S@©MR ISSN 1813-3304

CUBNPCKNE SJ/JIEKTPOHHDBIE
MATEMATUYECKUE USBECTUA

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Tom 17, emp. 1-47 (2020) VIIK 004.423.4, 519.681.2, 519.681.3
DOI 10.33048 /semi.2020.17.xxx MSC 18C10, 68Q55, 68Q85

DISCRETE TIME STOCHASTIC AND DETERMINISTIC
PETRI BOX CALCULUS DTSDPBC

I1.V. TARASYUK

ABSTRACT. We propose dtsdPBC, an extension with deterministically ti-
med multiactions of discrete time stochastic and immediate Petri box cal-
culus (dtsiPBC), previously presented by 1.V. Tarasyuk, H. Macia and V.
Valero. dtsdPBC enhances the expressiveness of dtsiPBC and extends the
application area of the associated specification and analysis techniques.
In dtsdPBC, non-negative integers are used to specify fixed (including
zero) time delays of deterministic multiactions. The step operational se-
mantics is constructed via labeled probabilistic transition systems. A se-
ries of examples that construct the transition systems for the expressions
with different types of multiactions and operations demonstrates both
the specification capabilities and semantic features of the new calculus.

Keywords: stochastic process algebra, Petri box calculus, discrete time,
stochastic multiaction, deterministic multiaction, transition system, ope-
rational semantics, semantic example.

1. INTRODUCTION

Algebraic process calculi like CSP [21], ACP [4] and CCS [37] are well-known
formal models for specification of computing systems and analysis of their behavi-
our. In such process algebras (PAs), systems and processes are specified by formulas,
and verification of their properties is accomplished at a syntactic level via equivalen-
ces, axioms and inference rules. In recent decades, stochastic extensions of PAs were
proposed, such as MTIPP [18], PEPA [20] and EMPA [6]. Unlike standard PAs,
stochastic process algebras (SPAs) do not just specify actions which can occur

TAarRAsYUK, [.V., DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS
pTspPBC.

© 2020 TarasYUK I.V.

Received March, 12, 2020, published Month, zz, 2020.

1

2 I.V. TARASYUK

(qualitative features), but they associate with the actions the distribution parame-
ters of their random time delays (quantitative characteristics).

1.1. Petri box calculus. PAs specify concurrent systems in a compositional way
via an expressive formal syntax. On the other hand, Petri nets (PNs) provide a
graphical representation of such systems and capture explicit asynchrony in their
behaviour. To combine the advantages of both models, a semantics of algebraic
formulas via PNs was defined.

Petri box calculus (PBC) [7, 9, 8] is a flexible and expressive process algebra
developed as a tool for specification of the PNs structure and their interrelations.
Its goal was also to propose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementary PNs. Formulas of
PBC are combined not from single (visible or invisible) actions and variables,
like in CCS, but from multisets of elementary actions and their conjugates, called
multiactions (basic formulas). The empty multiset of actions is interpreted as the
silent multiaction specifying some invisible activity. In contrast to CCS, synchroni-
zation is separated from parallelism (concurrent constructs). Synchronization is
a unary multi-way stepwise operation, based on communication of actions and
their conjugates. This extends the CCS approach with conjugate matching labels.
Synchronization in PBC is asynchronous, unlike that in Synchronous CCS (SCCS)
[37]. Other operations are sequence and choice (sequential constructs). The calculus
includes also restriction and relabeling (abstraction constructs). To specify infinite
processes, refinement, recursion and iteration operations were added (hierarchical
constructs). Thus, unlike CCS, PBC has an additional iteration operation to specify
infinite behaviour when the semantic interpretation in finite PNs is possible. PBC
has a step operational semantics in terms of labeled transition systems, based on the
rules of structural operational semantics (SOS). The operational semantics of PBC
is of step type, since its SOS rules have transitions with (multi)sets of activities,
corresponding to simultaneous executions of activities (steps). A denotational se-
mantics of PBC was proposed via a subclass of PNs equipped with an interface and
considered up to isomorphism, called Petri boxes. For more detailed comparison
of PBC with other process algebras and the reasoning about importance of non-
interleaving semantics see [7, 8].

The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time were presented.

1.2. Time extensions of Petri box calculus. To specify systems with time
constraints, deterministic (fixed) or nondeterministic (interval) delays are used.

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [23]. In tPBC, timing information is added by
associating time intervals (the earliest and the latest firing time) with instantaneous
actions. tPBC has a step time operational semantics in terms of labeled transition
systems. Its denotational semantics was defined in terms of a subclass of labeled
time Petri nets (LtPNs), based on tPNs [36] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was
defined in [32, 33|, it accommodates a deterministic model of time. In contrast
to tPBC, multiactions of TPBC are not instantaneous, but have time durations.
Additionally, in TPBC there exist no “illegal” multiaction occurrences, unlike tPBC.
The complexity of “illegal” occurrences mechanism was one of the main intentions

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 3

to construct TPBC though this calculus appeared to be more complicated than
tPBC. TPBC has a step timed operational semantics in terms of labeled transition
systems. The denotational semantics of TPBC was defined in terms of a subclass
of labeled Timed Petri nets (LTPNs), based on TPNs [42] and called Timed Petri
boxes (T-boxes). tPBC and TPBC differ in ways they capture time information,
and they are not in competition but complement each other.

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [40, 41], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was defined on a subclass of labeled arc time Petri nets (atPNs), based of
those from [10, 17], where time restrictions are associated with the arcs, called arc
time Petri boxes (at-boxes).

tPBC, TPBC and atPBC, all adopt the discrete time approach, but TPBC has
no immediate (multi)actions.

1.3. Stochastic extensions of Petri box calculus. The set of states for the
systems with deterministic or nondeterministic delays often differs drastically from
that for the timeless systems, hence, the analysis results for untimed systems may be
not valid for the time ones. To solve this problem, stochastic delays are considered,
which are the random variables with a (discrete or continuous) probability distribu-
tion. If the random variables governing delays have an infinite support then the
corresponding SPA can exhibit all the same behaviour as its underlying untimed PA.
A stochastic extension of PBC, called stochastic Petri box calculus (sPBC),
was proposed in [28, 24]. In sSPBC, multiactions have stochastic delays that follow
(negative) exponential distribution. Each multiaction is equipped with a rate that
is a parameter of the corresponding exponential distribution. The instantaneous
execution of a stochastic multiaction is possible only after the corresponding stoc-
hastic time delay. The calculus has an interleaving operational semantics defined
via transition systems labeled with multiactions and their rates. Its denotational
semantics was defined in terms of a subclass of labeled continuous time stochastic
PNs, based on CTSPNs [34, 2] and called stochastic Petri boxes (s-boxes). In sPBC,
performance of the processes is evaluated by analyzing their underlying continuous
time Markov chains (CTMCs). In [25], new equivalence relations were proposed for
regular terms of sSPBC to choose later a suitable candidate for a congruence.
sPBC was enriched with immediate multiactions having zero delay in [26, 27].
We call such an extension generalized sPBC (gsPBC). An interleaving operational
semantics of gsPBC was constructed via transition systems labeled with stochastic
or immediate multiactions together with their rates or probabilities. A denotational
semantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs,
based on GSPNs [34, 2, 3| and called generalized stochastic Petri boxes (gs-boxes).
The performance analysis in gsPBC is based on semi-Markov chains (SMCs).
PBC has a step operational semantics, whereas sPBC has an interleaving one.
In step semantics, parallel executions of activities (steps) are permitted while in
interleaving semantics, we can execute only single activities. Hence, a stochastic
extension of PBC with a step semantics was needed to keep the concurrency degree
of behavioural analysis at the same level as in PBC. As mentioned in [38, 39|,
in contrast to continuous time approach (used in sPBC), discrete time approach
allows for constructing models of common clock systems and clocked devices. In

4 I.V. TARASYUK

such models, multiple transition firings (or executions of multiple activities) at
time moments (ticks of the central clock) are possible, resulting in a step semantics.
Moreover, employment of discrete stochastic time fills the gap between the models
with deterministic (fixed) time delays and those with continuous stochastic time
delays. As argued in [1], arbitrary delay distributions are much easier to handle in
a discrete time domain. In [30, 31, 29|, discrete stochastic time was preferred to
enable simultaneous expiration of multiple delays.

In [44, 45, 46, 47], a discrete time stochastic extension dtsPBC of finite PBC
was presented. In dtsPBC, the residence time in the process states is geometri-
cally distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was defined in
terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based
on DTSPNs [38, 39] and called discrete time stochastic Petri boxes (dts-boxes).
The performance evaluation in dtsPBC is accomplished via the underlying discrete
time Markov chains (DTMCs) of the algebraic processes. A variety of stochastic
equivalences were proposed to identify stochastic processes with similar behaviour
which are differentiated by the semantic equivalence. The interrelations of all the
introduced equivalences were studied. Since dtsPBC has a discrete time semantics
and geometrically distributed sojourn time in the process states, unlike sPBC
with continuous time semantics and exponentially distributed delays, the calculi
apply two different approaches to the stochastic extension of PBC, in spite of some
similarity of their syntax and semantics inherited from PBC. The main advantage of
dtsPBC is that concurrency is treated like in PBC having step semantics, whereas in
sPBC parallelism is simulated by interleaving, obliging one to collect the information
on causal independence of activities before constructing the semantics.

In [48, 49, 50, 51, 52|, we presented an enhanced calculus dtsiPBC, an extension
with immediate multiactions of dtsPBC. Immediate multiactions increase the speci-
fication capability: they can model logical conditions, probabilistic branching, in-
stantaneous probabilistic choices and activities whose durations are negligible in
comparison with those of others. They are also used to specify urgent activities
and the ones that are not relevant for performance evaluation. Thus, immediate
multiactions can be considered as a kind of instantaneous dynamic state adjustment
and, in many cases, they result in a simpler and more clear system representation.
The step operational semantics of dtsiPBC was constructed with the use of labeled
probabilistic transition systems. Its denotational semantics was defined via a sub-
class of labeled discrete time stochastic and immediate PNs (LDTSIPNs), based on
the extension of DTSPNs [38, 39] with transition labeling and immediate transitions,
called dtsi-boxes. The corresponding stochastic process, the underlying SMC, was
investigated, with the purpose of performance evaluation. In addition, the alterna-
tive solution methods were developed, based on the underlying (reduced) DTMC.

1.4. Our contributions. In this paper, we present an extension of dtsiPBC with
deterministic multiactions, called discrete time stochastic and deterministic Petri
boz calculus (dtsdPBC), which enhances the expressiveness of dtsiPBC and extends
the application area of the associated specification and analysis techniques. In
dtsdPBC, besides the probabilities from the real-valued interval (0;1) that are
used to calculate discrete time delays of stochastic multiactions, also non-negative
integers are used to specify fixed time delays of deterministic multiactions (including
zero delay, which is the case of immediate multiactions). To resolve conflicts among

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 5

deterministic multiactions, they are additionally equipped with positive real-valued
weights. As argued in [58, 54, 55|, a combination of deterministic and stochastic
delays fits well to model technical systems with constant (fixed) durations of the
regular non-random activities and probabilistically distributed (stochastic) durati-
ons of the randomly occurring activities.

It should be stressed that dtsdPBC is rather a qualitative than merely a quanti-
tative extension of dtsiPBC. The main reason is that in the former calculus, the
probability of transitions between markings (untimed states, represented by over-
bars and underbars in the process expressions) generally depends both on the
current marking and for how long the deterministic multiactions were enabled.
Hence, the marking change probabilities in dtsdPBC may not possess the Markov
(memoryless) property. Thus, the timer values should be associated with determi-
nistic multiactions to specify the process states and then obtain the (semi-)Marko-
vian state change probabilities as a result of “unfolding” the discrete residence times
at the markings. In other words, the longer that one delays at the markings should
be splitted into one time units and be allocated with the consecutive process states,
in order to obtain a (semi-)Markovian model.

Another reason is that, unlike dtsiPBC, the activities of different types can be
executed from the the same marking in dtsdPBC, depending on the (decreasing)
timer values of the enabled deterministic multiactions. In particular, the enabled
stochastic multiactions may preempt the enabled waiting (positively delayed deter-
ministic) ones that cannot be executed at the next time moment from a marking.
Otherwise, only enabled waiting multiactions are executed from it. Immediate
multiactions are always executed first and separately from other types of activities.
It is supposed that the activities are ordered according to their priorities as follows:
immediate (highest priority), waiting (middle priority) and stochastic (lowest prio-
rity) multiactions.

Our novel approach was inspired by some ideas on combining deterministic and
stochastic discrete time transition delays in DTSPNs [38, 39|, discrete time deter-
ministic and stochastic PNs (DTDSPNs) [58, 54, 55], dts-nets [1], non-Markovian
SPNs (NMSPNs) [22] and stochastic preemptive time PNs (spTPNs) [14] (all with
parallel step semantics), as well as in defective discrete phase SPNs (DDP-SPNs)
[15], discrete deterministic and stochastic PNs (DDSPNs) [56, 57| and DTDSPNs
from [60, 61, 59] (all featuring interleaving semantics). The key idea was to interpret
the waiting multiactions with the timer values (remaining times to execute) one as
the (stochastic) transitions of DTSPNs [38, 39| with the conditional probability 1.
Then the waiting multiactions with the timer values greater than one are ignored,
i.e. when enabled, they are executed with the probability 0 at the next time moment.

The step operational semantics of dtsdPBC is constructed with the use of labeled
probabilistic transition systems. With a number of interesting and non-trivial exam-
ples that include the travel system model, we demonstrate how to construct the
transition systems with 3 kinds of states (stochastically tangible, waitingly tangible
and vanishing) and 4 kinds of transitions (by executing the empty multiset, stochas-
tic, waiting or immediate multiactions) from the expressions with different types of
activities and various operations. From stochastically tangible (s-tangible) states,
only the empty set or stochastic multiactions can be executed at the next time mo-
ment (after one unit delay). From waitingly tangible (w-tangible) states, only wai-
ting multiactions can be executed at the next time moment. From vanishing states,

6 I.V. TARASYUK

only immediate multiactions can be executed at the same time moment (after zero

delay). The examples also show the specification flexibility and expressive power of

the calculus, as well as the most important features and peculiarities of its semantics.
Thus, the main contributions of the paper are the following.

e New discrete time SPA with stochastic and deterministic activities dtsdPBC.
e Step operational semantics via labeled probabilistic transition systems.
e Transition systems of the expressions with different types of multiactions.

1.5. Structure of the paper. The paper is organized as follows. In Section 2, the
syntax of algebra dtsdPBC is proposed. In Section 3, we construct the operational
semantics of the calculus in terms of labeled probabilistic transition systems and
present examples of expressions with their transition systems. Finally, Section 4
summarizes the results obtained and outlines research perspectives in this area.

2. SYNTAX

In this section, we propose the syntax of dtsdPBC. First, we recall a definition of
multiset that is an extension of the set notion by allowing several identical elements.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a mapping
M : X — N such that |{z € X | M(x) > 0}| < oo, i.e. it can contain a finite
number of elements only.

We denote the set of all finite multisets over a set X by N*;fm. Let M, M’ € foin.
The cardinality of M is |M| = Y _ M(x). We write x € M if M(z) > 0 and
M C M ifVe e X M(z) < M'(x). We define (M + M')(x) = M(x) + M'(z) and
(M — M")(z) = max{0, M (x) — M'(z)}. When Vz € X, M(x) <1, M can be seen
as a proper set M C X. The set of all subsets (powerset) of X is denoted by 2X.

Let Act = {a,b,...} be the set of elementary actions. Then Act = {d,E, .
is the set of conjugated actions (conjugates) such that ¢ # a and a = a. Let
A = ActU Act be the set of all actions, and £ = N}‘»‘m be the set of all multiactions.
Note that () € L, this corresponds to an internal move, i.e. the execution of a
multiaction that contains no visible action names. The alphabet of o € L is defined
as A(a) ={z € A a(z) > 0}.

