S@©MR ISSN 1813-3304

CUBNPCKNE SJ/JIEKTPOHHDBIE
MATEMATUYECKUE USBECTUA

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Tom 18, Ne 2, emp. 1105-1145 (2021) VJIK 004.423.4, 519.217.2, 519.681.2
DOI 10.33048 /semi.2021.18.085 MSC 18C10, 60J10, 60J20, 60K 15, 68Q55

PERFORMANCE EVALUATION IN
STOCHASTIC PROCESS ALGEBRA DTSDPBC

1.V. TARASYUK

ABsTRACT. We consider discrete time stochastic and deterministic Petri
box calculus (dtsdPBC), recently proposed by I.V. Tarasyuk. dtsdPBC is
a discrete time extension with stochastically and deterministically timed
multiactions of the well-known Petri box calculus (PBC), presented by
E. Best, R. Devillers, J.G. Hall and M. Koutny. In dtsdPBC, stochastic
multiactions have (conditional) probabilities of execution at the next
time moment while deterministic multiactions have non-negative integers
associated that specify fixed (including zero) delays. dtsdPBC features a
step operational semantics via labeled probabilistic transition systems.

In order to evaluate performance in dtsdPBC, the underlying semi-
Markov chains (SMCs) are investigated, which are extracted from the
transition systems corresponding to the process expressions of the calcu-
lus. It is demonstrated that the performance analysis in dtsdPBC is al-
ternatively possible by exploring the corresponding discrete time Markov
chains (DTMCs) and their reductions (RDTMCs), obtained by elimi-
nating the states with zero residence time (vanishing states). The me-
thod based on DTMCs permits to avoid building the embedded DTMC
(EDTMC) and weighting the probability masses in the states by their
average sojourn times. The method based on RDTMCs simplifies perfor-
mance analysis of large systems due to eliminating the non-stop transit
(vanishing) states where only instantaneous activities are executed, re-
sulting in a smaller model that can easier be solved directly.

Keywords: stochastic process algebra, Petri box calculus, discrete time,
stochastic multiaction, deterministic multiaction, transition system, ope-
rational semantics, Markov chain, performance evaluation, reduction.

TAaRASYUK, [.V., PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC.
© 2021 Tarasyuk I.V.
Received February, 18, 2021, published October, 22, 2021.

1105

1106 I.V. TARASYUK

1. INTRODUCTION

Process calculi, like CSP [24], ACP [6] and CCS [40] are well-known formal
models for specification of computing systems and analysis of their behaviour. In
such process algebras (PAs), processes are described by formulas, and verification
of the behavioural properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. Recently, stochastic extensions of PAs were proposed,
like MTIPP [22], PEPA [23] and EMPA [8]. Such stochastic process algebras (SPAs)
specify actions which can occur (qualitative features) and associate with the actions
the distribution parameters of their random delays (quantitative characteristics).

1.1. Petri box calculus (PBC). Petri box calculus (PBC) [9, 11, 10] is a flexible
and expressive process algebra developed as a tool for specification of the Petri nets
(PNs) structure and their interrelations. Its goal was also to propose a compositional
semantics for high level constructs of concurrent programming languages in terms
of elementary PNs. Formulas of PBC are combined from multisets of elementary ac-
tions and their conjugates, called multiactions (basic formulas). The empty multiset
of actions is interpreted as the silent multiaction specifying an invisible activity. The
operational semantics of PBC is of step type, since its SOS rules have transitions
with (multi)sets of activities, corresponding to simultaneous executions of activities
(steps). A denotational semantics of PBC was proposed via a subclass of PNs with
an interface and considered up to isomorphism, called Petri boxes. The extensions
of PBC with a deterministic, a nondeterministic or a stochastic model of time exist.

1.2. Time extensions of PBC. A time extension of PBC with a nondeterministic
time model, called time Petri box calculus (tPBC), was proposed in [26]. In tPBC,
timing information is added by associating time intervals with instantaneous ac-
tions. tPBC has a step time operational semantics in terms of labeled transition
systems. Its denotational semantics was defined in terms of a subclass of labeled
time Petri nets (LtPNs), based on tPNs [39] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was
defined in [35, 36], it accommodates a deterministic model of time. In contrast to
tPBC, multiactions of TPBC are not instantaneous, but have time durations. TPBC
has a step timed operational semantics in terms of labeled transition systems. The
denotational semantics of TPBC was defined in terms of a subclass of labeled Timed
Petri nets (LTPNs), based on TPNs [46] and called Timed Petri boxes (T-boxes).

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [44, 45], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was defined on a subclass of labeled arc time Petri nets (atPNs), based of
those from [12, 20|, where time restrictions are associated with the arcs, called arc
time Petri boxes (at-boxes). tPBC, TPBC and atPBC, all adapt the discrete time
approach, but TPBC has no immediate (multi)actions.

1.3. Stochastic extensions of PBC. A stochastic extension of PBC, called sto-
chastic Petri box calculus (sPBC), was proposed in [33, 29, 30]. In sPBC, multiacti-
ons have stochastic delays that follow (negative) exponential distribution. Each mul-
tiaction is equipped with a rate that is a parameter of the corresponding exponential
distribution. The instantaneous execution of a stochastic multiaction is possible

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1107

only after the corresponding stochastic time delay. The calculus has an interleaving
operational semantics defined via transition systems labeled with multiactions and
their rates. Its denotational semantics was defined in terms of a subclass of labeled
continuous time stochastic PNs, based on CTSPNs [37, 2] and called stochastic Petri
boxes (s-boxes). In sPBC, performance of the processes is evaluated by analyzing
their underlying continuous time Markov chains (CTMCs).

sPBC was enriched with immediate multiactions having zero delay in [31, 32].
We call such an extension generalized sPBC (gsPBC). An interleaving operational
semantics of gsPBC was constructed via transition systems labeled with stochastic
or immediate multiactions together with their rates or probabilities. A denotational
semantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs,
based on GSPNs [37, 2, 3] and called generalized stochastic Petri boxes (gs-boxes).
The performance analysis in gsPBC is based on semi-Markov chains (SMCs).

In [48, 49, 50, 51|, a discrete time stochastic extension dtsPBC of PBC was
presented. In dtsPBC, the residence time in the process states is geometrically
distributed. A step operational semantics of dtsPBC was constructed via labeled
probabilistic transition systems. Its denotational semantics was defined in terms of
a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs
[41, 42] and called discrete time stochastic Petri boxes (dts-boxes). The performance
evaluation in dtsPBC is accomplished via the underlying discrete time Markov
chains (DTMCs) of the algebraic processes.

In [53, 54, 55, 56], we presented a calculus dtsiPBC, an extension with immediate
multiactions of dtsPBC. The step operational semantics of dtsiPBC was constructed
with the use of labeled probabilistic transition systems. Its denotational semantics
was defined in terms of a subclass of labeled discrete time stochastic and immediate
PNs (LDTSIPNs), based on the extension of DTSPNs [41, 42| with transition
labeling and immediate transitions, called dtsi-boxes. The corresponding stochastic
process, the underlying SMC, was constructed and investigated, with the purpose of
performance evaluation. In addition, the alternative solution methods were develo-
ped, based on the underlying ordinary and reduced DTMCs.

1.4. Our contributions. As a basis model, we take an extension of dtsiPBC with
deterministic multiactions, called discrete time stochastic and deterministic Petri
boz calculus (dtsdPBC) [52]. It enhances the expressiveness of dtsiPBC and ex-
tends the application area of the associated specification and analysis techniques.
In dtsdPBC, besides the probabilities from the real-valued interval (0;1) that are
used to calculate discrete time delays of stochastic multiactions, also non-negative
integers are used to specify fixed time delays of deterministic multiactions (including
zero delay, which is the case of immediate multiactions). To resolve conflicts among
deterministic multiactions, they are additionally equipped with positive real-valued
weights. As argued in [63, 59, 60], a combination of deterministic and stochastic
delays fits well to model technical systems with constant (fixed) durations of the
regular non-random activities and probabilistically distributed (stochastic) durati-
ons of the randomly occurring activities.

dtsdPBC has a step operational semantics, constructed with the use of labeled
probabilistic transition systems. The denotational semantics of dtsdPBC is defined
in terms of an interface-featured subclass of labeled discrete time stochastic and
deterministic Petri nets (LDTSPNs with deterministic transitions, LDTSDPNs),
based on the extension of DTSPNs [41, 42] with transition labeling and deterministic

1108 I.V. TARASYUK

transitions, called dtsd-boxes. Here we do not consider the denotational semantics
of the calculus, since it was extensively described in our previous publication [52].
In that paper, a consistency of the operational and denotational semantics with res-
pect to step stochastic bisimulation equivalence was proved, hence, all the results
established for the former can be transferred to the latter up to that equivalence.
The main result of this paper is the performance analysis methods in the frame-
work of dtsdPBC. To evaluate performance, we construct and solve the underlying
stochastic process, which is a semi-Markov chain (SMC). The obtained stationary
probability masses in the states of the SMC are used to calculate the performance
measures (indices) of interest. We call that approach embedding, since the SMC is
described by the embedded DTMC (EDTMC) specifying the state change probabi-
lities, together with the probability distribution functions (PDFs) of the residence
times in the states. The alternative solution techniques are also developed, based on
the corresponding discrete time Markov chain (DTMC) and its reduction (RDTMC)
by eliminating vanishing states, i.e. those with zero sojourn (residence) times. The
approach based on the DTMC allows one to avoid the costly intermediate stages
of building the EDTMC, weighting the probability masses in the states by their
average sojourn times (rescaling) and final normalization. We call that approach
abstraction, since we abstract from all vanishing states by taking into account only
the (normalized) DTMC-based stationary probabilities of the tangible states, i.e.
those with positive sojourn times. The approach based on the RDTMC simplifies
performance analysis of large systems due to eliminating the non-stop transit (va-
nishing) states where only instantaneous activities can be executed, resulting in
a smaller model having only tangible states that can be solved directly with less
efforts. We call that approach elimination, since we eliminate all vanishing states.
Thus, the main contributions of the paper are the following.

e Performance analysis in dtsdPBC via semi-Markov chains (embedding).
e The solution technique via discrete time Markov chains (abstraction).
e The solution method via reduced discrete time Markov chains (elimination).

1.5. Structure of the paper. The paper is organized as follows. In Section 2, the
syntax of algebra dtsdPBC is proposed. In Section 3, we present the operational
semantics of the calculus in terms of labeled probabilistic transition systems. In Sec-
tion 4, the underlying stochastic process (SMC) is defined and analyzed, after which
the alternative solution methods are outlined, based on the corresponding DTMC
and RDTMC. Section 5 summarizes the results obtained and outlines research
perspectives in this area. The long and complex proofs are moved to Appendix A.

2. SYNTAX
In this section, we propose the syntax: activities, operations and expressions.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M:X = Nuwith|[{z € X | M(z) > 0}| < o0, t.e. it has a finite number of elements.

We denote the set of all finite multisets over a set X by N*}in. Let M, M’ € me
The cardinality of M is M| = Y M(x). We write x € M if M(z) > 0 and
M C M ifVe e X M(z) < M'(x). We define (M + M')(x) = M(x) + M’'(z) and
(M — M")(z) = max{0, M (x) — M'(z)}. When Vz € X, M(x) <1, M can be seen
as a proper set M C X. The set of all subsets (powerset) of X is denoted by 2%.

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1109

Let Act = {a,b, ...} be the set of elementary actions. Then Act = {a,b,...}isthe

set of conjugated actions (conjugates) such that @ # a and a=a.Let A= ActUAct
be the set of all actions, and L = N;ﬁ‘m be the set of all multiactions. Note that
() € L specifies an internal move, i.e. the execution of a multiaction without visible
action names. The alphabet of o € L is defined as A(a) = {z € A| a(x) > 0}.

A stochastic multiaction is a pair («,p), where o € £ and p € (0;1) is the
probability of the multiaction «. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets of
stochastic multiactions after one time unit delay. The probability 1 is left for (impli-
citly assigned to) waiting multiactions, i.e. positively delayed deterministic multiac-
tions (to be defined later), which have weights to resolve conflicts with other waiting
multiactions. We do not have probability 0 of stochastic multiactions, since they
would not be performed in this case. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (a,), where a € £, § € N is the non-ne-
gative integer-valued (fized) delay and [€ R = (0;00) is the positive real-valued
weight of the multiaction «. This weight is interpreted as a measure of importance
(urgency, interest) or a bonus reward associated with execution of the deterministic
multiaction at the moment when the corresponding delay has expired. Such weights
are used to calculate the probabilities to execute sets of deterministic multiactions
after their delays. An immediate multiaction is a deterministic multiaction with the
delay 0 while a waiting multiaction is a deterministic multiaction with a positive
delay. In case of no conflicts among waiting multiactions, whose remaining times
to execute (RTEs) are equal to one time unit, they are executed with probability
1 at the next moment. Deterministic multiactions have a priority over stochastic
ones while immediate multiactions have a priority over waiting ones. Different types
of multiactions cannot participate together in some step (parallel execution). Let
DL be the set of all deterministic multiactions, ZL be the set of all immediate
multiactions and WL be the set of all waiting multiactions. We have DL = ZLUWL.

The same multiaction « € £ may have different probabilities, (fixed) delays
and weights in the same specification. An activity is a stochastic or a deterministic
multiaction. Let SDL = SLUDL = SLUZLUWL be the set of all activities. The
alphabet of an activity (o, k) € SDL is defined as A(«, k) = A(a). The alphabet of
a multiset of activities T € N?}?f is defined as A(T) = Uq,r)erAl).

Activities are combined into formulas (process expressions) by the following
operations: sequence ;, choice (|, parallelism ||, relabeling [f] of actions, restriction rs
over a single action, synchronization sy on an action and its conjugate, and iteration
[*#] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composition)
does not include synchronization, unlike the corresponding operation in CCS [40].

Relabelig_g\ functions f : A — A are bijections preserving conjugates, i.e. Vx €
A f(Z) = f(z). Relabeling is extended to multiactions in the usual way: for o € £
we define f(a) =3 ., f(z). Relabeling is extended to activities: for (a, k) € SDL,
we define f(a, k) = (f(«), k). Relabeling is extended to the multisets of activities:
for T € N?}Zﬁ we define f(Y) = 3", . jex(f(@), k). The sums are considered with
the multiplicity when applied to multisets: f(a) =3 ., f(z) = >, c 4 a(z) f(z).

