
Equivalence relations for behaviour-preserving reduction

and modular performance evaluation in dtsPBC ∗

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems

Siberian Branch of the Russian Academy of Sciences

6, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia

itar@iis.nsk.su

Abstract

In the last decades, a number of stochastic enrichments of process algebras was constructed to specify
stochastic processes within the well-developed framework of algebraic calculi. In 2003, a continuous time
stochastic extension sPBC of finite Petri box calculus (PBC) was enriched with the iteration operator by
H. Macià, V. Valero, D. Cazorla and F. Cuartero. In 2006, the author added iteration to the discrete
time stochastic extension dtsPBC of finite PBC. In this paper, in the framework of the dtsPBC with
iteration, we define a variety of stochastic equivalences. They allow one to identify stochastic processes
with similar behaviour that are however differentiated by the operational and denotational semantics of the
calculus. The interrelations of all the introduced equivalences are investigated. It is explained how the
equivalences we propose can be used to reduce transition systems of expressions. A logical characterization
of the equivalences is presented via formulas of the new probabilistic modal logics. We demonstrate how to
apply the equivalences to compare the stationary behaviour. A problem of preservation of the equivalences
by algebraic operations is discussed. As a result, we define an equivalence that is a congruence relation.
Finally, two case studies of performance evaluation in the algebra are presented.

Keywords: stochastic Petri net, stochastic process algebra, Petri box calculus, iteration, discrete time, tran-
sition system, operational semantics, dts-box, denotational semantics, empty loop, stochastic equivalence,
reduction, modal logic, stationary behaviour, congruence relation, performance evaluation.

Contents

1 Introduction 2

2 Syntax 11

3 Operational semantics 13
3.1 Inaction rules . 13
3.2 Action and empty loop rules . 14
3.3 Transition systems . 15

4 Denotational semantics 20
4.1 Labeled DTSPNs . 21
4.2 Algebra of dts-boxes . 24

5 Stochastic equivalences 29
5.1 Empty loops in transition systems . 30
5.2 Empty loops in reachability graphs . 31
5.3 Stochastic trace equivalences . 34
5.4 Stochastic bisimulation equivalences . 35
5.5 Stochastic isomorphism . 36
5.6 Interrelations of the stochastic equivalences . 37

∗This work was supported in part by Deutsche Forschungsgemeinschaft (DFG), grant 436 RUS 113/1002/01, and Russian
Foundation for Basic Research (RFBR), grant 09-01-91334.

1

6 Reduction modulo equivalences 39

7 Logical characterization 42
7.1 Logic iPML . 42
7.2 Logic sPML . 43

8 Stationary behaviour 44
8.1 Theoretical background . 45
8.2 Steady state and equivalences . 46
8.3 Preservation of performance and simplification of its analysis . 51

9 Preservation by algebraic operations 51

10 Performance evaluation 55
10.1 Shared memory system . 55

10.1.1 The standard system . 55
10.1.2 The abstract system and its reduction . 59
10.1.3 The generalized system . 63
10.1.4 The abstract generalized system and its reduction . 64

10.2 Dining philosophers system . 65
10.2.1 The standard system . 65
10.2.2 The abstract system and its reductions . 72
10.2.3 The generalized system . 79
10.2.4 The abstract generalized system and its reductions . 80

11 Conclusion 83

A Proofs 92
A.1 Proof of Theorem 4.2 . 92
A.2 Proof of Proposition 5.2 . 95
A.3 Proof of Proposition 5.3 . 96
A.4 Proof of Proposition 8.1 . 97
A.5 Proof of Theorem 8.2 . 97
A.6 Proof of Proposition 8.2 . 98

1 Introduction

Stochastic Petri nets (SPNs) are a well-known model for quantitative analysis of discrete dynamic event systems
proposed initially in [98]. Essentially, SPNs are a high level language for specification and performance analysis
of concurrent systems. A stochastic process corresponding to this formal model is a Markov chain generated
and analyzed by well-developed algorithms and methods. Firing probabilities distributed along continuous or
discrete time scale are associated with transitions of an SPN. Thus, there exist SPNs with continuous [55, 98]
and discrete [99] time. Markov chains of the corresponding types are associated with the SPNs. As a rule, for
SPNs with continuous time (CTSPNs), exponential or phase distributions of transition probabilities are used.
For SPNs with discrete time (DTSPNs), geometric or combinations of geometric distributions are usually used.
Transitions of CTSPNs fire one by one at continuous time moments. Hence, the semantics of this model is
an interleaving one. In this semantics, parallel computations are modeled by all possible execution sequences
of their components. Transitions of DTSPNs fire concurrently in steps at discrete time moments. Hence, this
model has a step semantics. In this semantics, parallel computations are modeled by sequences of concurrent
occurrences (steps) of their components. In [41,42], a labeling for transitions of CTSPNs with action names was
proposed. The labeling allows SPNs to model processes with functionally similar components: the transitions
corresponding to the similar components are labeled by the same action. Moreover, one can compare labeled
SPNs by different behavioural equivalences, and this makes possible to check stochastic processes specified by
labeled SPNs for functional similarity. Therefore, one can compare both functional and performance properties,
and labeled SPNs turn into a formalism for qualitative and quantitative analysis.

Algebraic calculi occupy a special place among formal models for specification of concurrent systems and
analysis of their behavioral properties. In such process algebras (PAs), a system or a process is specified by
an algebraic formula. Verification of the properties is accomplished at a syntactic level by means of well-
developed systems of equivalences, axioms and inference rules. The best-known of the first PAs are Theory

2

of Communicating Sequential Processes (TCSP) [67] and Calculus of Communicating Systems (CCS) [96].
Process algebras have been acknowledged to be very suitable formalism to operate with real time and stochastic
systems as well. In the last years, stochastic extensions of PAs, called stochastic process algebras (SPAs),
became very popular as a modeling framework. SPAs do not just specify actions which can occur (qualitative
features) as usual process algebras, but they associate some quantitative parameters with actions (quantitative
characteristics). The most popular SPAs proposed so far are Markovian Timed Processes for Performance
Evaluation (MTIPP) [70], Performance Evaluation Process Algebra (PEPA) [64] and Extended Markovian
Process Algebra (EMPA) [23].

In MTIPP , every activity is a pair consisting of the action name (including the symbol τ for the internal,
invisible action) and the parameter of exponential distribution of the action delay (the rate). The operations
are prefix, choice, parallel composition including synchronization on the specified action set and recursion. It is
possible to specify processes by recursive equations as well. The interleaving semantics is defined on the basis
of Markovian (i.e. extended with the specification of rates) labeled transition systems. Note that we have the
interleaving behaviour here because the exponential probability distribution function (PDF) is a continuous one,
and a simultaneous execution of any two activities has zero probability according to the properties of continuous
distributions. Continuous time Markov chains (CTMCs) can be derived from the mentioned transition systems
to analyze performance.

In PEPA, activities are the pairs consisting of action types (including the unknown, unimportant type τ)
and activity rates. The rate is either the parameter of exponential distribution of the activity duration or it is
unspecified, denoted by ⊤. An activity with unspecified rate is passive by its action type. The set of operations
includes prefix, choice, cooperation, hiding and constants whose meaning is given by the defining equations
including the recursive ones. The cooperation is accomplished on the set of action types (the cooperation set)
on which the components must synchronize or cooperate. If the cooperation set is empty, the cooperation
operator turns into the parallel combinator. The semantics is interleaving, it is defined via the extension of
labeled transition systems with a possibility to specify activity rates. Based on the transition systems, the
continuous time Markov processes (CTMPs) are generated which are used for performance evaluation with the
help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can be external or internal
(denoted by τ) according to types. There are three kinds of actions according to rates: timed ones with
exponentially distributed durations (essentially, the actions from MTIPP and PEPA), immediate ones with
priorities and weights (the actions analogous to immediate transitions of generalized SPNs, GSPNs) and passive
ones (similar to passive actions of PEPA). Timed actions specify activities that are relevant for performance
analysis. Immediate actions model logical events and the activities that are irrelevant from the performance
viewpoint or much faster than others. Passive actions model activities waiting for the synchronization with
timed or immediate ones, and express nondeterministic choice. The set of operators consist of prefix, functional
abstraction, functional relabeling, alternative composition and parallel composition ones. Parallel composition
includes synchronization on the set of action types like in TCSP . The syntax also includes recursive definitions
given by means of constants. The semantics is interleaving and based on the labeled transition systems enriched
with the information about action rates. For the exponentially timed kernel of the algebra (the sublanguage
including only exponentially timed and passive actions), it is possible to construct CTMCs from the transition
systems of the process terms to analyze the performance.

An extension of CCS with probabilities and time, called TPCCS, was defined in [60]. An enrichment of
Basic Process Algebra (BPA) with probabilistic choice, prBPA, as well as extension of the latter with the
parallel composition operator named ACP+

π have been proposed in [2]. A stochastic process calculus Priced
Process Algebra (PPA) based on CCS was constructed in [117,120]. The papers [27,39,51,127] propose a variety
of other SPAs. A standard way for probabilistic extension of process algebras into the calculi of probabilistic
transition systems was described in [73].

Process algebras allow one to specify processes in a compositional way via an expressive formal syntax.
On the other hand, Petri nets provide one with an ability for visual representation of a process structure and
execution. Hence, the relationship between SPNs and SPAs is of particular interest. To combine advantages of
both models, a semantics of algebraic formulas in terms of Petri nets is usually defined. In the stochastic case,
the Markov chain of the stochastic process specified by an SPA formula is built based on the state transition
graph of the corresponding SPN.

Petri box calculus (PBC) is a flexible and expressive process algebra based on calculi CCS [96]. Note that
some operations of PBC are similar to those of the Algebra of Finite Processes (AFP0) [81]. PBC was proposed
fifteen years ago [12], and it was well explored since that time [10, 13–18, 29, 30, 32, 46–48, 52, 66, 76, 79, 82]. Its
goal was to propose a compositional semantics for high level constructs of concurrent programming languages
in terms of elementary Petri nets. Thus, PBC serves as a bridge between theory and applications. Formulas of
PBC are combined not from single actions (including the invisible one) and variables, like in CCS, but from

3

multisets of elementary actions and their conjugates, called multiactions (basic formulas) as well. The empty
multiset of actions is allowed that is considered as the silent multiaction specifying some invisible or internal
activity. In contrast to CCS, concurrency and synchronization are different operations (concurrent constructs).
Synchronization is defined as a unary multi-way stepwise operation based on communication of actions and
their conjugates. The CCS approach with conjugate matching labels was extended to define synchronization in
PBC. This approach was preferred as being more flexible and compositional than that of the process algebras
TCSP and COSY [22] where synchronization is accomplished over common action names. Moreover, the
synchronization operation of PBC is asynchronous in contrast to the approach of Synchronous CCS (SCCS)
[96] where it is synchronous. The other fundamental operations are sequence and choice (sequential constructs).
The calculus includes also restriction and relabeling (abstraction constructs). To specify infinite processes,
refinement, recursion and iteration operations were added (hierarchical constructs). Thus, unlike CCS, PBC
has an additional iteration construction to specify infinite behaviour in the cases when finite Petri nets can be
used as the semantic interpretation. For PBC, a denotational semantics was proposed in terms of a subclass
of Petri nets equipped with an interface and considered up to isomorphism. This subclass is called Petri
boxes. The calculus PBC has a step operational semantics in terms of labeled transition systems, based on
the rules of structural operational semantics (SOS) [122]. The operational semantics of PBC is of step type,
since its SOS rules have transitions with (multi)sets of activities, corresponding to simultaneous executions of
activities (steps). Note that we do not reason in terms of a big-step (natural) [75] or small-step (structural) [122]
operational semantics here, and that PBC (and all its extensions to be mentioned further) have a small-step
operational semantics, in that terminology. Pomset operational semantics of PBC was defined in [82] such that
the partial order information was extracted from “decorated” step traces. In these step sequences, multiactions
were annotated with an information on the relative position of the expression part they were derived from. More
detailed comparison of PBC with other well-known process algebras and the reasoning about importance of
non-interleaving semantics can be found in [12,15]. In the last years, several extensions of PBC were presented.

To specify systems with time constraints, such as real time systems, deterministic (fixed) or nondeterministic
(interval) time delays are used. A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [83]. In tPBC, timing information is added by associating time intervals
(the earliest and the latest firing time) with instantaneous actions. Its denotational semantics was defined in
terms of a subclass of labeled time Petri nets (LtPNs), based on tPNs [95] and called time Petri boxes (ct-
boxes). tPBC has a step time operational semantics in terms of labeled transition systems. Another time
enrichment of PBC, called Timed Petri box calculus (TPBC), was defined in [93, 94], it accommodates a
deterministic model of time. In contrast to tPBC, multiactions of TPBC are not instantaneous, but have
time durations. Additionally, in TPBC there exist no “illegal” multiaction occurrences, unlike tPBC. The
complexity of “illegal” occurrences mechanism was one of the main intentions to construct TPBC though this
calculus appeared to be more complicated than tPBC. The denotational semantics of TPBC was defined in
terms of a subclass of labeled Timed Petri nets (LTPNs), based on TPNs [126] and called Timed Petri boxes (T-
boxes). TPBC has a step timed operational semantics in terms of labeled transition systems. Note that tPBC
and TPBC differ in ways they capture time information, and they are not in competition but complement
each other. The third time extension of PBC, called arc time Petri box calculus (atPBC), was constructed
in [118,119], and it implements a nondeterministic time. In atPBC, multiactions are associated with time delay
intervals. Its denotational semantics was defined on a subclass of labeled arc time Petri nets (atPNs), where
time restrictions are associated with the arcs, called arc time Petri boxes (at-boxes). atPBC possesses a step
time operational semantics in terms of labeled transition systems. Further, all the calculi tPBC, TPBC and
atPBC apply the discrete time approach, but only tPBC and atPBC have immediate (multi)actions.

The set of states for the systems with deterministic or nondeterministic delays often differs drastically from
that for the timeless systems, hence, the analysis results for untimed systems may be not valid for the time
ones. To solve this problem, stochastic delays are considered, which are the random variables with a (discrete
or continuous) probability distribution. If the random variables governing delays have an infinite support then
the corresponding SPA can exhibit all the same behaviour as its underlying untimed PA. A stochastic extension
of PBC, called stochastic Petri box calculus (sPBC), was proposed in [90, 103, 108–110, 112–114]. In sPBC,
multiactions have stochastic delays that follow negative exponential distribution. Each multiaction is equipped
with a rate that is a parameter of the corresponding exponential distribution. The instantaneous execution of a
stochastic multiaction is possible only after the corresponding stochastic time delay. Just a finite part of PBC
was used for the stochastic enrichment. This means that sPBC has neither refinement nor recursion nor iteration
operations. Its denotational semantics was defined in terms of a subclass of labeled continuous time stochastic
PNs (LCTSPNs), based on CTSPNs [6, 91] and called stochastic Petri boxes (s-boxes). Calculus sPBC has
an interleaving operational semantics in terms of transition systems labeled with multiactions and their rates.
In [90], a computing system with n parallel processes and a critical section, as well as the producer/consumer
system with a producer, a consumer and a buffer of capacity 1 or n, moreover, the alternating bit protocol with

4

an emitter, a receptor and 2 channels, were described within sPBC. Current research in this branch has an
aim to extend the specification abilities of sPBC and to define appropriate congruence relation over algebraic
formulas. The results on constructing the iteration for sPBC were reported and the producer/consumer system
with a buffer of capacity 1 or n was specified in [105,106]. In sPBC with iteration, performance of the processes
is evaluated by analyzing their underlying continuous time Markov chains (CTMCs). In the papers [104,107], a
number of new equivalence relations were proposed for regular terms of sPBC with iteration to choose later a
suitable candidate for a congruence. In [111], special immediate multiactions with zero time delay were added
to sPBC, and a manufacturing system with 3 machines and an assembler, as well as the AUY-protocol with
a sender, receiver and 2 channels, were modeled. We call such an extension generalized sPBC (gsPBC). An
interleaving operational semantics of gsPBC was constructed via transition systems labeled with stochastic
or immediate multiactions together with their rates or probabilities. A denotational semantics of gsPBC was
defined via a subclass of labeled generalized SPNs (LGSPNs), based on GSPNs [6, 7, 91] and called generalized
stochastic Petri boxes (gs-boxes). The performance analysis in gsPBC is based on the underlying semi-Markov
chains (SMCs). Note that the example systems considered within sPBC and its extensions had an interleaving
semantics. The performance indices were calculated only for the systems from [90,111].