A stochastic multiaction is a pair («,p), where o € £ and p € (0;1) is the
probability of the multiaction «. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probabilities of stochastic
multiactions are required not to be equal to 1 to avoid extra model complexity, since
in this case one should assign with them weights, needed to make a choice when
several stochastic multiactions with probability 1 can be executed from a state. The
difficulty is that when the stochastic multiactions with probability 1 occur in a step
(parallel execution), all other with the less probabilities do not. In this case, the
conflicts resolving requires a special attention, as discussed in [38, 39] within SPNs.
This decision also allows us to avoid technical difficulties related to conditioning
events with probability 0. The probability 1 is left for (implicitly assigned to) waiting
multiactions (positively delayed deterministic multiactions, to be defined later),
which are delayed for at least one time unit before their execution and have weights
to resolve conflicts with other waiting multiactions. On the other hand, there is no

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 7

sense to allow probability 0 of stochastic multiactions, since they would never be
performed in this case. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair («, hf), where o € £, 6 € N is the non-
negative integer-valued (fized) delay and | € Rsy = (0;00) is the positive real-
valued weight of the multiaction «. This weight is interpreted as a measure of
importance (urgency, interest) or a bonus reward associated with execution of
the deterministic multiaction at the discrete time moment when the corresponding
delay has expired. Such weights are used to calculate the probabilities to execute
sets of deterministic multiactions after their time delays. An immediate multiaction
is a deterministic multiaction with the delay 0 while a waiting multiaction is a
deterministic multiaction with a positive delay. In case of no conflicts among waiting
multiactions, whose remaining times to execute (RTEs, to be explained later in
more detail) are equal to one time unit, they are executed with probability 1 at
the next time moment. Deterministic multiactions have a priority over stochastic
ones, and there is also difference in priorities between immediate and waiting
multiactions. One can assume that all immediate multiactions have (the highest)
priority 2 and all waiting multiactions have (the medium) priority 1, whereas all
stochastic multiactions have (the lowest) priority 0. This means that in a state where
all kinds of multiactions can occur, immediate multiactions always occur before
waiting ones that, in turn, are always executed before stochastic ones. Different
types of multiactions cannot participate together in some step (parallel execution),
i.e. just the steps consisting only of immediate multiactions or waiting ones, or
those including only stochastic multiactions, are allowed. Let DL be the set of all
deterministic multiactions, ZL be the set of all immediate multiactions and WL be
the set of all waiting multiactions. Obviously, we have DL = ZLUWL.

Let us note that the same multiaction « € £ may have different probabilities,
(fixed) delays and weights in the same specification. An activity is a stochastic or
a deterministic multiaction. Let SDL = SLUDL = SLUZL U WL be the set
of all activities. The alphabet of an activity (o, k) € SDL is defined as A(a, k) =
A(a). The alphabet of a multiset of activities T € N‘?}?f is defined as A(Y) =
U(a,r)erA(a). For an activity (o, k) € SDL, we define its multiaction part as
L(a, k) = a and its probability or weight part as Q(a, k) = k if k € (0;1); or
Qa,r)=1lifk=1t, 0 €N, | € Rso.

Activities are combined into formulas (process expressions) by the next operations:

; : sequence;

(l : choice;

I : parallelism,

[f] : relabeling of actions;

rs : restriction over a single action;

sy : synchronization on an action and its conjugate;

[#%] : iteration with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composition)
does not include synchronization, unlike the corresponding operation in CCS [37].

Relabeling functions f : A — A are bijections preserving conjugates, i.e. Vo €

=

A f(&) = f(z). Relabeling is extended to multiactions in the usual way: for a €
L we define f(a) = > ., f(z). Relabeling is extended to activities as follows:
for (a,k) € SDL, we define f(a,k) = (f(«), k). Relabeling is extended to the

8 L.V. TARASYUK

multisets of activities as follows: for T € N}?}?f we define f(T) =3, e (f(a), k).
Remember that sums are considered with the multiplicity when applied to multisets:
for example, f(a) =3 o, f(x) =3 cq () f(2).

Restriction over an elementary action a € Act means that, for a given expression,
any process behaviour containing a or its conjugate a is not allowed.

Let «, 8 € L be two multiactions such that for some elementary action a € Act
we have a € a and @ € 3, or ¢ € a and a € B. Then, synchronization of o and (8
by a is defined as (a ®, 8)(z) = { 3Ei§ igg;, " i)ftlaljerwcilszr T
In other words, we require that a®, 8 = a+ 8—{a, a}, i.e. we remove one exemplar
of a and one exemplar of @ from the multiset sum « + 3, since the synchronization
of a and a produces (). Activities are synchronized with the use of their multiaction
parts, i.e. the synchronization by a of two activities, whose multiaction parts «
and 3 possess the properties mentioned above, results in the activity with the
multiaction part a®, . We may synchronize activities of the same type only: either
both stochastic multiactions or both deterministic ones with the same delay, since
stochastic, waiting and immediate multiactions have different priorities, and diverse
delays of waiting multiactions contradict their joint timing. Hence, the multiactions
of different types cannot be executed together (note also that the execution of
immediate multiactions takes no time, unlike that of waiting or stochastic ones).
Synchronization by a means that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists also
the process behaviour that differs from the former only in that the two activities
are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is
performed zero or more times, and finally, the termination subprocess is executed.

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations in order to construct the composite process-algebraic formulas.
As for the Petri net intuition, static expressions correspond to unmarked PNs.
Remember that a marking is the allocation of tokens in the places of a PN and mar-
kings are used to describe dynamic behaviour of PNs in terms of transition firings.

We assume that every waiting multiaction has a countdown timer associated,
whose value is the discrete time amount left till the moment when the waiting
multiaction can be executed. Therefore, besides standard (unstamped) waiting
multiactions in the form of (a,hf) € WL, a special case of the stamped waiting
multiactions should be considered in the definition of static expressions. Each
(time) stamped waiting multiaction in the form of («, §7)? has an extra superscript
d € {1,...,0} assigned that specifies a time stamp indicating the latest value
of the countdown timer associated with that multiaction. The standard waiting
multiactions have no time stamps, to demonstrate irrelevance of the timer values
for them (for example, their timers have not yet started or have already finished
their operation). The notions of the alphabet, multiaction part, weight part for (the
multisets of) stamped waiting multiactions are defined, respectively, like those for
(the multisets of) unstamped waiting multiactions.

By reasons of simplicity, we do not assign the timer value superscripts ¢ to imme-
diate multiactions, which are a special case of deterministic multiactions (c, hf) with
the delay # = 0 in the form of (a, §?), since their timer values can only be equal to 0.
Analogously, the superscript § might be omitted for the waiting multiactions («, 1?)

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 9

with the delay § =1 in the form of (a,t}), since the corresponding timer can only
have a single value 1. Nevertheless, to maintain syntactic uniformity among waiting
multiactions, we leave the timer value superscripts for those that are 1-delayed.

Definition 2. Let (a,k) € SDL, (a,4)) € WL, § € {1,...,0} and a € Act. A
static expression of dtsdPBC' is defined as

E:= (k)| (a,0))’ | E;E | E[|E | E|E | E[f]|Ersa|Esyal|[ExExE].

Let StatExpr denote the set of all static expressions of dtsdPBC.

To make the grammar above unambiguous, one can add parentheses in the
productions with binary operations: (F; E), (F[E), (E|FE). However, here and
further we prefer the PBC approach and add them to resolve ambiguities only.

To avoid technical difficulties with the iteration operator, we should not allow
any concurrency at the highest level of the second argument of iteration. This is
not a severe restriction though, since we can always prefix parallel expressions by
an activity with the empty multiaction part. Relaxing the restriction can result
in PNs which are not safe. Alternatively, we can use a different, safe, version of
the iteration operator, but its net translation has six arguments. See also [8] for
discussion on this subject. Remember that a PN is n-bounded (n € N) if for all its
reachable (from the initial marking by the sequences of transition firings) markings
there are at most n tokens in every place, and a PN is safe if it is 1-bounded.

Definition 3. Let (a,k) € SDL, (o,4)) € WL, § € {1,...,0} and a € Act. A
regular static expression of dtsdPBC is defined as

iz (08) | (i)’ | B:E | E(E | B|E | B[f] | Ersa| Esyal| [ExDxEl,
where D = (o, k) | (a,89)° | D;E | D|D | D[f] | D rsa|D sy a|[D* D x E].

Let RegStatExpr denote the set of all reqular static expressions of dtsdPBC.

Let E be a regular static expression. The underlying timer-free reqular static
expression |E of E is obtained by removing from it all timer value superscripts.

The set of all stochastic multiactions (from the syntax) of E is SL(E) = {(«, p) |
(o, p) is a subexpression of E}. The set of all immediate multiactions (from the
syntaz) of E is TL(E) = {(a,1?) | (o, 1Y) is a subexpression of E}. The set of all
waiting multiactions (from the syntaz) of E is WL(E) = {(a, 1) | (o, 1)) or (a, 17)?
is a subexpression of E for § € {1,...,0}}. Thus, the set of all deterministic multi-
actions (from the syntax) of E is DL(E)=ZL(E)UWL(E) and the set of all activi-
ties (from the syntax) of E is SDL(E)=SL(E)UDL(E)=SL(E)UIL(E)UWL(E).

Dynamic expressions specify the states of processes, i.e. some particular stages of
the process behaviour. As for the Petri net intuition, dynamic expressions correspond
to marked PNs. Dynamic expressions are obtained from static ones, by annotating
them with upper or lower bars which specify the active components of the system at
the current moment of time. The dynamic expression with upper bar (the overlined
one) E denotes the initial, and that with lower bar (the underlined one) E denotes
the final state of the process specified by a static expression F.

For every overlined stamped waiting multiaction in the form of (a, hf)‘s, the
superscript § € {1,...,60} specifies the current value of the running countdown
timer associated with the waiting multiaction. That decreasing discrete timer is
started with the initial value 6 (equal to the delay of the waiting multiaction) at

10 I.V. TARASYUK

the moment when the waiting multiaction becomes overlined. Then such a newly

overlined stamped waiting multiaction (a,?)? may be seen similar to the freshly

overlined unstamped waiting multiaction (a, hf) Such similarity will be captured
by the structural equivalence, to be defined later.

While the stamped waiting multiaction stays overlined with the process execu-
tion, the timer decrements by one discrete time unit with each global time tick
until the timer value becomes 1. This means that one unit of time remains till
execution of that multiaction (the remaining time to execute, RTE, equals one) that
should follow in the next moment with probability 1, in case the stamped waiting
multiaction is still overlined, there are no conflicting with it waiting multiactions,
whose RTEs equal to one, and it is not affected by restriction. An activity is affected
by restriction, if it is within the scope of a restriction operation with the argument
action, such that it or its conjugate is contained in the multiaction part of that
activity.

Definition 4. Let E € StatExpr and a € Act. A dynamic expression of dtsdPBC
is defined as

Gu= E|E|GE|E;G|GIE|E]G|G|G|Gf]|Grsa|Gsyal
[GxExE]|[ExG*E]||[Ex*ExQG|.

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.

Let G be a dynamic expression. The underlying static (line-free) expression |G|
of G is obtained by removing from it all upper and lower bars. Note that if the
underlying static expression of a dynamic one is not regular, the corresponding PN
can be non-safe (though, it is 2-bounded in the worst case [8]).

Definition 5. A dynamic expression G is regular if its underlying static expression
|G| is regular.

Let RegDynExpr denote the set of all reqular dynamic expressions of dtsdPBC.

Let G be a regular dynamic expression. The underlying timer-free regular dyna-
mic expression |G of G is obtained by removing from it all timer value superscripts.

The set of all stochastic (immediate or waiting, respectively) multiactions (from
the syntazx) of G is defined as SL(G) = SL(|G]) (ZL(G) =ZL(|G]) or WL(G) =
WL(|G]), respectively). Thus, the set of all deterministic multiactions (from the
syntaz) of G is DL(G) = TL(G) UWL(G) and the set of all activities (from the
syntax) of G is SDL(G) = SL(G) UDL(G) = SL(G) UZL(G) UWL(G).

3. OPERATIONAL SEMANTICS
In this section, we define the operational semantics via labeled transition systems.

3.1. Inaction rules. The inaction rules for dynamic expressions describe their
structural transformations in the form of G = G which do not change the states of
the specified processes. The goal of those syntactic transformations is to obtain the
well-structured resulting expressions called operative ones to which no inaction rules
can be further applied. The application of an inaction rule to a dynamic expression
does not lead to any discrete time tick or any transition firing in the corresponding
PN, hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e. the
dynamic expression transformation described by the rule is accomplished instantly.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 11

In Table 1, we define inaction rules for regular dynamic expressions being overli-
ned and underlined static ones. In this table, (o, 1Y) € WL, 6 € {1,...,0}, E,F,K €
RegStatExpr and a € Act. The first inaction rule suggests that the timer value of
each newly overlined waiting multiaction is set to the delay of it.

TABLE 1. Inaction rules for overlined and underlined regular static expressions

(a,82) = (o, 10)° E;F=E;F E,F=E;F

E;F = E;F EF = E[F E[F = E[F

E[F = E[JF EE = E[F E[F = E|F

E|F = E|F E[f] = Elf] Elf)= Elf]

Ersa= FErsa Ersa=FErsa Esya=FEsya
Esya=Esya [ExF«K|=[ExF«+«K] [ExF+K|=|[E+FxK]
[ExFxK|=[E«xFxK| [ExF+K|=[E+xF+K|] [ExFxK|=|[E*Fx*K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the
arbitrary form. In this table, E, F' € RegStatEzpr, G, H, é, He RegDynExpr and
a € Act. By reason of brevity, two distinct inaction rules with the same premises
are collated in some cases, resulting in the inaction rules with double conclusion.

TABLE 2. Inaction rules for arbitrary regular dynamic expressions

G=G, oe{,[} G=G
GoE=GoE, EoG=FEoG G|H= G|H, H|G= H|G
G=G G:>C~¥,o€{rs,sy} G=G
Glfl=Glf] Goa=Goa [G*xExF]=[G+ExF)
G=0G G=G
[EGxF) = [ExGxF] [ExF«G]=[ExFxd]

Example 1. Let E = ({a},53)[({b}, 1). The following inferences by the inaction
rules are possible from E:

({a},8D)0({0}, 3) = ({a}, 8D)1({0},) = ({a}, £1)°0 ({0}, 3),

({a}, ED0HB} 3) = ({a}.8) ({8}, 3)-

Definition 6. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

Let OpRegDynEzpr denote the set of all operative reqular dynamic expressions
of dtsdPBC. Note that any dynamic expression can be always transformed into a
(not necessarily unique) operative one by using the inaction rules.

In the following, we consider regular expressions only and omit the word “regular”.

Definition 7. The relation = = (= U <)* is a structural equivalence of dynamic
expressions in dtsdPBC, where * is the reflexive and transitive closure operation.
Thus, two dynamic expressions G and G’ are structurally equivalent, denoted by
G ~ @, if they can be reached from each other by applying the inaction rules in a
forward or a backward direction.

12 I.V. TARASYUK

Let X be some set. We denote the Cartesian product X x X by X2. Let £ C X2
be an equivalence relation on X. Then the equivalence class (with respect to &) of
an element © € X is defined by [z]e = {y € X | (z,y) € £}. The equivalence &
partitions X into the set of equivalence classes X/e = {[z]e | x € X }.

Let G be a dynamic expression. Then [G]x = {H | G = H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if IE €
RegStatExpr G € [E|~. Further, G is a final dynamic expression, denoted by
final(G), it 3E € RegStatExzpr G € [E]~

Example 2. Let E be from Ezample 1. We have init(E) and

[El~ = {({a}, 5DIH?}, 3), {a}. B ({6}, 3), (a}, 8D ({0}, 3), {a},)P0 ({0}, 3).
({a}, 82)*[1({0}, 5). {({a}, 8])*(({0}, 5)}. Then [E]~ N OpRegDynExpr =

{({a}, 89)0({b}, 3), ({a}, 5?0 ({8}, 3), ({a}, B))* [({8}, 3)}-

Let G be a dynamic expression and s = [G]~. The set of all enabled stochastic
multiactions of s is EnaSto(s) = {(a, p) € SL | 3H € sNOpRegDynExpr (a, p) is
a subexpression of H}, i.e. it consists of all stochastic multiactions that, being over-
lined, are the subexpressions of some operative dynamic expression from the state
s. Analogously, the set of all enabled immediate multiactions of s is Enalmm(s) =
{(e,8)) € ZL | 3H € sNOpRegDynExpr (c, 1)) is a subexpression of H}. The set
of all enabled waiting multiactions of s is EnaWait(s) = {(c, 1) e WL | 3H € sn
OpRegDynEzxpr (o, ¢)5 § € {1,...,0}, is a subexpression of H}, i.e. it consists
of all waiting multiactions that, belng superscribed with the values of their timers
and overlined, are the subexpressions of some operative dynamic expression from the
state s. The set of all newly enabled waiting multiactions of s is EnaW ait New(s) =
{(a,89) € WL | 3H € s N OpRegDynExpr («,h7)? is a subexpression of H}, i.e.
it comsists of all waiting multiactions that, being superscribed with the initial
values of their timers (delays of those waiting multiactions) and overlined, are the
subexpressions of some operative dynamic expression from the state s.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
Enalmm(s) U EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s)UEnaDet(s) = EnaSto(s)UEnalmm(s)UEnaW ait(s). Then Ena(s) =
Ena([G]~) is an algebraic analogue of the set of all transitions enabled at the initial
marking of the PN corresponding to G. Note that the activities, resulted from
synchronization, are not present explicitly in the syntax of the dynamic expressions.
Nevertheless, their enabledness status can be recovered by observing that of the
pair of synchronized activities from the syntax (they both should be enabled for
enabling their synchronous product), even if they are affected by restriction after
the synchronization.

