
Performance analysis of the dining philosophers

system in dtsPBC ⋆

Igor V. Tarasyuk1

A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia
itar@iis.nsk.su

Abstract. Algebra dtsPBC is a discrete time stochastic extension of
finite Petri box calculus (PBC) enriched with iteration. In this paper,
within dtsPBC, a method of modeling and performance evaluation based
on stationary behaviour analysis for concurrent computing systems is
outlined applied to the dining philosophers system.
Keywords: stochastic process algebra, Petri box calculus, discrete time,
iteration, stationary behaviour, performance evaluation, dining philoso-
phers system.

1 Introduction

Algebraic process calculi are a recognized formal model for specification of com-
puting systems and analysis of their behaviour. In such process algebras (PAs),
systems and processes are specified by formulas, and verification of their prop-
erties is accomplished at a syntactic level via equivalences, axioms and inference
rules. In the last decades, stochastic extensions of PAs were proposed. Stochastic
process algebras (SPAs) do not just specify actions which can happen as usual
process algebras (qualitative features), but they associate some quantitative pa-
rameters with actions (quantitative characteristics). The well-known SPAs are
MTIPP [5], PEPA [4] and EMPA [3].

Petri box calculus (PBC) [1] is a flexible and expressive process algebra de-
veloped as a tool for specification of Petri nets structure and their interrelations.
Its goal was also to propose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementary Petri nets. PBC
has a step operational semantics in terms of labeled transition systems. Its de-
notational semantics was proposed in terms of a subclass of Petri nets (PNs)
equipped with interface and considered up to isomorphism called Petri boxes.

A stochastic extension of PBC called stochastic Petri box calculus (sPBC)
was proposed in [8]. Only a finite part of PBC was used for the stochastic enrich-
ment, i.e., sPBC has neither refinement nor recursion nor iteration operations.
The calculus has an interleaving operational semantics in terms of labeled tran-
sition systems. Its denotational semantics was defined in terms of a subclass of
labeled continuous time stochastic PNs (LCTSPNs) called s-boxes. In [6], the
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iteration was added to sPBC and the producer / consumer system with a buffer
of capacity n was specified within the calculus. In [7], the special multiactions
with zero time delay were added to sPBC and a manufacturing system with 3
machines and an assembler, as well as the AUY-protocol with a sender, a re-
ceiver and 2 channels, were modeled. The mentioned example systems had just
interleaving semantics and no performance indices were calculated for them.

In [10], a discrete time stochastic extension dtsPBC of finite PBC was pre-
sented. A step operational semantics of dtsPBC was constructed via labeled
probabilistic transition systems. Its denotational semantics was defined with
dts-boxes, a subclass of labeled discrete time stochastic PNs (LDTSPNs). The
probabilistic equivalences were proposed and their interrelations were studied.

Since dtsPBC has a discrete time semantics and geometrically distributed
delays in the process states unlike sPBC with continuous time semantics and
exponentially distributed delays, the calculi apply two different approaches to
the stochastic extension of PBC, in spite of some similarity of their syntax and
semantics inherited from PBC. The main advantage of dtsPBC is that concur-
rency is treated naturally, like in PBC, whereas in sPBC parallelism is simulated
by interleaving obliging one to collect the information on causal independence of
activities before constructing the semantics. Thus, parallelism is preserved in the
semantics of all example systems considered as the case studies within dtsPBC.

In this paper, we use dtsPBC with iteration as a basic model. First, we present
syntax of the calculus. Second, we describe its operational semantics in terms
of labeled transition systems and denotational semantics based on a subclass
of LDTSPNs. Further, the stationary behaviour of infinite stochastic processes
within dtsPBC is described. Finally, for a system with five dining philosophers
the performance indices are calculated based on the steady-state probabilities.

The paper is organized as follows. The syntax of dtsPBC extended with
iteration operator is presented in Section 2. Section 3 describes its operational
semantics and Section 4 presents its denotational semantics. The method of
performance evaluation of dtsPBC processes is outlined in Section 5. In Section
6, the performance of the dining philosophers system is analyzed. The concluding
Section 7 summarizes the results obtained and outlines research perspectives.