To specify mobile systems, a concept of ambient is introduced. An ambient extension of PBC, called
Ambient Petri box calculus (APBC), was proposed in [54]. Ambient calculus is used to model behaviour of
mobile systems. Ambient is a named environment delimited by a boundary. The ambients can be moved to a
new location thus modeling mobility. The algebra APBC includes ambients and mobility capabilities. Hence,
it could be interpreted as an extension of the Ambient Calculus with the operations of PBC. Basic actions
of APBC are capabilities defined over ambient names and standard multiactions of PBC. Only finite part of
PBC was taken for the ambient enrichment. Moreover, only concurrency and sequence were transferred into
APBC from the set of PBC operations in [54]. This reduced algebra was called Simple Ambient Petri box
calculus (SAPBC). A denotational semantics was defined in terms of Elementary Object Systems (EOSs) that
are two-level net systems composed from a system net and object nets. Object nets could be interpreted as
high-level tokens of the system net modeling the execution of mobilie processes. The calculus SAPBC has a
step operational semantics in terms of labeled transition systems.

PBC has a step operational semantics, whereas sPBC has an interleaving one. Remember that in step
semantics, parallel executions of activities (steps) are permitted while in interleaving semantics, we can exe-
cute only single activities. Hence, a stochastic extension of PBC with a step semantics is needed to keep the
concurrency degree of behavioural analysis at the same level as in PBC. As mentioned in [97, 99], in contrast
to continuous time approach (used in sPBC), discrete time approach allows for constructing models of com-
mon clock systems and clocked devices. In such models, multiple transition firings (or executions of multiple
activities) at time moments (ticks of the central clock) are possible, resulting in a step semantics. Moreover,
employment of discrete stochastic time fills the gap between the models with deterministic (fixed) time delays
and those with continuous stochastic time delays. As argued in [1], arbitrary delay distributions are much
easier to handle in a discrete time domain. In [89, 115, 116], discrete stochastic time was preferred to enable
simultaneous expiration of multiple delays. Nevertheless, there were no stochastic extension of PBC with step
semantics until recent times. It can be done with the use of labeled DTSPNs as a semantic area, since discrete
time models allow for concurrent action occurrences. The enrichment based on DTSPNs is natural because
PBC has a step operational semantics.

A notion of equivalence is very important in formal theory of computing processes and systems. Behavioural
equivalences are applied during verification stage both to compare behaviour of systems and reduce their struc-
ture. At present time, there exists a great diversity of different equivalence notions for concurrent systems, and
their interrelations are well explored in the literature. The most popular and widely used one is bisimulation.
Unfortunately, the mentioned behavioural equivalences take into account only functional (qualitative) but not
performance (quantitative) aspects of system behaviour. Additionally, the equivalences are often interleaving
ones, and they do not respect concurrency. SPAs inherited from timeless PAs a possibility to apply equivalences
for comparison of specified processes. Like equivalences for other stochastic models, the relations for SPAs
have special requirements due to summation of probabilities. The states from which similar future behaviours
start have to be grouped into equivalence classes. The classes form elements of the aggregated state space,
and they are defined a posteriori while searching for equivalences on state space of a model. In the case of
bisimulation equivalence, from every two bisimilar states, the same actions can be executed, and the subsequent
states resulting from execution of an action belong to the same equivalence class. In addition, for both states,
the cumulative probabilities to move to the same equivalence class by executing the same action coincide. A
different kind of quantitative relations are called Markovian equivalences, which take rate (the parameter of ex-
ponential distribution that governs time delays) instead of probability. Note that the probabilistic equivalences
can be seen as discrete time analogues of the Markovian ones, since the latter are defined as the continuous
time relations. The non-interleaving bisimulation equivalence in GSMPA [9, 34] uses ST-semantics for action

5

particles while in Sπ [124] it is based on a sophisticated labeling.
Interleaving probabilistic weak trace equivalence was proposed in [43] on labeled probabilistic transition sys-

tems and in [151] it was defined on labeled CTMCs. Interleaving probabilistic strong bisimulation equivalence
was proposed in [33,87,88] on labeled probabilistic transition systems. Interleaving Markovian strong bisimula-
tion equivalence was constructed in [70] for MTIPP , in [64] for PEPA and in [23] for EMPA. The mentioned
equivalence relation for PEPA has been proved to be a congruence. Interleaving probabilistic equivalences
were defined for probabilistic processes in [59, 71]. Interleaving Markovian weak bisimulation equivalence was
introduced in [39] on Markovian process algebras, in [40] on stochastic automata, in [41] on labeled CTSPNs
and in [42] on GSPNs. Interleaving probabilistic weak and strong bisimulation equivalences were proposed
in [24] on labeled probabilistic transition systems and in [25] they were defined on labeled discrete time Markov
chains (DTMCs) and CTMCs. In [27], a notion of interleaving stochastic weak bisimulation equivalence for
process terms was introduced. The authors proved that the equivalence is preserved by formula composition
within SPAs considered in the paper, i.e. the relation is a congruence. In [21], a comprehensive investigation
of a variety of interleaving Markovian trace, test, strong and weak bisimulation equivalences was carried out on
sequential and concurrent Markovian process calculi. At the same time, no appropriate equivalence notion was
defined for concurrent SPAs so far. Thus, it is desirable to propose an equivalence relation for parallel SPAs
that binds formulas specifying processes with similar behavior and differentiates those having non-similar one
from a certain viewpoint. It would be fine to find a relation that is a congruence with respect to the algebraic
operations. In this case, the formulas combined by algebraic operations from equivalent subformulas will be
equivalent as well. This is very important property while bottom-up design of processes.

We did some work on the development of concurrent discrete time SPNs and SPAs, as well as on defining
a variety of concurrent probabilistic equivalences. In [36, 37], labeled weighted DTSPNs (LWDTSPNs) were
proposed that is a modification of DTSPNs [99] by transition labeling and weights. In [38,134], labeled DTSPNs
(LDTSPNs) were introduced. Transitions of LWDTSPNs and LDTSPNs are labeled by actions which represent
elementary activities and can be visible or invisible to an external observer. For these two net classes, a number
of new probabilistic τ -trace and τ -bisimulation equivalences were defined that abstract from invisible actions
(denoted by τ) and respect concurrency in different degrees (interleaving and step relations). In addition, prob-
abilistic relations that require back or back-forth simulation were introduced. An application of the probabilistic
back-forth τ -bisimulation equivalences to compare the stationary behaviour of the LWDTSPNs or LDTSPNs
was demonstrated. In [38, 129], a logical characterization was presented for interleaving and step probabilistic
τ -bisimulation equivalences via formulas of the new probabilistic modal logics. The characterization means that
two LWDTSPNs or LDTSPNs are (interleaving or step) probabilistic τ -bisimulation equivalent if they satisfy
the same formulas of the corresponding probabilistic modal logic. Thus, instead of comparing nets operationally,
one have to check the corresponding satisfaction relation only applying standard verification techniques. The
new interleaving and step logics are modifications of that, called PML, was proposed in [87] on probabilistic
transition systems with visible actions. In [37, 38, 134], a stochastic algebra of finite nondeterministic processes
StAFP0 was proposed with semantics in terms of a subclass of LWDTSPNs and LDTSPNs, called stochas-
tic acyclic nets (SANs). The calculus defined is a stochastic extension of the algebra AFP0 introduced in [78].
StAFP0 specifies concurrent stochastic processes. Another feature of the algebra is a net semantics allowing one
to preserve the level of parallelism, since Petri nets is a classical “true concurrency” model. Usually, transition
systems are used for this purpose, but they are not able to respect concurrency completely. An axiomatization
for the semantic equivalence of StAFP0 was proposed. It was proved that any algebraic formula could be
reduced to the “fully stratified” one with the use of the axiom system. This simplifies semantic comparison
of formulas. In [130, 134], we considered different classes of stochastic Petri nets. We explored how transition
labeling could be defined to compare SPNs by equivalences. An suitability of the SPN classes for modeling
and analysis of different kinds of dynamic systems was investigated. In [131, 133], a discrete time stochastic
extension dtsPBC of finite PBC was constructed. In dtsPBC, the residence time in the process states is
geometrically distributed. A step operational and a net denotational semantics of dtsPBC were defined, and
their consistency was demonstrated. In addition, a variety of stochastic equivalences were proposed to identify
stochastic processes with similar behaviour which are differentiated by the semantic equivalence. The inter-
relations of all the introduced equivalences were studied. In [132, 135–144], we constructed an enrichment of
dtsPBC with the iteration operator used to specify infinite processes. The performance evaluation in dtsPBC
with iteration is accomplished via the underlying discrete time Markov chains (DTMCs) of the algebraic pro-
cesses. Since dtsPBC has a discrete time semantics and geometrically distributed sojourn time in the process
states, unlike sPBC with continuous time semantics and exponentially distributed delays, the calculi apply
two different approaches to the stochastic extension of PBC, in spite of some similarity of their syntax and
semantics inherited from PBC. The main advantage of dtsPBC is that concurrency is treated naturally, like
in PBC, whereas in sPBC parallelism is simulated by interleaving, obliging one to collect the information on
causal independence of activities before constructing the semantics. In [145–149], we presented the extension

6

dtsiPBC of the latter calculus with immediate multiactions. The performance analysis in dtsiPBC is based
on the underlying semi-Markov chains (SMCs) and (reduced) DTMCs.

Let us compare dtsPBC with classical SPAs: MTIPP [70], PEPA [64] and EMPA [23]. The first main
difference comes from PBC, since dtsPBC is based on this calculus. In particular, all algebraic operations are
inherited from PBC, as well as a notion of multiaction. The second main difference is discrete probabilities
of activities induced by discrete time semantics, whereas the action rates are used in the standard SPAs with
continuous time semantics. Let us explain this all in more detail. In dtsPBC, every activity is a pair consisting
of the multiaction (not just an action, as in the classical SPAs) and its probability (not the rate, as in the
mentioned SPAs) to be executed independently The algebra dtsPBC has the sequence operator in contrast to
prefix one in the three SPAs which we compare with. One can combine arbitrary expressions with sequence
operation, i.e. it is more flexible than the prefix one, where the first argument should be a single activity.
The choice operator in dtsPBC is analogous to that in MTIPP and PEPA, as well as to the alternative
composition in EMPA, in the sense that the choice is probabilistic, but a discrete probability function is used in
dtsPBC, unlike continuous ones in the mentioned calculi. On the other hand, concurrency and synchronization
in dtsPBC are different operations (this feature is inherited from PBC), unlike the situation in the classical
SPAs where parallel composition (combinator) has a synchronization capability. Relabeling in dtsPBC is
analogous to that in EMPA, but it is additionally extended to conjugated actions. The restriction operation
in dtsPBC differs from hiding in PEPA and functional abstraction in EMPA, where the hidden actions
are labeled with a symbol of “silent” action τ , like in TCSP . In dtsPBC, restriction by an action means
that, for a given expression, any process behaviour containing the action or its conjugate is not allowed. The
synchronization on an elementary action in dtsPBC collects all the pairs consisting of this elementary action
and its conjugate which are contained in the multiactions from the synchronized activities. The operation
produces new activities such that the first element of every resulting activity is the union of the multiactions
from which all the mentioned pairs of conjugated actions are removed, and the second element is the product
of the probabilities of the activities involved in the synchronization. Thus, there is a difference with the way
synchronization is applied in the mentioned SPAs where it is accomplished over identical action names, and
every resulting activity consists of the same action name and the rate calculated via sums, minimums and
products of the rates of the initial activities, such as the apparent rate in PEPA. The algebra dtsPBC has no
recursion operation or a possibility for recursive definitions, but it includes the iteration operation that gives
an ability to specify infinite behaviour with the explicitly defined start and termination. Iteration allows for a
syntactic description of many realistic processes with loops. Calculus dtsPBC has a discrete time semantics,
and residence time in the states is geometrically distributed, unlike the mentioned SPAs with continuous time
semantics and exponentially distributed activity delays. As a consequence, the semantics of dtsPBC is the
step one in contrast to the interleaving semantics of the three SPAs mentioned above. The performance can be
investigated based on the discrete time Markov chain (DTMC) extracted from the labeled probabilistic transition
system associated with each expression of dtsPBC. Note that in the classical SPAs we generate CTMCs from
the transition systems. In [57], a denotational semantics of PEPA has been proposed via PEPA nets that
are high-level CTSPNs with coloured tokens (coloured CTSPNs), from which the underlying CTMCs can be
retrieved. In [11, 20], a denotational semantics of EMPA based on GSPNs has been defined, from which one
can also extract the underlying SMCs and CTMCs (when both immediate and timed transitions are present) or
discrete time Markov chains (DTMCs) (but when there are only immediate transitions). In addition, dtsPBC
has a denotational semantics in terms of LDTSPNs from which the corresponding DTMCs can be derived as
well.

Only a few non-interleaving SPAs were considered among non-Markovian ones [4, 74]. The semantics of
all Markovian calculi is interleaving and their action delays have exponential distribution, which is the only
continuous probability distribution with memoryless (Markovian) property. In [28], Generalized Stochastic Pro-
cess Algebra (GSPA) was introduced. It has a true-concurrent denotational semantics in terms of generalized
stochastic event structures (GSESs) with non-Markovian stochastic delays of events. In that paper, no oper-
ational semantics or performance evaluation methods for GSPA were presented. Later, in [77], generalized
semi-Markov processes (GSMPs) were extracted from GSESs to analyze performance. In [123, 124], general-
ized Stochastic π-calculus (Sπ) with general continuous distributions of activity delays was defined. It has a
proved operational semantics with transitions labeled by encodings of their deduction trees. No well-established
underlying performance model for this version of Sπ was described. In [9, 34], Generalized Semi-Markovian
Process Algebra (GSMPA) was developed with an ST-operational semantics and non-Markovian action delays.
The performance analysis in GSMPA is accomplished via GSMPs. Again, the first fundamental difference
between dtsPBC and the calculi GSPA, Sπ and GSMPA is that dtsPBC is based on PBC, whereas GSPA
is an extension of simple Process Algebra (PA) from [28], Sπ extends π-calculus [100, 101] and GSMPA is an
enrichment of EMPA. Therefore, both GSPA and GSMPA have prefixing, choice (alternative composition),
parallel composition, renaming (relabeling) and hiding (abstraction) operations, but only GSMPA permits con-

7

stants. Unlike dtsPBC, GSPA has neither iteration or recursion, GSMPA allows only recursive definitions,
whereas Sπ additionally has operations to specify mobility. Note also that GSPA, Sπ and GSMPA do not
specify instantaneous events or activities while dtsiPBC has immediate multiactions. The second significant
difference is that geometrically distributed delays are associated with process states in dtsPBC, unlike generally
distributed delays assigned to events in GSPA or to activities in Sπ and GSMPA. As a consequence, dtsPBC
has a discrete time operational semantics allowing for concurrent execution of activities in steps. GSPA has
no operational semantics while Sπ and GSMPA have continuous time ones. In continuous time semantics,
concurrency is simulated by interleaving, since simultaneous occurrence of any two events has zero probability
according to the properties of continuous probability distributions. Therefore, interleaving transitions are often
annotated with an additional information to keep concurrency data. The transition labels in the operational
semantics of Sπ encode the action causality information and allow one to derive the enabling relations and the
firing distributions of concurrent transitions from the transition sequences. At the same time, abstracting from
stochastic delays leads to the classical early interleaving semantics of π-calculus. The ST-operational semantics
of GSMPA is based on decorated transition systems governed by transition rules with rather complex precon-
ditions. There are two types of transitions: the choice (action beginning) and the termination (action ending)
ones. The choice transitions are labeled by weights of single actions chosen for execution while the termina-
tion transitions have no labels. Only single actions can begin, but several actions can end in parallel. Thus,
the choice transitions happen just sequentially while the termination transitions can happen simultaneously.
As a result, the decorated interleaving / step transition systems are obtained. dtsPBC has an SPN-based
denotational semantics. In comparison with event structures, PNs are more expressive and visually tractable
formalism, capable of finitely specifying an infinite behaviour. Recursion in GSPA produces infinite GSESs
while dtsPBC has iteration operation with a finite SPN semantics. An identification of infinite GSESs that
can be finitely represented in GSPA was left for a future research.

