Algebra $d t s i P B C$: discrete time stochastic Petri box calculus with immediate multiactions

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems

Siberian Division of the Russian Academy of Sciences
6, Acad. Lavrentiev pr., Novosibirsk 630090, Russia

```
itar@iis.nsk.su
```

 itar.iis.nsk.su
 www.dsi.uclm.es/personal/ValentinValero,
www.dsi.uclm.es/personal.php?codpers=mere

Abstract: In [MVF01], a continuous time stochastic extension $s P B C$ of finite Petri box calculus $P B C$ [BDH92] was proposed. In [MVCC03], iteration operator was added to $s P B C$.

Algebra $s P B C$ has an interleaving semantics, but $P B C$ has a step one.
We constructed a discrete time stochastic extension $d t s P B C$ of finite $P B C$ [Tar05] and enriched it with iteration [Tar06].

We present the extension $d t s i P B C$ of $d t s P B C$ with immediate multiactions [TMV10,TMV13]. $d t s i P B C$ is a discrete time analog of $s P B C$ with immediate multiactions.

The step operational semantics is defined in terms of labeled probabilistic transition systems.
The denotational semantics is defined in terms of a subclass of labeled DTSPNs with immediate transitions (LDTSIPNs), called discrete time stochastic and immediate Petri boxes (dtsi-boxes).

The corresponding semi-Markov chain and (reduced) discrete time Markov chain are analyzed to evaluate performance.

We propose step stochastic bisimulation equivalence and investigate its interrelations with others.

We explain how to use this equivalence for reduction of transition systems and semi-Markov chains.
We demonstrate how to apply this equivalence to compare stationary behaviour and simplify performance analysis.

The case study of performance evaluation is presented: the shared memory system.
Keywords: stochastic Petri net, stochastic process algebra, Petri box calculus, discrete time, immediate multiaction, transition system, operational semantics, immediate transition, dtsi-box, denotational semantics, Markov chain, performance evaluation, stochastic equivalence, reduction, shared memory system.

Contents

- Introduction
- Previous work
- Syntax
- Operational semantics
- Inaction rules
- Action and empty loop rules
- Transition systems
- Denotational semantics
_ Labeled DTSIPNs
- Algebra of dtsi-boxes
- Performance evaluation
- Analysis of the underlying SMC
- Analysis of the DTMC
- Analysis of the reduced DTMC
- Stochastic equivalences
- Step stochastic bisimulation equivalence
- Interrelations of the stochastic equivalences
- Reduction modulo equivalences
- Stationary behaviour
- Steady state and equivalences
- Simplification of performance analysis
- Shared memory system
- The standard system
- The abstract system and its reduction
- The generalized system
- The abstract generalized system and its reduction
- Overview and open questions
- Concurrency interpretation
- The results obtained
- Further research

Introduction

Previous work

- Continuous time (subsets of $\mathbb{R}_{\geq 0}$): interleaving semantics
- Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:
exponential transition firing delays,
Continuous time Markov chain (CTMC).
- Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:
exponential and zero transition firing delays,
Semi-Markov chain (SMC).
- Extended generalized stochastic Petri nets (EGSPNs) [HS89,MBBCCC89]:
hyper-exponential or Erlang or phase and zero transition firing delays.
- Deterministic stochastic Petri nets (DSPNs) [MC87,MCF90]:
exponential and deterministic transition firing delays,
Semi-Markov process (SMP), if no two deterministic transitions are enabled in any marking.
- Extended deterministic stochastic Petri nets (EDSPNs) [GL94]:
non-exponential and deterministic transition firing delays.
- Extended stochastic Petri nets (ESPNs) [DTGN85]:
arbitrary transition firing delays.
- Discrete time (subsets of $I N$): interleaving and step semantics
- Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:
geometric transition firing delays,
Discrete time Markov chain (DTMC).
- Discrete time deterministic and stochastic Petri nets (DTDSPNs) [ZFH01]: geometric and fixed transition firing delays,

Semi-Markov chain (SMC).

- Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:
phase and fixed transition firing delays,
Semi-Markov chain (SMC).
- MTIPP [HR94]
- GSPA [BKLL95]
- PEPA [Hil96]
- $S \pi$ [Pri96]
- EMPA [BGo98]
- GSMPA [BBGo98]
- sACP [AHR00]
- $T C P^{d s t}[\mathrm{MVi08}]$

More stochastic process calculi

- TIPP [GHR93]
- W SCC S [Tof94]
- PM - TIPP [Ret95]
- $S P A D E S$ [AKB98]
- $N M S P A[\mathrm{LNO}]$
- $S M-P E P A[B r a d 05]$
- dsCCP [Bort06]
- IPC [CHLSO9]
- iPEPA [HBC13]
- $m C C S$ [DH13]
- PHASE [CR14]

Algebra PBC and its extensions

- Petri box calculus PBC [BDH92]
- Time Petri box calculus tP BC [Kou00]
- Timed Petri box calculus T P BC [MF00]
- Stochastic Petri box calculus sPBC [MVF01,MVCC03]
- Ambient Petri box calculus APBC [FM03]
- Arc time Petri box calculus at P BC [Nia05]
- Generalized stochastic Petri box calculus gs PBC [MVCR08]
- Discrete time stochastic Petri box calculus dtsP BC [Tar05,Tar06]
- Discrete time stochastic and immediate Petri box calculus dtsiP BC [TMV10,TMV13]

SPACLS: Classification of stochastic process algebras

Time	Immediate (multi)actions	Interleaving semantics	Non-interleaving semantics
Continuous	No	$M T I P P$ (CTMC), $P E P A$ (CTMP),	$G S P A$ (GSMP), $S \pi, G S M P A$ (GSMP)
	sPBC (CTMC)		
	Yes	$E M P A(S M C, C T M C), g s P B C$ (SMC)	-
Discrete	No	$W S C C S$ (DTMC), $d s C C P$ (DTMC)	$d t s P B C$ (DTMC)
	Yes	$T C P d s t$ (DTMRC), $I P C$ (DTMC)	$s A C P, d t s i P B C$ (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.
The underlying stochastic process: in parentheses near the SPA names.

Transition labeling

- CTSPNs [Buc95]
- GSPNs [Buc98]
- DTSPNs [BT00]

Stochastic equivalences

- Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]
- SPAs [HR94,Hil94,BGo98]
- Markovian process algebras (MPAs) [Buc94,BKe01]
- CTSPNs [Buc95]
- GSPNs [Buc98]
- Stochastic automata (SAs) [Buc99]
- Stochastic event structures (SESs) [MCW03]

Syntax

The set of all finite multisets over X is $N_{\text {fin }}^{X}$. The set of all subsets (powerset) of X is 2^{X}. Act $=\{a, b, \ldots\}$ is the set of elementary actions.
$\widehat{A c t}=\{\hat{a}, \hat{b}, \ldots\}$ is the set of conjugated actions (conjugates) s.t. $\hat{a} \neq a$ and $\hat{\hat{a}}=a$.
$\mathcal{A}=A c t \cup \widehat{\text { Act }}$ is the set of all actions.
$\mathcal{L}=\mathbb{N} \mathcal{f i n}_{\mathcal{A}}$ is the set of all multiactions.
The alphabet of $\alpha \in \mathcal{L}$ is $\mathcal{A}(\alpha)=\{x \in \mathcal{A} \mid \alpha(x)>0\}$.
A stochastic multiaction is a pair (α, ρ), where
$\alpha \in \mathcal{L}$ and $\rho \in(0 ; 1)$ is the probability of the multiaction α.
$\mathcal{S} \mathcal{L}$ is the set of all stochastic multiactions.
An immediate multiaction is a pair $\left(\alpha, h_{l}\right)$, where
$\alpha \in \mathcal{L}$ and $l \in \mathbb{R}_{>0}=(0 ;+\infty)$ is the weight of the multiaction α.
$\mathcal{I} \mathcal{L}$ is the set of all immediate multiactions.
$\mathcal{S I L}=\mathcal{S} \mathcal{L} \cup \mathcal{I} \mathcal{L}$ is the set of all activities.

The alphabet of $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}$ is $\mathcal{A}(\alpha, \kappa)=\mathcal{A}(\alpha)$.
The alphabet of $\Upsilon \in \mathbb{N}_{\text {fin }}^{\mathcal{S I L}}$ is $\mathcal{A}(\Upsilon)=\cup_{(\alpha, \kappa) \in \Upsilon} \mathcal{A}(\alpha)$.
For $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}$, its multiaction part is $\mathcal{L}(\alpha, \kappa)=\alpha$ and its probability or weight part is $\Omega(\alpha, \kappa)=\kappa$ if $\kappa \in(0 ; 1)$; or $\Omega(\alpha, \kappa)=l$ if $\kappa=h_{l}, l \in \mathbb{R}_{>0}$. The multiaction part of $\Upsilon \in \mathbb{N}_{f \text { in }}^{\mathcal{S I L}}$ is $\mathcal{L}(\Upsilon)=\sum_{(\alpha, \kappa) \in \Upsilon} \alpha$.

The operations: sequential execution ; choice [], parallelism \|, relabeling [f], restriction rs, synchronization sy and iteration $[* *]$.

Sequential execution and choice have the standard interpretation.
Parallelism does not include synchronization unlike that in standard process algebras.
Relabeling functions $f: \mathcal{A} \rightarrow \mathcal{A}$ are bijections preserving conjugates: $\forall x \in \mathcal{A} f(\hat{x})=\widehat{f(x)}$.
For $\alpha \in \mathcal{L}$, let $f(\alpha)=\sum_{x \in \alpha} f(x)$. For $\Upsilon \in \mathbb{N}_{f i n}^{\mathcal{S I} \mathcal{L}}$, let $f(\Upsilon)=\sum_{(\alpha, \kappa) \in \Upsilon}(f(\alpha), \kappa)$.
Restriction over $a \in A c t$: any process behaviour containing a or its conjugate \hat{a} is not allowed.
Let $\alpha, \beta \in \mathcal{L}$ be two multiactions s.t. for $a \in \operatorname{Act}$ we have $a \in \alpha$ and $\hat{a} \in \beta$, or $\hat{a} \in \alpha$ and $a \in \beta$. Synchronization of α and β by a is $\alpha \oplus_{a} \beta=\gamma$:

$$
\gamma(x)= \begin{cases}\alpha(x)+\beta(x)-1, & x=a \text { or } x=\hat{a} \\ \alpha(x)+\beta(x), & \text { otherwise }\end{cases}
$$

In the iteration, the initialization subprocess is executed first, then the body one is performed zero or more times, finally, the termination one is executed.

Static expressions specify the structure of processes.
Definition 1 Let $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}$ and $a \in$ Act. A static expression of dtsiPBC is

$$
E::=(\alpha, \kappa)|E ; E| E[] E|E \| E| E[f]|E \mathrm{rs} a| E \text { sy } a \mid[E * E * E]
$$

StatExpr is the set of all static expressions of $d t s i P B C$.
Definition 2 Let $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}$ and $a \in A c t$. A regular static expression of $d t s i P B C$ is

$$
\begin{aligned}
& E::=(\alpha, \kappa)|E ; E| E[] E|E \| E| E[f] \mid E \text { rs } a \mid E \text { sy } a \mid[E * D * E], \\
& \text { where } D::=(\alpha, \kappa)|D ; E| D[D|D[f]| D \text { rs } a \mid D \text { sy } a \mid[D * D * E] .
\end{aligned}
$$

RegStatExpr is the set of all regular static expressions of $d t s i P B C$.

Dynamic expressions specify the states of processes.
Dynamic expressions are obtained from static ones annotated with upper or lower bars.
The underlying static expression of a dynamic one: removing all upper and lower bars.
Definition 3 Let $E \in S t a t E x p r$ and $a \in A c t$. A dynamic expression of $d t s i P B C$ is

$$
\begin{gathered}
G::=\bar{E}|\underline{E}| G ; E|E ; G| G[] E|E[] G| G| | G|G[f]| G \text { rs } a \mid G \text { sy } a \mid \\
{[G * E * E]|[E * G * E]|[E * E * G] .}
\end{gathered}
$$

DynExpr is the set of all dynamic expressions of $d t s i P B C$.
Definition 4 Adynamic expression is regular if its underlying static expression is regular.
RegDynExpr is the set of all regular dynamic expressions of $d t s i P B C$.
We shall consider regular expressions only and omit the word "regular".

Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations.
Let $E, F, K \in$ RegStatExpr and $a \in A c t$.
IRULES1: Inaction rules for overlined and underlined regular static expressions

$$
\begin{array}{lll}
\overline{E ; F} \Rightarrow \bar{E} ; F & \underline{E ; F \Rightarrow E ; \bar{F}} & E ; \underline{F} \Rightarrow \underline{E ; F} \\
\overline{E[] F} \Rightarrow \bar{E}[] F & \overline{E[] F} \Rightarrow E[] \bar{F} & \underline{E[] F \Rightarrow \underline{E[] F}} \\
E[] \underline{F} \Rightarrow \underline{E[] F} & \overline{E \| F} \Rightarrow \bar{E} \| \bar{F} & \underline{E \|} \| \underline{F} \Rightarrow \underline{E \| F} \\
\overline{E[f]} \Rightarrow \bar{E}[f] & \underline{E}[f] \Rightarrow \underline{E[f]} & \overline{E \operatorname{rs} a} \Rightarrow \overline{\bar{E} \mathrm{rs} a} \\
\underline{E} \mathrm{rs} a \Rightarrow \underline{E \mathrm{rs} a} & \overline{E \text { sy } a} \Rightarrow \bar{E} \text { sy } a & \underline{E} \text { sy } a \Rightarrow \underline{E \text { sy } a} \\
\overline{[E * F * K]} \Rightarrow[\bar{E} * F * K] & {[\underline{E} * F * K] \Rightarrow[E * \bar{F} * K]} & {[E * \underline{F} * K] \Rightarrow[E * \bar{F} * K]} \\
{[E * \underline{F} * K] \Rightarrow[E * F * \bar{K}]} & {[E * F * \underline{K}] \Rightarrow \underline{[E * F * K]}} &
\end{array}
$$

Let $E, F \in \operatorname{RegStatExpr}, G, H, \widetilde{G}, \widetilde{H} \in \operatorname{Reg} D y n E x p r$ and $a \in$ Act.
IRULES2: Inaction rules for arbitrary regular dynamic expressions

$$
\begin{array}{cllll}
\frac{G \Rightarrow \widetilde{G}, \circ \in\{;,[]\}}{G \circ E \Rightarrow \widetilde{G} \circ E} & \frac{G \Rightarrow \widetilde{G}, \circ \in\{;,[]\}}{E \circ G \Rightarrow E \circ \widetilde{G}} & \frac{G \Rightarrow \widetilde{G}}{G\|H \Rightarrow \widetilde{G}\| H} & \frac{H \Rightarrow \widetilde{H}}{G\|H \Rightarrow G\| \widetilde{H}} & \frac{G \Rightarrow \widetilde{G}}{G[f] \Rightarrow \widetilde{G}[f]} \\
\frac{G \Rightarrow \widetilde{G}, \circ \in\{\mathrm{rs}, \mathrm{sy}\}}{G \circ a \Rightarrow \widetilde{G} \circ a} & \frac{G \Rightarrow \widetilde{G}}{[G * E * F] \Rightarrow[\widetilde{G} * E * F]} & \frac{G \Rightarrow \widetilde{G}}{[E * G * F] \Rightarrow[E * \widetilde{G} * F]} & \frac{G \Rightarrow \widetilde{G}}{[E * F * G] \Rightarrow[E * F * \widetilde{G}]} & \\
\hline
\end{array}
$$

Definition 5 A regular dynamic expression is operative if no inaction rule can be applied to it.
OpRegDynExpr is the set of all operative regular dynamic expressions of $d t s i P B C$.
We shall consider regular expressions only and omit the word "regular".
Definition $6 \approx=(\Rightarrow \cup \Leftarrow)^{*}$ is the structural equivalence of dynamic expressions in dtsiPBC. G and G^{\prime} are structurally equivalent, $G \approx G^{\prime}$, if they can be reached each from other by applying inaction rules in a forward or backward direction.

Action and empty loop rules

Action rules with stochastic multiactions: execution of non-empty multisets of stochastic multiactions.
Action rules with immediate multiactions: execution of non-empty multisets of immediate multiactions.
Empty loop rule: execution of the empty multiset of activities at a time step.
Definition 7 Let $n \in \mathbb{N}$. The numbering of expressions is

$$
\iota::=n \mid(\iota)(\iota)
$$

Num is the set of all numberings of expressions.
The content of a numbering $\iota \in N u m$ is

$$
\operatorname{Cont}(\iota)= \begin{cases}\{\iota\}, & \iota \in I N \\ \operatorname{Cont}\left(\iota_{1}\right) \cup \operatorname{Cont}\left(\iota_{2}\right), & \iota=\left(\iota_{1}\right)\left(\iota_{2}\right)\end{cases}
$$

(a)

1

BTRNUM: The binary trees encoded with the numberings $1,(1)(2)$ and $(1)((2)(3))$ $[G] \approx=\{H \mid G \approx H\}$ is the equivalence class of $G \in R e g D y n E x p r$ w.r.t. structural equivalence. G is an initial dynamic expression, $\operatorname{init}(G)$, if $\exists E \in \operatorname{RegStat} \operatorname{Expr} G \in[\bar{E}]_{\approx}$.
G is a final dynamic expression, $\operatorname{final}(G)$, if $\exists E \in \operatorname{RegStatExpr} G \in[\underline{E}] \approx$.

Definition 8 Let $G \in O p R e g D y n E x p r$. The set of all non-empty multisets of activities which can be potentially executed from G is $C a n(G)$. Let $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}, E, F \in \operatorname{RegStat}$ Expr, $H \in O p R e g D y n E x p r$ and $a \in$ Act .

1. If final (G) then $\operatorname{Can}(G)=\emptyset$.
2. If $G=\overline{(\alpha, \kappa)}$ then $\operatorname{Can}(G)=\{\{(\alpha, \kappa)\}\}$.
3. If $\Upsilon \in \operatorname{Can}(G)$ then
$\Upsilon \in \operatorname{Can}(G \circ E), \Upsilon \in \operatorname{Can}(E \circ G)(\circ \in\{;,[], \|\}), f(\Upsilon) \in \operatorname{Can}(G[f])$,
$\Upsilon \in \operatorname{Can}(G$ rs $a)($ when $a, \hat{a} \notin \mathcal{A}(\Upsilon)), \Upsilon \in \operatorname{Can}(G$ sy $a)$,
$\Upsilon \in \operatorname{Can}([G * E * F]), \Upsilon \in \operatorname{Can}([E * G * F]), \Upsilon \in \operatorname{Can}([E * F * G])$.
4. If $\Upsilon \in \operatorname{Can}(G)$ and $\Xi \in C \operatorname{an}(H)$ then $\Upsilon+\Xi \in \operatorname{Can}(G \| H)$.
5. If $\Upsilon \in C a n(G$ sy $a)$ and $(\alpha, \kappa),(\beta, \lambda) \in \Upsilon$ are different activities such that $a \in \alpha, \hat{a} \in \beta$, then
(a) $\Upsilon-\{(\alpha, \kappa),(\beta, \lambda)\}+\left\{\left(\alpha \oplus_{a} \beta, \kappa \cdot \lambda\right)\right\} \in \operatorname{Can}(G$ sy $a)$, if $\kappa, \lambda \in(0 ; 1)$;
(b) $\Upsilon-\{(\alpha, \kappa),(\beta, \lambda)\}+\left\{\left(\alpha \oplus_{a} \beta, \natural_{l+m}\right)\right\} \in \operatorname{Can}(G$ sy $a)$ if $\kappa=\natural_{l}, \lambda=\natural_{m}$, $l, m \in \mathbb{R}_{>0}$.

If $\Upsilon \in \operatorname{Can}(G)$ then by definition of $\operatorname{Can}(G) \forall \Xi \subseteq \Upsilon, \Xi \neq \emptyset$ we have $\Xi \in \operatorname{Can}(G)$.
If there are only stochastic (or only immediate) multiactions in the multisets from $\operatorname{Can}(G) \neq \emptyset$ then these stochastic (or immediate) multiactions can be executed from G.

Otherwise, besides stochastic ones, there are immediate multiactions in the multisets from $C a n(G)$.
By the note above, there are non-empty multisets of immediate multiactions in $\operatorname{Can}(G)$ as well:
$\exists \Upsilon \in \operatorname{Can}(G) \Upsilon \in \mathbb{N}_{f i n}^{\mathcal{I} \mathcal{L}} \backslash\{\emptyset\}$.
Then no stochastic multiactions can be executed from G, even if $\operatorname{Can}(G)$ contains non-empty multisets of stochastic multiactions: immediate multiactions have a priority over stochastic ones, and should be executed first.

Definition 9 Let $G \in O p R e g D y n E x p r$. The set of all non-empty multisets of activities which can be executed from G is

$$
\operatorname{Now}(G)= \begin{cases}\operatorname{Can}(G), & \left(\operatorname{Can}(G) \subseteq \mathbb{N}_{\text {fin }}^{\mathcal{S} \mathcal{L}} \backslash\{\emptyset\}\right) \vee\left(\operatorname{Can}(G) \subseteq \mathbb{N}_{\text {fin }}^{\mathcal{I} \mathcal{L}} \backslash\{\emptyset\}\right) ; \\ \operatorname{Can}(G) \cap \mathbb{N}_{\text {fin }}^{\mathcal{I} \mathcal{L}}, & \text { otherwise. }\end{cases}
$$

G is tangible, $\operatorname{tang}(G)$, if $\operatorname{Now}(G) \subseteq \mathbb{N}_{\text {fin }}^{\mathcal{S} \mathcal{L}} \backslash\{\emptyset\}$. We have $\operatorname{tang}(G)$, if $N o w(G)=\emptyset$.
G is vanishing, vanish (G), if $\emptyset \neq \operatorname{Now}(G) \subseteq \mathbb{N}_{f \text { in }}^{\mathcal{I} \mathcal{L}} \backslash\{\emptyset\}$.

Let $G=\left(\overline{\left(\{a\}, \mathfrak{h}_{1}\right)}\right]\left[\left(\{b\}, \mathfrak{h}_{2}\right)\right) \| \overline{\left(\{c\}, \frac{1}{2}\right)}$ and $\left.G^{\prime}=\left(\left(\{a\}, \mathfrak{b}_{1}\right)\right] \overline{\left(\{b\}, \mathfrak{h}_{2}\right)}\right) \| \overline{\left(\{c\}, \frac{1}{2}\right)}$.
We have $G \approx G^{\prime}$, since $G \Leftarrow G^{\prime \prime} \Rightarrow G^{\prime}$ for $G^{\prime \prime}=\overline{\left(\left(\{a\}, \mathfrak{b}_{1}\right)\right]\left[\left(\{b\}, \mathfrak{h}_{2}\right)\right)} \| \overline{\left(\{c\}, \frac{1}{2}\right)}$, but $\operatorname{Can}(G)=\left\{\left\{\left(\{a\}, \mathfrak{b}_{1}\right)\right\},\left\{\left(\{c\}, \frac{1}{2}\right)\right\},\left\{\left(\{a\}, \mathfrak{L}_{1}\right),\left(\{c\}, \frac{1}{2}\right)\right\}\right\}$,
$\operatorname{Can}\left(G^{\prime}\right)=\left\{\left\{\left(\{b\}, \mathfrak{b}_{2}\right)\right\},\left\{\left(\{c\}, \frac{1}{2}\right)\right\},\left\{\left(\{b\}, \mathfrak{h}_{2}\right),\left(\{c\}, \frac{1}{2}\right)\right\}\right\}$ and
$\operatorname{Now}(G)=\left\{\left\{\left(\{a\}, \mathfrak{b}_{1}\right)\right\}\right\}, \operatorname{Now}\left(G^{\prime}\right)=\left\{\left\{\left(\{b\}, \mathfrak{b}_{2}\right)\right\}\right\}$.
Clearly, vanish (G) and vanish $\left(G^{\prime}\right)$.
The executions like that of $\left\{\left(\{c\}, \frac{1}{2}\right)\right\}$ (and all multisets including it) from G and G^{\prime} must be disabled using pre-conditions in the action rules.

Immediate multiactions have a priority over stochastic ones: the former are always executed first.

Let $\left.H=\overline{\left(\{a\}, \natural_{1}\right)}\right]\left(\{b\}, \frac{1}{2}\right)$ and $\left.H^{\prime}=\left(\{a\}, \natural_{1}\right)\right] \overline{\left(\{b\}, \frac{1}{2}\right)}$.
Then $H \approx H^{\prime}$, since $H \Leftarrow H^{\prime \prime} \Rightarrow H^{\prime}$ for $H^{\prime \prime}=\overline{\left.\left(\{a\}, 4_{1}\right)\right]\left[\{b\}, \frac{1}{2}\right)}$, but
$\operatorname{Can}(H)=\operatorname{Now}(H)=\left\{\left\{\left(\{a\}, \mathfrak{b}_{1}\right)\right\}\right\}$ and $\operatorname{Can}\left(H^{\prime}\right)=\operatorname{Now}\left(H^{\prime}\right)=\left\{\left\{\left(\{b\}, \frac{1}{2}\right)\right\}\right\}$.
We have vanish (H), but $\operatorname{tang}\left(H^{\prime}\right)$.
To make the action rules correct under structural equivalence: the executions like that of $\left\{\left(\{b\}, \frac{1}{2}\right)\right\}$ from H^{\prime} must be disabled using the pre-conditions.

Immediate multiactions have a priority over stochastic ones:
the choices between them are always resolved in favour of the former.

Let $G \in \operatorname{Reg} D y n E x p r$. We write $\operatorname{tang}([G] \approx)$, if $\forall H \in[G] \approx \cap \operatorname{OpRegDynExpr} \operatorname{tang}(H)$.
Otherwise, we write vanish $\left([G]_{\approx}\right)$, and in this case $\exists H \in[G]_{\approx} \cap$ OpRegDynExpr vanish (H).

Let $(\alpha, \rho),(\beta, \chi) \in \mathcal{S} \mathcal{L},\left(\alpha, \natural_{l}\right),\left(\beta, \bigsqcup_{m}\right) \in \mathcal{I} \mathcal{L}$ and $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}$. Further, $E, F \in$ RegStatExpr, $G, H \in$ OpRegDynExpr, $\widetilde{G}, \widetilde{H} \in \operatorname{Reg} D y n E x p r$ and $a \in$ Act. Next, $\Gamma, \Delta \in \mathbb{N}_{\text {fin }}^{\mathcal{S}} \backslash\{\emptyset\}, \Gamma^{\prime} \in \mathbb{N}_{\text {fin }}^{\mathcal{S} \mathcal{L}}, I, J \in \mathbb{N}_{\text {fin }}^{\mathcal{I} \mathcal{L}} \backslash\{\emptyset\}, I^{\prime} \in \mathbb{N}_{\text {fin }}^{\mathcal{I} \mathcal{L}}$ and $\Upsilon \in \mathbb{N}_{\text {fin }}^{\mathcal{S I} \mathcal{L}} \backslash\{\emptyset\}$. The names of the action rules with immediate multiactions have a suffix ' i '.

ARULES: Action and empty loop rules
El $\frac{\operatorname{tang}([G] \approx))}{G \xrightarrow{\emptyset} G}$
$\mathbf{B} \overline{(\alpha, \kappa)} \stackrel{(\alpha, \kappa)\}}{\longrightarrow}(\alpha, \kappa)$
$\mathrm{S} \frac{G \xrightarrow{\Upsilon} \widetilde{G}}{G ; E \xrightarrow{\Upsilon} \widetilde{G} ; E E ; G \xrightarrow{\Upsilon} E ; \widetilde{G}}$
$\mathrm{C} \frac{G \xrightarrow{\Gamma} \widetilde{G}, \neg \operatorname{init}(G) \vee(\operatorname{init}(G) \wedge \operatorname{tang}([\bar{E}] \approx))}{G[] E \xrightarrow{\Gamma} \widetilde{G}[] E E[] G \xrightarrow{\Gamma} E[] \widetilde{G}}$
Ci $\frac{G \xrightarrow{I} \widetilde{G}}{G[] E \xrightarrow{I} \widetilde{G}[] E \quad E[]{ }^{I}+[] \widetilde{G}}$
$\mathrm{P} 1 \frac{\left.G \xrightarrow{\Gamma} \widetilde{G}, \operatorname{tang}\left([H]_{\approx}\right)\right)}{G\|H \xrightarrow{\Gamma} \widetilde{G}\| H \quad H\|G \xrightarrow{\Gamma} H\| \widetilde{G}}$
P1i $\frac{G \xrightarrow{I} \widetilde{G}}{G\|H \xrightarrow{I} \widetilde{G}\| H \text { H }\|G \xrightarrow{I} H\| \widetilde{G}}$
$\mathbf{P} 2 \frac{G \xrightarrow{\Gamma} \widetilde{G}, H \xrightarrow{\Delta} \widetilde{H}}{G\|H \xrightarrow{\Gamma+\Delta} \widetilde{G}\| \widetilde{H}}$
P2i $\frac{G \xrightarrow{I} \widetilde{G}, H \xrightarrow{J} \widetilde{H}}{G\|H \xrightarrow{I+J} \widetilde{G}\| \widetilde{H}}$
$\operatorname{Rs} \frac{G \xrightarrow{\Upsilon} \widetilde{G}, a, \hat{a} \notin \mathcal{A}(\Upsilon)}{G \text { rs } a \xrightarrow{\Upsilon} \widetilde{G} \text { rs } a}$
$\mathrm{L} \frac{G \stackrel{\Upsilon}{\longrightarrow} \widetilde{G}}{G[f] \xrightarrow{f(\Upsilon)} \widetilde{G}[f]}$
I1 $\frac{G \xrightarrow{\Upsilon} \widetilde{G}}{[G * E * F] \xrightarrow{\Upsilon}[\widetilde{G} * E * F]}$
I2 $\frac{G \xrightarrow{\Gamma} \widetilde{G}, \neg \operatorname{init}(G) \vee(\operatorname{init}(G) \wedge \operatorname{tang}([\bar{F}] \approx))}{[E * G * F] \xrightarrow{\Gamma}[E * \widetilde{G} * F]}$
I2i $\frac{G \xrightarrow{I} \widetilde{G}}{[E * G * F] \xrightarrow{I}[E * \widetilde{G} * F]}$
I3 $\frac{G \xrightarrow{\Gamma} \widetilde{G}, \neg \operatorname{init}(G) \vee(\operatorname{init}(G) \wedge \operatorname{tang}([\bar{F}] \approx))}{[E * F * G] \xrightarrow{\Gamma}[E * F * \widetilde{G}]}$
Sy $1 \frac{G \xrightarrow{\Upsilon} \widetilde{G}}{G \text { sy } a \xrightarrow{\Upsilon} \widetilde{G} \text { sy } a}$
I3i $\frac{G \stackrel{I}{\rightarrow} \widetilde{G}}{[E * F * G] \xrightarrow{I}[E * F * \widetilde{G}]}$
Sy2 $\frac{G \text { sy } a \xrightarrow{\Gamma^{\prime}+\{(\alpha, \rho)\}+\{(\beta, \chi)\}} \widetilde{\longrightarrow} \text { sy } a, a \in \alpha, \hat{a} \in \beta}{G \text { sy } a \xrightarrow{\Gamma^{\prime}+\{(\alpha \oplus a \beta, \rho \cdot \chi)\}} \widetilde{G} \text { sy } a}$
Sy2i $\frac{G \text { sy } a \frac{I^{\prime}+\left\{\left(\alpha, \natural_{l}\right)\right\}+\left\{\left(\beta, \natural_{m}\right)\right\}}{\longrightarrow} \widetilde{G} \text { sy } a, a \in \alpha, \hat{a} \in \beta}{G \text { sy } a \xrightarrow{I^{\prime}+\left\{\left(\alpha \oplus a \beta, \natural_{l+m}\right)\right\}} \widetilde{G} \text { sy } a}$

RULECMP: Comparison of inaction, action and empty loop rules

Rules	State change	Time progress	Activities execution
Inaction rules	-	-	-
Action rules			
(stochastic multiactions)	\pm	+	+
Action rules	\pm	-	+
(immediate multiactions)		+	-
Empty loop rule	-		

Transition systems

Definition 10 The derivation set $D R(G)$ of a dynamic expression G is the minimal set:

- $[G]_{\approx} \in D R(G)$;
- if $[H]_{\approx} \in D R(G)$ and $\exists \Upsilon H \xrightarrow{\Upsilon} \widetilde{H}$ then $[\widetilde{H}]_{\approx} \in D R(G)$.