Example 3. Let E be from Ezample 1. Then we have EnaSto([El~) = {({b}, 3)},
Enalmm([Elx) = 0 and EnaWait([Elx) = EnaWaitNew([Elx) = {({a},t3)},

hence, Ena([El~) ={({a},59), ({b}, 3)}-

Definition 8. An operative dynamic expression G is saturated (with the values of
timers), if each enabled waiting multiaction of [G~, being (certainly) superscribed
with the value of its timer and possibly overlined, is the subexpression of G.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 13

Let SaOpRegDynFExpr denote the set of all saturated operative dynamic expres-
sions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be always transformed into
the saturated one by applying the inaction rules in a forward or a backward direction.

Proof. Let G be a dynamic expression, («,47) € EnaWait([G]x) and there exists
H € [G]~NOpRegDynExpr that contains a subexpression (a, §7)%, 6 € {1,...,0—
1}. Then all operative dynamic expressions from [G]~ N OpRegDynExpr contain
a subexpression (a,7)% or (a,?)°, i.e. the (possibly overlined) enabled waiting
multiaction («,?) with the (non-initial) timer value superscript § < 6 — 1. Note
that the timer value superscript § is the same for all such structurally equivalent
operative dynamic expressions. Indeed, all inaction rules, besides the first one, do
not change the values of timers, but those rules just modify the overlines and
underlines of dynamic expressions. The first inaction rule just sets up the timer of
each overlined waiting multiaction (a, hle) with the initial value § = 6, equal to the

delay of that waiting multiaction, as follows: (a,). Then the remaining inaction
rules can shift out the overline of that enabled waiting multiaction before setting
up its timer, which results in a non-overlined enabled waiting multiaction without
timer value superscript (o,). Thus, for (o,) € EnaWait([G]~), it may happen
that (a,1?)? a subexpression of some H € [G]~ N OpRegDynExpr and (b)) is a
subexpression of a different H' € [G]~ N OpRegDynExpr.

Let now G be an operative dynamic expression that is not saturated. By the
arguments above, the saturation can be violated only if G contains as a subexpres-
sion at least one newly enabled waiting multiaction (a,?) of [G]~ that is not
superscribed with the timer value. By the definition of the new-enabling, there exists
H € [G]~ NOpRegDynExpr such that («,?)? is a subexpression of H. Since G ~
H, there is a sequence of the inaction rules applications (in a forward or a backward
direction) that transforms G into H. Then the reverse sequence transforms H into
G. Let us remove from that reverse sequence the following backward application of
the first inaction rule: (, 1Y) < (a, §7)?. Then such a reduced reverse sequence will
turn H into Gy € [G]~ N OpRegDynExpr, by replacing (a,) in G with («, 57)?.

Let us start from G and apply the above procedure to the remaining not super-
scribed with the timer values newly enabled waiting multiactions of [G]~ (which
are also those of such kind of [G1]~). After repeated application of the mentioned
procedure for all » > 1 non-superscribed newly enabled waiting multiactions of
G, we shall get from it the saturated operative dynamic expression G, = G e
[G]~ N OpRegDynExpr. Note that the presented transformation of G into G does
not change the enabling, since it does not change any overlines or underlines in the
syntax of the traversed operative dynamic expressions, but only iteratively assigns
the timer value superscripts to all newly enabled waiting multiactions of G. Hence,

EnaWait([G)~)=EnaWait(|G1]~)=" - - =EnaWait([Gp]~)=EnaWait([Gl~). O

Thus, any dynamic expression can be always transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Example 4. Let E be from Ezample 1. We have [E|~ N SaOpRegDynExpr =

{({a},53)30({b}, 1), ({a},6)*[({b},3)}. Consider the sequence of inaction rules,

14 I.V. TARASYUK

applied (in a forward or a backward direction) in the following transformation of
a non-saturated G € [E|~ N OpRegDynExpr with the non-superscribed with the
timer value (unstamped) enabled waiting multiaction ({a},43) into (a saturated)
H € [E]~ N OpRegDynExpr, in which ({a},t}) is stamped:

G = ({a},5)1({b}, 3) = {a}, DI}, 3) = ({a}, BB} 5) =

({a},B)*(({b}, 5) = H.
The reduced reverse sequence of inaction rules induces the following transforma-
tions of H that result in a saturated G, = G e [E)~ N OpRegDynExpr, in which
({a},83) is stamped:

H = ({a}, 52000} §) ~ ({a}, 5)P0({0}, §) ~ ({a})0 ({0},§) = GL = G,

Let G be a saturated operative dynamic expression. Then)G is written for the
timer decrement operator O, applied to G. It denotes a saturated operative dynamic
expression, obtained from G via decrementing by one time unit all greater than 1
values of the timers associated with all (if any) stamped waiting multiactions from
the syntax of G. Thus, each such stamped waiting multiaction changes its timer
value from ¢ in G to max{1,0 —1} in OG, where 6 € N>1. More formally, the timer
decrement operator affects the (possibly overlined) stamped waiting multiactions
being the subexpressions of G as follows. The overlined stamped waiting multiaction
(o, 1Y) is replaced with (o, §f)max{1.0-1} while the stamped waiting multiaction
without overline or underline («, §7)? is replaced with (o, f)max{t,0-1},

Note that when 6 = 1, we have max{1,0 — 1} = max{1,0} = 1, hence, the timer
value § = 1 may remain unchanged for a stamped waiting multiaction that is not
executed by some reason at the next time moment, but stays stamped. For example,
that stamped waiting multiaction may be affected by restriction. If the timer values
cannot be decremented with a time tick for all stamped waiting multiactions (if any)
from G then OG = G and we obtain so-called empty loop transition, defined later.

Observe that the timer decrement operator keeps stamping of the waiting multi-
actions, since it does not change any overlines or underlines, but it may only decrease
their timer values, so that the stamped waiting multiactions stay stamped (with
their timer values, possibly decremented by one).

Example 5. Let E be from Ezample 1. We have Ena([E]~) = {({a},5}), ({b}, 1)}
and Ena([E)x) NWL = {({a},53)}. The following one time unit timer decrements
are possible from the saturated operative dynamic expressions belonging to [E|x:

O(({a} 1)30({0}, 3)) = ({a}.8)20 ({0}, 3).
O(({a} 1?10} 3)) = ({a}.8)*1 ({0}, 3).

3.2. Action and empty move rules. The action rules are applied when some
activities are executed. With these rules we capture the prioritization among diffe-
rent types of multiactions. We also have the empty move rule, used to capture
a delay of one discrete time unit when no immediate or waiting multiactions are
executable. In this case, the empty multiset of activities is executed. The action and
empty move rules will be used later to determine all multisets of activities which can
be executed from the structural equivalence class of every dynamic expression (i.e.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 15

from the state of the corresponding process). This information together with that
about probabilities or delays and weights of the activities to be executed from the
current process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions

describe dynamic expression transformations in the form of G La (G L Gor

X C~7', respectively) due to execution of non-empty multisets I of stochastic
(I of immediate or W of waiting, respectively) multiactions. The rules represent
possible state changes of the specified processes when some non-empty multisets
of stochastic (immediate or waiting, respectively) multiactions are executed. The
application of an action rule with stochastic (immediate or waiting, respectively)
multiactions to a dynamic expression leads in the corresponding PN to a discrete
time tick at which some stochastic or waiting transitions fire (or to the instantaneous
firing of some immediate transitions) and possible change of the current marking.
The current marking stays unchanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be one-element, i.e. a
single stochastic (immediate or waiting, respectively) multiaction. The reason is
the regularity requirement that allows no concurrency at the highest level of the
second argument of iteration.

The empty move rule (applicable only when no immediate or waiting multiactions
can be executed from the current state) describes dynamic expression transformati-

ons in the form of G —®>© G, called the empty moves, due to execution of the empty
multiset of activities at a discrete time tick. When no timer values are decremented
within G with the empty multiset execution at the next moment (for example, if
G contains no stamped waiting multiactions), we have O G = G. In such a case,

the empty move from G is in the form of G LA G, called the empty loop. The
application of the empty move rule to a dynamic expression leads to a discrete
time tick in the corresponding PN at which no transitions fire and the current
marking is not changed, but the timer values of the waiting transitions enabled
at the marking (if any) are decremented by one. This is a new rule that has no
prototype among inaction rules of PBC, since it represents a time delay, but no

notion of time exists in PBC. The PBC rule G % G from [9, 8] in our setting would
correspond to the rule G = G that describes staying in the current state when no
time elapses. Since we do not need the latter rule to transform dynamic expressions
into operative ones and it can destroy the definition of operative expressions, we
do not have it in dtsdPBC.

Thus, an application of every action rule with stochastic or waiting multiactions
or the empty move rule requires one discrete time unit delay, i.e. the execution of
a (possibly empty) multiset of stochastic or (non-empty) multiset of waiting multi-
actions leading to the dynamic expression transformation described by the rule is
accomplished instantly after one time unit. An application of every action rule with
immediate multiactions does not take any time, i.e. the execution of a (non-empty)
multiset of immediate multiactions is accomplished instantly at the current moment.

Note that expressions of dtsdPBC can contain identical activities. To avoid
technical difficulties, such as the proper calculation of the state change probabilities
for multiple transitions, we can always enumerate coinciding activities from left to
right in the syntax of expressions. The new activities, resulted from synchronization
will be annotated with concatenation of numberings of the activities they come

16 I.V. TARASYUK

(o) o y\ (©
1

2 3
F1a. 1. The binary trees encoded with the numberings 1, (1)(2)

and (1)((2)(3))

from, hence, the numbering should have a tree structure to reflect the effect of
multiple synchronizations. We now define the numbering which encodes a binary
tree with the leaves labeled by natural numbers.

Definition 9. The numbering of expressions is ¢ := n | (¢)(¢), where n € N.
Let Num denote the set of all numberings of expressions.

Example 6. The numbering 1 encodes the binary tree in Figure 1(a) with the
root labeled by 1. The numbering (1)(2) corresponds to the binary tree in Figure
1(b) without internal nodes and with two leaves labeled by 1 and 2. The numbering
(1)((2)(3)) represents the binary tree Figure 1(c) with one internal node, which is
the root for the subtree (2)(3), and three leaves labeled by 1,2 and 3.

The new activities resulting from synchronizations in different orders should be
considered up to permutation of their numbering. In this way, we shall recognize
different instances of the same activity. If we compare the contents of different
numberings, i.e. the sets of natural numbers in them, we shall identify the mentioned
instances. The content of a numbering ¢« € Num is

{t}, tEN;
Cont() = { Cont(t1) U Cont(tz), ¢= (t1)(t2).
After the enumeration, the multisets of activities from the expressions become the
proper sets. In the following, we suppose that the identical activities are enumerated
when needed to avoid ambiguity. This enumeration is considered to be implicit.

Definition 10. Let G € OpRegDynEzxpr. We define the set of all non-empty
multisets of activities which can be potentially executed from G, denoted by Can(G).
Let (a,k) € SDL, E,F € RegStatExpr, H € OpRegDynFExpr and a € Act.
(1) If final(G) then Can(G) = 0.
(2) If G=(a, k)’ and k=t!, §E€Nss, lER~q, §€{2,...,0}, then Can(G)=0.
(3) If G = (a,k) and k € (0;1) or k =12, | € Rsg, then Can(G) = {{(a, k)}}.
(4) If G = (o, k) and k=1, 6 € N>y, | € Rsq, then Can(G) = {{(a,k)}}.
(5) If T € Can(G) then T € Can(Go E), T € Can(EoG) (o € {;,[|}),
T € Can(G||H), T € Can(H|G), f(T) e Can(G[f]), T € Can(G rs a)
(when a,a & A(T)), T € Can(G sy a), T € Can([G * E x F]),
T e Can([E*x G« F]), T € Can([E * F % G]).
(6) If T € Can(G) and E € Can(H) then T + 2 € Can(G| H).
(7) If T € Can(G sy a) and (o, k), (B, \) € T are different, a € a, a € 3, then
(a) (T+{(a@a B A)} (@), (B N)]}) € Can(G sy a) if X € (05 1);
(b) (T +{(a®a B,47,,)} = {(e,5), (B, N)}) € Can(G sy a) if & =1,
A=10, 0 €N, I,m € Rsy.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 17

When we synchronize the same multiset of activities in different orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities
to avoid introducing redundant ones.

The synchronization of stochastic multiactions («, p)1 and (B, x)2 in
different orders generates the activities (a3, p-X)(1)(2) and (BSacy, X-
p)@2)1)- The synchronization of deterministic multiactions (o, 19)1 and
(B,89))2 in different orders generates the activities (o @, 3, thrm)(l)(g)
and (8 ®q o, 19, 1) 2)(1)- Since Cont((1)(2)) = {1,2} = Cont((2)(1)),
in both cases, only the first actiwvity (symmetrically, the second one)
resulting from synchronization appears in a multiset from Can(G sy a).

If T € Can(G) then by definition of Can(G), V=2 C T, E # @), we have E € Can(Q).

Let G € OpRegDynExpr and Can(G) # (). Obviously, if there are only stochastic
(immediate or waiting, respectively) multiactions in the multisets from Can(QG)
then these stochastic (immediate or waiting, respectively) multiactions can be
executed from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the
note above, there are non-empty multisets of deterministic multiactions in Can(G)
as well, i.e. 3T € Can(G) T € NP%L \ {0}. In this case, no stochastic multiactions
can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones,
and should be executed first. Further, if there are no stochastic, but both waiting
and immediate multiactions in the multisets from Can(G), then, analogously, no
waiting multiactions can be executed from G, since immediate multiactions have a
priority over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multi-
sets from Can(G) then, from above, only waiting ones can be executed from G.
Then just mazimal non-empty multisets of waiting multiactions can be executed
from @G, since all non-conflicting waiting multiactions cannot wait anymore and
they should occur at the next time moment with probability 1. The next definition
formalizes these requirements.

Definition 11. Let G € OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Can(G) N NZ£

fino

Can(G) N NZ£ # 0;

_) {WeCan(G) NN~ (Can(G) N fof)
Now(@)=\ v e Can(@) nNIE WCV = V=), (Can(G)nNYE£0);
Can(G), otherwise.

Consider an operative dynamic expression G € OpRegDynExpr. The expression

G is s-tangible (stochastically tangible), denoted by stang(G), if Now(G) C N}gfn

{0}. In particular, we have stang(QG), if Now(G) = 0. The expression G is w-
tangible (waitingly tangible), denoted by wtang(G), if § # Now(G) C N‘f/‘l’nﬁ \ {0}.
The expression G is tangible, denoted by tang(G), if stang(G) or wtang(G), i.e.
Now(G) C (N$- UN}%?)\{(Z)} Again, we particularly have tang(G), if Now(G) = 0.

fin
Otherwise, the expression G is vanishing, denoted by vanish(G), and in this case

18 I.V. TARASYUK

0 # Now(G) C fon \ {0}. Note that the operative dynamic expressions from [G]~
may have different types in general. The next example demonstrates two operative
dynamic expressions H and H' with H ~ H’, such that vanish(H), but stang(H').

Example 7. Let G = (({a}, 13)[({0}, 8))l({c}, 3) and G" = (({a}, 8)[({0},52))]]
({c}, 3)- Then G = G', since G <= G" = G' for G" = (({a},0) ({0}, 89))[|({c}. 5),

but Can(G)={{({a},8)}, {({c}, 3)}. {({a}. 1), ({c}, 3)}}, Can(G")={{({0},)},
{({er, 2)3 A0} 83), (e},)1} Now(G)={{({a},1})}}, Now(G")={{({b}.53)}}.
Clearly, we have vanish(G) and vanish(G'). The executions like that of {({c},3)}
(and all multisets including it) from G and G' must be disabled using preconditions
in the action rules, since immediate multiactions have a priority over stochastic
ones, hence, the former are always evecuted first.

Let H = ({a},1))[({b},3) and H' = ({a},59)[({b},2). Then H ~ H', since
H < H" = H' for H" = ({a},1})[[({b}, 5), but Can(H)=Now(H)={{({a},59)}}
and Can(H') = Now(H') = {{({b},3)}}. We have vanish(H), but stang(H').
To make the action rules correct under structural equivalence, the executions like
that of {({b}, 2)} from H' must be disabled using preconditions in the action rules,
since immediate multiactions have a priority over stochastic ones, hence, the choices
between them are always resolved in favour of the former.

stang(H). We write wtang([G]x), if 3H € [G]~ N OpRegDynExpr wtang(H) and
VH' € [G]~ N OpRegDynExpr tang(H'). We write tang([|Glx), if stang(|G]~) or
wtang([G)~). Otherwise, we write vanish(|G]x~), and in this case 3H € [G]x N
OpRegDynExpr vanish(H).