In [1], a class of compositional DTSPNs with generally distributed discrete time transition delays was
proposed, called dts-nets. The denotational semantics of a stochastic extension (we call it stochastic ACP or
sACP) of a subset of Algebra of Communicating Processes (ACP) [26] can be constructed via dts-nets. There
are two types of transitions in dts-nets: immediate (timeless) ones, with zero delays, and time ones, whose
delays are random variables having general discrete distributions. The top-down synthesis of dts-nets consists
in the substitution of their transitions by blocks (dts-subnets) corresponding to the sequence, choice, parallelism
and iteration operators. It was explained how to calculate the throughput time of dts-nets using the service
time (defined as holding time or delay) of their transitions. For this, the notions of service distribution for the
transitions and throughput distribution for the building blocks were defined. Since the throughput time of the
parallelism block was calculated as the maximal service time for its two constituting transitions, the analogue
of the step semantics approach was implemented. In [115, 116], an SPA called Theory of Communicating
Processes with discrete stochastic time (TCP dst) was introduced, later in [89] called Theory of Communicating
Processes with discrete real and stochastic time (TCP drst). It has discrete real time (deterministic) delays
(including zero time delays) and discrete stochastic time delays. The algebra generalizes real time processes to
discrete stochastic time ones by applying real time properties to stochastic time and imposing race condition
to real time semantics. TCP dst has an interleaving operational semantics in terms of stochastic transition
systems. The performance is analyzed via discrete time probabilistic reward graphs which are essentially the
reward transition systems with probabilistic states having finite number of outgoing probabilistic transitions
and timed states having a single outgoing timed transition. The mentioned graphs can be transformed by
unfolding or geometrization into discrete time Markov reward chains (DTMRCs) appropriate for transient or
long-run (stationary) analysis. The first difference between dtsPBC and the algebras sACP and TCP dst is that
dtsPBC is based on PBC, but sACP and TCP dst are the extensions of ACP . sACP has taken from ACP only
sequence, choice, parallelism and iteration operations, whereas dtsPBC has additionally relabeling, restriction
and synchronization ones, inherited from PBC. In TCP dst, besides standard action prefixing, alternative,
parallel composition, encapsulation (similar to restriction) and recursive variables, there are also timed delay
prefixing, dependent delays scope and the maximal time progress operators, which are new both for ACP and
dtsPBC. The second difference is that dtsiPBC, sACP and TCP dst, all have zero delays, however, discrete
time delays in dtsiPBC are zeros or geometrically distributed and associated with process states. The zero
delays are possible just in vanishing states while geometrically distributed delays are possible only in tangible
states. For each tangible state, the parameter of geometric distribution governing the delay in the state is
completely determined by the probabilities of all stochastic multiactions executable from it. In sACP and
TCP dst, delays are generally distributed, but they are assigned to transitions in sACP and separated from
actions (excepting zero delays) in TCP dst. Moreover, a special attention is given to zero delays in sACP and
deterministic delays in TCP dst. In sACP , immediate (timeless) transitions with zero delays serve as source
and sink transitions of the dts-subnets corresponding to the choice, parallelism and iteration operators. In
TCP dst, zero delays of actions are specified by undelayable action prefixes while positive deterministic delays of

8

Table 1: Classification of stochastic process algebras

Time Interleaving semantics Non-interleaving semantics

Continuous MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ, GSMPA (GSMP)
EMPA (SMC, CTMC),

sPBC (CTMC), gsPBC (SMC)
Discrete TCP dst (DTMRC) sACP , dtsPBC (DTMC),

dtsiPBC (SMC, DTMC)

processes are specified with timed delay prefixes. Neither formal syntax nor operational semantics for sACP are
defined and it is not explained how to derive Markov chains from the algebraic expressions or the corresponding
dts-nets to analyze performance. It is not stated explicitly, which type of semantics (interleaving or step)
is accommodated in sACP . In spite of the discrete time approach, operational semantics of TCP dst is still
interleaving, unlike that of dtsPBC. In addition, no denotational semantics was defined for TCP dst.

Table 1 summarizes the above comparison of the SPAs and that from Section 1 (the calculi sPBC, gsPBC
and dtsiPBC), by classifying them according to the concept of time and the type of operational semantics.
The names of SPAs, whose denotational semantics is based on SPNs, are printed in bold font. The underlying
stochastic process (if defined) is specified in parentheses near the name of the corresponding SPA.

An important aspect is the analytical tractability of the underlying stochastic process, used for performance
evaluation within SPAs. The underlying CTMCs in MTIPP and PEPA, as well as SMCs in EMPA, are
treated analytically, but these continuous time SPAs have interleaving semantics. GSPA, Sπ and GSMPA
are the continuous time models, for which a non-interleaving semantics is constructed, but for the underlying
GSMPs in GSPA and GSMPA, only simulation and numerical methods are applied, whereas no performance
model for Sπ is defined. sACP and TCP dst are the discrete time models with the associated analytical
methods for the throughput calculation in sACP or for the performance evaluation based on the underlying
DTMRCs in TCP dst, but both models have interleaving semantics. dtsPBC is a discrete time model with
a non-interleaving semantics, where analytical methods are applied to the underlying DTMCs. Hence, if an
interleaving model is appropriate as a framework for the analytical solution towards performance evaluation
then one has a choice between the continuous time SPAs MTIPP , PEPA, EMPA and the discrete time ones
sACP , TCP dst. Otherwise, if one needs a non-interleaving model with the associated analytical methods for
performance evaluation and the discrete time approach is feasible then dtsPBC is the right choice.

Moreover, the existence of an analytical solution allows one to interpret quantitative values (rates, probabil-
ities, weights etc.) from the system specifications as parameters, which can be adjusted to optimize the system
performance, like in dtsPBC [142,143], dtsiPBC [146,148] and parametric probabilistic transition systems (i.e.
DTMCs whose transition probabilities may be real-value parameters) [86]. Note that DTMCs whose transition
probabilities are parameters were introduced in [45]. Parametric CTMCs with the transition rates treated as
parameters were investigated in [65]. On the other hand, no parameters in formulas of SPAs were considered
in the literature so far. In dtsPBC we can easily construct examples with more parameters than we did in our
case study. The performance indices will be then interpreted as functions of several variables. The advantage
of our approach is that, unlike of the method from [86], we should not impose to the parameters any special
conditions needed to guarantee that the real values, interpreted as the transition probabilities, always lie in
the interval [0; 1]. To be convinced of this fact, just remember that, as we have demonstrated, the positive
probability functions PF, PT, PM, PM∗ define probability distributions, hence, they always return values
belonging to (0; 1] for any probability parameters from (0; 1). In addition, the transition constraints (their prob-
abilities, rates and guards), calculated using the parameters, in our case should not always be polynomials over
variables-parameters, as often required in the mentioned papers, but they may also be fractions of polynomials,
like in the case studies that we have constructed.

One can see that the stochastic process calculi proposed in the literature are based on interleaving, as a rule,
and parallelism is simulated by synchronous or asynchronous execution. As a semantic domain, the interle-
aving formalism of transition systems is often used. However, to properly support intuition of the behaviour of
concurrent and distributed systems, their semantics should treat parallelism as a primitive concept that cannot
be reduced to nondeterminism. Moreover, in interleaving semantics, some important properties of such systems
cannot be expressed, such as simultaneous occurrence of concurrent transitions [50] or local deadlock in the
spatially distributed processes [102]. Therefore, investigation of stochastic extensions for more expressive and
powerful algebraic calculi is an important issue. The development of step or “true concurrency” (such that
parallelism is considered as a causal independence) SPAs is an interesting and nontrivial problem, which has
attracted special attention last years. Nevertheless, not so many formal stochastic models of parallel systems

9

were defined whose underlying stochastic processes are based on DTMCs. As mentioned in [56], such models
are more difficult to analyze, since several events can occur simultaneously in discrete time systems (the models
have a step semantics) and the probability of a set of events cannot be easily related to the probability of the
single ones. Therefore, parallel executions of actions are often not considered also in the discrete time SPAs, such
as TCP dst, whose underlying stochastic process is DTMCs with rewards (DTMRCs). As observed in [68, 69],
even for stochastic models with generally distributed time delays, some restrictions on the concurrency degree
were imposed to simplify their analysis techniques. In particular, the enabling restriction requires that no two
generally distributed transitions are enabled in any reachable marking. Hence, their activity periods do not
intersect and no two such transitions can fire simultaneously, this results in interleaving semantics of the model.

Stochastic models with discrete time and step semantics have the following important advantage in compar-
ison with those having just an interleaving semantics. The underlying Markov chains of parallel stochastically
timed processes have the additional transitions corresponding to the simultaneous execution of concurrent (i.e.
non-synchronized) activities. The transitions of that kind allow one to bypass a lot of intermediate states, which
otherwise should be visited when interleaving semantics is accommodated. When step semantics is used, the in-
termediate states can also be visited with some probability (this is an advantage, since some alternative system’s
behaviour may start from these states), but this probability is not greater than the corresponding one in case
of interleaving semantics. While in interleaving semantics, only the empty or singleton (multi)sets of activities
can be executed, in step semantics, generally, the (multi)sets of activities with more than one element can be
executed as well. Hence, in step semantics, there are more variants of execution from each state than in the
interleaving case and the executions probabilities, whose sum should be equal to 1, are distributed among more
possibilities. Therefore, the systems with parallel stochastic processes usually have smaller average run-through.
In case the underlying Markov chains of the processes are ergodic, they will take less discrete time units to
stabilize the behaviour, since their TPMs will be denser because of additional non-zero elements outside the
main diagonal. Hence, both the first passage-time performance indices based on the transient probabilities and
the steady-state performance indices based on the stationary probabilities can be computed quicker, resulting
in faster quantitative analysis of the systems. On the other hand, step semantics, induced by simultaneous
firing several transitions at each step, is natural for Petri nets and allows one to exploit full power of the model.
Therefore, it is important to respect the probabilities of parallel executions of activities in discrete time SPAs,
especially in those with a Petri net denotational semantics.

From the application viewpoint, one considers what kind of systems are more appropriate to be modeled
and analyzed within SPAs. MTIPP and PEPA are well-suited for the interleaving continuous time systems
such that the activity rates or the average sojourn time in the states are known in advance and exponential
distribution approximates well the activity delay distributions, whereas EMPA can be used to model the
mentioned systems with the activity delays of different duration order or the extended systems, in which purely
probabilistic choices or urgent activities must be implemented. GSPA and GSMPA fit well for modeling
the continuous time systems with a capability to keep the activity causality information, and with the known
activity delay distributions, which cannot be approximated accurately by exponential distribution, while Sπ
can additionally model mobility in such systems. TCP dst is a good choice for interleaving discrete time systems
with deterministic (fixed) and generalized stochastic delays, whereas sACP is capable to model non-interleaving
systems as well, but it offers not enough performance analysis methods. dtsPBC is consistent for the step
discrete time systems such that the independent execution probabilities of activities are known and geometrical
distribution approximates well the state residence time distributions.

Thus, the main advantages of dtsPBC are the flexible multiaction labels and the set of very powerful op-
erations, as well as a step operational and a Petri net denotational semantics allowing for really concurrent
execution of activities (or transitions), together with an ability for analytical and parametric performance eval-
uation. The uniqueness of our approach consists in applying a parallel semantics for the process expressions and
preserving the concurrency level in the extracted performance model (DTMC) through its state changes corre-
sponding to the simultaneous executions. The salient point of dtsPBC is a combination of discrete stochastic
time and step semantics in an SPA.

In this paper, we investigate equivalence notions for dtsPBC with iteration. First, we present the syntax of
the extended dtsPBC. Each multiaction of the initial calculus PBC is associated with a probability. Such a
pair is called stochastic multiaction or activity. Second, we propose semantics of dtsPBC. The step operational
semantics is constructed in terms of labeled probabilistic transition systems based on action and inaction rules.
The denotational semantics is defined in terms of a subclass of LDTSPNs, based on DTSPNs [99] and called
discrete time stochastic Petri boxes (dts-boxes). Consistency of operational and denotational semantics is
proved. Further, we define a number of stochastic equivalences in the algebraic setting based on transition
systems without empty behaviour. These relations are weaker than the semantic equivalence of dtsPBC.
They are used to identify stochastic processes with similar behaviour which are differentiated by the semantic
equivalence that is too discriminate in many cases. The interrelations diagram of all the introduced equivalences

10

is built. We describe how the stochastic equivalences can be used to reduce transition systems of expressions
and the related formalisms. We present a characterization of the stochastic bisimulation equivalences via two
new probabilistic modal logics based on PML. It is demonstrated how to compare stochastic processes in their
steady states with the use of the relations. Moreover, a problem of preservation of the equivalence notions by
algebraic operations is discussed. The proposed equivalences are used to construct a congruence relation. At
the end, we present two case studies explaining how to analyze performance of systems within the calculus. We
consider algebraic models of shared memory system and dining philosophers one. Thus, the main contributions
of the paper are the following.

• New powerful and expressive discrete time SPA called dtsPBC.

• Step operational semantics of dtsPBC via labeled probabilistic transition systems.

• Petri net denotational semantics of dtsPBC via discrete time stochastic Petri nets.

• Performance analysis based on underlying discrete time Markov chains.

• Stochastic equivalence used for reduction that simplifies the performance evaluation.

• Extended case studies illustrating how to apply the theoretical results in practice.

The paper is organized as follows. In the next Section 2, the syntax of the extended calculus dtsPBC
is presented. Then, in Section 3, we construct the operational semantics of the algebra in terms of labeled
transition systems. In Section 4, we propose the denotational semantics based on a subclass of LDTSPNs.
Section 5 is devoted to the construction and the interrelations of the stochastic algebraic equivalences based on
transition systems without empty loops. In Section 6 we explain how one can reduce transition systems and
the related formalisms modulo the equivalences. A logical characterization of the equivalences is presented in
Section 7. In Section 8, an application of the relations to comparison of the stationary behaviour is investigated.
Preservation of the equivalences by the algebraic operations, i.e. a congruence problem is discussed in Section 9.
Section 10 contains two examples of performance evaluation for systems specified by the algebraic expressions.
The concluding Section 11 summarizes the results obtained and outlines research perspectives in this area. The
long and complex proofs are moved to Appendix A.

2 Syntax

In this section, we propose the syntax of the discrete time stochastic extension of finite PBC enriched with
iteration, called discrete time stochastic Petri box calculus (dtsPBC).

First, we recall a definition of multiset that is an extension of the set notion by allowing several identical
elements.

Definition 2.1 Let X be a set. A finite multiset (bag) M over X is a mapping M : X → IN such that
|{x ∈ X |M(x) > 0}| <∞, i.e. it can contain a finite number of elements only.

We denote the set of all finite multisets over a set X by INX
fin. Let M,M ′ ∈ INX

fin. The cardinality of M is
defined as |M | =

∑
x∈XM(x). We write x ∈M if M(x) > 0 and M ⊆M ′ if ∀x ∈ X M(x) ≤M ′(x). We define

(M +M ′)(x) = M(x) +M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can
be interpreted as a proper set and denoted by M ⊆ X . The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated actions

(conjugates) such that â 6= a and ˆ̂a = a. Let A = Act ∪ Âct be the set of all actions, and L = INA
fin be the set

of all multiactions. Note that ∅ ∈ L, this corresponds to an internal move, i.e. the execution of a multiaction
that contains no visible action names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability of the
multiaction α. This probability is interpreted as that of independent execution of the stochastic multiaction
at the next discrete time moment. Such probabilities are used to calculate those to execute (possibly empty)
multisets of stochastic multiactions after one time unit delay. The probabilities of stochastic multiactions are
required not to be equal to 1 to avoid extra model complexity, since in this case one should assign with them
weights, needed to make a choice when several stochastic multiactions with probability 1 can be executed from
a state. In this case, some problems appear with conflicts resolving. See [99] for the discussion on SPNs. This
decision also allows us to avoid technical difficulties related to conditioning events with probability 0. Another
reason is that not allowing probability 1 for stochastic multiactions excludes a potential source of periodicity
(hence, non-ergodicity) in the underlying DTMCs of the algebraic expressions. In this version of the algebra,

11

we do not allow instantaneous multiactions. On the other hand, there is no sense to allow zero probabilities of
stochastic multiactions, since they would never be performed in this case. Let SL be the set of all activities.
Let us note that the same multiaction α ∈ L may have different probabilities in the same specification.