Let G be a dynamic expression and $s, \tilde{s} \in D R(G)$.
The set of all multisets of activities executable from s is $\operatorname{Exec}(s)=\{\Upsilon \mid \exists H \in s \exists \widetilde{H} H \xrightarrow{\Upsilon} \widetilde{H}\}$.
The state s is tangible, $\operatorname{tang}(s)$, if $\operatorname{Exec}(s) \subseteq \mathbb{N}_{\text {fin }}^{\mathcal{S}}$.
For tangible states we always have $\emptyset \in \operatorname{Exec}(s)$, and we may have $\operatorname{Exec}(s)=\{\emptyset\}$.
The state s is vanishing, vanish (s), if $\operatorname{Exec}(s) \subseteq \mathbb{N}_{\text {fin }}^{\mathcal{I} \mathcal{L}} \backslash\{\emptyset\}$.
The set of all tangible states from $D R(G)$ is $D R_{T}(G)$.
The set of all vanishing states from $D R(G)$ is $D R_{V}(G)$.
Obviously, $D R(G)=D R_{T}(G) \uplus D R_{V}(G)$.

Let $\Upsilon \in \operatorname{Exec}(s) \backslash\{\emptyset\}$. The probability of the multiset of stochastic multiactions or the weight of the multiset of immediate multiactions Υ which is ready for execution in s :

$$
P F(\Upsilon, s)= \begin{cases}\prod_{(\alpha, \rho) \in \Upsilon} \rho \cdot \prod_{\{\{(\beta, \chi)\} \in E x e c(s) \mid(\beta, \chi) \notin \Upsilon\}}(1-\chi), & s \in D R_{T}(G) ; \\ \sum_{\left(\alpha, \ell_{l}\right) \in \Upsilon} l, & s \in D R_{V}(G) .\end{cases}
$$

In the case $\Upsilon=\emptyset$ and $s \in D R_{T}(G)$ we define

$$
\operatorname{PF}(\emptyset, s)= \begin{cases}\prod_{\{(\beta, \chi)\} \in \operatorname{Exec}(s)}(1-\chi), & \operatorname{Exec}(s) \neq\{\emptyset\} \\ 1, & \operatorname{Exec}(s)=\{\emptyset\}\end{cases}
$$

Let $\Upsilon \in \operatorname{Exec}(s)$. The probability to execute the multiset of activities Υ in s :

$$
P T(\Upsilon, s)=\frac{P F(\Upsilon, s)}{\sum_{\Xi \in \operatorname{Exec}(s)} \operatorname{PF}(\Xi, s)}
$$

If s is tangible, then $P T(\emptyset, s) \in(0 ; 1]$: the residence time in s is ≥ 1.
The probability to move from s to \tilde{s} by executing any multiset of activities:

$$
P M(s, \tilde{s})=\sum_{\{\Upsilon \mid \exists H \in s \exists \tilde{H} \in \tilde{s} H \xrightarrow{\Upsilon} \widetilde{H}\}} P T(\Upsilon, s) .
$$

TRPROBIM: Calculation of the probability functions $P F, P T, P M$ for $s_{1} \in D R(\bar{E})$ and $E=(\{a\}, \rho)[](\{a\}, \chi)$

$s_{1} \backslash \Upsilon$	\emptyset	$\{(\{a\}, \rho)\}$	$\{(\{a\}, \chi)\}$	Σ
$P F$	$(1-\rho)(1-\chi)$	$\rho(1-\chi)$	$\chi(1-\rho)$	$1-\rho \chi$
$P T$	$\frac{(1-\rho)(1-\chi)}{1-\rho \chi}$	$\frac{\rho(1-\chi)}{1-\rho \chi}$	$\frac{\chi(1-\rho)}{1-\rho \chi}$	1
$P M$	$\frac{(1-\rho)(1-\chi)}{1-\rho \chi}\left(s_{1}\right)$	$\frac{\rho+\chi-2 \rho \chi}{1-\rho \chi}\left(s_{2}\right)$		1

TRPROBIM1: Calculation of the probability functions $P F, P T, P M$ for $s_{1}^{\prime} \in D R\left(\bar{E}^{\prime}\right)$ and $E^{\prime}=\left(\{a\}, দ_{l}\right)[]\left(\{a\}, \natural_{m}\right)$

$s_{1}^{\prime} \backslash \Upsilon$	$\left\{\left(\{a\}, \natural_{l}\right)\right\}$	$\left\{\left(\{a\}, \natural_{m}\right)\right\}$	Σ
$P F$	l	m	$l+m$
$P T$	$\frac{l}{l+m}$	$\frac{m}{l+m}$	1
$P M$	$1\left(s_{2}^{\prime}\right)$		1

Definition 11 The (labeled probabilistic) transition system of a dynamic expression G is $T S(G)=\left(S_{G}, L_{G}, \mathcal{T}_{G}, s_{G}\right)$, where

- the set of states is $S_{G}=D R(G)$;
- the set of labels is $L_{G}=\mathbb{N}_{\text {fin }}^{\mathcal{S I L}} \times(0 ; 1]$;
- the set of transitions is

$$
\mathcal{T}_{G}=\{(s,(\Upsilon, P T(\Upsilon, s)), \tilde{s}) \mid s, \tilde{s} \in D R(G), \exists H \in s \exists \tilde{H} \in \tilde{s} H \xrightarrow{\Upsilon} \widetilde{H}\}
$$

- the initial state is $s_{G}=[G] \approx$.

A transition $(s,(\Upsilon, \mathcal{P}), \tilde{s}) \in \mathcal{T}_{G}$ is written as $s \xrightarrow{\Upsilon}_{\mathcal{P}} \tilde{s}$.
We write $s \xrightarrow{\Upsilon} \tilde{s}$ if $\exists \mathcal{P} s \xrightarrow{\Upsilon}_{\mathcal{P}} \tilde{s}$ and $s \rightarrow \tilde{s}$ if $\exists \Upsilon s \xrightarrow{\Upsilon} \tilde{s}$.

Definition 12 Let G, G^{\prime} be dynamic expressions and $T S(G)=\left(S_{G}, L_{G}, \mathcal{T}_{G}, s_{G}\right)$, $T S\left(G^{\prime}\right)=\left(S_{G^{\prime}}, L_{G^{\prime}}, \mathcal{T}_{G^{\prime}}, s_{G^{\prime}}\right)$ be their transition systems. A mapping $\beta: S_{G} \rightarrow S_{G^{\prime}}$ is an isomorphism between $T S(G)$ and $T S\left(G^{\prime}\right), \beta: T S(G) \simeq T S\left(G^{\prime}\right)$, if

1. β is a bijection s.t. $\beta\left(s_{G}\right)=s_{G^{\prime}}$;
2. $\forall s, \tilde{s} \in S_{G} \forall \Upsilon s \xrightarrow{\Upsilon}_{\mathcal{P}} \tilde{s} \Leftrightarrow \beta(s) \xrightarrow{\Upsilon}_{\mathcal{P}} \beta(\tilde{s})$.
$T S(G)$ and $T S\left(G^{\prime}\right)$ are isomorphic, $T S(G) \simeq T S\left(G^{\prime}\right)$, if $\exists \beta: T S(G) \simeq T S\left(G^{\prime}\right)$.
For $E \in$ RegStatExpr, let $T S(E)=T S(\bar{E})$.
Definition $13 G$ and G^{\prime} are equivalent w.r.t. transition systems, $G={ }_{t s} G^{\prime}$, if $T S(G) \simeq T S\left(G^{\prime}\right)$.

TS: The transition system of \bar{E} for $E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)\right)[]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) *\right.$ Stop $]$ Stop $=\left(\{c\}, \frac{1}{2}\right)$ rs c is the process that performs empty loops with probability 1 and never terminates.
$D R(\bar{E})$ consists of:

$$
D R_{T}(\bar{E})=\left\{s_{1}, s_{2}, s_{4}, s_{5}\right\} \text { and } D R_{V}(\bar{E})=\left\{s_{3}\right\}
$$

$$
\begin{aligned}
& \left.s_{1}=\left[\overline{(\{a\}, \rho)} *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, দ_{l}\right) ;(\{d\}, \theta)\right)[]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) * \text { Stop }\right]\right]_{\approx} \text {, } \\
& \left.\left.\left.s_{2}=\left[\left[(\{a\}, \rho) * \overline{((\{b\}, \chi)} ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)\right)\right]\right]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) * \text { Stop }\right]\right]_{\approx}, \\
& s_{3}=\left[\left[(\{a\}, \rho) *\left((\{b\}, \chi) ; \overline{\left(\left(\left(\{c\}, দ_{l}\right) ;(\{d\}, \theta)\right)[]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)}\right) * \text { Stop }\right]\right]_{\approx}, \\
& \left.s_{4}=\left[\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, দ_{l}\right) ; \overline{(\{d\}, \theta))}\right]\right]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) * \text { Stop }\right]\right]_{\approx}, \\
& s_{5}=\left[\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)\right)[]\left(\left(\{e\}, \natural_{m}\right) ; \overline{(\{f\}, \phi))}\right)\right) * \text { Stop }\right]\right] \approx .\right.
\end{aligned}
$$

Denotational semantics

Labeled DTSIPNs

Definition 14 A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is $N=\left(P_{N}, T_{N}, W_{N}, \Omega_{N}, L_{N}, M_{N}\right)$, where

- P_{N} and $T_{N}=T s_{N} \uplus T i_{N}$ are finite sets of places and stochastic and immediate transitions, s.t. $P_{N} \cup T_{N} \neq \emptyset$ and $P_{N} \cap T_{N}=\emptyset$;
- $W_{N}:\left(P_{N} \times T_{N}\right) \cup\left(T_{N} \times P_{N}\right) \rightarrow \mathbb{N}$ is the arc weight function;
- Ω_{N} is the transition probability and weight function s.t.
$-\left.\Omega_{N}\right|_{T s_{N}}: T s_{N} \rightarrow(0 ; 1)$ (it associates stochastic transitions with probabilities);
$-\left.\Omega_{N}\right|_{T i_{N}}: T i_{N} \rightarrow \mathbb{R}_{>0}$ (it associates immediate transitions with weights);
- $L_{N}: T_{N} \rightarrow \mathcal{L}$ is the transition labeling function;
- $M_{N} \in \mathbb{N}_{f \text { in }}^{P_{N}}$ is the initial marking.

Concurrent transition firings at discrete time moments.
LDTSIPNs have step semantics.

Let N be an LDTSIPN and $M, \widetilde{M} \in \mathbb{N}_{f i n}^{P_{N}}$.
Immediate transitions have a priority over stochastic ones:
immediate transitions always fire first, if they can.
A transition $t \in T_{N}$ is enabled at M if ${ }^{\bullet} t \subseteq M$. $\operatorname{Ena}(M)$ is the set of all transitions enabled at M.
A set of transitions $U \subseteq \operatorname{Ena}(M)$ is fireable at M, if ${ }^{\bullet} U \subseteq M$ and one of the following holds:

1. $\emptyset \neq U \subseteq T i_{N}$; or
2. $U \subseteq T s_{N}$ and $\operatorname{Ena}(M) \subseteq T s_{N}$.

Fire (M) is the set of all transition sets fireable at M.
$\operatorname{Fire}(M) \subseteq 2^{T i_{N}} \backslash\{\emptyset\}$ or $\operatorname{Fire}(M) \subseteq 2^{T s_{N}}$.
The marking M is tangible, $\operatorname{tang}(M)$, if $\operatorname{Fire}(M) \subseteq 2^{T s_{N}}$ (we always have $\emptyset \in \operatorname{Fire}(M)$).
The marking M is vanishing, vanish (M), if $\operatorname{Fire}(M) \subseteq 2^{T i_{N}} \backslash\{\emptyset\}$.
A transition $t \in \operatorname{Ena}(M)$ is fireable at $M, t \in \operatorname{Fire}(M)$, if $\{t\} \in \operatorname{Fire}(M)$.
If $\operatorname{stang}(M)$ then a stochastic transition $t \in \operatorname{Fire}(M)$ fires with probability $\Omega_{N}(t)$,
if no different stochastic transition is fireable in Q, i.e. $\operatorname{Fire}(Q)=\{\emptyset,\{t\}\}$.
By the definition of fireability, $\forall U \in \operatorname{Fire}(Q) 2^{U} \backslash\{\emptyset\} \subseteq$ Fire (Q).

Let $U \in \operatorname{Fire}(M)$ and $U \neq \emptyset$. The probability of the set of stochastic transitions or the weight of the set of immediate transitions U which is ready for firing at M is

$$
\operatorname{PF}(U, M)= \begin{cases}\prod_{t \in U} \Omega_{N}(t) \cdot \prod_{\{u \in \operatorname{Fire}(M) \mid u \notin U\}}\left(1-\Omega_{N}(u)\right), & \operatorname{tang}(M) \\ \sum_{t \in U} \Omega_{N}(t), & \operatorname{vanish}(M)\end{cases}
$$

In the case $U=\emptyset$ and $\tan g(M)$ we define

$$
\operatorname{PF}(\emptyset, M)= \begin{cases}\prod_{u \in \operatorname{Fire}(M)}\left(1-\Omega_{N}(u)\right), & \operatorname{Fire}(M) \neq\{\emptyset\} \\ 1, & \operatorname{Fire}(M)=\{\emptyset\}\end{cases}
$$

Let $U \in \operatorname{Fire}(Q)$. The probability that the set of transitions U fires at M :

$$
P T(U, M)=\frac{P F(U, M)}{\sum_{V \in \operatorname{Fire}(M)} P F(V, M)}
$$

If $U=\emptyset$ and $\operatorname{tang}(M)$ then $M=\widetilde{M}$.
If $\operatorname{tang}(M)$ then $P T(\emptyset, M) \in(0 ; 1]$: the residence time in M is ≥ 1.
Firing of U changes M to $\widetilde{M}=M-{ }^{\bullet} U+U^{\bullet}, M \xrightarrow{\mathcal{P}} \widetilde{M}$, where $\mathcal{P}=P T(U, M)$.
The probability to move from M to \widetilde{M} by firing any set of transitions:

$$
P M(M, \widetilde{M})=\sum_{\{U \mid M \xrightarrow{U} \widetilde{M}\}} P T(U, M) .
$$

We write $M \xrightarrow{U} \widetilde{M}$ if $\exists \mathcal{P} M \xrightarrow{U} \mathcal{P} \widetilde{M}$ and $M \rightarrow \widetilde{M}$ if $\exists U M \xrightarrow{U} \widetilde{M}$.

Definition 15 Let N be an LDTSIPN.

- The reachability set $R S(N)$ is the minimal set of markings s.t.
- $M_{N} \in R S(N)$;
- if $M \in R S(N)$ and $M \rightarrow \widetilde{M}$ then $\widetilde{M} \in R S(N)$.
- The reachability graph $R G(N)$ is a directed labeled graph with
- the set of nodes $R S(N)$;
- an arc labeled by (U, \mathcal{P}) from node M to \widetilde{M} if $M \xrightarrow{U} \widetilde{\mathcal{P}}$.

The set of all tangible markings from $R S(N)$ is $R S_{T}(N)$.
The set of all vanishing markings from $R S(N)$ is $R S_{V}(N)$.
$R S(N)=R S_{T}(N) \cup R S_{V}(N)$.

Algebra of dtsi-boxes

Definition 16 A discrete time stochastic and immediate Petri box (dtsi-box) is $N=\left(P_{N}, T_{N}, W_{N}, \Lambda_{N}\right)$, where:

- P_{N} and T_{N} are finite sets of places and transitions, s.t. $P_{N} \cup T_{N} \neq \emptyset$ and $P_{N} \cap T_{N}=\emptyset$;
- $W_{N}:\left(P_{N} \times T_{N}\right) \cup\left(T_{N} \times P_{N}\right) \rightarrow \mathbb{N}$ is a function of the weights of arcs between places and transitions and vice versa;
- Λ_{N} is the place and transition labeling function s.t.
- $\left.\Lambda_{N}\right|_{P_{N}}: P_{N} \rightarrow\{\mathrm{e}, \mathrm{i}, \times\}$ (it specifies entry, internal and exit places);
- $\left.\Lambda_{N}\right|_{T_{N}}: T_{N} \rightarrow\left\{\varrho \mid \varrho \subseteq \mathbb{N}_{\text {fin }}^{\mathcal{S} \mathcal{L}} \times \mathcal{S L}\right\}$ (it associates transitions with the relabeling relations).

Moreover, $\forall t \in T_{N}{ }^{\bullet} t \neq \emptyset \neq t^{\bullet}$.
For the set of entry places of $N,{ }^{\circ} N=\left\{p \in P_{N} \mid \Lambda_{N}(p)=\mathrm{e}\right\}$, and the set of exit places of N, $N^{\circ}=\left\{p \in P_{N} \mid \Lambda_{N}(p)=x\right\}$, it holds: ${ }^{\circ} N \neq \emptyset \neq N^{\circ}$ and ${ }^{\bullet}\left({ }^{\circ} N\right)=\emptyset=\left(N^{\circ}\right)^{\bullet}$.

A dtsi-box is plain if $\forall t \in T_{N} \Lambda_{N}(t)=\varrho_{(\alpha, \kappa)}$, where $\varrho_{(\alpha, \kappa)}=\{(\emptyset,(\alpha, \kappa))\}$ is a constant relabeling, identified with (α, κ).
A marked plain dtsi-box is a pair $\left(N, M_{N}\right)$, where N is a plain dtsi-box and $M_{N} \in \mathbb{I}_{f i n}^{P_{N}}$ is its marking. Let $\bar{N}=\left(N,{ }^{\circ} N\right)$ and $\underline{N}=\left(N, N^{\circ}\right)$.

BOXOPS: The plain and operator dtsi-boxes

Definition $17 \operatorname{Let}(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}, a \in A c t$ and $E, F, K \in R e g S t a t E x p r$. The denotational semantics of dtsiPBC is a mapping Box ${ }_{d t s i}$ from RegStatExpr into plain dtsi-boxes:

1. $\operatorname{Box}_{d t s i}\left((\alpha, \kappa)_{\iota}\right)=N_{(\alpha, \kappa)_{\iota}}$;
2. $B o x_{d t s i}(E \circ F)=\Theta_{\circ}\left(\operatorname{Box}_{d t s i}(E), \operatorname{Box}_{d t s i}(F)\right), \circ \in\{;,[], \|\}$;
3. $\operatorname{Box}_{d t s i}(E[f])=\Theta_{[f]}\left(\operatorname{Box}_{d t s i}(E)\right)$;
4. $B o x_{d t s i}(E \circ a)=\Theta_{\circ a}\left(B o x_{d t s i}(E)\right), \circ \in\{\mathrm{rs}, \mathrm{sy}\}$;
5. $\operatorname{Box}_{d t s i}([E * F * K])=\Theta_{[* *]}\left(\operatorname{Box}_{d t s i}(E), \operatorname{Box}_{d t s i}(F), \operatorname{Box}_{d t s i}(K)\right)$.

For $E \in$ RegStatExpr, let $B o x_{d t s i}(\bar{E})=\overline{B o x_{d t s i}(E)}$ and $B o x_{d t s i}(\underline{E})=\underline{B o x_{d t s i}(E)}$.

We denote isomorphism of transition systems by \simeq,
and the same symbol denotes isomorphism of reachability graphs and DTMCs
as well as isomorphism between transition systems and reachability graphs.
Theorem 1 (OPDNSEM) For any static expression E

$$
T S(\bar{E}) \simeq R G\left(B_{0 x_{d t s i}}(\bar{E})\right)
$$

BOXRG: The marked dtsi-box $N=\operatorname{Box}_{d t s i}(\bar{E})$ for $E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)\right)[]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) *\right.$ Stop] and its reachability graph

NRBOXRG: The marked dtsi-box $N=B o x_{d t s i}(\bar{E})$ for $E=\left[\left(\left(\{a\}, \frac{1}{2}\right) *\left(\left(\{b\}, \frac{1}{2}\right) \|\left(\{c\}, \frac{1}{2}\right)\right) *\left(\{d\}, \frac{1}{2}\right)\right]\right.$ and its reachability graph
$M_{1}=(1,0,0,0,0,0)$ is the initial marking.
$M_{2}=(0,1,1,1,1,0)$ is obtained from M_{1} by firing t_{1}.
$M_{3}=(0,1,1,2,0,0)$ is obtained from M_{2} by firing t_{2} and has 2 tokens in the place p_{4}.
$M_{4}=(0,1,1,0,2,0)$ is obtained from M_{2} by firing t_{3} and has 2 tokens in the place p_{5}.
Concurrency in the second argument of iteration in \bar{E} can lead to non-safeness of the corresponding marked dtsi-box N, but it is 2 -bounded in the worst case.

The origin of the problem: N has as a self-loop with two subnets which can function independently.

Performance evaluation

Analysis of the underlying SMC

For a dynamic expression G, a discrete random variable is associated with every tangible state from $D R_{T}(G)$.

The random variables (residence time in the tangible states) are geometrically distributed:
the probability to stay in the tangible state $s \in D R_{T}(G)$ for $k-1$ moments and leave it at the moment $k \geq 1$ is $P M(s, s)^{k-1}(1-P M(s, s))$.

The mean value formula: the average sojourn time in the tangible state s is $\frac{1}{1-P M(s, s)}$.
The average sojourn time in the vanishing state s is 0 .
The average sojourn time in the state s is

$$
S J(s)= \begin{cases}\frac{1}{1-P M(s, s)}, & s \in D R_{T}(G) \\ 0, & s \in D R_{V}(G)\end{cases}
$$

The average sojourn time vector $S J$ of G has the elements $S J(s), s \in D R(G)$.

The sojourn time variance in the state s is

$$
V A R(s)= \begin{cases}\frac{P M(s, s)}{(1-P M(s, s))^{2}}, & s \in D R_{T}(G) \\ 0, & s \in D R_{V}(G)\end{cases}
$$

The sojourn time variance vector $V A R$ of G has the elements $V A R(s), s \in D R(G)$.
The stochastic process associated with a dynamic expression G : the underlying semi-Markov chain (SMC) of $G, S M C(G)$.
$S M C(G)$ is analyzed by extracting the embedded (absorbing) discrete time Markov chain (EDTMC) of $G, E D T M C(G)$.

Let G be a dynamic expression and $s, \tilde{s} \in D R(G)$.
Let $s \rightarrow s$. The probability to stay in s due to $k(k \geq 1)$ self-loops is $P M(s, s)^{k}$.

The self-loops abstraction factor in the state s is

$$
S L(s)= \begin{cases}\frac{1}{1-P M(s, s)}, & s \rightarrow s \\ 1, & \text { otherwise }\end{cases}
$$

The self-loops abstraction vector $S L$ of G has the elements $S L(s), s \in D R(G)$.
Let $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$, i.e. $P M(s, s)<1$. The probability to move from s to \tilde{s} by executing any multiset of activities after possible self-loops is

$$
P M^{*}(s, \tilde{s})=\left\{\begin{array}{ll}
P M(s, \tilde{s}) \sum_{k=0}^{\infty} P M(s, s)^{k}=\frac{P M(s, \tilde{s})}{1-P M(s, s)}, & s \rightarrow s ; \\
P M(s, \tilde{s}), & \text { otherwise } ;
\end{array}\right\}=S L(s) P M(s, \tilde{s}) .
$$

We have $\forall s \in D R_{T}(G) S L(s)=\frac{1}{1-P M(s, s)}=S J(s)$, hence, $\forall s \in D R_{T}(G)$ with $P M(s, s)<1$ it holds $P M^{*}(s, \tilde{s})=S J(s) P M(s, \tilde{s})$.

Definition 18 Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain (EDTMC) of $G, E D T M C(G)$, has the state space $D R(G)$, the initial state $[G] \approx$ and the transitions $s \rightarrow \mathcal{P} \tilde{s}$, if $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$, where $\mathcal{P}=P M^{*}(s, \tilde{s})$; or $s \rightarrow_{1} s$, if $P M(s, s)=1$.

The underlying SMC of $G, S M C(G)$, has the EDTMC EDTMC (G) and the sojourn time in every $s \in D R_{T}(G)$ is geometrically distributed with the parameter $1-P M(s, s)$ while the sojourn time in every $s \in D R_{V}(G)$ is equal to zero.

For $E \in$ RegStatExpr, let $E D T M C(E)=E D T M C(\bar{E})$ and $S M C(E)=S M C(\bar{E})$.
Let G be a dynamic expression. The elements $\mathcal{P}_{i j}^{*}(1 \leq i, j \leq n=|D R(G)|)$ of (one-step) transition probability matrix (TPM) \mathbf{P}^{*} for $E D T M C(G)$:

$$
\mathcal{P}_{i j}^{*}= \begin{cases}P M^{*}\left(s_{i}, s_{j}\right), & s_{i} \rightarrow s_{j}, i \neq j \\ 1, & P M\left(s_{i}, s_{i}\right)=1, i=j \\ 0, & \text { otherwise }\end{cases}
$$

The transient (k-step, $k \in \mathbb{N}$) probability mass function (PMF) $\psi^{*}[k]=\left(\psi^{*}[k]\left(s_{1}\right), \ldots, \psi^{*}[k]\left(s_{n}\right)\right)$ for $\operatorname{EDTMC}(G)$ is calculated as

$$
\psi^{*}[k]=\psi^{*}[0]\left(\mathbf{P}^{*}\right)^{k},
$$

where $\psi^{*}[0]=\left(\psi^{*}[0]\left(s_{1}\right), \ldots, \psi^{*}[0]\left(s_{n}\right)\right)$ is the initial PMF:

$$
\psi^{*}[0]\left(s_{i}\right)= \begin{cases}1, & s_{i}=[G] \approx \\ 0, & \text { otherwise }\end{cases}
$$

We have $\psi^{*}[k+1]=\psi^{*}[k] \mathbf{P}^{*}(k \in \mathbb{N})$.

The steady-state PMF $\psi^{*}=\left(\psi^{*}\left(s_{1}\right), \ldots, \psi^{*}\left(s_{n}\right)\right)$ for $\operatorname{EDTMC}(G)$ is a solution of

$$
\left\{\begin{array}{l}
\psi^{*}\left(\mathbf{P}^{*}-\mathbf{I}\right)=\mathbf{0} \\
\psi^{*} \mathbf{1}^{T}=1
\end{array}\right.
$$

where \mathbf{I} is the identity matrix of order n and $\mathbf{0}$ is a row vector of n values $0, \mathbf{1}$ is that of n values 1 . When $\operatorname{EDTMC}(G)$ has the single steady state, $\psi^{*}=\lim _{k \rightarrow \infty} \psi^{*}[k]$. The steady-state PMF $\varphi=\left(\varphi\left(s_{1}\right), \ldots, \varphi\left(s_{n}\right)\right)$ for $S M C(G)$:

$$
\varphi\left(s_{i}\right)= \begin{cases}\frac{\psi^{*}\left(s_{i}\right) S J\left(s_{i}\right)}{\sum_{j=1}^{n} \psi^{*}\left(s_{j}\right) S J\left(s_{j}\right)}, & s_{i} \in D R_{T}(G) \\ 0, & s_{i} \in D R_{V}(G)\end{cases}
$$

To calculate φ, we apply abstracting from self-loops with probability less than 1 to get \mathbf{P}^{*} and ψ^{*}, followed by weighting by $S J$ and normalization.
$\operatorname{EDTMC}(G)$ has no self-loops with probability less than 1 , unlike $S M C(G)$, hence, the behaviour of $E D T M C(G)$ stabilizes quicker than that of $S M C(G)$, since \mathbf{P}^{*} has only zero (excepting the states having self-loops with probability 1) elements at the main diagonal.

