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Abstract. We consider discrete time stochastic and deterministic Petri
box calculus (dtsdPBC), recently proposed by I.V. Tarasyuk. dtsdPBC is
a discrete time extension with stochastically and deterministically timed
multiactions of the well-known Petri box calculus (PBC), presented by
E. Best, R. Devillers, J.G. Hall and M. Koutny. In dtsdPBC, stochastic
multiactions have (conditional) probabilities of execution at the next
time moment while deterministic multiactions have non-negative integers
associated that specify fixed (including zero) delays. dtsdPBC features a
step operational semantics via labeled probabilistic transition systems.
In order to evaluate performance in dtsdPBC, the underlying semi-Mar-
kov chains (SMCs) are investigated, which are extracted from the transi-
tion systems corresponding to the process expressions of the calculus. It
is demonstrated that the performance analysis in dtsdPBC is alternati-
vely possible by exploring the corresponding discrete time Markov chains
(DTMCs) and their reductions (RDTMCs), obtained by eliminating the
states with zero residence time (vanishing states). The method based on
DTMCs permits to avoid building the embedded DTMC (EDTMC) and
weighting the probability masses in the states by their average sojourn
times. The method based on RDTMCs simplifies performance analysis of
large systems due to eliminating the non-stop transit (vanishing) states
where only instantaneous activities are executed, resulting in a smaller
model that can easier be solved directly.

Keywords: stochastic process algebra, Petri box calculus, discrete time,
stochastic multiaction, deterministic multiaction, transition system, ope-
rational semantics, Markov chain, performance evaluation, reduction.

1 Introduction

Process calculi, like CSP [24], ACP [6] and CCS [40] are well-known formal
models for specification of computing systems and analysis of their behaviour.
In such process algebras (PAs), processes are described by formulas, and ver-
ification of the behavioural properties is accomplished at a syntactic level via
equivalences, axioms and inference rules. Recently, stochastic extensions of PAs
were proposed, like MTIPP [22], PEPA [23] and EMPA [8]. Such stochastic pro-
cess algebras (SPAs) specify actions which can occur (qualitative features) and
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associate with the actions the distribution parameters of their random delays
(quantitative characteristics).

1.1 Petri box calculus (PBC)

Petri box calculus (PBC) [9, 11, 10] is a flexible and expressive process algebra
developed as a tool for specification of the Petri nets (PNs) structure and their
interrelations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elementary
PNs. Formulas of PBC are combined from multisets of elementary actions and
their conjugates, called multiactions (basic formulas). The empty multiset of ac-
tions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transi-
tions with (multi)sets of activities, corresponding to simultaneous executions of
activities (steps). A denotational semantics of PBC was proposed via a subclass
of PNs with an interface and considered up to isomorphism, called Petri boxes.
The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time exist.

1.2 Time extensions of PBC

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [26]. In tPBC, timing information is added
by associating time intervals with instantaneous actions. tPBC has a step time
operational semantics in terms of labeled transition systems. Its denotational
semantics was defined in terms of a subclass of labeled time Petri nets (LtPNs),
based on tPNs [39] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC),
was defined in [35, 36], it accommodates a deterministic model of time. In con-
trast to tPBC, multiactions of TPBC are not instantaneous, but have time du-
rations. TPBC has a step timed operational semantics in terms of labeled tran-
sition systems. The denotational semantics of TPBC was defined in terms of a
subclass of labeled Timed Petri nets (LTPNs), based on TPNs [46] and called
Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [44, 45], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step
time operational semantics in terms of labeled transition systems. Its denota-
tional semantics was defined on a subclass of labeled arc time Petri nets (atPNs),
based of those from [12, 20], where time restrictions are associated with the arcs,
called arc time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adopt the
discrete time approach, but TPBC has no immediate (multi)actions.

1.3 Stochastic extensions of PBC

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC),
was proposed in [33, 29, 30]. In sPBC, multiactions have stochastic delays that
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follow (negative) exponential distribution. Each multiaction is equipped with
a rate that is a parameter of the corresponding exponential distribution. The
instantaneous execution of a stochastic multiaction is possible only after the
corresponding stochastic time delay. The calculus has an interleaving operational
semantics defined via transition systems labeled with multiactions and their
rates. Its denotational semantics was defined in terms of a subclass of labeled
continuous time stochastic PNs, based on CTSPNs [37, 2] and called stochastic
Petri boxes (s-boxes). In sPBC, performance of the processes is evaluated by
analyzing their underlying continuous time Markov chains (CTMCs).

sPBC was enriched with immediate multiactions having zero delay in [31,
32]. We call such an extension generalized sPBC (gsPBC). An interleaving oper-
ational semantics of gsPBC was constructed via transition systems labeled with
stochastic or immediate multiactions together with their rates or probabilities.
A denotational semantics of gsPBC was defined via a subclass of labeled general-
ized stochastic PNs, based on GSPNs [37, 2, 3] and called generalized stochastic
Petri boxes (gs-boxes). The performance analysis in gsPBC is based on semi-
Markov chains (SMCs).

In [48–51], a discrete time stochastic extension dtsPBC of finite PBC was
presented. In dtsPBC, the residence time in the process states is geometrically
distributed. A step operational semantics of dtsPBC was constructed via labeled
probabilistic transition systems. Its denotational semantics was defined in terms
of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DT-
SPNs [41, 42] and called discrete time stochastic Petri boxes (dts-boxes). The
performance evaluation in dtsPBC is accomplished via the underlying discrete
time Markov chains (DTMCs) of the algebraic processes.

In [53–56], we presented a calculus dtsiPBC, an extension with immediate
multiactions of dtsPBC. The step operational semantics of dtsiPBC was con-
structed with the use of labeled probabilistic transition systems. Its denotational
semantics was defined via a subclass of labeled discrete time stochastic and im-
mediate PNs (LDTSIPNs), based on the extension of DTSPNs [41, 42] with
transition labeling and immediate transitions, called dtsi-boxes. The correspon-
ding stochastic process, the underlying SMC, was constructed and investigated,
with the purpose of performance evaluation. In addition, the alternative solution
methods were developed, based on the underlying ordinary and reduced DTMCs.

1.4 Our contributions

As a basis model, we take an extension of dtsiPBC with deterministic multiac-
tions, called discrete time stochastic and deterministic Petri box calculus (dts-
dPBC) [52]. It enhances the expressiveness of dtsiPBC and extends the applica-
tion area of the associated specification and analysis techniques. In dtsdPBC,
besides the probabilities from the real-valued interval (0; 1) that are used to cal-
culate discrete time delays of stochastic multiactions, also non-negative integers
are used to specify fixed time delays of deterministic multiactions (including
zero delay, which is the case of immediate multiactions). To resolve conflicts
among deterministic multiactions, they are additionally equipped with positive
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real-valued weights. As argued in [63, 59, 60], a combination of deterministic and
stochastic delays fits well to model technical systems with constant (fixed) du-
rations of the regular non-random activities and probabilistically distributed
(stochastic) durations of the randomly occurring activities.

dtsdPBC has a step operational semantics, constructed with the use of la-
beled probabilistic transition systems. The denotational semantics of dtsdPBC
is defined in terms of an interface-featured subclass of labeled discrete time
stochastic and deterministic Petri nets (LDTSPNs with deterministic transi-
tions, LDTSDPNs), based on the extension of DTSPNs [41, 42] with transition
labeling and deterministic transitions, called dtsd-boxes. Here we do not consider
the denotational semantics of the calculus, since it was extensively described in
our previous publication [52]. In that paper, a consistency of the operational and
denotational semantics with respect to step stochastic bisimulation equivalence
was proved, hence, all the results established for the former can be transferred
to the latter up to that equivalence.

The main result of this paper is the performance analysis methods in the
framework of dtsdPBC. To evaluate performance, we construct and solve the un-
derlying stochastic process, which is a semi-Markov chain (SMC). The obtained
stationary probability masses in the states of the SMC are used to calculate
the performance measures (indices) of interest. We call that approach embed-
ding, since the SMC is described by the embedded DTMC (EDTMC) specifying
the state change probabilities, together with the probability distribution func-
tions (PDFs) of the residence times in the states. The alternative solution tech-
niques are also developed, based on the corresponding discrete time Markov chain
(DTMC) and its reduction (RDTMC) by eliminating vanishing states, i.e those
with zero sojourn (residence) times. The approach based on the DTMC allows
one to avoid the costly intermediate stages of building the EDTMC, weighting
the probability masses in the states by their average sojourn times (rescaling) and
final normalization. We call that approach abstraction, since we abstract from
all vanishing states by taking into account only the (normalized) DTMC-based
stationary probabilities of the tangible states, i.e. those with positive sojourn
times. The approach based on the RDTMC simplifies performance analysis of
large systems due to eliminating the non-stop transit (vanishing) states where
only instantaneous activities can be executed, resulting in a smaller model hav-
ing only tangible states that can be solved directly with less efforts. We call that
approach elimination, since we eliminate all vanishing states.

Thus, the main contributions of the paper are the following.

– Performance analysis in dtsdPBC via semi-Markov chains (embedding).
– The solution technique via discrete time Markov chains (abstraction).
– The solution method via reduced discrete time Markov chains (elimination).

1.5 Structure of the paper

The paper is organized as follows. In Section 2, the syntax of algebra dtsdPBC
is proposed. In Section 3, we present the operational semantics of the calculus
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in terms of labeled probabilistic transition systems. In Section 4, the underlying
stochastic process (SMC) is defined and analyzed, after which the alternative
solution methods are outlined, based on the corresponding DTMC and RDTMC.
Section 5 summarizes the results obtained and outlines research perspectives in
this area. The long and complex proofs are moved to Appendix A.

2 Syntax

In this section, we propose the syntax: activities, operations and expressions.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M : X→N with |{x∈X |M(x)>0}|<∞, i.e. it has a finite number of elements.

We denote the set of all finite multisets over a set X by N
X
fin. Let M,M ′ ∈

N
X
fin. The cardinality of M is |M | =

∑
x∈XM(x). We write x∈M if M(x)> 0

andM⊆M ′ if ∀x ∈ X M(x)≤M ′(x). We define (M+M ′)(x)=M(x)+M ′(x) and
(M−M ′)(x)=max{0,M(x)−M ′(x)}. When ∀x∈X, M(x)≤1, M can be seen
as a proper set M⊆X . The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .}

is the set of conjugated actions (conjugates) such that â 6= a and ˆ̂a = a. Let A =

Act ∪ Âct be the set of all actions, and L = N
A
fin be the set of all multiactions.

Then ∅ ∈ L specifies an internal move, i.e. the execution of a multiaction without
visible action names. The alphabet of α∈L is defined asA(α)={x∈A | α(x)>0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probability 1 is left for
(implicitly assigned to) waiting multiactions, i.e. positively delayed deterministic
multiactions (to be defined later), which have weights to resolve conflicts with
other waiting multiactions. We do not have probability 0 of stochastic multiac-
tions, since they would not be performed in this case. Let SL be the set of all
stochastic multiactions.

A deterministic multiaction is a pair (α, ♮θl ), where α ∈ L, θ ∈ N is the
non-negative integer-valued (fixed) delay and l ∈ R>0 = (0;∞) is the positive
real-valued weight of the multiaction α. This weight is interpreted as a measure
of importance (urgency, interest) or a bonus reward associated with execution
of the deterministic multiaction at the moment when the corresponding delay
has expired. Such weights are used to calculate the probabilities to execute sets
of deterministic multiactions after their delays. An immediate multiaction is a
deterministic multiaction with the delay 0 while a waiting multiaction is a deter-
ministic multiaction with a positive delay. In case of no conflicts among waiting
multiactions, whose remaining times to execute (RTEs) are equal to one time
unit, they are executed with probability 1 at the next moment. Deterministic
multiactions have a priority over stochastic ones while immediate multiactions
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have a priority over waiting ones. Different types of multiactions cannot par-
ticipate together in some step (parallel execution). Let DL be the set of all
deterministic multiactions, IL be the set of all immediate multiactions and WL
be the set of all waiting multiactions. We have DL = IL ∪WL.