The alphabet of an activity (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). The alphabet of a multiset of activities
Γ ∈ INSL

fin is defined as A(Γ) = ∪(α,ρ)∈ΓA(α). For an activity (α, ρ) ∈ SL, we define its multiaction part as

L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ. The multiaction part of a multiset of activities Γ ∈ INSL
fin

is defined as L(Γ) =
∑

(α,ρ)∈Γ α. Remember that sums and products are considered with the multiplicity when
applied to multisets.

Activities are combined into formulas (process expressions) by the following operations: sequence ;, choice
[], parallelism ‖, relabeling [f] of actions, restriction rs over a single action, synchronization sy on an action and
its conjugate, and iteration [∗ ∗] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (choice composition) have a standard interpretation, like in
other process algebras, but parallelism (parallel composition) does not include synchronization, unlike the
corresponding operation in CCS [96].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈ A f(x̂) = f̂(x). Relabeling
is extended to multiactions in a usual way: for α ∈ L we define f(α) =

∑
x∈α f(x). Relabeling is extended to

activities: for (α, ρ) ∈ SL, we define f(α, ρ) = (f(α), ρ). Relabeling is extended to the multisets of activities as
follows: for Γ ∈ INSL

fin we define f(Γ) =
∑

(α,ρ)∈Γ(f(α), ρ).
Restriction over an elementary action a ∈ Act means that, for a given expression, any process behaviour

containing a or its conjugate â is not allowed.
Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act we have a ∈ α and â ∈ β, or

â ∈ α and a ∈ β. Then synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require that α⊕a β = α+ β−{a, â}, i.e. we remove one exemplar of a and one exemplar
of â from the multiset sum α+ β, since the synchronization of a and â produces ∅. Activities are synchronized
with the use of their multiaction parts, i.e. the synchronization by a of two activities, whose multiaction parts
α and β possess the properties mentioned above, results in the activity with the multiaction part α ⊕a β.
Synchronization by a means that, for a given expression with a process behaviour containing two concurrent
activities that can be synchronized by a, there exists also the process behaviour that differs from the former
only in that the two activities are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more
times, and, finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expressions correspond to unmarked
LDTSPNs (note that LDTSPNs are marked by definition). Remember that a marking is the allocation of tokens
in the places of a PN and markings are used to describe dynamic behaviour of PNs in terms of transition firings.

Definition 2.2 Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC is defined as

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsPBC.
To make the grammar above unambiguous, one can add parentheses in the productions with binary oper-

ations: (E;E), (E[]E), (E‖E) or to associate priorities with operations. However, here and further we prefer
the PBC approach: we add parentheses to resolve ambiguities when needed and we assume no priorities.

To avoid technical difficulties with the iteration operator, we should not allow any concurrency at the
highest level of the second argument of iteration. This is not a severe restriction though, since we can always
prefix parallel expressions by an activity with the empty multiaction part. Later on, in Example 4.4, we shall
demonstrate that relaxing the restriction can result in nets which are not safe. Alternatively, we can use a
different, safe, version of the iteration operator, but its net translation has six arguments. See also [15] for
discussion on this subject. Remember that a PN is n-bounded (n ∈ IN) if for all its reachable (from the initial
marking by the sequences of transition firings) markings there are at most n tokens in every place, and a PN is
safe if it is 1-bounded.

Definition 2.3 Let (α, ρ) ∈ SL and a ∈ Act. A regular static expression of dtsPBC is defined as

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, ρ) | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E].

12

Let RegStatExpr denote the set of all regular static expressions of dtsPBC.
Dynamic expressions specify the states of processes. As we shall see, the expressions correspond to LDTSPNs

(which are marked by default). Dynamic expressions are obtained from static ones which are annotated with
upper or lower bars and specify active components of the system at the current time instant. The dynamic
expression with the upper bar (the overlined one) E denotes the initial, and that with the lower bar (the
underlined one) E denotes the final state of the process specified by a static expression E. The underlying static
expression of a dynamic one is obtained by removing all the upper and lower bars from it.

Definition 2.4 Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsPBC is defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a | [G ∗ E ∗E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsPBC.
Note that if the underlying static expression of a dynamic one is not regular, the corresponding LDTSPN

can be non-safe (though, it is 2-bounded in the worst case [15]).

Definition 2.5 A dynamic expression is regular if its underlying static expression is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsPBC.

3 Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems. An illustrating
example will be given at the end of the section.

3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transformations in the form of G⇒ G̃ which
do not change the states of the specified processes. The goal of these syntactic transformations is to obtain the
well-structured resulting expressions called operative ones to which no inaction rules can be further applied. As
we shall see, the application of an inaction rule to a dynamic expression does not lead to any discrete time tick
in the corresponding LDTSPN, hence, no transitions fire and its current marking remains unchanged.

Thus, an application of every inaction rule does not require any discrete time delay, i.e. the dynamic
expression transformation described by the rule is accomplished instantly.

First, in Table 2, we define inaction rules for the regular dynamic expressions in the form of overlined and
underlined regular static ones. In this table, E,F,K ∈ RegStatExpr and a ∈ Act.

Table 2: Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[f] ⇒ E[f] E[f] ⇒ E[f] E rs a ⇒ E rs a

E rs a ⇒ E rs a E sy a ⇒ E sy a E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

Second, in Table 3, we introduce inaction rules for the regular dynamic expressions in the arbitrary form.
In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Definition 3.1 A regular dynamic expression G is operative if no inaction rule can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions of dtsPBC.
Note that any regular dynamic expression can be always transformed into a (not necessarily unique) operative

one by using the inaction rules.
In the following, we shall consider regular expressions only, hence, we can omit the word “regular”.

Definition 3.2 The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic expressions in dtsPBC.
Thus, two dynamic expressions G and G′ are structurally equivalent, denoted by G ≈ G′, if they can be reached
from each other by applying the inaction rules in a forward or backward direction.

13

Table 3: Inaction rules for arbitrary regular dynamic expressions

G ⇒ G̃, ◦ ∈ {; , []}

G ◦E ⇒ G̃ ◦E

G ⇒ G̃, ◦ ∈ {; , []}

E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G‖H ⇒ G̃‖H

H ⇒ H̃

G‖H ⇒ G‖H̃

G ⇒ G̃

G[f] ⇒ G̃[f]

G ⇒ G̃, ◦ ∈ {rs, sy}

G ◦ a ⇒ G̃ ◦ a

G ⇒ G̃

[G ∗E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G ⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G ⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

3.2 Action and empty loop rules

The action rules describe expression transformations when some activities are executed. We also have the empty
loop rule which is used to capture a delay of one discrete time unit in the same state when the empty multiset of
activities is executed. The action and empty loop rules will be used later to determine all multisets of activities
which can be executed from the structural equivalence class of every dynamic expression (i.e. from the state
of the corresponding process). This information together with that about probabilities of the activities to be
executed from the current process state will be used to calculate the probabilities of such executions.

The action rules describe dynamic expression transformations in the form of G
Γ
→ G̃ due to execution of

non-empty multisets Γ of activities. The rules represent possible state changes of the specified processes when
some non-empty multisets of activities are executed. As we shall see, the application of an action rule to a
dynamic expression leads to a discrete time tick in the corresponding LDTSPN at which some transitions fire
and the current marking is possibly changed The current marking remains unchanged only if there is a self-
loop produced by the iterative execution of a non-empty multiset, which must be one-element, i.e. the single
stochastic (or immediate) multiaction. The reason is the regularity requirement that allows no concurrency at
the highest level of the second argument of iteration.

The empty loop rule describes dynamic expression transformations in the form of G
∅
→ G due to execution

of the empty multiset of activities at a discrete time tick. The rule reflects a non-zero probability to stay in
the current state at the next time moment, which is an essential feature of discrete time stochastic processes.
As we shall see, the application of the empty loop rule to a dynamic expression leads to a discrete time tick
in the corresponding LDTSPN at which no transitions fire and the current marking is not changed. This is a
new rule that has no prototype among inaction rules of PBC, since it represents a time delay, but no notion of

time exists in PBC. The PBC rule G
∅
→ G from [15] in our setting would correspond to the rule G⇒ G that

describes staying in the current state when no time elapses. Since we do not need the latter rule to transform
dynamic expressions into operative ones and it can even destroy the definition of operative expressions, we do
not introduce it in dtsiPBC.

Thus, an application of every action rule or the empty loop rule requires one discrete time unit delay, i.e.
the execution of a (possibly empty) multiset of activities resulting to the dynamic expression transformation
described by the rule is accomplished instantly after one unit of time elapses.

In Table 4, we define the action and empty loop rules. In the table, (α, ρ), (β, χ) ∈ SL, E, F ∈ RegStatExpr,

G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act. Moreover, Γ,∆ ∈ INSL
fin \ {∅} and Γ′ ∈ INSL

fin.
We use the following abbreviations in the names of the rules from the table: “El” for “Empty loop”, B” for

“Basis case”, SC” for “Sequence and Choice”, P” for “Parallel”, L” for “reLabeling”, Rs” for “Restriction”,
I” for “Iteraton” and Sy” for “Synchronization”. The first rule in the table is the empty loop rule El. The other
rules are the action rules, describing transformations of dynamic expressions, which are built using particular
algebraic operations.

Almost all the rules in Table 4 (excepting El, P3 and Sy2) resemble those of sPBC [112], but the former
correspond to execution of multisets of activities, not of single activities, as in the latter.

Rule El corresponds to one discrete time unit delay while executing no activities and therefore it has no
analogues among the rules of sPBC that adapts the continuous time model.

Rule P3 has no similar rules in sPBC, since interleaving semantics of the algebra allows no simultaneous
execution of activities. On the other hand, P3 has in PBC the analogous rule PAR that is used to construct
step semantics of the calculus, but the former rule corresponds to execution of multisets of activities, unlike
that of multisets of multiactions in the latter rule.

Rule Sy2 differs from the corresponding synchronization rule in sPBC, since the probability of synchro-
nization in the former rule and the rate of synchronization in the latter rule are calculated in a distinct way.

Rule Sy2 establishes that the synchronization of two stochastic multiactions is made by taking the product
of their probabilities, since we are considering that both must occur for the synchronization to happen, so

14

Table 4: Action and empty loop rules

El G
∅
→ G B (α, ρ)

{(α,ρ)}
−→ (α, ρ) SC1

G
Γ
→ G̃, ◦ ∈ {; , []}

G ◦ E
Γ
→ G̃ ◦ E

SC2
G

Γ
→ G̃, ◦ ∈ {; , []}

E ◦G
Γ
→ E ◦ G̃

P1
G

Γ
→ G̃

G‖H
Γ
→ G̃‖H

P2
H

Γ
→ H̃

G‖H
Γ
→ G‖H̃

P3
G

Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

L
G

Γ
→ G̃

G[f]
f(Γ)
−→ G̃[f]

Rs
G

Γ
→ G̃, a, â 6∈ A(Γ)

G rs a
Γ
→ G̃ rs a

I1
G

Γ
→ G̃

[G ∗ E ∗ F]
Γ
→ [G̃ ∗E ∗ F]

I2
G

Γ
→ G̃

[E ∗G ∗ F]
Γ
→ [E ∗ G̃ ∗ F]

I3
G

Γ
→ G̃

[E ∗ F ∗G]
Γ
→ [E ∗ F ∗ G̃]

Sy1
G

Γ
→ G̃

G sy a
Γ
→ G̃ sy a

Sy2
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

this corresponds, in some sense, to the probability of the independent event intersection, but the real situation
is more complex, since these stochastic multiactions can also be executed in parallel. Nevertheless, when
scoping (the combined operation consisting of synchronization followed by restriction over the same action [15])
is applied over a parallel execution, we get as final result just the simple product of the probabilities, since
no normalization is needed there. Multiplication is an associative and commutative binary operation that
is distributive over addition, i.e. it fulfills all practical conditions imposed on the synchronization operator
in [63]. Further, if both arguments of multiplication are from (0; 1) then the result belongs to the same interval,
hence, multiplication naturally maintains probabilistic compositionality in our model. Our approach is similar
to the multiplication of rates of the synchronized actions in MTIPP [70] in the case when the rates are
less than 1. Moreover, for the probabilities ρ and χ of two stochastic multiactions to be synchronized we
have ρ · χ < min{ρ, χ}, i.e. multiplication meets the performance requirement stating that the probability
of the resulting synchronized stochastic multiaction should be less than the probabilities of the two ones to
be synchronized. While performance evaluation, it is usually supposed that the execution of two components
together require more system resources and time than the execution of each single one. This resembles the
bounded capacity assumption from [63]. Thus, multiplication is easy to handle with and it satisfies the algebraic,
probabilistic, time and performance requirements. Therefore, we have chosen the product of the probabilities
for the synchronization. See also [28, 35] for a discussion about binary operations producing the rates of
synchronization in the continuous time setting.

As we shall see, for every LDTSPN obtained by synchronization of two LDTSPNs, this approach allows us to
calculate the transition firing probabilities using the standard transition probability function for that net class.
If concurrency aspects are not relevant then interleaving semantics is used which abstracts from steps with more
than one element. After the abstraction, the probabilities of the remaining one-element steps are normalized to
keep the sums of outgoing probabilities equal to one. For two synchronized LDTSPNs, our approach allows us
to extract the interleaving probabilities from the step ones in the same way as for two non-synchronized parallel
LDTSPNs.

Observe also that we do not allow a self-synchronization, i.e. synchronization of an activity with itself. The
purpose of this restriction is to avoid rather cumbersome and unexpected behaviour, as well as many technical
difficulties [15].

In Table 5, inaction rules, action rules and empty loop rule are compared according to the three questions
about their application: whether it changes the current state, whether it leads to a time progress, and whether
it results in execution of some activities. Positive answers to the questions are denoted by the plus sign while
negative ones are specified by the minus sign. If both positive and negative answers can be given to some of the
questions in different cases then the plus-minus sign is written. Notice that the process states are considered up
to structural equivalence of the corresponding expressions, and time progress is not regarded as a state change.

3.3 Transition systems

We now intend to construct labeled probabilistic transition systems associated with dynamic expressions. The
transition systems will be used to define the operational semantics of expressions of dtsPBC.

15

Table 5: Comparison of inaction, action and empty loop rules

Rules State change Time progress Activities execution

Inaction rules − − −
Action rules ± + +

Empty loop rule − + −

✉(a)
1

✉
✉ ✉

(b)

1 2

�
�

�

❅
❅
❅

✉
✉ ✉

(c)

1

�
�

�

❅
❅
❅

✉ ✉
2 3

�
�

�

❅
❅
❅

Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

Note that expressions of dtsPBC can contain identical activities. To avoid technical difficulties, such as
the proper calculation of the state change probabilities for multiple transitions, we must enumerate coinciding
activities, for instance, from left to right in the syntax of expressions. The new activities resulting from
synchronization will be annotated with concatenation of numberings of the activities they come from, hence,
the numbering should have a tree structure to reflect the effect of multiple synchronizations. We now define the
numbering which encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.3 The numbering of expressions is defined as

ι ::= n | (ι)(ι),

where n ∈ IN .

Let Num denote the set of all numberings of expressions.

Example 3.1 The numbering 1 encodes the binary tree depicted in Figure 1(a) with the root labeled by 1. The
numbering (1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two
leaves labeled by 1 and 2. The numbering (1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one
internal node, which is the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from applications of the second rule for synchronization Sy2 in different orders
should be considered up to permutation of their numbering. In this way, we shall recognize different instances
of the same activity. If we compare the contents of different numberings, i.e. the sets of natural numbers in
them, we shall be able to identify the mentioned instances.