EXPRSMC: The underlying SMC of \bar{E} for $E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \mathfrak{h}_{l}\right) ;(\{d\}, \theta)\right)\right]\left[\left(\left(\{e\}, \mathfrak{h}_{m}\right) ;(\{f\}, \phi)\right)\right)\right) *\right.$ Stop $]$

The average sojourn time vector of \bar{E} :

$$
S J=\left(\frac{1}{\rho}, \frac{1}{\chi}, 0, \frac{1}{\theta}, \frac{1}{\phi}\right) .
$$

The sojourn time variance vector of \bar{E} :

$$
V A R=\left(\frac{1-\rho}{\rho^{2}}, \frac{1-\chi}{\chi^{2}}, 0, \frac{1-\theta}{\theta^{2}}, \frac{1-\phi}{\phi^{2}}\right) .
$$

The TPM for $E D T M C(\bar{E})$:

$$
\mathbf{P}^{*}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

The steady-state PMF for $E D T M C(\bar{E})$:

$$
\psi^{*}=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{l}{3(l+m)}, \frac{m}{3(l+m)}\right) .
$$

The steady-state PMF ψ^{*} weighted by $S J$:

$$
\left(0, \frac{1}{3 \chi}, 0, \frac{l}{3 \theta(l+m)}, \frac{m}{3 \phi(l+m)}\right) .
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components:

$$
\psi^{*} S J^{T}=\frac{\theta \phi(l+m)+\chi(\phi l+\theta m)}{3 \chi \theta \phi(l+m)}
$$

Thus, the steady-state PMF for $S M C(\bar{E})$:

$$
\varphi=\frac{1}{\theta \phi(l+m)+\chi(\phi l+\theta m)}(0, \theta \phi(l+m), 0, \chi \phi l, \chi \theta m) .
$$

The case $l=m$ and $\theta=\phi$:

$$
\varphi=\frac{1}{2(\chi+\theta)}(0,2 \theta, 0, \chi, \chi)
$$

Let G be a dynamic expression and $s, \tilde{s} \in D R(G), S, \widetilde{S} \subseteq D R(G)$.
The following performance indices (measures) are based on the steady-state PMF for $S M C(G)$.

- The average recurrence (return) time in the state s (the number of discrete time units or steps required for this) is $\frac{1}{\varphi(s)}$.
- The fraction of residence time in the state s is $\varphi(s)$.
- The fraction of residence time in the set of states $S \subseteq D R(G)$ or the probability of the event determined by a condition that is true for all states from S is $\sum_{s \in S} \varphi(s)$.
- The relative fraction of residence time in the set of states S w.r.t. that in \widetilde{S} is $\frac{\sum_{s \in S} \varphi(s)}{\sum_{\tilde{s} \in \widetilde{S}} \varphi(\tilde{s})}$.
- The rate of leaving the state s is $\frac{\varphi(s)}{S J(s)}$.
- The steady-state probability to perform a step with a multiset of activities Ξ is $\sum_{s \in D R(G)} \varphi(s) \sum_{\{\Upsilon \mid \Xi \subseteq \Upsilon\}} P T(\Upsilon, s)$.
- The probability of the event determined by a reward function r on the states is $\sum_{s \in D R(G)} \varphi(s) r(s)$, where $\forall s \in D R(G) 0 \leq r(s) \leq 1$

Let $N=\left(P_{N}, T_{N}, W_{N}, \Omega_{N}, L_{N}, M_{N}\right)$ be a LDTSIPN and $M, \widetilde{M} \in \mathbb{N}_{f i n}^{P_{N}}$.
The average sojourn time $S J(M)$, the sojourn time variance $V A R(M)$, the probabilities $P M^{*}(M, \widetilde{M})$, the transition relation $M \rightarrow_{\mathcal{P}} \widetilde{M}$, the EDTMC EDTMC (N), the underlying SMC $S M C(N)$ and the steady-state PMF for it are defined like for dynamic expressions.

We denote isomorphism of SMCs by \simeq.
Proposition 1 (SMCS) For any static expression E

$$
S M C(\bar{E}) \simeq S M C\left(B o x_{d t s i}(\bar{E})\right)
$$

BOXSMC: The underlying SMC of $N=B o x_{d t s i}(\bar{E})$ for $E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \mathfrak{h}_{l}\right) ;(\{d\}, \theta)\right)\right]\left[\left(\left(\{e\}, দ_{m}\right) ;(\{f\}, \phi)\right)\right)\right) *\right.$ Stop $]$

Analysis of the DTMC

Definition 19 Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G, $D T M C(G)$, has the state space $D R(G)$, the initial state $[G] \approx$ and the transitions $s \rightarrow_{\mathcal{P}} \tilde{s}$, where $\mathcal{P}=P M(s, \tilde{s})$.

For $E \in$ RegStatExpr, let $D T M C(E)=D T M C(\bar{E})$.
Let G be a dynamic expression. The elements $\mathcal{P}_{i j}(1 \leq i, j \leq n=|D R(G)|)$ of (one-step) transition probability matrix (TPM) \mathbf{P} for $D T M C(G)$ are

$$
\mathcal{P}_{i j}= \begin{cases}P M\left(s_{i}, s_{j}\right), & s_{i} \rightarrow s_{j} \\ 0, & \text { otherwise }\end{cases}
$$

The steady-state PMF ψ for $D T M C(G)$ is defined like that for $E D T M C(G)$.

2 (PMFS) Let G be a dynamic expression and $S L$ be its self-loops abstraction vector. Then the steady-state PMFs ψ for $D T M C(G)$ and ψ^{*} for $\operatorname{EDTMC}(G)$ are related as: $\forall s \in D R(G)$

$$
\psi(s)=\frac{\psi^{*}(s) S L(s)}{\sum_{\tilde{s} \in D R(G)} \psi^{*}(\tilde{s}) S L(\tilde{s})} .
$$

Proposition 2 (PMFSMC) Let G be a dynamic expression, φ be the steady-state PMF for $S M C(G)$ and ψ be the steady-state PMF for $D T M C(G)$. Then $\forall s \in D R(G)$

$$
\varphi(s)= \begin{cases}\frac{\psi(s)}{\sum_{\tilde{s} \in D R_{T}(G)} \psi(\tilde{s})}, & s \in D R_{T}(G) \\ 0, & s \in D R_{V}(G)\end{cases}
$$

To calculate φ, we apply normalization to some elements of ψ (corresponding to the tangible states), instead of abstracting from self-loops with probability less than 1 to get \mathbf{P}^{*} and ψ^{*}, followed by weighting by $S J$ and normalization.

Using $D T M C(G)$ instead of $E D T M C(G)$ allows one to avoid multistage analysis. $\operatorname{DTMC}(G)$ may have self-loops with probability less than 1 , unlike $E D T M C(G)$, hence, the behaviour of $D T M C(G)$ stabilizes slower than that of $E D T M C(G)$ and \mathbf{P} is denser matrix than \mathbf{P}^{*}, since \mathbf{P} may have additional non-zero elements at the main diagonal.

EXPRDTMC: The DTMC of \bar{E} for $E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)\right)\right]\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) *$ Stop $]$

The TPM for $D T M C(\bar{E})$:

$$
\mathbf{P}=\left(\begin{array}{ccccc}
1-\rho & \rho & 0 & 0 & 0 \\
0 & 1-\chi & \chi & 0 & 0 \\
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & \theta & 0 & 1-\theta & 0 \\
0 & \phi & 0 & 0 & 1-\phi
\end{array}\right)
$$

The steady-state PMF for $D T M C(\bar{E})$:

$$
\psi=\frac{1}{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)}(0, \theta \phi(l+m), \chi \theta \phi(l+m), \chi \phi l, \chi \theta m) .
$$

$$
\sum_{\tilde{s} \in D R_{T}(\bar{E})} \psi(\tilde{s})=\psi\left(s_{1}\right)+\psi\left(s_{2}\right)+\psi\left(s_{4}\right)+\psi\left(s_{5}\right)=\frac{\theta \phi(l+m)+\chi(\phi l+\theta m)}{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)} .
$$

$$
\begin{aligned}
& \varphi\left(s_{1}\right)=0 \cdot \frac{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)}{\theta \phi(l+m)+\chi(\phi l+\theta m)}=0, \\
& \varphi\left(s_{2}\right)=\frac{\theta \phi(l+m)}{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)} \cdot \frac{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)}{\theta \phi(l+m)+\chi(\phi l+\theta m)}=\frac{\theta \phi(l+m)}{\theta \phi(l+m)+\chi(\phi l+\theta m)}, \\
& \varphi\left(s_{3}\right)=0, \\
& \varphi\left(s_{4}\right)=\frac{\chi \phi l}{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)} \cdot \frac{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)}{\theta \phi(l+m)+\chi(\phi l+\theta m)}=\frac{\chi \phi l}{\theta \phi(l+m)+\chi(\phi l+\theta m)}, \\
& \varphi\left(s_{5}\right)=\frac{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)}{\theta \phi(1+\chi)(l+m)+\chi(\phi l+\theta m)} \cdot \frac{\chi \theta m}{\theta \phi(l+m)+\chi(\phi l+\theta m)}=\frac{\chi \theta}{\theta \phi(l+m)+\chi(\phi l+\theta m)} .
\end{aligned}
$$

The steady-state PMF for $S M C(\bar{E})$:

$$
\varphi=\frac{1}{\theta \phi(l+m)+\chi(\phi l+\theta m)}(0, \theta \phi(l+m), 0, \chi \phi l, \chi \theta m) .
$$

This coincides with the result obtained with the use of ψ^{*} and $S J$.

Analysis of the reduced DTMC

Let G be a dynamic expression and \mathbf{P} be the TPM for $D T M C(G)$.
Reordering the states from $D R(G)$: the first rows and columns of \mathbf{P} correspond to the states from $D R_{V}(G)$ and the last ones correspond to the states from $D R_{T}(G)$.

Let $|D R(G)|=n$ and $\left|D R_{T}(G)\right|=m$. The resulting matrix is decomposed as:

$$
\mathbf{P}=\left(\begin{array}{cc}
\mathbf{C} & \mathbf{D} \\
\mathbf{E} & \mathbf{F}
\end{array}\right)
$$

The elements of the $(n-m) \times(n-m)$ submatrix \mathbf{C} : the probabilities to move from vanishing to vanishing states.

The elements of the $(n-m) \times m$ submatrix \mathbf{D} : the probabilities to move from vanishing to tangible states.

The elements of the $m \times(n-m)$ submatrix \mathbf{E} : the probabilities to move from tangible to vanishing states.

The elements of the $m \times m$ submatrix \mathbf{F} : the probabilities to move from tangible to tangible states.

The TPM \mathbf{P}^{\diamond} for $R D T M C(G)$ is the $m \times m$ matrix:

$$
\mathbf{P}^{\diamond}=\mathbf{F}+\mathbf{E G D}
$$

where the elements of the matrix \mathbf{G} are the probabilities to move from vanishing to vanishing states in any number of state transitions, without traversal of tangible states:

$$
\mathbf{G}=\sum_{k=0}^{\infty} \mathbf{C}^{k}=\left\{\begin{array}{lll}
\sum_{k=0}^{l} \mathbf{C}^{k}, & \exists l \in \mathbb{N} \forall k>l \mathbf{C}^{k}=\mathbf{0}, & \text { no loops among vanishing states; } \\
(\mathbf{I}-\mathbf{C})^{-1}, & \lim _{k \rightarrow \infty} \mathbf{C}^{k}=\mathbf{0}, & \text { loops among vanishing states; }
\end{array}\right.
$$

where $\mathbf{0}$ is the square matrix consisting only of zeros and \mathbf{I} is the identity matrix, both of size $n-m$.

For $1 \leq i, j \leq m$ and $1 \leq k, l \leq n-m$, let
$\mathcal{F}_{i j}$ be the elements of the matrix $\mathbf{F}, \mathcal{E}_{i k}$ be those of $\mathbf{E}, \mathcal{G}_{k l}$ be those of \mathbf{G} and $\mathcal{D}_{l j}$ be those of \mathbf{D}.
The elements $\mathcal{P}_{i j}^{\diamond}$ of the matrix \mathbf{P}^{\diamond} are
$\mathcal{P}_{i j}^{\diamond}=\mathcal{F}_{i j}+\sum_{k=1}^{n-m} \sum_{l=1}^{n-m} \mathcal{E}_{i k} \mathcal{G}_{k l} \mathcal{D}_{l j}=\mathcal{F}_{i j}+\sum_{k=1}^{n-m} \mathcal{E}_{i k} \sum_{l=1}^{n-m} \mathcal{G}_{k l} \mathcal{D}_{l j}=\mathcal{F}_{i j}+\sum_{l=1}^{n-m} \mathcal{D}_{l j} \sum_{k=1}^{n-m} \mathcal{E}_{i k} \mathcal{G}_{k l}$,
i.e. $\mathcal{P}_{i j}^{\diamond}(1 \leq i, j \leq m)$ is the total probability to move from the tangible state s_{i} to the tangible state s_{j} in any number of steps, without traversal of tangible states, but possibly going through vanishing states.

Let $s, \tilde{s} \in D R_{T}(G)$ such that $s=s_{i}, \tilde{s}=s_{j}$.
The probability to move from s to \tilde{s} in any number of steps, without traversal of tangible states is

$$
P M^{\diamond}(s, \tilde{s})=\mathcal{P}_{i j}^{\diamond}
$$

Definition 20 Let G be a dynamic expression and $[G]_{\approx \in D} \in R_{T}(G)$.
The reduced discrete time Markov chain (RDTMC) of G, denoted by $R D T M C(G)$, has the state space $D R_{T}(G)$, the initial state $[G]_{\approx}$ and the transitions $s \hookrightarrow_{\mathcal{P}} \tilde{s}$, where $\mathcal{P}=P M^{\diamond}(s, \tilde{s})$.

RDTMCs of static expressions can be defined as well. For $E \in$ RegStatExpr, let $R D T M C(E)=R D T M C(\bar{E})$.

Let $D R_{T}(G)=\left\{s_{1}, \ldots, s_{m}\right\}$ and $[G]_{\approx \in D} R_{T}(G)$. The transient (k-step, $k \in \mathbb{N}$) probability mass function (PMF) $\psi^{\diamond}[k]=\left(\psi^{\diamond}[k]\left(s_{1}\right), \ldots, \psi^{\diamond}[k]\left(s_{m}\right)\right)$ for $\operatorname{RDTMC}(G)$ is calculated as

$$
\psi^{\diamond}[k]=\psi^{\diamond}[0]\left(\mathbf{P}^{\diamond}\right)^{k}
$$

where $\psi^{\diamond}[0]=\left(\psi^{\diamond}[0]\left(s_{1}\right), \ldots, \psi^{\diamond}[0]\left(s_{m}\right)\right)$ is the initial PMF:

$$
\psi^{\diamond}[0]\left(s_{i}\right)= \begin{cases}1, & s_{i}=[G] \approx \\ 0, & \text { otherwise }\end{cases}
$$

We have $\psi^{\diamond}[k+1]=\psi^{\diamond}[k] \mathbf{P}^{\diamond}(k \in \mathbb{N})$. The steady-state PMF $\psi^{\diamond}=\left(\psi^{\diamond}\left(s_{1}\right), \ldots, \psi^{\diamond}\left(s_{m}\right)\right)$ for $\operatorname{RDTMC}(G)$ is a solution of:

$$
\left\{\begin{array}{l}
\psi^{\diamond}\left(\mathbf{P}^{\diamond}-\mathbf{I}\right)=\mathbf{0} \\
\psi^{\diamond} \mathbf{1}^{T}=1
\end{array}\right.
$$

where \mathbf{I} is the identity matrix of size m and $\mathbf{0}$ is a row vector of m values $0, \mathbf{1}$ is that of m values 1 . When $R D T M C(G)$ has the single steady state, $\psi^{\diamond}=\lim _{k \rightarrow \infty} \psi^{\diamond}[k]$.

Proposition 3 (PMFSMCT) Let G be a dynamic expression, φ be the steady-state PMF for $S M C(G)$ and $\psi \diamond$ be the steady-state PMF for $R D T M C(G)$. Then $\forall s \in D R(G)$

$$
\varphi(s)= \begin{cases}\psi^{\diamond}(s), & s \in D R_{T}(G) \\ 0, & s \in D R_{V}(G)\end{cases}
$$

To calculate φ, we take all the elements of ψ^{\diamond} as the steady-state probabilities of the tangible states, instead of abstracting from self-loops with probability less than 1 to get \mathbf{P}^{*} and ψ^{*}, followed by weighting by $S J$ and normalization.

Using $R D T M C(G)$ instead of $E D T M C(G)$ allows one to avoid multistage analysis.
Constructing \mathbf{P}^{\diamond} requires calculating matrix powers or inverse matrices.
$R D T M C(G)$ has self-loops, unlike $\operatorname{EDTMC}(G)$, hence, the behaviour of $R D T M C(G)$ may stabilize slower than that of $E D T M C(G)$. \mathbf{P}^{\diamond} is smaller and denser matrix than \mathbf{P}^{*}, since \mathbf{P}^{\diamond} has non-zero elements at the main diagonal and many of them outside it.

The complexity of the analytical calculation of ψ^{\diamond} w.r.t. ψ^{*} depends on the model structure: the number of vanishing states and loops among them.
Usually it is lower, since the matrix size reduction plays an important role.
The elimination of vanishing states.

- The system models with many immediate activities:
significant simplification of the solution.
- The abstraction level of SMCs:
decreases their impact to the solution complexity.
- The abstraction level of transition systems:
allows immediate activities to specify logical structure.

PEVMETHS: Performance evaluation methods in $d t s i P B C$
$E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \mathfrak{h}_{l}\right) ;(\{d\}, \theta)\right)\right]\left(\left(\{e\}\right.\right.\right.\right.$, म $\left.\left.\left.\left._{m}\right) ;(\{f\}, \phi)\right)\right)\right) *$ Stop $]$.
$D R_{T}(\bar{E})=\left\{s_{1}, s_{2}, s_{4}, s_{5}\right\}$ and $D R_{V}(\bar{E})=\left\{s_{3}\right\}$.
We reorder the states from $D R(\bar{E})$, by moving the vanishing states to the first positions: $s_{3}, s_{1}, s_{2}, s_{4}, s_{5}$.

The reordered TPM for $D T M C(\bar{E})$:

$$
\mathbf{P}_{r}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1-\rho & \rho & 0 & 0 \\
\chi & 0 & 1-\chi & 0 & 0 \\
0 & 0 & \theta & 1-\theta & 0 \\
0 & 0 & \phi & 0 & 1-\phi
\end{array}\right)
$$

The result of the decomposing \mathbf{P}_{r} :
$\mathbf{C}=0, \mathbf{D}=\left(0,0, \frac{l}{l+m}, \frac{m}{l+m}\right), \mathbf{E}=\left(\begin{array}{c}0 \\ \chi \\ 0 \\ 0\end{array}\right), \mathbf{F}=\left(\begin{array}{cccc}1-\rho & \rho & 0 & 0 \\ 0 & 1-\chi & 0 & 0 \\ 0 & \theta & 1-\theta & 0 \\ 0 & \phi & 0 & 1-\phi\end{array}\right)$

Since $\mathbf{C}^{1}=\mathbf{0}$, we have $\forall k>0 \mathbf{C}^{k}=\mathbf{0}$, hence, $l=0$ and there are no loops among vanishing states. Then

$$
\mathbf{G}=\sum_{k=0}^{l} \mathbf{C}^{k}=\mathbf{C}^{0}=\mathbf{I}
$$

The TPM for $R D T M C(\bar{E})$:

$$
\mathbf{P}^{\diamond}=\mathbf{F}+\mathbf{E G D}=\mathbf{F}+\mathbf{E I D}=\mathbf{F}+\mathbf{E D}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \frac{\chi l}{l+m} & \frac{\chi m}{l+m} \\
0 & \theta & 1-\theta & 0 \\
0 & \phi & 0 & 1-\phi
\end{array}\right)
$$

The steady-state PMF for $R D T M C(\bar{E})$:

$$
\psi^{\diamond}=\frac{1}{\theta \phi(l+m)+\chi(\phi l+\theta m)}(0, \theta \phi(l+m), \chi \phi l, \chi \theta m) .
$$

Note that $\psi^{\diamond}=\left(\psi^{\diamond}\left(s_{1}\right), \psi^{\diamond}\left(s_{2}\right), \psi^{\diamond}\left(s_{4}\right), \psi^{\diamond}\left(s_{5}\right)\right)$.

By Proposition PMFSMCT:

$$
\begin{aligned}
& \varphi\left(s_{1}\right)=0, \\
& \varphi\left(s_{2}\right)=\frac{\theta \phi(l+m)}{\theta \phi(l+m)+\chi(\phi l+\theta m)}, \\
& \varphi\left(s_{3}\right)=0, \\
& \varphi\left(s_{4}\right)=\frac{\chi \phi l}{\theta \phi(l+m)+\chi(\phi l+\theta m)}, \\
& \varphi\left(s_{5}\right)=\frac{\chi \theta m}{\theta \phi(l+m)+\chi(\phi l+\theta m)} .
\end{aligned}
$$

The steady-state PMF for $S M C(\bar{E})$:

$$
\varphi=\frac{1}{\theta \phi(l+m)+\chi(\phi l+\theta m)}(0, \theta \phi(l+m), 0, \chi \phi l, \chi \theta m) .
$$

This coincides with the result obtained with the use of ψ^{*} and $S J$.

$R D T M C(\bar{E})$

EXPRRDTMC: The reduced DTMC of \bar{E} for

$$
E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \mathfrak{h}_{l}\right) ;(\{d\}, \theta)\right)[]\left(\left(\{e\}, দ_{m}\right) ;(\{f\}, \phi)\right)\right)\right) * \text { Stop }\right]
$$

$$
\begin{gathered}
\text { EXPRRSMC: The reduced SMC of } \bar{E} \text { for } \\
E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)\right)\right]\left[\left(\left(\{e\}, \natural_{m}\right) ;(\{f\}, \phi)\right)\right)\right) * \text { Stop }\right]
\end{gathered}
$$

Theorem 3 (EREER) Let G be a dynamic expression, $\left(\mathbf{P}^{\diamond}\right)^{*}$ results from embedding the TPM \mathbf{P}^{\diamond} for $R D T M C(G)$, and $\left(\left(\mathbf{P}^{*}\right)^{\diamond}\right)^{*}$ results from reduction and final embedding the TPM \mathbf{P}^{*} for $\operatorname{EDTMC}(G)$. Then

$$
\left(\left(\mathbf{P}^{*}\right)^{\diamond}\right)^{*}=\left(\mathbf{P}^{\diamond}\right)^{*} .
$$

Let $E=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, দ_{l}\right) ;(\{d\}, \theta)\right)\right]\left[\left(\left(\{e\}, দ_{m}\right) ;(\{f\}, \phi)\right)\right)\right) *\right.$ Stop $]$.
The TPMs for $R D T M C(\bar{E})$ and $E R D T M C(\bar{E})$:

$$
\mathbf{P}^{\diamond}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \frac{\chi l}{l+m} & \frac{\chi m}{l+m} \\
0 & \theta & 1-\theta & 0 \\
0 & \phi & 0 & 1-\phi
\end{array}\right),\left(\mathbf{P}^{\diamond}\right)^{*}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

The TPMs for $R E D T M C(\bar{E})$ and $E R E D T M C(\bar{E})$:

$$
\left(\mathbf{P}^{*}\right)^{\diamond}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\left(\mathbf{P}^{*}\right)^{\diamond}\right)^{*}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

The self-loops abstraction subvector of \bar{E} for the submatrix $\mathbf{F}: S L_{F}=\left(\frac{1}{\rho}, \frac{1}{\chi}, \frac{1}{\theta}, \frac{1}{\phi}\right)$.

The self-loops abstraction vector of \bar{E} in $R E D T M C(\bar{E})$ (for the matrix \mathbf{H}^{\prime}):
$\left(S L^{*}\right)^{\diamond}=S L_{H^{\prime}}=(1,1,1,1)$.
The self-loops abstraction vector of \bar{E} in $R D T M C(\bar{E})$:
$S L^{\diamond}=1 \operatorname{Diag}\left(S L_{F}\right) \operatorname{Diag}\left(S L_{H^{\prime}}\right)=\left(\frac{1}{\rho}, \frac{1}{\chi}, \frac{1}{\theta}, \frac{1}{\phi}\right)$, where $\mathbf{1}$ is a row vector of n values 1 .
The elements of \mathbf{H}^{\prime} are the probabilities to move from tangible to tangible states, via any positive number of vanishing states, without traversal of tangible states, in $\operatorname{EDTMC}(G) . \mathbf{H}^{\prime}=\operatorname{Diag}\left(S L_{F}\right) \mathbf{H}$.

The elements of $\mathbf{H}=\mathbf{E G D}$ are the probabilities to move from tangible to tangible states, via any positive number of vanishing states, without traversal of tangible states, in $\operatorname{DTMC}(G)$.

The matrices \mathbf{H} and \mathbf{H}^{\prime} :

$$
\mathbf{H}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \frac{\chi l}{l+m} & \frac{\chi m}{l+m} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \mathbf{H}^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\left(\mathbf{P}^{*}\right)^{\diamond}\right)^{*}=\operatorname{Diag}\left(S L^{\diamond}\right)\left(\mathbf{P}^{\diamond}-\mathbf{I}\right)+\mathbf{I}=\operatorname{Diag}\left(S L_{H^{\prime}}\right) \operatorname{Diag}\left(S L_{F}\right)\left(\mathbf{P}^{\diamond}-\mathbf{I}\right)+\mathbf{I}=\left(\mathbf{P}^{\diamond}\right)^{*}
$$

Stochastic equivalences

Step stochastic bisimulation equivalence

For $\Upsilon \in \mathbb{N}_{\text {fin }}^{\mathcal{S} \mathcal{L}}$, we consider $\mathcal{L}(\Upsilon) \in \mathbb{N}_{\text {fin }}^{\mathcal{L}}$, i.e. (possibly empty) multisets of multiactions.
Let G be a dynamic expression and $\mathcal{H} \subseteq D R(G)$. For $s \in D R(G)$ and $A \in \mathbb{N}_{\text {fin }}^{\mathcal{L}}$ we write $s \rightarrow_{\mathcal{P}} \mathcal{H}$, where $\mathcal{P}=P M_{A}(s, \mathcal{H})$ is the overall probability to move from s into the set of states \mathcal{H} via steps with the multiaction part A :

$$
\left.\left.P M_{A}(s, \mathcal{H})=\sum_{\{\Upsilon \mid \exists \tilde{s} \in \mathcal{H}} \sum_{\substack{\Upsilon \\ s \\, \mathcal{L}}} P T(\Upsilon)=A\right\}\right) .
$$

We write $s \xrightarrow{A} \mathcal{H}$ if $\exists \mathcal{P} s \xrightarrow{A} \mathcal{P} \mathcal{H}$.
We write $s \rightarrow_{\mathcal{P}} \mathcal{H}$ if $\exists A s \xrightarrow{A} \mathcal{H}$, where $\mathcal{P}=P M(s, \mathcal{H})$ is the overall probability to move from s into the set of states \mathcal{H} via any steps:

$$
P M(s, \mathcal{H})=\sum_{\{\Upsilon \mid \exists \tilde{s} \in \mathcal{H}} P T(\Upsilon \tilde{s}\}
$$

Definition 21 Let G and G^{\prime} be dynamic expressions. An equivalence relation
$\mathcal{R} \subseteq\left(D R(G) \cup D R\left(G^{\prime}\right)\right)^{2}$ is a step stochastic bisimulation between G and $G^{\prime}, \mathcal{R}: G \unlhd_{s s} G^{\prime}$, if:

1. $\left([G] \approx,\left[G^{\prime}\right] \approx\right) \in \mathcal{R}$.
2. $\left(s_{1}, s_{2}\right) \in \mathcal{R} \Rightarrow \forall \mathcal{H} \in\left(D R(G) \cup D R\left(G^{\prime}\right)\right) / \mathcal{R} \forall A \in \mathbb{N}_{\text {fin }}^{\mathcal{L}}$

$$
s_{1} \xrightarrow[\rightarrow]{A} \mathcal{H} \Leftrightarrow s_{2} \xrightarrow{A}_{\mathcal{P}} \mathcal{H} .
$$

Two dynamic expressions G and G^{\prime} are step stochastic bisimulation equivalent, $G \unlhd_{s s} G^{\prime}$, if $\exists \mathcal{R}: G{\underset{\underline{~}}{S S}} G^{\prime}$.

Proposition 4 (BISSPL) Let G and G^{\prime} be dynamic expressions and \mathcal{R} : $G \unlhd_{s s} G^{\prime}$. Then

$$
\mathcal{R} \subseteq\left(D R_{T}(G) \cup D R_{T}\left(G^{\prime}\right)\right)^{2} \uplus\left(D R_{V}(G) \cup D R_{V}\left(G^{\prime}\right)\right)^{2}
$$

where \uplus is disjoint union.
$\mathcal{R}_{s s}\left(G, G^{\prime}\right)=\bigcup\left\{\mathcal{R} \mid \mathcal{R}: G \unlhd_{S S} G^{\prime}\right\}$ is the union of all step stochastic bisimulations between G and G^{\prime}.

Proposition 5 (LARBIS) Let G and G^{\prime} be dynamic expressions and $G \unlhd_{s s} G^{\prime}$. Then $\mathcal{R}_{s s}\left(G, G^{\prime}\right)$ is the largest step stochastic bisimulation between G and G^{\prime}.

Interrelations of the stochastic equivalences

INTSTEQ: Interrelations of the stochastic equivalences
\square 4 (INTSTEQ) Let $\leftrightarrow, \leftrightarrow \leftrightarrow \in\{\overleftrightarrow{3},=, \approx\}$ and $\star, \star \star \in\{-, s s, t s\}$. For dynamic expressions G and G^{\prime}

$$
G \not \leftrightarrow_{\star} G^{\prime} \Rightarrow G \nless \oiint_{\star \star} G^{\prime}
$$

iff in the graph in Figure INTSTEQ there exists a directed path from \leftrightarrow_{\star} to $\left\langle\mu_{\star *}\right.$.

Validity of the implications

- The implication $={ }_{t s} \rightarrow \unlhd_{s s}$ is proved as follows. Let $\beta: G={ }_{t s} G^{\prime}$. Then $\mathcal{R}: G \unlhd_{s s} G^{\prime}$, where $\mathcal{R}=\{(s, \beta(s)) \mid s \in D R(G)\}$.
- The implication $\approx \rightarrow=_{t s}$ is valid, since the transition system of a dynamic formula is defined based on its structural equivalence class.