2 Syntax

In this section, we propose the syntax of discrete time stochastic PBC (dtsPBC).
We denote the set of all finite multisets over X by INX

f . Let Act = {a, b, . . .}

be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated

actions (conjugates) such that a 6= â and ˆ̂a = a. Let A = Act ∪ Âct be the set
of all actions, and L = INA

f be the set of all multiactions. Note that ∅ ∈ L,
this corresponds to the execution of a multiaction that contains no visible action
names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1)
is the probability of the multiaction α. The multiaction probabilities are used
to calculate probabilities of state changes (steps) at discrete time moments. Let



SL be the set of all activities. Let us note that the same multiaction α ∈ L may
have different probabilities in the same specification. The alphabet of (α, ρ) ∈ SL
is defined as A(α, ρ) = A(α). For (α, ρ) ∈ SL, we define its multiaction part as
L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ.

Activities are combined into formulas by the following operations: sequential
execution ;, choice [], parallelism ‖, relabeling [f ] of actions, restriction rs over
a single action, synchronization sy on an action and its conjugate and iteration
[∗∗] with three arguments: initialization, body and termination.

Sequential execution and choice have the standard interpretation like in other
process algebras, but parallelism does not include synchronization unlike the
corresponding operation in the standard process algebras.

Relabeling functions f : A → A are bijections preserving conjugates, i.e.,

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions in a usual way: for
α ∈ L we define f(α) =

∑
x∈α f(x). Remember that sums are considered with

the multiplicity when applied to multisets.
Restriction over an action a means that for a given expression any process

behaviour containing a or its conjugate â is not allowed.
Let α, β ∈ L be two multiactions such that for some action a ∈ Act we have

a ∈ α and â ∈ β or â ∈ α and a ∈ β. Then synchronization of α and β by a is

defined as α⊕a β = γ, where γ(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

In the iteration, the initialization subprocess is executed first, then the body
is performed zero or more times, finally, the termination subprocess is executed.

Static expressions specify the structure of processes. The expressions corre-
spond to unmarked LDTSPNs (which are marked by definition).

Definition 1. Let (α, ρ) ∈ SL, a ∈ Act. A static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

StatExpr denotes the set of all static expressions of dtsPBC.
To avoid inconsistency of the iteration operator, we do not allow any con-

currency in the highest level of the second argument of iteration. This is not a
severe restriction, since we can prefix parallel expressions by an activity with the
empty multiaction. The mentioned inconsistency can result to non-safe nets [2].

Definition 2. Let (α, ρ) ∈ SL, a ∈ Act. A regular static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

RegStatExpr denotes the set of all regular static expressions of dtsPBC.
Dynamic expressions specify the states of processes. The expressions corre-

spond to LDTSPNs (which are marked by default). Dynamic expressions are
combined from static ones which are annotated with upper or lower bars and



specify active components of the system at the current instant of time. E de-
notes the initial, and E denotes the final state of the process specified by a static
expression E. The underlying static expression of a dynamic one is obtained by
removing all the upper and lower bars from it.

Definition 3. Let E ∈ StatExpr, a ∈ Act. A dynamic expression of dtsPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

DynExpr denotes the set of all dynamic expressions of dtsPBC.
A dynamic expression is regular if its underlying static expression is regular.

RegDynExpr denotes the set of all regular dynamic expressions of dtsPBC.

3 Operational semantics

In this section, we define the step operational semantics in terms of labeled
probabilistic transition systems.

3.1 Inaction rules

Inaction rules for dynamic expressions describe their structural transformations
which do not change the states of the specified processes. As we shall see, the
application of an inaction rule to a dynamic expression does not lead to any
discrete time step in the corresponding LDTSPN, hence, no transitions are fired
and its current marking remains unchanged. Thus, an application of every inac-
tion rule does not require any discrete time delay, i.e., the dynamic expression
transformation described by the rule is accomplished instantaneously.

In Table 1, we define inaction rules for the regular dynamic expressions in
the form of overlined and underlined regular static ones. In this table, E,F,K ∈
RegStatExpr and a ∈ Act.

Table 1. Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f ] ⇒ E[f ] E[f ] ⇒ E[f ] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we propose inaction rules for the regular dynamic expressions in the
arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr

and a ∈ Act.



Table 2. Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃

G⇒G̃

G‖H⇒G̃‖H

H⇒H̃

G‖H⇒G‖H̃

G⇒G̃

G[f ]⇒G̃[f ]
G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a

G⇒G̃

[G∗E∗F ]⇒[G̃∗E∗F ]

G⇒G̃

[E∗G∗F ]⇒[E∗G̃∗F ]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

A regular dynamic expression G is operative if no inaction rule can be ap-
plied to it. OpRegDynExpr denotes the set of all operative regular dynamic
expressions of dtsPBC. Note that any regular dynamic expression can be always
transformed into a (not necessarily unique) operative one by using the inaction
rules. We shall consider regular expressions only and omit the word “regular”.

