus, the corresponding activities and transitions have the same
probabilities (in case of stochastic multiactions and transitions), or delays and weights (in case of deterministic
multiactions and transitions), as well as the same multiaction labels and numberings. We can write U = U(Υ)
and Υ = Υ(U), to indicate such a correspondence.

Actually, each Υ and the corresponding U are completely defined by the sets of their numberings Num(Υ) =
{ι | (α, κ)ι ∈ Υ} = {ι | tι ∈ U} = Num(U), since each activity and transition have a unique numbering. More-
over, Exec([G]≈) and Fire(QG) are completely defined by the sets of their numberings Num(Exec([G]≈)) =
{Num(Υ) | Υ ∈ Exec([G]≈)} = {Num(U) | U ∈ Fire(QG)} = Num(Fire(QG)).

• If final(G) then G ≈ E, stang([G]≈) and Exec([G]≈) = Exec([E]≈) = {∅}. On the other hand,
Boxdtsd(G) = Boxdtsd(E) = N = (N,QN ) = (N,QE) and Fire(QG) = Fire(QE) = {∅} = Exec([G]≈).

• If G = (α, ♮θl )
δ
ι and θ ∈ IN≥2, l ∈ IR>0, δ ∈ {2, . . . , θ}, then stang([G]≈) and Exec([G]≈) = {∅}.

On the other hand, Boxdtsd(G) = (N(α,♮θ
l
)δι
, (•tι, (tι, δ))), where ΛN (tι) = ̺(α,♮θ

l
), and Fire(QG) =

Fire((•tι, (tι, δ))) = {∅} = Exec([G]≈).

• If G = (α, ρ)ι and ρ ∈ (0; 1) then stang([G]≈) and Exec([G]≈) = {∅, {(α, ρ)ι}}. On the other hand,
Boxdtsd(G) = (N(α,ρ)ι , (

•tι, (tι, ∅))), where ΛN(tι) = ̺(α,ρ), and Fire(QG) = Fire((•tι, (tι, ∅)))={∅, {tι}},
which is isomorphic to Exec([G]≈).
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• If G = (α, ♮0l )ι and l ∈ IR>0 then vanish([G]≈) and Exec([G]≈) = {{(α, ♮0l )ι}}. On the other hand,
Boxdtsd(G) = (N(α,♮0

l
)ι , (

•tι, (tι, ∅))), where ΛN(tι) = ̺(α,♮0
l
), and Fire(QG) = Fire((•tι, (tι, ∅))) = {{tι}},

which is isomorphic to Exec([G]≈).

• If G = (α, ♮θl )
1
ι and θ ∈ IN≥1, l ∈ IR>0, then wtang([G]≈) and Exec([G]≈) = {{(α, ♮θl )ι}}. On the other

hand, Boxdtsd(G) = (N(α,♮θ
l
)1ι
, (•tι, (tι, 1))), where ΛN (tι) = ̺(α,♮θ

l
), and Fire(QG) = Fire((•tι, (tι, 1))) =

{{tι}}, which is isomorphic to Exec([G]≈).

• If G = H ;E, where H ∈ SaOpRegDynExpr, E ∈ RegStatExpr, then

Exec([H ;E]≈) =

{
Exec([H ]≈), ¬final(H);
Exec([E]≈) final(H).

On the other hand, Boxdtsd(G) = Boxdtsd(H ;E) = (Boxdtsd(⌊H⌋;E), QH;E), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), Boxdtsd(E) = NE = (NE , QNE ), we have

Fire(QH;E) =

{
Fire(QH), MH 6= N◦

H ;
Fire(QNE ), MH = N◦

H ;

which is isomorphic to Exec([H ;E]≈).

• If G = E;H , where E ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([E;H ]≈) = Exec([H ]≈).

On the other hand, Boxdtsd(G) = Boxdtsd(E;H) = (Boxdtsd(E; ⌊H⌋), QE;H), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QE;H) = Fire(QH);

which is isomorphic to Exec([E;H ]≈).

• If G = H []E, where H ∈ SaOpRegDynExpr, E ∈ RegStatExpr, then

Exec([H []E]≈) =





Exec([H ]≈), ¬init(H)∨
(init(H) ∧ wtang([H ]≈) ∧ stang([E]≈))∨
(init(H) ∧ vanish([H ]≈) ∧ tang([E]≈));

Exec([E]≈), (init(H) ∧ stang([H ]≈) ∧ wtang([E]≈))∨
(init(H) ∧ tang([H ]≈) ∧ vanish([E]≈));

Exec([H ]≈) ∪ Exec([E]≈), (init(H) ∧ stang([H ]≈) ∧ stang([E]≈))∨
(init(H) ∧ wtang([H ]≈) ∧wtang([E]≈))∨
(init(H) ∧ vanish([H ]≈) ∧ vanish([E]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd(H []E) = (Boxdtsd(⌊H⌋[]E), QH[]E), and for Boxdtsd(H) =

(Boxdtsd(⌊H⌋), QH), Boxdtsd(E) = NE = (NE , QNE ), we have

Fire(QH[]E) =





Fire(QH), MH 6= ◦NH∨
(MH = ◦NH ∧ wtang(QH) ∧ stang(QNE))∨
(MH = ◦NH ∧ vanish(QH) ∧ tang(QNE));

Fire(QNE), (MH = ◦NH ∧ stang(QH) ∧wtang(QNE ))∨
(MH = ◦NH ∧ tang(QH) ∧ vanish(QNE));

Fire(QH) ∪ Fire(QNE ), (MH = ◦NH ∧ stang(QH) ∧ stang(QNE))∨
(MH = ◦NH ∧ wtang(QH) ∧ wtang(QNE ))∨
(MH = ◦NH ∧ vanish(QH) ∧ vanish(QNE ));

which is isomorphic to Exec([H []E]≈).