Absence of the additional nontrivial arrows

(a) Let $E=\left(\{a\}, \frac{1}{2}\right)$ and $E^{\prime}=\left(\{a\}, \frac{1}{3}\right)_{1}[]\left(\{a\}, \frac{1}{3}\right)_{2}$. Then $\overline{E_{\unlhd_{s S}}} \overline{E^{\prime}}$, but $\bar{E} \neq t s^{E^{\prime}}$, since $T S(\bar{E})$ has only one transition from the initial to the final state while $T S\left(\overline{E^{\prime}}\right)$ has two such ones.
(b) Let $E=\left(\{a\}, \frac{1}{2}\right) ;\left(\{\hat{a}\}, \frac{1}{2}\right)$ and $\left.E^{\prime}=\left(\{a\}, \frac{1}{2}\right) ;\left(\{\hat{a}\}, \frac{1}{2}\right)\right)$ sy a. Then $\bar{E}={ }_{t s} \overline{E^{\prime}}$, but $\bar{E} \not \approx \overline{E^{\prime}}$, since \bar{E} and $\overline{E^{\prime}}$ cannot be reached from each other by applying inaction rules.
(a) N

(b) N

EXMSTEQ: Dtsi-boxes of the dynamic expressions from equivalence examples of the Theorem INTSTEQ In Figure EXMSTEQ, $N=B o x_{d t s i}(\bar{E})$ and $N^{\prime}=B o x_{d t s i}\left(\overline{E^{\prime}}\right)$ for each picture (a)-(b).

Reduction modulo equivalences

An autobisimulation is a bisimulation between an expression and itself.
For a dynamic expression G and a step stochastic autobisimulation $\mathcal{R}: G \unlhd_{S S} G$, let $\mathcal{K} \in D R(G) / \mathcal{R}$ and $s_{1}, s_{2} \in \mathcal{K}$.

We have $\forall \widetilde{\mathcal{K}} \in D R(G) /_{\mathcal{R}} \forall A \in \mathbb{N}_{\text {fin }}^{\mathcal{L}} s_{1} \xrightarrow{A} \widetilde{\mathcal{K}} \Leftrightarrow s_{2}{ }_{\rightarrow}^{A} \widetilde{\mathcal{K}}$.
The equality is valid for all $s_{1}, s_{2} \in \mathcal{K}$, hence, we can rewrite it as $\mathcal{K} \xrightarrow{A}{ }_{\mathcal{P}} \widetilde{\mathcal{K}}$, where $\mathcal{P}=P M_{A}(\mathcal{K}, \widetilde{\mathcal{K}})=P M_{A}\left(s_{1}, \widetilde{\mathcal{K}}\right)=P M_{A}\left(s_{2}, \widetilde{\mathcal{K}}\right)$.

We write $\mathcal{K} \xrightarrow{A} \widetilde{\mathcal{K}}$ if $\exists \mathcal{P} \mathcal{K} \xrightarrow{A} \widetilde{\mathcal{K}}$ and $\mathcal{K} \rightarrow \widetilde{\mathcal{K}}$ if $\exists A \mathcal{K} \xrightarrow{A} \widetilde{\mathcal{K}}$.
The similar arguments: we write $\mathcal{K} \rightarrow_{\mathcal{P}} \widetilde{\mathcal{K}}$, where $\mathcal{P}=P M(\mathcal{K}, \widetilde{\mathcal{K}})=P M\left(s_{1}, \widetilde{\mathcal{K}}\right)=\operatorname{PM}\left(s_{2}, \widetilde{\mathcal{K}}\right)$.

Since $\mathcal{R} \subseteq\left(D R_{T}(G)\right)^{2} \uplus\left(D R_{V}(G)\right)^{2}$, we have $\forall \mathcal{K} \in D R(G) / \mathcal{R}$, all states from \mathcal{K} are tangible, when $\mathcal{K} \in D R_{T}(G) / \mathcal{R}$, or all of them are vanishing, when $\mathcal{K} \in D R_{V}(G) / \mathcal{R}$.

The average sojourn time in the equivalence class (w.r.t. \mathcal{R}) of states \mathcal{K} is

$$
S J_{\mathcal{R}}(\mathcal{K})= \begin{cases}\frac{1}{1-P M(\mathcal{K}, \mathcal{K})}, & \mathcal{K} \in D R_{T}(G) / \mathcal{R} \\ 0, & \mathcal{K} \in D R_{V}(G) / \mathcal{R}\end{cases}
$$

The average sojourn time vector for the equivalence classes (w.r.t. \mathcal{R}) of states of $G, S J_{\mathcal{R}}$, has the elements $S J_{\mathcal{R}}(\mathcal{K}), \mathcal{K} \in D R(G) / \mathcal{R}$.

The sojourn time variance in the equivalence class (w.r.t. \mathcal{R}) of states \mathcal{K} is

$$
V A R_{\mathcal{R}}(\mathcal{K})= \begin{cases}\frac{P M(\mathcal{K}, \mathcal{K})}{(1-P M(\mathcal{K}, \mathcal{K}))^{2}}, & \mathcal{K} \in D R_{T}(G) / \mathcal{R} \\ 0, & \mathcal{K} \in D R_{V}(G) / \mathcal{R}\end{cases}
$$

The sojourn time variance vector for the equivalence classes (w.r.t. \mathcal{R}) of states of $G, V A R_{\mathcal{R}}$, has the elements $V A R_{\mathcal{R}}(\mathcal{K}), \mathcal{K} \in D R(G) / \mathcal{R}$.
$\mathcal{R}_{s s}(G)=\bigcup\left\{\mathcal{R} \mid \mathcal{R}: G \unlhd_{s s} G\right\}$ is the largest step stochastic autobisimulation on G.
Definition 22 The quotient (by $\unlhd_{s s}$) (labeled probabilistic) transition system of a dynamic expression G is $T S_{\uplus_{s s}}(G)=\left(S_{\uplus_{s s}}, L_{\uplus_{s s}}, \mathcal{T}_{\uplus_{s s}}, s_{\overleftrightarrow{Щ}_{s s}}\right)$, where

- $S_{\uplus_{s s}}=D R(G) / \mathcal{R}_{s s}(G)$;
- $L_{\uplus_{s s}} \subseteq\left(\mathbb{I N}_{\text {fin }}^{\mathcal{L}}\right) \times(0 ; 1]$;
- $\mathcal{T}_{\uplus_{s s}}=\left\{\left(\mathcal{K},\left(A, P M_{A}(\mathcal{K}, \widetilde{\mathcal{K}})\right), \widetilde{\mathcal{K}}\right) \mid \mathcal{K}, \widetilde{\mathcal{K}} \in D R(G) /_{\mathcal{R}_{s s}(G)}, \mathcal{K} \xrightarrow{A} \widetilde{\mathcal{K}}\right\} ;$
- $s_{\underline{\underline{~}}_{s s}}=\left[[G]_{\approx}\right]_{\mathcal{R}_{s s}(G)}$.

The transition $(\mathcal{K},(A, \mathcal{P}), \widetilde{\mathcal{K}}) \in \mathcal{T}_{\uplus_{s s}}$ will be written as $\mathcal{K} \xrightarrow{A}_{\mathcal{P}} \widetilde{\mathcal{K}}$.
For $E \in$ RegStatExpr, let $T S_{\uplus_{s s}}(E)=T S_{\oiint_{s s}}(\bar{E})$.

Let F be an abstraction of E from the examples above, s.t. $c=e, d=f, \theta=\phi$:

$$
\left.\left.F=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \mathfrak{Ł}_{l}\right) ;(\{d\}, \theta)_{1}\right)\right]\right]\left(\left(\{c\}, \natural_{m}\right) ;(\{d\}, \theta)_{2}\right)\right)\right) * \text { Stop }\right] .
$$

$D R(\bar{F})=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ is obtained from $D R(\bar{E})$ via substitution of e, f, ϕ by c, d, θ, respectively.
$D R_{T}(\bar{F})=\left\{s_{1}, s_{2}, s_{4}, s_{5}\right\}$ and $D R_{V}(\bar{F})=\left\{s_{3}\right\}$.
$D R(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}, \mathcal{K}_{4}\right\}$,
where $\mathcal{K}_{1}=\left\{s_{1}\right\}, \mathcal{K}_{2}=\left\{s_{2}\right\}, \mathcal{K}_{3}=\left\{s_{3}\right\}, \mathcal{K}_{4}=\left\{s_{4}, s_{5}\right\}$.
$D R_{T}(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}\right\}$ and $D R_{V}(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{3}\right\}$.

QTS: The quotient transition system of \bar{F} for
$F=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)_{1}\right)[]\left(\left(\{c\}, \natural_{m}\right) ;(\{d\}, \theta)_{2}\right)\right)\right) *\right.$ Stop $]$

The quotient (by $\unlhd_{s s}$) average sojourn time vector of G is $S J_{\uplus_{s s}}=S J_{\mathcal{R}_{s s}(G)}$.
The quotient (by $\underline{\underline{~}}_{s s}$) sojourn time variance vector of G is $V A R_{s s}=V A R_{{\underset{R}{s s}}(G)}$.
Let $\mathcal{K} \rightarrow \widetilde{\mathcal{K}}$ and $\mathcal{K} \neq \widetilde{\mathcal{K}}$, i.e. $\operatorname{PM}(\mathcal{K}, \mathcal{K})<1$. The probability to move from \mathcal{K} to $\widetilde{\mathcal{K}}$ by executing any multiset of activities after possible self-loops is

$$
P M^{*}(\mathcal{K}, \widetilde{\mathcal{K}})= \begin{cases}P M(\mathcal{K}, \widetilde{\mathcal{K}}) \sum_{k=0}^{\infty} P M(\mathcal{K}, \mathcal{K})^{k}=\frac{P M(\mathcal{K}, \widetilde{\mathcal{K}})}{1-P M(\mathcal{K}, \mathcal{K})}, & \mathcal{K} \rightarrow \mathcal{K} \\ \operatorname{PM}(\mathcal{K}, \widetilde{\mathcal{K}}) & \text { otherwise }\end{cases}
$$

We have $\forall \mathcal{K} \in D R_{T}(G) / \mathcal{R}_{s s}(G) P M^{*}(\mathcal{K}, \widetilde{\mathcal{K}})=S J_{\oiint_{s s}}(\mathcal{K}) P M(\mathcal{K}, \widetilde{\mathcal{K}})$.

Definition 23 The quotient (by ${\unlhd_{s s}}$) EDTMC of a dynamic expression $G, E D T M C_{\uplus_{s s}}(G)$, has the state space $D R(G) / \mathcal{R}_{s s}(G)$, the initial state $\left[[G]_{\approx}\right]_{\mathcal{R}_{s s}(G)}$ and the transitions $\mathcal{K} \rightarrow \mathcal{p} \widetilde{\mathcal{K}}$, if $\mathcal{K} \rightarrow \widetilde{\mathcal{K}}$ and $\mathcal{K} \neq \widetilde{\mathcal{K}}$, where $\mathcal{P}=P M^{*}(\mathcal{K}, \widetilde{\mathcal{K}})$; or $\mathcal{K} \rightarrow{ }_{1} \mathcal{K}$, if $\operatorname{PM}(\mathcal{K}, \mathcal{K})=1$.

The quotient (by $\uplus_{s s}$) underlying SMC of $G, S M C_{\uplus_{s s}}(G)$, has the EDTMC EDTMC ${\uplus_{s s}}(G)$ and the sojourn time in every $\mathcal{K} \in D R_{T}(G) / \mathcal{R}_{s s}(G)$ is geometrically distributed with the parameter $1-P M(\mathcal{K}, \mathcal{K})$ while the sojourn time in every $\mathcal{K} \in D R_{V}(G) / \mathcal{R}_{s s}(G)$ is equal to zero.

For $E \in$ RegStatExpr, let $S M C_{\uplus_{s s}}(E)=S M C_{\uplus_{s s}}(\bar{E})$.
The steady-state PMFs $\psi_{\uplus_{s s}}^{*}$ for $E D T M C_{\uplus_{s s}}(G)$ and $\varphi_{\uplus_{s s}}$ for $S M C_{\uplus_{s s}}(G)$ are defined like ψ^{*} for $E D T M C(G)$ and φ for $S M C(G)$.

EXPRQSMC: The quotient underlying SMC of \bar{F} for $F=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)_{1}\right)[]\left(\left(\{c\}, \natural_{m}\right) ;(\{d\}, \theta)_{2}\right)\right)\right) *\right.$ Stop $]$

The quotient average sojourn time vector of \bar{F} :

$$
S J_{\overleftrightarrow{\leftrightarrow}_{s s}}=\left(\frac{1}{\rho}, \frac{1}{\chi}, 0, \frac{1}{\theta}\right)
$$

The quotient sojourn time variance vector of \bar{F} :

$$
V A R_{\oiint_{s s}}=\left(\frac{1-\rho}{\rho^{2}}, \frac{1-\chi}{\chi^{2}}, 0, \frac{1-\theta}{\theta^{2}}\right) .
$$

The TPM for $E D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}_{\overleftrightarrow{\leftrightarrow}_{s s}}^{*}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

The steady-state PMF for $E D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\psi_{\ddot{\mapsto}_{s s}}^{*}=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) .
$$

The steady-state PMF $\psi_{\uplus_{s s}}^{*}$ weighted by $S J_{\uplus_{s s}}$:

$$
\left(0, \frac{1}{3 \chi}, 0, \frac{l}{3 \theta}\right)
$$

We normalize the steady-state weighted PMF by dividing it by the sum of its components

$$
\psi_{\ddot{\unlhd}_{s}}^{*} S J_{\unlhd_{s s}}^{T}=\frac{\chi+\theta}{3 \chi \theta} .
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi_{\overleftrightarrow{\leftrightarrow}_{s s}}=\frac{1}{\chi+\theta}(0, \theta, 0, \chi) .
$$

Definition 24 Let G be a dynamic expression. The quotient (by $\unlhd_{s s}$) DTMC of $G, D T M C_{\uplus_{s s}}(G)$, has the state space $\operatorname{DR}(G) / \mathcal{R}_{s s}(G)$, the initial state $\left[[G]_{\approx}\right]_{\mathcal{R}_{s s}(G)}$ and the transitions $\mathcal{K} \rightarrow_{\mathcal{P}} \widetilde{\mathcal{K}}$, where $\mathcal{P}=P M(\mathcal{K}, \widetilde{\mathcal{K}})$.

For $E \in$ RegStatExpr, let $D T M C_{\uplus_{s s}}(E)=D T M C_{\uplus_{s s}}(\bar{E})$.
The steady-state PMF $\psi_{\uplus_{s s}}$ for $D T M C_{\uplus_{s s}}(G)$ is defined like ψ for $D T M C(G)$.

EXPRQDTMC: The quotient DTMC of \bar{F} for $F=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)_{1}\right)[]\left(\left(\{c\}, \natural_{m}\right) ;(\{d\}, \theta)_{2}\right)\right)\right) *\right.$ Stop $]$

The TPM for $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}_{\uplus_{s s}}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \chi & 0 \\
0 & 0 & 0 & 1 \\
0 & \theta & 0 & 1-\theta
\end{array}\right) .
$$

The steady-state PMF for $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\psi_{\uplus_{s s}}=\frac{1}{\chi+\theta+\chi \theta}(0, \theta, \chi \theta, \chi) .
$$

$D R_{T}(\bar{F}) /_{\mathcal{R}_{s s}(F)}=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}\right\}$ and $D R_{V}(\bar{F}) / \mathcal{R}_{s s}(F)=\left\{\mathcal{K}_{3}\right\}$. Hence,

$$
\sum_{\mathcal{K} \in D R_{T}(\bar{F}) / \mathcal{R}_{s s}(F)} \psi(\mathcal{K})=\psi\left(\mathcal{K}_{1}\right)+\psi\left(\mathcal{K}_{2}\right)+\psi\left(\mathcal{K}_{4}\right)=\frac{\chi+\theta}{\chi+\theta+\chi \theta}
$$

By the "quotient" analogue of Proposition PMFSMC:

$$
\begin{aligned}
& \varphi_{\unlhd_{s s}}\left(\mathcal{K}_{1}\right)=0 \cdot \frac{\chi+\theta+\chi \theta}{\chi+\theta}=0, \\
& \varphi_{\unlhd_{s s}}\left(\mathcal{K}_{2}\right)=\frac{\theta}{\chi+\theta+\chi \theta} \cdot \frac{\chi+\theta+\chi \theta}{\chi+\theta}=\frac{\theta}{\chi+\theta}, \\
& \varphi_{\unlhd_{s s}}\left(\mathcal{K}_{3}\right)=0, \\
& \varphi_{\unlhd_{s s}}\left(\mathcal{K}_{4}\right)=\frac{\chi}{\chi+\theta+\chi \theta} \cdot \frac{\chi+\theta+\chi \theta}{\chi+\theta}=\frac{\chi}{\chi+\theta} .
\end{aligned}
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi_{\uplus_{s s}}=\frac{1}{\chi+\theta}(0, \theta, 0, \chi)
$$

This coincides with the result obtained with the use of $\psi_{\unlhd_{s s}}^{*}$ and $S J_{\overleftrightarrow{\leftrightarrow}_{s s}}$.

Definition 25 The reduced quotient (by $\unlhd_{s s}$) DTMC of G, denoted by $R D T M C_{\uplus_{s s}}(G)$, is defined like $R D T M C(G)$, but it is constructed from $D T M C_{\uplus_{s s}}(G)$ instead of $D T M C(G)$.

For $E \in$ RegStatExpr, let $R D T M C_{\uplus_{s s}}(E)=R D T M C_{\uplus_{s s}}(\bar{E})$.
The steady-state PMF $\psi_{\ddot{\oiint}_{s}}^{\diamond}$ for $R D T M C_{\uplus_{s s}}(G)$ is defined like ψ^{\diamond} for $R D T M C(G)$.
The relationships between the steady-state PMFs $\psi_{\uplus_{s s}}$ and $\psi_{\uplus_{s s}}^{*}, \varphi_{\uplus_{s s}}$ and $\psi_{\uplus_{s s}}$, $\varphi_{\ddot{\leftrightarrow}_{s s}}$ and $\psi_{\ddot{\uplus}_{s s}}^{\diamond}$ are the same as those between their "non-quotient" versions.

EXPRQRDTMC: The reduced quotient DTMC of \bar{F} for

$$
F=\left[(\{a\}, \rho) *\left((\{b\}, \chi) ;\left(\left(\left(\{c\}, \natural_{l}\right) ;(\{d\}, \theta)_{1}\right)[]\left(\left(\{c\}, \natural_{m}\right) ;(\{d\}, \theta)_{2}\right)\right)\right) * \text { Stop }\right]
$$

$D R_{T}(\bar{F}) / \mathcal{R}_{s s}(F)=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}\right\}$ and $D R_{V}(\bar{F}) / \mathcal{R}_{s s}(F)=\left\{\mathcal{K}_{3}\right\}$.
We reorder the states from $D R(\bar{F}) / \mathcal{R}_{s s}(F)$, by moving vanishing states to the first positions: $\mathcal{K}_{3}, \mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}$.

The reordered TPM for $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}_{r_{\overleftrightarrow{H}_{s s}}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1-\rho & \rho & 0 \\
\chi & 0 & 1-\chi & 0 \\
0 & 0 & \theta & 1-\theta
\end{array}\right) .
$$

The result of the decomposing $\mathbf{P}_{r_{\uplus_{s s}}}$:

$$
\mathbf{C}_{\oiint_{s s}}=0, \mathbf{D}_{\oiint_{s s}}=(0,0,1), \mathbf{E}_{\oiint_{s s}}=\left(\begin{array}{c}
0 \\
\chi \\
0
\end{array}\right), \mathbf{F}_{\oiint_{s s}}=\left(\begin{array}{ccc}
1-\rho & \rho & 0 \\
0 & 1-\chi & 0 \\
0 & \theta & 1-\theta
\end{array}\right) .
$$

Since $\mathbf{C}_{\uplus_{s s}}^{1}=0$, we have $\forall k>0 \mathbf{C}_{\uplus_{s s}}^{k}=0$, hence, $l=0$ and there are no loops among vanishing states. Then

$$
\mathbf{G}_{\oiint_{s s}}=\sum_{k=0}^{l} \mathbf{C}_{\uplus_{s s}}^{k}=\mathbf{C}_{\uplus_{s s}}^{0}=\mathbf{I} .
$$

The TPM for $R D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1-\rho & \rho & 0 \\
0 & 1-\chi & \chi \\
0 & \theta & 1-\theta
\end{array}\right) .
\end{aligned}
$$

The steady-state PMF for $R D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\psi_{{\underset{\oiint}{s s}}^{\diamond}}=\frac{1}{\chi+\theta}(0, \theta, \chi) .
$$

Note that $\psi_{\underline{\Xi}_{s s}}^{\diamond}=\left(\psi_{\ddot{Ð}_{s s}}^{\diamond}\left(\mathcal{K}_{1}\right), \psi_{\underline{\Xi}_{s s}}^{\diamond}\left(\mathcal{K}_{2}\right), \psi_{\underline{\Xi}_{s s}}^{\diamond}\left(\mathcal{K}_{4}\right)\right)$.
By the "quotient" analogue of Proposition PMFSMCT:

$$
\begin{aligned}
& \varphi_{\uplus_{s s}}\left(\mathcal{K}_{1}\right)=0, \\
& \varphi_{\uplus_{s s}}\left(\mathcal{K}_{2}\right)=\frac{\theta}{\chi+\theta}, \\
& \varphi_{\uplus_{s s}}\left(\mathcal{K}_{3}\right)=0, \\
& \varphi_{\uplus_{s s}}\left(\mathcal{K}_{4}\right)=\frac{\chi}{\chi+\theta} .
\end{aligned}
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi_{\uplus_{s s}}=\frac{1}{\chi+\theta}(0, \theta, 0, \chi) .
$$

This coincides with the result obtained with the use of $\psi_{\underline{\Perp}_{s s}}^{*}$ and $S J_{\uplus_{s s}}$.

CUBTSMCQ: The cube of interrelations for standard and quotient transition systems and Markov chains of expressions (the red arrows are correct by Propositions QXXQ, EQEEQ and QRRQ; the magenta arrows are correct by Theorem EREER and its "quotient" analogue)

Proposition 6 (QXXQ) Let G be a dynamic expression, $\mathbf{P}_{\uplus_{s s}}$ be the TPM for DTMC $\uplus_{s s}(G)$ and $(\mathbf{P})_{\uplus_{s s}}$ results from quotienting (by $\underline{\unlhd}_{s s}$) the TPM \mathbf{P} for $D T M C(G)$. Then

$$
(\mathbf{P})_{\uplus_{s s}}=\mathbf{P}_{\uplus_{s s}} .
$$

The TPMs for $D T M C(\bar{F})$ and $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}=\left(\begin{array}{ccccc}
1-\rho & \rho & 0 & 0 & 0 \\
0 & 1-\chi & \chi & 0 & 0 \\
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & \theta & 0 & 1-\theta & 0 \\
0 & \theta & 0 & 0 & 1-\theta
\end{array}\right), \mathbf{P}_{\leftrightarrows_{s s}}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \chi & 0 \\
0 & 0 & 0 & 1 \\
0 & \theta & 0 & 1-\theta
\end{array}\right)
$$

The TPM for the quotient of $\operatorname{DTMC}(\bar{F})$:

$$
(\mathbf{P})_{\oiint_{s s}}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \chi & 0 \\
0 & 0 & 0 & 1 \\
0 & \theta & 0 & 1-\theta
\end{array}\right) .
$$

It is clear that $(\mathbf{P})_{\oiint_{s s}}=\mathbf{P}_{\uplus_{s s}}$.

Proposition 7 (EQEEQ) Let G be a dynamic expression, $\mathbf{P}_{\leftrightarrows_{s s}}^{*}$ be the TPM for EDTMC $\uplus_{s s}(G)$ and $\left(\mathbf{P}^{*}\right)_{\uplus_{s s}}^{*}$ results from quotienting (by $\underline{щ}_{s s}$) and final embedding the TPM \mathbf{P}^{*} for EDTMC (G). Then

$$
\left(\mathbf{P}^{*}\right)_{\unlhd_{s s}}^{*}=\mathbf{P}_{\leftrightarrows_{s s}}^{*} .
$$

The TPMs for $E D T M C(\bar{F})$ and $E D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}^{*}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right), \mathbf{P}_{\uplus_{s s}}^{*}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

The TPMs for the quotient of $E D T M C(\bar{F})$ and EDTMC of the quotient of $E D T M C(\bar{F})$ $\left(E D T M C^{\prime}(\bar{F})\right.$):

$$
\left(\mathbf{P}^{*}\right)_{\oiint_{s s}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\mathbf{P}^{*}\right)_{\uplus_{s}}^{*}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

It is clear that $\left(\mathbf{P}^{*}\right)_{\underline{\Perp}_{s s}}^{*}=\mathbf{P}_{{\underset{\Perp}{s s}}^{*}}^{*}$.

The TPMs for $D T M C(\bar{F})$ and $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}=\left(\begin{array}{ccccc}
1-\rho & \rho & 0 & 0 & 0 \\
0 & 1-\chi & \chi & 0 & 0 \\
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & \theta & 0 & 1-\theta & 0 \\
0 & \theta & 0 & 0 & 1-\theta
\end{array}\right), \mathbf{P}_{\leftrightarrows_{s s}}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \chi & 0 \\
0 & 0 & 0 & 1 \\
0 & \theta & 0 & 1-\theta
\end{array}\right)
$$

The collector matrix \mathbf{V} for $\mathcal{R}_{s s}(\bar{F})$ and the distributor matrix \mathbf{W} for \mathbf{V} :

$$
\mathbf{V}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \mathbf{W}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

It is easy to check that $\mathbf{W P V}=\mathbf{P}_{\uplus_{s s}}$.

Proposition 8 (QRRQ) Let G be a dynamic expression, $\mathbf{P}_{\unlhd_{s s}}^{\diamond}$ be the TPM for $R D T M C_{\uplus_{s s}}(G)$ and $\left(\mathbf{P}^{\diamond}\right)_{\uplus_{s s}}$ results from quotienting (by $\unlhd_{s s}$) the $T P M \mathbf{P}^{\diamond}$ for $R D T M C(G)$. Then

$$
\left(\mathbf{P}^{\diamond}\right)_{\leftrightarrows_{s s}}=\mathbf{P}_{\leftrightarrows_{s s}}^{\diamond} .
$$

The reordered TPMs for $D T M C(\bar{F})$ and $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}_{r}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \frac{l}{l+m} & \frac{m}{l+m} \\
0 & 1-\rho & \rho & 0 & 0 \\
\chi & 0 & 1-\chi & 0 & 0 \\
0 & 0 & \theta & 1-\theta & 0 \\
0 & 0 & \theta & 0 & 1-\theta
\end{array}\right), \mathbf{P}_{r_{\overleftrightarrow{H}_{s s}}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1-\rho & \rho & 0 \\
\chi & 0 & 1-\chi & 0 \\
0 & 0 & \theta & 1-\theta
\end{array}\right) .
$$

The reordered collector matrix \mathbf{V}_{r} for $\mathcal{R}_{s s}(\bar{F})$ and the reordered distributor matrix \mathbf{W}_{r} for \mathbf{V}_{r} :

$$
\mathbf{V}_{r}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \mathbf{W}_{r}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

It is easy to check that $\mathbf{W}_{r} \mathbf{P}_{r} \mathbf{V}_{r}=\mathbf{P}_{r_{\oiint_{s s}}}$.

The TPMs for $R D T M C(\bar{F})$ and $R D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}^{\diamond}=\left(\begin{array}{cccc}
1-\rho & \rho & 0 & 0 \\
0 & 1-\chi & \frac{\chi l}{l+m} & \frac{\chi m}{l+m} \\
0 & \theta & 1-\theta & 0 \\
0 & \theta & 0 & 1-\theta
\end{array}\right), \mathbf{P}_{\oiint_{s s}}^{\diamond}=\left(\begin{array}{ccc}
1-\rho & \rho & 0 \\
0 & 1-\chi & \chi \\
0 & \theta & 1-\theta
\end{array}\right) .
$$

The result of the decomposing the reordered collector matrix \mathbf{V}_{r} for $\mathcal{R}_{s s}(\bar{F})$ and the reordered distributor matrix \mathbf{W}_{r} for \mathbf{V}_{r} :

$$
\mathbf{V}_{C}=1, \mathbf{V}_{F}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \mathbf{W}_{C}=1, \mathbf{W}_{F}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

It is easy to check that $\left(\mathbf{P}^{\diamond}\right)_{\uplus_{s s}}=\mathbf{W}_{F} \mathbf{P}^{\diamond} \mathbf{V}_{F}=\mathbf{P}_{\leftrightarrows_{s s}}^{\diamond}$.

Stationary behaviour

Steady state and equivalences

Proposition 9 (STPROB) Let G, G^{\prime} be dynamic expressions with $\mathcal{R}: G \unlhd_{s s} G^{\prime}$ and φ be the steady-state PMF for $S M C(G)$, φ^{\prime} be the steady-state PMF for $S M C\left(G^{\prime}\right)$. Then $\forall \mathcal{H} \in\left(D R(G) \cup D R\left(G^{\prime}\right)\right) / \mathcal{R}$

$$
\sum_{s \in \mathcal{H} \cap D R(G)} \varphi(s)=\sum_{s^{\prime} \in \mathcal{H} \cap D R\left(G^{\prime}\right)} \varphi^{\prime}\left(s^{\prime}\right)
$$

Let G be a dynamic expression and φ be the steady-state PMF for $S M C(G)$, $\varphi_{\uplus_{s s}}$ be the steady-state PMF for $S M C_{\uplus_{s s}}(G)$.