Definition 4. Let ≈ = (⇒ ∪ ⇐)∗ be the structural equivalence of dynamic
expressions in dtsPBC. Thus, two dynamic expressions G and G′ are structurally
equivalent, denoted by G ≈ G′, if they can be reached from each other by applying
the inaction rules in forward or backward direction.

3.2 Action and empty loop rules

Action rules describe dynamic expression transformations due to the execution of
non-empty multisets of activities. The rules represent the possible state changes
of the specified processes when some non-empty multisets of activities are exe-
cuted. As we shall see, the application of an action rule to a dynamic expression
leads to a discrete time step in the corresponding LDTSPN at which some tran-
sitions are fired and the current marking is changed, unless there is a self-loop
produced by the iterative execution of a non-empty multiset (which should be
additionally the one-element one, i.e., the single activity, since we do not allow
concurrency in the highest level of the second argument of iteration).

The empty loop rule G
∅
→ G describes dynamic expression transformations

due to the execution of the empty multiset of activities at a discrete time step.
The rule reflects a non-zero probability to stay in the current state at the next
time moment, which is an essential feature of discrete time stochastic processes.
As we shall see, the application of the empty loop rule to a dynamic expres-
sion leads to a discrete time step in the corresponding LDTSPN at which no
transitions are fired and the current marking is not changed. This is a new rule
that has no prototype among inaction rules of PBC, since it represents a time

delay. The PBC rule G
∅
→ G from [2] in our setting would correspond to the rule

G ⇒ G describing the stay in the current state when no time elapses, but it is
not needed to transform dynamic expressions into operative ones.

Thus, an application of every action rule or the empty loop rule requires
one discrete time unit delay, i.e., the execution of a (possibly empty) multiset of
activities resulting to the dynamic expression transformation described by the
rule is accomplished instantaneously after one unit of time elapses.

Let Γ ∈ INSL
f . Relabeling is extended to multisets of activities as follows:

f(Γ ) =
∑

(α,ρ)∈Γ (f(α), ρ). The alphabet of Γ is defined asA(Γ ) = ∪(α,ρ)∈ΓA(α).



In Table 3, we define the action and empty loop rules. In this table, (α, ρ),
(β, χ) ∈ SL, E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr,

G̃, H̃ ∈ RegDynExpr and a ∈ Act. Moreover, Γ,∆ ∈ INSL
f \{∅} and Γ ′ ∈ INSL

f .

Table 3. Action and empty loop rules

El G
∅
→ G B (α, ρ)

{(α,ρ)}
−→ (α, ρ) SC1 G

Γ
→G̃, ◦∈{;,[]}

G◦E
Γ
→G̃◦E

SC2 G
Γ
→G̃, ◦∈{;,[]}

E◦G
Γ
→E◦G̃

P1 G
Γ
→G̃

G‖H
Γ
→G̃‖H

P2 H
Γ
→H̃

G‖H
Γ
→G‖H̃

P3 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

L G
Γ
→G̃

G[f ]
f(Γ )
−→ G̃[f ]

Rs G
Γ
→G̃, a,â6∈A(Γ )

G rs a
Γ
→G̃ rs a

I1 G
Γ
→G̃

[G∗E∗F ]
Γ
→[G̃∗E∗F ]

I2 G
Γ
→G̃

[E∗G∗F ]
Γ
→[E∗G̃∗F ]

I3 G
Γ
→G̃

[E∗F∗G]
Γ
→[E∗F∗G̃]

Sy1 G
Γ
→G̃

G sy a
Γ
→G̃ sy a

Sy2 G sy a
Γ ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→G̃ sy a

In the rule Sy2, we multiply the probabilities of synchronized multiactions,
since this corresponds to the probability of the events intersection. We do not
allow a self-synchronization, i.e., a synchronization of an activity with itself. The
purpose is to avoid unexpected behaviour and many technical difficulties, see [2].

3.3 Transition systems

Now we define labeled probabilistic transition systems associated with dynamic
expressions and used to define their operational semantics.

Note that expressions of dtsPBC can contain identical activities. To avoid
technical difficulties, we must enumerate coinciding activities, for instance, from
left to right in the syntax of expressions. The new activities resulting from syn-
chronization will be annotated with concatenation of numberings of the activities
they come from, hence, the numbering should have a tree structure to reflect the
effect of multiple synchronizations. Now we define the numbering which encodes
a binary tree with the leaves labeled by natural numbers.