The same multiaction α ∈ L may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a determinis-
tic multiaction. Let SDL = SL∪DL = SL∪IL∪WL be the set of all activities.
The alphabet of an activity (α, κ) ∈ SDL is defined as A(α, κ) = A(α). The al-
phabet of a multiset of activities Υ ∈ N

SDL
fin is defined as A(Υ ) = ∪(α,κ)∈ΥA(α).

Activities are combined into formulas (process expressions) by the following
operations: sequence ;, choice [], parallelism ‖, relabeling [f ] of actions, restriction
rs over a single action, synchronization sy on an action and its conjugate, and
iteration [ ∗ ∗ ] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composi-
tion) does not include synchronization, unlike the operation in CCS [40].

Relabeling functions f : A → A are bijections preserving conjugates, i.e.

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions in the usual way:
for α ∈ L we define f(α) =

∑
x∈α f(x). Relabeling is extended to activities:

for (α, κ) ∈ SDL, we define f(α, κ) = (f(α), κ). Relabeling is extended to the
multisets of activities: for Υ ∈ N

SDL
fin we define f(Υ ) =

∑
(α,κ)∈Υ (f(α), κ). The

sums are considered with the multiplicity when applied to multisets: f(α) =∑
x∈α f(x) =

∑
x∈A α(x)f(x).

Restriction over an elementary action a ∈ Act means that, for a given ex-
pression, any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action
a ∈ Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of

α and β by a is defined as (α⊕a β)(x) =

{
α(x) + β(x) − 1, if x = a or x = â;
α(x) + β(x), otherwise.

Activities are synchronized via their multiaction parts, i.e. the synchronization
by a of two activities, whose multiaction parts α and β possess the properti-
es mentioned above, results in the activity with the multiaction part α ⊕a β.
We may synchronize activities of the same type only: either both stochastic
multiactions or both deterministic ones with the same delay, since stochastic,
waiting and immediate multiactions have different priorities, and diverse delays
of waiting multiactions would contradict their joint timing. Hence, the multi-
actions of different types cannot be executed together (note that the execution
of immediate multiactions takes no time, unlike that of waiting or stochastic
ones). Synchronization by a means that, for a given expression with a process
behaviour containing two concurrent activities that can be synchronized by a,
there exists also the behaviour that differs from the former only in that the two
activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body
is performed zero or more times; finally, the termination subprocess is executed.
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Static expressions specify the structure of processes, i.e. how activities are
combined by operations to construct the composite process-algebraic formulas.
As for the PN intuition, static expressions correspond to unmarked LDTSDPNs
[52]. A marking is the allocation of tokens in the places of a PN and markings
are used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated,
whose value is the time left till the moment when the waiting multiaction can be
executed. Hence, besides standard (unstamped) waiting multiactions (α, ♮θl ) ∈
WL, a special case of the stamped waiting multiactions should be considered
in the definition of static expressions. Each (time) stamped waiting multiaction
(α, ♮θl )

δ has an extra superscript δ ∈ {1, . . . , θ} that specifies a time stamp indica-
ting the latest value of the timer associated with that multiaction. The standard
waiting multiactions have no time stamps, to demonstrate irrelevance of the
timer values for them (for example, their timers have not yet started or have
already finished). The notion of the alphabet part for (the multisets of) stamped
waiting multiactions is defined like that for (the multisets of) unstamped ones.

For simplicity, we do not assign the timer value superscripts δ to immediate
multiactions, a special case of deterministic multiactions (α, ♮θl ) with the delay
θ = 0 in the form of (α, ♮0l ), since their timer values can only be equal to 0.

Definition 2. Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To avoid technical difficulties with the iteration operator, we should not

allow concurrency at the highest level of the second argument of iteration. This
is not a severe restriction, since we can always prefix parallel expressions by
an activity with the empty multiaction part. Relaxing the restriction can result
in LDTSDPNs [52] which are not safe, like shown for PNs in [10]. A PN is n-
bounded (n ∈ N) if for all its reachable (from the initial marking by the sequences
of transition firings) markings there are at most n tokens in every place, and a
PN is safe if it is 1-bounded.

Definition 3. Let (α, κ) ∈ SDL, (α, ♮θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is

E ::= (α, κ) | (α, ♮θl )
δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],

where D ::= (α, κ) | (α, ♮θl )
δ | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression ⇃E of E is obtained by removing from it all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) =

{(α, ρ) | (α, ρ) is a subexpression of E}. The set of all immediate multiactions
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(from the syntax) of E is IL(E) = {(α, ♮0l ) | (α, ♮0l ) is a subexpression of E}.
The set of all waiting multiactions (from the syntax) of E is WL(E) = {(α, ♮θl ) |
(α, ♮θl ) or (α, ♮

θ
l )
δ is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all

deterministic multiactions (from the syntax) of E is DL(E)=IL(E) ∪WL(E)
and the set of all activities (from the syntax) of E is SDL(E)=SL(E)∪DL(E)=
SL(E) ∪ IL(E) ∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages
of the process behaviour. As for the Petri net intuition, dynamic expressions
correspond to marked LDTSDPNs [52]. Dynamic expressions are obtained from
static ones, by annotating them with upper or lower bars which specify the
active components of the system at the current moment of time. The dynamic
expression with upper bar (the overlined one) E denotes the initial, and that
with lower bar (the underlined one) E denotes the final state of the process
specified by a static expression E.

For every overlined stamped waiting multiaction (α, ♮θl )
δ, the superscript

δ ∈ {1, . . . , θ} specifies the current value of the running countdown timer as-
sociated with the waiting multiaction. That decreasing discrete timer is started
with the initial value θ (the waiting multiaction delay) at the moment when
the waiting multiaction becomes overlined. Then such a newly overlined stam-

ped waiting multiaction (α, ♮θl )
θ is similar to the freshly overlined unstamped

waiting multiaction (α, ♮θl ). Such similarity will be captured by the structural
equivalence, defined later.

While the stamped waiting multiaction stays overlined with the process
execution, the timer decrements by one discrete time unit with each global time
tick until the timer value becomes 1. This means that one unit of time remains
till execution of that multiaction (the remaining time to execute, RTE, equals
one). Its execution should follow in the next moment with probability 1, in case
there are no conflicting with it immediate multiactions or conflicting waiting
multiactions whose RTEs equal to one, and it is not affected by restriction. An
activity is affected by restriction, if it is within the scope of a restriction opera-
tion with the argument action, such that it or its conjugate is contained in the
multiaction part of that activity.

Definition 4. Let E∈StatExpr, a∈Act. A dynamic expression of dtsdPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression

⌊G⌋ of G is obtained by removing from it all upper and lower bars. If the un-
derlying static expression of a dynamic one is not regular, the corresponding
LDTSDPN can be non-safe [52] (but it is 2-bounded in the worst case, like
shown for PNs in [10]).

Definition 5. A dynamic expression G is regular if ⌊G⌋ is regular.
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Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dy-

namic expression ⇃G is obtained by removing from G all timer value superscripts.
The set of all stochastic (immediate or waiting, respectively) multiactions

(from the syntax) of G is defined as SL(G) = SL(⌊G⌋) (IL(G) = IL(⌊G⌋) or
WL(G) = WL(⌊G⌋)). Thus, the set of all deterministic multiactions (from the
syntax) of G is DL(G) = IL(G) ∪WL(G) and the set of all activities (from the
syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪ IL(G) ∪WL(G).

3 Operational semantics

In this section, we define operational semantics via labeled transition systems.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transfor-
mations in the form of G ⇒ G̃ which do not change the states of the specified
processes. The goal of those syntactic transformations is to obtain the well-
structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic ex-
pression does not lead to any discrete time tick or any transition firing in the
corresponding LDTSDPN [52], hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e.
the dynamic expression transformation described by the rule is done instantly.

In Table 1, we define inaction rules for regular dynamic expressions being
overlined and underlined static ones. In this table, (α, ♮θl )∈WL, δ∈{1, . . . , θ},
E, F,K ∈ RegStatExpr and a ∈ Act. The first inaction rule suggests that the
timer value of each newly overlined waiting multiaction is set to the delay of it.

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, ♮θl ) ⇒ (α, ♮θl )
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ]

E rs a ⇒ E rs a E rs a ⇒ E rs a E sy a ⇒ E sy a

E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the
arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr
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and a ∈ Act. For brevity, two distinct inaction rules with the same premises are
collated in some cases, resulting in the inaction rules with double conclusion.

Table 2. Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦ E ⇒ G̃ ◦ E, E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H, H‖G ⇒ H‖G̃

G ⇒ G̃

G[f ] ⇒ G̃[f ]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F ] ⇒ [G̃ ∗ E ∗ F ]

G ⇒ G̃

[E ∗G ∗ F ] ⇒ [E ∗ G̃ ∗ F ]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 6. A regular dynamic expression G is operative if no inaction rule
can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expres-
sions of dtsdPBC. Note that any dynamic expression can be always transformed
into a (not necessarily unique) operative one by using the inaction rules. In the
following, we consider regular expressions only and omit the word “regular”.

Definition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dy-
namic expressions in dtsdPBC Thus, two dynamic expressions G and G′ are
structurally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in a forward or a backward direction.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆
X2 be an equivalence relation on X . Then the equivalence class (with respect to
E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence
E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a final dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ)
is a subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s)={(α, ♮0l )∈IL | ∃H∈s∩OpRegDynExpr (α, ♮0l ) is a subexpression
of H}. The set of all enabled waiting multiactions of s isEnaWait(s)={(α, ♮θl )∈

WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl )
δ, δ ∈ {1, . . . , θ}, is a subexpression of

H}. The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =

{(α, ♮θl ) ∈ WL | ∃H ∈ s ∩OpRegDynExpr (α, ♮θl )
θ is a subexpression of H}.
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Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s)∪EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪ EnaWait(s). Then
Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions enabled
at the initial marking of the LDTSDPN [52] corresponding to G. The activities,
resulted from synchronization, are not present in the syntax of the dynamic ex-
pressions. Their enabledness status can be recovered by observing that of the
pair of synchronized activities from the syntax (they both should be enabled
for enabling their synchronous product), even if they are affected by restriction
after the synchronization.

Definition 8. An operative dynamic expression G is saturated (with the values
of timers), if each enabled waiting multiaction of [G]≈, being superscribed with
the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic
expressions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be transformed into the
saturated one by applying the inaction rules in a forward or a backward direction.

Proof. See [52]. ⊓⊔

Thus, any dynamic expression can be transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then 	G denotes the
timer decrement operator 	, applied to G. The result is a saturated operative
dynamic expression, obtained from G via decrementing by one all greater than
1 values of the timers associated with all (if any) stamped waiting multiactions
from the syntax of G. Thus, each such stamped waiting multiaction changes
its timer value from δ ∈ N≥1 in G to max{1, δ − 1} in 	G. The timer decre-
ment operator affects the (possibly overlined or underlined) stamped waiting

multiactions being the subexpressions of G as follows: (α, ♮θl )
δ is replaced with

(α, ♮θl )
max{1,δ−1} and (α, ♮θl )

δ is replaced with (α, ♮θl )
max{1,δ−1} while (α, ♮θl )

δ is

replaced with (α, ♮θl )
max{1,δ−1}.