By Proposition STPROB: $\forall \mathcal{K} \in D R(G) / \mathcal{R}_{s s}(G)$

$$
\varphi_{\uplus_{s s}}(\mathcal{K})=\sum_{s \in \mathcal{K}} \varphi(s) .
$$

Definition 26 A derived step trace of a dynamic expression G is $\Sigma=A_{1} \cdots A_{n} \in\left(\mathbb{N}_{\text {fin }}^{\mathcal{L}}\right)^{*}$, where $\exists s \in D R(G) s \xrightarrow{\Upsilon_{1}} s_{1} \xrightarrow{\Upsilon_{2}} \ldots \xrightarrow{\Upsilon_{n}} s_{n}, \mathcal{L}\left(\Upsilon_{i}\right)=A_{i}(1 \leq i \leq n)$.

The probability to execute the derived step trace Σ in s :

5 (STTRAC) Let G, G^{\prime} be dynamic expressions with $\mathcal{R}: G \unlhd_{s s} G^{\prime}$ and φ be the steady-state PMF for $S M C(G)$, φ^{\prime} be the steady-state PMF for $S M C\left(G^{\prime}\right)$ and Σ be a derived step trace of G and G^{\prime}. Then $\forall \mathcal{H} \in\left(D R(G) \cup D R\left(G^{\prime}\right)\right) / \mathcal{R}$

$$
\sum_{s \in \mathcal{H} \cap D R(G)} \varphi(s) P T(\Sigma, s)=\sum_{s^{\prime} \in \mathcal{H} \cap D R\left(G^{\prime}\right)} \varphi^{\prime}\left(s^{\prime}\right) P T\left(\Sigma, s^{\prime}\right)
$$

By Theorem STTRAC: $\forall \mathcal{K} \in D R(G) / \mathcal{R}_{s s}(G)$

$$
\varphi_{\overleftrightarrow{\leftrightarrow}_{s s}}(\mathcal{K}) P T(\Sigma, \mathcal{K})=\sum_{s \in \mathcal{K}} \varphi(s) P T(\Sigma, s),
$$

where $\forall s \in \mathcal{K} P T(\Sigma, \mathcal{K})=P T(\Sigma, s)$.
Proposition 10 (SJAVVA) Let G, G^{\prime} be dynamic expressions with \mathcal{R} : $G \unlhd_{S S} G^{\prime}$. Then $\forall \mathcal{H} \in\left(D R(G) \cup D R\left(G^{\prime}\right)\right) / \mathcal{R}$

$$
\begin{aligned}
S J_{\mathcal{R} \cap(D R(G))^{2}}(\mathcal{H} \cap D R(G)) & =S J_{\mathcal{R} \cap\left(D R\left(G^{\prime}\right)\right)^{2}}\left(\mathcal{H} \cap D R\left(G^{\prime}\right)\right) \\
V A R_{\mathcal{R} \cap(D R(G))^{2}}(\mathcal{H} \cap D R(G)) & =V A R_{\mathcal{R} \cap\left(D R\left(G^{\prime}\right)\right)^{2}}\left(\mathcal{H} \cap D R\left(G^{\prime}\right)\right) .
\end{aligned}
$$

SSBSSP: $\overleftrightarrow{\Delta}_{s S}$ preserves steady-state behaviour and sojourn time properties in the equivalence classes

Let $E=\left[\left(\{a\}, \frac{1}{2}\right) *\left(\left(\{b\}, \frac{1}{2}\right) ;\left(\left(\{c\}, \frac{1}{3}\right)_{1}[]\left(\{c\}, \frac{1}{3}\right)_{2}\right)\right) *\right.$ Stop $]$ and $E^{\prime}=\left[\left(\{a\}, \frac{1}{2}\right) *\left(\left(\left(\{b\}, \frac{1}{3}\right)_{1} ;\left(\{c\}, \frac{1}{2}\right)_{1}\right)[]\left(\left(\{b\}, \frac{1}{3}\right)_{2} ;\left(\{c\}, \frac{1}{2}\right)_{2}\right)\right) *\right.$ Stop $]$.
We have $\bar{E} \unlhd_{s s} \overline{E^{\prime}}$.
$D R(\bar{E})$ consists of
$s_{1}=\left[\overline{\left(\{a\}, \frac{1}{2}\right)} *\left(\left(\{b\}, \frac{1}{2}\right) ;\left(\left(\{c\}, \frac{1}{3}\right)_{1}[]\left(\{c\}, \frac{1}{3}\right)_{2}\right)\right) *\right.$ Stop $\left.]\right] \approx$,
$s_{2}=\left[\left[\left(\{a\}, \frac{1}{2}\right) * \overline{\left(\left(\{b\}, \frac{1}{2}\right)\right.} ;\left(\left(\{c\}, \frac{1}{3}\right)_{1}[]\left(\{c\}, \frac{1}{3}\right)_{2}\right)\right) *\right.$ Stop $\left.]\right] \approx$,
$s_{3}=\left[\left[\left(\{a\}, \frac{1}{2}\right) *\left(\left(\{b\}, \frac{1}{2}\right) ; \overline{\left(\left(\{c\}, \frac{1}{3}\right)_{1}[]\left(\{c\}, \frac{1}{3}\right)_{2}\right)}\right) *\right.\right.$ Stop $\left.]\right] \approx$.
$D R\left(\overline{E^{\prime}}\right)$ consists of
$s_{1}^{\prime}=\left[\overline{\left(\{a\}, \frac{1}{2}\right)} *\left(\left(\left(\{b\}, \frac{1}{3}\right)_{1} ;\left(\{c\}, \frac{1}{2}\right)_{1}\right)\right]\left[\left(\left(\{b\}, \frac{1}{3}\right)_{2} ;\left(\{c\}, \frac{1}{2}\right)_{2}\right)\right) *\right.$ Stop $\left.]\right]_{\approx}$,
$s_{2}^{\prime}=\left[\left[\left(\{a\}, \frac{1}{2}\right) * \overline{\left(\left(\left(\{b\}, \frac{1}{3}\right)_{1} ;\left(\{c\}, \frac{1}{2}\right)_{1}\right)[]\left(\left(\{b\}, \frac{1}{3}\right)_{2} ;\left(\{c\}, \frac{1}{2}\right)_{2}\right)\right)} * \text { Stop }\right]\right]_{\approx}$,
$s_{3}^{\prime}=\left[\left[\left(\{a\}, \frac{1}{2}\right) *\left(\left(\left(\{b\}, \frac{1}{3}\right)_{1} ; \overline{\left.\left(\{c\}, \frac{1}{2}\right)_{1}\right)}\right]\left[\left(\left(\{b\}, \frac{1}{3}\right)_{2} ;\left(\{c\}, \frac{1}{2}\right)_{2}\right)\right) * \text { Stop }\right]\right]_{\approx}\right.$,
$s_{4}^{\prime}=\left[\left[\left(\{a\}, \frac{1}{2}\right) *\left(\left(\left(\{b\}, \frac{1}{3}\right)_{1} ;\left(\{c\}, \frac{1}{2}\right)_{1}\right)[]\left(\left(\{b\}, \frac{1}{3}\right)_{2} ; \overline{\left.\left.\left(\{c\}, \frac{1}{2}\right)_{2}\right)\right)} *\right.\right.\right.\right.$ Stop $\left.]\right] \approx$.

The steady-state PMFs φ for $S M C(\bar{E})$ and φ^{\prime} for $S M C\left(\overline{E^{\prime}}\right)$ are

$$
\varphi=\left(0, \frac{1}{2}, \frac{1}{2}\right), \varphi^{\prime}=\left(0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)
$$

Consider $\mathcal{H}=\left\{s_{3}, s_{3}^{\prime}, s_{4}^{\prime}\right\}$. The steady-state probabilities for \mathcal{H} coincide:
$\sum_{s \in \mathcal{H} \cap D R(\bar{E})} \varphi(s)=\varphi\left(s_{3}\right)=\frac{1}{2}=\frac{1}{4}+\frac{1}{4}=\varphi^{\prime}\left(s_{3}^{\prime}\right)+\varphi^{\prime}\left(s_{4}^{\prime}\right)=\sum_{s^{\prime} \in \mathcal{H} \cap D R\left(\overline{E^{\prime}}\right)} \varphi^{\prime}\left(s^{\prime}\right)$.
Let $\Sigma=\{\{c\}\}$. The steady-state probabilities to enter into the equivalence class \mathcal{H} and start the derived step trace Σ from it coincide: $\varphi\left(s_{3}\right)\left(P T\left(\left\{\left(\{c\}, \frac{1}{3}\right)_{1}\right\}, s_{3}\right)+P T\left(\left\{\left(\{c\}, \frac{1}{3}\right)_{2}\right\}, s_{3}\right)\right)=$ $\frac{1}{2}\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{4}=\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2}=\varphi^{\prime}\left(s_{3}^{\prime}\right) P T\left(\left\{\left(\{c\}, \frac{1}{2}\right)_{1}\right\}, s_{3}^{\prime}\right)+\varphi^{\prime}\left(s_{4}^{\prime}\right) P T\left(\left\{\left(\{c\}, \frac{1}{2}\right)_{2}\right\}, s_{4}^{\prime}\right)$.
In Figure SSBSSP, $N=B o x_{d t s i}(\bar{E})$ and $N^{\prime}=B o x_{d t s i}\left(\overline{E^{\prime}}\right)$.

The sojourn time averages in the equivalence class \mathcal{H} coincide:

$$
\begin{aligned}
& S J_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap(D R(\bar{E}))^{2}}(\mathcal{H} \cap D R(G))=S J_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap(D R(\bar{E}))^{2}}\left(\left\{s_{3}\right\}\right)= \\
& \frac{1}{1-P M\left(\left\{s_{3}\right\},\left\{s_{3}\right\}\right)}=\frac{1}{1-P M\left(s_{3}, s_{3}\right)}=\frac{1}{1-\frac{1}{2}}=2=\frac{1}{1-\frac{1}{2}}=\frac{1}{1-P M\left(s_{3}^{\prime}, s_{3}^{\prime}\right)}= \\
& \frac{1}{1-P M\left(s_{4}^{\prime}, s_{4}^{\prime}\right)}=\frac{1}{1-P M\left(\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\},\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\}\right)}=S J_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap\left(D R\left(\overline{E^{\prime}}\right)\right)^{2}}\left(\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\}\right)= \\
& S J_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap\left(D R\left(\overline{E^{\prime}}\right)\right)^{2}}\left(\mathcal{H} \cap D R\left(G^{\prime}\right)\right) .
\end{aligned}
$$

The sojourn time variances in the equivalence class \mathcal{H} coincide:

$$
\begin{aligned}
& V A R_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap(D R(\bar{E}))^{2}}(\mathcal{H} \cap D R(G))=V A R_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap(D R(\bar{E}))^{2}}\left(\left\{s_{3}\right\}\right)= \\
& \frac{\left.P M\left(s_{3}\right\},\left\{s^{\prime}\right\}\right)}{\left(1-P M\left(\left\{s_{3}\right\},\left\{s_{3}\right\}\right)\right)^{2}}=\frac{P M\left(s_{3}, s_{3}\right)}{\left(1-P M\left(s_{3}, s_{3}\right)\right)^{2}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=2=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=\frac{P M\left(s_{3}^{\prime}, s_{3}^{\prime}\right)}{\left(1-P M\left(s_{3}^{\prime}, s_{3}^{\prime}\right)\right)^{2}}= \\
& \frac{P M\left(s_{4}^{\prime},,_{4}^{\prime}\right)}{\left(1-P M\left(s_{4}^{\prime}, s_{4}^{\prime}\right)\right)^{2}}=\frac{P M\left(\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\},\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\}\right\}}{\left(1-P M\left(\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\},\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\}\right)\right)^{2}}=V A R_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap\left(D R\left(\overline{E^{\prime}}\right)\right)^{2}}\left(\left\{s_{3}^{\prime}, s_{4}^{\prime}\right\}\right)=
\end{aligned}
$$

$$
V A R_{\mathcal{R}_{s s}\left(\bar{E}, \overline{E^{\prime}}\right) \cap\left(D R\left(\overline{E^{\prime}}\right)\right)^{2}}\left(\mathcal{H} \cap D R\left(G^{\prime}\right)\right) .
$$

Simplification of performance analysis

The method of performance analysis simplification.

1. The investigated system is specified by a static expression of $d t s i P B C$.
2. The transition system of the expression is constructed.
3. After treating the transition system for self-similarity, a step stochastic autobisimulation equivalence for the expression is determined.
4. The quotient underlying SMC is constructed from the quotient transition system.
5. Stationary probabilities and performance indices are calculated using the SMC.

Simplification of the steps 4 and 5:
constructing the reduced quotient DTMC from the quotient transition system, calculating the stationary probabilities of the quotient underlying SMC using this DTMC and obtaining the performance indices.

EQPEVA: Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying SMCs containing one closed communication class of states, which is ergodic, to ensure uniqueness of the stationary distribution.

If an SMC contains several closed communication classes of states that are all ergodic: several stationary distributions may exist, depending on the initial PMF.

The general steady-state probabilities are then calculated as the sum of the stationary probabilities of all the ergodic classes of states, weighted by the probabilities to enter these classes, starting from the initial state and passing through transient states.

The underlying SMC of each process expression has one initial PMF (that at the time moment 0): the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.

Shared memory system

A model of two processors accessing a common shared memory [MBCDF95]
The standard system

SHMDIA: The diagram of the shared memory system
After activation of the system (turning the computer on), two processors are active, and the common memory is available. Each processor can request an access to the memory after which the instantaneous decision is made.

When the decision is made in favour of a processor, it starts an acquisition of the memory, and another processor waits until the former one ends its operations, and the system returns to the state with both active processors and the available memory.
a corresponds to the system activation.
$r_{i}(1 \leq i \leq 2)$ represent the common memory request of processor i.
d_{i} correspond to the (instantaneous) decision on the memory allocation in favour of the processor i.
m_{i} represent the common memory access of processor i.
The other actions are used for communication purpose only.
The static expression of the first processor is
$E_{1}=\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{1}, y_{1}\right\}, \bigsqcup_{1}\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) *\right.$ Stop $]$.
The static expression of the second processor is
$E_{2}=\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}, \vdash_{1}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) *\right.$ Stop $]$.
The static expression of the shared memory is
$E_{3}=\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \natural_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)[]\left(\left(\left\{\widehat{y_{2}}\right\}, \natural_{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) *\right.$ Stop $]$.
The static expression of the shared memory system with two processors is $E=\left(E_{1}\left\|E_{2}\right\| E_{3}\right)$ sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs z_{2}.

Effect of synchronization

The synchronization of $\left(\left\{d_{i}, y_{i}\right\}, দ_{1}\right)$ and $\left(\left\{\widehat{y_{i}}\right\}, দ_{1}\right)$ produces $\left(\left\{d_{i}\right\}, দ_{2}\right)(1 \leq i \leq 2)$.
The synchronization of $\left(\left\{m_{i}, z_{i}\right\}, \frac{1}{2}\right)$ and $\left(\left\{\widehat{z_{i}}\right\}, \frac{1}{2}\right)$ produces $\left(\left\{m_{i}\right\}, \frac{1}{4}\right)(1 \leq i \leq 2)$.
The synchronization of $\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right)$ and $\left(\left\{x_{1}\right\}, \frac{1}{2}\right)$ produces $\left(\left\{a, \widehat{x_{2}}\right\}, \frac{1}{4}\right)$,
Synchronization of $\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right)$ and $\left(\left\{x_{2}\right\}, \frac{1}{2}\right)$ produces $\left(\left\{a, \widehat{x_{1}}\right\}, \frac{1}{4}\right)$.
Synchronization of $\left(\left\{a, \widehat{x_{2}}\right\}, \frac{1}{4}\right)$ and $\left(\left\{x_{2}\right\}, \frac{1}{2}\right)$, as well as $\left(\left\{a, \widehat{x_{1}}\right\}, \frac{1}{4}\right)$ and $\left(\left\{x_{1}\right\}, \frac{1}{2}\right)$ produces $\left(\{a\}, \frac{1}{8}\right)$.

$D R(\bar{E})$ consists of

$s_{1}=\left[\left(\left[\overline{\left(\left\{x_{1}\right\}, \frac{1}{2}\right)} *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{1}, y_{1}\right\}, \mathfrak{h}_{1}\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) *\right.\right.\right.$ Stop $]$
$\|\left[\overline{\left(\left\{x_{2}\right\}, \frac{1}{2}\right)} *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}\right.\right.\right.$, tr $\left.\left._{1}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) *$ Stop $]$
$\|\left[\overline{\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right)\right.} *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{h}_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)\right]\left[\left(\left(\left\{\widehat{y_{2}}\right\}\right.\right.\right.\right.$, pr $\left.\left.\left._{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) *$ Stop $\left.]\right)$
sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$,
$s_{2}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) * \overline{\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right)\right.} ;\left(\left\{d_{1}, y_{1}\right\}\right.\right.\right.\right.$, म $\left.\left._{1}\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) *$ Stop $]$
$\|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) * \overline{\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right)\right.} ;\left(\left\{d_{2}, y_{2}\right\}\right.\right.$, म $\left.\left._{1}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) *$ Stop $]$
$\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) * \overline{\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{t}_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)\right]\left[\left(\left(\left\{\widehat{y_{2}}\right\}, \text { qu }_{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right)} *\right.$ Stop $\left.]\right)$
sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right]_{\approx}$,
$s_{3}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ; \overline{\left(\left\{d_{1}, y_{1}\right\}, \text { म }_{1}\right)} ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) *\right.\right.\right.$ Stop $]$
$\|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}\right.\right.\right.$, म $\left.\left._{1}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) *$ Stop $]$
$\left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\overline{\left(\left(\left\{\widehat{y_{1}}\right\}, h_{1}\right.\right.}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)\right]\left[\left(\left(\left\{\widehat{y_{2}}\right\}\right.\right.\right.$, q $\left.\left.\left._{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) *$ Stop $\left.]\right)$
sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right]_{\approx}$,

$$
\begin{aligned}
& s_{4}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) * \overline{\left(\left\{r_{1}\right\}, \frac{1}{2}\right)} ;\left(\left\{d_{1}, y_{1}\right\}, \natural_{1}\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right]\right. \\
& \|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ; \overline{\left(\left\{d_{2}, y_{2}\right\}, \mathfrak{b}_{1}\right)} ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& \left.\left.\left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{b}_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)\right]\right]\left(\overline{\left(\left\{\widehat{y_{2}}\right\}, \natural_{1}\right)} ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) * \text { Stop }\right]\right)
\end{aligned}
$$

sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$,

$$
\begin{aligned}
& s_{5}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{1}, y_{1}\right\}, \mathfrak{b}_{1}\right) ; \overline{\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)}\right) * \text { Stop }\right]\right.\right. \\
& \|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}, \mathfrak{b}_{1}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& \left.\left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{b}_{1}\right) ; \overline{\left.\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)}\right]\right]\left(\left(\left\{\widehat{y_{2}}\right\}, \mathfrak{b}_{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) * \text { Stop }\right]\right)
\end{aligned}
$$

sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$,

$$
\begin{aligned}
& s_{6}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ; \overline{\left(\left\{d_{1}, y_{1}\right\}, \mathfrak{\natural}_{1}\right)} ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right]\right.\right. \\
& \|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ; \overline{\left(\left\{d_{2}, y_{2}\right\}, \natural_{1}\right)} ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& \left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) * \overline{\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{q}_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)[]\left(\left(\left\{\widehat{y_{2}}\right\}, দ_{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right)} * \text { Stop }\right]\right)
\end{aligned}
$$

sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$,

$$
\begin{aligned}
& s_{7}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) * \overline{\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right)\right.} ;\left(\left\{d_{1}, y_{1}\right\}, \mathfrak{b}_{1}\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right]\right. \\
& \|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}, \mathfrak{h}_{1}\right) ; \overline{\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)}\right) * \text { Stop }\right] \\
& \left.\left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{b}_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)\right]\right]\left(\left(\left\{\widehat{y_{2}}\right\}, \mathfrak{h}_{1}\right) ; \overline{\left.\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)}\right) * \text { Stop }\right]\right)
\end{aligned}
$$

sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$,

$$
\begin{aligned}
& s_{8}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{1}, y_{1}\right\}, \mathfrak{b}_{1}\right) ; \overline{\left.\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right)} * \text { Stop }\right]\right.\right.\right. \\
& \|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ; \widehat{\left(\left\{d_{2}, y_{2}\right\}, \mathfrak{t}_{1}\right)} ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& \left.\left.\left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{b}_{1}\right) ; \overline{\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)}\right)\right]\right]\left(\left(\left\{\widehat{y_{2}}\right\}, \mathfrak{b}_{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) * \text { Stop }\right]\right)
\end{aligned}
$$

sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$,

$$
\begin{aligned}
& s_{9}=\left[\left(\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ; \overline{\left(\left\{d_{1}, y_{1}\right\}, \mathfrak{L}_{1}\right)} ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right]\right.\right. \\
& \|\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}, \mathfrak{h}_{1}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& \left.\left.\|\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, দ_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)\right]\right]\left(\left(\left\{\widehat{y_{2}}\right\}, \mathfrak{b}_{1}\right) ; \overline{\left.\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)}\right) * \text { Stop }\right]\right)
\end{aligned}
$$

sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs $\left.z_{2}\right] \approx$.

Interpretation of the states
$D R_{T}(\bar{E})=\left\{s_{1}, s_{2}, s_{5}, s_{7}, s_{8}, s_{9}\right\}$ and $D R_{V}(\bar{E})=\left\{s_{3}, s_{4}, s_{6}\right\}$.
s_{1} : the initial state,
s_{2} : the system is activated and the memory is not requested,
s_{3} : the memory is requested by the first processor,
s_{4} : the memory is requested by the second processor,
s_{5} : the memory is allocated to the first processor,
s_{6} : the memory is requested by two processors,
s_{7} : the memory is allocated to the second processor,
s_{8} : the memory is allocated to the first processor and the memory is requested by the second processor,
s_{9} : the memory is allocated to the second processor and the memory is requested by the first processor.

SHMTS: The transition system of the shared memory system
(parallel executions of activities and the exclusively reachable states are marked with orange)

SHMSMC: The underlying SMC of the shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

The average sojourn time vector of \bar{E} :

$$
S J=\left(8, \frac{4}{3}, 0,0, \frac{8}{5}, 0, \frac{8}{5}, 4,4\right) .
$$

The sojourn time variance vector of \bar{E} :

$$
V A R=\left(56, \frac{4}{9}, 0,0, \frac{24}{25}, 0, \frac{24}{25}, 12,12\right) .
$$

The TPM for $E D T M C(\bar{E})$:

$$
\mathbf{P}^{*}=\left(\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{5} & 0 & \frac{1}{5} & 0 & 0 & 0 & \frac{3}{5} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 & \frac{3}{5} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

SHMTP: Transient and steady-state probabilities for the EDTMC of the shared memory system

k	0	5	10	15	20	25	30	35	40	45	50	∞
$\psi_{1}^{*}[k]$	1	0	0	0	0	0	0	0	0	0	0	0
$\psi_{2}^{*}[k]$	0	0	0.0754	0.0859	0.0677	0.0641	0.0680	0.0691	0.0683	0.0680	0.0681	0.0682
$\psi_{3}^{*}[k]$	0	0.2444	0.2316	0.1570	0.1554	0.1726	0.1741	0.1702	0.1696	0.1705	0.1707	0.1705
$\psi_{5}^{*}[k]$	0	0.2333	0.0982	0.1516	0.1859	0.1758	0.1672	0.1690	0.1711	0.1708	0.1703	0.1705
$\psi_{6}^{*}[k]$	0	0.0444	0.0323	0.0179	0.0202	0.0237	0.0234	0.0226	0.0226	0.0228	0.0228	0.0227
$\psi_{8}^{*}[k]$	0	0	0.1163	0.1395	0.1147	0.1077	0.1130	0.1150	0.1139	0.1133	0.1136	0.1136

We depict the probabilities for the states $s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{8}$ only, since the corresponding values coincide for s_{3}, s_{4} as well as for s_{5}, s_{7} as well as for s_{8}, s_{9}.

SHMTP: Transient probabilities alteration diagram for the EDTMC of the shared memory system

The steady-state PMF for $E D T M C(\bar{E})$:

$$
\psi^{*}=\left(0, \frac{3}{44}, \frac{15}{88}, \frac{15}{88}, \frac{15}{88}, \frac{1}{44}, \frac{15}{88}, \frac{5}{44}, \frac{5}{44}\right) .
$$

The steady-state PMF ψ^{*} weighted by $S J$:

$$
\left(0, \frac{1}{11}, 0,0, \frac{3}{11}, 0, \frac{3}{11}, \frac{5}{11}, \frac{5}{11}\right) .
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components $\psi^{*} S J^{T}=\frac{17}{11}$.
The steady-state PMF for $S M C(\bar{E})$:

$$
\varphi=\left(0, \frac{1}{17}, 0,0, \frac{3}{17}, 0, \frac{3}{17}, \frac{5}{17}, \frac{5}{17}\right) .
$$

Otherwise, from $T S(\bar{E})$, we can construct $D T M C(\bar{E})$ and calculate φ using it.

The TPM for $D T M C(\bar{E})$:

$$
\mathbf{P}=\left(\begin{array}{ccccccccc}
\frac{7}{8} & \frac{1}{8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{8} & 0 & \frac{1}{8} & \frac{3}{8} & 0 & 0 & \frac{3}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{8} & \frac{1}{8} & 0 & 0 & 0 & \frac{3}{8} & 0 & \frac{3}{8} \\
0 & 0 & 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} & 0 \\
0 & 0 & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & \frac{3}{4}
\end{array}\right) .
$$

SHMDTMC: The DTMC of the shared memory system
(parallel executions of activities and the exclusively reachable states are marked with orange)

SHMTPDTMC: Transient and steady-state probabilities for the DTMC of the shared memory system

k	0	5	10	15	20	25	30	35	40	45	50	∞
$\psi_{1}[k]$	1	0.5129	0.2631	0.1349	0.0692	0.0355	0.0182	0.0093	0.0048	0.0025	0.0013	0
$\psi_{2}[k]$	0	0.1161	0.0829	0.0657	0.0569	0.0524	0.0501	0.0489	0.0483	0.0479	0.0478	0.0476
$\psi_{3}[k]$	0	0.0472	0.0677	0.0782	0.0836	0.0864	0.0878	0.0885	0.0889	0.0891	0.0892	0.0893
$\psi_{5}[k]$	0	0.0581	0.0996	0.1207	0.1315	0.1370	0.1399	0.1413	0.1421	0.1425	0.1427	0.1429
$\psi_{6}[k]$	0	0.0311	0.0220	0.0171	0.0146	0.0133	0.0126	0.0123	0.0121	0.0120	0.0120	0.0119
$\psi_{8}[k]$	0	0.0647	0.1487	0.1923	0.2146	0.2260	0.2319	0.2349	0.2365	0.2373	0.2377	0.2381

We depict the probabilities for the states $s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{8}$ only, since the corresponding values coincide for s_{3}, s_{4} as well as for s_{5}, s_{7} as well as for s_{8}, s_{9}.

SHMTPDTMC: Transient probabilities alteration diagram for the DTMC of the shared memory system

The steady-state PMF for $D T M C(\bar{E})$:

$$
\psi=\left(0, \frac{1}{21}, \frac{5}{56}, \frac{5}{56}, \frac{1}{7}, \frac{1}{84}, \frac{1}{7}, \frac{5}{21}, \frac{5}{21}\right) .
$$

Remember that $D R_{T}(\bar{E})=\left\{s_{1}, s_{2}, s_{5}, s_{7}, s_{8}, s_{9}\right\}$ and $D R_{V}(\bar{E})=\left\{s_{3}, s_{4}, s_{6}\right\}$. Hence,

$$
\sum_{s \in D R_{T}(\bar{E})} \psi(s)=\psi\left(s_{1}\right)+\psi\left(s_{2}\right)+\psi\left(s_{5}\right)+\psi\left(s_{7}\right)+\psi\left(s_{8}\right)+\psi\left(s_{9}\right)=\frac{17}{21}
$$

By Proposition PMFSMC:

$$
\begin{aligned}
& \varphi\left(s_{1}\right)=0 \cdot \frac{21}{17}=0 \\
& \varphi\left(s_{2}\right)=\frac{1}{21} \cdot \frac{21}{17}=\frac{1}{17} \\
& \varphi\left(s_{3}\right)=0 \\
& \varphi\left(s_{4}\right)=0 \\
& \varphi\left(s_{5}\right)=\frac{1}{7} \cdot \frac{21}{17}=\frac{3}{17} \\
& \varphi\left(s_{6}\right)=0 \\
& \varphi\left(s_{7}\right)=\frac{1}{7} \cdot \frac{21}{17}=\frac{3}{17} \\
& \varphi\left(s_{8}\right)=\frac{5}{21} \cdot \frac{21}{17}=\frac{5}{17} \\
& \varphi\left(s_{9}\right)=\frac{5}{21} \cdot \frac{21}{17}=\frac{5}{17}
\end{aligned}
$$

The steady-state PMF for $S M C(\bar{E})$:

$$
\varphi=\left(0, \frac{1}{17}, 0,0, \frac{3}{17}, 0, \frac{3}{17}, \frac{5}{17}, \frac{5}{17}\right) .
$$

This coincides with the result obtained with the use of ψ^{*} and $S J$.

Alternatively, from $T S(\bar{E})$, we can construct $D T M C(\bar{E})$ and calculate φ using it.
$D R_{T}(\bar{E})=\left\{s_{1}, s_{2}, s_{5}, s_{7}, s_{8}, s_{9}\right\}$ and $D R_{V}(\bar{E})=\left\{s_{3}, s_{4}, s_{6}\right\}$.
We reorder the elements of $D R(\bar{E})$ by
moving vanishing states to the first positions: $s_{3}, s_{4}, s_{6}, s_{1}, s_{2}, s_{5}, s_{7}, s_{8}, s_{9}$.