If G = E[]H , where E ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then the constructions are similar.
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• If G = H‖Z, where H,Z ∈ SaOpRegDynExpr, then

Exec([H‖Z]≈) =





Exec([H ]≈), (wtang([H ]≈) ∧ stang([Z]≈))∨
(vanish([H ]≈) ∧ tang([Z]≈));

Exec([Z]≈), (stang([H ]≈) ∧ wtang([Z]≈))∨
(tang([H ]≈) ∧ vanish([Z]≈));

Exec([H ]≈)⊙ Exec([Z]≈), wtang([H ]≈) ∧ wtang([Z]≈);

Exec([H ]≈) ∪ Exec([Z]≈)∪
(Exec([H ]≈)⊙ Exec([Z]≈)), (stang([H ]≈) ∧ stang([Z]≈))∨

(vanish([H ]≈) ∧ vanish([Z]≈)),

where Exec([H ]≈)⊙ Exec([Z]≈) = {Υ+Φ | Υ ∈ Exec([H ]≈), Φ ∈ Exec([Z]≈)}.

On the other hand, Boxdtsd(G) = Boxdtsd(H‖Z) = (Boxdtsd(⌊H⌋‖Z), QH‖Z), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), Boxdtsd(Z) = (Boxdtsd(⌊Z⌋), QZ), we have

Fire(QH‖Z) =





Fire(QH), (wtang(QH) ∧ stang(QZ)) ∨ (vanish(QH) ∧ tang(QZ));

Fire(QZ), (stang(QH) ∧ wtang(QZ)) ∨ (tang(QH) ∧ vanish(QZ));

Fire(QH)⊙ Fire(QZ), wtang(QH) ∧ wtang(QZ);

Fire(QH) ∪ Fire(QZ)∪
(Fire(QH)⊙ Fire(QZ)), (stang(QH) ∧ stang(QZ))∨(vanish(QH) ∧ vanish(QZ)),

where Fire(QH) ⊙ Fire(QZ) = {U ∪ T | U ∈ Fire(QH), T ∈ Fire(QZ)}; which is isomorphic to
Exec([H‖Z]≈).

• If G = H [f ], where H ∈ SaOpRegDynExpr, then

Exec([H [f ]]≈) = {f(Υ) | Υ ∈ Exec([H ]≈)}.

On the other hand, Boxdtsd(G) = Boxdtsd(H [f ]) = (Boxdtsd(⌊H⌋[f ]), QH[f ]), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QH[f ]) = {f(U) | U ∈ Fire(QH)},

where f(U) = {tι ∈ U | ΛH(tι) = ̺(α,κ), ΛH[f ](tι) = ̺(f(α),κ)}; which is isomorphic to Exec([H [f ]]≈).

• If G = H rs a, where H ∈ SaOpRegDynExpr, then

Exec([H rs a]≈) = {Υ−Υa | Υ ∈ Exec([H ]≈)},

where Υa = {(α, κ)ι ∈ Υ | (a ∈ α) ∨ (â ∈ α)}, a ∈ Act.

On the other hand, Boxdtsd(G) = Boxdtsd(H rs a) = (Boxdtsd(⌊H⌋ rs a), QH rs a), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have

Fire(QH rs a) = {U \ Ua | U ∈ Fire(QH)},

where Ua = {tι ∈ U | ΛH(tι) = ̺(α,κ), (a ∈ α)∨(â ∈ α)}, a ∈ Act; which is isomorphic to Exec([H rs a]≈).

• If G = H sy a, where H ∈ SaOpRegDynExpr, then

Exec([H sy a]≈) =





Exec([H ]≈) ∪ {Υ+ {(α⊕a β, ρ · χ)(ι1)(ι2)} |
Υ+ {(α, ρ)ι1}+ {(β, χ)ι2} ∈ Exec([H ]≈), a ∈ α, â ∈ β}, stang([H ]≈);

Exec([H ]≈) ∪ {Υ+ {(α⊕a β, ♮θl+m)(ι1)(ι2)} |
Υ+ {(α, ♮θl )ι1}+ {(β, ♮θm)ι2} ∈ Exec([H ]≈), a ∈ α, â ∈ β}, wtang([H ]≈);

Exec([H ]≈) ∪ {Υ+ {(α⊕a β, ♮0l+m)(ι1)(ι2)} |
Υ+ {(α, ♮0l )ι1}+ {(β, ♮0m)ι2} ∈ Exec([H ]≈), a ∈ α, â ∈ β}, vanish([H ]≈).

On the other hand, Boxdtsd(G) = Boxdtsd(H sy a) = (Boxdtsd(⌊H⌋ sy a), QH sy a), and for Boxdtsd(H) =
(Boxdtsd(⌊H⌋), QH), we have
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Fire(QH sy a) =





Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2)) = ̺(α⊕aβ,ρ·χ),
U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1) = ̺(α,ρ), ΛH(wι2) = ̺(β,χ),
a ∈ α, â ∈ β}, stang(QH);

Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2)) = ̺(α⊕aβ,♮θl+m),

U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1) = ̺(α,♮θ
l
), ΛH(wι2) = ̺(β,♮θm),

a ∈ α, â ∈ β}, wtang(QH);

Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2)) = ̺(α⊕aβ,♮0l+m),

U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1) = ̺(α,♮0
l
), ΛH(wι2) = ̺(β,♮0m),

a ∈ α, â ∈ β}, vanish(QH);

which is isomorphic to Exec([H sy a]≈).