Note that when δ = 1, we have max{1, δ − 1} = max{1, 0} = 1, hence, the
timer value δ = 1 may remain unchanged for a stamped waiting multiaction that
is not executed by some reason at the next time moment, but stays stamped.
For example, that stamped waiting multiaction may be affected by restriction. If
the timer values cannot be decremented with a time tick for all stamped waiting
multiactions (if any) from G then 	G = G and we obtain so-called empty loop
transition, defined later.

The timer decrement operator keeps stamping of the waiting multiactions,
since it may only decrease their timer values, so that the stamped waiting mul-
tiactions stay stamped (with their timer values, possibly decremented by one).
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3.2 Action and empty move rules

The action rules are applied when some activities are executed. With these
rules we capture the prioritization among different types of multiactions. We
also have the empty move rule, used to capture a delay of one discrete time
unit when no immediate or waiting multiactions are executable. In this case, the
empty multiset of activities is executed. The action and empty move rules will be
used later to determine all multisets of activities which can be executed from the
structural equivalence class of every dynamic expression (i.e. from the state of the
corresponding process). This information together with that about probabilities
or delays and weights of the activities to be executed from the current process
state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) mul-

tiactions describe dynamic expression transformations in the form of G
Γ
→ G̃

(G
I
→ G̃ or G

W
→ G̃, respectively) due to execution of non-empty multisets Γ

of stochastic (I of immediate or W of waiting, respectively) multiactions. The
rules represent possible state changes of the specified processes when some non-
empty multisets of stochastic (immediate or waiting, respectively) multiactions
are executed. The application of an action rule with stochastic (immediate or
waiting, respectively) multiactions to a dynamic expression leads in the corre-
sponding LDTSDPN [52] to a discrete time tick at which some stochastic or
waiting transitions fire (or to the instantaneous firing of some immediate tran-
sitions) and possible change of the current marking. The current marking stays
unchanged only if there is a self-loop produced by the iterative execution of a
non-empty multiset, which must be one-element, since we allow no concurrency
at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting mul-
tiactions can be executed from the current state) describes dynamic expression

transformations in the form of G
∅
→	G, called the empty moves, due to execu-

tion of the empty multiset of activities at a discrete time tick. When no timer
values are decremented within G with the empty multiset execution at the next
moment (for example, if G contains no stamped waiting multiactions), we have

	G = G. In such a case, the empty move from G is in the form of G
∅
→ G, called

the empty loop. The application of the empty move rule to a dynamic expression
leads to a discrete time tick in the corresponding LDTSDPN [52] at which no
transitions fire and the current marking is not changed, but the timer values of
the waiting transitions enabled at the marking (if any) are decremented by one.
This is a new rule that has no prototype among inaction rules of PBC, since it
represents a time delay.

Thus, an application of every action rule with stochastic or waiting multi-
actions or the empty move rule requires one discrete time unit delay, i.e. the
execution of a (possibly empty) multiset of stochastic or (non-empty) multiset
of waiting multiactions leading to the dynamic expression transformation de-
scribed by the rule is accomplished instantly after one time unit. An application
of every action rule with immediate multiactions does not take any time, i.e. the
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execution of a (non-empty) multiset of immediate multiactions is accomplished
instantly at the current moment.

The expressions of dtsdPBC can contain identical activities. To avoid tech-
nical difficulties, such as calculation of the probabilities for multiple transitions,
we can enumerate coinciding activities from left to right in the syntax of ex-
pressions. The new activities, resulted from synchronization, will be annotated
with concatenation of numberings of the activities they come from, hence, the
numbering should have a tree structure to reflect the effect of multiple synchro-
nizations. We now define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.
The new activities resulting from synchronizations in different orders should

be considered up to permutation of their numbering. In this way, we shall rec-
ognize different instances of the same activity. If we compare the contents of
different numberings, i.e. the sets of natural numbers in them, we shall identify
the mentioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions become
the proper sets. We suppose that the identical activities are enumerated when
needed to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G ∈ OpRegDynExpr. We define Can(G), the set of all
non-empty multisets of activities which can be potentially executed from G. Let
(α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and a ∈ Act.

1. If final(G) then Can(G) = ∅.

2. If G=(α, κ)δ and κ=♮θl , θ∈N≥2, l∈R>0, δ∈{2, . . . , θ}, then Can(G)=∅.

3. If G = (α, κ) and κ ∈ (0; 1) or κ = ♮0l , l ∈ R>0, then Can(G) = {{(α, κ)}}.

4. If G = (α, κ)1 and κ = ♮θl , θ ∈ N≥1, l ∈ R>0, then Can(G) = {{(α, κ)}}.
5. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ ) ∈ Can(G[f ]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ )), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

6. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).
7. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different, a ∈ α, â ∈ β, then

(a) (Υ + {(α⊕a β, κ · λ)} − {(α, κ), (β, λ)}) ∈ Can(G sy a) if κ, λ ∈ (0; 1);
(b) (Υ+{(α⊕aβ, ♮θl+m)}−{(α, κ), (β, λ)}) ∈ Can(G sy a) if κ = ♮θl , λ = ♮θm,

θ ∈ N, l,m ∈ R>0.
When we synchronize the same multiset of activities in different orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities.
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If Υ ∈Can(G) then by definition of Can(G), ∀Ξ⊆Υ, Ξ 6=∅, we haveΞ∈Can(G).
Let G ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only

stochastic (immediate or waiting, respectively) multiactions in the multisets from
Can(G) then these stochastic (immediate or waiting, respectively) multiacti-
ons can be executed from G. Otherwise, besides stochastic ones, there are also
deterministic (immediate and/or waiting) multiactions in the multisets from
Can(G). By the note above, there are non-empty multisets of deterministic mul-
tiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G) Υ ∈ N

DL
fin \ {∅}. In this case, no

stochastic multiactions can be executed from G, even if Can(G) contains non-
empty multisets of stochastic multiactions, since deterministic multiactions have
a priority over stochastic ones, and should be executed first. Further, if there
are no stochastic, but both waiting and immediate multiactions in the multisets
from Can(G), then, analogously, no waiting multiactions can be executed from
G, since immediate multiactions have a priority over waiting ones (besides that
over stochastic ones).

If there are only waiting and, possibly, stochastic multiactions in the multisets
from Can(G) then only waiting ones can be executed from G. Then just maximal
non-empty multisets of waiting multiactions can be executed from G, since all
non-conflicting waiting multiactions cannot wait and should occur at the next
moment with probability 1. The next definition formalizes these requirements.

Definition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets
of activities which can be executed from G is

Now(G)=





Can(G) ∩ N
IL
fin, Can(G) ∩ N

IL
fin 6= ∅;

{W ∈Can(G) ∩ N
WL
fin | (Can(G) ∩N

IL
fin=∅)∧

∀V ∈Can(G) ∩N
WL
fin W ⊆V ⇒ V =W}, (Can(G) ∩N

WL
fin 6=∅);

Can(G), otherwise.

Let G ∈ OpRegDynExpr. The expression G is s-tangible (stochastically tan-
gible), denoted by stang(G), if Now(G) ⊆ N

SL
fin \ {∅}. In particular, we have

stang(G), if Now(G) = ∅. The expression G is w-tangible (waitingly tangible),
denoted by wtang(G), if ∅ 6= Now(G) ⊆ N

WL
fin \{∅}. The expression G is tangible,

denoted by tang(G), if stang(G) or wtang(G), i.e. Now(G) ⊆ (NSL
fin∪N

WL
fin )\{∅}.

We particularly have tang(G), if Now(G) = ∅. Otherwise, the expression G is
vanishing, denoted by vanish(G), and in this case ∅ 6= Now(G) ⊆ N

IL
fin\{∅}. The

operative dynamic expressions from [G]≈ may have different types in general.
Let G∈RegDynExpr. We write stang([G]≈), if ∀H∈ [G]≈∩OpRegDynExpr

stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩ OpRegDynExpr wtang(H)
and ∀H ′∈ [G]≈∩OpRegDynExpr tang(H ′). We write tang([G]≈), if stang([G]≈)
or wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈ [G]≈∩
OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (α, ρ),
(β, χ) ∈ SL, (α, ♮0l ), (β, ♮

0
m) ∈ IL and (α, ♮θl ), (β, ♮

θ
m) ∈ WL. Further, E,F ∈

RegStatExpr, G,H ∈ SatOpRegDynExpr, G̃, H̃∈RegDynExpr and a ∈ Act.
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Next, Γ,∆ ∈ N
SL
fin \ {∅}, Γ ′ ∈ N

SL
fin, I, J ∈ N

IL
fin \ {∅}, I ′ ∈ N

IL
fin, V,W ∈

N
WL
fin \ {∅}, V ′ ∈ N

WL
fin and Υ ∈ N

SDL
fin \ {∅}. We denote Υa = {(α, κ) ∈ Υ | (a ∈

α) ∨ (â ∈ α)}.
We use the following abbreviations in the names of the rules from the ta-

ble: “E” for “Empty move”, “B” for “Basis case”, “S” for “Sequence”, “C”
for “Choice”, “P” for “Parallel”, “L” for “reLabeling”, “R” for “Restriction”,
“I” for “Iteraton” and “Sy” for “Synchronization”. The first rule in the table
is the empty move rule E. The other rules are the action rules, describing trans-
formations of dynamic expressions, which are built using particular algebraic
operations. If we cannot merge the rules with stochastic, immediate ans waiting
multiactions in one rule for some operation then we get the coupled action rules.
In such cases, the names of the action rules with stochastic multiactions have
a suffix ‘s’, those with immediate multiactions have a suffix ‘i’, and those with
waiting multiactions have a suffix ‘w’.

For explanation of the rules in Table 3, see [52]. We do not have self-synchro-
nization, i.e. synchronization of an activity with itself, since all the (enumerated)
activities executed together are considered to be different. This allows us to avoid
unexpected behaviour and many technical difficulties [10].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned off) and their values become
irrelevant while the timers of all those preserving their enabledness continue
running with their stored values. Hence, we adopt the enabling memory memory
policy [38, 1–3] when the process states are changed and the enabledness of
deterministic multiactions is possibly modified (immediate multiactions may be
seen as those with the timers displaying a single value 0, so we do not need to
store their values). Then the timer values of waiting multiactions are taken as
the enabling memory variables.

Similar to [26], we are mainly interested in the dynamic expressions, inferred
by applying the inaction rules (also in the reverse direction) and action rules from
the overlined static expressions, such that no stamped (i.e. superscribed with the
timer values) waiting multiaction is a subexpression of them. The reason is to
ensure that time proceeds uniformly and only enabled waiting multiactions are
stamped. We call such dynamic expressions reachable, by analogy with the reach-
able states of LDTSDPNs [52]. Formally, a dynamic expression G is reachable,
if there exists a static expression E without timer value superscripts, such that

E ≈ G or E ≈ G0
Υ1→ H1 ≈ G1

Υ2→ . . .
Υn→ Hn ≈ G for some Υ1, . . . , Υn ∈ N

SDL
fin .