In Table 3, we define the action and empty move rules. In the table, (a, p), (8, x) €
SL, (e, 1), (B,82,) € ZL and (1Y), (B,89,) € WL. Further, E, F € RegStatExpr,
G, H € SatOpRegDynExpr, é, H € RegDynExpr,G[|E, E[|G,[E * G * F|,[E * F *
G] € SatOpRegDynFEzpr and a € Act. Next, ', A € N‘fgfn \ {0}, TV e N‘fgfn, I1,J €
NEENA{DY, I' e NFL, VW e NYEN {0}, V/ e NYYE and T € N§D2\ {0}

We use the following abbreviations in the names of the rules from the table:
“E” for “Empty move”, “B” for “Basis case”, “S” for “Sequence”, “C” for “Choice”,
“P” for “Parallel”, “L” for “reLabeling”, “R” for “Restriction”, “I” for “Iteraton” and
“Sy” for “Synchronization”. The first rule in the table is the empty move rule E. The
other rules are the action rules, describing transformations of dynamic expressions,
which are built using particular algebraic operations. If we cannot merge the rules
with stochastic, immediate ans waiting multiactions in one rule for some operation
then we get the coupled action rules. In such cases, the names of the action rules
with stochastic multiactions have a suffix ‘s’, those with immediate multiactions
have a suffix ‘i’, and those with waiting multiactions have a suffix ‘w’. To make
presentation more compact, the action rules with double conclusion are combined
from two distinct action rules with the same premises.

Almost all the rules in Table 3 (excepting E, Bw, P2s, P2i, P2w, Sy2s, Sy2i
and Sy2w) resemble those of gsPBC, but the former correspond to execution of
multisets of activities, not of single activities, as in the latter, and our rules have
simpler preconditions (if any), since all immediate multiactions in dtsdPBC have
the same priority level, unlike those of gsPBC.

Let G € RegDynExpr. We write stang([G|x), if VH € [G]~ N OpRegDynExpr

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 19

TABLE 3. Action and empty move rules

s () 2 (a,0) Bi (a5)) ' “H (0,10) Bw (5))T (OH) (0,0)

a¢Loa
S eRNYE o @ L5 G, —init(G) V (init(G) A stang([E)~))
GELGE EGSEG GIE 5 G[|E, E[G 5|E|G
- ¢ha ow @ 5% a, ﬁim‘t(G) V (init(G) A tang([E]z))
GlE & G[]J E[G 5|E[G GIIE G[] B, B)G SE[G
Pis ? —~> G7 stang([H]Fz) _ P i G5a i _
G|H 5 G| oH, H|GS0H|G G|H L G|H, H|GS H|G
Plw ¢5 G, stang([H]~) PZSGLé H3H P2iG$é H-SH
G|\H—>GH OH, H|G BoH|G G|H 2 G|H GllH =3 G|
Pow ¢La S H L ¢La G—>Gaa¢A()
G||HV+—V>VG||H Glf] — AL GIf] Grsa5Grsa
n ¢5a 12 eyel ﬁmzt(G) V (init(G) A stang([Fx))
[G*E*F]—)[G*E*F] [ExG*F| 5 [ExGx|F], [ExF %G5 [Ex|F G
I ¢ha

[E* G * F] EN [E « G |F), [E * F %] L [Ex|F G
RN 67 —init(G) V (init(G) A tang([Flx))

[E*G*F] [E % Gx|F), [E*F*G]—)[E*JF*G]
Syl eRNE Sy2s Gsya I {(eon)) H B0} G sya, a€a, a€f
Gsyal)ésya Gsyaw)
I+{(af)I+H{B15)} ~ N
SyZiGSya Gsya, ac€a, a€f

I+{(a®aBt?,,)} ~
G sy a

I2w

Gsya

Gsya
VI {(a b))} {8,600} .
Goya L HEAHEEY & e

Vi {(a®aBtl,)} ~
— T L Gsya

Sy2w
Gsya

The preconditions in rules E, Cs, P1s, and I2s are needed to ensure that (pos-
sibly empty) multisets of stochastic multiactions are executed only from s-tan-
gible saturated operative dynamic expressions, such that all dynamic expressions
structurally equivalent to them are s-tangible as well. For example, assuming that
stang([G)~) in rule Cs, if init(G) then G ~ F for a static expression F and G[|E ~
F[|E ~ F[|E ~ F[|E. Hence, it should be guaranteed stang([F[]E]~), which holds
iff stang([E]~). The case E[|G is treated similarly. Assuming that stang([G]~) in
rule P1s, it should be guaranteed stang([G|| H]~) and stang([H ||G]~), which holds
iff stang([H]~). The precondition in rule I2s is analogous to that in rule Cs.

Analogously, the preconditions in rules Cw, and I2w are needed to ensure that
non-empty multisets of waiting multiactions are executed only from w-tangible
saturated operative dynamic expressions, such that all dynamic expressions structu-
rally equivalent to them are tangible. This requirement (about tangible expressions)
means that only (possibly empty) multisets of stochastic multiactions or non-empty
multisets of waiting multiactions, and no immediate multiactions, can be executed

20 I.V. TARASYUK

from the subprocess that is composed alternatively (in choice) with the subpro-
cess (G. Hence, the multiset W of waiting multiactions, executed from G, can
also be executed from the composition of G and that alternative subprocess, since
immediate multiactions cannot occur from the latter. Otherwise, it would prevent
the execution of W from G in the composite process, by disregarding the alternative
choice of the branch specified by G, due to the zero delays and priority (captured
by all action rules) of immediate multiactions over all other multiaction types.

The precondition in rule P1w is an exception from the above. It also ensures
that non-empty multisets of waiting multiactions are executed only from w-tangible
saturated operative dynamic expressions, such that all dynamic expressions structu-
rally equivalent to them are tangible, but all the expressions structurally equivalent
to H specifying parallel with G subprocess should be s-tangible. This stricter
requirement (about s-tangible, instead of just tangible, expressions) means that only
(possibly empty) multisets of stochastic multiactions, and no immediate or waiting
multiactions, can be executed from the subprocess H that is composed concurrently
(in parallel) with the subprocess G. Hence, the multiset W of waiting multiactions,
executed from G, is also a maximal (by the inclusion relation) multiset that can
be executed from the parallel composition of G and H. The reason is that only the
timers decrement by one time unit (by applying rule E) is actually possible in H
while executing W from G, due to priority (captured by all action rules) of waiting
multiactions over stochastic ones. Thus, taking the rule precondition stang([H]x~)
instead of tang([H]~) preserves maximality of the steps of waiting multiactions
while applying parallel composition.

In rules P1s and P1w, the timer value decrementing by one O H, applied to the s-
tangible saturated operative dynamic expression H that is composed in parallel with
G, from which stochastic multiactions are executed at the next time tick, is used
to maintain the time progress uniformity in the composite expression. Although
rules P1s and P1w can be merged, we have not done it, aiming to emphasize the
exceptional precondition in rule P1w.

In rules Cs, Ci and Cw, the timer values discarding | E/, applied to the static
expression E that is composed in choice with G, from which activities are executed,
signifies that the timer values of the non-chosen subexpression (branch) become
irrelevant in the composite expression and thus may be removed. Analogously, in
rules I2s, I2i and I2w, the timer values discarding | F' is applied to the static
expression F' that is an alternative to G, from which activities are executed, since
the choice is always made between the body and termination subexpressions of the
composite iteration expression (between the second and third iteration arguments).

Rule E corresponds to one discrete time unit delay (passage of one unit of time)
while executing no activities and therefore it has no analogues among the rules of
gsPBC with the continuous time model. Rule E is a global one, i.e. it is applied only
to the whole (topmost level of) expressions, rather than to their parts. The reason
is that all other action rules describe dynamic expressions transformations due to
execution of mon-empty multisets of activities. Hence, the actionless time move
described by rule E cannot “penetrate” with action rules through the expressions
structure. This guarantees that time progresses uniformly in all their subexpressions.

Rule Bw differs from the more standard ones Bs and Bi that both resemble
rule B in gsPBC. The reason is that in Bw, the overlined waiting multiaction

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 21

has an extra superscript ‘1’, indicating that one time unit is remained until the
multiaction’s execution (RTE equals one) that should follow in the next moment.

Rules P2s, P2i and P2w have no similar rules in gsPBC, since interleaving
semantics of the algebra allows no simultaneous execution of activities. On the
other hand, P2s, P2i and P2w have in PBC the analogous rule PAR that is used
to construct step semantics of the calculus, but the former two rules correspond
to execution of multisets of activities, unlike that of multisets of multiactions
in the latter rule. Rules P2s, P2i and P2w cannot be merged, since otherwise
simultaneous execution of different types of multiactions would be allowed.

Rules Sy2s, Sy2i and Sy2w differ from the corresponding synchronization rules
in gsPBC, since the probability or the weight of synchronization in the former rules
and the rate or the weight of synchronization in the latter rules are calculated
in two distinct ways. Rules Sy2i and Sy2w cannot be merged, since otherwise
synchronous execution of immediate and waiting multiactions would be allowed.

Rule Sy2s establishes that the synchronization of two stochastic multiactions
is made by taking the product of their probabilities, since we are considering
that both must occur for the synchronization to happen, so this corresponds,
in some sense, to the probability of the independent event intersection, but the
real situation is more complex, since these stochastic multiactions can also be
executed in parallel. Nevertheless, when scoping (the combined operation consisting
of synchronization followed by restriction over the same action [8]) is applied over a
parallel execution, we get as final result just the simple product of the probabilities,
since no normalization is needed there. Multiplication is an associative and commu-
tative binary operation that is distributive over addition, i.e. it fulfills all practical
conditions imposed on the synchronization operator in [19]. Further, if both argu-
ments of multiplication are from (0; 1) then the result belongs to the same interval,
hence, multiplication naturally maintains probabilistic compositionality in our mo-
del. Our approach is similar to the multiplication of rates of the synchronized
actions in MTIPP [18] in the case when the rates are less than 1. Moreover, for
the probabilities p and x of two stochastic multiactions to be synchronized we have
p - x < min{p, x}, i.e. multiplication meets the performance requirement stating
that the probability of the resulting synchronized stochastic multiaction should be
less than the probabilities of the two ones to be synchronized. While performance
evaluation, it is usually supposed that the execution of two components together
require more system resources and time than the execution of each single one. This
resembles the bounded capacity assumption from [19]. Thus, multiplication is easy
to handle with and it satisfies the algebraic, probabilistic, time and performance
requirements. Therefore, we have chosen the product of the probabilities for the
synchronization. See also [13, 12] for a discussion about binary operations producing
the rates of synchronization in the continuous time setting.

In rules Sy2i and Sy2w, we sum the weights of two synchronized immediate
(waiting, respectively) multiactions, since the weights can be interpreted as the
rewards [43], thus, we collect the rewards. Moreover, we express that the synchro-
nized execution of immediate (waiting) multiactions has more importance than
that of every single one. The weights of immediate and waiting (i.e. deterministic)
multiactions can also be seen as bonus rewards associated with transitions [5].
The rewards are summed during synchronized execution of immediate (waiting)

22 I.V. TARASYUK

multiactions, since in that case all the synchronized activities can be seen as partici-
pated in the execution. We prefer to collect more rewards, thus, the transitions
providing greater rewards will have a preference and they will be executed with a
greater probability. In particular, since execution of immediate multiactions takes
no time, we prefer to collect in a step (parallel execution) as many synchronized
immediate multiactions as possible to get more significant progress in behaviour.
Under behavioural progress we understand an advance in executing activities, which
does not always imply a progress in time, as in the case when the activities are
immediate multiactions. This aspect will be used later, while evaluating performance
via analysis of the embedded discrete time Markov chains (EDTMCs) of expressions.
Since every state change in EDTMC takes one unit of (its local) time, greater
advance in operation of the EDTMC allows one to calculate quicker many perfor-
mance indices. As for waiting multiactions, only the maximal multisets of them,
executable from a state, occur with a time tick. The reason is that each waiting
multiaction has a probability 1 to occur in the next moment, when the remaining
time of its timer (RTE) equals one and there exist no conflicting waiting multiac-
tions. Hence, all waiting multiactions with the RTE being one that are executable
together from a state must participate in a step from that state. Since there may
exist different such maximal multisets of waiting multiactions, a probabilistic choice
among all possible steps is made, imposed by the weights of those multiactions.
Thus, the steps of waiting multiactions always produce maximal overall weights,
but they are mainly used to calculate the probabilities of alternative maximal steps
rather than the cumulative bonus rewards.

We do not have self-synchronization, i.e. synchronization of an activity with
itself, since all the (enumerated) activities executed together are considered to be
different. This allows us to avoid rather cumbersome and unexpected behaviour, as
well as many technical difficulties [8].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned off) and their values become
irrelevant while the timers of all those preserving their enabledness continue running
with their stored values. Hence, we adopt the enabling memory memory policy
[35, 1, 2, 3] when the process states are changed and the enabledness of deterministic
multiactions is possibly modified (remember that immediate multiactions may be
seen as those with the timers displaying a single value 0, so we do not need to
store their values). Then the timer values of waiting multiactions are taken as the
enabling memory variables.

Similar in [23], we are mainly interested in the dynamic expressions, inferred by
applying the inaction rules (also in the reverse direction) and action rules from the
overlined static expressions, such that no stamped (i.e. superscribed with the timer
values) waiting multiaction is a subexpression of them. The reason is to ensure that
time proceeds uniformly and only enabled waiting multiactions are stamped. We call
such dynamic expressions reachable, by analogy with the reachable states of PNs.
Formally, a dynamic expression G is reachable, if there exists a static expression

E without timer value superscripts, such that £ ~ G or E ~ Gy La} Hi ~ G L
...&anGforsome Yq,...,Y, € NSPL,

fin

Therefore, we consider a dynamic expression G = ({a}, 12)! as “illegal”

and that H = ({a},52) [J({b},53)? as “legal”, since the latter is obtained from the

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 23

overlined static expression without timer value superscripts E = ({a}, 12)[]({b}, 53)
after one time tick. On the other hand, G is “illegal” only when it is intended to
specify a complete process, but it may become “legal” as a part of some complete
specification, like G rs a, since after two time ticks from E rs a, the timer values
cannot be decreased further when the value 1 is approached. Thus, we should allow
the dynamic expressions like G, by assuming that they are incomplete specifications,

to be further composed. Further, a dynamic expression G = ({a},1); ({b},83)! is
“illegal”, since the waiting multiaction ({b},?) is not enabled in [G]~ and its timer
cannot start before the stochastic multiaction ({a}, 3) is executed. Enabledness of
the stamped waiting multiactions is considered in the next proposition.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]~) are stamped in G.

Proof. By the definition of reachability, there exists E € StatFExpr without stamped
waiting multiactions, such that G is derived from E by applying the inaction rules
(also those reversed) and action rules.

In that derivation, only the first inaction rule can add timer value superscripts
to the waiting multiactions from WL(G) = WL(E) that are overlined. The other
inaction rules (also reversed) can just “shift” the upper bars from / to those stamped
waiting multiactions while preserving the enabledness of all waiting multiactions
from WL(G). Thus, just the waiting multiactions from EnaWait([G]~) become
stamped in the subexpressions of G, such as (a, 9)? or (o, 7)?.

Further, in the derivation, the action rules cannot add timer value superscripts to
the waiting multiactions from WL(G), but the action rules can make such waiting
multiactions non-enabled (disabled), i.e. belonging to WL(G) \ EnaW ait([G]~).
Such “disabling” action rules correspond either to the executing an overlined stam-
ped (with the value 1) waiting multiaction (rule Bw) or to the choice of some
alternative process branch (rules Cs, Ci, Cw, I2s, 12i, I2w). In the both cases, all
the disabled waiting multiactions loose their timer value superscripts. Thus, only
the waiting multiactions from EnaWait([G]~) remain stamped in G.

Hence, E does not contain stamped waiting multiactions and in the derivation
of G from it, only the waiting multiactions from EnaWait([G]x) become and

remain stamped in G. Therefore, only waiting multiactions from EnaW ait([G]~)
are stamped in G. O

In Table 4, inaction rules, action rules (with stochastic or immediate, or waiting
multiactions) and empty move rule are compared according to the three questions
about their application: whether it changes the current state, whether it leads to
a time progress, and whether it results in execution of some activities. Positive
answers to the questions are denoted by the plus sign while negative ones are
specified by the minus sign. If both positive and negative answers can be given
to some of the questions in different cases then the plus-minus sign is written.
Notice that the process states are considered up to structural equivalence of the
corresponding expressions, and time progress is not regarded as a state change.

3.3. Transition systems. We now construct labeled probabilistic transition sys-
tems associated with dynamic expressions. The transition systems are used to define
the operational semantics of dynamic expressions.