• If G = [H ∗ E ∗ F ], where H ∈ SaOpRegDynExpr, E, F ∈ RegStatExpr, then

Exec([[H ∗ E ∗ F ]]≈) =





Exec([H ]≈), ¬final(H);

Exec([E]≈), (final(H) ∧ wtang([E]≈) ∧ stang([F ]≈))∨
(final(H) ∧ vanish([E]≈) ∧ tang([F ]≈));

Exec([F ]≈), (final(H) ∧ stang([E]≈) ∧wtang([F ]≈))∨
(final(H) ∧ tang([E]≈) ∧ vanish([F ]≈));

Exec([E]≈) ∪ Exec([F ]≈), (final(H) ∧ stang([E]≈) ∧ stang([F ]≈))∨
(final(H) ∧ wtang([E]≈) ∧ wtang([F ]≈))∨
(final(H) ∧ vanish([E]≈) ∧ vanish([F ]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd([H ∗ E ∗ F ]) = (Boxdtsd(⌊H⌋ ∗ E ∗ F ), Q[H∗E∗F ]), and for

Boxdtsd(H) = (Boxdtsd(⌊H⌋), QH), Boxdtsd(E) = NE = (NE , QNE ), Boxdtsd(F ) = NF = (NF , QNF ),
we have

Fire(Q[H∗E∗F ]) =





Fire(QH), MH 6= N◦
H ;

Fire(QNE ), (MH = N◦
H ∧ wtang(QNE ) ∧ stang(QNF ))∨

(MH = N◦
H ∧ vanish(QNE) ∧ tang(QNF ));

Fire(QNF ), (MH = N◦
H ∧ stang(QNE) ∧ wtang(QNF ))∨

(MH = N◦
H ∧ tang(QNE) ∧ vanish(QNF ));

Fire(QNE ) ∪ Fire(QNF ), (MH = N◦
H ∧ stang(QNE) ∧ stang(QNF ))∨

(MH = N◦
H ∧ wtang(QNE ) ∧wtang(QNF ))∨

(MH = N◦
H ∧ vanish(QNE) ∧ vanish(QNF ));

which is isomorphic to Exec([[H ∗ E ∗ F ]]≈).

• If G = [E ∗H ∗ F ], where E,F ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([[E∗H∗F ]]≈)=





Exec([H ]≈), (¬init(H) ∧ ¬final(H))∨
((init(H)∨final(H))∧wtang([H ]≈)∧stang([F ]≈))∨
((init(H)∨final(H))∧vanish([H ]≈)∧tang([F ]≈));

Exec([F ]≈), ((init(H)∨final(H))∧stang([H ]≈)∧wtang([F ]≈))∨
((init(H)∨final(H))∧tang([H ]≈)∧vanish([F ]≈));

Exec([H ]≈)∪Exec([F ]≈), ((init(H)∨final(H))∧stang([H ]≈)∧stang([F ]≈))∨
((init(H)∨final(H))∧wtang([H ]≈)∧wtang([F ]≈))∨
((init(H)∨final(H))∧vanish([H ]≈)∧vanish([F ]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd([E ∗ H ∗ F ]) = (Boxdtsd(E ∗ ⌊H⌋ ∗ F ), Q[E∗H∗F ]), and for

Boxdtsd(H) = (Boxdtsd(⌊H⌋), QH), Boxdtsd(F ) = NF = (NF , QNF ), we have
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Fire(Q[E∗H∗F ])=





Fire(QH), (MH 6= ◦NH ∧MH 6= N◦
H)∨

((MH = ◦NH ∨MH = N◦
H)∧wtang(QH)∧stang(QNF ))∨

((MH = ◦NH ∨MH = N◦
H) ∧ vanish(QH) ∧ tang(QNF ));

Fire(QNF ), ((MH = ◦NH ∨MH = N◦
H)∧stang(QH)∧wtang(QNF ))∨

((MH = ◦NH ∨MH = N◦
H) ∧ tang(QH) ∧ vanish(QNF ));

Fire(QH)∪Fire(QNF ), ((MH = ◦NH∨MH = N◦
H) ∧ stang(QH) ∧ stang(QNF ))∨

((MH = ◦NH∨MH = N◦
H)∧wtang(QH)∧wtang(QNF ))∨

((MH = ◦NH∨MH = N◦
H)∧vanish(QH)∧vanish(QNF ));

which is isomorphic to Exec([[E ∗H ∗ F ]]≈).

• If G = [E ∗ F ∗H ], where E,F ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([[E ∗ F ∗H ]]≈) =





Exec([F ]≈), (wtang([F ]≈) ∧ init(H) ∧ stang([H ]≈))∨
(vanish([F ]≈) ∧ init(H) ∧ tang([H ]≈));

Exec([H ]≈), ¬init(H)∨
(stang([F ]≈) ∧ init(H) ∧ wtang([H ]≈))∨
(tang([F ]≈) ∧ init(H) ∧ vanish([H ]≈));

Exec([F ]≈) ∪ Exec([H ]≈), (stang([F ]≈) ∧ init(H) ∧ stang([H ]≈))∨
(wtang([F ]≈) ∧ init(H) ∧wtang([H ]≈))∨
(vanish([F ]≈) ∧ init(H) ∧ vanish([H ]≈)).

On the other hand, Boxdtsd(G) = Boxdtsd([E ∗ F ∗ H ]) = (Boxdtsd(E ∗ F ∗ ⌊H⌋), Q[E∗F∗H]), and for

Boxdtsd(F ) = NF = (NF , QNF ), Boxdtsd(H) = (Boxdtsd(⌊H⌋), QH), we have

Fire(Q[E∗F∗H]) =





Fire(QNF ), (wtang(QNF ) ∧MH = ◦NH ∧ stang(QH))∨
(vanish(QNF ) ∧MH = ◦NH ∧ tang(QH));

Fire(QH), MH 6= ◦NH∨
(stang(QNF ) ∧MH = ◦NH ∧ wtang(QH))∨
(tang(QNF ) ∧MH = ◦NH ∧ vanish(QH));

Fire(QNF ) ∪ Fire(QH), (stang(QNF ) ∧MH = ◦NH ∧ stang(QH))∨
(wtang(QNF ) ∧MH = ◦NH ∧ wtang(QH))∨
(vanish(QNF ) ∧MH = ◦NH ∧ vanish(QH));

which is isomorphic to Exec([[E ∗ F ∗H ]]≈).