Therefore, we consider a dynamic expression G = ({a}, ♮21)
1[]({b}, ♮32)

1 as

“illegal” and that H = ({a}, ♮21)
1[]({b}, ♮32)

2 as “legal”, since the latter is ob-
tained from the overlined static expression without timer value superscripts
E = ({a}, ♮21)[]({b}, ♮

3
2) after one time tick. On the other hand, G is “illegal”

only when it is intended to specify a complete process, but it may become “le-
gal” as a part of some complete specification, like G rs a, since after two time
ticks from E rs a, the timer values cannot be decreased further when the value 1
is approached. Thus, we should allow the dynamic expressions like G, by assum-
ing that they are incomplete specifications, to be further composed. Further, a
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Table 3. Action and empty move rules

E
stang([G]≈)

G
∅
→	G

Bs (α, ρ)
{(α,ρ)}
−→ (α, ρ) Bi (α, ♮0l )

{(α,♮0l )}−→ (α, ♮0l ) Bw (α, ♮θl )
1

{(α,♮θl )}−→ (α, ♮θl )

S
G

Υ
→ G̃

G;E
Υ
→ G̃;E, E;G

Υ
→ E; G̃

Cs
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ
→ G̃[]⇃E, E[]G

Γ
→⇃E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]⇃E, E[]G

I
→⇃E[]G̃

Cw
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V
→ G̃[]⇃E, E[]G

V
→⇃E[]G̃

P1s
G

Γ
→ G̃, stang([H ]≈)

G‖H
Γ
→ G̃‖ 	H, H‖G

Γ
→	H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P1w
G

V
→ G̃, stang([H ]≈)

G‖H
V
→ G̃‖ 	H, H‖G

V
→	H‖G̃

P2s
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

P2w
G

V
→ G̃, H

W
→ H̃

G‖H
V +W
−→ G̃‖H̃

L
G

Υ
→ G̃

G[f ]
f(Υ )
−→ G̃[f ]

R
G

Υ
→ G̃

G rs a
Υ−Υa−→ G̃ rs a

I1
G

Υ
→ G̃

[G ∗ E ∗ F ]
Υ
→ [G̃ ∗ E ∗ F ]

I2s
G

Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F ]≈))

[E ∗G ∗ F ]
Γ
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

Γ
→ [E∗⇃F ∗ G̃]

I2i
G

I
→ G̃

[E ∗G ∗ F ]
I
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

I
→ [E∗⇃F ∗ G̃]

I2w
G

V
→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F ]≈))

[E ∗G ∗ F ]
V
→ [E ∗ G̃∗⇃F ], [E ∗ F ∗G]

V
→ [E∗⇃F ∗ G̃]

Sy1
G

Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2s
G sy a

Γ ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,♮0l )}+{(β,♮0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,♮0

l+m
)}

−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,♮θl )}+{(β,♮θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,♮θ

l+m
)}

−−−−−−−−−−−−−→ G̃ sy a
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dynamic expression G = ({a}, 12 ); ({b}, ♮
2
1)

1 is “illegal”, since the waiting mul-
tiaction ({b}, ♮21) is not enabled in [G]≈ and its timer cannot start before the
stochastic multiaction ({a}, 12 ) is executed. Enabledness of the stamped waiting
multiactions is considered in the next proposition.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]≈) are stamped in G.

Proof. See [52]. ⊓⊔

3.3 Transition systems

We now construct labeled probabilistic transition systems associated with dy-
namic expressions. The transition systems are used to define the operational
semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of

activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

Here H
Υ
→ H̃ is an inference by the rules from Table 3. It can be proved by

induction on the structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈
s Υ ∈ Now(H). The reverse statement does not hold, since the preconditions in
the action rules disable executions of the activities with the lower-priority types
from every H ∈ s, see [52].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Exec(s) ⊆ N

SL
fin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E,

hence, we may haveExec(s) = {∅}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) ⊆ N

WL
fin \ {∅}. The state s is tangible, denoted

by tang(s), if stang(s) or wtang(s), i.e. Exec(s) ⊆ N
SL
fin ∪ N

WL
fin . Again, for a

tangible state s we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the
state s is vanishing, denoted by vanish(s), and in this case Exec(s) ⊆ N

IL
fin\{∅}.

If Υ ∈Exec(s) and Υ ∈N
SL
fin∪N

IL
fin then by rules P2s, P2i, Sy2s, Sy2i and

definition of Exec(s) ∀Ξ⊆Υ, Ξ 6=∅, we have Ξ∈Exec(s), i.e. 2Υ \{∅}⊆Exec(s).

Definition 12. The derivation set of a dynamic expression G, denoted by
DR(G), is the minimal set such that

– [G]≈ ∈ DR(G);

– if [H ]≈ ∈ DR(G) and ∃Υ H
Υ
→ H̃ then [H̃ ]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the set
of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all tan-
gible states from DR(G) is denoted by DRT (G) = DRST (G) ∪DRWT (G). The
set of all vanishing states from DR(G) is denoted by DRV (G). Then DR(G)=
DRT (G)⊎DRV (G)=DRST (G)⊎DRWT (G)⊎DRV (G) (⊎ denotes disjoint union).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiac-

tions Υ is ready for execution in s or the weight of the multiset of deterministic
multiactions Υ which is ready for execution in s is



18 Igor V. Tarasyuk

PF (Υ, s)=





∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}

(1 − χ), s∈DRST (G);

∑

(α,♮θ
l
)∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we define

PF (∅, s) =





∏

{(β,χ)}∈Exec(s)

(1 − χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

If s ∈ DRST (G) and Exec(s) 6= {∅} then PF (Υ, s) can be interpreted as a
joint probability of independent events (in a probability sense, i.e. the probability
of intersection of these events is equal to the product of their probabilities). Each
such an event consists in the positive or the negative decision to be executed
of a particular stochastic multiaction. Every executable stochastic multiaction
decides probabilistically (using its probabilistic part) and independently (from
others), if it wants to be executed in s. If Υ is a multiset of all executable
stochastic multiactions which have decided to be executed in s and Υ ∈ Exec(s)
then Υ is ready for execution in s. The multiplication in the definition is used
because it reflects the probability of the independent event intersection. When
Υ = ∅, PF (Υ, s) can be interpreted as the probability not to execute in s any
executable stochastic multiactions, thus, PF (∅, s) =

∏
{(β,χ)}∈Exec(s)(1 − χ).

When only the empty multiset of activities can be executed in s, i.e. Exec(s) =
{∅}, we take PF (∅, s) = 1, since nothing more can be executed in s in this case.
Since the probabilities of all stochastic multiactions are strictly less than 1, for
s ∈ DRST (G) we have PF (∅, s) ∈ (0; 1]. Hence, we always execute the empty
multiset of activities in s at the next moment with a certain positive probability.

If s ∈ DRWT (G)∪DRV (G) then PF (Υ, s) could be interpreted as the over-
all (cumulative) weight of the deterministic multiactions from Υ , i.e. the sum
of all their weights. The summation here is used since the weights can be seen
as the rewards which are collected [47]. This means that concurrent execution
of the deterministic multiactions has more importance than that of every single
one. The weights of deterministic multiactions can also be interpreted as bonus
rewards of transitions [7]. The rewards are summed when deterministic multiac-
tions are executed in parallel, because all of them participated in the execution.
In particular, since execution of immediate multiactions takes no time, we prefer
to collect in a step (parallel execution of activities) as many parallel immedi-
ate multiactions as possible to get more progress in behaviour. As for waiting
multiactions, only the maximal multisets of them executable from a state occur
in the next moment. Therefore, the steps of waiting multiactions produce maxi-
mal overall weights, used to calculate probabilities of alternative maximal steps
rather than the cumulative bonuses.

The definition of PF (Υ, s) (and those of other probability functions we shall
present) is based on the enumeration of activities which is considered implicit.
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Let Υ ∈ Exec(s). Besides Υ , some other multisets of activities may be ready
for execution in s, hence, a normalization is needed to calculate the execution
probability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

If s ∈ DRST (G) then PT (Υ, s) and PF (Υ, s) can be treated as the ac-
tual and potential probabilities to execute Υ in s, respectively, since we have
PT (Υ, s) = PF (Υ, s) only when all sets (including the empty one) consisting
of the executable stochastic multiactions can be executed in s. In this case,
all the mentioned stochastic multiactions can be executed in parallel in s and
we have

∑
Ξ∈Exec(s) PF (Ξ, s) = 1, since this sum collects the products of all

combinations of the probability parts of the stochastic multiactions and the
negations of these parts. But in general, it may happen that two stochastic mul-
tiactions (α, ρ) and (β, χ) executable in s, cannot be executed in s together, i.e.
∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but {(α, ρ), (β, χ)} 6∈ Exec(s). For s ∈ DRST (G)
we have PT (∅, s) ∈ (0; 1], i.e. there is a non-zero probability to execute the
empty multiset of activities in s at the next moment.

If s ∈ DRWT (G) ∪DRV (G) then PT (Υ, s) can be interpreted as the weight
of the set of deterministic multiactions Υ which is ready for execution in s nor-
malized by the weights of all the sets executable in s. This approach is analogous
to that used in the EMPA definition of the probabilities of immediate actions
executable from the same process state [8] (inspired by way in which the prob-
abilities of conflicting immediate transitions in GSPNs are calculated [3]). The
only difference is that we have a step semantics and, for every set of determin-
istic multiactions executed in parallel, we should use its cumulative weight. For
the analogy with the interleaving semantics of EMPA, we should interpret the
weights of immediate actions of EMPA as the cumulative weights of the sets of
deterministic multiactions of dtsdPBC.

The sum of outgoing probabilities for the expressions from the derivations
of G is equal to 1, i.e. ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) = 1. This fact fol-

lows from the definition of PT (Υ, s) and guarantees that it defines a probability
distribution.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ |∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

The summation in the definition above reflects the probability of the mutually ex-
clusive event union, since

∑
{Υ |∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PT (Υ, s) = 1∑
Ξ∈Exec(s) PF (Ξ,s) ·∑

{Υ |∃H∈s, ∃H̃∈s̃, H
Υ
→H̃}

PF (Υ, s), where for each Υ, PF (Υ, s) is the probability

of the exclusive execution of Υ in s. Note that ∀s ∈ DR(G)∑
{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H

Υ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H
Υ
→H̃}∑

{Υ |∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s) =
∑
Υ∈Exec(s) PT (Υ, s) = 1.
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Definition 13. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);

– the set of labels is LG = N
SDL
fin × (0; 1];

– the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H∈s

∃H̃ ∈ s̃ H
Υ
→ H̃};

– the initial state is sG = [G]≈.

The definition of TS(G) is correct, i.e. for every state, the sum of the probabi-
lities of all the transitions from it is 1, by the note after the definition of PT (Υ, s).

The transition system TS(G) associated with a dynamic expression G de-
scribes all the steps (parallel executions) that occur at discrete time moments
with some (one-step) probability and consist of multisets of activities. Every
step consisting of stochastic (waiting, respectively) multiactions or the empty
step (i.e. that consisting of the empty multiset of activities) occurs instantly
after one discrete time unit delay. Each step consisting of immediate multiac-
tions occurs instantly without any delay. The step can change the current state
to a different one. The states are the structural equivalence classes of dynamic
expressions obtained by application of action rules starting from the expressions

belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG is written as s
Υ
→P s̃, meaning

that the probability to change the state s to s̃ as a result of executing Υ is P .

From every s-tangible state the empty multiset of activities can always be
executed by rule E. Hence, for s-tangible states, Υ may be the empty multi-
set, and its execution only decrements by one the timer values (if any) of the

current state. Then we have a transition s
∅
→P	 s from an s-tangible state s

to the tangible state 	 s = [	 H ]≈ for H ∈ s ∩ SatOpRegDynExpr. Since
structurally equivalent saturated operative dynamic expressions remain so after
decreasing by one their timers, 	 s is unique for each s and the definition is
correct. Thus, 	s corresponds to applying the empty move rule to an arbitrary
saturated operative dynamic expression from s, followed by taking the structural
equivalence class of the result. We have to keep track of such executions, called
the empty moves, since they affect the timers and have non-zero probabilities.
This follows from the definition of PF (∅, s) and the fact that the probabilities
of stochastic multiactions belong to the interval (0; 1). When it holds 	H = H
for H ∈ s∩SatOpRegDynExpr, we obtain 	s = s. Then the empty move from

s is in the form of s
∅
→P s, called the empty loop. For w-tangible and vanishing

states Υ cannot be the empty multiset, since we must execute some immediate
(waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0; 1], being 1 when we cannot
leave an s-tangible state s and the only transition leaving it is the empty move

one s
∅
→1	 s, or if there is a single transition from a w-tangible or a vanishing

state to any other one. We write s
Υ
→ s̃ if ∃P s

Υ
→P s̃ and s→ s̃ if ∃Υ s

Υ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components.
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Definition 14. Let G,G′ be dynamic expressions and TS(G)=(SG, LG, TG, sG),
TS(G′) = (SG′ , LG′, TG′ , sG′) be their transition systems. A mapping β : SG →
SG′ is an isomorphism between TS(G) and TS(G′), denoted by β : TS(G) ≃
TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)≃
TS(G′), if ∃β :TS(G)≃TS(G′).