Definition 5. Let n ∈ IN . The numbering of expressions is ι ::= n | (ι)(ι).

Num denotes the set of all numberings of expressions.
The new activities resulting from applications of the second rule for synchro-

nization Sy2 in different orders should be considered up to permutation of their
numbering. In this way, we shall recognize different instances of the same activity.
If we compare the contents of different numberings, i.e., the sets of natural num-
bers in them, we shall be able to identify the mentioned instances. The content

of a numbering ι ∈ Num is Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After we apply the enumeration, the multisets of activities from the expres-
sions will be the proper sets. In the following, we suppose that the identical
activities are enumerated when it is needed to avoid ambiguity. This enumera-
tion is considered to be implicit.



Definition 6. Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is
the equivalence class of G w.r.t. the structural equivalence. The derivation set
of a dynamic expression G, denoted by DR(G), is the minimal set such that

[G]≈ ∈ DR(G) or, if [H ]≈ ∈ DR(G) and ∃Γ H
Γ
→ H̃, then [H̃ ]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).
The set of all the multisets of activities executable in s is defined as Exec(s) =

{Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

Let Γ ∈ Exec(s)\{∅}. The probability that the multiset of activities Γ is ready
for execution in s is PF (Γ, s) =

∏
(α,ρ)∈Γ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}(1− χ).

For Γ = ∅, we define PF (∅, s) =

{∏
{(β,χ)}∈Exec(s)(1 − χ), Exec(s) 6= {∅};

1, otherwise.
The definition of PF (Γ, s) (and those of other probability functions we shall

present) is based on the enumeration of activities which is considered implicit.
Let Γ ∈ Exec(s). The probability to execute the multiset of activities Γ in s is

PT (Γ, s) = PF (Γ,s)∑
∆∈Exec(s) PF (∆,s) .

The probability to move from s to s̃ by executing any multiset of activities is
PM(s, s̃) =

∑
{Γ |∃H∈s ∃H̃∈s̃ H

Γ
→H̃}

PT (Γ, s).

Definition 7. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);
– the set of labels is LG ⊆ INSL

f × (0; 1];
– the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s ∈ DR(G), ∃H ∈ s

∃H̃ ∈ s̃ H
Γ
→ H̃};

– the initial state is sG = [G]≈.

The transition system TS(G) associated with a dynamic expression G describes
all steps that happen at discrete time moments with some (one-step) probability
and consist of multisets of activities. Every step happens instantaneously after
one discrete time unit delay, the step can change the current state to another one.
The states are the structural equivalence classes of dynamic expressions obtained
by application of action rules starting from the expressions belonging to [G]≈.

A transition (s, (Γ,P), s̃) ∈ TG will be written as s
Γ
→P s̃. The interpretation is:

the probability to change the state s to s̃ in the result of executing Γ is P .
Note that Γ can be the empty multiset, and its execution does not change

the current state (i.e., the equivalence class), since we have a loop transition

s
∅
→P s from a state s to itself in the result of executing the empty multiset.

This corresponds to application of the empty loop rule to the expressions from
the equivalence class. We have to keep track of such executions, called empty
loops, because they have nonzero probabilities. This follows from the definition
of PF (∅, s) and the fact that multiaction probabilities cannot be equal to 1 as
they belong to the interval (0; 1). The step probabilities belong to the interval



(0; 1]. The step probability is 1 in the case when we cannot leave a state s, hence,

there exists only one transition from it, namely, the empty loop transition s
∅
→1 s.

We write s
Γ
→ s̃ if ∃P s

Γ
→P s̃ and s→ s̃ if ∃Γ s

Γ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components. ≃
denotes the isomorphism between transition systems relating their initial states.

Definition 8. Let G be a dynamic expression. The underlying discrete time
Markov chain (DTMC) of G, denoted by DTMC(G), has the state space DR(G)
and the transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

For a dynamic expression G, a discrete random variable is associated with
every state of DTMC(G). The variable captures a residence time in the state.
One can interpret staying in a state in the next discrete time moment as a
failure and leaving it as a success of some trial series. It is easy to see that the
random variables are geometrically distributed, since the probability to stay in
the state s ∈ DR(G) for k − 1 time moments and leave it at moment k ≥ 1 is
PM(s, s)k−1(1−PM(s, s)) (the residence time is k in this case). The mean value
formula for geometrical distribution allows us to calculate the average sojourn
time in the state s as SJ(s) = 1

1−PM(s,s) . The average sojourn time vector of G,

denoted by SJ , is that with the elements SJ(s), s ∈ DR(G). The sojourn time
variance in the state s is V AR(s) = 1

(1−PM(s,s))2 . The sojourn time variance

vector of G, denoted by V AR, is that with the elements V AR(s), s ∈ DR(G).