1110 I.V. TARASYUK

Restriction over an elementary action a € Act means that, for a given expression,
any process behaviour containing a or its conjugate a is not allowed.

Let a, 8 € £ be two multiactions such that for some elementary action a € Act
we have ¢ € a and @ € B, or & € a and a € . Then, synchronization of o and
by a is defined as (a @, 8)(z) = { ZE§§ igﬁiﬁ b ithefw(;zeg.c N
Activities are synchronized via their multiaction parts, i.e. the synchronization by a
of two activities, whose multiaction parts a and [possess the properties mentioned
above, results in the activity with the multiaction part a®, 5. We may synchronize
activities of the same type only: either both stochastic multiactions or both determi-
nistic ones with the same delay, since stochastic, waiting and immediate multiactions
have different priorities, and diverse delays of waiting multiactions would contradict
their joint timing. Hence, the multiactions of different types cannot be executed
together (note that the execution of immediate multiactions takes no time, unlike
that of waiting or stochastic ones). Synchronization by a means that, for a given
expression with a process behaviour containing two concurrent activities that can
be synchronized by a, there exists also the behaviour that differs from the former
only in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is
performed zero or more times, and finally, the termination subprocess is executed.

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations in order to construct the composite process-algebraic formulas.
As for the PN intuition, static expressions correspond to unmarked LDTSDPNs
[52]. A marking is the allocation of tokens in the places of a PN and markings are
used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated,
whose value is the time left till the moment when the waiting multiaction can be exe-
cuted. Therefore, besides standard (unstamped) waiting multiactions (o,) € WL,
a special case of the stamped waiting multiactions should be considered in the

definition of static expressions. Each (time) stamped waiting multiaction (v, £?)°
has an extra superscript § € {1,...,0} that specifies a time stamp indicating the

latest value of the timer associated with that multiaction. The standard waiting
multiactions have no time stamps, to demonstrate irrelevance of the timer values
for them (for example, their timers have not yet started or have already finished).
The notion of the alphabet part for (the multisets of) stamped waiting multiactions
is defined like that for (the multisets of) unstamped waiting multiactions.

By reasons of simplicity, we do not assign the timer value superscripts ¢ to imme-
diate multiactions, a special case of deterministic multiactions («, hf) with the delay
6 = 0 in the form of (a,), since their timer values can only be equal to 0.

Definition 2. Let (a,k) € SDL, (a,b)) € WL, § € {1,...,0} and a € Act. A
static expression of dtsdPBC' is

E = (a,fi)|(a,h?)‘;|E;E|E[]E|E||E|E[f]|Ersa|Esya|[E>kE>kE].

Let StatExpr denote the set of all static expressions of dtsdPBC.

To avoid technical difficulties with the iteration operator, we should not allow
concurrency at the highest level of the second argument of iteration. This is not a
severe restriction, since we can always prefix parallel expressions by an activity with

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1111

the empty multiaction part. Relaxing the restriction can result in LDTSDPNs [52]
which are not safe, like shown for PNs in [10]. A PN is n-bounded (n € N) if for all its
reachable (from the initial marking by the sequences of transition firings) markings
there are at most n tokens in every place, and a PN is safe if it is 1-bounded.

Definition 3. Let (o, k) € SDL, (a,4)) € WL, § € {1,...,0} and a € Act. A
regular static expression of dtsdPBC is

Eu= (a,r) | (a,5) | E;E| E|E | E||[E | E[f] | Ersa| Esyal|[E+Dx*E],
where D == (a, k) | (e, 19)° | D;E | DD | D[f] | Drsa|D sy al|[Dx* D xE].

Let RegStatExpr denote the set of all reqular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free reqular static
expression |E of E is obtained by removing from it all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) = {(«, p) |
(a, p) is a subexpression of E}. The set of all immediate multiactions (from the
syntaz) of E is ZL(E) = {(a,1?) | (o, 1Y) is a subexpression of E}. The set of all
waiting multiactions (from the syntaz) of E is WL(E) = {(a, 1) | (o, 1)) or (a, 17)?
is a subexpression of E for § € {1,...,0}}. Thus, the set of all deterministic multi-
actions (from the syntax) of E is DL(E)=ZL(E)UWL(E) and the set of all activi-
ties (from the syntax) of E is SDL(E)=SL(E)UDL(E)=SL(E)UIL(E)UWL(E).
Dynamic expressions specify the states of processes, i.e. particular stages of the
process behaviour. As for the Petri net intuition, dynamic expressions correspond
to marked LDTSDPNSs [52]. Dynamic expressions are obtained from static ones, by
annotating them with upper or lower bars which specify the active components of
the system at the current moment of time. The dynamic expression with upper bar
(the overlined one) E denotes the initial, and that with lower bar (the underlined
one) E denotes the final state of the process specified by a static expression F.

For every overlined stamped waiting multiaction (a,)%, the superscript § €
{1,...,0} specifies the current value of the running countdown timer associated
with the waiting multiaction. That decreasing discrete timer is started with the
ingtial value 6 (the waiting multiaction delay) at the moment when the waiting
multiaction becomes overlined. Then such a newly overlined stamped waiting mul-
tiaction («,17)? is similar to the freshly overlined unstamped waiting multiaction

(v,). Such similarity will be captured by the structural equivalence, defined later.
While the stamped waiting multiaction stays overlined with the process executi-
on, the timer decrements by one discrete time unit with each global time tick until
the timer value becomes 1. This means that one unit of time remains till execution
of that multiaction (the remaining time to execute, RTE, equals one). Its execution
should follow in the next moment with probability 1, in case there are no conflic-
ting with it immediate multiactions or conflicting waiting multiactions whose RTEs
equal to one, and it is not affected by restriction. An activity is affected by restric-
tion, if it is within the scope of a restriction operation with the argument action,
such that it or its conjugate is contained in the multiaction part of that activity.

Definition 4. Let E € StatFxpr and a € Act. A dynamic expression of dtsdPBC is

Gu= E|E|GE|E;G|GE|E[|G|G|G|G[f]|Grsa|Gsyal
[GxExE]|[ExG*E]|[E*xExG|.

1112 I.V. TARASYUK

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.

Let G be a dynamic expression. The underlying static (line-free) expression |G|
of G is obtained by removing from it all upper and lower bars. If the underlying
static expression of a dynamic one is not regular, the corresponding LDTSDPN can
be non-safe [52] (but it is 2-bounded in the worst case, like shown for PNs in [10]).

Definition 5. A dynamic expression G is regular if |G| is regular.

Let RegDynFExpr denote the set of all regular dynamic expressions of dtsdPBC.

Let G be a regular dynamic expression. The underlying timer-free regular dyna-
mic expression |G of G is obtained by removing from it all timer value superscripts.

The set of all stochastic (immediate or waiting, respectively) multiactions (from
the syntazx) of G is defined as SL(G) = SL(|G]) (ZL(G) =ZL(|G]) or WL(G) =
WL(|G]), respectively). Thus, the set of all deterministic multiactions (from the
syntaz) of G is DL(G) = ZTL(G) UWL(G) and the set of all activities (from the
syntax) of G is SDL(G) = SL(G) UDL(G) = SL(G) UZL(G) UWL(G).

3. OPERATIONAL SEMANTICS

In this section, we define the operational semantics via labeled transition systems.

3.1. Inaction rules. The inaction rules for dynamic expressions describe their
structural transformations in the form of G = G which do not change the states of
the specified processes. The goal of those syntactic transformations is to obtain the
well-structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic expression
does not lead to any discrete time tick or any transition firing in the corresponding
LDTSDPN [52], hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e. the
dynamic expression transformation described by the rule is accomplished instantly.

In Table 1, we define inaction rules for regular dynamic expressions being overli-
ned and underlined static ones. In this table, (o, 1Y) € WL, 6 € {1,...,0}, E,F,K €
RegStatEzxpr and a € Act. The first inaction rule suggests that the timer value of
each newly overlined waiting multiaction is set to the delay of it.

TABLE 1. Inaction rules for overlined and underlined regular static expressions

(mhf) = (a7hf)9 E;F=E;F E:F = E;F

E;F = EF E[F = E[F E[F = E[F

E[F = E[F E[JE= E[F E[F = E|F

E|E = E|F E[f] = E[f] E[f]= E[f]

EFErsa= FErsa Ersa=FErsa Esya=FEsya
Esya=FEsya [ExFxK|=[E+xF+K] [ExF+K|=|[E*F K]
[ExF+xK|=[ExFxK| [ExF+K|=[E+xF+K|] [ExFxK|=|[ExFx*K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the
arbitrary form. In this table, E, F' € RegStatExpr, G, H, é, H € RegDynFEzxpr and
a € Act. By reason of brevity, two distinct inaction rules with the same premises
are collated in some cases, resulting in the inaction rules with double conclusion.

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1113

TABLE 2. Inaction rules for arbitrary regular dynamic expressions

G=G, oe{:[} G=G
GoE=GoE, EoG=FEoG G|H= G|H, H|G= H|G
G=G G:>é7o€{rs7sy} G=a
Glfl=Glf] Goa=Goa [G*xExF]=[G*ExF)
G=G G=G
[ExGxF] = [ExG*F [E+F*G] = [E*F G|

Definition 6. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

Let OpRegDynExpr denote the set of all operative reqular dynamic expressions
of dtsdPBC. Note that any dynamic expression can be always transformed into a
(not necessarily unique) operative one by using the inaction rules.

In the following, we consider regular expressions only and omit the word “regular”.

Definition 7. The relation ~ = (= U <)* is a structural equivalence of dynamic
expressions in dtsdPBC. Thus, two dynamic expressions G and G’ are structurally
equivalent, denoted by G ~ G’, if they can be reached from each other by applying
the inaction rules in a forward or a backward direction.

Let X be some set. We denote the Cartesian product X x X by X2. Let £ C X2
be an equivalence relation on X. Then the equivalence class (with respect to &) of
an element z € X is defined by [z]e = {y € X | (z,y) € £}. The equivalence &
partitions X into the set of equivalence classes X /s = {[z]e | x € X}

Let G be a dynamic expression. Then [G]x = {H | G = H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if IE €
RegStatExpr G € [E]~. Further, G is a final dynamic expression, denoted by
final(G), if 3E € RegStatExpr G € [E]~.

Let G be a dynamic expression and s = [G]~. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(a, p) € SL | 3H € sNOpRegDynExpr (a, p) is
a subexpression of H}. The set of all enabled immediate multiactions of s is

EnaImm(s) = {(o, 1)) € ZL | 3H € sNOpRegDynExpr (o)) is a subexpression
of H}. The set of all enabled waiting multiactions of s is EnaWait(s) = {(a, 1)) €

WL | 3H € sNOpRegDynExpr (o, 1), 6 € {1,...,0}, is a subexpression of H}.
The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =
{(a,89) e WL | 3H € sN OpRegDynExpr (a,4)? is a subexpression of H}.
Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
Enalmm(s) U EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s)UEnaDet(s) = EnaSto(s)UEnalmm(s)JUEnaW ait(s). Then Ena(s) =
Ena(|G]~) is an algebraic analogue of the set of all transitions enabled at the initial
marking of the LDTSDPN [52] corresponding to G. The activities, resulted from
synchronization, are not present in the syntax of the dynamic expressions. Their
enabledness status can be recovered by observing that of the pair of synchronized
activities from the syntax (they both should be enabled for enabling their synchro-
nous product), even if they are affected by restriction after the synchronization.

1114 I.V. TARASYUK

Definition 8. An operative dynamic expression G is saturated (with the values of
timers), if each enabled waiting multiaction of [G~, being (certainly) superscribed
with the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expres-
sions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be always transformed into
the saturated one by applying the inaction rules in a forward or a backward direction.

Proof. See [52]. O

Thus, any dynamic expression can be always transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Let G be a saturated operative dynamic expression. Then OO G denotes the timer
decrement operator O, applied to G. The result is a saturated operative dynamic
expression, obtained from G via decrementing by one all greater than 1 values of the
timers associated with all (if any) stamped waiting multiactions from the syntax of
G. Thus, each such stamped waiting multiaction changes its timer value from ¢ €
N> in G tomax{1,5—1} in OG. The timer decrement operator affects the (possibly
overlined or underlined) stamped waiting multiactions being the subexpressions of
G as follows: (a,)9 is replaced with («, §f)max{1.0-1} and («, §7)? is replaced with
(a, gf)ymaxtl.o=1} while (o, §7)? is replaced with (a, g)ma{1.0-1},

Note that when § = 1, we have max{1,d — 1} = max{1,0} = 1, hence, the timer
value 6 = 1 may remain unchanged for a stamped waiting multiaction that is not
executed by some reason at the next time moment, but stays stamped. For example,
that stamped waiting multiaction may be affected by restriction. If the timer values
cannot be decremented with a time tick for all stamped waiting multiactions (if any)
from G then OG = G and we obtain so-called empty loop transition, defined later.

Observe that the timer decrement operator keeps stamping of the waiting multi-
actions, since it may only decrease their timer values, so that the stamped waiting
multiactions stay stamped (with their timer values, possibly decremented by one).

3.2. Action and empty move rules. The action rules are applied when some
activities are executed. With these rules we capture the prioritization among diffe-
rent types of multiactions. We also have the empty move rule, used to capture
a delay of one discrete time unit when no immediate or waiting multiactions are
executable. In this case, the empty multiset of activities is executed. The action and
empty move rules will be used later to determine all multisets of activities which can
be executed from the structural equivalence class of every dynamic expression (i.e.
from the state of the corresponding process). This information together with that
about probabilities or delays and weights of the activities to be executed from the
current process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions

describe dynamic expression transformations in the form of G La (G L Gor
X é, respectively) due to execution of non-empty multisets T' of stochastic (I of
immediate or W of waiting, respectively) multiactions. The rules represent possible

state changes of the specified processes when some non-empty multisets of stochastic
(immediate or waiting, respectively) multiactions are executed. The application of

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1115

an action rule with stochastic (immediate or waiting, respectively) multiactions to
a dynamic expression leads in the corresponding LDTSDPN [52] to a discrete time
tick at which some stochastic or waiting transitions fire (or to the instantaneous
firing of some immediate transitions) and possible change of the current marking.
The current marking stays unchanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be one-element, since we
allow no concurrency at the highest level of the second argument of iteration.