The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After we apply the enumeration, the multisets of activities from the expressions become the proper sets. In
the following, we suppose that the identical activities are enumerated when needed to avoid ambiguity. This
enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆ X2 be an equivalence relation on
X . Then the equivalence class (with respect to E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}.
The equivalence E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Definition 3.4 Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence class of G with
respect to the structural equivalence. The derivation set of a dynamic expression G, denoted by DR(G), is the
minimal set such that

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Γ H
Γ
→ H̃ then [H̃]≈ ∈ DR(G).

16

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable in s is defined as Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

Note that if Γ ∈ Exec(s) then by rules P3, Sy2 and definition of Exec(s) we have ∀∆ ⊆ Γ ∆ ∈ Exec(s),
i.e. 2Γ ⊆ Exec(s).

Since the inaction rules only distribute and move upper and lower bars along the syntax of dynamic expres-
sions, all H ∈ s have the same underlying static expression F . Process expressions always have a finite length,
hence, the number of all (enumerated) activities and the number of all operations in the syntax of F are finite
as well. The action rule Sy2 is the only one that generates new activities. They result from the handshake
synchronization of actions and their conjugates belonging to the multiaction parts of the first and second con-
stituent activity, respectively. Since we have a finite number of operators sy in F and all the multiaction parts
of the activities are finite multisets, the number of the new synchronized activities is also finite. The action
rules contribute to Exec(s) (in addition to the empty set, if rule El is applicable) only the sets consisting both
of activities from F and the new activities, produced by Sy2. Since we have a finite number n of all such
activities, we get |Exec(s)| ≤ 2n < ∞. Thus, summation and multiplication by elements from the finite set
Exec(s) are well-defined.

Let Γ ∈ Exec(s) \ {∅}. The probability that the multiset of activities Γ is ready for execution in s is

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}

(1 − χ).

In the case Γ = ∅ we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1 − χ), Exec(s) 6= {∅};

1, otherwise.

Thus, if Exec(s) 6= {∅} then PF (Γ, s) can be interpreted as a joint probability of independent events (in a
probability sense, i.e. the probability of intersection of these events is equal to the product of their probabilities).
Each such an event consists in the positive or negative decision to be executed of a particular activity. Every
executable activity decides probabilistically (using its probabilistic part) and independently (from others), if it
wants to be executed in s. If Γ is a multiset of all executable activities which have decided to be executed in s
and Γ ∈ Exec(s) then Γ is ready for execution in s. The multiplication in the definition is used because it reflects
the probability of the independent event intersection. Alternatively, when Γ 6= ∅, PF (Γ, s) can be interpreted as
the probability to execute exclusively the multiset of activities Γ in s, i.e. the probability of intersection of two
events calculated using the conditional probability formula in the form P(X ∩ Y) = P(X |Y)P(Y). The event X
consists in the execution of Γ in s. The event Y consists in the non-execution in s of all the executable activities
not belonging to Γ. Since the mentioned non-executions are obviously independent events, the probability
of Y is a product of the probabilities of the non-executions: P(Y) =

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}(1 − χ). The

conditioning of X by Y makes the executions of the activities from Γ independent, since all of them can be
executed in parallel in s by definition of Exec(s). Hence, the probability to execute Γ under condition that
no executable activities not belonging to Γ are executed in s is a product of probabilities of these activities:
P(X |Y) =

∏
(α,ρ)∈Γ ρ. Thus, the probability that Γ is executed and no executable activities not belonging to

Γ are executed in s is the probability of X conditioned by Y multiplied by the probability of Y : P(X ∩ Y) =
P(X |Y)P(Y) =

∏
(α,ρ)∈Γ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}(1 − χ). When Γ = ∅, PF (Γ, s) can be interpreted as the

probability not to execute in s any executable activities, thus, PF (∅, s) =
∏

{(β,χ)}∈Exec(s)(1 − χ). When only

the empty multiset of activities can be executed in s, i.e. Exec(s) = {∅}, we have PF (∅, s) = 1, since we stay
in s in this case.

Note that the definition of PF (Γ, s) (as well as the definitions of other probability functions which we shall
present) is based on the enumeration of activities which is considered implicit.

Let Γ ∈ Exec(s). Besides Γ, some other multisets of activities may be ready for execution in s, hence, a kind
of conditioning or normalization is needed to calculate the execution probability. The probability to execute the
multiset of activities Γ in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

Thus, PT (Γ, s) can be interpreted as the conditional probability to execute Γ in s calculated using the

conditional probability formula in the form P(Z|W) = P(Z∩W)
P(W) . The event Z consists in the exclusive execution

of Γ in s, hence, P(Z) = PF (Γ, s). The event W consists in the exclusive execution of any multiset (including
the empty one) ∆ ∈ Exec(s) in s. Thus, W = ∪jZj , where ∀j, Zj are mutually exclusive events (in a
probability sense, i.e. intersection of these events is the empty event) and ∃i, Z = Zi. We have P(W) =

17

Table 6: Calculation of the probability functions PF, PT, PM for s1 ∈ DR(E) and E = ({a}, ρ)[]({a}, χ)

s1\Γ ∅ {({a}, ρ)} {({a}, χ)} Σ

PF (1 − ρ)(1 − χ) ρ(1 − χ) χ(1 − ρ) 1 − ρχ

PT (1−ρ)(1−χ)
1−ρχ

ρ(1−χ)
1−ρχ

χ(1−ρ)
1−ρχ 1

PM (1−ρ)(1−χ)
1−ρχ (s1) ρ+χ−2ρχ

1−ρχ (s2) 1

∑
j P(Zj) =

∑
∆∈Exec(s) PF (∆, s), because summation reflects the probability of the mutually exclusive event

union. Since Z ∩W = Zi∩ (∪jZj) = Zi = Z, we have P(Z|W) = P(Z)
P(W) = PF (Γ,s)∑

∆∈Exec(s) PF (∆,s) . One can also treat

PT (Γ, s) and PF (Γ, s) as the actual and potential probabilities to execute Γ in s, respectively, since we have
PT (Γ, s) = PF (Γ, s) only when all multisets (including the empty one) consisting of the executable activities
can be executed in s. In this case, all the mentioned activities can be executed in parallel in s and we have∑

∆∈Exec(s) PF (∆, s) = 1, since this sum collects the products of all combinations of the probability parts of

the activities and the negations of these parts. But in general, for example, for two activities (α, ρ) and (β, χ)
executable in s, it may happen that they cannot be executed in s together, in parallel, i.e. ∅, {(α, ρ)}, {(β, χ)} ∈
Exec(s), but {(α, ρ), (β, χ)} 6∈ Exec(s). Note that PT (∅, s) ∈ (0; 1], hence, there is a non-zero probability to
stay in the state s at the next time moment. Then the residence time in s is at least 1 discrete time unit, being
1 when s is left with the next time tick.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations of G is equal to
1. More formally, ∀s ∈ DR(G)

∑
Γ∈Exec(s) PT (Γ, s) = 1. This obviously follows from the definition of PT (Γ, s)

and guarantees that PT (Γ, s) defines a probability distribution.
The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Γ|∃H∈s ∃H̃∈s̃ H
Γ
→H̃}

PT (Γ, s).

The summation in the definition above reflects the probability of the mutually exclusive event union,
since

∑
{Γ|∃H∈s, ∃H̃∈s̃, H

Γ
→H̃}

PT (Γ, s) = 1∑
∆∈Exec(s) PF (∆,s) ·

∑
{Γ|∃H∈s, ∃H̃∈s̃, H

Γ
→H̃}

PF (Γ, s), where for each

Γ, PF (Γ, s) is the probability of the exclusive execution of Γ in s. Note that ∀s ∈ DR(G)∑
{s̃|∃H∈s ∃H̃∈s̃ ∃Γ H

Γ
→H̃}

PM(s, s̃) =
∑

{s̃|∃H∈s ∃H̃∈s̃ ∃Γ H
Γ
→H̃}

∑
{Γ|∃H∈s ∃H̃∈s̃ H

Γ
→H̃}

PT (Γ, s) =
∑

Γ∈Exec(s) PT (Γ, s) = 1.

Example 3.2 Let E = ({a}, ρ)[]({a}, χ). DR(E) consists of the equivalence classes s1 = [E]≈ and s2 =
[E]≈. The execution probabilities are calculated as follows. Since Exec(s1) = {∅, {({a}, ρ)}, {({a}, χ)}}, we
get PF ({({a}, ρ)}, s1) = ρ(1 − χ), PF ({({a}, χ)}, s1) = χ(1 − ρ) and PF (∅, s1) = (1 − ρ)(1 − χ). Then∑

∆∈Exec(s1)
PF (∆, s1) = ρ(1 − χ) + χ(1 − ρ) + (1 − ρ)(1 − χ) = 1 − ρχ. Thus, PT ({({a}, ρ)}, s1) =

ρ(1−χ)
1−ρχ , PT ({({a}, χ)}, s1) = χ(1−ρ)

1−ρχ and PT (∅, s1) = PM(s1, s1) = (1−ρ)(1−χ)
1−ρχ . Further, Exec(s2) = {∅},

hence,
∑

∆∈Exec(s2)
PF (∆, s2) = PF (∅, s2) = 1 and PT (∅, s2) = PM(s2, s2) = 1

1 = 1. Finally, PM(s1, s2) =

PT ({({a}, ρ)}, s1) + PT ({({a}, χ)}, s1) = ρ(1−χ)
1−ρχ + χ(1−ρ)

1−ρχ = ρ+χ−2ρχ
1−ρχ . In Table 6, the calculation of the prob-

ability functions PF (Γ, s1), PT (Γ, s1), PM(s1, s) is explained, where Γ ∈ Exec(s1), s ∈ {s1, s2} (the value
of s is depicted in the parentheses near the value of PM(s1, s)) and Σ =

∑
∆∈Exec(s1)

PX(∆, s1), PX ∈

{PF, PT, PM}.

Definition 3.5 Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadru-
ple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSL
fin × (0; 1];

• the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

• the initial state is sG = [G]≈.

18

The definition of TS(G) is correct, i.e. for every state, the sum of the probabilities of all the transitions
starting from it is 1. This is guaranteed by the note after the definition of PT (Γ, s). Thus, we have defined a
generative model of probabilistic processes [71], according to the classification from [59]. The reason is that the
sum of the probabilities of the transitions with all possible labels should be equal to 1, not only of those with
the same labels (up to enumeration of activities they include) as in the reactive models [87, 88], and we do not
have the nested probabilistic choice as in the stratified models [59].

The transition system TS(G) associated with a dynamic expression G describes all steps (concurrent ex-
ecutions) that occur at discrete time moments with some (one-step) probability and consist of multisets of
activities. Every step occurs instantly after one discrete time unit delay, and the step can change the current
state to another one. The states are the structural equivalence classes of dynamic expressions obtained by
application of action rules starting from the expressions belonging to [G]≈. A transition (s, (Γ,P), s̃) ∈ TG will

be written as s
Γ
→P s̃. It is interpreted as follows: the probability to change the state s to s̃ as a result of

executing Γ is P .
Note that Γ can be the empty multiset, and its execution does not change the current state (i.e. the

equivalence class), since we have a loop transition s
∅
→P s from a state s to itself as a result of executing the

empty multiset. This corresponds to application of the empty loop rule to expressions from the equivalence
class. We have to keep track of such executions, called empty loops, because they have nonzero probabilities.
This follows from the definition of PF (∅, s) and the fact that multiaction probabilities cannot be equal to 1 as
they belong to the interval (0; 1).

The step probabilities belong to the interval (0; 1]. The step probability is 1 in the case when we cannot

leave a state s, hence, the only transition leaving it is the empty loop transition s
∅
→1 s.

We write s
Γ
→ s̃ if ∃P s

Γ
→P s̃ and s→ s̃ if ∃Γ s

Γ
→ s̃. For a one-element multiset of activities Γ = {(α, ρ)},

we write s
(α,ρ)
−→P s̃ and s

(α,ρ)
−→ s̃.

Isomorphism is a coincidence of systems up to renaming of their components or states.

Definition 3.6 Let G,G′ be dynamic expressions and TS(G) = (SG, LG, TG, sG),
TS(G′) = (SG′ , LG′ , TG′ , sG′) be their transition systems. A mapping β : SG → SG′ is an isomorphism between
TS(G) and TS(G′), denoted by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G) ≃ TS(G′), if ∃β : TS(G) ≃
TS(G′).

Transition systems of static expressions can be defined as well. For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 3.7 Two dynamic expressions G and G′ are equivalent with respect to transition systems, denoted
by G =ts G

′, if TS(G) ≃ TS(G′).

For a dynamic expression G, a discrete random variable is associated with every state s ∈ DR(G). The
variable captures a residence time in the state. One can interpret staying in a state at the next discrete time
moment as a failure and leaving it as a success of some trial series. It is easy to see that the random variables are
geometrically distributed with the parameter 1−PM(s, s), since the probability to stay in the state s ∈ DR(G)
for k − 1 time moments and leave it at the moment k ≥ 1 is PM(s, s)k−1(1 − PM(s, s)) (the residence time
is k in this case, and this formula defines the probability mass function (PMF) of residence time in s). Hence,
the probability distribution function (PDF) of residence time in s is 1 − PM(s, s)k−1 (k ≥ 1) (the probability
that the residence time in s is less than k). The mean value formula for the geometrical distribution allows us
to calculate the average sojourn time in the state s as

SJ(s) =
1

1 − PM(s, s)
.

The average sojourn time vector of G, denoted by SJ , has the elements SJ(s), s ∈ DR(G).
Analogously, the sojourn time variance in the state s is

V AR(s) =
PM(s, s)

(1 − PM(s, s))2
.

The sojourn time variance vector of G, denoted by V AR, has the elements V AR(s), s ∈ DR(G).

19

[E1∗E2∗E3]

[E1∗E2∗E3]

TS(E)✞✝ ✲

✞✝ ✲
∅, 1−ρ

1+ρ

∅, (1−χ)(1−θ)
1−χθ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲
({a},ρ)2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

✞✝ ✲
1

❄
[E1∗E2∗E3]

✞✝ ✲
∅,1

({c},θ),
θ(1−χ)
1−χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

Figure 2: The transition system and the underlying DTMC of E for E = [(({a}, ρ)1[]({a}, ρ)2)∗({b}, χ)∗({c}, θ)]

Definition 3.8 Let G be a dynamic expression. The underlying discrete time Markov chain (DTMC) of G,
denoted by DTMC(G), has the state space DR(G), the initial state [G]≈ and the transitions s →P s̃, if s → s̃
and P = PM(s, s̃).

Underlying DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let DTMC(E) =
DTMC(E).

Example 3.3 Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ), E3 = ({c}, θ) and E = [E1 ∗ E2 ∗ E3]. The identical
activities of the composite static expression are enumerated as follows: E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗
({c}, θ)]. In Figure 2, the transition system TS(E) and the underlying DTMC DTMC(E) are presented. For
simplicity, the states are labeled by expressions belonging to the corresponding equivalence classes, and singleton
multisets of activities are written without outer braces.

DR(E) consists of the equivalence classes

s1 = [[E1 ∗ E2 ∗ E3]]≈,

s2 = [[E1 ∗ E2 ∗ E3]]≈,
s3 = [[E1 ∗ E2 ∗ E3]]≈.

Let us demonstrate how the transition probabilities are calculated. For instance, we have
PF ({({a}, ρ)1}, s1) = PF ({({a}, ρ)2}, s1) = ρ(1 − ρ) and PF (∅, s1) = (1 − ρ)2. Hence,∑

∆∈Exec(s1)
PF (∆, s1) = 2ρ(1 − ρ) + (1 − ρ)2 = 1 − ρ2. Thus, PT ({({a}, ρ)1}, s1) = PT ({({a}, ρ)2}, s1) =

ρ(1−ρ)
1−ρ2 = ρ(1−ρ)

(1−ρ)(1+ρ) = ρ
1+ρ and PT (∅, s1) = (1−ρ)2

1−ρ2 = (1−ρ)2

(1−ρ)(1+ρ) = 1−ρ
1+ρ . The other probabilities are calculated

in a similar way.
The average sojourn time vector of E is

SJ =

(
1 + ρ

2ρ
,

1 − χθ

θ(1 − χ)
,∞

)
.

The sojourn time variance vector of E is

V AR =

(
1 − ρ2

4ρ2
,

(1 − θ)(1 − χθ)

θ2(1 − χ)2
,∞

)
.