4 Denotational semantics

In this section, we define the denotational semantics in terms of a subclass of
LDTSPNs called discrete time stochastic Petri boxes (dts-boxes).

Definition 9. A discrete time stochastic Petri box (dts-box) is a tuple N =
(PN , TN ,WN , ΛN ), where

– PN and TN are finite sets of places and transitions, respectively, such that
PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

– WN : (PN × TN ) ∪ (TN × PN ) → IN is a function providing the weights of
arcs between places and transitions;

– ΛN is the place and transition labeling function such that
• ΛN |PN

: PN → {e, i, x} (it specifies entry, internal and exit places, re-
spectively);

• ΛN |TN
: TN → {̺ | ̺ ⊆ INSL

f × SL} (it associates transitions with the
relabeling relations on activities).

Let t ∈ TN , U ∈ INTN

f . The precondition •t and the postcondition t• of t are the
multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The
precondition •U and the postcondition U• of U are the multisets of places defined
as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. We require that ∀t ∈ TN

•t 6= ∅ 6= t•. In
addition, for the set of entry places of N defined as ◦N = {p ∈ PN | ΛN(p) = e}
and the set of exit places of N defined as N◦ = {p ∈ PN | ΛN (p) = x}, it holds:
◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.



A dts-box is plain if ∀t ∈ TN ΛN (t) ∈ SL, i.e., ΛN (t) is the constant rela-
beling that will be defined later. In case of constant relabeling, the shorthand
notation (by an activity) for ΛN(t) will be used. A marked plain dts-box is a
pair (N,MN ), where N is a plain dts-box and MN ∈ INPN

f is the initial mark-

ing. We shall use the following notation: N = (N, ◦N) and N = (N,N◦). Note
that a marked plain dts-box (PN , TN ,WN , ΛN ,MN) could be interpreted as the
LDTSPN (PN , TN ,WN , ΩN , LN ,MN), where functions ΩN and LN are defined
as follows: ∀t ∈ TN ΩN (t) = Ω(ΛN (t)) and LN (t) = L(ΛN (t)). The behaviour
of marked dts-boxes follows from the firing rule of LDTSPNs.

To define a semantic function that associates a plain dts-box with every
static expression of dtsPBC, we shall propose the enumeration function Enu :
TN → Num which numberings with transitions of the plain dts-box N according
to those of activities. In the case of synchronization, the function associates
concatenation of the parenthesized numberings of the synchronized transitions
with a resulting new transition.

The structure of the plain dts-box corresponding to a static expression is
constructed like in PBC, see [2], i.e., we use a simultaneous refinement and re-
labeling meta-operator (net refinement) in addition to the operator dts-boxes
corresponding to the algebraic operations of dtsPBC and featuring transforma-
tional transition relabelings. In the definition of the denotational semantics, we
shall apply standard constructions used for PBC. Let Θ denote an operator box
and u denote a transition name from PBC setting.

The relabeling relations ̺ ⊆ INSL
f × SL are defined as follows:

– ̺id = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL} is the identity relabeling keeping the
interface as it is;

– ̺(α,ρ) = {(∅, (α, ρ))} is the constant relabeling identified with (α, ρ) ∈ SL;
– ̺[f ] = {({(α, ρ)}, (f(α), ρ)) | (α, ρ) ∈ SL};
– ̺rs a = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL, a, â 6∈ α};
– ̺sy a is the least relabeling relation containing in ̺id such that if (Γ, (α, ρ)),

(∆, (β, χ)) ∈ ̺sy a and a ∈ α, â ∈ β, then (Γ +∆, (α⊕a β, ρ · χ)) ∈ ̺sy a.

The plain and operator dts-boxes are presented in Figure 1. Note that the
symbol i is usually omitted.

Now we define the enumeration function Enu for every operator of dtsPBC.
Let Boxdts(E) = (PE , TE,WE , ΛE) be the plain dts-box corresponding to a
static expression E, and EnuE be the enumeration function for TE. We shall
use the analogous notation for static expressions F and K.

– Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖}. Since we do not
introduce any new transitions, we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE;
EnuF (t), t ∈ TF .