The empty move rule (applicable only when no immediate or waiting multiactions
can be executed from the current state) describes dynamic expression transformati-

ons in the form of G g@ G, called the empty moves, due to execution of the empty
multiset of activities at a discrete time tick. When no timer values are decremented
within G with the empty multiset execution at the next moment (for example, if
G contains no stamped waiting multiactions), we have © G = G. In such a case,

the empty move from G is in the form of G o G, called the empty loop. The
application of the empty move rule to a dynamic expression leads to a discrete
time tick in the corresponding LDTSDPN [52] at which no transitions fire and the
current marking is not changed, but the timer values of the waiting transitions
enabled at the marking (if any) are decremented by one. This is a new rule that
has no prototype among inaction rules of PBC, since it represents a time delay.
Thus, an application of every action rule with stochastic or waiting multiactions
or the empty move rule requires one discrete time unit delay, i.e. the execution of
a (possibly empty) multiset of stochastic or (non-empty) multiset of waiting multi-
actions leading to the dynamic expression transformation described by the rule is
accomplished instantly after one time unit. An application of every action rule with
immediate multiactions does not take any time, i.e. the execution of a (non-empty)
multiset of immediate multiactions is accomplished instantly at the current moment.
The expressions of dtsdPBC can contain identical activities. To avoid technical
difficulties, such as calculation of the probabilities for multiple transitions, we can
enumerate coinciding activities from left to right in the syntax of expressions. The
new activities, resulted from synchronization, will be annotated with concatenation
of numberings of the activities they come from, hence, the numbering should have
a tree structure to reflect the effect of multiple synchronizations. We now define the
numbering which encodes a binary tree with the leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ¢ := n | (¢)(¢), where n € N.

Let Num denote the set of all numberings of expressions.

The new activities resulting from synchronizations in different orders should be
considered up to permutation of their numbering. In this way, we shall recognize
different instances of the same activity. If we compare the contents of different
numberings, i.e. the sets of natural numbers in them, we shall identify the mentioned
instances. The content of a numbering ¢« € Num is

L}, L €N;
Cont() = { {C'gnt(Ll) U Cont(tz), ¢=(t1)(t2).
After the enumeration, the multisets of activities from the expressions become the
proper sets. In the following, we suppose that the identical activities are enumerated
when needed to avoid ambiguity. This enumeration is considered to be implicit.

1116 I.V. TARASYUK

Definition 10. Let G € OpRegDynExpr. We define the set of all non-empty mul-
tisets of activities which can be potentially executed from G, denoted by Can(G).
Let (o, k) € SDL, E,F € RegStatExpr, H € OpRegDynExpr and a € Act.
(1) If final(G) then Can(G) = 0.

(2) If G=(a,k)? and k=1, 0E€N>, 1€R~q, 6€{2,...,0}, then Can(G)=0.
(3) If G = (a,k) and k € (0;1) or k =12, | € Rsg, then Can(G) = {{(a, k) }}.
(4)
(5)

If G = (a,k)! and k =14, 0 € N>y, | € Rog, then Can(G) = {{(a,k)}}.
If T € Can(G) then T € Can(Go E), T € Can(E o G) (o € {;,[]}),
T € Can(G||H), T € Can(H||G), f(T) € Can(G[f]), T € Can(G rs a)
(when a,a & A(T)), T € Can(G sy a), T € Can([G * E x F)),
T e Can([ExGx*F]), T € Can([E * F % G]).
(6) If T € Can(G) and E € Can(H) then T + 2 € Can(G| H).
(7) If T € Can(G sy a) and (o, k), (B, \) € T are different, a € a, a € 3, then
(@) (T+{(a®.B,5-N}—{(a,k),(B,\)}) € Can(G sy a) if k, A € (0;1);
(b) (Y +{(a@a B,51)} — {(a,5), (B, N)}) € Can(G sy a) if k=],
A=1, 0€N, I,mecRyg.
When we synchronize the same multiset of activities in different orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities.

If T € Can(G) then by definition of Can(G), V=2 C T, = # @), we have E € Can(Q).

Let G € OpRegDynExpr and Can(G) # (). Obviously, if there are only stochastic
(immediate or waiting, respectively) multiactions in the multisets from Can(G)
then these stochastic (immediate or waiting, respectively) multiactions can be
executed from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the
note above, there are non-empty multisets of deterministic multiactions in Can(QG)
as well, i.e. 3Y € Can(G) Y € N?Zﬁ \ {0}. In this case, no stochastic multiactions
can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones,
and should be executed first. Further, if there are no stochastic, but both waiting
and immediate multiactions in the multisets from Can(G), then, analogously, no
waiting multiactions can be executed from G, since immediate multiactions have a
priority over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multi-
sets from Can(G) then only waiting ones can be executed from G. Then just mazi-
mal non-empty multisets of waiting multiactions can be executed from G, since all
non-conflicting waiting multiactions cannot wait and they should occur at the next
time moment with probability 1. The next definition formalizes these requirements.

Definition 11. Let G € OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Can(G) N szn, Can(G) fm # (?)
{WeC’an(G) NWﬁ (Can(G) NNEE =P)A
VYV eCan(G) ﬁN‘JZ\:f WCV = V=W}, (Can(G)N N%n)
Can(G), otherwzse.

Now(G)=

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1117

Let G € OpRegDynExpr. The expression G is s-tangible (stochastically tangible),
denoted by stang(G), if Now(G) € N3f \ {0}. In particular, we have stang(G),
if Now(G) = (). The expression G is w-tangible (waitingly tangible), denoted by
wtang(Q), if § # Now(G) C N}/\;f \ {0}. The expression G is tangible, denoted by
tang(QG), if stang(G) or wtang(G), i.e. Now(G) € (NJ5 U fm) \ {0}. Again, we
particularly have tang(G), if Now(G) = (). Otherwise, the expression G is vanishing,
denoted by vanish(G), and in this case () # Now(G) N%fn \ {0}. Note that the
operative dynamic expressions from [G]~ may have different types in general.

Let G € RegDynExpr. We write stang([G|x), if VH € [G]~ N OpRegDynExpr
stang(H). We write wtang([G]~), if 3H € [G]~ N OpRegDynExpr wtang(H) and
VH' € [G]~ N OpRegDynExpr tang(H'). We write tang(|G]x), if stang(|G]~) or
wtang([G)~). Otherwise, we write vanish(|G]x~), and in this case 3H € [Glx N
OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (a, p), (8, x) €
SL, (e, 1), (B,82,) € ZL and (1Y), (B,89,) € WL. Further, E, F € RegStatExpr,
G H € SatOpRegDynExpr G, He RegDynExpr and a € Act. Next, T, A 6

fzn \ {@} F/ fzn’ I J e Nfzn \ {@} I/ fzn7 V We Nfzn \{@} V/ fzn
and T € N‘?}ff \ {0}. We denote Ty = {(a,k) € T | (a € @) V (G € o) }.

We use the following abbreviations in the names of the rules from the table:
“E” for “Empty move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”,
“P” for “Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule E. The
other rules are the action rules, describing transformations of dynamic expressions,
which are built using particular algebraic operations. If we cannot merge the rules
with stochastic, immediate ans waiting multiactions in one rule for some operation
then we get the coupled action rules. In such cases, the names of the action rules
with stochastic multiactions have a suffix ‘s’, those with immediate multiactions
have a suffix ‘i’, and those with waiting multiactions have a suffix ‘w’.

For explanation of the rules in Table 3, see [52]. We do not have self-synchro-
nization, i.e. synchronization of an activity with itself, since all the (enumerated)
activities executed together are considered to be different. This allows us to avoid
cumbersome and unexpected behaviour, as well as many technical difficulties [10].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned off) and their values become
irrelevant while the timers of all those preserving their enabledness continue running
with their stored values. Hence, we adapt the enabling memory policy [38, 1,
2, 3] when the process states are changed and the enabledness of deterministic
multiactions is possibly modified (immediate multiactions may be seen as those
with the timers displaying a single value 0, so we do not need to store their values).
Then the timer values of waiting multiactions are taken as the enabling memory
variables.

Similar to [26], we are mainly interested in the dynamic expressions, inferred by
applying the inaction rules (also in the reverse direction) and action rules from the
overlined static expressions, such that no stamped (i.e. superscribed with the timer
values) waiting multiaction is a subexpression of them. The reason is to ensure
that time proceeds uniformly and only enabled waiting multiactions are stamped.
We call such dynamic expressions reachable, by analogy with the reachable states
of LDTSDPNs [52]. Formally, a dynamic expression G is reachable, if there exists

1118 I.V. TARASYUK

TABLE 3. Action and empty move rules

B 290 B Tar) 2 (a,p) Bi Tt B (o) B @ B (0,tt)

G =0G
S eRNYE o @ L5 G, —init(G) V (init(G) A stang([E)~))
GELGE EGSEG GIE 5 G[|E, E[G 5|E|G
Ci ¢ha cw @ 5% a, ﬁim‘t(G) V (init(G) A tcmg([E]z))
GIE - G[]J E[G 5|E[G GIE % G[] E, E[|G 5|E)G
Pls ? —~> G7 stang([H]Fz) _ P i ¢ha i _
G|H - G| OH, H||G -0OH|G GHH%GHH H||G = H||G
V.~ I J
Plw G = G, stang([H]~) Pos G’—>Ci+f—>H P2iG—>GI+§i—>H
GHH 5a) OH H|GS0H|G G|H — G||H G|H — G||H
pow GG HSH [G=a R asa
G|H — Y G||H Glf] — AL GI[f] Grsa =3 Grsa
n ¢5a 12 G5 G, —init(G) V (init(G) A stang([Fl))
[G*E*F]%[G*E*F] [E*GxF| 5 [ExGx|F), [ExF G| 5 [Ex|F %]
o~
2 . _ GG . _
[ExGx«F] = [ExGx|F|, [ExF xG] > [Ex|F * G|
o G A 67 —init(G) V (init(G) /\tang([?]z))
[E*G*F] [E+ Gx|F], [E*F %G| % [E*JF*@]
Syl ¢5a Sy2s Gsya Dl #1050, & sya, a€Ea, a€f
Gsyagésya Gsyawésya
/ a 0 R 0 —~
Svai Gsya TR HEEY, & sya, a€a, a€p
Y T {(a®abils)} ~
Gsya— > Gsya
V()3 HB00)Y .~ X
Sy2wGsya Gsya,aca, aef

Vit {(a®afh?,)} ~
Gsya———""™ v Gsya

a static expression E without timer value superscripts, such that £ ~ G or E ~
GQT—§H1 ~ Gy Y4...Y4Hn%Gforsome'fl,... T, EN;?ZZL.

Therefore, we consider a dynamic expression G = ({a}, 12)1[]({b},53)! as “illegal”
and that H = ({a},2) []({b},53)? as “legal”, since the latter is obtained from the
overlined static expression without timer value superscripts E = ({a},1%)[]({0}, 53)
after one time tick. On the other hand, G is “illegal” only when it is intended to
specify a complete process, but it may become “legal” as a part of some complete
specification, like G rs a, since after two time ticks from E rs a, the timer values
cannot be decreased further when the value 1 is approached. Thus, we should allow
the dynamic expressions like G, by assuming that they are incomplete s speciﬁcations
to be further composed. Further, a dynamic expression G = ({a},1); ({b},83)* i
“illegal”, since the waiting multiaction ({b},4?) is not enabled in [G]~ and its tlmer
cannot start before the stochastic multiaction ({a}, 1) is executed. Enabledness of
the stamped waiting multiactions is considered in the next proposition.

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1119

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]x) are stamped in G.

Proof. See [52]. O

3.3. Transition systems. We now construct labeled probabilistic transition sys-
tems associated with dynamic expressions. The transition systems are used to define
the operational semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]~. The set of all multisets of activities

executable in s is defined as Exec(s) = {Y | 3H € s 3H H RN H}. Here H L H
is an inference by the rules from Table 3. It can be proved by induction on the
structure of expressions that T € Exec(s) \ {0} implies 3H € s T € Now(H). The
reverse statement does not hold, since the preconditions in the action rules disable
executions of the activities with the lower-priority types from every H € s, see [52].

The state s is s-tangible (stochastically tangible), denoted by stang(s), if
Ezxec(s) C N}gfn For an s-tangible state s we always have () € Fzec(s) by rule E,
hence, we may have Ezec(s) = {0}. The state s is w-tangible (waitingly tangible),
denoted by wtang(s), if Exec(s) C N}/\;f \ {0}. The state s is tangible, denoted by
tang(s), if stang(s) or wtang(s), i.e. Exec(s) C N‘fgfn U N‘;\;f Again, for a tangible
state s we may have § € Exec(s) and Exec(s) = {}. Otherwise, the state s is
vanishing, denoted by vanish(s), and in this case Exec(s) C N%fn \ {0}.

If T € Exec(s) and YT € N‘fgfn U fon then by rules P2s, P2i, Sy2s, Sy2i and

definition of Ezec(s) V2 C T, = # 0, we have = € Exec(s), i.e. 2¥\ {0} C Ewec(s).

Definition 12. The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

° [G]z € DR(G);
o if [Hl~ € DR(G) and 3Y H = H then [H]~ € DR(G).

The set of all s-tangible states from DR(G) is denoted by DRgr(G), and the
set of all w-tangible states from DR(G) is denoted by DRwr(G). The set of all
tangible states from DR(G) is denoted by DRr(G) = DRsr(G) U DRy r(G). The
set of all vanishing states from DR(G) is denoted by DRy (G). Then DR(G) =
DRr(GYYDRy(G) = DRsr(G)dDRwr(G)WDRy (G) (W denotes disjoint union).

Let now G be a dynamic expression and s,$ € DR(G).

Let T € Exec(s)\{0}. The probability that the multiset of stochastic multiactions
T is ready for execution in s or the weight of the multiset of deterministic multiacti-
ons Y which is ready for execution in s is

H P H (1 -x), s€DRsr(G);
PF(Y,s)={ @27 U@} eBrec)(320¢7}
L s€ DRwr(G)UDRy (G).
(arbf)er

In the case T =0 and s € DRgr(G) we define
[T (-x. EBzecs) # {0}

PE,s) = ((0}eBzec(s)
1, Ezec(s) = {0}.