Definition 15. Two dynamic expressions G and G′ are equivalent with respect
to transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Example 1. Let E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m);

({f}, φ)))) ∗ Stop], where ρ, θ, φ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of
the elements

s1 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, ♮1k)
1; ((({c}, ♮0l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈=

[[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[](({e}, ♮

0
m); ({f}, φ)))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 1, the transition system TS(E) is presented. The s-tangible and

w-tangible states are depicted in ordinary and double ovals, respectively, and
the vanishing ones are depicted in boxes.

4 Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expres-
sions can be constructed and then used for performance evaluation.

4.1 Analysis of the underlying SMC

For a dynamic expression G, a discrete random variable ξ(s) is associated with
every tangible state s ∈ DRT (G). The variable captures the residence (sojourn)
time in the state. One can interpret staying in a state at the next discrete time
moment as a failure and leaving it as a success in some trial series. It is easy to
see that ξ(s) is geometrically distributed with the parameter 1−PM(s, s), since
the probability to stay in s for k − 1 time moments and leave it at the moment
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Fig. 1. The transition system of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ)))) ∗ Stop]

k ≥ 1, called the probability mass function (PMF) of the residence time in s, is
pξ(s)(k) = P(ξ(s) = k) = PM(s, s)k−1(1 − PM(s, s)) (k ∈ N≥1) (the residence
time in s is k in this case). Hence, the probability distribution function (PDF) of
the residence time in s is Fξ(s)(k) = P(ξ(s) < k) = 1 − PM(s, s)k−1 (k ∈ N≥1)
(the probability that the residence time in s is less than k).

The deterministic residence time 1 in a tangible state s can be interpreted
as a random variable ξ(s) that is geometrically distributed with the parameter
1 = 1−PM(s, s). In that case, PM(s, s) = 0 and k = 1 is the only residence time
value with a positive probability. Hence, pξ(s)(1) = PM(s, s)1−1(1−PM(s, s)) =
00 · 1 = 1, i.e. the probability that the residence time is 1 equals 1.

Further, the residence time ∞ in an absorbing tangible state s can be in-
terpreted as a random variable ξ(s) that is geometrically distributed with the
parameter 0 = 1 − PM(s, s). In that case, PM(s, s) = 1 and there exists
no finite residence time value with a positive probability. Hence, pξ(s)(k) =

PM(s, s)k−1(1 − PM(s, s)) = 1k−1 · 0 = 0 (k ∈ N≥1), i.e. the probability that
the residence time is k equals 0 for every k ≥ 1. Then we cannot leave s for a
different state after any number of time ticks and we stay in s for infinite time.

The mean value formula for the geometrical distribution allows us to calculate
the average sojourn time in s ∈ DRT (G) as SJ(s) = 1

1−PM(s,s) . The average

sojourn time in each vanishing state s ∈ DRV (G) is SJ(s) = 0. Let s ∈ DR(G).

The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s),
s ∈ DR(G).

The sojourn time variance in the state s is
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V AR(s) =

{
PM(s,s)

(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by V AR, has the elements
V AR(s), s ∈ DR(G).

To evaluate performance of the system specified by a dynamic expression G,
we should investigate the stochastic process associated with it. The process is the
underlying semi-Markov chain (SMC) [47, 27, 14, 57, 28], denoted by SMC(G),
which can be analyzed by extracting from it the embedded (absorbing) discrete
time Markov chain (EDTMC) corresponding to G, denoted by EDTMC(G).
The construction of the latter is analogous to that applied in the context of
generalized stochastic PNs (GSPNs) in [37, 2, 3], and also in the framework of
discrete time deterministic and stochastic PNs (DTDSPNs) in [63, 59, 60, 65, 66,
64], as well as within discrete deterministic and stochastic PNs (DDSPNs) [61,
62]. EDTMC(G) only describes the state changes of SMC(G) while ignoring its
time characteristics. Thus, to construct the EDTMC, we should abstract from
all time aspects of behaviour of the SMC, i.e. from the sojourn time in its states.
The (local) sojourn time in every state of the EDTMC is deterministic and it is
equal to one discrete time unit. It is well-known that every SMC is fully descri-
bed by the EDTMC and the state sojourn time distributions (the latter can be
specified by the vector of PDFs of residence time in the states) [21, 57, 28].

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system
TS(G) can have self-loops going from a state to itself which have a non-zero
probability. Clearly, the current state remains unchanged in this case.

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

PM(s, s)k.

Let s → s̃ and s 6= s̃, i.e. PM(s, s) < 1. The probability to move from s to s̃
by executing any multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
=

SL(s)PM(s, s̃), where SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise;

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops
abstraction vector of G, denoted by SL, has the elements SL(s), s ∈ DR(G).
The value k = 0 in the summation above corresponds to the case when no
self-loops occur.

Let s ∈ DRT (G). If there are self-loops from s (i.e. if s→ s) then PM(s, s) >
0 and SL(s) = 1

1−PM(s,s) = SJ(s). Otherwise, if there exist no self-loops

from s then PM(s, s) = 0 and SL(s) = 1 = 1
1−PM(s,s) = SJ(s). Thus,

∀s ∈ DRT (G) SL(s) = SJ(s), hence, ∀s ∈ DRT (G) with PM(s, s) < 1 it
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holds PM∗(s, s̃)=SJ(s)PM(s, s̃). Note that the self-loops from tangible states
are of the empty or non-empty type, the latter produced by iteration, since
empty loops are not possible from w-tangible states, but they are possible from
s-tangible states, while non-empty loops are possible from both s-tangible and
w-tangible states.

Let s ∈ DRV (G). We have ∀s ∈ DRV (G) SL(s) 6= SJ(s) = 0 and ∀s ∈
DRV (G) with PM(s, s) < 1 it holds PM∗(s, s̃) = SL(s)PM(s, s̃). If there exist

self-loops from s then PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) when PM(s, s) < 1. Otherwise,

if there exist no self-loops from s then PM∗(s, s̃) = PM(s, s̃). Note that the
self-loops from vanishing states are always of the non-empty type, produced by
iteration, since empty loops are not possible from vanishing states.

Note that after abstraction from the probabilities of transitions which do not
change the states, the remaining transition probabilities are normalized. In order
to calculate transition probabilities PT (Υ, s), we had to normalize PF (Υ, s).
Then, to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we
have to normalize PM(s, s̃). Thus, we have a two-stage normalization as a result.

Then PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G) such
that s is not an absorbing state (i.e. PM(s, s) < 1 and there are transitions to dif-
ferent states after possible self-loops from it) we have

∑
{s̃|s→s̃, s6=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s6=s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just
for convenience. Alternatively, we could take a state-changing step followed by
self-loops or a state-changing step preceded and followed by self-loops. In all these
three cases our sequence begins or/and ends with the loops which do not change
states. At the same time, the overall probabilities of the evolutions can differ,
since self-loops have positive probabilities. To avoid inconsistency of definitions
and too complex description, we consider sequences ending with a state-changing
step. It resembles in some sense a construction of branching bisimulation [19]
taking self-loops instead of silent transitions. Further, we shall not abstract from
self-loops with probability 1 while constructing EDTMCs, in order to maintain
a probability distribution among transitions (actually, a single transition to the
same state) from every state with such a self-loop.

Definition 16. Let G be a dynamic expression. The embedded (absorbing) dis-
crete time Markov chain (EDTMC) of G, denoted by EDTMC(G), has the state
space DR(G), the initial state [G]≈ and the transitions s ։P s̃, if s → s̃ and
s 6= s̃, where P = PM∗(s, s̃); or s։1 s, if PM(s, s) = 1.

The underlying SMC of G, denoted by SMC(G), has the EDTMC
EDTMC(G) and the sojourn time in every s ∈ DRT (G) is geometrically dis-
tributed with the parameter 1 − PM(s, s) (in particular, the sojourn time is 1
when PM(s, s) = 0, and ∞ when PM(s, s) = 1) while the sojourn time in every
s ∈ DRV (G) is equal to 0.

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|)

of the (one-step) transition probability matrix (TPM) P∗ for EDTMC(G) are



Performance evaluation in stochastic process algebra dtsdPBC 25

P∗
ij =




PM∗(si, sj), si → sj , i 6= j;
1, PM(si, si) = 1, i = j;
0, otherwise.

The transient (k-step, k ∈ N) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for

EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ N).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC(G) is a solu-
tion of the equation system

{
ψ∗(P∗ − I) = 0
ψ∗1T = 1

,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1
is that of n values 1.

Note that the vector ψ∗ exists and is unique if EDTMC(G) is ergodic. Then
EDTMC(G) has a single steady state, and we have ψ∗ = limk→∞ ψ∗[k].

The steady-state PMF for the underlying semi-Markov chain SMC(G) is
calculated via multiplication of every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn
time SJ(si) in the state si, after which we normalize the resulting values. Re-
member that for each tangible state s ∈ DRT (G) we have SJ(s) ≥ 1, and for
each vanishing state s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =

{
ψ∗(si)SJ(si)∑

n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate ϕ, we apply abstraction from self-loops with probability
less than 1 to get P∗ and then ψ∗, followed by weighting by SJ and normaliza-
tion. We call that technique embedding, since the embedded DTMC (EDTMC)
is used to specify the SMC state change probabilities. EDTMC(G) has no self-
loops with probability less than 1, unlike SMC(G), hence, the behaviour of
EDTMC(G) may stabilize quicker than that of SMC(G) (if each of them has a
single steady state), since P∗ has only zero (excepting the states having self-loops
with probability 1) elements at the main diagonal.

Example 2. Let E be from Example 1. In Figure 2, the underlying SMC
SMC(E) is presented. The average sojourn times in the states of the underlying
SMC are written next to them in bold font.

The average sojourn time vector of E is
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SJ =

(
1

ρ
, 1, 0,

1

θ
,
1

φ

)
.

The sojourn time variance vector of E is

V AR =

(
1− ρ

ρ2
, 0, 0,

1− θ

θ2
,
1− φ

φ2

)
.

The TPM for EDTMC(E) is

P∗ =




0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 1 0 0 0
0 1 0 0 0



.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

1

3
,
1

3
,

l

3(l+m)
,

m

3(l +m)

)
.

The steady-state PMF ψ∗ weighted by SJ is

(
0,

1

3
, 0,

l

3θ(l +m)
,

m

3φ(l +m)

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the
sum of its components

ψ∗SJT =
θφ(l +m) + φl + θm

3θφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

In the case l = m and θ = φ we have

ϕ =
1

2(1 + θ)
(0, 2θ, 0, 1, 1).

Let G be a dynamic expression and s, s̃∈DR(G), S, S̃⊆DR(G). The next stan-
dard performance indices (measures) can be calculated based on the steady-state
PMF ϕ for SMC(G) and the average sojourn time vector SJ of G [43, 25].