Thus, we have proved that Exec([G]≈) and Fire(QG) are isomorphic. Note that the probability functions
PF (Υ, [G]≈) and PT (Υ, [G]≈) depend only on the structure of Exec([G]≈), as well as on the probabilities of
stochastic multiactions and weights of deterministic multiactions from its elements. Analogously, PF (U,QG)
and PT (U,QG) depend only on the structure of Fire(QG), as well as the probabilities of stochastic transi-
tions and weights of deterministic transitions from its elements. Further, PF (Υ, [G]≈) and PT (Υ, [G]≈) are
respectively defined in the same way (using the same formulas and cases) as PF (U,QG) and PT (U,QG), for
each pair of the corresponding (multi)set of activities Υ and transition set U . Obviously, the isomorphism of
Exec([G]≈) and Fire(QG) guarantees coincidence of their structure as well as the mentioned probabilities and
weights. Hence, if U corresponds to Υ then PF (Υ, [G]≈) = PF (U,QG) and PT (Υ, [G]≈) = PT (U,QG).

We also have L(Υ) = L(U), where L(U) =
∑

{t∈U|ΛG(t)=̺(α,κ)}
α is the multiaction part of a set of transitions

U ⊆ TN . Thus, each transition [G]≈
Υ
→P s̃ in TS(E) has a corresponding one QG

U
→P Q̃ in RG(N) with

L(Υ) = L(U) and vice versa. Observe that the structure of the plain and operator dtsd-boxes in dtsdPBC
is similar to that of the plain and operator boxes in PBC. Hence, like in PBC [27, 26], we can prove that

s̃ = [G̃]≈ and Q̃ = QG̃ = (MG̃, VG̃) with (N,QG̃) = Boxdtsd(G̃) for the dynamic expression G̃ such that

G
Υ
→ G̃. The only fine point here is to check that IG̃ and VG̃ are respectively obtained from IG and VG just

by exploring Ena([G̃]≈) and Ena(MG̃) (which are similar up to restricted activities, with a care of relabeling
and synchronization, as based on the corresponding overlinings and markings), as well as by checking whether
vanish([G]≈) and vanish(QG) (which are correlated, as defined via the isomorphic Exec([G]≈) and Fire(QG)).

Therefore, by construction of R, we get ([G̃]≈, QG̃) ∈ R.
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The step stochastic bisimulation transfer property states that if ([G]≈, QG) ∈ R then (SJ([G]≈) = 0 ⇔

SJ(QG) = 0) and ∀H ∈ (DR(G) ∪RS(NG))/R ∀A ∈ INL
fin it holds [G]≈

A
→P H ⇔ QG

A
→P H.

The fact SJ([G]≈) = 0 ⇔ SJ(QG) = 0 follows from isomorphism of Exec([G]≈) and Fire(QG), since
SJ([G]≈) = 0 ⇔ vanish([G]≈) and SJ(QG) = 0 ⇔ vanish(QG).

Let H ∈ (DR(G)∪RS(NG))/R. We have PMA([G]≈,H) =
∑

{Υ|∃[G̃]≈∈H [G]≈
Υ
→[G̃]≈, L(Υ)=A}

PT (Υ, [G]≈) =∑n
i=1 PT (Υi, [G]≈). Then we take the corresponding sets of transitions U1, . . . , Un ⊆ TN , such that A =

L(Υi) = L(Ui) and PT (Υi, [G]≈) = PT (Ui, QG) (1 ≤ i ≤ n), hence, PMA([G]≈,H) =
∑n
i=1 PT (Υi, [G]≈) =∑n

i=1 PT (Ui, QG) ≤
∑

{U|∃Q
G̃
∈H QG

U
→Q

G̃
, L(U)=A}

PT (U,QG) = PMA(QG,H). By symmetry of the correspon-

dence between the (multi)sets of activities and sets of transitions, we get PMA([G]≈,H) ≥ PMA(QG,H), hence,

PMA([G]≈,H) = PMA(QG,H). Thus, we conclude that [G]≈
A
→P H ⇔ QG

A
→P H. ⊓⊔

A.3 Proof of Proposition 7.4

LetK, K̃ ∈ DR(G)/Rss(G) and s ∈ K. The EDTMC for the quotient ofEDTMC(G) is denoted by EDTMC′(G)

and has the probabilities PM ′(K, K̃) to change from K to K̃.

• Let PM(s, s)+PM(s,K\{s}) = PM(s,K) < 1 and PM(s, s), PM(s,K\{s}) > 0, i.e. s,K are non-absor-
bing and there exist self-loops associated with s in DTMC(G) and with K in the quotient of EDTMC(G).

In EDTMC↔ss
(G), we have PM∗(K, K̃) = SL↔ss

(K)PM(K, K̃) = PM(K,K̃)
1−PM(K,K) =

PM(s,K̃)
1−PM(s,K) =

PM(s,K̃)
1−PM(s,s)−PM(s,K\{s}) =

PM(s,K̃)
1−PM(s,s)

1−PM(s,K\{s})
1−PM(s,s)

= SL(s)PM(s,K̃)
1−SL(s)PM(s,K\{s}) . Then SL↔ss

(K) = SL(s)
1−SL(s)PM(s,K\{s}) =

SL(s)SL′(s,K), where SL′(s,K)= 1
1−SL(s)PM(s,K\{s}) is the self-loops abstraction factor in the equivalence

class K with respect to the state s ∈ K for the quotient of EDTMC(G).

In EDTMC′(G), we have PM ′(K, K̃) =
∑
s̃∈K̃ PM

∗(s,s̃)

1−
∑
s′∈K\{s} PM

∗(s,s′) =
∑
s̃∈K̃ SL(s)PM(s,s̃)

1−
∑
s′∈K\{s} SL(s)PM(s,s′) =

SL(s)
∑
s̃∈K̃ PM(s,s̃)

1−SL(s)
∑
s′∈K\{s} PM(s,s′) =

SL(s)PM(s,K̃)
1−SL(s)PM(s,K\{s}) = PM∗(K, K̃).