1120 I.V. TARASYUK

If s € DRsy(G) and Ezec(s) # {0} then PF(Y,s) can be interpreted as a
joint probability of independent events (in a probability sense, i.e. the probability
of intersection of these events is equal to the product of their probabilities). Each
such an event consists in the positive or the negative decision to be executed of a
particular stochastic multiaction. Every executable stochastic multiaction decides
probabilistically (using its probabilistic part) and independently (from others), if it
wants to be executed in s. If T is a multiset of all executable stochastic multiactions
which have decided to be executed in s and T € Exec(s) then Y is ready for
execution in s. The multiplication in the definition is used because it reflects the
probability of the independent event intersection. When Y = (), PF(Y,s) can
be interpreted as the probability not to execute in s any executable stochastic
multiactions, thus, PF(0,s) = H{(B7x)}eEwec(s)(1 — Xx). When only the empty
multiset of activities can be executed in s, i.e. Exec(s) = {0}, we take PF(0,s) = 1,
since nothing more can be executed in s in this case. Since the probabilities of
all stochastic multiactions are strictly less than 1, for s € DRgr(G) we have
PF(®,s) € (0;1]. Hence, we always execute the empty multiset of activities in
s at the next moment with a certain positive probability.

If s € DRwr(G) U DRy (G) then PF(Y,s) could be interpreted as the overall
(cumulative) weight of the deterministic multiactions from Y, i.e. the sum of all the-
ir weights. The summation here is used since the weights can be seen as the rewards
which are collected [47]. This means that concurrent execution of the determinis-
tic multiactions has more importance than that of every single one. The weights
of deterministic multiactions can also be interpreted as bonus rewards of transiti-
ons [7]. The rewards are summed when deterministic multiactions are executed
in parallel, because all of them participated in the execution. In particular, since
execution of immediate multiactions takes no time, we prefer to collect in a step
(parallel execution of activities) as many parallel immediate multiactions as possible
to get more progress in behaviour. As for waiting multiactions, only the maximal
multisets of them executable from a state occur in the next moment. Therefore, the
steps of waiting multiactions produce maximal overall weights, used to calculate
probabilities of alternative maximal steps rather than the cumulative bonuses.

Note that the definition of PF (T, s) (and those of other probability functions we
shall present) is based on the enumeration of activities which is considered implicit.

Let T € Ezec(s). Besides T, some other multisets of activities may be ready
for execution in s, hence, a normalization is needed to calculate the execution
probability. The probability to execute the multiset of activities T in s is

B PF(Y,s)
PT(T, 8) a ZEEEwec(s) PF(E’ S) '

If s € DRgp(G) then PT(Y,s) and PF(Y,s) can be treated as the actual and
potential probabilities to execute T in s, respectively, since we have PT(T,s) =
PF(Y,s) only when all sets (including the empty one) counsisting of the executable
stochastic multiactions can be executed in s. In this case, all the mentioned stochas-
tic multiactions can be executed in parallel in s and we have deEmc(s) PF(E,s) =
1, since this sum collects the products of all combinations of the probability parts of
the stochastic multiactions and the negations of these parts. But in general, it may
happen that two stochastic multiactions («, p) and (8, x) executable in s, cannot

be executed in s together, i.e. 0, {(a, p)}, {(B,X)} € Ezec(s), but {(«, p), (B,x)} &

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1121

Ezec(s). For s € DRgr(G) we have PT(f,s) € (0;1], i.e. there is a non-zero
probability to execute the empty multiset of activities in s at the next moment.

If s € DRy (G)UDRy (G) then PT(Y, s) can be interpreted as the weight of the
set of deterministic multiactions Y which is ready for execution in s normalized by
the weights of all the sets executable in s. This approach is analogous to that used
in the EMPA definition of the probabilities of immediate actions executable from
the same process state [8] (inspired by way in which the probabilities of conflicting
immediate transitions in GSPNs are calculated [3]). The only difference is that we
have a step semantics and, for every set of deterministic multiactions executed in
parallel, we should use its cumulative weight. For the analogy with the interleaving
semantics of EMPA, we should interpret the weights of immediate actions of EMPA
as the cumulative weights of the sets of deterministic multiactions of dtsdPBC.

The sum of outgoing probabilities for the expressions from the derivations of G
is equal to 1, 1.e. Vs € DR(G) Y xycpyec(s) PT (T, s) = 1. This fact follows from the
definition of PT(Y,s) and guarantees that it defines a probability distribution.

The probability to move from s to § by executing any multiset of activities is

PM(s,) = > PT(TY, s).
{Y|3Hes 3 es HSHY

The summation in the definition above reflects the probability of the mutually
exclusive event union, since Z{TBHGS, afies, HSH) PT(T,s) = ZEGENC:S) PFES)
Z{TBHES, afies, BSH) PF(Y,s), where for each T, PF(Y,s) is the probability of
the exclusive execution of T in s. Note that Vs € DR(G)

Z{éBHEs 3fes 3r HSH) PM(s,3) = Z{§|3Hes 3fes 3r HSH)
PT(Y,8) =3 vepecs) PT(Y;s) = 1.

{Y|3Hes 3 es HSHY}

Definition 13. Let G be a dynamic expression. The (labeled probabilistic) transi-
tion system of G is a quadruple TS(G) = (Sa, La, Ta, sG), where

e the set of states is S¢ = DR(G);

o the set of labels is Lg = N‘;}:f x (0;1];

e the set of transitions is Tg = {(s, (Y, PT(Y,s)),8) | s,5§ € DR(G), 3JH€Es
IHes HS HY;

e the initial state is s¢ = [G]~.

The definition of T'S(G) is correct, i.e. for every state, the sum of the probabilities
of all the transitions starting from it is 1, by the note after the definition of PT(T, s).

The transition system T'S(G) associated with a dynamic expression G describes
all the steps (parallel executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consisting of
stochastic (waiting, respectively) multiactions or the empty step (i.e. that consisting
of the empty multiset of activities) occurs instantly after one discrete time unit
delay. Each step consisting of immediate multiactions occurs instantly without any
delay. The step can change the current state to a different one. The states are the
structural equivalence classes of dynamic expressions obtained by application of
action rules starting from the expressions belonging to [G]~. A transition

(s,(T,P),5) € Tg will be written as s Lp 5 It is interpreted as follows: the
probability to change the state s to 5 as a result of executing T is P.

1122 I.V. TARASYUK

From every s-tangible state the empty multiset of activities can always be exe-
cuted by rule E. Hence, for s-tangible states, T may be the empty multiset, and its
execution only decrements by one the timer values (if any) of the current state. Then

we have a transition s g’po s from an s-tangible state s to the tangible state (s =
[O© H]» for H € sN SatOpRegDynExpr. Since structurally equivalent saturated
operative dynamic expressions remain so after decreasing by one their timers, O s
is unique for each s and the definition is correct. Thus, (O s corresponds to applying
the empty move rule to an arbitrary saturated operative dynamic expression from
s, followed by taking the structural equivalence class of the result. We have to keep
track of such executions, called the empty moves, since they affect the timers and
have non-zero probabilities. This follows from the definition of PF({}, s) and the fact
that the probabilities of stochastic multiactions belong to the interval (0;1). When
it holds O H = H for H € s N SatOpRegDynFExpr, we obtain Os = s. Then the

empty move from s is in the form of s gp s, called the empty loop. For w-tangible
and vanishing states T cannot be the empty multiset, since we must execute some
immediate (waiting) multiactions from them at the current (next) moment.

The step probabilities belong to the interval (0;1], being 1 in the case when we
cannot leave an s-tangible state s and the only transition leaving it is the empty

move one s —1 s, or if there is a single transition from a w-tangible or a vanishing

. T .. T . T
state to any other one. We write s — § if 3P s =>p § and s — §if 3T s = &.
Isomorphism is a coincidence of systems up to renaming of their components.

Definition 14. Let G, G’ be dynamic expressions and TS(G)=(Sa, La, Ta, sa),
TS(G"Y=(Sq', Le/, T, sGr) be their transition systems. A mapping B : S¢ — Sqr
is an isomorphism between T'S(G) and TS(G'), denoted by B : TS(G) ~TS(G"), if
(1) B is a bijection such that B(sg) = s
(2) Vs,5€ Se VY s Hp 5 & B(s) Sp B(3).
Two transition systems T'S(G) and TS(G') are isomorphic, denoted by T'S(G) ~
TS(G"), if 38:TS(G)~TS(G).

Definition 15. Two dynamic expressions G and G’ are equivalent with respect to
transition systems, denoted by G =5 G, if TS(G) ~TS(G").

Example 1. The expression Stop = ({g},%) rs g specifies the non-terminating
process that performs only empty loops with probability 1.

Let E=[({a},p) * ({6}, 8); (({e}, 8); ({d},) [(({e}, 1) ({f}. 9)))) * Stop],
where p,0,¢ € (0;1) and k,l,m € Rsg. DR(FE) consists of the elements

s1=([({a}, p) = (b}, 1) (e}, 1) b,) [(({e}, £7.); ({ £} 6)))) * Stop]l~,
s2 = ([({a}, p) = ({0}, 1) (({ed, 1) ({d},) [1(({e} 1) ({ £,) * Stop]]=
s3 = [[({a}, p) * ({0}, 50); ({eh,B0): ({d},) (({e},10,); ({£}, 9)))) * Stop]]~ =
[[({a}, p) * ({6}, 81): (e}, 8)s ({d},) (({e},B.)s ({3, 0)))) * Stop])x,
sa = [[({a}, p) * ({0}, 80); ((({e}, 10): ({d}, 0))0 (e}, £0,): ({£}, 9)))) * Stopll~,
s5 = [[({a}, p) = ({0}, 80); (e}, 80); ({3, 0)) [(({e}, £9,); ({F}, 9)))) * Stop] .
We have DRs7(E) = {s1, 84,55}, DRwr(E) = {s2} and DRy (E) = {s3}.

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1123

7S(E)

0,1—6 0,1—¢

F1G. 1. The transition system of E for E = [({a}, p) * ({0}, 8});
((({e} 8); ({a}, 0)0(({e}, 85,); ({3, 9)))) * Stop]

In Figure 1, the transition system T'S(E) is presented. The s-tangible and w-
tangible states are depicted in ordinary and double ovals, respectively, and the
vanishing ones are depicted in bozes.

4. PERFORMANCE EVALUATION

In this section we demonstrate how Markov chains corresponding to the expres-
sions can be constructed and then used for performance evaluation.

4.1. Analysis of the underlying SMC. For a dynamic expression G, a discrete
random variable £(s) is associated with every tangible state s € DRp(G). The
variable captures the residence (sojourn) time in the state. One can interpret staying
in a state at the next discrete time moment as a failure and leaving it as a success
in some trial series. It is easy to see that £(s) is geometrically distributed with the
parameter 1 — PM (s, s), since the probability to stay in s for k — 1 time moments
and leave it at the moment k > 1, called the probability mass function (PMF) of
the residence time in s, is pe(s) (k) = P(£(s) = k) = PM (s, s)* "1 (1—PM(s,s)) (k €
N>1) (the residence time in s is k in this case). Hence, the probability distribution
function (PDF) of the residence time in s is Fe(gy(k) = P((s) < k) = 1 —
PM (s,8)k~! (k € N>1) (the probability that the residence time in s is less than k).

Note that the deterministic residence time 1 in a tangible state s can be interpre-
ted as a random variable £(s) that is geometrically distributed with the parameter
1=1-PM(s,s). In that case, PM(s,s) =0 and k = 1 is the only residence time
value with a positive probability. Hence, pe(s)(1) = PM(s,s)' "1 (1 — PM(s,s)) =
0°-1 =1, i.e. the probability that the residence time is 1 equals 1.

Further, the residence time co in an absorbing tangible state s can be interpreted
as a random variable £(s) that is geometrically distributed with the parameter
0=1-—PDM{(s,s).Inthat case, PM (s, s) = 1 and there exists no finite residence time
value with a positive probability. Hence, pg(s)(k) = PM(s,s) 71 (1 — PM(s,s)) =
1%¥=1.0 =0 (k € N>1), i.e. the probability that the residence time is k equals 0 for
every k > 1. Then we cannot leave s for a different state after any number of time
ticks and we stay in s for infinite time.

1124 I.V. TARASYUK

The mean value formula for the geometrical distribution allows us to calculate the
average sojourn time in s € DRp(G) as SJ(s) = m. The average sojourn
time in each vanishing state s € DRy (G) is SJ(s) = 0. Let s € DR(G).

The average sojourn time in the state s is

1
_ | Trwesy ¢ € DRr(G);
57(s) { 0, s € DRy (G).

The average sojourn time vector of G, denoted by SJ, has the elements S.J(s),
s € DR(G).
The sojourn time variance in the state s is

PM(s,s) .
VAR(s) = { TPuG.az &€ DEr(G);
Oa S € DRV(G)

The sojourn time variance vector of G, denoted by V AR, has the elements VAR(s),
s € DR(G).

To evaluate performance of the system specified by a dynamic expression G,
we should investigate the stochastic process associated with it. The process is the
underlying semi-Markov chain (SMC) [47, 27, 14, 57, 28|, denoted by SMC(G),
which can be analyzed by extracting from it the embedded (absorbing) discrete
time Markov chain (EDTMC) corresponding to G, denoted by EDTMC(G). The
construction of the latter is analogous to that applied in the context of generalized
stochastic PNs (GSPNs) in [37, 2, 3], and also in the framework of discrete time
deterministic and stochastic PNs (DTDSPNs) in [63, 59, 60, 65, 66, 64], as well as
within discrete deterministic and stochastic PNs (DDSPNs) [61, 62]. EDTMC(G)
only describes the state changes of SMC(G) while ignoring its time characteristics.
Thus, to construct the EDTMC, we should abstract from all time aspects of beha-
viour of the SMC, i.e. from the sojourn time in its states. The (local) sojourn time
in every state of the EDTMC is deterministic and it is equal to one discrete time
unit. It is well-known that every SMC is fully described by the EDTMC and the
state sojourn time distributions (the latter can be specified by the vector of PDFs
of residence time in the states) [21, 57, 28|.

Let G be a dynamic expression and s, § € DR(G). The transition system T'S(G)
can have self-loops going from a state to itself which have a non-zero probability.
Clearly, the current state remains unchanged in this case.

Let s — s. The probability to stay in s due to k (k > 1) self-loops is

PM(s,s)".

Let s = § and s # 3, i.e. PM(s,s) < 1. The probability to move from s to 5 by
executing any multiset of activities after possible self-loops is

5) 7 k_ _PM(s) .
PM*(S7§) = { PM(S’S) Zk:o PM(SVS) — 1-PM{(s,s)’ s — S, }

PM(s, 3), otherwise;
5 — s;

1
SL(s)PM(s,35), where SL(s) = { 1=PM(ss) otherwise
, wise.

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1125

Here SL(s) is the self-loops abstraction factor in the state s. The self-loops abstrac-
tion vector of G, denoted by SL, has the elements SL(s), s € DR(G). The value
k =0 in the summation above corresponds to the case when no self-loops occur.