The reordered TPM for $D T M C(\bar{E})$:

$$
\mathbf{P}_{r}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{7}{8} & \frac{1}{8} & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{8} & 0 & 0 & \frac{1}{8} & \frac{3}{8} & 0 & \frac{3}{8} & 0 \\
\frac{1}{8} & 0 & 0 & 0 & \frac{1}{8} & 0 & \frac{3}{8} & 0 & \frac{3}{8} \\
0 & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & \frac{3}{4} & 0 \\
\frac{1}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{3}{4}
\end{array}\right) .
$$

The result of the decomposing \mathbf{P}_{r} :

$$
\begin{gathered}
\mathbf{C}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \mathbf{D}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right), \mathbf{E}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{8} & 0 \\
\frac{1}{8} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
\frac{1}{4} & 0 & 0
\end{array}\right), \\
\mathbf{F}=\left(\begin{array}{cccccc}
\frac{7}{8} & \frac{1}{8} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{4} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{8} & \frac{3}{8} & 0 & \frac{3}{8} & 0 \\
0 & \frac{1}{8} & 0 & \frac{3}{8} & 0 & \frac{3}{8} \\
0 & 0 & 0 & 0 & \frac{3}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{3}{4}
\end{array}\right) .
\end{gathered}
$$

Since $\mathbf{C}^{1}=\mathbf{0}$, we have $\forall k>0, \mathbf{C}^{k}=\mathbf{0}$, hence, $l=0$ and there are no loops among vanishing states. Then

$$
\mathbf{G}=\sum_{k=0}^{l} \mathbf{C}^{k}=\mathbf{C}^{0}=\mathbf{I}
$$

The TPM for $R D T M C(\bar{E})$:

$$
\mathbf{P}^{\diamond}=\mathbf{F}+\mathbf{E G D}=\mathbf{F}+\mathbf{E I D}=\mathbf{F}+\mathbf{E D}=\left(\begin{array}{cccccc}
\frac{7}{8} & \frac{1}{8} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \\
0 & \frac{1}{8} & \frac{3}{8} & \frac{1}{8} & \frac{3}{8} & 0 \\
0 & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} & 0 & \frac{3}{8} \\
0 & 0 & 0 & \frac{1}{4} & \frac{3}{4} & 0 \\
0 & 0 & \frac{1}{4} & 0 & 0 & \frac{3}{4}
\end{array}\right)
$$

SHMRDTMC: The reduced DTMC of the shared memory system

SHMTRPR: Transient and steady-state probabilities for the RDTMC of the shared memory system

k	0	5	10	15	20	25	30	35	40	45	50	∞
$\psi_{1}^{\diamond}[k]$	1	0.5129	0.2631	0.1349	0.0692	0.0355	0.0182	0.0093	0.0048	0.0025	0.0013	0
$\psi_{2}^{\diamond}[k]$	0	0.1244	0.0931	0.0764	0.0679	0.0635	0.0612	0.0600	0.0594	0.0591	0.0590	0.0588
$\psi_{3}^{\diamond}[k]$	0	0.0863	0.1307	0.1530	0.1644	0.1703	0.1733	0.1748	0.1756	0.1760	0.1763	0.1765
$\psi_{5}^{\diamond}[k]$	0	0.0951	0.1912	0.2413	0.2670	0.2802	0.2870	0.2905	0.2922	0.2932	0.2936	0.2941

We depict the probabilities for states $s_{1}, s_{2}, s_{5}, s_{8}$ only, since the corresponding values coincide for s_{5}, s_{7}, as well as for s_{8}, s_{9}.

SHMTRPR: Transient probabilities alteration diagram for the RDTMC of the shared memory system

The steady-state PMF for $R D T M C(\bar{E})$:

$$
\psi^{\diamond}=\left(0, \frac{1}{17}, \frac{3}{17}, \frac{3}{17}, \frac{5}{17}, \frac{5}{17}\right) .
$$

Note that $\psi^{\diamond}=\left(\psi^{\diamond}\left(s_{1}\right), \psi^{\diamond}\left(s_{2}\right), \psi^{\diamond}\left(s_{5}\right), \psi^{\diamond}\left(s_{7}\right), \psi^{\diamond}\left(s_{8}\right), \psi^{\diamond}\left(s_{9}\right)\right)$.

By Proposition PMFSMCT:

$$
\begin{aligned}
& \varphi\left(s_{1}\right)=0, \quad \varphi\left(s_{2}\right)=\frac{1}{17}, \quad \varphi\left(s_{3}\right)=0, \quad \varphi\left(s_{4}\right)=0, \quad \varphi\left(s_{5}\right)=\frac{3}{17} \\
& \varphi\left(s_{6}\right)=0, \quad \varphi\left(s_{7}\right)=\frac{3}{17}, \quad \varphi\left(s_{8}\right)=\frac{5}{17}, \quad \varphi\left(s_{9}\right)=\frac{5}{17}
\end{aligned}
$$

The steady-state PMF for $S M C(\bar{E})$:

$$
\varphi=\left(0, \frac{1}{17}, 0,0, \frac{3}{17}, 0, \frac{3}{17}, \frac{5}{17}, \frac{5}{17}\right) .
$$

This coincides with the result obtained with the use of ψ^{*} and $S J$.

Performance indices

- The average recurrence time in the state s_{2}, where no processor requests the memory, the average system run-through, is $\frac{1}{\varphi_{2}}=17$.
- The common memory is available only in the states $s_{2}, s_{3}, s_{4}, s_{6}$.

The steady-state probability that the memory is available is

$$
\varphi_{2}+\varphi_{3}+\varphi_{4}+\varphi_{6}=\frac{1}{17}+0+0+0=\frac{1}{17}
$$

The steady-state probability that the memory is used (i.e. not available), the shared memory utilization, is $1-\frac{1}{17}=\frac{16}{17}$.

- After activation of the system, we leave the state s_{1} for ever, and the common memory is either requested or allocated in every remaining state, with exception of s_{2}.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving s_{2}, calculated as $\frac{\varphi_{2}}{S J_{2}}=\frac{1}{17} \cdot \frac{3}{4}=\frac{3}{68}$.

- The parallel common memory request of two processors $\left\{\left(\left\{r_{1}\right\}, \frac{1}{2}\right),\left(\left\{r_{2}\right\}, \frac{1}{2}\right)\right\}$ is only possible from the state s_{2}.

The request probability in this state is the sum of the execution probabilities for all multisets of activities containing both $\left(\left\{r_{1}\right\}, \frac{1}{2}\right)$ and $\left(\left\{r_{2}\right\}, \frac{1}{2}\right)$.

The steady-state probability of the shared memory request from two processors is

$$
\varphi_{2} \sum_{\left\{\Upsilon \left\lvert\,\left(\left\{\left(\left\{r_{1}\right\}, \frac{1}{2}\right),\left(\left\{r_{2}\right\}, \frac{1}{2}\right)\right\} \subseteq \Upsilon\right\}\right.\right.} P T\left(\Upsilon, s_{2}\right)=\frac{1}{17} \cdot \frac{1}{4}=\frac{1}{68} .
$$

- The common memory request of the first processor $\left(\left\{r_{1}\right\}, \frac{1}{2}\right)$ is only possible from the states s_{2}, s_{7}. The request probability in each of the states is the sum of the execution probabilities for all multisets of activities containing ($\left\{r_{1}\right\}, \frac{1}{2}$).
The steady-state probability of the shared memory request from the first processor is
$\varphi_{2} \sum_{\left\{\Upsilon \left\lvert\,\left(\left\{r_{1}\right\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{2}\right)+\varphi_{7} \sum_{\left\{\Upsilon \left\lvert\,\left(\left\{r_{1}\right\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{7}\right)=$ $\frac{1}{17}\left(\frac{1}{4}+\frac{1}{4}\right)+\frac{3}{17}\left(\frac{3}{8}+\frac{1}{8}\right)=\frac{2}{17}$.

SHMPMBOX: The marked dtsi-boxes of two processors and shared memory

SHMBOX: The marked dtsi-box of the shared memory system

The abstract system and its reduction

The static expression of the first processor is
$F_{1}=\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\{r\}, \frac{1}{2}\right) ;\left(\left\{d, y_{1}\right\}, \natural_{1}\right) ;\left(\left\{m, z_{1}\right\}, \frac{1}{2}\right)\right) *\right.$ Stop $]$.
The static expression of the second processor is
$F_{2}=\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\{r\}, \frac{1}{2}\right) ;\left(\left\{d, y_{2}\right\}, \natural_{1}\right) ;\left(\left\{m, z_{2}\right\}, \frac{1}{2}\right)\right) *\right.$ Stop $]$.
The static expression of the shared memory is
$F_{3}=\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \natural_{1}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)[]\left(\left(\left\{\widehat{y_{2}}\right\}, \natural_{1}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) *\right.$ Stop $]$.
The static expression of the abstract shared memory system with two processors is $F=\left(F_{1}\left\|F_{2}\right\| F_{3}\right)$ sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs z_{2}. $D R(\bar{F})$ resembles $D R(\bar{E})$, and $T S(\bar{F})$ is similar to $T S(\bar{E})$.
$S M C(\bar{F}) \simeq S M C(\bar{E})$, thus, the average sojourn time vectors of \bar{F} and \bar{E}, the TPMs and the steady-state PMFs for $E D T M C(\bar{F})$ and $E D T M C(\bar{E})$ coincide.

Performance indices

The first, second, third and fourth performance indices are the same for the standard and abstract systems.

The following performance index: non-identified viewpoint to the processors.

- The common memory request of a processor $\left(\{r\}, \frac{1}{2}\right)$ is only possible from the states s_{2}, s_{5}, s_{7}.

The request probability in each of the states is the sum of the execution probabilities for all multisets of activities containing ($\{r\}, \frac{1}{2}$).

The steady-state probability of the shared memory request from a processor is

$$
\begin{aligned}
& \varphi_{2} \sum_{\left\{\Upsilon \left\lvert\,\left(\{r\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{2}\right)+\varphi_{5} \sum_{\left\{\Upsilon \left\lvert\,\left(\{r\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{5}\right)+ \\
& \varphi_{7} \sum_{\left\{\Upsilon \left\lvert\,\left(\{r\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{7}\right)=\frac{1}{17}\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)+\frac{3}{17}\left(\frac{3}{8}+\frac{1}{8}\right)+\frac{3}{17}\left(\frac{3}{8}+\frac{1}{8}\right)=\frac{15}{68} .
\end{aligned}
$$

The quotient of the abstract system
$D R(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}, \mathcal{K}_{4}, \mathcal{K}_{5}, \mathcal{K}_{6}\right\}$, where
$\mathcal{K}_{1}=\left\{s_{1}\right\}$ (the initial state),
$\mathcal{K}_{2}=\left\{s_{2}\right\}$ (the system is activated and the memory is not requested),
$\mathcal{K}_{3}=\left\{s_{3}, s_{4}\right\}$ (the memory is requested by one processor),
$\mathcal{K}_{4}=\left\{s_{5}, s_{7}\right\}$ (the memory is allocated to a processor),
$\mathcal{K}_{5}=\left\{s_{6}\right\}$ (the memory is requested by two processors),
$\mathcal{K}_{6}=\left\{s_{8}, s_{9}\right\}$ (the memory is allocated to a processor and the memory is requested by another processor).
$D R_{T}(\bar{F}) /_{\mathcal{R}_{s s}}(\bar{F})=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}, \mathcal{K}_{6}\right\}$ and $D R_{V}(\bar{F}) /_{\mathcal{R}_{s s}}(\bar{F})=\left\{\mathcal{K}_{3}, \mathcal{K}_{5}\right\}$.

SHMQTS: The quotient transition system of the abstract shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

SHMQSMC: The quotient underlying SMC of the abstract shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

The quotient average sojourn time vector of \bar{F} :

$$
S J^{\prime}=\left(8, \frac{4}{3}, 0, \frac{8}{5}, 0,4\right)
$$

The quotient sojourn time variance vector of \bar{F} :

$$
V A R^{\prime}=\left(56, \frac{4}{9}, 0, \frac{24}{25}, 0,12\right)
$$

The TPM for $E D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}^{* *}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{5} & \frac{1}{5} & 0 & 0 & \frac{3}{5} \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

The steady-state PMF for $E D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\psi^{\prime *}=\left(0, \frac{3}{44}, \frac{15}{44}, \frac{15}{44}, \frac{1}{44}, \frac{5}{22}\right) .
$$

The steady-state PMF $\psi^{\prime *}$ weighted by $S J^{\prime}$:

$$
\left(0, \frac{1}{11}, 0, \frac{6}{11}, 0, \frac{10}{11}\right)
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components $\psi^{\prime *} S J^{\prime T}=\frac{17}{11}$. The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi^{\prime}=\left(0, \frac{1}{17}, 0, \frac{6}{17}, 0, \frac{10}{17}\right)
$$

SHMQTP: Transient and steady-state probabilities for the quotient EDTMC of the abstract shared memory system

k	0	5	10	15	20	25	30	35	40	45	50	∞
$\psi_{1}^{\prime *}[k]$	1	0	0	0	0	0	0	0	0	0	0	0
$\psi_{2}^{\prime *}[k]$	0	0	0.0754	0.0859	0.0677	0.0641	0.0680	0.0691	0.0683	0.0680	0.0681	0.0682
$\psi_{3}^{\prime *}[k]$	0	0.4889	0.4633	0.3140	0.3108	0.3452	0.3482	0.3404	0.3392	0.3409	0.3413	0.3409
$\psi_{4}^{\prime *}[k]$	0	0.4667	0.1964	0.3031	0.3719	0.3517	0.3344	0.3380	0.3422	0.3417	0.3407	0.3409
$\psi_{5}^{\prime *}[k]$	0	0.0444	0.0323	0.0179	0.0202	0.0237	0.0234	0.0226	0.0226	0.0228	0.0228	0.0227
$\psi_{6}^{\prime *}[k]$	0	0	0.2325	0.2791	0.2294	0.2154	0.2260	0.2299	0.2277	0.2267	0.2271	0.2273

SHMQTP: Transient probabilities alteration diagram for the quotient EDTMC of the abstract shared memory system

The steady-state PMF for $E D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\psi^{\prime *}=\left(0, \frac{3}{44}, \frac{15}{44}, \frac{15}{44}, \frac{1}{44}, \frac{5}{22}\right) .
$$

The steady-state PMF $\psi^{\prime *}$ weighted by $S J^{\prime}$:

$$
\left(0, \frac{1}{11}, 0, \frac{6}{11}, 0, \frac{10}{11}\right) .
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components

$$
\psi^{\prime *} S J^{\prime T}=\frac{17}{11}
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi^{\prime}=\left(0, \frac{1}{17}, 0, \frac{6}{17}, 0, \frac{10}{17}\right) .
$$

Otherwise, from $T S_{\uplus_{s s}}(\bar{F})$, we can construct the quotient DTMC of $\bar{F}, D T M C_{\uplus_{s s}}(\bar{F})$, and calculate φ^{\prime} using it.

SHMQDTMC: The quotient DTMC of the abstract shared memory system

SHMTPQDTMC: Transient and steady-state probabilities for the quotient DTMC of the abstract shared memory system

k	0	5	10	15	20	25	30	35	40	45	50	∞
$\psi_{1}^{\prime}[k]$	1	0.5129	0.2631	0.1349	0.0692	0.0355	0.0182	0.0093	0.0048	0.0025	0.0013	0
$\psi_{2}^{\prime}[k]$	0	0.1161	0.0829	0.0657	0.0569	0.0524	0.0501	0.0489	0.0483	0.0479	0.0478	0.0476
$\psi_{3}^{\prime}[k]$	0	0.0944	0.1353	0.1564	0.1672	0.1727	0.1756	0.1770	0.1778	0.1782	0.1784	0.1786
$\psi_{4}^{\prime}[k]$	0	0.1162	0.1992	0.2414	0.2630	0.2740	0.2797	0.2826	0.2841	0.2849	0.2853	0.2857
$\psi_{5}^{\prime}[k]$	0	0.0311	0.0220	0.0171	0.0146	0.0133	0.0126	0.0123	0.0121	0.0120	0.0120	0.0119
$\psi_{6}^{\prime}[k]$	0	0.1294	0.2974	0.3845	0.4292	0.4521	0.4638	0.4698	0.4729	0.4745	0.4753	0.4762

SHMTPQDTMC: Transient probabilities alteration diagram for the quotient DTMC of the abstract shared memory system

The TPM for $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}^{\prime}=\left(\begin{array}{cccccc}
\frac{7}{8} & \frac{1}{8} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} & 0 & \frac{3}{8} \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{4} & 0 & 0 & \frac{3}{4}
\end{array}\right) .
$$

The steady-state PMF for $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\psi^{\prime}=\left(0, \frac{1}{21}, \frac{5}{28}, \frac{2}{7}, \frac{1}{84}, \frac{10}{21}\right)
$$

$D R_{T}(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}, \mathcal{K}_{6}\right\}$ and $D R_{V}(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{3}, \mathcal{K}_{5}\right\}$. Hence,

$$
\sum_{\mathcal{K} \in D R_{T}(\bar{F}) / \mathcal{R}_{s s}(\bar{F})} \psi^{\prime}(\mathcal{K})=\psi^{\prime}\left(\mathcal{K}_{1}\right)+\psi^{\prime}\left(\mathcal{K}_{2}\right)+\psi^{\prime}\left(\mathcal{K}_{4}\right)+\psi^{\prime}\left(\mathcal{K}_{6}\right)=\frac{17}{21} .
$$

By the "quotient" analogue of Proposition PMFSMC:

$$
\begin{aligned}
& \varphi^{\prime}\left(\mathcal{K}_{1}\right)=0 \cdot \frac{21}{17}=0, \\
& \varphi^{\prime}\left(\mathcal{K}_{2}\right)=\frac{1}{21} \cdot \frac{21}{17}=\frac{1}{17}, \\
& \varphi^{\prime}\left(\mathcal{K}_{3}\right)=0, \\
& \varphi^{\prime}\left(\mathcal{K}_{4}\right)=\frac{2}{7} \cdot \frac{21}{17}=\frac{6}{17}, \\
& \varphi^{\prime}\left(\mathcal{K}_{5}\right)=0 \\
& \varphi^{\prime}\left(\mathcal{K}_{6}\right)=\frac{10}{21} \cdot \frac{21}{17}=\frac{10}{17} .
\end{aligned}
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi^{\prime}=\left(0, \frac{1}{17}, 0, \frac{6}{17}, 0, \frac{10}{17}\right) .
$$

This coincides with the result obtained with the use of $\psi^{\prime *}$ and $S J^{\prime}$.

Alternatively, from $T S_{\uplus_{s s}}(\bar{F})$, we can construct $R D T M C_{\uplus_{s s}}(\bar{F})$ and calculate φ^{\prime} using it.
$D R_{T}(\bar{F}) /_{\mathcal{R}_{s s}(\bar{F})}=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}, \mathcal{K}_{6}\right\}$ and $D R_{V}(\bar{F}) /_{\mathcal{R}_{s s}}(\bar{F})=\left\{\mathcal{K}_{3}, \mathcal{K}_{5}\right\}$.
We reorder the elements of $D R(\bar{F}) / \mathcal{R}_{s s}(\bar{F})$ by moving the equivalence classes of vanishing states to the first positions: $\mathcal{K}_{3}, \mathcal{K}_{5}, \mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{4}, \mathcal{K}_{6}$. The reordered TPM for $D T M C_{\uplus_{s s}}(\bar{F})$:

$$
\mathbf{P}_{r}^{\prime}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & \frac{7}{8} & \frac{1}{8} & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 \\
\frac{1}{8} & 0 & 0 & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} \\
\frac{1}{4} & 0 & 0 & 0 & 0 & \frac{3}{4}
\end{array}\right) .
$$

The result of the decomposing \mathbf{P}_{r}^{\prime} :

$$
\mathbf{C}^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right), \mathbf{D}^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \mathbf{E}^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{8} & 0 \\
\frac{1}{4} & 0
\end{array}\right), \mathbf{F}^{\prime}=\left(\begin{array}{cccc}
\frac{7}{8} & \frac{1}{8} & 0 & 0 \\
0 & \frac{1}{4} & 0 & 0 \\
0 & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} \\
0 & 0 & 0 & \frac{3}{4}
\end{array}\right)
$$

Since $\mathbf{C}^{11}=\mathbf{0}$, we have $\forall k>0, \mathbf{C}^{\prime k}=\mathbf{0}$, hence, $l=0$ and there are no loops among vanishing states. Then

$$
\mathbf{G}^{\prime}=\sum_{k=0}^{l} \mathbf{C}^{\prime l}=\mathbf{C}^{\prime 0}=\mathbf{I}
$$

The TPM for $R D T M C_{\boldsymbol{ङ}_{s s}}(\bar{F})$:

$$
\mathbf{P}^{\prime \diamond}=\mathbf{F}^{\prime}+\mathbf{E}^{\prime} \mathbf{G}^{\prime} \mathbf{D}^{\prime}=\mathbf{F}^{\prime}+\mathbf{E}^{\prime} \mathbf{I} \mathbf{D}^{\prime}=\mathbf{F}^{\prime}+\mathbf{E}^{\prime} \mathbf{D}^{\prime}=\left(\begin{array}{cccc}
\frac{7}{8} & \frac{1}{8} & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & \frac{1}{8} & \frac{1}{2} & \frac{3}{8} \\
0 & 0 & \frac{1}{4} & \frac{3}{4}
\end{array}\right)
$$

SHMQRDTMC: The reduced quotient DTMC of the abstract shared memory system

SHMQRTP: Transient and steady-state probabilities for the reduced quotient DTMC of the abstract shared memory system

k	0	5	10	15	20	25	30	35	40	45	50	∞
	1	0.5129	0.2631	0.1349	0.0692	0.0355	0.0182	0.0093	0.0048	0.0025	0.0013	0
$\psi_{2}^{\prime} \stackrel{\square}{ }[k]$	0	0.1244	0.0931	0.0764	0.0679	0.0635	0.0612	0.0600	0.0594	0.0591	0.0590	0.0588
$\psi_{3}^{\prime} \stackrel{\square}{\text { d }}$ [$]$	0	0.1726	0.2614	0.3060	0.3289	0.3406	0.3466	0.3497	0.3513	0.3521	0.3525	0.3529
$\psi_{4}^{\prime} \stackrel{\square}{ }[k]$	0	0.1901	0.3824	0.4826	0.5341	0.5605	0.5740	0.5810	0.5845	0.5863	0.5872	0.5882

SHMQRTP: Transient probabilities alteration diagram for the reduced quotient DTMC of the abstract shared memory system

The steady-state PMF for $R D T M C_{\oiint_{s s}}(\bar{F})$:

$$
\psi^{\prime \triangleleft}=\left(0, \frac{1}{17}, \frac{6}{17}, \frac{10}{17}\right)
$$

Note that $\psi^{\prime \diamond}=\left(\psi^{\prime \diamond}\left(\mathcal{K}_{1}\right), \psi^{\prime \diamond}\left(\mathcal{K}_{2}\right), \psi^{\prime \diamond}\left(\mathcal{K}_{4}\right), \psi^{\prime \diamond}\left(\mathcal{K}_{6}\right)\right)$.
By the "quotient" analogue of Proposition PMFSMCT:

$$
\varphi^{\prime}\left(\mathcal{K}_{1}\right)=0, \quad \varphi^{\prime}\left(\mathcal{K}_{2}\right)=\frac{1}{17}, \quad \varphi^{\prime}\left(\mathcal{K}_{3}\right)=0, \quad \varphi^{\prime}\left(\mathcal{K}_{4}\right)=\frac{6}{17}, \quad \varphi^{\prime}\left(\mathcal{K}_{5}\right)=0, \quad \varphi^{\prime}\left(\mathcal{K}_{6}\right)=\frac{10}{17}
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{F})$:

$$
\varphi^{\prime}=\left(0, \frac{1}{17}, 0, \frac{6}{17}, 0, \frac{10}{17}\right)
$$

This coincides with the result obtained with the use of $\psi^{* *}$ and $S J^{\prime}$.

Performance indices

- The average recurrence time in the state \mathcal{K}_{2}, where no processor requests the memory, the average system run-through, is $\frac{1}{\varphi_{2}^{\prime}}=\frac{17}{1}=17$.
- The common memory is available only in the states $\mathcal{K}_{2}, \mathcal{K}_{3}, \mathcal{K}_{5}$.

The steady-state probability that the memory is available is $\varphi_{2}^{\prime}+\varphi_{3}^{\prime}+\varphi_{5}^{\prime}=\frac{1}{17}+0+0=\frac{1}{17}$.
The steady-state probability that the memory is used (i.e. not available), the shared memory utilization, is $1-\frac{1}{17}=\frac{16}{17}$.

- After activation of the system, we leave the state \mathcal{K}_{1} for all, and the common memory is either requested or allocated in every remaining state, with exception of \mathcal{K}_{2}.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving \mathcal{K}_{2}, calculated as $\frac{\varphi_{2}^{\prime}}{S J_{2}^{\prime}}=\frac{1}{17} \cdot \frac{3}{4}=\frac{3}{68}$.

- The parallel common memory request of two processors $\{\{r\},\{r\}\}$ is only possible from the state \mathcal{K}_{2}.

The request probability in this state is the sum of the execution probabilities for all multisets of multiactions containing $\{r\}$ twice.

The steady-state probability of the shared memory request from two processors is $\varphi_{2}^{\prime} \sum_{\left\{A, \mathcal{K} \mid\{\{r\},\{r\}\} \subseteq A, \mathcal{K}_{2} \xrightarrow{A} \mathcal{K}\right\}} P M_{A}\left(\mathcal{K}_{2}, \mathcal{K}\right)=\frac{1}{17} \cdot \frac{1}{4}=\frac{1}{68}$.

- The common memory request of a processor $\{r\}$ is only possible from the states $\mathcal{K}_{2}, \mathcal{K}_{4}$.

The request probability in each of the states is the sum of the execution probabilities for all multisets of multiactions containing $\{r\}$.

The steady-state probability of the shared memory request from a processor is
$\varphi_{2}^{\prime} \sum_{\left\{A, \mathcal{K} \mid\{r\} \in A, \mathcal{K}_{2} \xrightarrow{A} \mathcal{K}\right\}} P M_{A}\left(\mathcal{K}_{2}, \mathcal{K}\right)+\varphi_{4}^{\prime} \sum_{\left\{A, \mathcal{K} \mid\{r\} \in A, \mathcal{K}_{4} \xrightarrow{A} \mathcal{K}\right\}} P M_{A}\left(\mathcal{K}_{4}, \mathcal{K}\right)=$ $\frac{1}{17}\left(\frac{1}{2}+\frac{1}{4}\right)+\frac{6}{17}\left(\frac{3}{8}+\frac{1}{8}\right)=\frac{15}{68}$.

The performance indices are the same for the complete and quotient abstract shared memory systems.
The coincidence of the first and second performance indices illustrates Proposition STPROB.
The coincidence of the third performance index illustrates Proposition STPROB and Proposition SJAVVA.
The coincidence of the fourth performance index is by Theorem STTRAC:
one should apply its result to the derived step trace $\{\{r\},\{r\}\}$ of \bar{F} and itself.
The coincidence of the fifth performance index is by Theorem STTRAC:
one should apply its result to the derived step traces $\{\{r\}\},\{\{r\},\{r\}\},\{\{r\},\{m\}\}$ of \bar{F} and itself, and sum the left and right parts of the three resulting equalities.

The generalized system

The static expression of the first processor is
$K_{1}=\left[\left(\left\{x_{1}\right\}, \rho\right) *\left(\left(\left\{r_{1}\right\}, \rho\right) ;\left(\left\{d_{1}, y_{1}\right\}, \natural_{l}\right) ;\left(\left\{m_{1}, z_{1}\right\}, \rho\right)\right) *\right.$ Stop $]$.
The static expression of the second processor is
$K_{2}=\left[\left(\left\{x_{2}\right\}, \rho\right) *\left(\left(\left\{r_{2}\right\}, \rho\right) ;\left(\left\{d_{2}, y_{2}\right\}, \natural_{l}\right) ;\left(\left\{m_{2}, z_{2}\right\}, \rho\right)\right) *\right.$ Stop $]$.
The static expression of the shared memory is
$K_{3}=\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \rho\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, \mathfrak{q}_{l}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \rho\right)\right)[]\left(\left(\left\{\widehat{y_{2}}\right\}, \mathfrak{b}_{l}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \rho\right)\right)\right) *\right.$ Stop $]$.
The static expression of the generalized shared memory system with two processors is $K=\left(K_{1}\left\|K_{2}\right\| K_{3}\right)$ sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs z_{2}.

Interpretation of the states
$D R_{T}(\bar{K})=\left\{\tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{5}, \tilde{s}_{5}, \tilde{s}_{8}, \tilde{s}_{9}\right\}$ and $D R_{V}(\bar{K})=\left\{\tilde{s}_{3}, \tilde{s}_{4}, \tilde{s}_{6}\right\}$.
\tilde{s}_{1} : the initial state,
\tilde{s}_{2} : the system is activated and the memory is not requested,
\tilde{s}_{3} : the memory is requested by the first processor,
\tilde{s}_{4} : the memory is requested by the second processor,
\tilde{s}_{5} : the memory is allocated to the first processor,
\tilde{s}_{6} : the memory is requested by two processors,
\tilde{s}_{7} : the memory is allocated to the second processor,
\tilde{s}_{8} : the memory is allocated to the first processor and the memory is requested by the second processor,
\tilde{s}_{9} : the memory is allocated to the second processor and the memory is requested by the first processor.