The other three cases (no self-loops associated with s inDTMC(G), withK in the quotient ofEDTMC(G),
or with both) are treated analogously, by replacing PM(s, s) or/and PM(s,K \ {s}) with zeros.

• Let PM(s, s) + PM(s,K \ {s}) = PM(s,K) = 1 and PM(s, s), PM(s,K \ {s}) > 0, i.e. K is absorbing
in DTMC↔ss

(G) and there exist self-loops associated with s in DTMC(G) and with K in the quotient
of EDTMC(G).

In EDTMC↔ss
(G), we have PM∗(K,K)=1 by definition of the EDTMC, since PM(K,K)=PM(s,K)=1.

In the quotient of EDTMC(G), the probability of a self-loop associated with K is
∑

s′∈K\{s} PM
∗(s, s′) =∑

s′∈K\{s} SL(s)PM(s, s′) = SL(s)
∑

s′∈K\{s} PM(s, s′) = SL(s)PM(s,K\{s}) = SL(s)(1−PM(s, s))=
1−PM(s,s)
1−PM(s,s) = 1. In EDTMC′(G), we have PM ′(K, K̃) = 1 = PM∗(K,K) by definition of the EDTMC,

since in the quotient of EDTMC(G), the probability of a self-loop associated with K is 1.

The other two cases (no self-loops associated with s inDTMC(G) or withK in the quotient ofEDTMC(G))
are treated analogously, by replacing PM(s, s) with zero or taking K = {s} when PM(s,K \ {s}) = 0.

Thus, (P∗)∗↔ss
= P∗

↔ss
and EDTMC′(G) = EDTMC↔ss

(G). ⊓⊔

A.4 Proof of Proposition 7.5

Let Pr be the reordered (by moving vanishing states to the first positions) TPM for DTMC(G). Like in Section
5, we reorder the states from DR(G) so that the first rows and columns of Pr will correspond to the states from
DRV (G) and the last ones will correspond to the states from DRT (G). Let |DR(G)| = n and |DRT (G)| = m.
Then the reordered TPM for DTMC(G) can be decomposed as

Pr =

(
C D
E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move from vanishing to vanishing
states, and those of the (n − m) × m submatrix D are the probabilities to move from vanishing to tangible
states. The elements of the m× (n−m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m×m submatrix F are the probabilities to move from tangible to tangible states.
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The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G =
∑∞

k=0 C
k are the probabilities to move from vanishing to vanishing states

in any number of state changes, without traversal of the tangible states.
By the note after Proposition 6.1, Rss(G) ⊆ (DRT (G))

2 ⊎ (DRV (G))
2. Hence, ∀K ∈ DR(G)/Rss(G), all

states from K are tangible, when K ∈ DRT (G)/Rss(G), or all of them are vanishing, when K ∈ DRV (G)/R.
Let Vr be the reordered (by moving vanishing states and their equivalence classes to the first positions)

collector matrix for Rss(F ) and Wr be the (accordingly) reordered distributor matrix for Vr. We reorder
the states from DR(G) and the equivalence classes from DR(G)/Rss(G) as follows. The first rows of Vr will
correspond to the states fromDRV (G) and the first columns ofVr will correspond to the equivalence classes from
DRV (G)/Rss(G), whereas the last rows of Vr will correspond to the states from DRT (G) and the last columns
of Vr will correspond to the equivalence classes from DRT (G)/Rss(G). The first rows of Wr will correspond to
the equivalence classes from DRV (G)/Rss(G) and the first columns of Wr will correspond to the states from
DRV (G), whereas the last rows of Wr will correspond to the equivalence classes from DRT (G)/Rss(G) and the
last columns of Wr will correspond to the states from DRT (G).

Let |DR(G)/Rss(G)| = l and |DRT (G)/Rss(G)| = k. Note that tangible (vanishing) states can only belong
to the equivalence classes of tangible (vanishing) states. Then the reordered collector and distributor matrices
can be decomposed as

Vr =

(
VC 0
0 VF

)
, Wr =

(
WC 0
0 WF

)
,

where 0 are the matrices consisting only of zeros, all those matrices of the appropriate sizes. The elements
of the (n −m) × (l − k) submatrix VC are the probabilities to move from vanishing states to the equivalence
classes of vanishing states, and those of the m × k submatrix VF are the probabilities to move from tangible
states to the equivalence classes of tangible states. The elements of the (l−k)× (n−m) submatrix WC are the
probabilities to move from the equivalence classes of vanishing states to vanishing states, and those of the k×m
submatrix WF are the probabilities to move from the equivalence classes of tangible states to tangible states.

We have

WrVr =

(
WCVC 0

0 WFVF

)
= I,

hence, WCVC = I and WFVF = I.
Since tangible and vanishing states always belong to the equivalence classes of the same kind, the quotienting

(by ↔ss) and reordering (by moving vanishing states and their equivalence classes to the first positions) are
permutable. The quotiented reordered TPM may only differ from the reordered quotiented TPM up to the
order of the equivalence classes of tangible states and the order of the equivalence classes of vanishing states. To
avoid such a difference, we rearrange the equivalence classes of the same kind in increasing order of the smallest
indices of the states from them while keeping the equivalence classes of vanishing states at the first positions.

Then PrVr = VrPr↔ss
and Pr↔ss

= WrPrVr. We have

PrVr =

(
C D
E F

)(
VC 0
0 VF

)
=

(
CVC DVF

EVC FVF

)
,

VrPr↔ss
=

(
VC 0
0 VF

)(
C↔ss

D↔ss

E↔ss
F↔ss

)
=

(
VCC↔ss

VCD↔ss

VFE↔ss
VFF↔ss

)
.

Hence, CVC = VCC↔ss
, DVF = VCD↔ss

, EVC = VFE↔ss
, FVF = VFF↔ss

.