24 I.V. TARASYUK

TABLE 4. Comparison of inaction, action and empty move rules

| Rules || State change | Time progress | Activities execution

Inaction rules — — —

Action rules with + + +
stochastic/waiting multiactions
Action rules with + — +
immediate multiactions
Empty move rule - + -

Let G be a dynamic expression and s = [G]~. The set of all multisets of activities

executable in s is defined as Exec(s) = {Y | 3H € s 3H H 5 H}. Here H 5 H
is an inference by the rules from Table 3. It can be proved by induction on the
structure of expressions that T € Exec(s) \ {0} implies 3H € s Y € Now(H). The
reverse statement does not hold in general, since the preconditions in the action
rules disable executions of the activities with the lower-priority types from every
H € s, as the next example shows.

Example 8. Let H,H' be from Example 7 and s = [H]x = [H'|~. We have
Now(H) = {{({a},19)}} and Now(H') = {{({b}, 3)}}. Since only rules Ci and Bi
can be applied to H while no action rule can be applied to H', we get Exec(s) =

{({a},t)}}. Then, for H' €s and Y ={({b},3)} € Now(H'), we get T ¢ Exec(s).

The state s is s-tangible (stochastically tangible), denoted by stang(s), if Exec(s) C
N}gﬁl For an s-tangible state s we always have) € Exec(s) by rule E, hence, we
may have Exec(s) = {0}. The state s is w-tangible (waitingly tangible), denoted
by wtang(s), if Exec(s) C N;f\;f \ {0}. The state s is tangible, denoted by tang(s),
if stang(s) or wtang(s), i.e. Exec(s) C N}gfn u N}/‘;f Again, for a tangible state s
we may have () € Fzec(s) and Fzec(s) = {0}. Otherwise, the state s is vanishing,
denoted by vanish(s), and in this case Exec(s) C N5, \ {0}.

Since for every H € s, Now(H) containing the multisets of activities with
the lower-priority types is not included into Exec(s), and the types of states are
determined from the highest-priority types of the executable activities, the state
type definitions based on Now(H), H € s, and on Ezec(s) are consistent.

If T € Frec(s) and T € N‘ﬁfn U N?fn then by rules P2s, P2i, Sy2s, Sy2i and
definition of Exec(s) V= C T, = # (), we have = € Exec(s), i.e. 21\ {0} C Ezec(s).

Since the inaction rules only distribute and move upper and lower bars along
the syntax of dynamic expressions, all H € s have the same underlying static
expression F'. Process expressions always have a finite length, hence, the number
of all (enumerated) activities and the number of all operations in the syntax of F
are finite as well. The action rules Sy2s, Sy2i and Sy2w are the only ones that
generate new activities. They result from the handshake synchronization of actions
and their conjugates belonging to the multiaction parts of the first and second
constituent activity, respectively. Since we have a finite number of operators sy in
F and all the multiaction parts of the activities are finite multisets, the number of
the new synchronized activities is also finite. The action rules contribute to Exec(s)
(in addition to the empty set, if rule E is applicable) only the sets consisting both
of activities from F' and the new activities, produced by Sy2s, Sy2i and Sy2w.
Since we have a finite number n of all such activities, we get |Ezec(s)| < 2" < 0.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 25

Thus, summation and multiplication by elements from the finite set Exec(s) are
well-defined. Similar reasoning can be used to demonstrate that for all dynamic
expressions H (not just for those from s), Now(H) is a finite set.

Definition 12. The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

e [G]~ € DR(G);
o if [Hl~ € DR(G) and 3Y H = H then [H]~ € DR(G).

The set of all s-tangible states from DR(G) is denoted by DRgr(G), and the
set of all w-tangible states from DR(G) is denoted by DRwr(G). The set of all
tangible states from DR(G) is denoted by DRr(G) = DRsr(G) U DRy r(G). The
set of all vanishing states from DR(G) is denoted by DRy (G). Then DR(G) =
DRy (G)WDRy(G) = DRsr(G)WDRwr(G)WDRy (G) (W denotes disjoint union).

Let now G be a dynamic expression and s,$ € DR(G).

Let T € Exec(s)\{0}. The probability that the multiset of stochastic multiactions
T is ready for execution in s or the weight of the multiset of deterministic multiacti-
ons Y which is ready for execution in s is

II » 11 (1-X), s€DRsr(G);
(@PET {{(B0}eEsec(s)|(B0 2T}
PF(T,s)=
(Y, s) S s€ DRy (G)UDRy (G).
(a,hf)ET

In the case T =0 and s € DRgr(G) we define

H (1—-%), FExec(s)#{0};
PF(,s) =4 {(8x0}eBwec(s)
1, Exec(s) = {0}.

If s € DRsy(G) and Exzec(s) # {0} then PF(Y,s) can be interpreted as a
joint probability of independent events (in a probability sense, i.e. the probability
of intersection of these events is equal to the product of their probabilities). Each
such an event consists in the positive or the negative decision to be executed of a
particular stochastic multiaction. Every executable stochastic multiaction decides
probabilistically (using its probabilistic part) and independently (from others),
if it wants to be executed in s. If T is a multiset of all executable stochastic
multiactions which have decided to be executed in s and T € FEzec(s) then T
is ready for execution in s. The multiplication in the definition is used because it
reflects the probability of the independent event intersection. Alternatively, when
T # 0, PF(Y,s) can be interpreted as the probability to execute exclusively the
multiset of stochastic multiactions T in s, i.e. the probability of intersection of
two events calculated using the conditional probability formula in the form of
P(XNY) = P(X|Y)P(Y). The event X consists in the execution of T in s.
The event Y consists in the non-execution in s of all the executable stochastic
multiactions not belonging to Y. Since the mentioned non-executions are obviously
independent events, the probability of Y is a product of the probabilities of the
non-executions: P(Y) = [Ii((5.v)1e Brec(s) (8.1} (1 — X)- The conditioning of X
by Y makes the executions of the stochastic multiactions from T independent, since
all of them can be executed in parallel in s by definition of Ezec(s). Hence, the

26 I.V. TARASYUK

probability to execute Y under condition that no executable stochastic multiactions
not belonging to Y are executed in s is a product of probabilities of these stochastic
multiactions: P(X|Y) = [], ,er p- Thus, the probability that T is executed
and no executable stochastic multiactions not belonging to Y are executed in
s is the probability of X conditioned by Y multiplied by the probability of Y:
P(XNY) = PIXIY)P(Y) = [lamer P g 01eBrecs)8.021 (1 = X)- When
T =0, PF(Y,s) can be interpreted as the probability not to execute in s any
executable stochastic multiactions, thus, PF(0,s) = [I;(5 y)yemrec(s) (1 —X)- When
only the empty multiset of activities can be executed in s, i.e. Ezec(s) = {0}, we
take PF((, s) = 1, since nothing more can be executed in s in this case. Since the
probabilities of all stochastic multiactions are strictly less than 1, for s € DRgp(G)
we have PF (), s) € (0;1]. Hence, we always execute the empty multiset of activities
in s at the next moment with a certain positive probability.

If s € DRwr(G) U DRy (G) then PF(Y,s) could be interpreted as the overall
(cumulative) weight of the deterministic multiactions from T, i.e. the sum of all
their weights. The summation here is used since the weights can be seen as the
rewards which are collected [43]. This means that concurrent execution of the
deterministic multiactions has more importance than that of every single one. The
weights of deterministic multiactions can also be interpreted as bonus rewards
of transitions [5]. The rewards are summed when deterministic multiactions are
executed in parallel, because all of them participated in the execution. In particular,
since execution of immediate multiactions takes no time, we prefer to collect in a
step (parallel execution of activities) as many parallel immediate multiactions as
possible to get more progress in behaviour. This aspect will be used later, while while
evaluating performance on the basis of the EDTMCs of expressions. Concerning
waiting multiactions, only the maximal multisets of them executable from a state
occur in the next moment. Therefore, the steps of waiting multiactions produce
maximal overall weights, which are used to calculate probabilities of alternative
maximal steps rather than the cumulative bonuses. Note that this reasoning is
the same as that used to define the weight of synchronized immediate (waiting,
respectively) multiactions in the rules Sy2i and Sy2w.

Note that the definition of PF (T, s) (and those of other probability functions we
shall present) is based on the enumeration of activities which is considered implicit.

Let T € Ezec(s). Besides T, some other multisets of activities may be ready for
execution in s, hence, a conditioning or normalization is needed to calculate the
execution probability. The probability to execute the multiset of activities T in s is

PF(Y,s)
ZEEEzec(s) PF(E? S) '

If s € DRsr(G) then PT(Y,s) can be interpreted as the conditional probability
to execute Y in s calculated using the conditional probability formula in the form
of P(ZIW) = P(PZ(CVV)V). The event Z consists in the exclusive execution of T in
s, hence, P(Z) = PF(Y,s). The event W consists in the exclusive execution of
any set (including the empty one) Z € Ezxec(s) in s. Thus, W = U,Z;, where
V4, Z; are mutually exclusive events (in a probability sense, i.e. intersection of
these events is the empty event) and 3i, Z = Z;. We have P(W) = 3>, P(Z;) =
Y= Faec(s) PF(Z,s), because summation reflects the probability of the mutually
exclusive event union. Since ZNW = Z; N (U,;Z;) = Z; = Z, we have P(Z|WW) =

PT(Y,s) =

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 27

I')D((VZV)) = ZEEES@I:((S‘I)"ISD)F‘(E7S). Note that PF(T,s) can also be seen as the potential

probability to execute T in s, since we have PF(Y,s) = PT(Y,s) only when all
sets (including the empty one) consisting of the executable stochastic multiactions
can be executed in s. In this case, all the mentioned stochastic multiactions can
be executed in parallel in s and we have EEGEMC(S) PF(Z,s) = 1, since this sum
collects the products of all combinations of the probability parts of the stochastic
multiactions and the negations of these parts. But in general, for example, for two
stochastic multiactions («, p) and (8, x) executable in s, it may happen that they
cannot be executed in s together, i.e. 0, {(a, p)},{(B,x)} € Exec(s), but {(«, p),

(B,x)} & Ezec(s). For s € DRgr(G) we have PT (0, s) € (0;1], i.e. there is a non-
zero probability to execute the empty multiset of activities in s at the next moment.

If s € DRy (G)UDRy (G) then PT(Y,s) can be interpreted as the weight of the
set of deterministic multiactions Y which is ready for execution in s normalized by
the weights of all the sets executable in s. This approach is analogous to that used
in the EMPA definition of the probabilities of immediate actions executable from
the same process state [6] (inspired by way in which the probabilities of conflicting
immediate transitions in GSPNs are calculated [3]). The only difference is that we
have a step semantics and, for every set of deterministic multiactions executed in
parallel, we should use its cumulative weight. For the analogy with the interleaving
semantics of EMPA, we should interpret the weights of immediate actions of EMPA
as the cumulative weights of the sets of deterministic multiactions of dtsdPBC.

The advantage of our two-stage approach to definition of the probability to exe-
cute a set of activities is that the resulting probability formula PT(Y,s) is valid
both for (sets of) stochastic and deterministic multiactions. It allows one to unify
the notation used later while constructing the operational semantics.

Note that the sum of outgoing probabilities for the expressions belonging to the
derivations of G is equal to 1. More formally, Vs € DR(G) Y yepyecs) PT(Y,5) =
1. This, obviously, follows from the definition of PT(Y,s), and guarantees that it
defines a probability distribution.

The probability to move from s to § by executing any multiset of activities is

PM(s,3) = > PT(Y,s).
{Y|3Hes 3 es HSHY}

The summation in the definition above reflects the probability of the mutually
exclusive event union, since Z{TBHGS, afies, HYH) PT(T,s) = ZEGENC:S) PFES)
Z{TBHES, R PF(Y,s), where for each T, PF(Y,s) is the probability of
the exclusive execution of T in s. Note that Vs € DR(G)

PM(s,3) = Z{§|3Hes 3Hes 3v HSH)
PT(Y, S) = ZTGEmec(s) PT(T, S) =1

Z{§BH€5 Jfes 3 HSH)

{Y|3Hes IHes HSH}

Example 9. Let E = ({a}, p)[|({a}, x), where p,x € (0;1). DR(E) consists of the
equivalence classes sy = [E]~ and sy = [E]~. We have DRy (E) = {s1,s2}. The

execution probabilities are calculated as follows. Since Ezec(s1) = {0,{({a},p)},

{({a}, x)}}, we get PE({({a},p)},s1) = p(1 = x), PF({({a},x)},s1) = x(1 = p)
and PF(0,51) = (1=p)(1=X). Then Y zc prees) PF(E, s1) = p(1=x)+x(1—p)+

(1=p)(1 = x) = 1= px. Thus, PT({({a}, p)}, s1) = B4, PT{({a},)}, 51) =

28 I.V. TARASYUK

TABLE 5. Calculation of the probability functions PF, PT, PM
for s; € DR(E) and E = ({a}, p)[({a},X)

[s\T | 0 [{{a}.)} [{0} 2]
PE I A-p)d-—x) [p0—x) | x(1—p) |1—px
PT = p)(l X) p(I=x) x(A—p) 1

T e T
PM 1w (81) T ipx (82) 1

TABLE 6. Calculation of the probability functions PF, PT, PM
—/
for s; € DR(E') and E' = ({a},5))[|({a}, 17,

|Sl\r||{{} ({5 [=]

PF m l+m
l m

PT Om Tim 1

PM 1 (s5) 1

Xl(i—;;;) and PT(Q’ 31) = PM(Sl, 31) = % F’U/I’thET, EISC(SQ) = {@} hEHCe

ZEGEIBC(S2)PF(E,82) = PF((,s2) = 1 and PT(0,s2) = PM(SQ,SQ) =1=1
Finally, PM(s1,55) = PT({({a}, p)}, 1)+ PT({({a}, x)},51) = 422 + X1<1p;>
”+X QPX . In Table 5, the calculation of the probability functions PF(Y,s1),
PT(T s1), PM(s1,s) is explained, where YT € Exec(s1), s € {s1,s2} (the value of
s is depicted in the parentheses near the value of PM(s1,s)) and
% = Y e preetor) PX(E,51), PX € {PF,PT, PM}.
Let E' = ({a} iN1{a},82,), where I,m € Rso. DR(E') consists of the equiva-
lence classes sy = [E']~ and sy = [E']~. We have DR (E") = {sb} and DRy (E’) =
s1}. The execution probabilities are calculated as follows. Since Exec(s)) =
{{({a} D} A{a}, 55,01}, we get PE({({a}, 1))}, 51) = Land PF({({a}, 1)}, 1) =
m. Then ZHGEMC(S)PF(E,Sll) =1+ m. Thus PT({({a},t")},s1) = HLm and
PT({({a},E%)},51) = 2. Neat, Ezec(sy) = {0}, hence, Sacpaeoey) PF(E: 55)=
PF(®,s5) = 1 and PT(0,s,) = PM(SQ,SQ) =1 =1 Fmally, PM(Sll,S/Q) =
PT({({a},t")},s1) + PT({({a},1%)},s}) = l+m + 1 = 1. In Table 6, the calcu-
lation of the probability functions PF(Y,s}), PT(Y,s}), PM(s},s') is explained,
where T € Exec(s)), s € {sh} (the value of s’ is depicted in the parentheses near
the value of PM(s},s')) and ¥ = ZEGEIBC(SQ PX(2,s}), PX € {PF,PT,PM}.

Definition 13. Let G be a dynamic expression. The (labeled probabilistic) transi-
tion system of G is a quadruple TS(G) = (Sq, La, Ta, sa), where

e the set of states is S¢ = DR(G);
e the set of labels is Lg = N‘?}Zﬁ (0;1];
e the set of transitions is Tg = {(s, (Y, PT(Y,s)),8) | s,5§ € DR(G), 3JH€Es
IHes HS HY;
e the initial state is s¢ = [G]~.
Example 10. Let E be from Example 1. The next inferences by rule E are possible
from the elements of [E]x

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 29

({a}.
{ah EDI D) ~ (e, 5D° 0001 B) & ({a}, 820 ({0}, D)
= 0

The first and second inferences suggest the empty move transition [E|x~ —
[({a}.83)2[({b}, $)]~ # [Elx. The intuition is that the timer of the enabled waiting
multiaction ({a},h3) is decremented by one time unit in the both cases, whenever
it is overlined or mot. In the both cases, the respective waiting transition of the
PN corresponding to E will be enabled at a “common” marking (that also enables
a stochastic transition, matched up to ({b}, %)), s0 its timer should be decreased by

one with a time tick while staying at the same marking, and such a time move will
lead to a different state of the PN.

)) ~ {ah BP0} 5) > {ak 520 ({0} 3)

)

=W =W

The definition of T'S(G) is correct, i.e. for every state, the sum of the probabilities
of all the transitions starting from it is 1. This is guaranteed by the note after the
definition of PT(T,s). Thus, we have a generative model of probabilistic processes,
according to the classification from [16]. The reason is that the sum of the probabili-
ties of the transitions with all possible labels should be equal to 1, not only of those
with the same labels (up to enumeration of activities they include) as in the reactive
models, and we do not have a nested probabilistic choice as in the stratified models.