– Boxdts(E[f ]) = Θ[f ](Boxdts(E)). Since we only replace the labels of some
multiactions by a bijection, we preserve the initial numbering:
Enu(t) = EnuE(t), t ∈ TE .
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Fig. 1. The plain and operator dts-boxes

– Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions labeled
with multiactions containing a or â, this does not change the numbering of
the remaining transitions: Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ L(ΛE(t)).

– Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that ∀v, w ∈ TE such that
ΛE(v) = (α, ρ), ΛE(w) = (β, χ) and a ∈ α, â ∈ β, the new transition t

resulting from synchronization of v and w has the label Λ(t) = (α⊕a β, ρ ·χ)
and the numbering Enu(t) = (EnuE(v))(EnuE(w)). Thus, the enumeration

function is Enu(t) =




EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from

synchronization of v and w.
When we synchronize the same set of transitions in different orders, we ob-
tain several resulting transitions with the same label and probability, but
with different numberings having the same content. In this case, we shall
consider only a single one from the resulting transitions in the plain dts-box
to avoid introducing redundant transitions. For example, if the transitions
t and u are generated by synchronizing v and w in different orders, we
have Λ(t) = (α ⊕a β, ρ · χ) = Λ(u), but Enu(t) = (EnuE(v))(EnuE(w)) 6=
(EnuE(w))(EnuE(v)) = Enu(u) whereas Cont(Enu(t)) = Cont(Enu(v)) ∪
Cont(Enu(w)) = Cont(Enu(u)). Then only one transition t (or, symmetri-
cally, u) will appear in Boxdts(E sy a).

– Boxdts([E ∗ F ∗ K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)). Since we
do not introduce any new transitions, we preserve the initial numbering:

Enu(t) =




EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

Now we can formally define the denotational semantics as a homomorphism.

Definition 10. Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr. The
denotational semantics of dtsPBC is a mapping Boxdts from RegStatExpr into
the area of plain dts-boxes defined as follows:



1. Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};
3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));
4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};
5. Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).

The dts-boxes of dynamic expressions can be defined as well. For E ∈
RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) = Boxdts(E).

Observe that this definition is compositional in the sense that for any ar-
bitrary dynamic expression, we may decompose it in some inner dynamic and
static expressions, for which we may apply the definition, thus obtaining the cor-
responding plain dts-boxes, which can be joined according to the term structure
(definition of Boxdts), the resulting plain box being marked in the places that
were marked in the argument nets.

Let ≃ denote the isomorphism between transition systems or between
DTMCs and reachability graphs that relates the initial states. Note that the
names of transitions of the dts-box corresponding to a static expression could be
identified with the enumerated activities of the latter. For a dts-boxN , we denote
its reachability graph by RG(N) and its underlying DTMC by DTMC(N).

Theorem 1. For any static expression E, TS(E) ≃ RG(Boxdts(E)).

Proof. For the qualitative behaviour, we have the same isomorphism as in PBC.
The quantitative behaviour is the same, since the activities of an expression have
probability parts coinciding with the probabilities of the transitions belonging to
the corresponding dts-box and, both in stochastic processes specified by expres-
sions and dts-boxes, conflicts are resolved via the same probability functions. ⊓⊔

Proposition 1. For any static expression E,
DTMC(E) ≃ DTMC(Boxdts(E)).

Proof. By Theorem 1 and definitions of underlying DTMC for dynamic expres-
sions and LDTSPNs, since transition probabilities of the associated DTMCs are
the sums of those belonging to transition systems or reachability graphs. ⊓⊔

5 Performance evaluation

Stationary distribution is usually used for performance evaluation. Performance
indices are then calculated based on the steady-state probabilities. Let us de-
scribe the stationary behaviour of infinite stochastic processes specified by dy-
namic expressions whose underlined DTMCs contain one ergodic subset of states.

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|)
of the (one-step) transition probability matrix (TPM) P for DTMC(G) are

defined as Pij =

{
PM(si, sj), si → sj ;
0, otherwise.



The transient (k-step, k ∈ IN) probability mass function (PMF) ψ[k] =
(ψ1[k], . . . , ψn[k]) for DTMC(G) is the solution of the equation system ψ[k] =

ψ[0]Pk, s.t. ψ[0] = (ψ1[0], . . . , ψn[0]) is the initial PMF ψi[0] =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ[k + 1] = ψ[k]P (k ∈ IN).
The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is the solution of the

equation system

{
ψ(P−E) = 0

ψ1T = 1
, where E is the unitary matrix of dimension

n and 0 is the vector with n values 0, 1 is that with n values 1.
When DTMC(G) has a single steady state, we have ψ = limk→∞ ψ[k].