Let s € DRy (G). If there exist self-loops from s (i.e. if s — s) then PM(s,s) > 0
and SL(s) = #M(&S) = SJ(s). Otherwise, if there exist no self-loops from s then
PM(s,s) =0and SL(s) =1 = Tj\lz[(s,s) = SJ(s). Thus, Vs € DRy (G) SL(s) =
SJ(s), hence, Vs € DRy (G) with PM (s, s)<11it holds PM*(s,8)=SJ(s)PM(s, §).
Note that the self-loops from tangible states are of the empty or non-empty type,
the latter produced by iteration, since empty loops are not possible from w-tangible
states, but they are possible from s-tangible states, while non-empty loops are
possible from both s-tangible and w-tangible states.

Let s € DRy (G). We have Vs € DRy (G) SL(s) # SJ(s) = 0and Vs € DRy (G)
with PM(s,s) < 1 it holds PM*(s,§) = SL(s)PM(s,5). If there exist self-loops
from s then PM*(s,§) = % when PM(s,s) < 1. Otherwise, if there exist
no self-loops from s then PM*(s,5) = PM(s,§). Note that the self-loops from
vanishing states are always of the non-empty type, produced by iteration, since
empty loops are not possible from vanishing states.

Note that after abstraction from the probabilities of transitions which do not
change the states, the remaining transition probabilities are normalized. In order to
calculate transition probabilities PT(T, s), we had to normalize PF (Y, s). Then, to
obtain transition probabilities of the state-changing steps PM*(s, §), we now have
to normalize PM (s, §). Thus, we have a two-stage normalization as a result.

Notice that PM*(s, §) defines a probability distribution, since Vs € DR(G) such
that s is not an absorbing state (i.e. PM(s,s) < 1, hence, there are transitions to
different states after possible self-loops from it) we have } o o oy PM*(s,8) =
ﬁM(&S) E{§|5—>§, 5} PM(s,8) = Tj\lz[(s,s)(l — PM(s,s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for
convenience. Alternatively, we could take a state-changing step followed by self-
loops or a state-changing step preceded and followed by self-loops. In all these
three cases our sequence begins or/and ends with the loops which do not change
states. At the same time, the overall probabilities of the evolutions can differ, since
self-loops have positive probabilities. To avoid inconsistency of definitions and too
complex description, we consider sequences ending with a state-changing step. It
resembles in some sense a construction of branching bisimulation [19] taking self-
loops instead of silent transitions. Further, we shall not abstract from self-loops
with probability 1 while constructing EDTMCs, in order to maintain a probability
distribution among transitions (actually, a single transition to the same state) from
every state with such a self-loop.

Definition 16. Let G be a dynamic expression. The embedded (absorbing) discrete
time Markov chain (EDTMC) of G, denoted by EDTMC(G), has the state space
DR(G), the initial state |G|~ and the transitions s —p 8, if s = § and s # 3,
where P = PM*(s,3); or s =1 s, if PM(s,s) = 1.

The underlying SMC of G, denoted by SMC(G), has the EDTMC EDTMC(G)
and the sojourn time in every s € DRy (Q) is geometrically distributed with the pa-
rameter 1 — PM (s, s) (in particular, the sojourn time is 1 when PM (s,s) =0, and
oo when PM (s, s) = 1) while the sojourn time in every s € DRy (G) is equal to 0.

1126 I.V. TARASYUK

Let G be a dynamic expression. The elements P}; (1 <i,j < n=|DR(G)|) of the
(one-step) transition probability matrix (TPM) P* for EDTMC(G) are defined as

PM*(s;i,85), Si— Sj, ©#7J;
Phi=1 L PM(si,s:) =1, i =7;
0, otherwise.
The transient (k-step, k € N) PMF ¢*[k] = (¢*[k](s1), - .., ¥*[k](sn)) for
EDTMC(QG) is calculated as

V(K] = ¢ [0](P)",
where ¢*[0] = (¢¥*[0](s1),...,%*[0](spn)) is the initial PMF defined as

W [0l(si) = { 0, otherwise.

Note also that ¢*[k + 1] = ¢*[k]P* (k € N).

The steady-state PMF ¢* = (¢*(s1),...,%*(spn)) for EDTMC(G) is a solution
of the equation system

e(PT-1) =0
{ w* 1T =1 ’
where I is the identity matrix of order n and O is a row vector of n values 0, 1 is
that of n values 1.

Note that the vector ¢* exists and is unique if EDTMC(G) is ergodic. Then
EDTMC(G) has a single steady state, and we have ¢* = limy_, o0 ¥*[K].

The steady-state PMF for the underlying semi-Markov chain SMC(G) is calcu-
lated via multiplication of every 1*(s;) (1 < i < n) by the average sojourn time
SJ(s;) in the state s;, after which we normalize the resulting values. Remember
that for each tangible state s € DRy (G) we have SJ(s) > 1, and for each vanishing
state s € DRy (G) we have SJ(s) = 0.

Thus, the steady-state PMF ¢ = (p(s1),...,¢(sy)) for SMC(G) is

PR CAEMICHK
0, si € DRy (G).

Thus, to calculate ¢, we apply abstraction from self-loops with probability less
than 1 to get P* and then *, followed by weighting by SJ and normalization.
We call that technique embedding, since the embedded DTMC (EDTMC) is used
to specify the SMC state change probabilities. EDT M C(G) has no self-loops with
probability less than 1, unlike SMC(G), hence, the behaviour of EDTMC(G) may
stabilize quicker than that of SMC(G) (if each of them has a single steady state),
since P* has only zero (excepting the states having self-loops with probability 1)
elements at the main diagonal.

Example 2. Let E be from Ezample 1. In Figure 2, the underlying SMC SMC(E)
is presented. The average sojourn times in the states of the underlying SMC are
written next to them in bold font.

The average sojourn time vector of E is

1 11
SJ=1{-,1,0,-,—|.
(p 0 ¢>

P (si)SJ (i) .
si € DRr(G);
gp(Si) = { T()

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1127

SMC(E)

(505
1

F1c. 2. The underlying SMC of E for E = [({a}, p) * (({b}, b1);
(e}, 1) ({d}, 0))0(({e},) ({3, 6)))) * Stop]

The sojourn time variance vector of E is

1—p 1-6 1—¢
VAR_< 00 >

The TPM for EDTMC(E) is

01 0 O 0
001 0 0
P'=|00 0 L
01 0 O 0
01 0 O 0
The steady-state PMF for EDTMC(E) is

v = (0 11 l m
S \3'3'3(1+m) 3(14+m))
The steady-state PMF * weighted by SJ is

(o Lot 4 >
"377730(l+m) 3p(l+m))

It remains to normalize the steady-state weighted PMF by dividing it by the sum
of its components

0p(l +m) + ¢l + Om
300(l +m)
Thus, the steady-state PMF for SMC(E) is

st =

1
P T 960l +m) + ol + Om

In the case | = m and 0 = ¢ we have

(0,00(1 +m),0,¢l, 0m).

1
m(o, 20,0,1,1).

1128 I.V. TARASYUK

Let G be a dynamic expression and s, € DR(G), S, S C DR(G). The following
standard performance indices (measures) can be calculated based on the steady-
state PMF ¢ for SMC(G) and the average sojourn time vector SJ of G [43, 25].

e The average recurrence (return) time in the state s (i.e. the number of
discrete time units or steps required for this) is ReturnTime(s) = ﬁ.

e The fraction of residence time in the state s is TimeFract(s) = ¢(s).

e The fraction of residence time in the set of states S or the probability of
the event determined by a condition that is true for all states from S is
TimeFract(S) =3 g @(s).

e The relative fraction of residence time in the set of states S with respect to

that in S is RItTimeFract(S, S) = %.
se

e The exit/entrance frequency (rate of leaving/entering, average number of

exits/entrances per unit of time) the state s is ExitFreq(s) = S“‘f]((ss)).

e The steady-state probability to perform a step with a multiset of activities

Eis ActsProb(Z) = 3 cpr(a) P(8) Xqrizcry PT(T, 5).
e The probability of the event determined by a reward function r on the states

is Prob(r) = 3_.cpr(q) ¥(s)r(s), where Vs € DR(G) 0 <r(s) < 1.

Example 3. Let us interpret E from Example 1 as a specification of the travel
system. A tourist visits reqularly new cities. After seeing the sights of the current
city, he goes to the next city by the nearest train or bus available at the city station.
Buses depart less frequently than trains, but the next city is quicker reached by bus
than by train. We suppose that the stay duration in every city (being a constant),
the departure numbers of trains and buses, as well as their speeds do not depend
on a particular city, bus or train. The travel route has been planned so that the
distances between successive cities coincide.

The meaning of actions from the syntax of E is as follows. The action a corres-
ponds to the system activation (the travel route has been planned) that takes a
time, geometrically distributed with the parameter p. The action b represents the
completion of looking round the current city and coming to the city station that
takes a fized time equal to 1 (say, one hour) for every city. The actions ¢ and e
correspond to the urgent getting on bus and train, respectively, and thus model the
choice between these two transport facilities. The weights of the two corresponding
immediate multiactions suggest that every | departures of buses take the same time
as m departures of trains (I < m), hence, a bus departs with the probability HLm
while a train departs with the probability lf‘m. The actions d and f correspond to
the coming in a city by bus and train, respectively, that takes a time, geometrically
distributed with the parameters 6 and ¢, respectively (6 > ¢).

The meaning of states from DR(E) is the following. The s-tangible state sy
corresponds to staying at home and planning the future travel. The w-tangible state
s2 means residence in a city for exactly one time unit (hour). The vanishing state ss
with zero residence time represents instantaneous stay at the city station, signifying
that the tourist does not wait there for departure of the transport. The s-tangible
states s4 and ss correspond to going by bus and train, respectively.

Using Fxample 2, we now calculate the performance indices, based on the steady-
state PMF for SMC(E) ¢ = m(o, 0d(1+m),0, ¢l, 0m) and the average

sojourn time vector of E SJ = (%, 1,0, 3, é)

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1129

e The average time between comings to the successive cities (mean sightseeing

and travel time) is ReturnTime(sz) = @ =1+ %-

e The fraction of time spent in a city (sightseeing time fraction) is
0p(l+m)

9o(I+m)+ol+0m

e The fraction of time spent in a transport (travel time fraction) is

TimeFract({ss4, s5}) = @(s4) + ¢(s5) = M%.

o The relative fraction of time spent in a city with respect to that spent in
transport (sightseeing relative to travel time fraction) is

RltTimeFract({s2},{s4,85}) = w(sg(j?ﬁ(%) = Gfl(fe_z)-

e The rate of leaving/entering a city (departure/arrival rate) is

: _ p(s2) _ 0¢(I+m)
EzxitFreq(sz) = 5%1(522) = 9ot m)+plrom "

TimeFract(sa) = ¢(s2) =

As mentioned in [63, 59, 60], if is useful to consider performance measures
over only the markings of DTDSPNs, instead of their whole states, whose second
components are the remaining firing time vectors. In the context of dtsdPBC, such
markings correspond to those of the dtsd-boxes of dynamic expressions, i.e. to the
markings of the respective LDTSDPNs [52], obtained from their states by abstrac-
ting from the second components, which are the timer valuation functions.

Let G be a dynamic expression. The underlying timer-free state of a state s €
DR(G) is defined as |s = [|H]~ for H € s. Note that only in the first inaction rule
in Table 1, the left and right parts have different timer value annotations. After
removing all timer values, the both parts will coincide. Since structurally equiva-
lent dynamic expressions remain so after removing their timer value annotations,
| s is unique for each s and the definition is correct. Thus, | s is the structural
equivalence class of an arbitrary dynamic expression from s, where timer values
have been removed, prior to taking the equivalence class of that expression. We
cannot simply collect all the timer-discarded dynamic expressions from s, since |s
should be a state itself, i.e. it must contain all structurally equivalent expressions.

Example 4. Let E = ({a},83)[({b},3) and s = [E]x, § =0s. Then |s =|5 =
[

[({a}, E)NH{B}, D~ = [({a}, B},)]~ = [({a}, 5DIHB} 5)H~ =

{({a}, 89)0({8}, 5), (a}, ED ({0}, 5). Hak, 8D 1({8}, 5), ({a}, B3 ({8}, 5),
({a}, 82)*[1({0}, 5), ({a}, 83)3[1 ({0}, 5)}-

Hence, some enabled waiting multiactions of s may have the initial timer value
superscripts. Actually, this does not provide |s with an extra timing information,
since those superscripts are determined only by the delays of the corresponding
waiting multiactions and their enabling status. The elements of the set of all timer-
free states of G, defined as | DR(G) = {]s | s € DR(G)}), correspond to the
reachable markings of the LDTSDPN N = Bozgsq4(G).

Let s € DR(G) and 5 =|s. The steady-state PMF for SMC(G) over the timer-
free states of G is defined as ¢(5) = Z{sEDR(G)Hs:E} ©(s). Then ¢(5) can be used to

calculate the standard performance indices over the timer-free states of G (hence,
over the markings of N), by analogy with the standard performance indices, defined
over the arbitrary states of G. Then also the performance measures that are specific
for LDTSDPNs can be derived, based on the numbers of tokens in the places of N.

4.2. Analysis of the DTMC. Let us consider an alternative solution method, stu-
dying the DTMCs of expressions based on the state change probabilities PM (s, §).

1130 I.V. TARASYUK

Definition 17. Let G be a dynamic expression. The discrete time Markov chain
(DTMC) of G, denoted by DTMC(G), has the state space DR(G), the initial state
[G]~ and the transitions s —p §, where P = PM(s, 3).