The transition system T'S(G) associated with a dynamic expression G describes
all the steps (parallel executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consisting of
stochastic (waiting, respectively) multiactions or the empty step (i.e. that consisting
of the empty multiset of activities) occurs instantly after one discrete time unit
delay. Each step consisting of immediate multiactions occurs instantly without any
delay. The step can change the current state to a different one. The states are the
structural equivalence classes of dynamic expressions obtained by application of
action rules starting from the expressions belonging to [G]~. A transition

(s,(T,P),5) € Tg will be written as s Lp 5 It is interpreted as follows: the
probability to change the state s to 5 as a result of executing T is P.

Note that from every s-tangible state the empty multiset of activities can always
be executed by rule E. Hence, for s-tangible states, T may be the empty multiset,
and its execution only decrements by one the timer values (if any) of the current

state (i.e. the equivalence class). Then we may have a transition s gp@ s from an s-
tangible state s to the tangible (i.e. s-tangible or w-tangible) state Os = ([J{[O H]~

H € sN SatOpRegDynExpr}. Thus, Os is the union of the structural equivalence
classes of all saturated operative dynamic expressions from s, whose timer values
have been decremented by one, prior to combining them into the equivalence
classes. This corresponds to applying the empty move rule to all saturated operative
dynamic expressions from s, followed by unifying the structural equivalence classes
of all the resulting expressions. We have to keep track of such executions, called the
empty moves, because they affect the timers and have non-zero probabilities. The
latter follows from the definition of PF (), s) and the fact that the probabilities of
stochastic multiactions cannot be equal to 1 as they belong to the interval (0;1).
When it holds VH € s N SatOpRegDynExpr O H = H, we obtain O s = s by

definition of Os. Then the empty move from s is in the form of s 2)7; s, called the
empty loop. For w-tangible and vanishing states T cannot be the empty multiset,

30 I.V. TARASYUK

since we must execute some immediate (waiting, respectively) multiactions from
them at the current (next, respectively) time moment.

The step probabilities belong to the interval (0;1], being 1 in the case when we
cannot leave an s-tangible state s and the only transition leaving it is the empty

move one s glo s, or if there is just a single transition from a w-tangible or a
vanishing state to any other one.
. T .. T . T .
We write s » §if 3P s »>p sand s — s if 4T s — s.
The first equivalence we are going to introduce is isomorphism which is a coinci-
dence of systems up to renaming of their components or states.

Definition 14. Let G, G’ be dynamic expressions and T'S(G)=(Sq, La,Ta, 5G),
TS(G"Y=(Sq:, Le/, T, sar) be their transition systems. A mapping B : S¢ — Sqr
is an isomorphism between T'S(G) and TS(G"), denoted by 5 : TS(G) =~ TS(G), if
(1) B is a bijection such that B(sg) = sq¢r;
(2) Vs,5€ Se VY s Hp 5 & B(s) Sp B(3).
Two transition systems T'S(G) and TS(G') are isomorphic, denoted by T'S(G) ~
TS(G), if B:TS(G)~TS(G").

Transition systems of static expressions can also be defined. For £ € RegStat Expr,
let TS(E) =TS(E).

Definition 15. Two dynamic expressions G and G' are equivalent with respect to
transition systems, denoted by G =5 G, if TS(G) ~TS(G").

3.4. Examples of transition systems. We now present a series of examples that
demonstrate how to construct the transition systems of the dynamic expressions
that include various compositions of stochastic, waiting and immediate multiactions.

Example 11. Let E=({a},52)[]({b},53). DR(E) consists of the equivalence classes

[({a},5)20({6},53)°]~ = [({a
[({a},B) 0({6},58)°~ = [({a
= [({a}, B ({0} £3)]~-

We have DRST() = {s1,53}, DRwr(E) = {s2} and DRy (E) = 0.

In Figure 2, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are placed in ordinary and double ovals, respectively. To simplify the graphical
representation, the singleton multisets of activities are written without outer braces.

This example demonstrates a choice between two waiting multiactions with diffe-
rent delays. It shows that the waiting multiaction ({a},5?) with a less delay 2 is
always executed first, hence, the choice is resolved in favour of it in any case and
an absorbing state is then reached, so that the waiting multiaction ({b},13) with a
greater delay 3 is never executed.

Example 12. Let E = ({a},53)[|({b}, 3). DR(E) consists of the equivalence classes

s1=[({a}, 1?00}, P~ = [({a} 8))°0 ({0},)]+,
s2 = [({a}, 12 ({b} P~ = [({a}. 2)*[({0},)]~
ss = [({a}, DB} P~ = [({a}. 8) ({0},)]~
sa = [({a},) ({4}, 3)l~-

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 31

Wl

F1c. 3. The transition system of E for E = ({a},t3)[({b}, 3)

We have DRs7(E) = {s1, 82,54}, DRwr(E) = {s3} and DRy (E) = 0.

In Figure 3, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively.

This example demonstrates a choice between waiting and stochastic multiactions.
It shows that the stochastic multiaction ({b},%) can be evecuted until the timer
value of the waiting multiaction ({a},t3) becomes 1, after which only the waiting
multiaction can be executed in the next moment, leading to an absorbing state.
Thus, in our setting, a waiting multiaction that cannot be executed in the next
time moment and whose timer is still running may be interrupted (preempted) by
executing a stochastic multiaction.

Example 13. Let E = (({a},t)[({b},3)) rs a. DR(E) consists of the equivalence
classes

s1=[(({a}, {)°0({b}, 3)) rs al~ = [(({a}, D)’ [({b}, 3)) 15 al=,
s2 = [(({a}, {)2[({b}, 3)) 1s al~ = [(({a}, B1)*[({b}, 3)) 15 al=,
ss = [(({a},)" Db}, 3)) rs al~ = [(({a},) ({0}, 3)) 15 al=,
sa = [(({a}, 5))[({0}, 3)) rs al~.

We have DRs7(E) = {s1, 82,53, 84} and DRyr(E) =0 = DRy (E).

In Figure 4, the transition system TS(E) is shown. The s-tangible states are
depicted in ordinary ovals.

This example is a modification of the previous Example 12 by applying a restricti-
on operation by action a to the whole expression. The present example shows that

32 I.V. TARASYUK

ol

F1G. 4. The transition system of E for E = (({a},13)[[({0},3)) rs a

the stochastic multiaction ({b},%) can be executed until the timer value of the
“restricted” waiting multiaction ({a},13) becomes 1, after which the waiting multi-
action also cannot be executed in the mext moment, since it is affected by the
restriction. Instead, the stochastic multiaction ({b},) can be executed again, leading
to an absorbing state, or we return to the current state after one time tick (the empty
loop in that state). Thus, a waiting multiaction that cannot be executed because of
the restriction and whose timer runs until reaching its final value 1 may always be
preempted by executing a stochastic multiaction. To verify that the timer value 1
remains unchanged with the time progress, recall the empty move rule E from Table
3 and the definition of ©G with max{1,0 — 1} = max{1,0} =1 when 6 = 1.

Note that the timer decrement of the “restricted” waiting multiaction ({a},h3)
induces a partial (for the first 2 time ticks) unfolding of the behaviour consisting
in a choice between executing and non-executing the stochastic multiaction ({b}, %)
In our setting, the timer values are kept even for the waiting multiactions that
cannot be executed because of the restriction, since they can potentially participate
in a synchronization, but the activities resulted from synchronization do not appear
explicitly in the syntax of the process expressions, and their timer values can be
detected only by observing those of the both synchronized waiting multiactions. We
shall see an importance of such a construction, particularly, in Examples 17 and 21.

Example 14. Let E = [({a},3) * ({b},83) = ({c},1)]. DR(E) consists of the

equivalence classes

*

*
~—
—~

o
—

W=
%

R
—
—

Q
—
S~—

*
—
—

>
—
v
=0
S~—
w

*
—
—

)
—

*

~—

2

)]

~—

*

Q
—
—

Q
—

[STE ST ST
S~—"
*
—
—
(=
—
X
=
~—
[
*
~—
—

o
—

Wl Wik wl—
S~—

Q

=
R
—
—
Q
—
S~—
*
—
—
>
—
v
=00
S~—
~
*
—
—
)
—
=
R

*

val
w
_— s =e =
=
S
—
= N= = NI= Nl
—_— — — — —
*
—_ | | |
—~=
(=
o | | | e
oy | ooy | oax| v
=W FW W W =W
— —| —| = —
N
*
—~ o~~~
~=
o
-
~— W= W= Wi

*
—~
~~

o
—

W=
Q

We have DRs7(E) = {51, 82,53, 85}, BRWT(E) = {s4} and DRy (E) = 0.
In Figure 5, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 33

TS(E)

F1a. 5. The transition system of E for E = [({a}, 1) = ({b},83) = ({c}, 3)]

This example demonstrates an iteration loop with a waiting multiaction. The
iteration initiation is modeled by a (initiating) stochastic multiaction ({a}, 3). The
iteration body that corresponds to the loop consists of a (looping) waiting multiaction
({b},83). The iteration termination is represented by a (terminating) stochastic
multiaction ({c}, %) The terminating stochastic multiaction can be executed until
the timer value of the waiting multiaction becomes 1, after which only the waiting
multiaction can be executed in the next moment. Thus, the iteration termination
can either complete the repeated execution of the iteration body or break its execution
when the waiting multiaction timer shows some intermediate value (that is less than
the initial value, being the multiaction delay, but greater than 1). The execution of
the waiting multiaction ({b},83) leads to the repeated start of the iteration body.
The execution of the terminating stochastic multiaction ({c},$) brings to the final
absorbing state of the iteration construction.

Example 15. Let B = ({a}, 1) ({0}, 83)l|({c}.53). DR(E) consists of the equiva-

lence classes

s1 = [({a}, i)I({0}, 83)21({c}, 83)%)~, 52 = [({a}, B ({0}, 83)2 [({c}, B3)),
s3 = [({a}, B)I({b}) NI({c} 83)%~, s = [{a}, B ({b}, 5) 1 ({c}, 53)]~
s5 = [({a}, BB},)1 ({e}, 1]~

We have DRs7(E) = {s2, 85}, DRwr(E) = {s3,s14} and DRy (E) = {s1}.

In Figure 6, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively, and the vanishing ones
are depicted in boxes.

This example demonstrates a parallel composition of an immediate and two
waiting multiactions with different delays. It shows that the immediate multiaction
({a},1?) is always executed before any parallel with it waiting multiaction. Further,
from the two parallel waiting multiactions, that ({b},13) with a less delay 2 executed
first in any case. Finally, the execution of the waiting multiaction ({c},3) with a
greater delay 3 leads to an absorbing state. Thus, in spite of parallelism of those three
deterministic multiactions, they are executed sequentially in fact, in the increasing
order of their (different) delays. That sequence also includes the empty set, executed
after the immediate multiaction ({a}, 1Y), since the waiting multiaction ({b},h3)

34 I.V. TARASYUK

F1G. 6. The transition systemy of E for E = ({a},t))[|({6},82)]|({c},t3)

with a less delay will then need a passage of one time unit (one time tick) for its
timer value (RTE) become 1 and it can be executed itself. Though the example is
not complex, it shows a transition system with all three types of states: s-tangible,
w-tangible and vanishing.

Example 16. Let E = ({a},5})]|({b}, 3). DR(E) consists of the equivalence classes

s1=[({a}, 1)21({0}, 3)l~, 52 = [({a},B)2I({0}, 3)]~,
s3 = [({a}, 51)21 ({0}, $)l~, 54 = [({a}, BB}, 3)]~,
ss = [(({a}, DB} Dlss 6 = [{ad, BDII{BY, D,
st =[({a},8) ({0}, 3)]~

We have DRs7(E)={s1, s2, 53, 86,57}, DRwr(E)=1{s4,55} and DRy (E)=0.

In Figure 7, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively.

This example demonstrates a parallel composition of waiting and stochastic multi-
actions. It shows that the stochastic multiaction ({b}, 3) can be executed until the
timer value of the waiting multiaction ({a},t3) becomes 1, after which only the
waiting multiaction can be executed in the next moment. The execution of the latter
leads to an absorbing state either directly or indirectly, via executing a possible empty
loop, followed (via sequential composition) by the stochastic multiaction ({b}, §) that
has not been executed in the preceding states.

Example 17. Let E = (({a},52)||({@},83)) sy a rs a. DR(E) consists of the
equivalence classes

s1=[(({a},59)?1({a}.83)?) sy a rs al~, s2=[(({a},B})"[|({a},£3)") sy a 1s a]~,
ss=[(({a}.BD)[({a},5)) sy a rs a]~.
We have DRs7(E) = {s1,s3}, DRwr(E) = {s2} and DRy (E) = 0.

In Figure 8, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively.

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 35

2
0,2 0.1

F1a. 7. The transition system of E for E = ({a}, 1) ({b}, 1)

This example demonstrates a parallel composition of two waiting multiactions
({a},82) and ({a},t3), whose multiaction parts are singleton multisets with an
action a and its conjugate a, respectively. The resulting composition is synchronized
and then restricted by that action, which (and its conjugate) therefore “disappears”
from the composite process behaviour. From the initial state, only the empty multiset
of activities is executed that decrements by one the values of the timers. That
evolution follows by the execution of a new waiting multiaction (0, 43) with the empty
multiaction part, resulted from synchronization of the two waiting multiactions,
which leads to an absorbing state.

Note that the timer values of the two waiting multiactions and that of the new
waiting multiaction (0,53) (being their synchronous product) coincide until all of
them remain enabled with the time progress. Thus, it is very useful that the expres-
sion syntax preserves such two enabled synchronized waiting multiactions, removed
by restriction from the behaviour, since their timer values suggest that of their
synchronous product, which is not explicit in the syntax. Thus, the timer values of
those two “virtual” enabled waiting multiactions cannot just be marked as undefined
in the syntazx, provided that one keeps track of the timer value of their synchronous
product being only implicit in the syntaz.

If both synchronized waiting multiactions lose their enabledness with the time
progress then their synchronous product (0,43) also loses its enabledness and all
of them obviously loose their timer value annotations. It may happen that one of
the synchronized waiting multiactions loses its enabledness (for example, when a
conflicting waiting multiaction is exzecuted) while the other one keeps its enabledness.
Then their synchronous product also loses its enabledness, together with its timer
value annotation. In such a case, the timer value of the enabled synchronized waiting
multiaction does not suggest anymore that of the synchronous product. That “saved”
timer value merely decrements with every time tick unless it becomes equal to 1, after
which either the enabled synchronized waiting multiaction is executed or it cannot
be executed by some reason (for example, when affected by restriction) and then the
timer value 1 remains unchanged with the time progress. To verify this, recall the
empty move rule E from Table 8 and the definition of © G with max{1,§ — 1} =
max{1,0} =1 when 6 = 1.

Example 18. Let E = ((({a},t}); ({6}, 83)({b},13)) sy b. DR(E) consists of the

equivalence classes

36 I.V. TARASYUK

FIG. 8. The transition system of E for E = (({a},5?)||({a},12)) sy arsa

{a}.)" ({0}, 53)
{a}.t0); ({0}.53)

(({a},2D")I({b},53)%) sy bl~

(() ({6}, 83)°)]

(({a}, 81); ({0},53))]

(() ({6}, 83)Y)]
) 5

({6}, 58)°
|({b},5)?) sy bl
({0}, 5)") sy bl
I()
)

{a} 81): ({b}.83)"

=(

=
=
=(({6}, 8)) sy b=,
[(

HHHH

S5 =

(({a}, 81); ({6}, B3 ({0}, 62)) sy bl~

|

We have DRg7(E) = {s2, 85}, DRw7(E) = {51, 53,54} and DRy (E) = .

In Figure 9, the transition system T'S(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively.

This example demonstrates a parallel composition of two subprocesses. The first
subprocess is a sequential composition of two waiting multiactions ({a},t1) and
({b},83). The second subprocess consists of a single waiting multiaction ({b},53).
The resulting composition is synchronized by the action b, which (and its conjugate)
therefore “disappears” from the behaviour of their synchronous product. From the
initial state, only the waiting multiaction ({a},b}) is evecuted and the timer of the
newly enabled waiting multiaction ({b},13) starts with the value 3 while the timer
value 3 of ({b},53) is decreased by one and becomes 2. That evolution follows by
the execution of the empty multiset of activities that further decrements the values
of those timers that become 2 and 1, respectively. Then the waiting multiaction
({I;}, 13) is ezecuted and its timer value annotation disappears while the timer value
of ({b},13) becomes 1. Then the execution of waiting multiaction ({b},13) finally
leads to an absorbing state.