SHMGTS: The transition system of the generalized shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

SHMGSMC: The underlying SMC of the generalized shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

The average sojourn time vector of \bar{K} :

$$
\widetilde{S J}=\left(\frac{1}{\rho^{3}}, \frac{1}{\rho(2-\rho)}, 0,0, \frac{1}{\rho\left(1+\rho-\rho^{2}\right)}, 0, \frac{1}{\rho\left(1+\rho-\rho^{2}\right)}, \frac{1}{\rho^{2}}, \frac{1}{\rho^{2}}\right) .
$$

The sojourn time variance vector of \bar{K} :

$$
\widetilde{V A R}=\left(\frac{1-\rho^{3}}{\rho^{6}}, \frac{(1-\rho)^{2}}{\rho^{2}(2-\rho)^{2}}, 0,0, \frac{(1-\rho)\left(1-\rho^{2}\right)}{\rho^{2}\left(1+\rho-\rho^{2}\right)^{2}}, 0, \frac{(1-\rho)\left(1-\rho^{2}\right)}{\rho^{2}\left(1+\rho-\rho^{2}\right)^{2}}, \frac{1-\rho^{2}}{\rho^{4}}, \frac{1-\rho^{2}}{\rho^{4}}\right)
$$

The TPM for $E D T M C(\bar{K})$:

$$
\widetilde{\mathbf{P}}^{*}=\left(\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1-\rho}{2-\rho} & \frac{1-\rho}{2-\rho} & 0 & \frac{\rho}{2-\rho} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{\rho(1-\rho)}{1+\rho-\rho^{2}} & 0 & \frac{\rho^{2}}{1+\rho-\rho^{2}} & 0 & 0 & 0 & \frac{1-\rho^{2}}{1+\rho-\rho^{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{\rho(1-\rho)}{1+\rho-\rho^{2}} & \frac{\rho^{2}}{1+\rho-\rho^{2}} & 0 & 0 & 0 & 0 & 0 & \frac{1-\rho^{2}}{1+\rho-\rho^{2}} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The steady-state PMF for $E D T M C(\bar{K})$:

$$
\begin{aligned}
& \tilde{\psi}^{*}=\frac{1}{2\left(6+3 \rho-9 \rho^{2}+2 \rho^{3}\right)}\left(0,2 \rho(1-\rho)(2-\rho),(2-\rho)\left(1+\rho-\rho^{2}\right),(2-\rho)\left(1+\rho-\rho^{2}\right)\right. \\
& \left.(2-\rho)\left(1+\rho-\rho^{2}\right), 2 \rho^{2}(1-\rho),(2-\rho)\left(1+\rho-\rho^{2}\right),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right)
\end{aligned}
$$

The steady-state PMF $\tilde{\psi}^{*}$ weighted by $\widetilde{S J}$:

$$
\frac{1}{2 \rho^{2}\left(6+3 \rho-9 \rho^{2}+2 \rho^{3}\right)}\left(0,2 \rho^{2}(1-\rho), 0,0, \rho(2-\rho), 0, \rho(2-\rho),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right) .
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components

$$
\tilde{\psi}^{*} \widetilde{S J}^{T}=\frac{2+\rho-\rho^{2}-\rho^{3}}{\rho^{2}\left(6+3 \rho-9 \rho^{2}+2 \rho^{3}\right)}
$$

The steady-state PMF for $S M C(\bar{K})$:

$$
\tilde{\varphi}=\frac{1}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(0,2 \rho^{2}(1-\rho), 0,0, \rho(2-\rho), 0, \rho(2-\rho),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right)
$$

Otherwise, from $T S(\bar{K})$, we can construct $D T M C(\bar{K})$ and calculate $\tilde{\varphi}$ using it.

The TPM for $D T M C(\bar{K})$:

SHMGDTMC: The DTMC of the generalized shared memory system
(parallel executions of activities and the exclusively reachable states are marked with orange)

The steady-state PMF for $D T M C(\bar{K})$:

$$
\begin{gathered}
\tilde{\psi}=\frac{1}{2(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}\left(0,2 \rho^{2}(1-\rho), \rho^{2}(2-\rho)\left(1+\rho-\rho^{2}\right), \rho^{2}(2-\rho)\left(1+\rho-\rho^{2}\right)\right. \\
\left.\rho(2-\rho), 2 \rho^{4}(1-\rho), \rho(2-\rho),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right)
\end{gathered}
$$

Remember that $D R_{T}(\bar{K})=\left\{\tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{5}, \tilde{s}_{5}, \tilde{s}_{8}, \tilde{s}_{9}\right\}$ and $D R_{V}(\bar{K})=\left\{\tilde{s}_{3}, \tilde{s}_{4}, \tilde{s}_{6}\right\}$. Hence,

$$
\sum_{\tilde{s} \in D R_{T}(\bar{K})} \tilde{\psi}(\tilde{s})=\tilde{\psi}\left(\tilde{s}_{1}\right)+\tilde{\psi}\left(\tilde{s}_{2}\right)+\tilde{\psi}\left(\tilde{s}_{5}\right)+\tilde{\psi}\left(\tilde{s}_{7}\right)+\tilde{\psi}\left(\tilde{s}_{8}\right)+\tilde{\psi}\left(\tilde{s}_{9}\right)=\frac{2+\rho-\rho^{2}-\rho^{3}}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}
$$

By Proposition PMFSMC:

$$
\begin{aligned}
& \tilde{\varphi}\left(\tilde{s}_{1}\right)=0 \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=0, \\
& \tilde{\varphi}\left(\tilde{s}_{2}\right)=\frac{\rho^{2}(1-\rho)}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}, \\
& \tilde{\varphi}\left(\tilde{s}_{3}\right)=0, \\
& \tilde{\varphi}\left(\tilde{s}_{4}\right)=0, \\
& \tilde{\varphi}\left(\tilde{s}_{5}\right)=\frac{\rho(2-\rho)}{2(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)} \\
& \tilde{\varphi}\left(\tilde{s}_{6}\right)=0, \\
& \tilde{\varphi}\left(\tilde{s}_{7}\right)=\frac{\rho(2-\rho)}{2(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)} \\
& \tilde{\varphi}\left(\tilde{s}_{8}\right)=\frac{(2+\rho)(1-\rho)}{2(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{(2+\rho)(1-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)} \\
& \tilde{\varphi}\left(\tilde{s}_{9}\right)=\frac{(2+\rho)(1-\rho)}{2(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{(2+\rho)(1-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}
\end{aligned}
$$

The steady-state PMF for $S M C(\bar{K})$:

$$
\tilde{\varphi}=\frac{1}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(0,2 \rho^{2}(1-\rho), 0,0, \rho(2-\rho), 0, \rho(2-\rho),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right) .
$$

This coincides with the result obtained with the use of $\tilde{\psi}^{*}$ and $\widetilde{S J}$.

Alternatively, from $T S(\bar{K})$, we can construct $R D T M C(\bar{K})$, and calculate $\tilde{\varphi}$ using it.
$D R_{T}(\bar{K})=\left\{\tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{5}, \tilde{s}_{7}, \tilde{s}_{8}, \tilde{s}_{9}\right\}$ and $D R_{V}(\bar{K})=\left\{\tilde{s}_{3}, \tilde{s}_{4}, \tilde{s}_{6}\right\}$.
We reorder the elements of $D R(\bar{K})$ by
moving vanishing states to the first positions: $\tilde{s}_{3}, \tilde{s}_{4}, \tilde{s}_{6}, \tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{5}, \tilde{s}_{7}, \tilde{s}_{8}, \tilde{s}_{9}$.

The reordered TPM for $D T M C(\bar{K})$:

The result of the decomposing $\widetilde{\mathbf{P}}_{r}$:

$$
\begin{align*}
& \widetilde{\mathbf{C}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \widetilde{\mathbf{D}}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right), \widetilde{\mathbf{E}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\rho(1-\rho) & \rho(1-\rho) & \rho^{2} \\
0 & \rho^{3} & 0 \\
\rho^{3} & 0 & 0 \\
0 & \rho^{2} & 0 \\
\rho^{2} & 0 & 0
\end{array}\right) \\
& \widetilde{\mathbf{F}}=\left(\begin{array}{cccccc}
1-\rho^{3} & \rho^{3} & 0 & 0 & 0 & 0 \\
0 & (1-\rho)^{2} \\
0 & \rho^{2}(1-\rho) & (1-\rho)\left(1-\rho^{2}\right) & 0 & 0 & 0 \\
0 & \rho^{2}(1-\rho) \\
0 & 0 & 0 & (1-\rho)\left(1-\rho^{2}\right) & 0 & \rho\left(1-\rho^{2}\right) \\
0 & 0 & 0 & 0 & 1-\rho^{2} & 0 \\
0 & 0 & 0 & 0 & 1-\rho^{2}
\end{array}\right)
\end{align*}
$$

Since $\widetilde{\mathbf{C}}^{1}=\mathbf{0}$, we have $\forall k>0, \widetilde{\mathbf{C}}^{k}=\mathbf{0}$, hence, $l=0$ and there are no loops among vanishing states. Then

$$
\widetilde{\mathbf{G}}=\sum_{k=0}^{l} \widetilde{\mathbf{C}}^{k}=\widetilde{\mathbf{C}}^{0}=\mathbf{I}
$$

The TPM for $R D T M C(\bar{K})$:

$$
\widetilde{\mathbf{P}}^{\diamond}=\widetilde{\mathbf{F}}+\widetilde{\mathbf{E}} \widetilde{\mathbf{G}} \widetilde{\mathbf{D}}=\widetilde{\mathbf{F}}+\widetilde{\mathbf{E}} I \widetilde{\mathbf{D}}=\widetilde{\mathbf{F}}+\widetilde{\mathbf{E}} \widetilde{\mathbf{D}}=
$$

$$
\left(\begin{array}{cccccc}
1-\rho^{3} & \rho^{3} & 0 & 0 & 0 & 0 \\
0 & (1-\rho)^{2} & \rho(1-\rho) & \rho(1-\rho) & \frac{\rho^{2}}{2} & \frac{\rho^{2}}{2} \\
0 & \rho^{2}(1-\rho) & (1-\rho)\left(1-\rho^{2}\right) & \rho^{3} & \rho\left(1-\rho^{2}\right) & 0 \\
0 & \rho^{2}(1-\rho) & \rho^{3} & (1-\rho)\left(1-\rho^{2}\right) & 0 & \rho\left(1-\rho^{2}\right) \\
0 & 0 & 0 & \rho^{2} & 1-\rho^{2} & 0 \\
0 & 0 & \rho^{2} & 0 & 0 & 1-\rho^{2}
\end{array}\right)
$$

SHMGRDTMC: The reduced DTMC of the generalized shared memory system

The steady-state PMF for $R D T M C(\bar{K})$:
$\tilde{\psi}^{\diamond}=\frac{1}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(0,2 \rho^{2}(1-\rho), \rho(2-\rho), \rho(2-\rho),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right)$.

Note that $\tilde{\psi}^{\diamond}=\left(\tilde{\psi}^{\diamond}\left(\tilde{s}_{1}\right), \tilde{\psi}^{\diamond}\left(\tilde{s}_{2}\right), \tilde{\psi}^{\diamond}\left(\tilde{s}_{5}\right), \tilde{\psi}^{\diamond}\left(\tilde{s}_{7}\right), \tilde{\psi}^{\diamond}\left(\tilde{s}_{8}\right), \tilde{\psi}^{\diamond}\left(\tilde{s}_{9}\right)\right)$.
By Proposition PMFSMCT:

$$
\begin{array}{lll}
\tilde{\varphi}\left(\tilde{s}_{1}\right)=0, & \tilde{\varphi}\left(\tilde{s}_{2}\right)=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}, & \tilde{\varphi}\left(\tilde{s}_{3}\right)=0 \\
\tilde{\varphi}\left(\tilde{s}_{4}\right)=0, & \tilde{\varphi}\left(\tilde{s}_{5}\right)=\frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}, & \tilde{\varphi}\left(\tilde{s}_{6}\right)=0, \\
\tilde{\varphi}\left(\tilde{s}_{7}\right)=\frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}, & \tilde{\varphi}\left(\tilde{s}_{8}\right)=\frac{(2+\rho)(1-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}, & \tilde{\varphi}\left(\tilde{s}_{9}\right)=\frac{(2+\rho)(1-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)} .
\end{array}
$$

The steady-state PMF for $S M C(\bar{K})$:

$$
\tilde{\varphi}=\frac{1}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(0,2 \rho^{2}(1-\rho), 0,0, \rho(2-\rho), 0, \rho(2-\rho),(2+\rho)(1-\rho),(2+\rho)(1-\rho)\right) .
$$

This coincides with the result obtained with the use of $\tilde{\psi}^{*}$ and $\widetilde{S J}$.

Performance indices

- The average recurrence time in the state \tilde{s}_{2}, where no processor requests the memory, the average system run-through, is $\frac{1}{\tilde{\varphi}_{2}}=\frac{2+\rho-\rho^{2}-\rho^{3}}{\rho^{2}(1-\rho)}$.
- The common memory is available only in the states $\tilde{s}_{2}, \tilde{s}_{3}, \tilde{s}_{4}, \tilde{s}_{6}$.

The steady-state probability that the memory is available is
$\tilde{\varphi}_{2}+\tilde{\varphi}_{3}+\tilde{\varphi}_{4}+\tilde{\varphi}_{6}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}+0+0+0=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$.
The steady-state probability that the memory is used (i.e. not available), the shared memory utilization, is $1-\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{2+\rho-2 \rho^{2}}{2+\rho-\rho^{2}-\rho^{3}}$.

- After activation of the system, we leave the state \tilde{s}_{1} for all, and the common memory is either requested or allocated in every remaining state, with exception of \tilde{s}_{2}.

The rate with which the necessity of shared memory emerges coincides with the rate of leaving \tilde{s}_{2}, calculated as $\frac{\tilde{\varphi}_{2}}{S J_{2}}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}} \cdot \frac{\rho(2-\rho)}{1}=\frac{\rho^{3}(1-\rho)(2-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$.

- The parallel common memory request of two processors $\left\{\left(\left\{r_{1}\right\}, \rho\right),\left(\left\{r_{2}\right\}, \rho\right)\right\}$ is only possible from the state \tilde{s}_{2}.

The request probability in this state is the sum of the execution probabilities for all multisets of activities containing both $\left(\left\{r_{1}\right\}, \rho\right)$ and $\left(\left\{r_{2}\right\}, \rho\right)$.

The steady-state probability of the shared memory request from two processors is
$\tilde{\varphi}_{2} \sum_{\left\{\Upsilon \mid\left(\left\{\left(\left\{r_{1}\right\}, \rho\right),\left(\left\{r_{2}\right\}, \rho\right)\right\} \subseteq \Upsilon\right\}\right.} P T\left(\Upsilon, \tilde{s}_{2}\right)=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}} \rho^{2}=\frac{\rho^{4}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$.

- The common memory request of the first processor $\left(\left\{r_{1}\right\}, \rho\right)$ is only possible from the states $\tilde{s}_{2}, \tilde{s}_{7}$. The request probability in each of the states is the sum of the execution probabilities for all multisets of activities containing $\left(\left\{r_{1}\right\}, \rho\right)$.
The steady-state probability of the shared memory request from the first processor is
$\tilde{\varphi}_{2} \sum_{\left\{\Upsilon \mid\left(\left\{r_{1}\right\}, \rho\right) \in \Upsilon\right\}} P T\left(\Upsilon, \tilde{s}_{2}\right)+\tilde{\varphi}_{7} \sum_{\left\{\Upsilon \mid\left(\left\{r_{1}\right\}, \rho\right) \in \Upsilon\right\}} P T\left(\Upsilon, \tilde{s}_{7}\right)=$
$\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}\left(\rho(1-\rho)+\rho^{2}\right)+\frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(\rho\left(1-\rho^{2}\right)+\rho^{3}\right)=\frac{\rho^{2}\left(2+\rho-2 \rho^{2}\right)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}$.

The abstract generalized system and its reduction

The static expression of the first processor is
$L_{1}=\left[\left(\left\{x_{1}\right\}, \rho\right) *\left((\{r\}, \rho) ;\left(\left\{d, y_{1}\right\}, h_{l}\right) ;\left(\left\{m, z_{1}\right\}, \rho\right)\right) *\right.$ Stop $]$.
The static expression of the second processor is
$L_{2}=\left[\left(\left\{x_{2}\right\}, \rho\right) *\left((\{r\}, \rho) ;\left(\left\{d, y_{2}\right\}, \mathfrak{L}_{l}\right) ;\left(\left\{m, z_{2}\right\}, \rho\right)\right) *\right.$ Stop $]$.
The static expression of the shared memory is
$L_{3}=\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \rho\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, h_{l}\right) ;\left(\left\{\widehat{z_{1}}\right\}, \rho\right)\right)\right]\left[\left(\left(\left\{\widehat{y_{2}}\right\}, \mathfrak{h}_{l}\right) ;\left(\left\{\widehat{z_{2}}\right\}, \rho\right)\right)\right) *\right.$ Stop $]$.
The static expression of the abstract generalized shared memory system with two processors is $L=\left(L_{1}\left\|L_{2}\right\| L_{3}\right)$ sy x_{1} sy x_{2} sy y_{1} sy y_{2} sy z_{1} sy z_{2} rs x_{1} rs x_{2} rs y_{1} rs y_{2} rs z_{1} rs z_{2}. $D R(\bar{L})$ resembles $D R(\bar{K})$, and $T S(\bar{L})$ is similar to $T S(\bar{K})$.
$S M C(\bar{L}) \simeq S M C(\bar{K})$, thus, the average sojourn time vectors of \bar{L} and \bar{K}, the TPMs and the steady-state PMFs for $E D T M C(\bar{L})$ and $E D T M C(\bar{K})$ coincide.

Performance indices

The first, second, third and fourth performance indices are the same for the generalized system and its abstract modification.

The following performance index: non-identified viewpoint to the processors.

- The common memory request of a processor $(\{r\}, \rho)$ is only possible from the states $\tilde{s}_{2}, \tilde{s}_{5}, \tilde{s}_{7}$.

The request probability in each of the states is the sum of the execution probabilities for all multisets of activities containing $(\{r\}, \rho)$.

The steady-state probability of the shared memory request from a processor is

$$
\begin{aligned}
& \tilde{\varphi}_{2} \sum_{\{\Upsilon \mid(\{r\}, \rho) \in \Upsilon\}} P T\left(\Upsilon, \tilde{s}_{2}\right)+\tilde{\varphi}_{5} \sum_{\{\Upsilon \mid(\{r\}, \rho) \in \Upsilon\}} P T\left(\Upsilon, \tilde{s}_{5}\right)+ \\
& \tilde{\varphi}_{7} \sum_{\{\Upsilon \mid(\{r\}, \rho) \in \Upsilon\}} P T\left(\Upsilon, \tilde{s}_{7}\right)=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}\left(\rho(1-\rho)+\rho(1-\rho)+\rho^{2}\right)+ \\
& \frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(\rho\left(1-\rho^{2}\right)+\rho^{3}\right)+\frac{\rho(2-\rho)}{2\left(2+\rho-\rho^{2}-\rho^{3}\right)}\left(\rho\left(1-\rho^{2}\right)+\rho^{3}\right)=\frac{\rho^{2}(2-\rho)\left(1+\rho-\rho^{2}\right)}{2+\rho-\rho^{2}-\rho^{3}}
\end{aligned}
$$

The quotient of the abstract generalized system
$D R(\bar{L}) /_{\mathcal{R}_{s s}(\bar{L})}=\left\{\widetilde{\mathcal{K}}_{1}, \widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{3}, \widetilde{\mathcal{K}}_{4}, \widetilde{\mathcal{K}}_{5}, \widetilde{\mathcal{K}}_{6}\right\}$, where
$\widetilde{\mathcal{K}}_{1}=\left\{\tilde{s}_{1}\right\}$ (the initial state),
$\widetilde{\mathcal{K}}_{2}=\left\{\tilde{s}_{2}\right\}$ (the system is activated and the memory is not requested),
$\widetilde{\mathcal{K}}_{3}=\left\{\tilde{s}_{3}, \tilde{s}_{4}\right\}$ (the memory is requested by one processor),
$\widetilde{\mathcal{K}}_{4}=\left\{\tilde{s}_{5}, \tilde{s}_{7}\right\}$ (the memory is allocated to a processor),
$\widetilde{\mathcal{K}}_{5}=\left\{\tilde{s}_{6}\right\}$ (the memory is requested by two processors),
$\widetilde{\mathcal{K}}_{6}=\left\{\widetilde{s}_{8}, \tilde{s}_{9}\right\}$ (the memory is allocated to a processor and the memory is requested by another processor).
$D R_{T}(\bar{L}) / \mathcal{R}_{s s}(\bar{L})=\left\{\widetilde{\mathcal{K}}_{1}, \widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{4}, \widetilde{\mathcal{K}}_{6}\right\}$ and $D R_{V}(\bar{L}) /_{\mathcal{R}_{s s}(\bar{L})}=\left\{\widetilde{\mathcal{K}}_{3}, \widetilde{\mathcal{K}}_{5}\right\}$.

SHMGQTS: The quotient transition system of the abstract generalized shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

SHMGQSMC: The quotient underlying SMC of the abstract generalized shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

The quotient average sojourn time vector of \bar{F} :

$$
\widetilde{S J}^{\prime}=\left(\frac{1}{\rho^{3}}, \frac{1}{\rho(2-\rho)}, 0, \frac{1}{\rho\left(1+\rho-\rho^{2}\right)}, 0, \frac{1}{\rho^{2}}\right)
$$

The quotient sojourn time variance vector of \bar{F} :

$$
\widetilde{V A R}^{\prime}=\left(\frac{1-\rho^{3}}{\rho^{6}}, \frac{(1-\rho)^{2}}{\rho^{2}(2-\rho)^{2}}, 0, \frac{(1-\rho)\left(1-\rho^{2}\right)}{\rho^{2}\left(1+\rho-\rho^{2}\right)^{2}}, 0, \frac{1-\rho^{2}}{\rho^{4}}\right)
$$

The TPM for $E D T M C_{\uplus_{s s}}(\bar{L})$:

$$
\widetilde{\mathbf{P}}^{\prime *}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2(1-\rho)}{2-\rho} & 0 & \frac{\rho}{2-\rho} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{\rho(1-\rho)}{1+\rho-\rho^{2}} & \frac{\rho^{2}}{1+\rho-\rho^{2}} & 0 & 0 & \frac{1-\rho^{2}}{1+\rho-\rho^{2}} \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

The steady-state PMF for $E D T M C_{\uplus_{s s}}(\bar{L})$:

$$
\begin{aligned}
\tilde{\psi}^{\prime *}= & \frac{1}{6+3 \rho-9 \rho^{2}+2 \rho^{3}}\left(0, \rho(1-\rho)(2-\rho),(2-\rho)\left(1+\rho-\rho^{2}\right),\right. \\
& \left.(2-\rho)\left(1+\rho-\rho^{2}\right), \rho^{2}(1-\rho),(2+\rho)(1-\rho)\right) .
\end{aligned}
$$

The steady-state PMF $\tilde{\psi}^{\prime *}$ weighted by $\widetilde{S J}^{\prime}$:

$$
\frac{1}{\rho^{2}\left(6+3 \rho-9 \rho^{2}+2 \rho^{3}\right)}\left(0, \rho^{2}(1-\rho), 0, \rho(2-\rho), 0,(2+\rho)(1-\rho)\right) .
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components

$$
\tilde{\psi}^{\prime *} \widetilde{S J}^{\prime T}=\frac{2+\rho-\rho^{2}-\rho^{3}}{\rho^{2}\left(6+3 \rho-9 \rho^{2}+2 \rho^{3}\right)}
$$

The steady-state PMF for $S M C_{\overleftrightarrow{\leftrightarrow}_{s s}}(\bar{L})$:

$$
\tilde{\varphi}^{\prime}=\frac{1}{2+\rho-\rho^{2}-\rho^{3}}\left(0, \rho^{2}(1-\rho), 0, \rho(2-\rho), 0,(2+\rho)(1-\rho)\right)
$$

Otherwise, from $T S_{\uplus_{s s}}(\bar{L})$, we can construct the quotient DTMC of $\bar{L}, D T M C_{\uplus_{s s}}(\bar{L})$, and calculate $\tilde{\varphi}^{\prime}$ using it.
$D T M C_{\uplus_{s s}}(\bar{L})$

SHMGQDTMC: The quotient DTMC of the abstract generalized shared memory system (parallel executions of activities and the exclusively reachable states are marked with orange)

The TPM for $D T M C_{\leftrightarrows_{s s}}(\bar{L})$:

$$
\widetilde{\mathbf{P}}^{\prime}=\left(\begin{array}{cccccc}
1-\rho^{3} & \rho^{3} & 0 & 0 & 0 & 0 \\
0 & (1-\rho)^{2} & 2 \rho(1-\rho) & 0 & \rho^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \rho^{2}(1-\rho) & \rho^{3} & (1-\rho)\left(1-\rho^{2}\right) & 0 & \rho\left(1-\rho^{2}\right) \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & \rho^{2} & 0 & 0 & 1-\rho^{2}
\end{array}\right) .
$$

The steady-state PMF for $D T M C_{\uplus_{s s}}(\bar{L})$:

$$
\tilde{\psi}^{\prime}=\frac{1}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}\left(0, \rho^{2}(1-\rho), \rho^{2}(2-\rho)\left(1+\rho-\rho^{2}\right), \rho(2-\rho), \rho^{4}(1-\rho),(2+\rho)(1-\rho)\right) \text {. }
$$

$D R_{T}(\bar{L}) /_{\mathcal{R}_{s s}(\bar{L})}=\left\{\widetilde{\mathcal{K}}_{1}, \widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{4}, \widetilde{\mathcal{K}}_{6}\right\}$ and $D R_{V}(\bar{L}) /_{\mathcal{R}_{s s}(\bar{L})}=\left\{\widetilde{\mathcal{K}}_{3}, \widetilde{\mathcal{K}}_{5}\right\}$. Hence,
$\sum_{\tilde{\mathcal{K}} \in D R_{T}(\bar{L}) / \mathcal{R}_{s s}(\bar{L})} \tilde{\psi}^{\prime}(\widetilde{\mathcal{K}})=\tilde{\psi}^{\prime}\left(\widetilde{\mathcal{K}}_{1}\right)+\tilde{\psi}^{\prime}\left(\widetilde{\mathcal{K}}_{2}\right)+\tilde{\psi}^{\prime}\left(\widetilde{\mathcal{K}}_{4}\right)+\tilde{\psi}^{\prime}\left(\widetilde{\mathcal{K}}_{6}\right)=\frac{2+\rho-\rho^{2}-\rho^{3}}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}$.

By the "quotient" analogue of Proposition PMFSMC:

$$
\begin{aligned}
& \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{1}\right)=0 \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=0, \\
& \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{2}\right)=\frac{\rho^{2}(1-\rho)}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}, \\
& \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{3}\right)=0, \\
& \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{4}\right)=\frac{\rho(2-\rho)}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{\rho(2-\rho)}{2+\rho-\rho^{2}-\rho^{3}}, \\
& \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{5}\right)=0, \\
& \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{6}\right)=\frac{(2+\rho)(1-\rho)}{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)} \cdot \frac{(1+\rho)\left(2-\rho+2 \rho^{2}-2 \rho^{3}\right)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{(2+\rho)(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}} .
\end{aligned}
$$

The steady-state PMF for $S M C_{\leftrightarrows_{s s}}(\bar{L})$:

$$
\tilde{\varphi}^{\prime}=\frac{1}{2+\rho-\rho^{2}-\rho^{3}}\left(0, \rho^{2}(1-\rho), 0, \rho(2-\rho), 0,(2+\rho)(1-\rho)\right) .
$$

This coincides with the result obtained with the use of $\tilde{\psi}^{\prime *}$ and $\widetilde{S J}^{\prime}$.

Alternatively, from $T S_{\uplus_{s s}}(\bar{L})$, we can construct $R D T M C_{\uplus_{s s}}(\bar{L})$ and calculate $\tilde{\varphi}^{\prime}$ using it.

$$
D R_{T}(\bar{L}) /_{\mathcal{R}_{s s}(\bar{L})}=\left\{\widetilde{\mathcal{K}}_{1}, \widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{4}, \widetilde{\mathcal{K}}_{6}\right\} \text { and } D R_{V}(\bar{L}) /_{\mathcal{R}_{s s}(\bar{L})}=\left\{\widetilde{\mathcal{K}}_{3}, \widetilde{\mathcal{K}}_{5}\right\} .
$$

We reorder the elements of $D R(\bar{L}) / \mathcal{R}_{s s}(\bar{L})$ by moving the equivalence classes of vanishing states to the first positions: $\widetilde{\mathcal{K}}_{3}, \widetilde{\mathcal{K}}_{5}, \widetilde{\mathcal{K}}_{1}, \widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{4}, \widetilde{\mathcal{K}}_{6}$.

The reordered TPM for $D T M C_{\uplus_{s s}}(\bar{L})$:

$$
\widetilde{\mathbf{P}}_{r}^{\prime}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1-\rho^{3} & \rho^{3} & 0 & 0 \\
2 \rho(1-\rho) & \rho^{2} & 0 & (1-\rho)^{2} & 0 & 0 \\
\rho^{3} & 0 & 0 & \rho^{2}(1-\rho) & (1-\rho)\left(1-\rho^{2}\right) & \rho\left(1-\rho^{2}\right) \\
\rho^{2} & 0 & 0 & 0 & 0 & 1-\rho^{2}
\end{array}\right) .
$$

The result of the decomposing $\widetilde{\mathbf{P}}_{r}^{\prime}$:

$$
\begin{gathered}
\widetilde{\mathbf{C}}^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \widetilde{\mathbf{D}}^{\prime}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \widetilde{\mathbf{E}}^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
2 \rho(1-\rho) & \rho^{2} \\
\rho^{3} & 0 \\
\rho^{2} & 0
\end{array}\right), \\
\widetilde{\mathbf{F}}^{\prime}=\left(\begin{array}{cccc}
1-\rho^{3} & \rho^{3} & 0 & 0 \\
0 & (1-\rho)^{2} & 0 & 0 \\
0 & \rho^{2}(1-\rho) & (1-\rho)\left(1-\rho^{2}\right) & \rho\left(1-\rho^{2}\right) \\
0 & 0 & 0 & 1-\rho^{2}
\end{array}\right)
\end{gathered}
$$

Since $\widetilde{\mathbf{C}}^{\prime 1}=\mathbf{0}$, we have $\forall k>0, \widetilde{\mathbf{C}}^{\prime k}=\mathbf{0}$, hence, $l=0$ and there are no loops among vanishing states. Then

$$
\widetilde{\mathbf{G}}^{\prime}=\sum_{k=0}^{l} \widetilde{\mathbf{C}}^{\prime l}=\widetilde{\mathbf{C}}^{\prime 0}=\mathbf{I}
$$

The TPM for $R D T M C_{\uplus_{s s}}(\bar{L})$:

$$
\begin{gathered}
\widetilde{\mathbf{P}}^{\prime \triangleleft}=\widetilde{\mathbf{F}}^{\prime}+\widetilde{\mathbf{E}}^{\prime} \widetilde{\mathbf{G}}^{\prime} \widetilde{\mathbf{D}}^{\prime}=\widetilde{\mathbf{F}}^{\prime}+\widetilde{\mathbf{E}}^{\prime} \mathbf{I} \widetilde{\mathbf{D}}^{\prime}=\widetilde{\mathbf{F}}^{\prime}+\widetilde{\mathbf{E}}^{\prime} \widetilde{\mathbf{D}}^{\prime}= \\
\left(\begin{array}{cccc}
1-\rho^{3} & \rho^{3} & 0 & 0 \\
0 & (1-\rho)^{2} & 2 \rho(1-\rho) & \rho^{2} \\
0 & \rho^{2}(1-\rho) & 1-\rho-\rho^{2}+2 \rho^{3} & \rho\left(1-\rho^{2}\right) \\
0 & 0 & \rho^{2} & 1-\rho^{2}
\end{array}\right) .
\end{gathered}
$$

SHMGQRDTMC: The reduced quotient DTMC of the abstract generalized shared memory system

The steady-state PMF for $R D T M C_{\uplus_{s s}}(\bar{L})$:

$$
\tilde{\psi}^{\prime \triangleleft}=\frac{1}{2+\rho-\rho^{2}-\rho^{3}}\left(0, \rho^{2}(1-\rho), \rho(2-\rho),(2+\rho)(1-\rho)\right) .
$$

Note that $\tilde{\psi}^{\prime \diamond}=\left(\tilde{\psi}^{\prime \diamond}\left(\widetilde{\mathcal{K}}_{1}\right), \tilde{\psi}^{\prime \diamond}\left(\widetilde{\mathcal{K}}_{2}\right), \tilde{\psi}^{\prime \diamond}\left(\widetilde{\mathcal{K}}_{4}\right), \tilde{\psi}^{\prime \diamond}\left(\widetilde{\mathcal{K}}_{6}\right)\right)$.
By the "quotient" analogue of Proposition PMFSMCT:

$$
\left.\begin{array}{ll}
\tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{1}\right)=0, & \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{2}\right)=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}},
\end{array}\right) \tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{3}\right)=0, ~\left(\tilde{\varphi}^{\prime}\left(\widetilde{\mathcal{K}}_{6}\right)=\frac{(2+\rho)(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}} .\right.
$$

The steady-state PMF for $S M C_{\uplus_{s s}}(\bar{L})$:

$$
\tilde{\varphi}^{\prime}=\frac{1}{2+\rho-\rho^{2}-\rho^{3}}\left(0, \rho^{2}(1-\rho), 0, \rho(2-\rho), 0,(2+\rho)(1-\rho)\right) .
$$

This coincides with the result obtained with the use of $\tilde{\psi}^{\prime *}$ and $\widetilde{S J}^{\prime}$.