– The average recurrence (return) time in the state s (i.e. the number of dis-
crete time units or steps required for this) is ReturnT ime(s) = 1

ϕ(s) .

– The fraction of residence time in the state s is T imeFract(s) = ϕ(s).
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Fig. 2. The underlying SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ)))) ∗ Stop]

– The fraction of residence time in the set of states S or the probability of
the event determined by a condition that is true for all states from S is
T imeFract(S) =

∑
s∈S ϕ(s).

– The relative fraction of residence time in the set of states S with respect to

that in S̃ is RltT imeFract(S, S̃) =
∑

s∈S ϕ(s)∑
s̃∈S̃

ϕ(s̃) .

– The exit/entrance frequency (rate of leaving/entering, average number of

exits/entrances per unit of time) the state s is ExitFreq(s) = ϕ(s)
SJ(s) .

– The steady-state probability to perform a step with a multiset of activities Ξ
is ActsProb(Ξ) =

∑
s∈DR(G) ϕ(s)

∑
{Υ |Ξ⊆Υ} PT (Υ, s).

– The probability of the event determined by a reward function r on the states
is Prob(r) =

∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

Example 3. Let us interpret E from Example 1 as a specification of the travel
system. A tourist visits regularly new cities. After seeing the sights of the current
city, he goes to the next city by the nearest train or bus available at the city
station. Buses depart less frequently than trains, but the next city is quicker
reached by bus than by train. We suppose that the stay duration in every city
(being a constant), the departure numbers of trains and buses, as well as their
speeds do not depend on a particular city, bus or train. The travel route has been
planned so that the distances between successive cities coincide.

The meaning of actions from the syntax of E is as follows. The action a corres-
ponds to the system activation (the travel route has been planned) that takes
a time, geometrically distributed with the parameter ρ. The action b represents
the completion of looking round the current city and coming to the city station
that takes a fixed time equal to 1 (say, one hour) for every city. The actions c
and e correspond to the urgent getting on bus and train, respectively, and thus
model the choice between these two transport facilities. The weights of the two
corresponding immediate multiactions suggest that every l departures of buses
take the same time as m departures of trains (l < m), hence, a bus departs with



28 Igor V. Tarasyuk

the probability l
l+m while a train departs with the probability m

l+m . The actions
d and f correspond to the coming in a city by bus and train, respectively, that
takes a time, geometrically distributed with the parameters θ and φ (θ > φ).

The meaning of states from DR(E) is the following. The s-tangible state s1
corresponds to staying at home and planning the future travel. The w-tangible
state s2 means residence in a city for exactly one time unit (hour). The vanishing
state s3 with zero residence time represents instantaneous stay at the city station,
signifying that the tourist does not wait there for departure of the transport. The
s-tangible states s4 and s5 correspond to going by bus and train, respectively.

Using Example 2, we now calculate the performance indices, based on the
steady-state PMF for SMC(E) ϕ = 1

θφ(l+m)+φl+θm(0, θφ(l +m), 0, φl, θm) and

the average sojourn time vector of E SJ =
(

1
ρ
, 1, 0, 1

θ
, 1
φ

)
.

– The average time between comings to the successive cities (mean sightseeing
and travel time) is ReturnT ime(s2) =

1
ϕ(s2)

= 1 + φl+θm
θφ(l+m) .

– The fraction of time spent in a city (sightseeing time fraction) is

T imeFract(s2) = ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm .

– The fraction of time spent in a transport (travel time fraction) is
T imeFract({s4, s5}) = ϕ(s4) + ϕ(s5) =

φl+θm
θφ(l+m)+φl+θm .

– The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltT imeFract({s2}, {s4, s5}) =
ϕ(s2)

ϕ(s4)+ϕ(s5)
= θφ(l+m)

φl+θm .

– The rate of leaving/entering a city (departure/arrival rate) is

ExitFreq(s2) =
ϕ(s2)
SJ(s2)

= θφ(l+m)
θφ(l+m)+φl+θm .

As mentioned in [63, 59, 60], if is useful to consider performance measures
over only the markings of DTDSPNs, instead of their whole states, whose second
components are the remaining firing time vectors. In the context of dtsdPBC,
such markings correspond to those of the dtsd-boxes of dynamic expressions, i.e.
to the markings of the respective LDTSDPNs [52], obtained from their states by
abstracting from the second components, i.e. from the timer valuation functions.

Let G be a dynamic expression. The underlying timer-free state of a state
s ∈ DR(G) is defined as ⇃s = [⇃H ]≈ forH ∈ s. Note that only in the first inaction
rule in Table 1, the left and right parts have different timer value annotations.
After removing all timer values, the both parts will coincide. Since structurally
equivalent dynamic expressions remain so after removing their timer value anno-
tations, ⇃s is unique for each s and the definition is correct. Thus, ⇃s is the
structural equivalence class of an arbitrary dynamic expression from s, where
timer values have been removed, prior to taking the equivalence class of that
expression. We cannot simply collect all the timer-discarded dynamic expressions
from s, since ⇃ s should be a state itself, i.e. it must contain all structurally
equivalent expressions.

Example 4. Let E = ({a}, ♮31)[]({b},
1
3 ) and s = [E]≈, s̃ =	s. Then ⇃s =⇃s̃ =

[({a}, ♮31)[]({b},
1
3 )]≈ = [({a}, ♮31)[]({b},

1
3 )]≈ = [({a}, ♮31)[]({b},

1
3 )}]≈ =
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{({a}, ♮31)[]({b},
1
3 ), ({a}, ♮

3
1)[]({b},

1
3 ), ({a}, ♮

3
1)[]({b},

1
3 ), ({a}, ♮

3
1)

3[]({b}, 13 ),

({a}, ♮31)
3[]({b}, 13 ), ({a}, ♮

3
1)

3[]({b}, 13 )}.

Hence, some enabled waiting multiactions of smay have the initial timer value
superscripts. Actually, this does not provide ⇃s with an extra timing information,
since those superscripts are determined only by the delays of the corresponding
waiting multiactions and their enabling status. The elements of the set of all
timer-free states of G, defined as ⇃DR(G) = {⇃s | s ∈ DR(G)}), correspond to
the reachable markings of the LDTSDPN N = Boxdtsd(G).

Let s ∈ DR(G) and s̄ =⇃s. The steady-state PMF for SMC(G) over the
timer-free states of G is defined as ϕ(s̄) =

∑
{s∈DR(G)|⇃s=s̄} ϕ(s). Then ϕ(s̄)

can be used to calculate the standard performance indices over the timer-free
states of G (hence, over the markings of N), by analogy with the standard
performance indices, defined over the arbitrary states of G. Then also the perfor-
mance measures that are specific for LDTSDPNs can be derived, based on the
numbers of tokens in the places of N .

4.2 Analysis of the DTMC

Let us consider an alternative solution method, studying the DTMCs of expres-
sions based on the state change probabilities PM(s, s̃).

Definition 17. Let G be a dynamic expression. The discrete time Markov chain
(DTMC) of G, denoted by DTMC(G), has the state space DR(G), the initial
state [G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

One can see that EDTMC(G) is constructed from DTMC(G) as follows.
For each state of DTMC(G), we remove a possible self-loop with probability
less than 1, associated with it and then normalize the probabilities of the re-
maining transitions from the state. Thus, EDTMC(G) and DTMC(G) differ
only by existence of self-loops with probability less than 1 and magnitudes of the
probabilities of the remaining transitions. Hence, EDTMC(G) and DTMC(G)
have the same communication classes of states and EDTMC(G) is irreducible
iff DTMC(G) is so. Since both EDTMC(G) and DTMC(G) are finite, they are
positive recurrent. Thus, in case of irreducibility, each of them has a single sta-
tionary PMF. Note that both EDTMC(G) and DTMC(G) or just one of them
may be periodic, thus having a unique stationary distribution, but no steady-
state (limiting) one. For example, it may happen that EDTMC(G) is periodic
while DTMC(G) is aperiodic due to self-loops associated with some states of the
latter. The states of SMC(G) are classified using EDTMC(G), hence, SMC(G)
is irreducible (positive recurrent, aperiodic) iff EDTMC(G) is so.

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of
(one-step) transition probability matrix (TPM) P for DTMC(G) are defined as

Pij =

{
PM(si, sj), si → sj ;
0, otherwise.



30 Igor V. Tarasyuk

The steady-state PMF ψ for DTMC(G) is defined like ψ∗ for EDTMC(G).
Let us determine a relationship between steady-state PMFs for DTMC(G)

and EDTMC(G). The following proposition gives the equation that relates the
mentioned steady-state PMFs.

We introduce some notation. For a vector v = (v1, . . . , vn), let Diag(v) be a
diagonal matrix of order n with the elements Diagij(v) (1 ≤ i, j ≤ n), defined as

Diagij(v) =

{
vi, i = j;
0, otherwise.

Proposition 3. Let G be a dynamic expression and SL be its self-loops ab-
straction vector. Then the steady-state PMFs ψ for DTMC(G) and ψ∗ for
EDTMC(G) are related as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

Proof. See Appendix A.1. ⊓⊔

The next proposition relates the steady-state PMFs for SMC(G) andDTMC(G).

Proposition 4. Let G be a dynamic expression, ϕ be the steady-state PMF for
SMC(G) and ψ be the steady-state PMF for DTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

{
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
, s ∈ DRT (G);

0, s ∈ DRV (G).

Proof. Let s ∈ DRT (G). Remember that ∀s ∈ DRT (G) SL(s) = SJ(s) and
∀s ∈ DRV (G) SJ(s) = 0. Then, by Proposition 3, we have

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)

∑
s̃∈DRT (G)

(
ψ∗(s̃)SL(s̃)∑

s̆∈DR(G) ψ
∗(s̆)SL(s̆)

) =

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)
·

∑
s̆∈DR(G) ψ

∗(s̆)SL(s̆)
∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃)

=
ψ∗(s)SL(s)∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃)

=

ψ∗(s)SJ(s)∑
s̃∈DRT (G) ψ

∗(s̃)SJ(s̃)
=

ψ∗(s)SJ(s)∑
s̃∈DR(G) ψ

∗(s̃)SJ(s̃)
= ϕ(s).

⊓⊔

Thus, to calculate ϕ, one can only apply normalization to some elements of
ψ (corresponding to the tangible states), instead of abstracting from self-loops
with probability less than 1 to get P∗ and then ψ∗, followed by weighting by
SJ and normalization. We call that technique abstraction, since we abstract
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from the vanishing states and consider only the (normalized) DTMC-based sta-
tionary probabilities of the tangible states. Hence, using DTMC(G) instead of
EDTMC(G) allows one to avoid multistage analysis, but the payment for it is
more time-consuming numerical and more complex analytical calculation of ψ
with respect to ψ∗. The reason is that DTMC(G) may have self-loops with prob-
ability less than 1, unlike EDTMC(G), hence, the behaviour of DTMC(G) may
stabilize slower than that of EDTMC(G) (if each of them has a single steady
state) and P is potentially more dense matrix than P∗, since P may have addi-
tional non-zero elements at the main diagonal. Proposition 4 is very important,
since the relationship between ϕ and ψ it discovers will be used in Proposition
5 to relate the steady-state PMFs for SMC(G) and the reduced DTMC(G).

Example 5. Let E be from Example 1. In Figure 3, the DTMC DTMC(E) is
presented. The TPM for DTMC(E) is

P =




1− ρ ρ 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 θ 0 1− θ 0
0 φ 0 0 1− φ



.

The steady-state PMF for DTMC(E) is

ψ =
1

2θφ(l +m) + φl + θm
(0, θφ(l +m), θφ(l +m), φl, θm).