Thus, the new waiting multiaction (0,43), resulted from synchronization of
({b},53) and ({b},13), cannot be executed, since those synchronized waiting multiac-
tions cannot be executed together (in parallel) in any reachable state. Note that a
synchronous product cannot be executed even if one (the latest, in case the timers
are disbalanced) of the synchronized activities cannot be executed. Then only the ma-
ximum timer value of the two synchronized waiting multiactions suggests the timer
value of their synchronous product (0,43), until all of them remain enabled with
the time progress. The enabledness keeps the corresponding timer value annotations
present in the syntax and those values defined. Each defined timer value of ({b},3)
is always less by one than that of ({IA)}, 13), since the execution of the former waiting
multiaction is delayed for one time unit due to the execution of the preceding
({a},b1). Then simultaneous starting the timers of the two synchronized waiting
multiactions is prevented, resulting in the disbalanced timers. If just one timer

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 37

FIG. 9. The transition system of E for E = ((({a},1}); ({b}, B3N |({b},53)) sy b

value of the two synchronized waiting multiactions is undefined then that of their
synchronous product is undefined too, since it is not enabled in that case.

Example 19. Let E = ((({a},tn); ({2}, 8))[1(({z}, 55)[[({e}, 62)) sy © rs 2.

DR(E) consists of the equivalence classes

({a} 1) ({0, 2}, B)I({=},)1 (e} BD)Y) sy @ rs 2]~ =
|

()
(({a}, 5% ({0, 21) I ({2} B}, 5)Y) sy = rs 2],
sz = [(({a}, 1) ({0, 2},) ({2}, 81 ({c}, £2))) sy @ 1s 2]~

We have DRsr(E) = {s2}, DRwr(E) = {s1} and DRy (E) = 0.

In Figure 10, the transition system TS(E) is shown. The s-tangible and w-
tangible states are depicted in ordinary and double ovals, respectively.

This example demonstrates a parallel composition of two subprocesses, synchro-
nized and then restricted by an auxiliary action that (and its conjugate) hereupon
“disappears” from the composite process behaviour. The first subprocess is a sequen-
tial composition of the waiting ({a},1l) and immediate ({b,2},13) multiactions.
The second subprocess is a choice between the immediate ({x},13) and waiting
({c},8}) multiactions. The immediate multiactions ({b,2},13) and ({z},83) in the
first and second subprocesses are synchronized via an auziliary action x that (and its
conjugate) is then removed from the behaviour by the restriction operation. Since
those immediate multiactions are within coverage of restriction by the auziliary
action, they cannot be exvecuted. The new immediate multiaction ({b},12), resulted
from that synchronization can only be evecuted if the waiting multiaction ({a},t})
(preceding it via sequential composition) in the first subprocess has occurred and the
waiting multiaction ({c},h}) (conflicting with it via the choice composition) in the
second subprocess has not occurred. Since only mazximal multisets of parallel waiting
multiactions may be executed, the waiting multiactions in both the subprocesses
must occur, thus preventing evecution of the new immediate multiaction ({b},49),
generated by synchronization.

Example 20. Let E = ((({a},57); ({b, 2}, 83))[(({z}, 55)[[({c}, 6D))) sy = rs 2.

DR(E) consists of the equivalence classes

s1 = |(
[(

38 I.V. TARASYUK

F1G. 10. The transition system of E for

E = ((({a},50); ({0, 2},)=}, 88)1({c}, 52)) sy @ rs @

s1=[((({a},59)% ({b, 2},) ({2}, B3)* [({c}, BD)?)) sy @ 1s 2]~ =
[(({a},)% ({0, 2}, B) ({2}, 83)2 0 ({c}, 1)) sy @ rs al,

s2 = [((({a}, 5)" ({b, 2}, B3)I(({}, 8 1 ({c}, £)1)) sy @ rs 2]~ =
[(({a}, 5% ({0, 2}, B ({2} 83) T (e}, 1)) sy @ rs 2l

s3 = [((({a}, 51); ({6, 2}, 89)?)I(({=}, BDI({c}, BD)) sy @ rs alx,

sa. = [((({a}, 51); ({6, 2},) DII({=} B}, 5D)) sy rs al~

We have DRs7(E) = {s1, 83,54}, DRwr(E) = {s2} and DRy (E) = 0.

In Figure 11, the transition system TS(E) is shown. The s-tangible and w-
tangible states are depicted in ordinary and double ovals, respectively.

This example is a modification of the previous Fxample 19 by replacing all the
immediate multiactions with the waiting ones and by setting to 2 the delays of all the
waiting multiactions from the syntax. Thus, we examine a compound process, con-
structed with parallelism, synchronization and restriction operations from the follo-
wing two subprocesses. The first subprocess is a sequential composition of two wai-
ting multiactions ({a},t?) and ({b,},13). The second subprocess is a choice between
other two waiting multiactions ({x},413) and ({c},13). The second waiting multiacti-
on ({b,2},83) in the first subprocess and the first waiting multiaction ({x},53) in the
second subprocess are synchronized via an auziliary action x that (and its conjugate)
is then removed from the behaviour by the restriction operation. The new waiting
multiaction ({b},12), resulted from that synchronization has the same delay 2 as the
two synchronized waiting multiactions. It can only be executed if the first waiting
multiaction ({a},t3) (preceding it via sequential composition) in the first subprocess
has occurred and the second waiting multiaction ({c},t%) (conflicting with it via the
choice composition) in the second subprocess has not occurred. Since only maximal
multisets of parallel waiting multiactions may be executed, the mentioned (“first in
first” and “second in second”) waiting multiactions in both the subprocesses must
occur, thus preventing execution of the new waiting multiaction ({b},82), generated
by synchronization.

The overlined second waiting multiaction in the first subprocess is within coverage
of restriction by the auziliary action. Consider the state, reached from the initial
state by execution of the empty multiset of activities, followed by the parallel execu-
tion of the mentioned (‘first in first” and “second in second”) waiting multiactions.
After the empty multiset execution from the considered state, the associated timer
value of that overlined waiting multiaction is decremented to 1. Then an absorbing
state is reached, from which only the empty loop is possible, which leaves that timer

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 39

F1G. 11. The transition system of E for

= ((({a}, 80); ({0, 2}, 1) ({2},) [({c} 7)) sy z rs @

value 1 unchanged though. To verify this, recall the empty move rule E from Table
3 and the definition of OG with max{1,§ — 1} = max{1,0} =1 when §j = 1.

Example 21. Let E = ((({a},59); ({0, 2},83)) [({=}, 53)[|({c}. 43))) sy =. DR(E)

consists of the equivalence classes

s1= [((({a}, 5% ({6, 2}, 83)) 1 ({1, 8320 ({e},8)%)) sy 2]~ =
[({a})% ({0, 2}, I ({2}, £3)20({e}, BD)2)) sy =,

so = [((({a},)% ({6, 2},)1 ({1) I ({e}, B)Y) sy 2]~ =
[({a} D)5 ({0, 23, I ({2}, 83) [({e}, DY) sy

s3 = [(({a},10); ({0, 2}, 83)*) | (({=}, 83) [({c}, 62))) sy =]~,

s = [(({a},10); ({0, 2}, 83)) (({=}, 83 [({c}, 62))) sy =],

s5 = [((({a}, 6]); ({0, 2}, B3) I(({=}, B3) [({c}, B1))) sy 2]~

We have DRgs7(E) = {51, 83,55}, DRwr(E) = {s2,54} and DRy (E) = 0.

In Figure 12, the transition system TS(E) is shown. The s-tangible and w-
tangible states are depicted in ordinary and double ovals, respectively.

This example is a modification of the previous Example 20 by removing restriction
from the syntax. Thus, we examine a compound process, constructed with parallelism
and synchronization operations from the two subprocesses being a sequential compo-
sition of two waiting multiactions ({a},53) and ({b,2},13) and a choice between
other two waiting multiactions ({z},13) and ({c},3), respectively. All the four wai-
ting multiactions have the same delay 2. The second waiting multiaction ({b,%},13)
in the first subprocess and the first waiting multiaction ({x},43) in the second
subprocess are synchronized via an auziliary action x. The new waiting multiaction
({b}, 82), resulted from that synchronization has the same delay 2 as the two synchro-
nized waiting multiactions. It can only be executed if the first waiting multiaction
({a},8?) (preceding it via sequential composition) in the first subprocess has occurred
and the second waiting multiaction ({c},53) (conflicting with it via the choice com-
position) in the second subprocess has not occurred. Since only maximal multisets
of parallel waiting multiactions may be executed, the mentioned (“first in first”
and “second in second”) waiting multiactions in the subprocesses must occur, thus

40 I.V. TARASYUK

TS(E)

(]

{(({a}, 8%),
{ehidr 3

{{a}.tD),
{=}.t3)}, 2

F1G. 12. The transition system of E for

E = (((({a},89); ({0, 2}, 83)I(({},) [({c}. 82))) sy =

preventing execution of the new waiting multiaction ({b},12), generated by synchro-
nization. The alternative mazimal multiset of parallel waiting multiactions that may
be executed from the same state consists of the “first in first” ({a},1?) and “first in
second” ({x},53) waiting multiactions in the subprocesses, but the ‘first in second”
waiting multiaction ({x},52) is the second of the two synchronized waiting multiac-
tions, and its occurrence prevents execution of their synchronous product ({b},t2).

Example 22. Consider the expression Stop = ({g},%) rs g specifying the non-
terminating process that performs only empty loops with probability 1.

Let E = [({a}, 5) * ({0}, 6D [(({c}. 83): ({d}, 3))) = Stop]. DR(E) consists of the

equivalence classes

{a}, 5) = (({b},5)0(({c} 2); ({d}, 3))) * Stop]]~,

({a},3) * (())
(fa}. 3) = ({0}, 8D 0(({e},3)" ({d}) * Stop]l~
({a}, 3) = ({6},) D(({c},) ({d}a%)))*StOPH
({a}, 5) = ({6}, 4D)[(({c}, 83); ({d}, 3))) * Stop]]~.

We have DRgs7(E) = {s1, 3}, DRwr(E) = {s2} and DRy (E) = ().

In Figure 183, the transition system TS(E) is presented. The s-tangible states are
depicted in ovals and the vanishing ones are depicted in bozes.

This example demonstrates an infinite iteration loop. The loop is preceded with
the iteration initiation, modeled by a (first) stochastic multiaction ({a},1). The
iteration body that corresponds to the loop consists of the choice between two conflic-
ting waiting multiactions ({b},h1) and ({c},83) with the same delay 1, the second
of them followed (via sequential composition) by a (second) stochastic multiaction
({d}, %) Hence, the iteration loop actually consists of the two alternative subloops,
such that the first one is a self-loop (one-state loop from a state to itself) with
the first waiting multiaction ({b},h}), and the second one ({c},13) is a two-state
loop with an intermediate state, reached after the second waiting multiaction has
been executed, and from which the second stochastic multiaction ({d}, %) is then
started. Thus, the iteration generates the self-loop with probability less than one

(
]

*

(
(
(

*

//\/\/

=1l 1)
=1l 5
[({c}. Bt
=l 13);

*

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 41

TS(E)

o

=

F1c. 13. The transition system of E for E = [({a}, 3) * (({b}, 1)
(({c},£3); ({d}, 3))) * Stop]

(since the two-state loop from the same state has a non-zero probability) from the
states in which only waiting multiactions are executed. The iteration termination
Stop demonstrates an empty behaviour, assuring that the iteration does not reach
its final state after any number of repeated executions of its body.

Example 23. Let E = [({a}, p) » ({b}, 3); (({c},5); ({d}, 0))[({e}, £,);
({f},#)))) = Stop], where p,0,¢ € (0;1) and k,l,m € Rso. DR(E) consists of the

equivalence classes

s1=([({a}, p) = (b}, 1) (e}, 1) b,) [(({e}, £2.); ({ £} 6)))) * Stop]l~,
so = [[({a}, p) * ({OF, B0 ({eh,) ({d},) (({e}, 50.); (£}, #)))) Stop]]~
s3 = [[({a}, p) * ({0}, 80); ({eh,B0): ({d}, 0)) [({e},10,); ({£}, 9)))) * Stop]~ =
[[({a}, p) * ({6} 51): (e}, 8)s (L}, O)(({e}, B.)s ({3,) * Stop]lx,
sa = [[({a}, p) * ({0}, 80); ((({c}, 17): ({d}, 0)) (e}, £9,): ({£}, 9)))) * Stopll~,
[[({a}, p) * ({6}, 1) (e}, 8); ({1}, O)D(({e}, 1m); ({F}, €))) * Stop]]~.

We have DRs7(E) = {s1, 84,55}, DRWT(_) = {s3} and DRy (E) = {s3}.

In Figure 14, the transition system TS(E) is presented. The s-tangible and
w-tangible states are depicted in ordinary and double ovals, respectively, and the
vanishing ones are depicted in boxes.

This example demonstrates an infinite iteration loop. The loop is preceded with
the iteration initiation, modeled by a stochastic multiaction ({a}, p). The iteration
body that corresponds to the loop consists of a waiting multiaction ({b},4},), followed
(via sequential composition) by the probabilistic choice, modeled via two conflic-
ting immediate multiactions ({c},t?) and ({e},15,), followed by different stochastic
multiactions ({d},0) and ({f}, @). The iteration termination Stop demonstrates an
empty behaviour, assuring that the iteration does not reach its final state after any
number of repeated executions of its body.

Let us interpret E as a specification of the travel system. A tourist visits reqularly
new cities. After seeing the sights of the current city, he goes to the next city by
the nearest train or bus available at the station. Buses depart less frequently than
trains, but the next city is quicker reached by bus than by train. We suppose that the
stay duration in every city (being a constant), the departure numbers of trains and
buses, as well as their speeds do not depend on a particular city, bus or train. The
travel route has been planned so that the distances between successive cities coincide.

42 I.V. TARASYUK

7S(E)

0,1—6 0,1—¢

FIG. 14. The transition system of E for E = [({a}, p) * ({b},1});
(e}, 1) ({d}, 0)) (e},) ({3, 6)))) * Stop]

The meaning of actions from the syntax of E is as follows. The action a cor-
responds to the system activation (the travel route has been planned) that takes a
time, geometrically distributed with the parameter p. The action b represents the
completion of looking round the current city and coming to the city station that
takes a fized time equal to 1 (say, one hour) for every city. The actions ¢ and e
correspond to the urgent getting on bus and train, respectively, and thus model the
choice between these two transport facilities. The weights of the two corresponding
immediate multiactions suggest that every | departures of buses take the same time
as m departures of trains (I < m), hence, a bus departs with the probability HLm
while a train departs with the probability .. The actions d and f correspond to
the coming in a city by bus and train, respectively, that takes a time, geometrically
distributed with the parameters 6 and ¢, respectively (6 > ¢).

The meaning of states from DR(E) is the following. The s-tangible state sy
corresponds to staying at home and planning the future travel. The w-tangible state
s2 means residence in a city for exactly one time unit (hour). The vanishing state ss
with zero residence time represents instantaneous stay at the city station, signifying
that the tourist does not wait there for departure of the transport. The s-tangible
states s4 and ss correspond to going by bus and train, respectively.

Due to the time constraints and since waiting multiactions may be preempted
by stochastic ones, some simple dynamic expressions can have complex transition
systems (Examples 11-16, 18, 21), or vice versa (Examples 17, 19, 20, 22, 23).

4. CONCLUSION

In this paper, we have proposed a discrete time stochastic extension dtsdPBC
of PBC, enriched with deterministic multiactions. The calculus has a parallel step
operational semantics, based on labeled probabilistic transition systems. A number
of examples has demonstrated as construction of such transition systems with s-
tangible, w-tangible and vanishing states for the dynamic expressions with different
types of multiactions (stochastic, immediate and waiting) and various operations, as
the specification capabilities of the calculus and particular features of its semantics.