Let us demonstrate that GVC = VCG↔ss
. Since G =

∑∞
k=0 C

k, it is sufficient to prove
(∑l

k=0 C
k
)
VC =

VC

∑l
k=0 C

k
↔ss

by induction on l ∈ IN and then take a limit l → ∞.

• l = 0

We have
(∑0

k=0 C
k
)
VC = C0VC = IVC = VC = VCI = VCC

0
↔ss

= VC

∑0
k=0 C

k
↔ss

.

• l → l + 1

Suppose that
(∑l

k=0 C
k
)
VC = VC

∑l
k=0 C

k
↔ss

. Then
(∑l+1

k=0 C
k
)
VC =

(
I+C

∑l
k=0 C

k
)
VC =

VC +CVC

∑l
k=0 C

k
↔ss

= VC +VCC↔ss

∑l
k=0 C

k
↔ss

= VC

(
I+C↔ss

∑l
k=0 C

k
↔ss

)
= VC

∑l+1
k=0 C

k
↔ss

.
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Next, P⋄VF = (F+EGD)VF = FVF+EGDVF = VFF↔ss
+EGVCD↔ss

= VFF↔ss
+EVCG↔ss

D↔ss
=

VFF↔ss
+VFE↔ss

G↔ss
D↔ss

= VF (F↔ss
+E↔ss

G↔ss
D↔ss

) = VFP
⋄
↔ss

. After left-multiplying by WF the
resulting equality P⋄VF = VFP

⋄
↔ss

, we finally get

(P⋄)↔ss
= WFP

⋄VF = P⋄
↔ss

.

⊓⊔

A.5 Proof of Proposition 8.1

By Proposition 6.1, (DR(G) ∪DR(G′))/R = ((DRT (G) ∪DRT (G′))/R) ⊎ ((DRV (G) ∪DRV (G′))/R). Hence,
∀H ∈ (DR(G)∪DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G)∪DRT (G′))/R, or all of them
are vanishing, when H ∈ (DRV (G) ∪DRV (G′))/R.

By definition of the steady-state PMFs for SMCs, ∀s ∈ DRV (G) ϕ(s) = 0 and ∀s′ ∈ DRV (G
′) ϕ′(s′) = 0.

Thus, ∀H ∈ (DRV (G)∪DRV (G′))/R
∑
s∈H∩DR(G) ϕ(s) =

∑
s∈H∩DRV (G) ϕ(s) = 0 =

∑
s′∈H∩DRV (G′) ϕ

′(s′) =∑
s′∈H∩DR(G′) ϕ

′(s′).

By Proposition 5.1, ∀s ∈ DRT (G) ϕ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃)

and ∀s′ ∈ DRT (G
′) ϕ′(s′) = ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′) ,

where ψ and ψ′ are the steady-state PMFs for DTMC(G) and DTMC(G′), respectively. Thus, ∀H, H̃ ∈

(DRT (G) ∪DRT (G′))/R
∑

s∈H∩DR(G) ϕ(s) =
∑
s∈H∩DRT (G) ϕ(s) =

∑
s∈H∩DRT (G)

(
ψ(s)∑

s̃∈DRT (G) ψ(s̃)

)
=

∑
s∈H∩DRT (G) ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=
∑
s∈H∩DRT (G) ψ(s)∑

H̃

∑
s̃∈H̃∩DRT (G)

ψ(s̃) and
∑

s′∈H∩DR(G′) ϕ
′(s′) =

∑
s′∈H∩DRT (G′) ϕ

′(s′) =

∑
s′∈H∩DRT (G′)

(
ψ′(s′)∑

s̃′∈DRT (G′) ψ
′(s̃′)

)
=

∑
s′∈H∩DRT (G′) ψ

′(s′)∑
s̃′∈DRT (G′) ψ

′(s̃′) =
∑
s′∈H∩DRT (G′) ψ

′(s′)∑
H̃

∑
s̃′∈H̃∩DRT (G′) ψ

′(s̃′) .

It remains to prove that ∀H ∈ (DRT (G)∪DRT (G′))/R
∑

s∈H∩DRT (G) ψ(s) =
∑

s′∈H∩DRT (G′) ψ
′(s′). Since

(DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G′))/R) ⊎ ((DRV (G) ∪ DRV (G′))/R), the previous equality is a
consequence of the following one: ∀H ∈ (DR(G) ∪DR(G′))/R

∑
s∈H∩DR(G) ψ(s) =

∑
s′∈H∩DR(G′) ψ

′(s′).
Standard proof continuation.

It is sufficient to prove the previous statement for transient PMFs only, since ψ = limk→∞ ψ[k] and ψ′ =
limk→∞ ψ′[k]. We proceed by induction on k.

• k = 0

Note that the only non-zero values of the initial PMFs of DTMC(G) and DTMC(G′) are ψ[0]([G]≈) and
ψ[0]([G′]≈). Let H0 be the equivalence class containing [G]≈ and [G′]≈. Then

∑
s∈H0∩DR(G) ψ[0](s) =

ψ[0]([G]≈) = 1 = ψ′[0]([G′]≈) =
∑

s′∈H0∩DR(G′) ψ
′[0](s′).

As for other equivalence classes, ∀H ∈ ((DR(G) ∪DR(G′))/R) \ H0 we have∑
s∈H∩DR(G) ψ[0](s) = 0 =

∑
s′∈H∩DR(G′) ψ

′[0](s′).