Remember that DRT (E) = DRST (E) ∪DRWT (E) = {s1, s2, s4, s5} and
DRV (E) = {s3}. Hence,

∑

s∈DRT (E)

ψ(s) = ψ(s1) + ψ(s2) + ψ(s4) + ψ(s5) =
θφ(l +m) + φl + θm

2θφ(l +m) + φl + θm
.

By Proposition 4, we have

ϕ(s1) = 0 · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = 0,

ϕ(s2) =
θφ(l+m)

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = θφ(l+m)

θφ(l+m)+φl+θm ,

ϕ(s3) = 0,

ϕ(s4) =
φl

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = φl

θφ(l+m)+φl+θm ,

ϕ(s5) =
θm

2θφ(l+m)+φl+θm · 2θφ(l+m)+φl+θm
θφ(l+m)+φl+θm = θm

θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 2 with the use of ψ∗ and SJ .
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4.3 Analysis of the reduced DTMC

Let us now consider the method from [15–17,38, 2, 5, 3] that eliminates vanish-
ing states from the EMC (EDTMC, in our terminology) corresponding to the
underlying SMC of every GSPN N . The TPM for the resulting reduced EDTMC
(REDTMC) has smaller size than that for the EDTMC. The method demon-
strates that there exists a transformation of the underlying SMC of N into a
CTMC, whose states are the tangible markings of N . This CTMC, which is es-
sentially the reduced underlying SMC (RSMC) of N , is constructed on the basis
of the REDTMC. The CTMC can then be directly solved to get both the tran-
sient and the steady-state PMFs over the tangible markings of N . In [17], the
program and computational complexities of such an elimination method, based
on the REDTMC, were evaluated and compared with those of the preservation
method that does not eliminate vanishing states and based on the EDTMC. The
preservation method for GSPNs corresponds in dtsdPBC to the analysis of the
underlying SMCs of expressions, called the embedding approach.

The elimination method for GSPNs can be easily transferred to dtsdPBC,
hence, for every dynamic expression G, we can find a DTMC (since the so-
journ time in the tangible states from DR(G) is discrete and geometrically dis-
tributed) with the states from DRT (G), which can be directly solved to find the
transient and the steady-state PMFs over the tangible states. We shall demon-
strate that such a reduced DTMC (RDTMC) of G, denoted by RDTMC(G),
can be constructed from DTMC(G), using the method analogous to that de-
signed in [38, 2, 5, 3] in the framework of GSPNs to transform EDTMC into
REDTMC. Since the sojourn time in the vanishing states is zero, the state
changes of RDTMC(G) occur in the moments of the global discrete time as-
sociated with SMC(G), unlike those of EDTMC(G), which happen only when
the current state changes to some different one, irrespective of the global time.
Therefore, in our case, we can skip the stages of constructing the REDTMC of
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G, denoted by REDTMC(G), from EDTMC(G), and recovering RSMC of G,
denoted by RSMC(G) (which is the sought-for DTMC), from REDTMC(G),
since we shall have RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DTMC(G). We
reorder the states from DR(G) such that the first rows and columns of P will
correspond to the states from DRV (G) and the last ones will correspond to
the states from DRT (G). Let |DR(G)| = n and |DRT (G)| = m. The resulting
matrix can be decomposed as follows:

P =

(
C D
E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to
move from vanishing to vanishing states, and those of the (n−m)×m submatrix
D are the probabilities to move from vanishing to tangible states. The elements
of the m× (n−m) submatrix E are the probabilities to move from tangible to
vanishing states, and those of the m ×m submatrix F are the probabilities to
move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m×m matrix, calculated as

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from van-
ishing to vanishing states in any number of state changes, without traversal of
tangible states.

If there are no loops among vanishing states then for any vanishing state
there exists a value l ∈ N such that every sequence of state changes that starts
in a vanishing state and is longer than l should reach a tangible state. Thus,
∃l ∈ N ∀k > l Ck = 0 and

∑∞
k=0 C

k =
∑l

k=0 C
k. If there are loops among

vanishing states then all such loops are supposed to be of “transient” rather
than “absorbing” type, since the latter is treated as a specification error to be
corrected, like in [38, 3]. We have earlier required that SMC(G) has a single
closed communication (which is also ergodic) class of states. Remember that a
communication class of states is their equivalence class w.r.t. communication
relation, i.e. a maximal subset of communicating states. A communication class
of states is closed if only the states belonging to it are accessible from every its
state. The ergodic class cannot consist of vanishing states only to avoid “ab-
sorbing” loops among them, hence, it contains tangible states as well. Thus, any
sequence of vanishing state changes that starts in the ergodic class will reach
a tangible state at some time moment. All the states that do not belong to
the ergodic class should be transient. Hence, any sequence of vanishing state
changes that starts in a transient vanishing state will some time reach either
a transient tangible state or a state from the ergodic class [27, 14, 57, 28]. In
the latter case, a tangible state will be reached as well, as argued above. Thus,
every sequence of vanishing state changes in SMC(G) that starts in a van-
ishing state will exit the set of all vanishing states in the future. As a result,
the probabilities to move from vanishing to vanishing states in k ∈ N state
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changes, without traversal of tangible states, will lead to 0 when k tends to
∞. Then we have limk→∞ Ck = limk→∞(I − (I − C))k = 0, hence, I − C is
a non-singular matrix, i.e. its determinant is not equal to zero. Thus, the in-
verse matrix of I − C exists and may be expressed by a Neumann series as∑∞

k=0(I− (I−C))k =
∑∞
k=0 C

k = (I−C)−1. Therefore,

G =

∞∑

k=0

Ck =

{∑l
k=0 C

k, ∃l ∈ N ∀k > l Ck = 0, no vanishing states loops;
(I−C)−1, limk→∞ Ck = 0, vanishing states loops;

where 0 is the square matrix consisting only of zeros and I is the identity matrix,
both of order n−m.

For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let Fij be the elements of the matrix
F, Eik be those of E, Gkl be those of G and Dlj be those of D. By definition,
the elements P⋄

ij of the matrix P⋄ are calculated as

P⋄
ij=Fij+

n−m∑

k=1

n−m∑

l=1

EikGklDlj=Fij+
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj=Fij+
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state

si to the tangible state sj in any number of steps, without traversal of tangible
states, but possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj . The probability to move from s
to s̃ in any number of steps, without traversal of tangible states is

PM⋄(s, s̃) = P⋄
ij .

Definition 18. Let G be a dynamic expression and [G]≈ ∈ DRT (G). The re-
duced discrete time Markov chain (RDTMC) of G, denoted by RDTMC(G),
has the state space DRT (G), the initial state [G]≈ and the transitions s →֒P s̃,
where P = PM⋄(s, s̃).

Let us now define RSMC(G) as a “restriction” of SMC(G) to its tangi-
ble states. Since the sojourn time in the tangible states of SMC(G) is discrete
and geometrically distributed, we can see that RSMC(G) is a DTMC with the
state space DRT (G), the initial state [G]≈ and the transitions whose proba-
bilities collect all those in SMC(G) to move from the tangible to the tangible
states, directly or indirectly, i.e. by going through its vanishing states only. Thus,
RSMC(G) has the transitions s →֒P s̃, where P = PM⋄(s, s̃), hence, we get
RSMC(G) = RDTMC(G).

Note that RDTMC(G) is constructed from DTMC(G) as follows. All van-
ishing states and all transitions to, from and between them are removed. All
transitions between tangible states are preserved. The probabilities of transi-
tions between tangible states may become greater and new transitions between
tangible states may be added, both iff there exist moves between these tangible
states in any number of steps, going through vanishing states only. Thus, for
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each sequence of transitions between two tangible states in DTMC(G) there
exists a (possibly shorter, since the eventual passed through vanishing states are
removed) sequence between the same states in RDTMC(G) and vice versa. If
DTMC(G) is irreducible then all its states (including tangible ones) communi-
cate, hence, all states of RDTMC(G) communicate as well and it is irreducible.
Since both DTMC(G) and RDTMC(G) are finite, they are positive recurrent.
Thus, in case of irreducibility of DTMC(G), each of them has a single station-
ary PMF. Then DTMC(G) and/or RDTMC(G) may be periodic, thus having a
unique stationary distribution, but no steady-state (limiting) one. For example,
it may happen that DTMC(G) is aperiodic while RDTMC(G) is periodic due
to removing vanishing states from the former.
Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step,
k ∈ N) PMF ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ

⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ N).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ

⋄(sm)) for RDTMC(G) is a so-
lution of the equation system

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

,

where I is the identity matrix of order m and 0 is a row vector of m values 0, 1
is that of m values 1.

Note that the vector ψ⋄ exists and is unique if RDTMC(G) is ergodic. Then
RDTMC(G) has a single steady state, and we have ψ⋄ = limk→∞ ψ⋄[k].

The zero sojourn time in the vanishing states guarantees that the state
changes of RDTMC(G) occur in the moments of the global discrete time as-
sociated with SMC(G), i.e. every such state change occurs after one time unit
delay. Hence, the sojourn time in the tangible states is the same for RDTMC(G)
and SMC(G). The state change probabilities of RDTMC(G) are those to move
from tangible to tangible states in any number of steps, without traversal of
the tangible states. Then RDTMC(G) and SMC(G) have the same transient
behaviour over the tangible states, thus, the transient analysis of SMC(G) is
possible using RDTMC(G).

The next proposition relates the steady-state PMFs for SMC(G) and
RDTMC(G). It proves that the steady-state probabilities of the tangible states
coincide for them.

Proposition 5. Let G be a dynamic expression, ϕ be the steady-state PMF for
SMC(G) and ψ⋄ be the steady-state PMF for RDTMC(G). Then ∀s ∈ DR(G)
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ϕ(s) =

{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Proof. See Appendix A.2. ⊓⊔

Thus, to calculate ϕ, one can just take all the elements of ψ⋄ as the steady-
state probabilities of the tangible states, instead of abstracting from self-loops
with probability less than 1 to get P∗ and then ψ∗, followed by weighting
by SJ and normalization. We call that technique elimination, since we elimi-
nate the vanishing states. Hence, using RDTMC(G) instead of EDTMC(G)
allows one to avoid such a multistage analysis, but constructing P⋄ also re-
quires some efforts, including calculating matrix powers or inverse matrices.
Note that RDTMC(G) may have self-loops with probability less than 1, un-
like EDTMC(G), hence, the behaviour of RDTMC(G) may stabilize slower
than that of EDTMC(G) (if each of them has a single steady state). On the
other hand, P⋄ is generally smaller and denser matrix than P∗, since P⋄ may
have additional non-zero elements not only at the main diagonal, but also many
of them outside it. Therefore, in most cases, we have less time-consuming numer-
ical calculation of ψ⋄ with respect to ψ∗. At the same time, the complexity of the
analytical calculation of ψ⋄ with respect to ψ∗ depends on the model structure,
such as the number of vanishing states and loops among them, but usually it
is lower, since the matrix size reduction plays an important role in many cases.
Hence, for the system models with many immediate activities, we normally have
a significant simplification of the solution. At the abstraction level of SMCs, the
elimination of vanishing states decreases their impact to the solution complexity
while allowing immediate activities to specify a comprehensible logical structure
of systems at the higher level of transition systems.

Example 6. Let E be from Example 1. Remember that DRT (E) = DRST (E) ∪
DRWT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. We reorder the states from
DR(E), by moving vanishing states to the first positions: s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =




0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0
1 0 0 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ



.

The result of the decomposing Pr are the matrices

C=0, D=

(
0, 0,

l

l +m
,

m

l +m

)
, E=




0
1
0
0


 , F=




1− ρ ρ 0 0
0 0 0 0
0 θ 1− θ 0
0 φ 0 1− φ


 .
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Since C1 = 0, we have ∀k > 0 Ck = 0, hence, l = 0 and there are no loops
among vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.