Performance indices

- The average recurrence time in the state $\widetilde{\mathcal{K}}_{2}$, where no processor requests the memory, the average system run-through, is $\frac{1}{\widetilde{\varphi}_{2}^{\prime}}=\frac{2+\rho-\rho^{2}-\rho^{3}}{\rho^{2}(1-\rho)}$.
- The common memory is available only in the states $\widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{3}, \widetilde{\mathcal{K}}_{5}$.

The steady-state probability that the memory is available is
$\tilde{\varphi}_{2}^{\prime}+\tilde{\varphi}_{3}^{\prime}+\tilde{\varphi}_{5}^{\prime}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}+0+0=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$.
The steady-state probability that the memory is used (i.e. not available),
the shared memory utilization, is $1-\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}=\frac{2+\rho-2 \rho^{2}}{2+\rho-\rho^{2}-\rho^{3}}$.

- After activation of the system, we leave the state $\widetilde{\mathcal{K}}_{1}$ for all, and the common memory is either requested or allocated in every remaining state, with exception of $\widetilde{\mathcal{K}}_{2}$.
The rate with which the necessity of shared memory emerges coincides with the rate of leaving $\widetilde{\mathcal{K}}_{2}$, calculated as $\frac{\tilde{\varphi}_{2}^{\prime}}{\widetilde{S J_{2}^{\prime}}}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}} \cdot \frac{\rho(2-\rho)}{1}=\frac{\rho^{3}(1-\rho)(2-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$.
- The parallel common memory request of two processors $\{\{r\},\{r\}\}$ is only possible from the state $\widetilde{\mathcal{K}}_{2}$.

The request probability in this state is the sum of the execution probabilities for all multisets of multiactions containing $\{r\}$ twice.

The steady-state probability of the shared memory request from two processors is
$\tilde{\varphi}_{2}^{\prime} \sum_{\left\{A, \widetilde{\mathcal{K}} \mid\{\{r\},\{r\}\} \subseteq A, \widetilde{\mathcal{K}}_{2} \xrightarrow{A} \widetilde{\mathcal{K}}\right\}} P M_{A}\left(\widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}\right)=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}} \rho^{2}=\frac{\rho^{4}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$.

- The common memory request of a processor $\{r\}$ is only possible from the states $\widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{4}$.

The request probability in each of the states is the sum of the execution probabilities for all multisets of multiactions containing $\{r\}$.

The steady-state probability of the shared memory request from a processor is
$\tilde{\varphi}_{2}^{\prime} \sum_{\left\{A, \widetilde{\mathcal{K}} \mid\{r\} \in A, \widetilde{\mathcal{K}}_{2} \xrightarrow{A} \widetilde{\mathcal{K}}\right\}} P M_{A}\left(\widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}\right)+\tilde{\varphi}_{4}^{\prime} \sum_{\left\{A, \widetilde{\mathcal{K}} \mid\{r\} \in A, \widetilde{\mathcal{K}}_{4} \xrightarrow{A} \widetilde{\mathcal{K}}\right\}} P M_{A}\left(\widetilde{\mathcal{K}}_{4}, \widetilde{\mathcal{K}}\right)=$ $\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}\left(2 \rho(1-\rho)+\rho^{2}\right)+\frac{\rho(2-\rho)}{2+\rho-\rho^{2}-\rho^{3}}\left(\rho\left(1-\rho^{2}\right)+\rho^{3}\right)=\frac{\rho^{2}(2-\rho)\left(1+\rho-\rho^{2}\right)}{2+\rho-\rho^{2}-\rho^{3}}$.

The performance indices are the same for the complete and quotient abstract generalized shared memory systems.

The coincidence of the first and second performance indices illustrates Proposition STPROB.
The coincidence of the third performance index illustrates Proposition STPROB and Proposition SJAVVA.
The coincidence of the fourth performance index is by Theorem STTRAC:
one should apply its result to the derived step trace $\{\{r\},\{r\}\}$ of \bar{L} and itself.
The coincidence of the fifth performance index is by Theorem STTRAC:
one should apply its result to the derived step traces $\{\{r\}\},\{\{r\},\{r\}\},\{\{r\},\{m\}\}$ of \bar{L} and itself, and sum the left and right parts of the three resulting equalities.

Effect of quantitative changes of ρ to performance of the quotient abstract generalized shared memory system in its steady state
$\rho \in(0 ; 1)$ is the probability of every multiaction of the system.
The closer is ρ to 0 , the less is the probability to execute some activities at every discrete time step: the system will most probably stand idle.

The closer is ρ to 1 , the greater is the probability to execute some activities at every discrete time step: the system will most probably operate.
$\tilde{\varphi}_{1}^{\prime}=\tilde{\varphi}_{3}^{\prime}=\tilde{\varphi}_{5}^{\prime}=0$ are constants, and they do not depend on ρ.
$\tilde{\varphi}_{2}^{\prime}=\frac{\rho^{2}(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}, \quad \tilde{\varphi}_{4}^{\prime}=\frac{\rho(2-\rho)}{2+\rho-\rho^{2}-\rho^{3}}, \quad \tilde{\varphi}_{6}^{\prime}=\frac{(2+\rho)(1-\rho)}{2+\rho-\rho^{2}-\rho^{3}}$ depend on ρ.

SHMGQSSP: Steady-state probabilities $\tilde{\varphi}_{2}^{\prime}, \tilde{\varphi}_{4}^{\prime}, \tilde{\varphi}_{6}^{\prime}$ as functions of the parameter ρ $\tilde{\varphi}_{2}^{\prime}, \tilde{\varphi}_{4}^{\prime}$ tend to 0 and $\tilde{\varphi}_{6}^{\prime}$ tends to 1 when ρ approaches 0 .

When ρ is closer to 0 , the probability that the memory is allocated to a processor and the memory is requested by another processor increases: more unsatisfied memory requests.
$\tilde{\varphi}_{2}^{\prime}, \tilde{\varphi}_{6}^{\prime}$ tend to 0 and $\tilde{\varphi}_{4}^{\prime}$ tends to 1 when ρ approaches 1.
When ρ is closer to 1 , the probability that the memory is allocated to a processor (and not requested by another one) increases: less unsatisfied memory requests.

The maximal value 0.0797 of $\tilde{\varphi}_{2}^{\prime}$ is reached when $\rho \approx 0.7433$.
In this case, the probability that the system is activated and the memory is not requested is maximal: maximal shared memory availability is about 8%.

SHMGQART: Average system run-through $\frac{1}{\tilde{\varphi}_{2}^{\prime}}$ as a function of the parameter ρ
The average system run-through is $\frac{1}{\tilde{\varphi}_{2}^{\prime}}$.
It tends to ∞ when ρ approaches 0 or 1 .
The minimal value 12.5516 of $\frac{1}{\tilde{\varphi}_{2}^{\prime}}$ is reached when $\rho \approx 0.7433$.
To speed up the system's operation: take the parameter ρ closer to 0.7433 .

SHMGQIND: Some performance indices as functions of the parameter ρ
The shared memory utilization is $1-\tilde{\varphi}_{2}^{\prime}-\tilde{\varphi}_{3}^{\prime}-\tilde{\varphi}_{5}^{\prime}$.
It tends to 1 when ρ approaches 0 and when ρ approaches 1 .
The minimal value 0.9203 of the utilization is reached when $\rho \approx 0.7433$.
The minimal shared memory utilization is about 92%.
To increase the utilization: take the parameter ρ closer to 0 or 1 .

The rate with which the necessity of shared memory emerges is $\frac{\tilde{\varphi}_{2}^{\prime}}{\widetilde{S J_{2}^{\prime}}}$.
It tends to 0 when ρ approaches 0 and when ρ approaches 1 .
The maximal value 0.0751 of the rate is reached when $\rho \approx 0.7743$.
The maximal rate with which the necessity of shared memory emerges is about $\frac{1}{13}$.
To decrease the rate: take the parameter ρ closer to 0 or 1.

The steady-state probability of the shared memory request from two processors is $\widetilde{\varphi}_{2}^{\prime} \widetilde{\mathcal{P}}_{25}^{\prime}$, where $\widetilde{\mathcal{P}}_{25}^{\prime}=\sum_{\left\{A, \widetilde{\mathcal{K}} \mid\{\{r\},\{r\}\} \subseteq A, \widetilde{\mathcal{K}}_{2} \xrightarrow[\rightarrow]{A} \widetilde{\mathcal{K}}\right\}} P M_{A}\left(\widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}\right)=P M\left(\widetilde{\mathcal{K}}_{2}, \widetilde{\mathcal{K}}_{5}\right)$.
It tends to 0 when ρ approaches 0 and when ρ approaches 1 .
The maximal value 0.0517 of the rate is reached when $\rho \approx 0.8484$.
To decrease the probability: take the parameter ρ closer to 0 or 1 .

The steady-state probability of the shared memory request from a processor is $\tilde{\varphi}_{2}^{\prime} \widetilde{\Sigma}_{2}^{\prime}+\tilde{\varphi}_{4}^{\prime} \widetilde{\Sigma}_{4}^{\prime}$, where $\widetilde{\Sigma}_{i}^{\prime}=\sum_{\left\{A, \widetilde{\mathcal{K}} \mid\{r\} \in A, \widetilde{\mathcal{K}}_{i} \xrightarrow{A} \widetilde{\mathcal{K}}\right\}} P M_{A}\left(\widetilde{\mathcal{K}}_{i}, \widetilde{\mathcal{K}}\right), i \in\{2,4\}$.
It tends to 0 when ρ approaches 0 and it tends to 1 when ρ approaches 1 .
To increase the probability: take the parameter ρ closer to 1 .

Overview and open questions

Concurrency interpretation

Interleaving transition relation

Let G be a dynamic expression, $s \in D R(G), \Upsilon \in \operatorname{Exec}(s)$ and $|\Upsilon| \leq 1$.
The probability to execute the multiset of activities Υ in s, when only zero-element steps
(i.e. empty loops) or one-element steps are allowed:

$$
p t(\Upsilon, s)=\frac{P T(\Upsilon, s)}{\sum_{\{\Xi| | \Xi \mid \leq 1\}} P T(\Xi, s)}
$$

Overview and open questions

Concurrency interpretation

SHMGTSI: The interleaving transition system of the generalized shared memory system

SHMGQTSI: The interleaving quotient transition system of the abstract generalized shared memory system

SHMGQRDTMCI: The interleaving reduced quotient DTMC of the abstract generalized shared memory system
The steady-state PMF for $r d t m c_{\uplus_{i s}}(\bar{L})$:
$\tilde{\phi}^{\prime \diamond}=\frac{1}{2+4 \rho+3 \rho^{2}+3 \rho^{3}}\left(0, \rho^{2}(1+\rho), 2 \rho\left(1+\rho+\rho^{2}\right), 2(1+\rho)\right)$, whereas
the steady-state PMF for $R D T M C_{\uplus_{s}}(\bar{L})$:
$\tilde{\psi}^{\prime \diamond}=\frac{1}{2+\rho-\rho^{2}-\rho^{3}}\left(0, \rho^{2}(1-\rho), \rho(2-\rho),(2+\rho)(1-\rho)\right)$.

SHMGQSMCI: The interleaving quotient underlying SMC of the abstract generalized shared memory system
The steady-state PMF for $s m c_{\leftrightarrows_{i s}}(\bar{L})$:
$\tilde{\phi}^{\prime}=\frac{1}{2+4 \rho+3 \rho^{2}+3 \rho^{3}}\left(0, \rho^{2}(1+\rho), 0,2 \rho\left(1+\rho+\rho^{2}\right), 0,2(1+\rho)\right)$, whereas
the steady-state PMF for $S M C_{\uplus_{s s}}(\bar{L})$:
$\tilde{\varphi}^{\prime}=\frac{1}{2+\rho-\rho^{2}-\rho^{3}}\left(0, \rho^{2}(1-\rho), 0, \rho(2-\rho), 0,(2+\rho)(1-\rho)\right)$.

SHMGQSSPI: Interleaving steady-state probabilities $\tilde{\phi}_{2}^{\prime}, \tilde{\phi}_{4}^{\prime}, \tilde{\phi}_{6}^{\prime}$ as functions of the parameter ρ
The differences between Figures SHMGQSSP and SHMGQSSPI:
when ρ tends to 1 , the increase of performance
(the time fraction when the memory is allocated to a processor and not required by another one)
is much more obvious in step semantics than in the interleaving one.

k	0	5	10	15	20	25	30	35	40	45	50	∞
$\phi_{1}^{\prime}[k]$	1	0.5129	0.2631	0.1349	0.0692	0.0355	0.0182	0.0093	0.0048	0.0025	0.0013	0
$\phi_{2}^{\prime}[k]$	0	0.1499	0.1155	0.0950	0.0844	0.0789	0.0761	0.0747	0.0739	0.0736	0.0734	0.0732
$\phi_{3}^{\prime}[k]$	0	0.1992	0.2722	0.3061	0.3233	0.3322	0.3367	0.3390	0.3402	0.3408	0.3411	0.3415
$\phi_{4}^{\prime}[k]$	0	0.1379	0.3493	0.4640	0.5231	0.5534	0.5690	0.5770	0.5811	0.5832	0.5842	0.5854

Let $\rho=\frac{1}{2}$ and $l=1$ in the above interleaving transition systems and DTMC.
The result: the interleaving transition system $t s(\bar{E})$, quotient transition system $t s_{{\underset{\underline{~}}{i s}}}(\bar{F})$, reduced quotient DTMC $r d t m c_{\uplus_{i s}}(\bar{F})$ of the concrete and abstract standard shared memory system.
The steady-state PMF for $r d t m c_{\uplus_{i s}}(\bar{F}): \phi^{\wedge}=\left(0, \frac{3}{41}, \frac{14}{41}, \frac{24}{41}\right)$, whereas the steady-state PMF for $R D T M C_{\uplus_{s s}}(\bar{F}): \psi^{\prime \diamond}=\left(0, \frac{1}{17}, \frac{6}{17}, \frac{10}{17}\right)$.
With k growing, $\phi_{4}^{\prime \diamond}[k]=\phi^{\prime \diamond}[k]\left(\mathcal{K}_{6}\right)$ stabilizes slower than $\psi_{4}^{\prime \diamond}[k]=\psi^{\prime \diamond}[k]\left(\mathcal{K}_{6}\right)$ from Table SHMQRTP and Figure SHMQRTP.
One reason: $r d t m c_{\uplus_{i s}}(\bar{F})$ has no transition from \mathcal{K}_{2} to \mathcal{K}_{6}, unlike $R D T M C_{\uplus_{s s}}(\bar{F})$.
The absolute relative differences for $k=5$:
$\left\lvert\, \frac{\phi_{4}^{\prime \diamond}-\phi_{4}^{\prime}}{\phi_{4}^{\prime}}[5]\right.$
$\left|\frac{\psi_{4}^{\prime \diamond}-\psi_{4}^{\prime}}{\psi_{4}^{\prime \diamond}}\right|=\left|\frac{0.58]}{0.5854}\right|=\left|\frac{0.5882-0.1901}{0.5882}\right|=\frac{0.4475}{0.5854} \approx 0.7644(76 \%)$,
0.5882
0.3981

[^0]
The results obtained

- A discrete time stochastic and immediate extension $d t s i P B C$ of finite $P B C$ enriched with iteration.
- The step operational semantics based on labeled probabilistic transition systems.
- The denotational semantics in terms of a subclass of LDTSIPNs.
- The method of performance evaluation based on underlying SMCs.
- Step stochastic bisimulation equivalence of the expressions and dtsi-boxes.
- The transition systems and SMCs reduction modulo the equivalence.
- A comparison of stationary behaviour up to the equivalence.
- Performance analysis simplification with the equivalence.
- The case study: the shared memory system.

Further research

- Constructing a congruence relation: the equivalence that withstands application of the algebraic operations.
- Introducing the deterministically timed multiactions with fixed time delays (including the zero delay).
- Extending the syntax with recursion operator.

References

[AHR00] van der Aalst W.M.P., van Hee K.M., Reijers H.A. Analysis of discrete-time stochastic Petri nets. Statistica Neerlandica 54(2), p. 237-255, 2000, http://tmitwww.tm.tue.nl/staff/hreijers/H.A. Reijers Bestanden/Statistica.pdf.
[AKB98] D’Argenio P.R., Katoen J.-P., Brinksma E. A compositional approach to generalised semi-Markov processes. Proceedings of $4^{\text {th }}$ International Workshop on Discrete Event Systems 98 (WODES'98), p. 391-397, Cagliary, Italy, IEEE Press, London, UK, 1998, http://cs.famaf.unc.edu.ar/~dargenio/Publications/papers/ wodes $98 . \mathrm{ps} . \mathrm{gz}$.
[BGo98] Bernardo M., Gorrieri R. A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. TCS 202, p. 1-54, July 1998.
[BDH92] Best E., Devillers R., Hall J.G. The box calculus: a new causal algebra with multi-label communication. LNCS 609, p. 21-69, 1992.
[Bort06] Bortolussi L. Stochastic concurrent constraint programming. Electronic Notes in Theoretical Computer Science 164, p. 65-80, 2006.
[Brad05] Bradley J.T. Semi-Markov PEPA: modelling with generally distributed actions. International Journal of Simulation 6(3-4), p. 43-51, February 2005, http: / /pubs.doc.ic.ac.uk/ semi-markov-pepa/semi-markov-pepa.pdf.
[BBGo98] Bravetti M., Bernardo M., Gorrieri R. Towards performance evaluation with general distributions in process algebras. LNCS 1466, p. 405-422, 1998, http://www.cs.unibo.it/~bravetti/papers/concur98.ps.
[BKLL95] Brinksma E., Katoen J.-P., Langerak R., Latella D. A stochastic causality-based process algebra. The Computer Journal 38 (7), p. 552-565, 1995, http://eprints.eemcs.utwente.nl/6387/01/552.pdf.
[Buc95] Buchholz P. A notion of equivalence for stochastic Petri nets. LNCS 935, p. 161-180, 1995.
[Buc98] Buchнolz P. Iterative decomposition and aggregation of labeled GSPNs. LNCS 1420, p. 226-245, 1998.
[BT00] Buchholz P., Tarasyuk I.V. A class of stochastic Petri nets with step semantics and related equivalence notions. Technische Berichte TUD-FI00-12, 18 p., Fakultät Informatik, Technische Universität Dresden, Germany, November 2000, ftp://ftp.inf.tu-dresden. de/ pub/berichte/tud00-12.ps.gz.
[CMBC93] Chiola G., Marsan M.A., Balbo G., Conte G. Generalized stochastic Petri nets: a definition at the net level and its implications. IEEE Transactions on Software Engineering 19(2), p. 89-107, 1993.
[CR14] Ciobanu G., Rotaru A.S. PHASE: a stochastic formalism for phase-type distributions. LNCS 8829, p. 91-106, 2014.
[CHLS09] Coste N., Hermanns H., LantreibecQ E., Serwe W. Towards performance prediction of compositional models in industrial GALS designs. LNCS 5643, p. 204-218, 2009.
[DH13] Deng Y., Hennessy M. On the semantics of Markov automata. Information and Computation 222, p. 139-168, 2013.
[DTGN85] Dugan J.B., Trivedi K.S., Geist R.M., Nicola V.F. Extended stochastic Petri nets: applications and analysis. Proceedings of $10^{\text {th }}$ International Symposium on Computer Performance Modelling, Measurement and Evaluation - 84 (Performance'84), Paris, France, December 1984, p. 507-519, North-Holland, Amsterdam, The Netherlands, 1985.
[FN85] Florin G., Natkin S. Les reseaux de Petri stochastiques. Technique et Science Informatique 4(1), 1985.
[FM03] de Frutos E.D., Marroquín A.O. Ambient Petri nets. Electronic Notes in Theoretical Computer Science 85(1), 27 p., 2003.
[GL94] German R., Lindemann C. Analysis of stochastic Petri nets by the method of supplementary variables. Performance Evaluation 20(1-3), p. 317-335, 1994.
[GHR93] Götz N., Herzog U., Rettelbach M. Multiprocessor and distributed system design: the integration of functional specification and performance analysis using stochastic process algebras. LNCS 729, p. 121-146, 1993.
[HS89] HaAs P.J., Shedler G.S. Stochastic Petri net representation of discrete event simulations. IEEE Transactions on Software Engineering 15(4), p. 381-393, 1987.
[HBC13] Hayden R.A., Bradley J.T., Clark A. Performance specification and evaluation with unified stochastic probes and fluid analysis. IEEE Transactions on Software Engineering 39(1), p. 97-118, IEEE Computer Society Press, January 2013, http://pubs.doc.ic.ac.uk/ fluid-unified-stochastic-probes/fluid-unified-stochasticprobes.pdf.
[HR94] Hermanns H., Rettelbach M. Syntax, semantics, equivalences and axioms for MTIPP. In: Herzog U. and Rettelbach M., eds., Proceedings of the $2^{\text {nd }}$ Workshop on Process Algebras and Performance Modelling. Arbeitsberichte des IMMD 27, University of Erlangen, 1994.
[Hil96] HILLston J. A compositional approach to performance modelling. Cambridge University Press, UK, 1996.
[Kou00] Koutny M. A compositional model of time Petri nets. LNCS 1825, p. 303-322, 2000.
[LNOO] LÓPEZ B.N., NúÑEZ G.M. NMSPA: a non-Markovian model for stochastic processes.
Proceedings of International Workshop on Distributed System Validation and Verification - 00 (DSVV'00), p. 33-40, 2000, http://dalila.sip.uclm.es/membros/manolo/ papers/dsvv2000.ps.gz.
[MVCC03] Macià S.H., Valero R.V., Cazorla L.D., Cuartero G.F. Introducing the iteration in sPBC. Technical Report DIAB-03-01-37, 20 p., Department of Computer Science, University of Castilla - La Mancha, Albacete, Spain, September 2003, http: / /www.info-ab.uclm.es / descargas/tecnicalreports/DIAB-03-01-37/diab030137.zip.
[MVC02] Macià S.H., Valero R.V., Cuartero G.F. A congruence relation in finite sPBC. Technical Report DIAB-02-01-31, 34 p., Department of Computer Science, University of Castilla - La Mancha, Albacete, Spain, October 2002, http://www.info-ab.uclm.es/retics/ publications/2002/tr020131.ps.
[MVCR08] MaciÀ S.H., Valero R.V., Cuartero G.F., Ruiz D.M.C. sPBC: a Markovian extension of Petri box calculus with immediate multiactions. Fundamenta Informaticae 87(3-4), p. 367-406, IOS Press, Amsterdam, The Netherlands, 2008.
[MVF01] MaciÀ S.H., Valero R.V., de Frutos E.D. sPBC: a Markovian extension of finite Petri box calculus. Proceedings of $9^{\text {th }}$ IEEE International Workshop on Petri Nets and Performance Models 01 (PNPM’01), p. 207-216, Aachen, Germany, IEEE Computer Society Press, September 2001, http://www.info-ab.uclm.es/retics/publications/2001/pnpm01.ps.
[MVI08] MARKOVSKI J., DE VINK E.P. Extending timed process algebra with discrete stochastic time. Lecture Notes of Computer Science 5140, p. 268-283, 2008.
[MF00] Marroquín A.O., de Frutos E.D. TPBC: timed Petri box calculus. Technical Report, Departamento de Sistemas Infofmáticos y Programación, Universidad Complutense de Madrid, Madrid, Spain, 2000 (in Spanish).
[MBBCCC89] Marsan M.A., Balbo G., Bobbio A., Chiola G., Conte G., Cumani A. The effect of execution policies on the semantics and analysis of stochastic Petri nets. IEEE Transactions on Software Engineering 15(7), p. 832-846, 1989.
[MBCDF95] Marsan M.A., Balbo G., Conte G., Donatelli S., Franceschinis G. Modelling with generalized stochastic Petri nets. Wiley Series in Parallel Computing, John Wiley and Sons, 316 p., 1995, http://www.di.unito.it/~greatspn/GSPN-Wiley/.
[MC87] Marsan M.A., Chiola G. On Petri nets with deterministic and exponentially distributed firing times. LNCS 266, p. 132-145, 1987.
[MCF90] Marsan M.A., Chiola G., Fumagalli A. Improving the efficiency of the analysis of DSPN models. LNCS 424, p. 30-50, 1990.
[MCB84] Marsan M.A., Conte G., BaLbo G. A class of generalized stochastic Petri nets for performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2(2), p. 93-122, 1984.
[Mol82] Molloy M. Performance analysis using stochastic Petri nets. IEEE Transactions on Software Engineering 31(9), p. 913-917, 1982.
[Mol85] Molloy M. Discrete time stochastic Petri nets. IEEE Transactions on Software Engineering 11(4), p. 417-423, 1985.
[Nia05] NiAouris A. An algebra of Petri nets with arc-based time restrictions. LNCS 3407, p. 447-462, 2005.
[P81] Peterson J.L. Petri net theory and modeling of systems. Prentice-Hall, 1981.
[Pri96] Priami C. Stochastic π-calculus with general distributions. Proceedings of $4^{\text {th }}$ International Workshop on Process Algebra and Performance Modelling - 96 (PAPM'96), p. 41-57, CLUT Press, Torino, Italy, 1996.
[Ret95] Rettelbach M. Probabilistic branching in Markovian process algebras. The Computer Journal 38(7), p. 590-599, 1995.
[Tar05] Tarasyuk I.V. Discrete time stochastic Petri box calculus. Berichte aus dem Department für Informatik 3/05, 25 p., Carl von Ossietzky Universität Oldenburg, Germany, November 2005, http://itar.iis.nsk.su/files/itar/pages/dtspbcib_cov.pdf.
[Tar06] Tarasyuk I.V. Iteration in discrete time stochastic Petri box calculus. Bulletin of the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue 24, p. 129-148, NCC Publisher, Novosibirsk, 2006, http://itar.iis.nsk.su/files/itar/pages/ dtsitncc.pdf.
[TMV10] Tarasyuk I.V., Macià S.H., Valero R.V. Discrete time stochastic Petri box calculus with immediate multiactions. Technical Report DIAB-10-03-1, 25 p., Department of Computer Systems, High School of Computer Science Engineering, University of Castilla - La Mancha, Albacete, Spain, March 2010, http://itar.iis.nsk.su/files/itar/pages/dtsipbc.pdf.
[TMV13] Tarasyuk I.V., Macià S.H., Valero R.V. Discrete time stochastic Petri box calculus with immediate multiactions dtsiPBC. Electronic Notes in Theoretical Computer Science 296, p. 229-252, 2013, http://itar.iis.nsk.su/files/itar/pages/dtsipbcentcs.pdf.
[Tof94] TofTs C. Processes with probabilities, priority and time. Formal Aspects of Computing 6(5), p. 536-564, 1994.
[ZCH97] ZiJal R., Ciardo G., Hommel G. Discrete deterministic and stochastic Petri nets. In: K. Irmscher, Ch. Mittaschand and K. Richter, eds., MMB'97, Aktuelle Probleme der Informatik: Band 1. VDE Verlag, 1997.
[ZG94] ZiJal R., German R. A new approach to discrete time stochastic Petri nets. Lecture Notes in Control and Information Science 199, p. 198-204, 1994.
[ZFH01] Zimmermann A., Freiheit J., Hommel G. Discrete time stochastic Petri nets for modeling and evaluation of real-time systems. Proceedings of Workshop on Parallel and Distributed Real Time Systems, San Francisco, USA, 6 p., 2001, http://pdv.cs.tu-berlin.de/~azi/ texte/WPDRTS01.pdf.

The slides can be downloaded from Internet:

```
http://itar.iis.nsk.su/files/itar/pages/dtsipbcsemrw.pdf
```


Thank you for your attention!

[^0]: SHMQRTPI: Transient probabilities alteration diagram for the interleaving reduced quotient DTMC of the abstract shared memory system