The advantage of our framework is twofold. First, one can specify in it concurrent
composition and synchronization of (multi)actions, whereas this is not possible in

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 43

classical Markov chains. Second, algebraic formulas represent processes in a more
compact way than PNs and allow one to apply syntactic transformations and
comparisons. Process algebras are compositional by definition and their operations
naturally correspond to operators of programming languages. Hence, it is much
easier to construct a complex model in the algebraic setting than in PNs. The
complexity of PNs generated for practical models in the literature demonstrates
that it is not straightforward to construct such PNs directly from the system
specifications. dtsdPBC is well suited for the discrete time applications, whose
discrete states change with a global time tick, such as business processes, neural and
transportation networks, computer and communication systems, timed web services
[53], as well as for those, in which the distributed architecture or the concurrency
level should be preserved while modeling and analysis, such as genetic regulatory
and cellular signalling networks (featuring maximal parallelism) in biology [11]
(remember that, in step semantics, we have additional transitions due to concurrent
executions). dtsdPBC is also capable to model parallel systems with fixed durations
of the typical activities (loading, processing, transfer, repair, low-level events) and
stochastic durations of the randomly occurring activities (arrival, departure, failure),
including industrial, manufacturing, queueing, computing and network systems.
In particular, we have adopted for dtsdPBC all examples of the expressions, ct-
boxes and inferences by the transition rules from tPBC [23]. Whereas the examples
from that paper explore only some selected state-transition sequences (paths),
we always construct the complete transition systems of the expressions. We have
observed that in our framework we have no difficulties like those in tPBC, which
have forced to allow illegal transition sequences. In tPBC, the increasing timers are
associated with the overlines and underlines of multiactions and suggest the ages
of the corresponding markings in the respective boxes. In dtsdPBC, the decreasing
(up to the value 1) timers are associated with the enabled waiting multiactions and
specify their remaining times to execute (RTEs), like the timers of the enabled de-
terministic transitions in DTDSPNs from [60, 61, 59]. Besides such a PNs intuition,
making difference between markings (overlines and underlines) and timers of (wai-
ting) multiactions offers more syntactical flexibility to express their progress in
time. The decreasing timers allow us to avoid problems with infinitely growing timer
values in the deadlocked and final (absorbing) states. Each decreasing timer should
start with a certain value that cannot be suggested by the current marking, but such
an initial value is the delay of the waiting multiaction the timer is associated with.
It is known that combining time restrictions, parallelism and compositionality
usually leads to many technical difficulties, so that the formal models possessing
all the mentioned properties have almost not been proposed in the literature, in
spite of the investigations in the related areas (for example, discrete time, generally
distributed delays, non-interleaving functional semantics in the SPA framework).
To solve the mentioned problem, some new (not existing in dtsiPBC) notions and
constructions have been introduced in dtsdPBC, such as deterministic multiactions,
decreasing timers of waiting multiactions, enabledness of activities, saturation with
the timer values, timers discarding and decreasing operations, extended Can and
Now functions, s-tangible and w-tangible dynamic expressions and states, inaction
and action rules respecting waiting multiactions, empty moves, reachability of
dynamic expressions, transition systems with 3 types of states and 4 types of
transitions (unlike 2 types of states and 3 types of transitions in dtsiPBC). Thus,

44 I.V. TARASYUK

the main advantages of dtsdPBC are the flexible multiaction labels, deterministic
and stochastic multiactions, powerful operations, as well as its step operational
semantics permitting parallel (simultaneous) execution of activities at time ticks.

In the following research, we intend to propose a Petri net denotational semantics
of dtsdPBC, like it has been done for dtsiPBC in terms of LDTSIPNs and dtsi-
boxes. For this purpose, we shall present a subclass of labeled discrete time stochas-
tic and deterministic Petri nets (LDTSDPNs), based on the extension of DTSPNs
with transition labeling and deterministic transitions, called dtsd-boxes. Further,
a technique of performance evaluation in the framework of the calculus will be
presented that will explore the corresponding stochastic process, which is a semi-
Markov chain (SMC). It will be proved that the underlying discrete time Markov
chain (DTMC) or its reduction (RDTMC) by eliminating vanishing states may
alternatively and suitably be studied for that purpose. We plan to define behaviou-
ral equivalences for dtsdPBC, such as the step stochastic bisimulation one, aiming to
reduce behaviour of the algebraic processes by quotienting their transition systems
and Markov chains. Such a reduction should simplify the functional (qualitative)
and performance (quantitative) analysis. We would like to construct some applica-
tion examples demonstrating expressiveness of the calculus and application of the
behavioural analysis and performance evaluation, both simplified using quotienting
by step stochastic bisimulation. Future work could also consist in constructing a
congruence relation for dtsdPBC, i.e. the equivalence that withstands application of
all operations of the algebra. The first possible candidate is a stronger version of step
stochastic bisimulation equivalence, defined via transition systems equipped with
two extra transitions skip and redo, like those from sPBC [25]. Moreover, recursion
operation could be added to dtsdPBC to increase further specification power of
the algebra. It would be very interesting to implement the class of DTSDPNs,
to be able to specify them and then model their behaviour by constructing the
reahability graphs. Note that even DTSPNs of M.K. Molloy [38, 39] have never
been implemented. Mostly interleaving and continuous-time variants of stochastic
or timed PNs have been implemented so far.

REFERENCES

[1] W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time stochastic Petri
nets, Statistica Neerlandica, 54:2 (2000), 237-255. http://tmitwww.tm.tue.nl/staff/hreijers/
H.A. Reijers Bestanden/Statistica.pdf. MR1794979

[2] G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Science, 2090
(2001), 84-155. Zbl 0990.68092

[3] G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in Computer
Science, 4486 (2007), 83-131. Zbl 1323.68400

[4] J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction, Theoretical
Computer Science, 37 (1985), 77-121. MR0796314

[5] M. Bernardo, M. Bravetti, Reward based congruences: can we aggregate more? Lecture Notes
in Computer Science, 2165 (2001), 136-151. MR1904353

[6] M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with
nondeterminism, priorities, probabilities and time, Theoretical Computer Science, 202
(1998), 1-54. MR1626813

[7] E. Best, R. Devillers, J.G. Hall, The boz calculus: a new causal algebra with multi-label
communication, Lecture Notes in Computer Science, 609 (1992), 21-69. MR1253529

[8] E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on Theoretical
Computer Science, Springer, 2001. MR1932732

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

18]

[19]

[20]
21]
22]
23]
[24]
[25]

[26]

[27]

[28]

[29]

(30]

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 45

E. Best, M. Koutny, A refined view of the box algebra, Lecture Notes in Computer Science,
935 (1995), 1-20. MR1461021

T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc. IFIP WG
6.1 10*" Int. Symposium on Protocol Specification, Testing and Verification 1990, Ottawa,
Canada, 1-14, North-Holland, Amsterdam, The Netherlands, 1990.

N. Bonzanni, K.A. Feenstra, W. Fokkink, E. Krepska, What can formal methods bring to
systems biology? Lecture Notes in Computer Science, 5850 (2009), 16-22.

E. Brinksma, H. Hermanns, Process algebra and Markov chains, Lecture Notes in Computer
Science, 2090 (2001), 183-231. Zbl 0990.68021

E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, A stochastic causality-based process
algebra, The Computer Journal, 38:7 (1995), 552-565.

G. Bucci, L. Sassoli, E. Vicario, Correctness verification and performance analysis of real-
time systems using stochastic preemptive time Petri nets. IEEE Transactions on Software
Engineering, 31:11 (2005), 913-927.

G. Ciardo, Discrete-time Markovian stochastic Petri nets, Computations with Markov
Chains: Proc. 2™% Int. Workshop on the Numerical Solution of Markov Chains (NSMC)
1995 (W.J. Stewart, ed.), Raleigh, NC, USA, January 1995, 339-358, Kluwer, Boston, MA,
USA, 1995. http://www.cs.ucr.edu/ ~ciardo/pubs/1995NSMC-Discrete.pdf Zbl 0862.60079
R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of
probabilistic processes, Information and Computation, 121:1 (1995), 59-80. MR1347332
H.M. Hanish, Analysis of place/transition nets with timed-arcs and its application to batch
process control, Lecture Notes in Computer Science, 691 (1993), 282-299.

H. Hermanns, M. Rettelbach, Syntaz, semantics, equivalences and azxioms for MTIPP, Proc.
274 Tnt. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (U.
Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany, July 1994, Arbeitsberichte
des IMMD, 27:4 (1994), 71-88. http://ftp.informatik.uni-erlangen.de/local /inf7 /papers/
Hermanns/syntax semantics _equivalences axioms for MTIPP.ps.gz

J. Hillston, The nature of synchronisation, Proc. 2% Int. Workshop on Process Algebra
and Performance Modelling (PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg /
Erlangen, Germany, July 1994, Arbeitsberichte des IMMD, 27:4 (1994), 51-70.
http://www.dcs.ed.ac.uk/pepa/synchronisation.pdf

J. Hillston, A compositional approach to performance modelling, Cambridge University Press,
Cambridge, UK, 1996. http://www.dcs.ed.ac.uk/pepa/book.pdf MR1427945

C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK, 1985.
http://www.usingcsp.com/cspbook.pdf MR0805324

A. Horvéth, A. Puliafito, M. Scarpa, M. Telek, Analysis and evaluation of non-Markovian sto-
chastic Petri nets, Lecture Notes in Computer Science, 1786 (2000), 171-187. Zbl 0967.68114
M. Koutny, A compositional model of time Petri nets, Lecture Notes in Computer Science,
1825 (2000), 303-322.

H. Macia, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in sPBC, Lecture
Notes in Computer Science, 3235 (2004), 292-308. Zbl 1110.68420

H. Macia, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC, Formal
Methods in System Design, 32:2 (2008), 85-128. Zbl 1138.68040

H. Macia, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of Petri box
calculus with immediate multiactions, Fundamenta Informaticae, 87:3—4 (2008), 367—406.
Zbl 1154.68092

H. Macia, V. Valero, F. Cuartero, M.C. Ruiz, 1.V. Tarasyuk, Modelling a video conference
system with sPBC, Applied Mathematics and Information Sciences 10:2 (2016), 475-493.
H. Macia, V. Valero, D. de Frutos, sPBC: a Markovian extension of finite Petri box calculus,
Proc. 9t* IEEE Int. Workshop on Petri Nets and Performance Models (PNPM) 2001, Aachen,
Germany, 207-216, IEEE Computer Society Press, 2001. http://www.info-ab.uclm.es/retics/
publications/2001/pnpm01.ps

J. Markovski, P.R. D’Argenio, J.C.M. Baeten, E.P. de Vink, Reconciling real and stochastic
time: the need for probabilistic refinement, Formal Aspects of Computing, 24:4-6 (2012),
497-518. MR2947264

J. Markovski, E.P. de Vink, Eztending timed process algebra with discrete stochastic time,
Lecture Notes of Computer Science, 5140 (2008), 268-283. Zbl 1170.68542

46

31]

[32]

[33]
[34]

(35]

[36]

(37]

(38]

[39]
[40]

[41]

[42]

[43]
[44]

[45]

[46]
[47]

[48]

[49]

[50]
[51]

[52]

I.V. TARASYUK

J. Markovski, E.P. de Vink, Performance evaluation of distributed systems based on a discrete
real- and stochastic-time process algebra, Fundamenta Informaticae, 95:1 (2009), 157-186.
MR2590801

O. Marroquin, D. de Frutos, TPBC': timed Petri box calculus, Technical Report, Departamen-
to de Sistemas Infofmaticos y Programacién, Universidad Complutense de Madrid, Madrid,
Spain, 2000 (in Spanish).

O. Marroquin, D. de Frutos, Ezxtending the Petri box calculus with time, Lecture Notes in
Computer Science, 2075 (2001), 303-322. Zbl 0986.68082

M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes in Computer
Science, 424 (1990), 1-29.

M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalised
stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley and Sons, 1995.
http://www.di.unito.it/~greatspn/GSPN-Wiley,/ Zbl 0843.68080

Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications of a
theoretical study, IEEE Transactions on Communications, 24:9 (1976), 1036-1043. Zbl
0362.68096

R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle River, NJ,
USA, 1989. Zbl 0683.68008

M.K. Molloy, On the integration of the throughput and delay measures in distributed
processing models, Ph.D. thesis, Report, CSD-810-921, 108 p., University of California,
Los Angeles, USA, 1981.

M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software Engineering,
11:4 (1985), 417-423. MRO788999

A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture Notes in
Computer Science, 3407 (2005), 447-462. Zbl 1109.68076

A. Niaouris, M. Koutny, An algebra of timed-arc Petri nets, Technical Report, CS-TR-895,
60 p., School of Computer Science, University of Newcastle upon Tyne, UK, 2005.
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf

C. Ramchandani, Performance evaluation of asynchronous concurrent systems by timed
Petri nets, Ph.D. thesis, Department of Electrical Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA, 1973.

S.M. Ross, Stochastic processes, John Wiley and Sons, New York, USA, 1996. MR1373653
1.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem Department fiir
Informatik, 3/05, 25 p., Carl von Ossietzky Universitat Oldenburg, Germany, 2005.
http://itar.iis.nsk.su/files /itar /pages/dtspbcib_cov.pdf

1.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of the Novo-
sibirsk Computing Center, Series Computer Science, IIS Special Issue, 24 (2006), 129-148.
Zbl 1249.68132

1.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta Informaticae,
76:1-2 (2007), 189-218. MR2293057

1.V. Tarasyuk, Fquivalence relations for modular performance evaluation in dtsPBC,
Mathematical Structures in Computer Science, 24:1 (2014), ¢240103. MR3183269

1.V. Tarasyuk, H. Macia, V. Valero, Discrete time stochastic Petri box calculus with immediate
multiactions, Technical Report, DIAB-10-03-1, 25 p., Department of Computer Systems,
High School of Computer Science Engineering, University of Castilla - La Mancha, Albacete,
Spain, 2010. http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf
1.V. Tarasyuk, H. Macia, V. Valero, Discrete time stochastic Petri box calculus with immediate
multiactions dtsiPBC, Proc. 6t" Int. Workshop on Practical Applications of Stochastic
Modelling (PASM) 2012 and 11** Int. Workshop on Parallel and Distributed Methods in
Verification (PDMC) 2012 (J. Bradley, K. Heljanko, W. Knottenbelt, N. Thomas, eds.),
London, UK, 2012, Electronic Notes in Theoretical Computer Science, 296 (2013), 229-252.
I.V. Tarasyuk, H. Macia, V. Valero, Performance analysis of concurrent systems in algebra
dtsiPBC, Programming and Computer Software, 40:5 (2014), 229-249.

1.V. Tarasyuk, H. Macia, V. Valero, Stochastic process reduction for performance evaluation
in dtsiPBC, Siberian Electronic Mathematical Reports, 12 (2015), 513-551. MR3493774
I.V. Tarasyuk, H. Macia, V. Valero, Stochastic equivalence for performance analysis of
concurrent systems in dtsiPBC, Siberian Electronic Mathematical Reports, 15 (2018), 1743—
1812. Zbl 1414.60062

DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 47

[53] V. Valero, M.E. Cambronero, Using unified modelling language to model the publish/subscribe
paradigm in the context of timed Web services with distributed resources, Mathematical and
Computer Modelling of Dynamical Systems, 23:6 (2017), 570-594.

[54] R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Workshop on
Quality of Communication-Based Systems 1994, Technical University of Berlin, Germany,
123-136, Kluwer Academic Publishers, 1995. Zbl 0817.68111

[565] R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D. thesis,
Technical University of Berlin, Germany, 1997.

[56] R. Zijal, G. Ciardo, Discrete deterministic and stochastic Petri nets, ICASE Report, 96-72,
23 p., Institute for Computer Applications in Science and Engineering (ICASE), NASA,
Langley Research Centre, Hampton, VA, USA, 1996. http://www.cs.odu.edu/ mln/ltrs-
pdfs/icase-1996-72.pdf, http://www.dtic.mil/dtic/tr/fulltext/u2/a322409.pdf

[57] R. Zijal, G. Ciardo, G. Hommel, Discrete deterministic and stochastic Petri nets, Proc.
9t" TTG/GI Professional Meeting on Measuring, Modeling and Evaluation of Computer and
Communication Systems (MMB) 1997 (K. Irmscher, Ch. Mittasch, K. Richter, eds.), Freiberg,
Germany, 1997, Vol. 1, 103-117, VDE-Verlag, Berlin, Germany, 1997. http://www.cs.ucr.edu/
~ciardo/pubs/1997TMMB-DDSPN.pdf

[58] R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc. 11t" Int.
Conf. on Analysis and Optimization of Systems, Discrete Event Systems (DES) 1994 (G.
Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, 1994, Lecture Notes in Control and
Information Sciences, 199 (1994), 198—204.

[59] A. Zimmermann, Modeling and evaluation of stochastic Petri nets with TimeNET 4.1, Proc.
6! Int. ICST Conf. on Performance Evaluation Methodologies and Tools (VALUETOOLS)
2012 (B. Gaujal, A. Jean-Marie, E. Jorswieck, A. Seuret, eds.), Cargese, France, October 2012,
1-10, IEEE Computer Society Press, 2012. https://www.tu-ilmenau.de/fileadmin/public/
sse/Veroeffentlichungen /2012 /VALUETOOLS2012.pdf

[60] A.Zimmermann, J. Freiheit, R. German, G. Hommel, Petri net modelling and performability
evaluation with TimeNET 8.0, Lecture Notes in Computer Science, 1786 (2000), 188-202.
Zbl 0970.68665

[61] A. Zimmermann, J. Freiheit, G. Hommel, Discrete time stochastic Petri nets for modeling
and evaluation of real-time systems, Proc. 9t" Int. Workshop on Parallel and Distributed
Real Time Systems (WPDRTS) 2001, San Francisco, USA, 282-286, 2001. http://pdv.cs.tu-
berlin.de/~azi/texte/ WPDRTSO01.pdf

Icor VALERIEVICH TARASYUK

A.P. ErsHOV INSTITUTE OF INFORMATICS SYSTEMS,
SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES,
AcAp. LAVRENTIEV PR. 6,

630090 NovosiBIRSK, RuUssiAN FEDERATION

Email address: itar@iis.nsk.su