Further, the TPM for RDTMC(E) is

P⋄ = F+EGD = F+EID = F+ED =




1− ρ ρ 0 0
0 0 l

l+m
m
l+m

0 θ 1− θ 0
0 φ 0 1− φ


 .

In Figure 4, the reduced DTMC RDTMC(E) is presented. The steady-state
PMF for RDTMC(E) is

ψ⋄ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), φl, θm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)). By Proposition 5, we have

ϕ(s1) = 0,

ϕ(s2) =
θφ(l+m)

θφ(l+m)+φl+θm ,

ϕ(s3) = 0,

ϕ(s4) =
φl

θφ(l+m)+φl+θm ,

ϕ(s5) =
θm

θφ(l+m)+φl+θm .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + φl + θm
(0, θφ(l +m), 0, φl, θm).

This coincides with the result obtained in Example 2 with the use of ψ∗ and SJ .

Example 7. In Figure 5, the reduced underlying SMC RSMC(E) is depicted.
The average sojourn times in the states of the reduced underlying SMC are writ-
ten next to them in bold font. In spite of the equality RSMC(E)=RDTMC(E),
the graphical representation of RSMC(E) differs from that of RDTMC(E),
since the former is based on the REDTMC(E), where each state is decorated
with the positive average sojourn time of RSMC(E) in it. REDTMC(E) is con-
structed from EDTMC(E) in the similar way as RDTMC(E) is obtained from
DTMC(E). By construction, the residence time in each state of RSMC(E) is
geometrically distributed. Hence, the associated parameter of geometrical dis-
tribution is uniquely recovered from the average sojourn time in the state.
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RDTMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

ρ

θ φ

l
l+m

m
l+m

✞✝ ✲

✂ ✁✂ ✁✻

1−ρ

1−θ 1−φ

Fig. 4. The reduced DTMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ)))) ∗ Stop]

RSMC(E)

☛
✡

✟
✠

☛
✡

✟
✠

✞
✝

☎
✆

☛
✡

✟
✠

☛
✡

✟
✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s1

s2

s4 s5

1

1 1

l
l+m

m
l+m

1

ρ

1

1

θ

1

φ

Fig. 5. The reduced SMC of E for E = [({a}, ρ) ∗ (({b}, ♮1k); ((({c}, ♮
0
l ); ({d}, θ))[]

(({e}, ♮0m); ({f}, φ)))) ∗ Stop]
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Our reduction of the underlying SMC by eliminating its vanishing states,
resulting in the reduced DTMC, partially resembles the hierarchical aggregation
method from [18] for singularly perturbed finite state Markov processes with rare
transitions. The method constructs a sequence of increasingly simplified (with
reduced order) models and then combines them to approximate asymptotically
the original process.

Our reduction technique also resembles the method from [34] that removes
instantaneous states of stochastically discontinuous Markov reward chains. The
latter are “limits” of continuous time Markov chains with state rewards and fast
transitions when the rates (speeds) of these transitions tend to infinity, making
them immediate. Analogously, we could consider DTMCs extended with instan-
taneous states instead of SMCs with geometrically distributed or zero sojourn
time in the states. However, within dtsdPBC, we have decided to take SMCs as
the underlying stochastic process to be able to consider not only geometrically
distributed and zero residence time in the states, but arbitrary fixed discrete
time delays as well.

5 Conclusion

In this paper, we have considered a discrete time stochastic extension dtsdPBC of
PBC, enriched with deterministic multiactions. The calculus has a parallel step
operational semantics, based on labeled probabilistic transition systems and a
denotational semantics in terms of a subclass of LDTSDPNs [52]. A technique
of performance evaluation within the calculus has been presented (embedding)
that explores the corresponding stochastic process, which is a semi-Markov chain
(SMC). In such an SMC, the sojourn time in every tangible state is geometrically
distributed (being one or infinity, as special cases) while the sojourn time in
every vanishing state is zero. It has been proved that the underlying discrete
time Markov chain (DTMC) or its reduction (RDTMC) by eliminating vanishing
states may alternatively and suitably be studied for that purpose (the abstraction
and elimination techniques, respectively). Since vanishing states are preserved by
both the embedding and abstraction, the latter can be seen as an alternative (to
the former) preservation method [17]. In Figure 6, we classify the performance
analysis techniques in dtsdPBC.

Performance evaluation

Preservation Elimination
(RDTMC)

Embedding
(SMC)

Abstraction
(DTMC)

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

◗
◗◗s

Fig. 6. Performance evaluation methods in dtsdPBC
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The advantage of our framework is twofold. First, one can specify in it con-
current composition and synchronization of (multi)actions, whereas this is not
possible in classical Markov chains. As argued in [57], (stochastic) PNs represent
the systems structure more concisely and can be an intermediate formalism for
their more intuitive translation into Markov chains. Second, algebraic formulas
represent processes in a more compact way than PNs and allow one to apply
syntactic transformations and comparisons. Process algebras are compositional
by definition and their operations naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a complex model in the
algebraic setting than in PNs. The complexity of PNs generated for practical
models in the literature shows that it is not straightforward to construct such
PNs directly from the system specifications.

dtsdPBC is well suited for the discrete time applications, whose discrete
states change with a global time tick, such as business processes, neural and
transportation networks, computer and communication systems, timed web ser-
vices [58], as well as for those, in which the distributed architecture or the con-
currency level should be preserved while modeling and analysis, such as genetic
regulatory and cellular signalling networks (featuring maximal parallelism) in
biology [13, 4] (remember that, in step semantics, we have additional transitions
due to concurrent executions). dtsdPBC is also capable to model and analyze
parallel systems with fixed durations of the typical activities (loading, processing,
transfer, repair, low-level events, message delivery) and stochastic durations of
the randomly occurring activities (arrival, departure, failure, packet loss, mes-
sage collision), including industrial, manufacturing, queueing, computing and
network systems. Thus, the main advantages of dtsdPBC are the flexible mul-
tiaction labels, deterministic and stochastic multiactions, powerful operations,
as well as its step operational and Petri net denotational semantics, allowing
for parallel executions (firings) of activities (net transitions), with an ability for
analytical performance evaluation. The uniqueness of our approach consists in
applying a parallel semantics for the process expressions and preserving the con-
currency level in the extracted performance models (SMC, DTMC and RDTMC)
through their state changes corresponding to the simultaneous executions.

In the following, we plan to use step stochastic bisimulation equivalence to re-
duce behaviour of the algebraic processes by quotienting their transition systems
and Markov chains. Such a reduction should simplify the functional (qualitati-
ve) and performance (quantitative) analysis. We would like to construct some
application examples demonstrating expressiveness of the calculus and appli-
cation of the behavioural analysis and performance evaluation, both simplified
using quotienting by step stochastic bisimulation. Future work could also con-
sist in constructing a congruence relation for dtsdPBC, i.e. the equivalence that
withstands application of all operations of the algebra. The first possible candi-
date is a stronger version of step stochastic bisimulation equivalence, defined via
transition systems equipped with two extra transitions skip and redo, like those
from sPBC [30]. Moreover, recursion operation could be added to dtsdPBC to
increase specification power of the algebra.
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A Proofs

A.1 Proof of Proposition 3

Let PSL be a vector with the elements

PSL(s) =

{
PM(s, s), s→ s;
0, otherwise.

By definition of PM∗(s, s̃), we have P∗ = Diag(SL)(P−Diag(PSL)). Further,

ψ∗(P∗ − I) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by Diag(SL)(P−Diag(PSL)) we obtain

ψ∗Diag(SL)(P−Diag(PSL)) = ψ∗ and
ψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) + I).

Note that ∀s ∈ DR(G) we have SL(s)PSL(s) + 1 =

{
SL(s)PM(s, s) + 1 = PM(s,s)

1−PM(s,s) + 1 = 1
1−PM(s,s) , s→ s;

SL(s) · 0 + 1 = 1, otherwise;

}
= SL(s).

Hence, Diag(SL)Diag(PSL) + I = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then, for v = ψ∗Diag(SL), we have vP = v and v(P − I) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing
its elements by their sum, since we should have ψ1T = 1 as a result:

ψ =
1

v1T
v =

1

ψ∗Diag(SL)1T
ψ∗Diag(SL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check that ψ is a solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

,

hence, it is indeed the steady-state PMF for DTMC(G). ⊓⊔
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A.2 Proof of Proposition 5

Let P be the reordered TPM for DTMC(G) and ψ be the steady-state PMF
for DTMC(G), i.e. ψ is a solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

.

Let |DR(G)| = n and |DRT (G)| = m. The decomposed P, P− I and ψ are

P =

(
C D
E F

)
, P− I =

(
C− I D
E F− I

)
and ψ = (ψV , ψT ),

where ψV = (ψ1, . . . , ψn−m) is the subvector of ψ with the steady-state probabil-
ities of vanishing states and ψT = (ψn−m+1, . . . , ψn) is that with the steady-state
probabilities of tangible states.

Then the equation system for ψ is decomposed as follows:



ψV (C− I) + ψTE = 0
ψVD+ ψT (F− I) = 0
ψV 1

T + ψT1
T = 1

.

Let P⋄ be the TPM for RDTMC(G). Then ψ⋄ is a solution of the equation
system {

ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1

.

We have
P⋄ = F+EGD,

where the matrix G can have two different forms, depending on whether the
loops among vanishing states exist, hence, we consider the two following cases.

1. There exist no loops among vanishing states. We have ∃l ∈ N ∀k > l Ck = 0
and G =

∑l
k=0 C

k.
Let us right-multiply the first equation of the decomposed equation system
for ψ by G:

ψV (CG−G) + ψTEG = 0.

Taking into account that G =
∑l
k=0 C

k, we get

ψV

(
l∑

k=1

Ck +Cl+1 −C0 −
l∑

k=1

Ck

)
+ ψTEG = 0.

Since C0 = I and Cl+1 = 0, we obtain

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decomposed
equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.
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Since F+ EGD = P⋄, we have

ψT (P
⋄ − I) = 0.

2. There exist loops among vanishing states. We have limk→∞ Ck = 0 and
G = (I−C)−1.
Let us right-multiply the first equation of the decomposed equation system
for ψ by G:

−ψV (I−C)G+ ψTEG = 0.

Taking into account that G = (I−C)−1, we get

−ψV + ψTEG = 0 and ψV = ψTEG.

Let us substitute ψV with ψTEG in the second equation of the decomposed
equation system for ψ:

ψTEGD+ ψT (F− I) = 0 and ψT (F+EGD− I) = 0.

Since F+ EGD = P⋄, we have

ψT (P
⋄ − I) = 0.

The third equation ψV 1
T + ψT1

T = 1 of the decomposed equation system
for ψ implies that if ψV has nonzero elements then the sum of the elements of
ψT is less than one. We normalize ψT by dividing its elements by their sum:

v =
1

ψT1T
ψT .

It is easy to check that v is a solution of the equation system
{
v(P⋄ − I) = 0
v1T = 1

,

hence, it is the steady-state PMF for RDTMC(G) and we have

ψ⋄ = v =
1

ψT1T
ψT .

Note that ∀s ∈ DRT (G) ψT (s) = ψ(s). Then the elements of ψ⋄ are calcu-
lated as follows: ∀s ∈ DRT (G)

ψ⋄(s) =
ψT (s)∑

s̃∈DRT (G) ψT (s̃)
=

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

.

By Proposition 4, ∀s ∈ DRT (G) ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
.

Therefore, ∀s ∈ DRT (G)

ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
= ψ⋄(s).

⊓⊔
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