One can see that EDTMC(G) is constructed from DTMC(G) as follows. For
each state of DT M C(G), we remove a possible self-loop with probability less than 1,
associated with it and then normalize the probabilities of the remaining transitions
from the state. Thus, EDTMC(G) and DTMC(G) differ only by existence of
self-loops with probability less than 1 and magnitudes of the probabilities of the
remaining transitions. Hence, EDT M C(G) and DT M C(G) have the same commu-
nication classes of states and EDTMC(G) is irreducible ifft DT MC(G) is so. Since
both EDTMC(G) and DT MC(G) are finite, they are positive recurrent. Thus, in
case of irreducibility, each of them has a single stationary PMF. Note that both
EDTMC(G) and DTMC(G) or just one of them may be periodic, thus having
a unique stationary distribution, but no steady-state (limiting) one. For example,
it may happen that EDTMC(G) is periodic while DTMC(G) is aperiodic due
to self-loops associated with some states of the latter. The states of SMC(G) are
classified using EDTMC(G), hence, SMC(G) is irreducible (positive recurrent,
aperiodic) iff EDTMC(G) is so.

Let G be a dynamic expression. The elements P;; (1 < 4,5 <n = |DR(G)|) of
(one-step) transition probability matrix (TPM) P for DT MC(G) are defined as

. { PM(si,s5), si— 853
E 0, otherwise.

The steady-state PMF ¢ for DTMC(G) is defined like ¢* for EDTMC(G).

Let us determine a relationship between steady-state PMFs for DTMC(G)
and EDTMC(G). The following theorem proposes the equation that relates the
mentioned steady-state PMFs.

We introduce a helpful notation. For a vector v = (v1,...,v,), let Diag(v) be a
diagonal matrix of order n with the elements Diag;;(v) (1 <4,j < n) defined as

; .. = Vi, 1=];
Diags;(v) { 0, otherwise.

Proposition 3. Let G be a dynamic expression and SL be its self-loops abstraction
vector. Then the steady-state PMFs ¢ for DTMC(G) and ¢* for EDTMC(G) are
related as follows: Vs € DR(G)

P (s)SL(s)
> sepr(c) V*(5)SL(3)

Proof. See Appendix A.1. O

P(s) =

The next proposition relates the steady-state PMFs for SMC(G) and DTMC(G).

Proposition 4. Let G be a dynamic expression, ¢ be the steady-state PMF for
SMC(G) and 9 be the steady-state PMF for DTMC(G). Then Vs € DR(G)

seprp(a) P()?

¥ s DRy(G :
p(s) =4 = 7(©)
0, ENS DRv(G)

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1131

Proof. Let s € DRr(G). Remember that Vs € DRp(G) SL(s) = SJ(s) and Vs €
DRy (G) SJ(s) =0. Then, by Proposition 3, we have

¥ (s)SL(s)
() _ > sepr(c) ¥ (3)SL(3) _
deDRT(G) ¥(3) deDRT(G) (deDiZS))if((Es))SL@))
Y™ (s)SL(s) _ 2 sepr(a) V" (8)SL(5) _ Y*(s)SL(s) _
>sepre) Y B)SL(S) Yseprp(a) ¥ (B)SL(S) Yscprp(a) ¥*(5)SL(5)
P (s)SJ(s) _ Y (s)SJ(s)

Seconrc) " O5TE Seepne U657

O

Thus, to calculate ¢, one can only apply normalization to some elements of
1 (corresponding to the tangible states), instead of abstracting from self-loops
with probability less than 1 to get P* and then v*, followed by weighting by
SJ and normalization. We call that technique abstraction, since we abstract from
the vanishing states and consider only the (normalized) DTMC-based stationary
probabilities of the tangible states. Hence, using DT M C(G) instead of EDT M C(G)
allows one to avoid multistage analysis, but the payment for it is more time-
consuming numerical and more complex analytical calculation of ¢ with respect to
1*. The reason is that DT M C(G) may have self-loops with probability less than 1,
unlike EDTMC(G), hence, the behaviour of DT M C(G) may stabilize slower than
that of EDTMC(G) (if each of them has a single steady state) and P is potentially
more dense matrix than P*, since P may have additional non-zero elements at the
main diagonal. Nevertheless, Proposition 4 is very important, since the relationship
between ¢ and % it discovers will be used in Proposition 5 to relate the steady-state
PMFs for SMC(G) and the reduced DTMC(G).

Example 5. Let E be from Ezample 1. In Figure 3, the DTMC DTMC(E) is
presented. The TPM for DTMC(FE) is

1—p p O 0 0
0 01 0 0
P = 0 0 0 &= =
0 6 0 1-6 0
0 ¢ 0 0 1-¢

The steady-state PMF for DTMC(E) is

1
LV ¥ s ey (0,00(L +m), 06(L +m), ¢l,0m).

Remember that DRt (E) = DRst(E) U DRy (E) = {51, 82, 84, 85} and
DRy (E) = {s3}. Hence,

DRr(E) Vis) = lsr) + (o) + plsa) + (o) = 29@((1 +TZ”L))++ZZ++ 97::1'
se T

By Proposition 4, we have

1132 I.V. TARASYUK

DTMC(E)

L
I+

S

1

1-0 1—¢

FIG. 3. The DTMC of E for E = [({a}, p) * ({0}, 51); (({c}, 1)
({d}, 0)[(({e}, 19.): ({3, 9)))) * Stop]

_ o 200(+m)+l+0m _
p(s51) = 0 Foirmyrorrom = 0
(s2) = 04(14m) _206(4m)+l+0m 0p(14m)
P52) = 3050 rm) 1ol 10m ~ Oo(ltm)Toltom — 0d(+m)Tdliom>
90(53) =0,
(54) = ol 20¢(14+m)+l+om _ ol
P54) = 2000 rm)roliom Go(lim) 1ol 0m — 06(tm)toltom’

() _ Om C200(1+m)+pl+0m Om
P\85) = 2040 Tm)+ol10m = 0o(ltm)Toltom — 0¢(+m)+eliom:

Thus, the steady-state PMF for SMC(E) is

1
(L +m) + gl +Om
This coincides with the result obtained in Example 2 with the use of ¥* and SJ.

@ (0,0¢(1 +m),0,¢l, 0m).

4.3. Analysis of the reduced DTMC. Let us now consider the method from
[15, 16, 17, 38, 2, 5, 3] that eliminates vanishing states from the EMC (EDTMC,
in our terminology) corresponding to the underlying SMC of every GSPN N. The
TPM for the resulting reduced EDTMC (REDTMC) has smaller size than that for
the EDTMC. The method demonstrates that there exists a transformation of the
underlying SMC of N into a CTMC, whose states are the tangible markings of N.
This CTMC, which is essentially the reduced underlying SMC (RSMC) of N, is
constructed on the basis of the REDTMC. The CTMC can then be directly solved
to get both the transient and the steady-state PMFs over the tangible markings
of N. In [17], the program and computational complexities of such an elimination
method, based on the REDTMC, were evaluated and compared with those of the
preservation method that does not eliminate vanishing states and based on the
EDTMC. The preservation method for GSPNs corresponds in dtsdPBC to the
analysis of the underlying SMCs of expressions, called the embedding approach.
The elimination method for GSPNs can be easily transferred to dtsdPBC, hence,
for every dynamic expression G, we can find a DTMC (since the sojourn time in
the tangible states from DR(G) is discrete and geometrically distributed) with
the states from DRy (G), which can be directly solved to find the transient and

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1133

the steady-state PMFs over the tangible states. We shall demonstrate that such
a reduced DTMC (RDTMC) of G, denoted by RDTMC(G), can be constructed
from DTMC(QG), using the method analogous to that designed in [38, 2, 5, 3] in
the framework of GSPNs to transform EDTMC into REDTMC. Since the sojourn
time in the vanishing states is zero, the state changes of RDTMC(G) occur in
the moments of the global discrete time associated with SMC(G), unlike those of
EDTMC(G), which happen only when the current state changes to some different
one, irrespective of the global time. Therefore, in our case, we can skip the stages
of constructing the REDTMC of G, denoted by REDTMC(G), from EDTMC(G),
and recovering RSMC of G, denoted by RSM C(G), (which is the sought-for DTMC)
from REDTMC(G), since we shall have RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DT M C(G). We reorder
the states from DR(G) such that the first rows and columns of P will correspond
to the states from DRy (G) and the last ones will correspond to the states from
DRr(G). Let |DR(G)| = n and |DRr(G)| = m. The resulting matrix can be

decomposed as follows:
C D
P (cb >

The elements of the (n —m) X (n —m) submatrix C are the probabilities to move
from vanishing to vanishing states, and those of the (n —m) x m submatrix D are
the probabilities to move from vanishing to tangible states. The elements of the
m X (n —m) submatrix E are the probabilities to move from tangible to vanishing
states, and those of the m X m submatrix F are the probabilities to move from
tangible to tangible states.

The TPM P° for RDTMC(G) is the m x m matrix, calculated as

P° =F + EGD,

where the elements of the matrix G are the probabilities to move from vanishing to
vanishing states in any number of state changes, without traversal of tangible states.

If there are no loops among vanishing states then for any vanishing state there
exists a value [€ N such that every sequence of state changes that starts in a
vanishing state and is longer than ! should reach a tangible state. Thus, 3 €
NVE>1CF=0and) o,Ct= Zﬁc:o CF. If there are loops among vanishing
states then all such loops are supposed to be of “transient” rather than “absorbing”
type, since the latter is treated as a specification error to be corrected, like in [38, 3].
We have earlier required that SMC(G) has a single closed communication (which
is also ergodic) class of states. Remember that a communication class of states
is their equivalence class with respect to communication relation, i.e. a maximal
subset of communicating states. A communication class of states is closed if only
the states belonging to it are accessible from every its state. The ergodic class cannot
consist of vanishing states only to avoid “absorbing” loops among them, hence, it
contains tangible states as well. Thus, any sequence of vanishing state changes that
starts in the ergodic class will reach a tangible state at some time moment. All
the states that do not belong to the ergodic class should be transient. Hence, any
sequence of vanishing state changes that starts in a transient vanishing state will
some time reach either a transient tangible state or a state from the ergodic class
[27, 14, 57, 28]. In the latter case, a tangible state will be reached as well, as argued

1134 I.V. TARASYUK

above. Thus, every sequence of vanishing state changes in SMC(G) that starts in
a vanishing state will exit the set of all vanishing states in the future. As a result,
the probabilities to move from vanishing to vanishing states in k € N state changes,
without traversal of tangible states, will lead to 0 when & tends to oco. Then we have
limy 00 C¥ = limy,_, oo (I — (I — C))* = 0, hence, I — C is a non-singular matrix,
i.e. its determinant is not equal to zero. Thus, the inverse matrix of I — C exists
and may be expressed by a Neumann series as Y o (I— (I—C))* =32 CF =
(I — C)~!. Therefore,

o 1 o
G— Z ck — { Y ko C_’“17 E.Jl e NVEk k> I CF=0, no x'fan'lshlng states loops;
Pt (I-C)!, limgeo C* =0, vanishing states loops;

where 0 is the square matrix consisting only of zeros and I is the identity matrix,
both of order n — m.

For1 <i,j <mand1l <kl <n—m,let F;; be the elements of the matrix
F, & be those of E, Gy be those of G and Dj; be those of D. By definition, the
elements Pfj of the matrix P are calculated as

n—mmn—m

n—m n—m n—m n—m
Po=Fi+ Y. Y ExGuDy=Fij+ > Ex Y GuDy=Fij+ > Dij ¥ EixGni,
k=1 1=1 k=1 =1 =1 k=1

ie. P7 (1 <i,j < m) is the total probability to move from the tangible state s; to
the tangible state s; in any number of steps, without traversal of tangible states,
but possibly going through vanishing states.

Let 5,5 € DRy (G) such that s = s;, § = s;. The probability to move from s to
S in any number of steps, without traversal of tangible states is

PM°(s,8) =Py,

17"
Definition 18. Let G be a dynamic expression and [Glx, € DR (G). The reduced
discrete time Markov chain (RDTMC) of G, denoted by RDTMC(G), has the

state space DRy (G), the initial state [G]~ and the transitions s —p §, where
P = PM°(s,3).

Let us now define RSMC(G) as a “restriction” of SMC(G) to its tangible states.
Since the sojourn time in the tangible states of SM C(G) is discrete and geometrical-
ly distributed, we can see that RSM C(G) is a DTMC with the state space DRp(G),
the initial state [G]~ and the transitions whose probabilities collect all those in
SMC(G) to move from the tangible to the tangible states, directly or indirectly,
i.e. by going through its vanishing states only. Thus, RSM C(G) has the transitions
s <—p §, where P = PM°(s, §), hence, we get RSMC(G) = RDTMC(G).

Note that RDTMC(G) is constructed from DT MC(G) as follows. All vanishing
states and all transitions to, from and between them are removed. All transitions
between tangible states are preserved. The probabilities of transitions between tan-
gible states may become greater and new transitions between tangible states may
be added, both iff there exist moves between these tangible states in any number
of steps, going through vanishing states only. Thus, for each sequence of transitions
between two tangible states in DT MC(G) there exists a (possibly shorter, since
the eventual passed through vanishing states are removed) sequence between the

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1135

same states in RDTMC(G) and vice versa. If DTMC(G) is irreducible then all
its states (including tangible ones) communicate, hence, all states of RDTMC(G)
communicate as well and it is irreducible. Since both DT M C(G) and RDTMC(G)
are finite, they are positive recurrent. Thus, in case of irreducibility of DTMC(G),
each of them has a single stationary PMF. Then DT MC(G) and/or RDTMC(G)
may be periodic, thus having a unique stationary distribution, but no steady-state
(limiting) one. For example, it may happen that DTMC(G) is aperiodic while
RDTMC(G) is periodic due to removing vanishing states from the former.

Let DRy (G) = {s1,...,5m} and [G]~ € DRyp(G). Then the transient (k-step,
k € N) PMF ¢°[k] = (¢°[k](s1), ..., ¥°[k](sm)) for RDTMC(G) is calculated as

V°[k] = °[0](P°)*,
where ¢°[0] = (¢°[0](s1), ..., ¥°[0](sm)) is the initial PMF defined as

o N 1, s = [G]z7
W7[0l(si) = { 0, otherwise.
Note also that ¥°[k + 1] = ¢°[k]P° (k € N).
The steady-state PMF ¢ = (¢°(s1),...,1%°(sm)) for RDTMC(G) is a solution
of the equation system

(PP -T) =0
{ wolT =1 ’
where I is the identity matrix of order m and 0 is a row vector of m values 0, 1 is
that of m values 1.

Note that the vector ¥° exists and is unique if RDTMC(G) is ergodic. Then
RDTMC(G) has a single steady state, and we have ¢° = limy_, o ¥°[k].