4 Denotational semantics

In this section, we define the denotational semantics in terms of a subclass of LDTSPNs, called discrete time
stochastic Petri boxes (dts-boxes). An illustrating example will be given at the end of the section.

20

4.1 Labeled DTSPNs

Let us introduce a class of labeled discrete time stochastic Petri nets (LDTSPNs), which are essentially a
subclass of DTSPNs [99] (since we do not allow the transition probabilities to be equal to 1) extended with
transition labeling. LDTSPNs are somewhat similar to labeled weighted DTSPNs (LWDTSPNs) from [36, 37],
but in LWDTSPNs all transitions have weights, the transition probabilities may be equal to 1 and only maximal
fireable subsets of the enabled transitions are fired.

First, we present a formal definition (construction, syntax) of LDTSPNs.

Definition 4.1 A labeled DTSPN (LDTSPN) is a tuple N = (PN , TN ,WN ,ΩN ,LN ,MN), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;

• WN : (PN × TN) ∪ (TN × PN) → IN is a function providing the weights of arcs between places and
transitions;

• ΩN : TN → (0; 1) is the transition probability function associating transitions with probabilities;

• LN : TN → L is the transition labeling function assigning multiactions to transitions;

• MN ∈ INPN

fin is the initial marking.

A graphical representation of LDTSPNs is like that for standard labeled Petri nets, but with probabilities
written near the corresponding transitions. In the case the probabilities are not given in the picture, they are
considered to be of no importance in the corresponding examples, such as those used to describe the stationary
behaviour. The weights of arcs are depicted near them. The names of places and transitions are depicted near
them when needed.

We now define a behaviour (functioning, semantics) of LDTSPNs.
Let N be an LDTSPN and t ∈ TN , U ∈ INTN

fin. The precondition •t and the postcondition t• of t are
the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The precondition •U and the
postcondition U• of U are the multisets of places defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. Note that for

U = ∅ we have •∅ = ∅ = ∅•.
A transition t ∈ TN is enabled in a marking M ∈ INPN

fin of LDTSPN N if •t ⊆M . Let Ena(M) be the set of
all transitions (such that each of them is) enabled in a marking M . A set of transitions U ⊆ Ena(M) is enabled
in a marking M , if •U ⊆M . Firings of transitions are atomic operations, and transitions may fire concurrently
in steps. We assume that all transitions participating in a step should differ, hence, only the sets (not multisets)
of transitions may fire. Thus, we do not allow self-concurrency, i.e. firing of transitions in parallel to themselves.
This restriction is introduced because we would like to avoid technical difficulties while calculating probabilities
for multisets of transitions as we shall see after the following formal definitions. Moreover, we do not need to
consider self-concurrency, since denotational semantics of expressions will be defined via dts-boxes which are
safe LDTSPNs (hence, no self-concurrency is possible).

Let M be a marking of an LDTSPN N . A transition t ∈ Ena(M) fires with probability ΩN (t) when no
different transition is enabled, i.e. Ena(M) = {t}.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆ M . The probability that the set of transitions U is ready for firing in
M is

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1 − ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =

{ ∏
u∈Ena(M)(1 − ΩN(u)), Ena(M) 6= ∅;

1, otherwise.

Thus, if Ena(M) 6= ∅ then PF (U,M) can be interpreted as a joint probability of independent events (in a
probability sense, i.e. the probability of intersection of these events is equal to the product of their probabilities).
Each such an event consists in the positive or negative decision to fire of a particular transition. Every enabled
transition decides probabilistically (using its probability) and independently (from others), if it wants to fire in
M . If U is a set of all enabled transitions which have decided to fire in M and •U ⊆ M then U is ready for
firing in M . The multiplication in the definition is used because it reflects the probability of the independent
event intersection. Alternatively, when U 6= ∅, PF (U,M) can be interpreted as the probability that the set
of transitions U fires exclusively in M , i.e. a the probability of intersection of two events calculated using
the conditional probability formula in the form P(X ∩ Y) = P(X |Y)P(Y). The event X consists in firing U

21

in M . The event Y consists in non-firing in M all the enabled transitions not belonging to U . Since the
mentioned non-firings are obviously independent events, the probability of Y is a product of probabilities of the
non-firings: P(Y) =

∏
u∈Ena(M)\U (1−ΩN(u)). The conditioning of X by Y makes the firings of the transitions

from U independent, since all of them can fire in parallel in M due to the requirement •U ⊆ M . Hence, the
probability that U fires under condition that no enabled transitions not belonging to U fire in M is a product
of probabilities of these transitions: P(X |Y) =

∏
t∈U ΩN (t). Thus, the probability that U fires and no enabled

transitions not belonging to U fire in M is the probability of X conditioned by Y multiplied by the probability
of Y : P(X ∩ Y) = P(X |Y)P(Y) =

∏
t∈U ΩN (t) ·

∏
u∈Ena(M)\U (1 − ΩN (u)). When U = ∅, PF (U,M) can be

interpreted as the probability that no enabled transitions fire in M , thus, PF (∅,M) =
∏
u∈Ena(M)(1−ΩN (u)).

When no transitions are enabled in M , i.e. Ena(M) = ∅, we have PF (∅,M) = 1, since we stay in M in this
case.

Let U ⊆ Ena(M) and •U ⊆ M . Besides U , some other sets of transitions may be ready for firing in M ,
hence, a kind of conditioning or normalization is needed to calculate the firing probability. The concurrent

firing of the transitions from U changes the marking M to M̃ = M − •U + U•, denoted by M
U
→P M̃ , where

P = PT (U,M) is the probability that the set of transitions U fires in M defined as

PT (U,M) =
PF (U,M)∑

{V⊆Ena(M)|•V⊆M} PF (V,M)
.

Note that in the case U = ∅ we have M = M̃ .
Thus, PT (U,M) can be interpreted as the conditional probability that U fires in M calculated using the

conditional probability formula in the form P(Z|W) = P(Z∩W)
P(W) . The event Z consists in the exclusive firing

of U in M , hence, P(Z) = PF (U,M). The event W consists in the exclusive firing of any set (including
the empty one) V ⊆ Ena(M) in M such that •V ⊆ M . Thus, W = ∪jZj, where ∀j, Zj are mutually
exclusive events and ∃i, Z = Zi (in a probability sense, i.e. intersection of these events is the empty event).
We have P(W) =

∑
j P(Zj) =

∑
{V⊆Ena(M)|•V⊆M} PF (V,M), because summation reflects the probability of

the mutually exclusive event union. Since Z ∩ W = Zi ∩ (∪jZj) = Zi = Z, we have P(Z|W) = P(Z)
P(W) =

PF (U,M)∑
{V ⊆Ena(M)|•V ⊆M} PF (V,M) . PF (U,M) can also be seen as the potential probability that U fires in M , since we

have PF (U,M) = PT (U,M) only when all subsets (including the empty one) of transitions from Ena(M) can
fire in M . In this case, all the mentioned transitions can fire in parallel in M (i.e. Ena(M) can fire in M)
and we have

∑
{V⊆Ena(M)|•V⊆M} PF (V,M) = 1, since this sum collects the products of all combinations of the

transition probabilities and their negations. But in general, for example, for two transitions t and u enabled in
M , it can happen that they cannot fire in M together, in parallel, i.e. t, u ∈ Ena(M), but {t, u} 6∈ Ena(M).
Note that PT (∅,M) ∈ (0; 1], hence, there is a non-zero probability to stay in the marking M at the next time
moment, and the residence time in M is at least 1 discrete time unit.

Let Ena(M) = {t1, . . . , tn} be a mutually exclusive set of transitions (i.e. firing of any transition from the
set results in a marking in which no other transition from the set is enabled) and ρi = ΩN (ti) (1 ≤ i ≤ n). Then
PT ({ti},M) resembles the probabilistic function P [Ei] from [99], which defines the probability of the event Ei,
that transition ti in a mutually exclusive set of transitions {t1, . . . , tn} will fire in the marking M . We have

P [Ei] =
ρi

1−ρi

1+
∑

n
j=1

ρj
1−ρj

=
ρi(1−ρ1)···(1−ρn)

1−ρi

(1−ρ1)···(1−ρn)+
∑

n
j=1

ρj(1−ρ1)···(1−ρn)

1−ρj

, where ρi(1−ρ1)···(1−ρn)
1−ρi

corresponds to PF ({ti},M)

in our setting. Further, PT (∅,M) resembles the probabilistic function P [E0], which defines the probability
of the event E0, that no transitions from the mutually exclusive set of transitions {t1, . . . , tn} will fire in the

marking M . We have P [E0] = 1

1+
∑

n
j=1

ρj
1−ρj

= (1−ρ1)···(1−ρn)

(1−ρ1)···(1−ρn)+
∑

n
j=1

ρj(1−ρ1)···(1−ρn)

1−ρj

, where (1 − ρ1) · · · (1 − ρn)

corresponds to PF (∅,M) in our setting. If Ena(M) is not a mutually exclusive set of transitions, our way to
define PT (U,M) for U ⊆ Ena(M), U 6= ∅, also extends the approach of [97,99]. The advantage of our two-stage
definition of PT (U,M) is that it has a closed form and we do not need to consider which sets of transitions
are exclusive, instead, we just consider the probability that U fires in M under condition that only particular
subsets of Ena(M) can fire in M .

Note that for all markings of an LDTSPN N the sum of outgoing probabilities is equal to 1. More formally,
∀M ∈ INPN

fin

∑
{U⊆Ena(M)|•U⊆M} PT (U,M) = 1. This obviously follows from the definition of PT (U,M) and

guarantees that it defines a probability distribution.

We write M
U
→ M̃ if ∃P M

U
→P M̃ and M → M̃ if ∃U M

U
→ M̃ . For one-element set of transitions U = {t},

we write M
t
→P M̃ and M

t
→ M̃ .

Definition 4.2 Let N be an LDTSPN. The reachability set of N , denoted by RS(N), is the minimal set of
markings such that

22

• MN ∈ RS(N);

• if M ∈ RS(N) and M → M̃ then M̃ ∈ RS(N).

Definition 4.3 Let N be an LDTSPN. The reachability graph of N is a (labeled probabilistic) transition system
RG(N) = (SN , LN , TN , sN), where

• the set of states is SN = RS(N);

• the set of labels is LN = 2TN × (0; 1];

• the set of transitions is TN = {(M, (U,P), M̃) | M, M̃ ∈ RS(N), M
U
→P M̃};

• the initial state is sN = MN .

Definition 4.4 Let N be an LDTSPN. The underlying discrete time Markov chain (DTMC) of N , denoted by

DTMC(N), has the state space RS(N), the initial state MN and the transitions M →P M̃ , if M → M̃ , where

P = PM(M, M̃) is the probability to move from M to M̃ by firing any set of transitions defined as

PM(M, M̃) =
∑

{U|M
U
→M̃}

PT (U,M).

Since PM(M, M̃) is the probability for any (including the empty one) transition set to change mark-

ing M to M̃ , we use summation in the definition. Note that ∀M ∈ RS(N)
∑

{M̃|M→M̃}
PM(M, M̃) =∑

{M̃|M→M̃}

∑
{U|M

U
→M̃}

PT (U,M) =
∑

{U⊆Ena(M)|•U⊆M} PT (U,M) = 1.

Let N be an LDTSPN and M ∈ RS(N). The average sojourn time in the marking M is

SJ(M) =
1

1 − PM(M,M)
.

The average sojourn time vector of N , denoted by SJ , has the elements SJ(M), M ∈ RS(N).
The sojourn time variance in the marking M is

V AR(M) =
PM(M,M)

(1 − PM(M,M))2
.

The sojourn time variance vector of N , denoted by V AR, has the elements V AR(M), M ∈ RS(N).

Example 4.1 In Figure 3, an LDTSPN N with two visible transitions t1 (labeled by {a}), t2 (labeled by
{b}) and one invisible transition t3 (labeled by ∅) is presented. Transition probabilities of N are denoted by
ρ = ΩN (t1), χ = ΩN (t2), θ = ΩN (t3). In the figure one can see the reachability graph RG(N) and the
underlying DTMC DTMC(N) as well. RS(N) consists of the markings M1 = (1, 1, 0), M2 = (0, 1, 1), M3 =
(1, 0, 1), M4 = (0, 0, 2).

The average sojourn time vector of N is

SJ =

(
1

ρ+ χ− ρχ
,

1

χ
,

1

ρ
,

1

θ

)
.

The sojourn time variance vector of N is

V AR =

(
1 − ρ− χ+ ρχ

(ρ+ χ− ρχ)2
,

1 − χ

χ2
,

1 − ρ

ρ2
,

1 − θ

θ2

)
.

The elements Pij (1 ≤ i, j ≤ 4) of the (one-step) transition probability matrix (TPM) for DTMC(N) are
defined as

Pij =

{
PM(Mi,Mj), Mi →Mj;
0, otherwise.

Thus, the TPM is

P =

(1 − ρ)(1 − χ) ρ(1 − χ) χ(1 − ρ) ρχ
0 1 − χ 0 χ
0 0 1 − ρ ρ
θ 0 0 1 − θ

 .

23

{a} {b}

∅

ρ χ

θ

p1 p2

p3

t1 t2

t3

✍✌✎☞✍✌✎☞

✍✌✎☞
✉ ✉
❄ ❄

❏❏❫ ✡✡✢

❄2

✎

✍

✔

✕✕✖

✲ ✛

N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

RG(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✩

✪

✛✞✝ ✲
✞✝ ✲

✞✝ ✲

✞✝ ✲
∅,(1−ρ)(1−χ)

∅,1−χ ∅,1−ρ

∅,1−θ

{t1,t2},
ρχ

t1,ρ(1−χ) t2,(1−ρ)χ

t2,χ t1,ρ

t3,θ

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

DTMC(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✩

✪

✛

ρχ

ρ(1−χ) (1−ρ)χ

χ ρ

θ

✞✝ ✲
✞✝ ✲

✞✝ ✲

✞✝ ✲
(1−ρ)(1−χ)

1−χ 1−ρ

1−θ

Figure 3: LDTSPN, its reachability graph and the underlying DTMC

The steady-state PMF ψ = (ψ1, ψ2, ψ3, ψ4) for DTMC(N) is a solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

,

where I is the identity matrix of size four and 0 = (0, 0, 0, 0), 1 = (1, 1, 1, 1).
For the case ρ = χ = θ we have

ψ =

(
1

5 − 3ρ
,

1 − ρ

5 − 3ρ
,

1 − ρ

5 − 3ρ
,

2 − ρ

5 − 3ρ

)
.

The inverse of the steady-state PMF for DTMC(N) is its mean recurrence time vector

RC =

(
5 − 3ρ,

5 − 3ρ

1 − ρ
,

5 − 3ρ

1 − ρ
,

5 − 3ρ

2 − ρ

)
.

Each element of RC is the mean number of steps to return to the corresponding marking. For instance, one
can see that the average time to come back to the initial marking MN = M1 in the long-term behaviour belongs
in the interval (2; 5), since ρ ∈ (0; 1).

4.2 Algebra of dts-boxes

We now propose discrete time stochastic Petri boxes and associated algebraic operations to define a net repre-
sentation of dtsPBC expressions.

Definition 4.5 A discrete time stochastic Petri box (dts-box) is a tuple N = (PN , TN ,WN ,ΛN), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;

• WN : (PN × TN) ∪ (TN × PN) → IN is a function providing the weights of arcs between places and
transitions;

• ΛN is the place and transition labeling function such that

– ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places, respectively);

– ΛN |TN
: TN → {̺ | ̺ ⊆ INSL

fin × SL} (it associates transitions with the relabeling relations on
activities).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•. In addition, for the set of entry places of N defined as ◦N = {p ∈ PN |

ΛN (p) = e} and the set of exit places of N defined as N◦ = {p ∈ PN | ΛN (p) = x}, the following condition
holds: ◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.