• k → k + 1

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT (Υ, s1) =
∑
A∈INL

fin

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =
∑
A∈INL

fin
PMA(s1, H̃) =

∑
A∈INL

fin
PMA(s2, H̃) =

∑
A∈INL

fin

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we

have the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃).
Note that transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈

DR(G) PM(s, H̃) = PM(s, H̃ ∩DR(G)). The same is true for DR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ[k](s) =
∑
s′∈H∩DR(G′) ψ

′[k](s′). Further,∑
s̃∈H̃∩DR(G) ψ[k + 1](s̃) =

∑
s̃∈H̃∩DR(G)

∑
s∈DR(G) ψ[k](s)PM(s, s̃) =∑

s∈DR(G)

∑
s̃∈H̃∩DR(G) ψ[k](s)PM(s, s̃) =

∑
s∈DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G)

∑
{Υ|s

Υ
→s̃}

PT (Υ, s) =
∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
{Υ|∃s̃∈H̃∩DR(G) s

Υ
→s̃}

PT (Υ, s) =
∑

H

∑
s∈H∩DR(G) ψ[k](s)PM(s, H̃) =

∑
H

∑
s∈H∩DR(G) ψ[k](s)PM(H, H̃) =

∑
H PM(H, H̃)

∑
s∈H∩DR(G) ψ[k](s) =

∑
H PM(H, H̃)

∑
s′∈H∩DR(G′) ψ

′[k](s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)PM(H, H̃) =
∑

H

∑
s′∈H′∩DR(G′) ψ

′[k](s′)PM(s′, H̃) =
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∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

{Υ|∃s̃′∈H̃∩DR(G′) s′
Υ
→s̃′}

PT (Υ, s′) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′)

∑
{Υ|∃s̃′ s′

Υ
→s̃′}

PT (Υ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑
s′∈DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =
∑

s′∈DR(G′)

∑
s̃′∈H̃∩DR(G′) ψ

′[k](s′)PM(s′, s̃′) =∑
s̃′∈H̃∩DR(G′)

∑
s′∈DR(G′) ψ

′[k](s′)PM(s′, s̃′) =
∑
s̃′∈H̃∩DR(G′) ψ

′[k + 1](s̃′). ⊓⊔

Alternative proof continuation.
Thus, we should now prove that ∀H ∈ (DR(G) ∪DR(G′))/R

∑
{i|si∈H∩DR(G)} ψi =

∑
{j|s′j∈H∩DR(G′)} ψ

′
j .

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is a solution of the linear equation system

{
ψP = ψ
ψ1T = 1

.

Then, for all i (1 ≤ i ≤ n), we have

{ ∑n
j=1 Pjiψj = ψi∑n
j=1 ψj = 1

.

By definition of Pij (1 ≤ i, j ≤ n) we have

{ ∑n
j=1 PM(sj , si)ψj = ψi∑n
j=1 ψj = 1

.

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT (Υ, s1) =
∑

A∈INL
fin

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =
∑

A∈INL
fin

PMA(s1, H̃) =
∑

A∈INL
fin

PMA(s2, H̃) =
∑

A∈INL
fin

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we have

the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃). Note that

transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈ DR(G) PM(s, H̃) =

PM(s, H̃ ∩DR(G)). The same is true for DR(G′).
Let H ∈ (DR(G)∪DR(G′))/R. We sum the left and right parts of the first equation from the system above

for all i such that si ∈ H ∩DR(G). The resulting equation is

∑

{i|si∈H∩DR(G)}

n∑

j=1

PM(sj, si)ψj =
∑

{i|si∈H∩DR(G)}

ψi.

Let us denote the aggregate steady-state PMF for DTMC(G) by ψH∩DR(G) =
∑

{i|si∈H∩DR(G)} ψi. Then,
for the left part of the equation above, we get∑

{i|si∈H∩DR(G)}

∑n
j=1 PM(sj, si)ψj =

∑n
j=1 ψj

∑
{i|si∈H∩DR(G)} PM(sj, si) =

∑n
j=1 PM(sj ,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(sj ,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} PM(H̃,H)ψj =∑

H̃∈(DR(G)∪DR(G′))/R
PM(H̃,H)

∑
{j|sj∈H̃∩DR(G)} ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψH̃∩DR(G).

For the left part of the second equation from the system above, we have∑n
j=1 ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

∑
{j|sj∈H̃∩DR(G)} ψj =

∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G).

Thus, the aggregate linear equation system for DTMC(G) is

{ ∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψH̃∩DR(G) = ψH∩DR(G)∑
H̃∈(DR(G)∪DR(G′))/R

ψH̃∩DR(G) = 1
.

Let us denote the aggregate steady-state PMFs for DTMC(G′) by ψ′
H∩DR(G′) =

∑
{j|s′j∈H∩DR(G′)} ψ

′
j .

Then, in a similar way, the aggregate linear equation system for DTMC(G′) is

{ ∑
H̃∈(DR(G)∪DR(G′))/R

PM(H̃,H)ψ′
H̃∩DR(G′)

= ψ′
H∩DR(G′)∑

H̃∈(DR(G)∪DR(G′))/R
ψ′
H̃∩DR(G′)

= 1
.

Let (DR(G) ∪DR(G′))/R = {H1, . . . ,Hl}. Then the aggregate steady-state PMFs ψHk∩DR(G) and
ψ′
Hk∩DR(G′) (1 ≤ k ≤ l) satisfy the same aggregate system of l + 1 linear equations with l independent equa-

tions and l unknowns. The aggregate linear equation system has a unique solution, when a single aggregate
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steady-state PMF exists. This is the case here, since in Section 5 we have demonstrated that DTMC(G)
has a single steady state iff SMC(G) has, and aggregation preserves this property [38]. Hence, ψHk∩DR(G) =
ψ′
Hk∩DR(G′) (1 ≤ k ≤ l). ⊓⊔

A.6 Proof of Theorem 8.1

Let H ∈ (DR(G) ∪ DR(G′))/R and s, s̄ ∈ H. We have ∀H̃ ∈ (DR(G) ∪ DR(G′))/R ∀A ∈ INL
fin s

A
→P H̃ ⇔

s̄
A
→P H̃. The previous equality is valid for all s, s̄ ∈ H, hence, we can rewrite it as H

A
→P H̃ and denote

PMA(H, H̃) = PMA(s, H̃) = PMA(s̄, H̃). Note that transitions from the states of DR(G) always lead to those

from the same set, hence, ∀s ∈ DR(G) PMA(s, H̃) = PMA(s, H̃ ∩DR(G)). The same is true for DR(G′).