The zero sojourn time in the vanishing states guarantees that the state changes
of RDTMC(G) occur in the moments of the global discrete time associated with
SMC(G), i.e. every such state change occurs after one time unit delay. Hence, the
sojourn time in the tangible states is the same for RDTMC(G) and SMC(G).
The state change probabilities of RDTMC(G) are those to move from tangible to
tangible states in any number of steps, without traversal of the tangible states. Then
RDTMC(G) and SMC(G) have the same transient behaviour over the tangible
states, thus, the transient analysis of SMC(G) is possible using RDTMC(G).
The next proposition relates the steady-state PMFs for SMC(G) and RDTMC(G).
It proves that the steady-state probabilities of the tangible states coincide for them.

Proposition 5. Let G be a dynamic expression, ¢ be the steady-state PMF for
SMC(G) and ° be the steady-state PMF for RDTMC(G). Then Vs € DR(QG)

_J ¥°(s), s€DRr(G);
wls) = { 0, seDRy(C)

Proof. See Appendix A.2. O

Thus, to calculate ¢, one can just take all the elements of 1° as the steady-
state probabilities of the tangible states, instead of abstracting from self-loops with
probability less than 1 to get P* and then), followed by weighting by SJ and
normalization. We call that technique elimination, since we eliminate the vanishing
states. Hence, using RDT M C(QG) instead of EDTMC(G) allows one to avoid such

1136 I.V. TARASYUK

a multistage analysis, but constructing P¢ also requires some efforts, including
calculating matrix powers or inverse matrices. Note that RDTMC(G) may have
self-loops with probability less than 1, unlike EDTMC(G), hence, the behaviour
of RDTMC(G) may stabilize slower than that of EDTMC(G) (if each of them
has a single steady state). On the other hand, P° is generally smaller and denser
matrix than P*, since P® may have additional non-zero elements not only at the
main diagonal, but also many of them outside it. Therefore, in most cases, we have
less time-consuming numerical calculation of ¢ with respect to ¥*. At the same
time, the complexity of the analytical calculation of ¢® with respect to ¥* depends
on the model structure, such as the number of vanishing states and loops among
them, but usually it is lower, since the matrix size reduction plays an important role
in many cases. Hence, for the system models with many immediate activities, we
normally have a significant simplification of the solution. At the abstraction level
of SMCs, the elimination of vanishing states decreases their impact to the solution
complexity while allowing immediate activities to specify a comprehensible logical
structure of systems at the higher level of transition systems.

Example 6. Let E be from Evample 1. Remember that DRy (E) = DRsr(E) U

DRwr(FE) = {s1,82,84,85} and DRy (E) = {s3}. We reorder the states from

DR(E), by moving vanishing states to the first positions: s, s1, $2, 84, S5
The reordered TPM for DTMC(E) is

l m
0 0 0 ow ©om
0 1—p p 0 0
P,=1]1 0 0 0 0
0 0 0 1-46 0
0 0 10) 0 1—9¢
The result of the decomposing P, are the matrices
1—p »p 0 0

0 0 0 0
F=1 0 9120 o

0 ¢ 0 1-—¢

Since C' = 0, we have Vk > 0 C* = 0, hence, | = 0 and there are no loops
among vanishing states. Then

C=0, D= O,O,L,l E=
l+m’ l+m

oS O = O

l
G:ZC’“:CO:I.
k=0

Further, the TPM for RDTMC(E) is

1—p »p 0 0
O _ _ _ 0 0 lJrlm lJer
P°=F+EGD=F+EID=F+ED = 0 0 19 0
0 0] 0 1—¢

In Figure 4, the reduced DTMC RDTMC(E) is presented. The steady-state PMF
for RDTMC(E) is

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1137

FIG. 4. The reduced DTMC of E for E = [({a}, p) * (({b},1});
(e}, 1) ({d}, 0))D(({e}, 5m): ({3, 6)))) * Stop]

g = :
0L+ m) + gl + Om
Note that ¥° = (¥°(s1), ¥°(s2), ¥°(s4),¢°(s5)). By Proposition 5, we have

(0,00(L +m), oL, 0m).

(p(Sl) =0,

_ 6(14m)
#(52) = ggrmyrorrom
@(53) =0,

_ ¢l
(54) = ggrm)rorrom>

Om
¢(55) = ga0Tm) tarrom-
Thus, the steady-state PMF for SMC(E) is

1
P T 960l +m) + ol + Om
This coincides with the result obtained in Example 2 with the use of ¥* and SJ.

(0,04(1 +m),0,¢l, 0m).

Example 7. In Figure 5, the reduced underlying SMC RSMC(E) is depicted.
The average sojourn times in the states of the reduced underlying SMC' are written
next to them in bold font. In spite of the equality RSMC(E) = RDTMC(E),
the graphical representation of RSMC(E) differs from that of RDTMC(E), since
the former is based on the REDTMC(E), where each state is decorated with the
positive average sojourn time of RSMC(E) in it. REDTMC(E) is constructed
from EDTMC(E) in the similar way as RDTMC(E) is obtained from DTMC(E).
By construction, the residence time in each state of RSMC(E) is geometrically
distributed. Hence, the associated parameter of geometrical distribution is uniquely
recovered from the average sojourn time in the state.

Our reduction of the underlying SMC by eliminating its vanishing states, resul-
ting in the reduced DTMC, partially resembles the hierarchical aggregation method
from [18] for singularly perturbed finite state Markov processes with rare transitions.
The method constructs a sequence of increasingly simplified (with reduced order)
models and then combines them to approximate asymptotically the original process.

1138 I.V. TARASYUK

F1G. 5. The reduced SMC of E for E = [({a}, p) * ({b},1});
(e}, 1) ({d}, 0)) (e},) ({3, 6)))) * Stop]

Performance evaluation

OO

Preservation Elimination

N, (RDTMC)

Embedding Abstraction
(SMC) (DTMC)

F1G. 6. Performance evaluation methods in dtsdPBC

Our reduction technique also resembles the method from [34] that removes in-
stantaneous states of stochastically discontinuous Markov reward chains. The latter
are “limits” of continuous time Markov chains with state rewards and fast transi-
tions when the rates (speeds) of these transitions tend to infinity, making them
immediate. Analogously, we could consider DTMCs extended with instantaneous
states instead of SMCs with geometrically distributed or zero sojourn time in the
states. However, within dtsdPBC, we have decided to take SMCs as the underlying
stochastic process to be able to consider not only geometrically distributed and zero
residence time in the states, but arbitrary fixed discrete time delays as well.

5. CONCLUSION

In this paper, we have considered a discrete time stochastic extension dtsdPBC
of PBC, enriched with deterministic multiactions. The calculus has a parallel step
operational semantics, based on labeled probabilistic transition systems and a deno-
tational semantics in terms of a subclass of LDTSDPNs [52]. A technique of perfor-
mance evaluation within the calculus has been presented (embedding) that explores
the corresponding stochastic process, which is a semi-Markov chain (SMC). In such
an SMC, the sojourn time in every tangible state is geometrically distributed (being
one or infinity, as special cases) while the sojourn time in every vanishing state is
zero. It has been proved that the underlying discrete time Markov chain (DTMC)
or its reduction (RDTMC) by eliminating vanishing states may alternatively and
suitably be studied for that purpose (the abstraction and elimination techniques,
respectively). Since vanishing states are preserved by both the embedding and ab-
straction, the latter can be seen as an alternative (to the former) preservation me-
thod [17]. In Figure 6, we classify the performance analysis techniques in dtsdPBC.

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1139

The advantage of our framework is twofold. First, one can specify in it concurrent
composition and synchronization of (multi)actions, whereas this is not possible in
classical Markov chains. As argued in [57], (stochastic) PNs represent the systems
structure more concisely and can be an intermediate formalism for their more intui-
tive translation into Markov chains. Second, algebraic formulas represent processes
in a more compact way than PNs and allow one to apply syntactic transformations
and comparisons. Process algebras are compositional by definition and their operati-
ons naturally correspond to operators of programming languages. Hence, it is much
easier to construct a complex model in the algebraic setting than in PNs. The
complexity of PNs generated for practical models in the literature shows that it is
not straightforward to construct such PNs directly from the system specifications.

dtsdPBC is well suited for the discrete time applications, whose discrete states
change with a global time tick, such as business processes, neural and transportation
networks, computer and communication systems, timed web services [58], as well
as for those, in which the distributed architecture or the concurrency level should
be preserved while modeling and analysis, such as genetic regulatory and cellular
signalling networks (featuring maximal parallelism) in biology [13, 4] (remember
that, in step semantics, we have additional transitions due to concurrent executions).
dtsdPBC is also capable to model and analyze parallel systems with fixed durations
of the typical activities (loading, processing, transfer, repair, low-level events, mes-
sage delivery) and stochastic durations of the randomly occurring activities (arrival,
departure, failure, packet loss, message collision), including industrial, manufactu-
ring, queueing, computing and network systems. Thus, the main advantages of
dtsdPBC are the flexible multiaction labels, deterministic and stochastic multiacti-
ons, powerful operations, as well as its step operational and Petri net denotational
semantics, allowing for parallel executions (firings) of activities (net transitions),
with an ability for analytical performance evaluation. The uniqueness of our appro-
ach consists in applying a parallel semantics for the process expressions and preser-
ving the concurrency level in the extracted performance models (SMC, DTMC and
RDTMC) through their state changes corresponding to the simultaneous executions.

In the following, we plan to use step stochastic bisimulation equivalence to reduce
behaviour of the algebraic processes by quotienting their transition systems and
Markov chains. Such a reduction should simplify the functional (qualitative) and
performance (quantitative) analysis. We would like to construct some application
examples demonstrating expressiveness of the calculus and application of the beha-
vioural analysis and performance evaluation, both simplified using quotienting by
step stochastic bisimulation. Future work could also consist in constructing a con-
gruence relation for dtsdPBC, i.e. the equivalence that withstands application of all
operations of the algebra. The first possible candidate is a stronger version of step
stochastic bisimulation equivalence, defined via transition systems equipped with
two extra transitions skip and redo, like those from sPBC [30]. Moreover, recursion
operation could be added to dtsdPBC to increase specification power of the algebra.

APPENDIX A. PROOFS

A.1. Proof of Proposition 3. Let PSL be a vector with the elements

PM(s,s), s—s;
0, otherwise.

PSL(s) = {

1140 I.V. TARASYUK

By definition of PM*(s, §), we have P* = Diag(SL)(P — Diag(PSL)). Further,
P*(P*—1I) =0 and ¢v*P* =",
After replacement of P* by Diag(SL)(P — Diag(PSL)) we obtain

¥*Diag(SL)(P — Diag(PSL)) = v¢* and
Y*Diag(SL)P = ¢*(Diag(SL)Diag(PSL) + I).

Note that Vs € DR(G) we have SL(s)PSL(s)+ 1=
PM(s,s _ .
SL(s)PM(s,s) + 1 = opprts + 1= =paesys § = 5 — SL(s).
SL(s)-0+1=1, otherwise;
Hence, Diag(SL)Diag(PSL)+ I = Diag(SL). Thus,
¥*Diag(SL)P = " Diag(SL).

Then, for v = ¢*Diag(SL), we have vP = v and v(P —I) = 0.
In order to calculate ¥ on the basis of v, we must normalize it by dividing its
elements by their sum, since we should have 17 = 1 as a result:

" 1 1
- = -
v1T Y*Diag(SL)1T

Thus, the elements of ¢ are calculated as follows: Vs € DR(G)
P*(s)SL(s)
Y(s) = .
2 sepr(a) ¥ (3)SL(3)
It is easy to check that 1 is a solution of the equation system

PP -T)=0
wszl)

hence, it is indeed the steady-state PMF for DT MC(G). O

Y*Diag(SL).

A.2. Proof of Proposition 5. Let P be the reordered TPM for DT M C(G) and v
be the steady-state PMF for DT M C(G), i.e. ¢ is a solution of the equation system

$(P-1) =0
1T =1
Let |DR(G)| = n and |DRr(G)| = m. The decomposed P, P — I and ¢ are

P—(E ?)JLJ—(CEIF?I>mﬂw—WWWL

where ¥y = (1,...,%n_m) is the subvector of ¢ with the steady-state probabilities
of vanishing states and ¥r = (Yn—m+1,.-.,¥n) is that with the steady-state
probabilities of tangible states.

Then the equation system for 1) is decomposed as follows:

Yv(C-I)+yrE=0
YyD +¢Yr(F -1) =0
Y1t + 1t =1
Let P¢ be the TPM for RDT M C(G). Then ° is a solution of the equation system

¥O(P°—1) =0
wolT =1

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1141

We have
P° =F + EGD,
where the matrix G can have two different forms, depending on whether the loops
among vanishing states exist, hence, we consider the two following cases.

(1) There exist no loops among vanishing states. We have 31 € NVk > [C* = 0

and G = Y} _, C".
Let us right-multiply the first equation of the decomposed equation

system for ¢ by G:

Yy (CG — G) + v7EG = 0.
Taking into account that G = 22:0 CF, we get

l l
v <ch +CH -’ - ch> +¢rEG = 0.

k=1 k=1
Since C% =1 and C'*! = 0, we obtain
— v + 7 EG = 0 and ¢y — 7 EG.

Let us substitute ¥y with ¥7EG in the second equation of the decom-
posed equation system for 1:

Y7EGD + ¢7(F — 1) = 0 and ¢7(F + EGD —I) = 0.
Since F + EGD = P°, we have
Yr(P° —1I) = 0.

(2) There exist loops among vanishing states. We have limy_,o, C¥ = 0 and
G=(I-0C)L
Let us right-multiply the first equation of the decomposed equation
system for ¢ by G:

—y(I— C)G + brEG = 0.
Taking into account that G = (I — C)~1, we get
— by + brEG = 0 and by = Y EG.

Let us substitute ¥y with ¥7EG in the second equation of the decom-
posed equation system for :

Y7rEGD + ¢7(F —1I) = 0 and o7 (F + EGD — 1) = 0.
Since F + EGD = P°, we have
Yr(P° —1) = 0.

The third equation ¥ 17 4+ 9717 = 1 of the decomposed equation system for 1
implies that if ¥y has nonzero elements then the sum of the elements of 17 is less
than one. We normalize 17 by dividing its elements by their sum:

1
- 7/}T1T Q/JT'
It is easy to check that v is a solution of the equation system

{ o(P°—T)=0

v1T =1 ’

v

1142

I.V. TARASYUK

hence, it is the steady-state PMF for RDTMC(G) and we have

1

¢0:U:W

Y.