A dts-box is plain if ∀t ∈ TN ∃(α, ρ) ∈ SL ΛN(t) = ̺(α,ρ), where ̺(α,ρ) = {(∅, (α, ρ))} is a constant
relabeling that can be identified with the activity (α, ρ). A marked plain dts-box is a pair (N,MN), where N
is a plain dts-box and MN ∈ INPN

fin is its marking. We shall use the following notation: N = (N, ◦N) and
N = (N,N◦). Note that a marked plain dts-box (PN , TN ,WN ,ΛN ,MN) could be interpreted as the LDTSPN

24

(α, ρ)

✍✌✎☞

✍✌✎☞
❄

❄

N(α,ρ)ι

e

x

tι ̺[f]

✍✌✎☞

✍✌✎☞
❄

❄

Θ[f]

e

x

u[f] ̺rs a

✍✌✎☞

✍✌✎☞
❄

❄

Θrs a

e

x

urs a ̺sy a

✍✌✎☞

✍✌✎☞
❄

❄

Θsy a

e

x

usy a ̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ;

e

u1;

̺id

✍✌✎☞
❄

❄
x

u2;

i

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ‖

e

u1‖

x

̺id

✍✌✎☞

✍✌✎☞
❄

❄

e

u2‖

x

̺idu1[] ̺id u2[]

Θ[]

✍✌✎☞

✍✌✎☞
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

✞ ☎
✝ ✆

❄

✻

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ[∗ ∗]

e

u1[∗ ∗]

̺id

✍✌✎☞
❄

❄
x

u3[∗ ∗]

i ̺id u2[∗ ∗]

Figure 4: The plain and operator dts-boxes

(PN , TN ,WN ,ΩN ,LN ,MN), where functions ΩN and LN are defined as follows: ∀t ∈ TN ΩN (t) = ρ and
LN (t) = α, where ΛN (t) = ̺(α,ρ). Behaviour of the marked dts-boxes follows from the firing rule of LDTSPNs.

A plain dts-box N is n-bounded (n ∈ IN) if N is so, i.e. ∀M ∈ RS(N) ∀p ∈ PN M(p) ≤ n, and it is safe if it is
1-bounded. A plain dts-box N is clean if ∀M ∈ RS(N) ◦N ⊆M ⇒ M = ◦N and N◦ ⊆M ⇒ M = N◦, i.e.
if there are tokens in all its entry (exit) places then no other places have tokens.

The structure of the plain dts-box corresponding to a static expression is constructed like in PBC [15,
29, 30], i.e. we use a simultaneous refinement and relabeling meta-operator (net refinement) in addition to
the operator dts-boxes corresponding to the algebraic operations of dtsPBC and featuring transformational
transition relabelings. Operator dts-boxes specify n-ary functions from plain dts-boxes to plain dts-boxes (we
have 1 ≤ n ≤ 3 in dtsPBC). Thus, as we shall see in Theorem 4.1, the resulting plain dts-boxes are safe and
clean. In the definition of the denotational semantics, we shall apply standard constructions used for PBC. Let
Θ denote an operator box and u denote a transition name from the PBC setting.

The relabeling relations ̺ ⊆ INSL
fin × SL are defined as follows:

• ̺id = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL} is the identity relabeling keeping the interface as it is;

• ̺(α,ρ) = {(∅, (α, ρ))} is the constant relabeling that can be identified with (α, ρ) ∈ SL itself;

• ̺[f] = {({(α, ρ)}, (f(α), ρ)) | (α, ρ) ∈ SL};

• ̺rs a = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL, a, â 6∈ α};

• ̺sy a is the least relabeling relation containing ̺id such that if (Γ, (α, ρ)), (∆, (β, χ)) ∈ ̺sy a and
a ∈ α, â ∈ β, then (Γ + ∆, (α ⊕a β, ρ · χ)) ∈ ̺sy a.

The plain dts-box N(α,ρ)ι and operator dts-boxes are presented in Figure 4. Note that the symbol i is usually
omitted.

In the case of the iteration, a decision that we must take is the selection of the operator box that we shall
use for it, since we have two proposals in plain PBC for that purpose [15]. One of them provides us with a
safe version with six transitions in the operator box, but there is also a simpler version, which has only three
transitions. In general, in PBC, with the latter version we may generate 2-bounded nets, which only occurs
when a parallel behavior appears at the highest level of the body of the iteration. Nevertheless, in our case,
and due to the syntactical restriction introduced for regular terms, this particular situation cannot occur, so
that the net obtained will be always safe.

To construct a semantic function that associates a plain dts-box with every static expression of dtsPBC,
we need to propose the enumeration function Enu : T → Num. It associates numberings with transitions of
the plain dts-box N = (P, T,W,Λ) according to those of activities. In the case of synchronization, the function
associates concatenation of the parenthesized numberings of the synchronized transitions with a resulting new
transition.

25

We now define the enumeration function Enu for every operator of dtsPBC. Let NE = Boxdts(E) =
(PE , TE,WE ,ΛE) be the plain dts-box corresponding to a static expression E, and EnuE : TE → Num be the
enumeration function for NE . We shall use the analogous notation for static expressions F and K.

• Boxdts((α, ρ)ι) = N(α,ρ)ι . Since a single transition tι corresponds to the activity (α, ρ)ι ∈ SL, their
numberings coincide:

Enu(tι) = ι.

• Boxdts(E ◦F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖}. Since we do not introduce any new transitions,
we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdts(E[f]) = Θ[f](Boxdts(E)). Since we only replace the labels of some multiactions by a bijection, we
preserve the initial numbering:

Enu(t) = EnuE(t), t ∈ TE .

• Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions labeled with multiactions containing
a or â, this does not change the numbering of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ α, ΛE(t) = ̺(α,ρ).

• Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that ∀v, w ∈ TE such that ΛE(v) = ̺(α,ρ), ΛE(w) = ̺(β,χ) and
a ∈ α, â ∈ β, the new transition t resulting from synchronization of v and w has the label Λ(t) = ̺(α⊕aβ,ρ·χ)

and the numbering Enu(t) = (EnuE(v))(EnuE(w)).

Thus, the enumeration function is defined as

Enu(t) =

{
EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from synchronization of v and w.

When we synchronize the same set of transitions in different orders, we obtain several resulting transitions
with the same label and probability, but with different numberings having the same content. In this
case, we shall consider only a single transition from the resulting ones in the plain dts-box to avoid
introducing redundant transitions. For example, if the transitions t and u are generated by synchronizing
v and w in different orders, we have Λ(t) = ̺(α⊕aβ,ρ·χ) = Λ(u), but Enu(t) = (EnuE(v))(EnuE(w)) 6=
(EnuE(w))(EnuE(v)) = Enu(u), whereas Cont(Enu(t)) = Cont(Enu(v)) ∪ Cont(Enu(w)) =
Cont(Enu(u)). Then only one transition t (or, symmetrically, u) will appear in Boxdts(E sy a).

• Boxdts([E ∗ F ∗ K]) = Θ[∗ ∗](Boxdts(E), Boxdts(F), Boxdts(K)). Since we do not introduce any new
transitions, we preserve the initial numbering:

Enu(t) =

EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

We now can formally define the denotational semantics as a homomorphism.

Definition 4.6 Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr. The denotational semantics of dtsPBC
is a mapping Boxdts from RegStatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2. Boxdts(E ◦ F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f]) = Θ[f](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};

5. Boxdts([E ∗ F ∗K]) = Θ[∗ ∗](Boxdts(E), Boxdts(F), Boxdts(K)).

26

100

010

RG(N)✞✝ ✲

✞✝ ✲
∅, 1−ρ

1+ρ

∅, (1−χ)(1−θ)
1−χθ

DTMC(N)

✲ ✛

t1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲
t2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

✞✝ ✲
1

❄✞✝ ✲
∅,1

t4,
θ(1−χ)
1−χθ

❄
001

☎✆✛

t3,
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

✝ ✆✻

({a},ρ)2

✍✌✎☞

✍✌✎☞

N

e

t2

({c},θ)

✍✌✎☞
❄

❄
x

t4

({b},χ) t3

({a},ρ)1t1

✑
✑✑✰

◗
◗◗s

❩
❩❩⑦

✚
✚✚❂

✉ 100

010

001

✲

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

Figure 5: The marked dts-box N = Boxdts(E) for E = [(({a}, ρ)1[]({a}, ρ)2)∗ ({b}, χ)∗ ({c}, θ)], its reachability
graph and the underlying DTMC

The dts-boxes of dynamic expressions can be defined as well. For E ∈ RegStatExpr, let Boxdts(E) =
Boxdts(E) and Boxdts(E) = Boxdts(E).

Note that this definition is compositional in the sense that, for any arbitrary dynamic expression, we may
decompose it in some inner dynamic and static expressions, for which we may apply the definition, thus obtaining
the corresponding plain dts-boxes, which can be joined according to the term structure (by definition of Boxdts),
the resulting plain box being marked in the places that were marked in the argument nets.

Theorem 4.1 For any static expression E, Boxdts(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC [15, 29, 30], combining both refinement and relabeling.
Consequently, the dts-boxes thus obtained will be safe and clean. ⊓⊔

Let ≃ denote the isomorphism between transition systems and reachability graphs or between DTMCs
that binds their initial states. Due to the space restrictions, we omit the corresponding definitions as they
resemble that of the isomorphism between transition systems. Note that the names of transitions of the dts-box
corresponding to a static expression could be identified with the enumerated activities of the latter.

Theorem 4.2 For any static expression E

TS(E) ≃ RG(Boxdts(E)).

Proof. See Appendix A.1. ⊓⊔

Proposition 4.1 For any static expression E

DTMC(E) ≃ DTMC(Boxdts(E)).

Proof. By Theorem 4.2 and definitions of underlying DTMCs for dynamic expressions and LDTSPNs, since
transition probabilities of the associated DTMCs are the sums of those belonging to transition systems or
reachability graphs. ⊓⊔

Example 4.2 Let E be from Example 3.3. In Figure 5, the marked dts-box N = Boxdts(E), its reachability
graph RG(N) and the underlying DTMC DTMC(N) are presented. It is easy to see that TS(E) and RG(N)
are isomorphic, as well as DTMC(E) and DTMC(N).

Consider the next example that demonstrates synchronization.

Example 4.3 Let E1 = ({a}, ρ), E2 = ({â}, χ) and E = (E1‖E2) sy a = (({a}, ρ)‖({â}, χ)) sy a. In Figure
6, the transition system TS(E) and the underlying DTMC DTMC(E) are presented. In Figure 7, the marked
dts-box N = Boxdts(E), its reachability graph RG(N) and the underlying DTMC DTMC(N) are depicted. It
is easy to see that TS(E) and RG(N) are isomorphic, as well as DTMC(E) and DTMC(N).

The probabilities Pij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol ‖ inscribes that of the transition corresponding

27

☛✡ ✟✠

(E1‖E2) sy a

(E1‖E2) sy a

TS(E)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✞✝ ✲
✞✝ ✲

✞✝ ✲

∅,P11

∅,P22 ∅,P33

∅,P44

{({a},ρ),
({â},χ)},

P
‖
14

({a},ρ),P12 ({â},χ),P13

({â},χ),P24 ({a},ρ),P34

☎✆✛

❄

({∅},ρχ),

P sy
14

DTMC(E)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✞✝ ✲
✞✝ ✲

✞✝ ✲

P11

P22 P33

P44

P12 P13

P24 P34

☎✆✛

❄

P14

(E1‖E2) sy a (E1‖E2) sy a

(E1‖E2) sy a

(E1‖E2) sy a

(E1‖E2) sy a (E1‖E2) sy a

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

Figure 6: The transition system and the underlying DTMC of E for E = (({a}, ρ)‖({â}, χ)) sy a

✍✌✎☞✍✌✎☞✉ ✉
❄ ❄

N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

RG(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✞✝ ✲
✞✝ ✲

✞✝ ✲

∅,P11

∅,P22 ∅,P33

∅,P44

{t1,t2},

P
‖
14

t1,P12 t2,P13

t2,P24 t1,P34

☎✆✛

❄

t(1)(2) ,

P sy
14

({a},ρ) ({â},χ)(∅,ρχ)

✍✌✎☞ ✍✌✎☞❄ ❄

◗
◗◗s

✑
✑✑✰

✚
✚

✚❂
❩
❩
❩⑦

t1 t2

t(1)(2)

x x

e e

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

DTMC(N)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✞✝ ✲
✞✝ ✲

✞✝ ✲

P11

P22 P33

P44

P12 P13

P24 P34

☎✆✛

❄

P14

Figure 7: The marked dts-box N = Boxdts(E) for E = (({a}, ρ)‖({â}, χ)) sy a, its reachability graph and the
underlying DTMC

to the concurrent execution of two activities. To avoid complex notation, we use the normalization factor
N = 1

1−ρ2χ−ρχ2+ρ2χ2 .

P11 = N (1 − ρ)(1 − χ)(1 − ρχ) P12 = Nρ(1 − χ)(1 − ρχ) P13 = Nχ(1 − ρ)(1 − ρχ)

P sy
14 = Nρχ(1 − ρ)(1 − χ) P

‖
14 = Nρχ(1 − ρχ) P22 = 1 − χ

P24 = χ P33 = 1 − ρ P34 = ρ

P44 = 1 P14 = P sy
14 + P

‖
14 = Nρχ(2 − ρ− χ)

Consider the case ρ = χ = 1
2 . Then the transition probabilities will be the following:

P11 = P12 = P13 = P
‖
14 =

3

13
, P sy

14 =
1

13
, P22 = P24 = P33 = P34 =

1

2
, P44 = 1, P14 =

4

13
.

The following example demonstrates that, without the syntactic restriction on regularity of expressions, the
corresponding marked dts-boxes may be not safe.

Example 4.4 Let E = [(({a}, 12)∗(({b}, 12)‖({c}, 12))∗({d}, 12)]. In Figure 8, the marked dts-box N = Boxdts(E)
and its reachability graph RG(N) are presented. In the marking (0, 1, 1, 2, 0, 0) there are 2 tokens in the place p4.
Symmetrically, in the marking (0, 1, 1, 0, 2, 0) there are 2 tokens in the place p5. Thus, allowing concurrency in
the second argument of iteration in the expression E can lead to non-safeness of the corresponding marked dts-
box N , though, it is 2-bounded in the worst case [15]. The origin of the problem is that N has as a self-loop with
two subnets which can function independently. Therefore, we have decided to consider regular expressions only,
since the alternative, which is a safe version of the iteration operator with six arguments in the corresponding
dts-box, like that from [15], is rather cumbersome and has too intricate Petri net interpretation. Our motivation
was to keep the algebraic and Petri net specifications as simple as possible.

28

({a}, 12)

✍✌✎☞✉
❄

e

N

({b}, 12) ({c}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄
✍✌✎☞ ✍✌✎☞

❏
❏❫

✁
✁☛

✍✌✎☞x

❄ ❄

({d}, 12)

❄

❏❏❫ ✓✓✴

✟✟✟✟✯
❍❍❍❍❨

☞

✌

✎

✍✲ ✛

✻ ✻

★

✧

✥

✦✲ ✛

p1

p2 p3

p4 p5

p6

t1

t2 t3

t4

RG(N)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠

❄

❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

100000

011110

011200 011020

011001

t1, 1
2

t2, 1
2

t3, 1
2

t3, 1
5

t2, 1
5

t4, 1
5

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲ �✁✛

✞✝ ✲

∅, 1
5 {t2,t3}, 1

5

∅, 1
2

∅, 1
2

∅, 1
2

∅,1

Figure 8: The marked dts-box N = Boxdts(E) for E = [(({a}, 12) ∗ (({b}, 12)‖({c}, 12)) ∗ ({d}, 12)] and its
reachability graph

5 Stochastic equivalences

In this section, we propose a number of stochastic equivalences of expressions. The semantic equivalence =ts

is too discriminating in many cases, i.e. from our viewpoint, it differentiates too many processes with similar
behaviour. Hence, we need weaker equivalence notions to compare behaviour of processes specified by algebraic
formulas.