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The
following performance indices are based on the steady-state PMF forDTMC(G).

– The average recurrence (return) time in the state s is 1
ψ(s) .

– The fraction of residence time in the state s is ψ(s).
– The fraction of residence time in the set of states S ⊆ DR(G) or the proba-

bility of the event determined by a condition that is true for all states from
S is

∑
s∈S ψ(s).

– The relative fraction of residence time in S w.r.t. that in S̃ is
∑

s∈S ψ(s)∑
s̃∈S̃

ψ(s̃) .

– The steady-state probability to perform a step with an activity (α, ρ) is∑
s∈DR(G) ψ(s)

∑
{Γ |(α,ρ)∈Γ} PT (Γ, s).

– The probability of the event determined by a reward function r on the states
is

∑
s∈DR(G) ψ(s)r(s).

6 Dining philosophers system

Consider a model of five dining philosophers, for which the Petri net interpre-
tation was proposed in [9]. We investigate this dining philosophers system in
the discrete time stochastic setting of dtsPBC allowing one to model parallelism
naturally. The philosophers occupy a round table, and there is one fork between
every neighboring persons, hence, there are five forks on the table. A philosopher
needs two forks to eat, namely, his left and right ones. Hence, all five philosophers
cannot eat together, since otherwise there will not be enough forks available, but
only one of two of them who are not neighbors. The model performs as follows.
After the activation of the system (the philosophers come in the dining room),
five forks are placed on the table. If the left and right forks are available for a
philosopher, he takes them simultaneously and begins eating. At the end of eat-
ing, the philosopher places both his forks simultaneously back on the table. The
strategy to pick up and release two forks simultaneously prevents the situation
when a philosopher takes one fork but is not able to pick up the second one since
their neighbor has already done so. In particular, we avoid a deadlock when all
the philosophers take their left (right) forks and wait until their right (left) forks
will be available. The diagram of the system is depicted in Figure 2.

The meaning of actions from the expressions specifying the system modules is
as follows. The action a corresponds to the system activation. The actions bi and



Fig. 2. The diagram of the dining philosophers system

ei correspond to the beginning and the end, respectively, of eating of philosopher
i (1 ≤ i ≤ 5). The other actions are used for communication purposes only via
synchronization, and we abstract from them later using restriction. Note that
the expression of each philosopher includes two alternative subexpressions such
that the second one specifies a resource (fork) sharing with the right neighbor.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Ei = [({xi},
1
2 ) ∗

((({bi, ŷi},
1
2 ); ({ei, ẑi},

1
2 ))[](({yi+1},

1
2 ); ({zi+1},

1
2 ))) ∗ Stop].

The static expression of the philosopher 5 is E5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗

((({b5, ŷ5},
1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop].

The static expression of the dining philosophers system is E = (E1‖E2‖E3‖
E4‖E5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4
sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

Let us illustrate synchronization. The result of synchronization of the activ-
ities ({bi, yi},

1
2 ) and ({ŷi},

1
2 ) is the new activity ({bi},

1
4 ) (1 ≤ i ≤ 5). The syn-

chronization of ({ei, zi},
1
2 ) and ({ẑi},

1
2 ) produces ({ei},

1
4 ) (1 ≤ i ≤ 5). The syn-

chronization of ({a, x̂1, x̂2, x̂3, x̂4},
1
2 ) and ({x1},

1
2 ) gives ({a, x̂2, x̂3, x̂4},

1
4 ). The

result of synchronization of ({a, x̂2, x̂3, x̂4},
1
4 ) and ({x2},

1
2 ) is ({a, x̂3, x̂4},

1
8 ).

The result of synchronization of ({a, x̂3, x̂4},
1
8 ) and ({x3},

1
2 ) is ({a, x̂4},

1
16 ).

The result of synchronization of ({a, x̂4},
1
16 ) and ({x4},

1
2 ) is ({a},

1
32 ).

DR(E) consists of 12 equivalence classes: s1 is the initial state, s2: the system
is activated and no philosophers dine, s3: philosopher 1 dines, s4: philosophers
1 and 4 dine, s5: philosophers 1 and 3 dine, s6: philosopher 4 dines, s7: philoso-
pher 3 dines, s8: philosophers 2 and 4 dine, s9: philosophers 3 and 5 dine, s10:
philosopher 2 dines, s11: philosopher 5 dines, s12: philosophers 2 and 5 dine.