Note that Vs € DR (G) v¥r(s) = 1¥(s). Then the elements of ¥° are calculated
as follows: Vs € DRr(G)

1Z)<>(S) _ 1/)T(S) _ 1/)(5)]
deDRT(G) ¥r(3) Z§€DRT(G) ¥(3)
By Proposition 4, Vs € DR (G) ¢(s) = (s

> seprpe) ¥

Therefore, Vs € DRy (G)

(1]

2]
(3]
(4]
(5]

(6]
(7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

P(s)

5eDRr(G) w(g)

p(s) = 5 =¢°(s).

REFERENCES

W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time stochastic Petri
nets, Statistica Neerlandica, 54:2 (2000), 237—-255. http://tmitwww.tm.tue.nl/staff /hreijers/
H.A. Reijers Bestanden/Statistica.pdf. MR1794979

G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Science, 2090
(2001), 84-155. Zbl 0990.68092

G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in Computer
Science, 4486 (2007), 83-131. Zbl 1323.68400

E. Bartocci, P. Lié, Computational modeling, formal analysis, and tools for systems biology,
PLoS Computational Biology 12:1 (2016), €1004591.

F. Bause, P.S. Kritzinger, Stochastic Petri nets: an introduction to the theory, Vieweg Verlag,
2002. http://ls4-www.cs.tu-dortmund.de/cms/de/home/bause/bause kritzinger spn
book print.pdf Zbl 1013.60065

J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction, Theoretical
Computer Science, 37 (1985), 77-121. MR0796314

M. Bernardo, M. Bravetti, Reward based congruences: can we aggregate more? Lecture Notes
in Computer Science, 2165 (2001), 136-151. MR1904353

M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with
nondeterminism, priorities, probabilities and time, Theoretical Computer Science, 202
(1998), 1-54. MR1626813

E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with multi-label
communication, Lecture Notes in Computer Science, 609 (1992), 21-69. MR1253529

E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on Theoretical
Computer Science, Springer, 2001. MR1932732

E. Best, M. Koutny, A refined view of the box algebra, Lecture Notes in Computer Science,
935 (1995), 1-20. MR1461021

T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc. IFIP WG
6.1 10*" Int. Symposium on Protocol Specification, Testing and Verification 1990, Ottawa,
Canada, 1-14, North-Holland, Amsterdam, The Netherlands, 1990.

N. Bonzanni, K.A. Feenstra, W. Fokkink, E. Krepska, What can formal methods bring to
systems biology? Lecture Notes in Computer Science, 5850 (2009), 16-22.

A.A. Borovkov, Probability theory, Universitext (UTX) series, Springer, 2013. Zbl 1297.60002
G. Chiola, A software package for the analysis of generalized stochastic Petri net models,
Proc. 15¢ Int. Workshop on Timed Petri Nets 1985, Turin, Italy, IEEE Computer Society
Press, July 1985.

G. Ciardo, J.K. Muppala, K.S. Trivedi, SPNP: stochastic Petri net package, Proc. 37%
Int. Workshop on Petri Nets and Performance Models (PNPM) 1989, Kyoto, Japan, IEEE
Computer Society Press, December 1989, 142-151.

[17]
(18]

[19]

[20]
21]

22]

23]
[24]

[25]

[26]
[27]
28]
[29]
(30]

31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

[39]

[40]

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1143

G. Ciardo, J.K. Muppala, K.S. Trivedi, On the solution of GSPN reward models, Performance
Evaluation, 12:4 (1991), 237-253. Zbl 0754.60097

M. Coderch, A.S. Willsky, S.S. Sastry, D.A. Castanon, Hierarchical aggregation of singularly
perturbed finite state Markov processes, Stochastics, 8:4 (1983), 259-289. Zbl 0517.60080
R.J. van Glabbeek, The linear time — branching time spectrum II: the semantics of sequential
systems with silent moves. Extended abstract, Lecture Notes in Computer Science, 715 (1993),
66-81.

H.M. Hanish, Analysis of place/transition nets with timed-arcs and its application to batch
process control, Lecture Notes in Computer Science, 691 (1993), 282-299.

B.R. Haverkort, Markovian models for performance and dependability evaluation, Lecture
Notes in Computer Science, 2090 (2001), 38-83. Zbl 0990.68020

H. Hermanns, M. Rettelbach, Syntaz, semantics, equivalences and azxioms for MTIPP, Proc.
274 Tnt. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (U.
Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany, July 1994, Arbeitsberichte
des IMMD, 27:4 (1994), 71-88. http://ftp.informatik.uni-erlangen.de/local /inf7 /papers/
Hermanns/syntax semantics _equivalences axioms for MTIPP.ps.gz

J. Hillston, A compositional approach to performance modelling, Cambridge University Press,
Cambridge, UK, 1996. http://www.dcs.ed.ac.uk/pepa/book.pdf MR1427945

C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK, 1985.
http://www.usingcsp.com/cspbook.pdf MR0805324

J.-P. Katoen, Quantinative and qualitative extensions of event structures, Ph.D. thesis, CTIT
Ph.D.-thesis series, 96-09, Centre for Telematics and Information Technology, University of
Twente, Enschede, The Netherlands, 1996.

M. Koutny, A compositional model of time Petri nets, Lecture Notes in Computer Science,
1825 (2000), 303-322.

V.G. Kulkarni, Modeling and analysis of stochastic systems, Texts in Statistical Science, 84,
Chapman and Hall / CRC Press, 2010. Zbl 1191.60003

L. Lakatos, L. Szeidl, M. Telek, Introduction to queueing systems with telecommunication
applications, Springer Nature, Cham, Switzerland, 2019. Zbl 1415.60001

H. Macia, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in sPBC, Lecture
Notes in Computer Science, 3235 (2004), 292-308. Zbl 1110.68420

H. Macia, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC, Formal
Methods in System Design, 32:2 (2008), 85-128. Zbl 1138.68040

H. Macia, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of Petri box
calculus with immediate multiactions, Fundamenta Informaticae, 87:3—4 (2008), 367—406.
Zbl 1154.68092

H. Macia, V. Valero, F. Cuartero, M.C. Ruiz, 1.V. Tarasyuk, Modelling a video conference
system with sPBC, Applied Mathematics and Information Sciences 10:2 (2016), 475-493.
H. Macia, V. Valero, D. de Frutos, sPBC: a Markovian extension of finite Petri box calculus,
Proc. 9t* IEEE Int. Workshop on Petri Nets and Performance Models (PNPM) 2001, Aachen,
Germany, 207-216, IEEE Computer Society Press, 2001. http://www.info-ab.uclm.es/retics/
publications/2001/pnpm01.ps

J. Markovski, A. Sokolova, N. Tréka, E.P. de Vink, Compositionality for Markov reward
chains with fast and silent transitions, Performance Evaluation, 66 (2009), 435-452.

O. Marroquin, D. de Frutos, TPBC: timed Petri box calculus, Technical Report, Departa-
mento de Sistemas Infofméticos y Programacién, Universidad Complutense de Madrid, Spain,
2000 (in Spanish).

O. Marroquin, D. de Frutos, Ezxtending the Petri box calculus with time, Lecture Notes in
Computer Science, 2075 (2001), 303-322. Zbl 0986.68082

M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes in Computer
Science, 424 (1990), 1-29.

M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalised
stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley and Sons, 1995.
http://www.di.unito.it/~greatspn/GSPN-Wiley,/ Zbl 0843.68080

Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications of a theo-
retical study, IEEE Transactions on Communications, 24:9 (1976), 1036-1043. Zbl 0362.68096
R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle River, NJ,
USA, 1989. Zbl 0683.68008

1144 I.V. TARASYUK

[41] M.K. Molloy, On the integration of the throughput and delay measures in distributed
processing models, Ph.D. thesis, Report, CSD-810-921, 108 p., University of California,
Los Angeles, CA, USA, 1981.

[42] M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software Engineering,
11:4 (1985), 417-423. MRO788999

[43] T.N. Mudge, H.B. Al-Sadoun, A semi-Markov model for the performance of multiple-bus
systems, IEEE Transactions on Computers, C-34:10 (1985), 934-942.

[44] A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture Notes in
Computer Science, 3407 (2005), 447-462. Zbl 1109.68076

[45] A. Niaouris, M. Koutny, An algebra of timed-arc Petri nets, Technical Report, CS-TR-895,
60 p., School of Computer Science, University of Newcastle upon Tyne, UK, 2005.
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf

[46] C. Ramchandani, Performance evaluation of asynchronous concurrent systems by timed
Petri nets, Ph.D. thesis, Department of Electrical Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA, 1973.

[47] S.M. Ross, Stochastic processes, John Wiley and Sons, New York, USA, 1996. MR1373653

[48] 1.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem Department fiir
Informatik, 3/05, 25 p., Carl von Ossietzky Universitat Oldenburg, Germany, 2005.
http://itar.iis.nsk.su/files /itar /pages/dtspbcib_cov.pdf

[49] 1.V. Tarasyuk, lteration in discrete time stochastic Petri box calculus, Bulletin of the Novo-
sibirsk Computing Center, Series Computer Science, IIS Special Issue, 24 (2006), 129-148.
Zbl 1249.68132

[50] I.V. Tarasyuk, Stochastic Petri bozx calculus with discrete time, Fundamenta Informaticae,
76:1-2 (2007), 189-218. MR2293057

[61] I.V. Tarasyuk, Equivalence relations for modular performance evaluation in dtsPBC,
Mathematical Structures in Computer Science, 24:1 (2014), ¢240103. MR3183269

[62] I.V. Tarasyuk, Discrete time stochastic and deterministic Petri box calculus dtsdPBC,
Siberian Electronic Mathematical Reports, 17 (2020), 1598-1679. Zbl 1448.68352

[63] I.V. Tarasyuk, H. Macia, V. Valero, Discrete time stochastic Petri boz calculus with immediate
multiactions, Technical Report, DIAB-10-03-1, 25 p., Department of Computer Systems,
High School of Computer Science Engineering, University of Castilla - La Mancha, Albacete,
Spain, 2010. http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf

[64] I.V. Tarasyuk, H. Macia, V. Valero, Discrete time stochastic Petri boz calculus with immediate
multiactions dtsiPBC, Proc. 6% Int. Workshop on Practical Applications of Stochastic
Modelling (PASM) 2012 and 11** Int. Workshop on Parallel and Distributed Methods in
Verification (PDMC) 2012 (J. Bradley, K. Heljanko, W. Knottenbelt, N. Thomas, eds.),
London, UK, 2012, Electronic Notes in Theoretical Computer Science, 296 (2013), 229-252.

[55] I.V. Tarasyuk, H. Macia, V. Valero, Performance analysis of concurrent systems in algebra
dtsiPBC, Programming and Computer Software, 40:5 (2014), 229-249.

[56] 1.V. Tarasyuk, H. Macia, V. Valero, Stochastic equivalence for performance analysis of
concurrent systems in dtsiPBC, Siberian Electronic Mathematical Reports, 15 (2018), 1743—
1812. Zbl 1414.60062

[57] K.S. Trivedi, Probability and statistics with reliability, queuing, and computer science appli-
cations, John Wiley and Sons, 2016. Zbl 1344.60003

[58] V. Valero, M.E. Cambronero, Using unified modelling language to model the publish/subscribe
paradigm in the context of timed Web services with distributed resources, Mathematical and
Computer Modelling of Dynamical Systems, 23:6 (2017), 570-594.

[59] R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Workshop on
Quality of Communication-Based Systems 1994, Technical University of Berlin, Germany,
123-136, Kluwer Academic Publishers, 1995. Zbl 0817.68111

[60] R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D. thesis,
Technical University of Berlin, Germany, 1997.

[61] R. Zijal, G. Ciardo, Discrete deterministic and stochastic Petri nets, ICASE Report, 96-72,
23 p., Institute for Computer Applications in Science and Engineering (ICASE), NASA,
Langley Research Centre, Hampton, VA, USA, 1996. http://www.cs.odu.edu/ mln/ltrs-
pdfs/icase-1996-72.pdf, http://www.dtic.mil/dtic/tr/fulltext /u2/a322409.pdf

[62] R. Zijal, G. Ciardo, G. Hommel, Discrete deterministic and stochastic Petri nets, Proc.
9th ITG/GI Professional Meeting on Measuring, Modeling and Evaluation of Computer and

PERFORMANCE EVALUATION IN STOCHASTIC PROCESS ALGEBRA DTSDPBC 1145

Communication Systems (MMB) 1997 (K. Irmscher, Ch. Mittasch, K. Richter, eds.), Freiberg,
Germany, 1997, Vol. 1, 103-117, VDE-Verlag, Berlin, Germany, 1997. http://www.cs.ucr.edu/
~ciardo/pubs/1997TMMB-DDSPN.pdf

[63] R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc. 11t" Int.
Conf. on Analysis and Optimization of Systems, Discrete Event Systems (DES) 1994 (G.
Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, 1994, Lecture Notes in Control and
Information Sciences, 199 (1994), 198-204.

[64] A. Zimmermann, Modeling and evaluation of stochastic Petri nets with TimeNET 4.1, Proc.
6! Int. ICST Conf. on Performance Evaluation Methodologies and Tools (VALUETOOLS)
2012 (B. Gaujal, A. Jean-Marie, E. Jorswieck, A. Seuret, eds.), Cargese, France, October 2012,
1-10, IEEE Computer Society Press, 2012. https://www.tu-ilmenau.de/fileadmin/public/
sse/Veroeffentlichungen/2012/VALUETOOLS2012.pdf

[65] A.Zimmermann, J. Freiheit, R. German, G. Hommel, Petri net modelling and performability
evaluation with TimeNET 8.0, Lecture Notes in Computer Science, 1786 (2000), 188-202.
Zbl 0970.68665

[66] A. Zimmermann, J. Freiheit, G. Hommel, Discrete time stochastic Petri nets for modeling
and evaluation of real-time systems, Proc. 9t" Int. Workshop on Parallel and Distributed
Real Time Systems (WPDRTS) 2001, San Francisco, USA, 282-286, 2001. http://pdv.cs.tu-
berlin.de/ ~azi/texte/ WPDRTS01.pdf

Icor VALERIEVICH TARASYUK

A.P. ErsHOV INSTITUTE OF INFORMATICS SYSTEMS,
SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES,
AcAap. LAVRENTIEV PR. 6,

630090 NovosiBIRsK, RussiaN FEDERATION

E-mail address: itar@iis.nsk.su