Let Σ = A1 · · ·An be a derived step trace of G and G′. Then ∃H0, . . . ,Hn ∈ (DR(G)∪DR(G′))/R H0
A1→P1

H1
A2→P2 · · ·

An→Pn Hn. We now intend to prove that the sum of probabilities of all the paths starting in every
s0 ∈ H0 and going through the states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn:

∑

{Υ1,...,Υn|s0
Υ1→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

PT (Υi, si−1) =

n∏

i=1

PMAi(Hi−1,Hi).

We prove this equality by induction on the derived step trace length n.

• n = 1
∑

{Υ1|s0
Υ1→s1, L(Υ1)=A1, s1∈H1}

PT (Υ1, s0) = PMA1(s0,H1) = PMA1(H0,H1).

• n→ n+ 1
∑

{Υ1,...,Υn,Υn+1|s0
Υ1
→···

Υn
→sn

Υn+1
→ sn+1, L(Υi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT (Υi, si−1) =

∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∑
{Υn+1|sn

Υn+1
→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}∏n

i=1 PT (Υi, si−1)PT (Υn+1, sn) =∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}[∏n

i=1 PT (Υi, si−1)
∑

{Υn+1|sn
Υn+1
→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT (Υn+1, sn)

]
=

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1(sn,Hn+1) =∑

{Υ1,...,Υn|s0
Υ1→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1(Hn,Hn+1) =

PMAn+1(Hn,Hn+1)
∑

{Υ1,...,Υn|s0
Υ1→···

Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =

PMAn+1(Hn,Hn+1)
∏n
i=1 PMAi(Hi−1,Hi) =

∏n+1
i=1 PMAi(Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have
PT (A1 · · ·An, s0) =

∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =∑

H1,...,Hn

∑
{Υ1,...,Υn|s0

Υ1→···
Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =∑

H1,...,Hn

∏n
i=1 PMAi(Hi−1,Hi) =∑

H1,...,Hn

∑
{Υ1,...,Υn|s̄0

Υ1→···
Υn→ s̄n, L(Υi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) =

∑
{Υ1,...,Υn|s̄0

Υ1→···
Υn→ s̄n, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) = PT (A1 · · ·An, s̄0).

Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote PT (A1 · · ·An,H0) =
PT (A1 · · ·An, s0) = PT (A1 · · ·An, s̄0).

By Proposition 8.1,
∑
s∈H∩DR(G) ϕ(s) =

∑
s′∈H∩DR(G′) ϕ

′(s′). We now can complete the proof:∑
s∈H∩DR(G) ϕ(s)PT (Σ, s) =

∑
s∈H∩DR(G) ϕ(s)PT (Σ,H) = PT (Σ,H)

∑
s∈H∩DR(G) ϕ(s) =

PT (Σ,H)
∑
s′∈H∩DR(G′) ϕ

′(s′) =
∑
s′∈H∩DR(G′) ϕ

′(s′)PT (Σ,H) =
∑

s′∈H∩DR(G′) ϕ
′(s′)PT (Σ, s′). ⊓⊔

A.7 Proof of Proposition 8.2

Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, (DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G
′))/R) ⊎ ((DRV (G) ∪ DRV (G

′))/R).
Hence, ∀H ∈ (DR(G) ∪DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G) ∪DRT (G′))/R,
or all of them are vanishing, when H ∈ (DRV (G) ∪DRV (G′))/R.
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2. Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT (Υ, s1) =
∑
A∈INL

fin

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT (Υ, s1) =
∑
A∈INL

fin
PMA(s1, H̃) =

∑
A∈INL

fin
PMA(s2, H̃) =

∑
A∈INL

fin

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT (Υ, s2) =
∑

{Υ|∃s̃2∈H̃ s2
Υ
→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we

have the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃).
Note that transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈

DR(G) PM(s, H̃) = PM(s, H̃ ∩DR(G)). The same is true for DR(G′). Hence, for all s ∈ H ∩DR(G),

we obtain PM(H, H̃) = PM(s, H̃) = PM(s, H̃ ∩DR(G)) = PM(H ∩DR(G), H̃ ∩DR(G)). The same is

true for DR(G′). Finally, PM(H∩DR(G), H̃ ∩DR(G)) = PM(H, H̃) = PM(H∩DR(G′), H̃ ∩DR(G′)).

Let us now prove the proposition statement for the sojourn time averages.

• Let H ∈ (DRV (G) ∪DRV (G′))/R.

Then we have H∩DR(G) = H∩DRV (G) ∈ DRV (G)/R and H∩DR(G′) = H∩DRV (G′) ∈ DRV (G
′)/R.

By definition of the average sojourn time in an equivalence class of states, we get
SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G))2(H ∩DRV (G)) = 0 = SJR∩(DR(G′))2(H ∩DRV (G′)) =
SJR∩(DR(G′))2(H ∩DR(G′)).

• Let H ∈ (DRT (G) ∪DRT (G′))/R.

Then we have H∩DR(G) = H∩DRT (G) ∈ DRT (G)/R and H∩DR(G′) = H∩DRT (G′) ∈ DRT (G
′)/R.

By definition of the average sojourn time in an equivalence class of states, we get
SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G))2(H ∩DRT (G)) =

1
1−PM(H∩DRT (G),H∩DRT (G)) =

1
1−PM(H∩DR(G),H∩DR(G)) =

1
1−PM(H,H) =

1
1−PM(H∩DR(G′),H∩DR(G′)) =

1
1−PM(H∩DRT (G′),H∩DRT (G′)) =

SJR∩(DR(G′))2(H ∩DRT (G′)) = SJR∩(DR(G′))2(H ∩DR(G′)).

Thus, ∀H ∈ (DR(G) ∪DR(G′))/R we have SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)).
The proposition statement for the sojourn time variances is proved similarly to that for the averages. ⊓⊔
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