In Figure 3, the transition system TS(E) is presented.
The average sojourn time vector of E is

SJ =
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The sojourn time variance vector of E is
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Fig. 3. The transition system of the dining philosophers system



The TPM for DTMC(E) is
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

.

In Table 4, the transient and the steady-state probabilities ψi[k] (1 ≤ i ≤ 4)
of the dining philosophers system at the time moments k ∈ {0, 20, 40, . . . , 200}
and k = ∞ are presented, and in Figure 4, the alteration diagram (evolution
in time) for the transient probabilities is depicted. It is sufficient to consider
the probabilities for the states s1, . . . , s4 only, since the corresponding values
coincide for s3, s6, s7, s10, s11 as well as for s4, s5, s8, s9, s12.

Table 4. Transient and steady-state probabilities of the dining philosophers system

k 0 20 40 60 80 100 120 140 160 180 200 ∞

ψ1[k] 1 0.5299 0.2808 0.1488 0.0789 0.0418 0.0222 0.0117 0.0062 0.0033 0.0017 0

ψ2[k] 0 0.0842 0.1098 0.1234 0.1306 0.1345 0.1365 0.1375 0.1381 0.1384 0.1386 0.1388

ψ3[k] 0 0.0437 0.0681 0.0811 0.0880 0.0916 0.0935 0.0945 0.0951 0.0954 0.0955 0.0957

ψ4[k] 0 0.0335 0.0537 0.0645 0.0701 0.0732 0.0748 0.0756 0.0760 0.0763 0.0764 0.0766

The steady-state PMF for DTMC(E) is

ψ =

(
0,

29

209
,
20

209
,
16

209
,
16

209
,
20

209
,
20

209
,
16

209
,
16

209
,
20

209
,
20

209
,
16

209

)
.

We can now calculate the main performance indices.

– The average recurrence time in the state s2, where all the forks are available,
called the average system run-through, is 1

ψ2
= 209

29 = 7 6
29 .

– Nobody eats in the state s2. Then, the fraction of time when no philosophers
dine is ψ2 = 29

209 .
Only one philosopher eats in the states s3, s6, s7, s10, s11. Then, the fraction
of time when only one philosopher dines is ψ3 + ψ6 + ψ7 + ψ10 + ψ11 =
20
209 + 20

209 + 20
209 + 20

209 + 20
209 = 100

209 .
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Fig. 4. Transient probabilities alteration diagram of the dining philosophers system

Two philosophers eat together in the states s4, s5, s8, s9, s12. Then, the frac-
tion of time when two philosophers dine is ψ4 + ψ5 + ψ8 + ψ9 + ψ12 =
16
209 + 16

209 + 16
209 + 16

209 + 16
209 = 80

209 .
The relative fraction of time when two philosophers dine w.r.t. when only
one philosopher dines is 80

209 · 209
100 = 4

5 .
– The beginning of eating of first philosopher ({b1},

1
4 ) is only possible from the

states s2, s6, s7. In each of the states the beginning of eating probability is
the sum of the execution probabilities for all multisets of activities containing
({b1},

1
4 ). Thus, the steady-state probability of the beginning of eating of first

philosopher is ψ2

∑
{Γ |({b1},

1
4 )∈Γ} PT (Γ, s2)+ψ6

∑
{Γ |({b1},

1
4 )∈Γ} PT (Γ, s6)+

ψ7

∑
{Γ |({b1},

1
4 )∈Γ} PT (Γ, s7) =

29
209

(
3
29 + 1

29 + 1
29

)
+ 20

209

(
3
20 + 1

20

)
+

20
209

(
3
20 + 1

20

)
= 13

209 .

In Figure 5, the marked dts-box corresponding to the dynamic expression of
the dining philosophers system is depicted, i.e., N = Boxdts(E).

7 Conclusion

In this paper, within dtsPBC with iteration, a method of performance evaluation
of concurrent stochastic systems was proposed based on steady-state probabili-
ties analysis and applied to the dining philosophers system.

We plan to define and investigate stochastic equivalences of dtsPBC which
allow one to identify stochastic processes with similar behaviour that are differ-
entiated by too strict notion of the semantic equivalence. Moreover, we would like
to extend dtsPBC with recursion to enhance specification power of the calculus.
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Fig. 5. The marked dts-box of the dining philosophers system
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