Consider the expressions E = ({a}, 12) and E′ = ({a}, 13)1[]({a}, 13)2, for which E 6=ts E′, since TS(E) has

only one transition from the initial to the final state (with probability 1
2) while TS(E′) has two such ones

(with probabilities 1
4). On the other hand, all the mentioned transitions are labeled by activities with the same

multiaction part {a}. Moreover, the overall probabilities of the mentioned transitions of TS(E) and TS(E′)
coincide: 1

2 = 1
4 + 1

4 . Further, TS(E) (as well as TS(E′)) has one empty loop transition from the initial state to
itself with probability 1

2 and one empty loop transition from the final state to itself with probability 1. The empty
loop transitions are labeled by the empty multiset of activities. For calculating the transition probabilities of
TS(E′), take ρ = χ = 1

3 in Example 3.2. Then you will see that the probability parts 1
3 and 1

3 of the activities
({a}, 13)1 and ({a}, 13)2 are “splitted” among probabilities 1

4 and 1
4 of the corresponding transitions and the

probability 1
2 of the empty loop transition. Unlike =ts, most of the probabilistic and stochastic equivalences

proposed in the literature do not differentiate between the processes such as those specified by E and E′.
The equivalences we intend to define should possess the following necessary properties. First, any two

equivalent processes must have the same sequences of multisets of multiactions, which are the multiaction parts
of the activities executed in steps starting from the initial states of the processes. Second, for every such
sequence, its execution probabilities within both processes must coincide.

To identify processes with intuitively similar behavior and to be able to apply standard constructions and
techniques, we should abstract from infinite internal behaviour. Since dtsPBC is a stochastic extension of a
finite part of PBC with iteration, the only source of infinite silent behaviour are empty loops, i.e. the transitions
which are labeled by the empty multiset of activities and do not change states. During such an abstraction, we
should collect the probabilities of empty loops. Note that the resulting probabilities are those defined for an
infinite number of empty steps. In the following, we explain how to abstract from the empty loops both in the
algebraic setting of dtsPBC and in the net one of LDTSPNs.

The result of abstraction from empty loops is a new semantics with the progress property: at least, one
activity is executed at every discrete time tick. In this semantics, the sojourn time in a state can be greater
than 1 only when the iteration body consisting of a single activity is executed. Notice that we do not consider
as a silent behaviour the execution of an iteration body built only from activities with the empty multiaction
parts, even when the body consists in a single activity (∅, ρ) whose execution does not change the current state
of the transition system. The reason is that we skip only the empty steps at the considered abstraction level,
but the iteration body consists in at least from one activity in this case.

29

5.1 Empty loops in transition systems

Let G be a dynamic expression. A transition system TS(G) can have loops going from a state to itself which

are labeled by the empty multiset and have non-zero probability. Such empty loops s
∅
→P s appear when no

activities occur at a discrete time tick, and this occurs with some positive probability. Obviously, the current
state remains unchanged in this case.

Let G be a dynamic expression and s ∈ DR(G).
The probability to stay in s due to k (k ≥ 1) empty loops is

(PT (∅, s))k.

Let Γ ∈ Exec(s) \ {∅}, i.e. PT (∅, s) < 1. The probability to execute the non-empty multiset of activities Γ
in s after possible empty loops is

PT ∗(Γ, s) = PT (Γ, s)

∞∑

k=0

(PT (∅, s))k =
PT (Γ, s)

1 − PT (∅, s)
= EL(s)PT (Γ, s),

where EL(s) = 1
1−PT (∅,s) is the empty loops abstraction factor. The empty loops abstraction vector of G, denoted

by EL, has the elements EL(s), s ∈ DR(G). The value k = 0 in the summation above corresponds to the case
when no empty loops occur. PT ∗(Γ, s) can be interpreted as a conditional probability, under the condition that
empty loops are left finally.

Notice that after abstraction from transition probabilities with empty multisets of activities, the remaining
transition probabilities are normalized. In order to calculate transition probabilities PT (Γ, s), we had to nor-
malize PF (Γ, s). Then, to obtain probabilities of non-empty steps PT ∗(Γ, s), we have to normalize PT (Γ, s).
Thus, we have a two-stage normalization as a result.

Note that PT ∗(Γ, s) defines a probability distribution, i.e. ∀s ∈ DR(G) such that PT (∅, s) < 1, i.e. there are

non-empty steps after possible empty loops from s, we have
∑

Γ∈Exec(s)\{∅} PT
∗(Γ, s) =

∑
Γ∈Exec(s)\{∅} PT (Γ,s)

1−PT (∅,s) =

1, since PT (∅, s)+
∑

Γ∈Exec(s)\{∅} PT (Γ, s) =
∑

∆∈Exec(s) PT (∆, s) = 1 and, hence,
∑

Γ∈Exec(s)\{∅} PT (Γ, s) =

1 − PT (∅, s).

Definition 5.1 The (labeled probabilistic) transition system without empty loops TS∗(G) has the state space

DR(G) and the transitions s
Γ
→→P s̃, if s

Γ
→ s̃, Γ 6= ∅ and P = PT ∗(Γ, s).

The definition of TS∗(G) is correct, i.e. for every state s ∈ DR(G) such that PT (∅, s) < 1, the sum of the
probabilities of all the transitions starting from it is 1. This is guaranteed by the note after the definition of
PT ∗(Γ, s). If PT (∅, s) = 1 then the sum of the exit probabilities for s in TS∗(G) is 0.

Note that TS∗(G) describes the viewpoint of a person who observes steps only if they include non-empty
multisets of activities.

We write s
Γ
→→ s̃ if ∃P s

Γ
→→P s̃ and s→→ s̃ if ∃Γ s

Γ
→→ s̃. For a one-element multiset of activities Γ = {(α, ρ)},

we write s
(α,ρ)
→→ P s̃ and s

(α,ρ)
→→ s̃.

We decided to consider empty loops followed only by a non-empty step just for convenience. Alternatively,
we could take a non-empty step succeeded by empty loops or a non-empty step preceded and succeeded by
empty loops. In all these three cases our sequence begins or/and ends with the loops which do not change
states. At the same time, the overall probabilities of the evolutions can differ, since empty loops have positive
probabilities. To avoid inconsistency of definitions and too complex description, we consider sequences ending
with a non-empty step. It resembles in some sense a construction of branching bisimulation [58].

Transition systems without empty loops of static expressions can be defined as well. For E ∈ RegStatExpr,
let TS∗(E) = TS∗(E).

Definition 5.2 Two dynamic expressions G and G′ are equivalent with respect to transition systems without
empty loops, denoted by G =ts∗ G

′, if TS∗(G) ≃ TS∗(G′).

Definition 5.3 The underlying DTMC without empty loops DTMC∗(G) has the state space DR(G) and the
transitions s →→P s̃, if s →→ s̃, where P = PM∗(s, s̃) is the probability to move from s to s̃ by executing any
non-empty multiset of activities after possible empty loops defined as

PM∗(s, s̃) =
∑

{Γ|s
Γ
→→s̃}

PT ∗(Γ, s) =

{
EL(s)(PM(s, s) − PT (∅, s)), s = s̃;
EL(s)PM(s, s̃), otherwise,

where PM(s, s) − PT (∅, s) is the probability to stay in s due to any non-empty loop, i.e. by executing any
non-empty multiset of activities.

30

[E1∗E2∗E3]

[E1∗E2∗E3]

TS∗(E) DTMC∗(E)

✲ ✛

({a},ρ)1,
1
2 ({a},ρ)2,

1
2 1

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

❄
[E1∗E2∗E3]

({c},θ),
θ(1−χ)

χ+θ−2χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)

χ+θ−2χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

✛

χ(1−θ)
χ+θ−2χθ

θ(1−χ)
χ+θ−2χθ

☎✆

Figure 9: The transition system and the underlying DTMC without empty loops of E for E = [(({a}, ρ)1[]
({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]

Note that ∀s ∈ DR(G) such that PT (∅, s) < 1, we have
∑

{s̃|s→→s̃} PM
∗(s, s̃) =∑

{s̃|s→→s̃}

∑
{Γ|s

Γ
→→s̃}

PT ∗(Γ, s) =
∑

Γ∈Exec(s)\{∅} PT
∗(Γ, s) = 1.

Underlying DTMCs without empty loops of static expressions can be defined as well. For E ∈ RegStatExpr,
let DTMC∗(E) = DTMC∗(E).

Example 5.1 Let E be from Example 3.3. In Figure 9, the transition system TS∗(E) and the underlying
DTMC without empty loops DTMC∗(E) are presented.

Let us demonstrate how the transition probabilities of non-empty steps are calculated. For instance, we have
PT (∅, s1) = 1−ρ

1+ρ and 1
1−PT (∅,s1)

= 1+ρ
2ρ . Hence, since PT ({({a}, ρ)1}, s1) = ρ

1+ρ , we have

PT ∗({({a}, ρ)1}, s1) = PT ({({a},ρ)1},s1)
1−PT (∅,s1)

= ρ
1+ρ · 1+ρ

2ρ = 1
2 . According to the same pattern, we obtain

PT ∗({({a}, ρ)2}, s1) = 1
2 . The other probabilities are calculated in a similar way.

5.2 Empty loops in reachability graphs

Let N be an LDTSPN. Reachability graph RG(N) can have loops going from a marking to itself which are

labeled by the empty set and have non-zero probability. Such empty loopM
∅
→P M appears when no transitions

fire at a discrete time tick, and this occurs with some positive probability. Obviously, in this case the current
marking remains unchanged.

Let N be an LDTSPN and M ∈ RS(N).
The probability to stay in M due to k (k ≥ 1) empty loops is

(PT (∅,M))k.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆ M , i.e. PT (∅, s) < 1. The probability that the non-empty set of
transitions U fires in M after possible empty loops is

PT ∗(U,M) = PT (U,M)

∞∑

k=0

(PT (∅,M))k =
PT (U,M)

1 − PT (∅,M)
= EL(M)PT (U,M),

where EL(M) = 1
1−PT (∅,M) is the empty loops abstraction factor. The empty loops abstraction vector of N ,

denoted by EL, has the elements EL(M), M ∈ RS(N). The value k = 0 in the summation above corresponds
to the case when no empty loops occur. PT ∗(U,M) can be interpreted as a conditional probability, under the
condition that empty loops are left finally.

Notice that after abstraction from firing probabilities of empty sets of transitions, the remaining firing
probabilities are normalized. In order to calculate firing probabilities PT (U,M), we had to normalize PF (U,M).
Then, to obtain probabilities of non-empty steps PT ∗(U,M), we have to normalize PT (U,M). Thus, we have
a two-stage normalization as a result.

Note that PT ∗(U,M) defines a probability distribution, i.e. ∀M ∈ RS(N) such that PT (∅,M) < 1,
i.e. there are non-empty steps after possible empty loops from M , we have

∑
{U 6=∅|•U⊆M} PT

∗(U,M) =

31

∑
{U 6=∅|•U⊆M} PT (U,M)

1−PT (∅,M) = 1, since PT (∅,M) +
∑

{U 6=∅|•U⊆M} PT (U,M) =
∑

{V⊆Ena(M)|•V⊆M} PT (V,M) = 1

and, hence,
∑

{U 6=∅|•U⊆M} PT (U,M) = 1 − PT (∅,M).

Definition 5.4 The reachability graph without empty loops RG∗(N) has the set of nodes RS(N) and the arcs

corresponding to the transitions M
U
→→P M̃ , if M

U
→ M̃, U 6= ∅ and P = PT ∗(U,M).

Note that RG∗(N) describes the viewpoint of a person who observes steps only if they include non-empty
transition sets.

We write M
U
→→ M̃ if ∃P M

U
→→P M̃ and M →→ M̃ if ∃U M

U
→→ M̃ . For a one-element set of transitions

U = {t}, we write M
t
→→P M̃ and M

t
→→ M̃ .

Definition 5.5 The underlying DTMC without empty loops DTMC∗(N) has the state space RS(N) and the

transitions M →→P M̃ , if M →→ M̃ , where P = PM∗(M, M̃) is the probability to move from M to M̃ by firing
any non-empty set of transitions after possible empty loops defined as

PM∗(M, M̃) =
∑

{U|M
U
→→M̃}

PT ∗(U,M) =

{
EL(M)(PM(M,M) − PT (∅,M)), M = M̃ ;

EL(M)PM(M, M̃), otherwise,

where PM(M,M) − PT (∅,M) is the probability to stay in M due to any non-empty loop, i.e. by firing any
non-empty multiset of transitions.

Note that ∀M ∈ RS(N) such that PT (∅,M) < 1, we have
∑

{M̃|M→→M̃} PM
∗(M, M̃) =∑

{M̃|M→→M̃}

∑
{U|M

U
→→M̃}

PT ∗(U,M) =
∑

{U 6=∅|•U⊆M} PT
∗(U,M) = 1.

Theorem 5.1 For any static expression E

TS∗(E) ≃ RG∗(Boxdts(E)).

Proof. As Theorem 4.2. ⊓⊔

Proposition 5.1 For any static expression E

DTMC∗(E) ≃ DTMC∗(Boxdts(E)).

Proof. As Proposition 4.1. ⊓⊔
Note that Theorem 5.1 guarantees that the net versions of algebraic equivalences could be easily defined.

For every equivalence on the transition system without empty loops of a dynamic expression, a similarly defined
analogue exists on the reachability graph without empty loops of the corresponding dts-box.

Example 5.2 Let E be from Example 3.3 and N be from Example 4.2. In Figure 10, the reachability graph
RG∗(N) and the underlying DTMC without empty loops DTMC∗(N) are presented. It is easy to see that
TS∗(E) and RG∗(N) are isomorphic, as well as DTMC∗(E) and DTMC∗(N).

Consider the next example that demonstrates synchronization.

Example 5.3 Let E and N be those from Example 4.3. In Figure 11, the transition system TS∗(E) and the
underlying DTMC without empty loops DTMC∗(E) are presented. In Figure 12, the reachability graph RG∗(N)
and the underlying DTMC without empty loops DTMC∗(N) are depicted. It is easy to see that TS∗(E) and
RG∗(N) are isomorphic, as well as DTMC∗(E) and DTMC∗(N).

The probabilities P∗
ij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbol sy inscribes probability

of the transition generated by synchronization, and the symbol ‖ inscribes that of the transition corresponding
to the concurrent execution of two activities. To avoid complex notation, we use the normalization factor
N ∗ = 1

ρ+χ−2ρ2χ−2ρχ2+2ρ2χ2 . The probabilities Pij (1 ≤ i, j ≤ 4) are taken from Example 4.3.

P∗
12 = P12

1−P11
= N ∗ρ(1 − χ)(1 − ρχ) P∗

13 = P13

1−P11
= N ∗χ(1 − ρ)(1 − ρχ)

P sy∗
14 =

P sy
14

1−P11
= N ∗ρχ(1 − ρ)(1 − χ) P

‖∗
14 =

P
‖
14

1−P11
= N ∗ρχ(1 − ρχ)

P∗
24 = P24

1−P22
= 1 P∗

34 = P34

1−P33
= 1

P∗
14 = P sy∗

14 + P
‖∗
14 =

P sy
14+P

‖
14

1−P11
= N ∗ρχ(2 − ρ− χ)

Consider the case ρ = χ = 1
2 . Then the transition probabilities will be the following:

P∗
12 = P∗

13 = P
‖∗
14 =

3

10
, P sy∗

14 =
1

10
, P∗

24 = P∗
34 = 1, P∗

14 =
2

5
.

32

100

010

RG∗(N) DTMC∗(N)

✲ ✛

t1,
1
2 t2,

1
2 1

❄

☛
✡
✟
✠

❄

t4,
θ(1−χ)

χ+θ−2χθ

❄
001

☎✆✛

t3,
χ(1−θ)

χ+θ−2χθ

θ(1−χ)
χ+θ−2χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

100

010

001

☎✆✛

χ(1−θ)
χ+θ−2χθ

Figure 10: The reachability graph and the underlying DTMC without empty loops of N = Boxdts(E) for
E = [(({a}, ρ) ∗ (({b}, χ)‖({c}, θ)) ∗ ({d}, φ)]

☛✡ ✟✠

(E1‖E2) sy a

(E1‖E2) sy a

TS∗(E)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

{({a},ρ),
({â},χ)},

P
‖∗
14

({a},ρ),P∗
12 ({â},χ),P∗

13

({â},χ),P∗
24 ({a},ρ),P∗

34

❄

({∅},ρχ),

P sy∗
14

DTMC∗(E)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

P∗
12 P∗

13

P∗
24 P∗

34

❄

P∗
14

(E1‖E2) sy a (E1‖E2) sy a

(E1‖E2) sy a

(E1‖E2) sy a

(E1‖E2) sy a (E1‖E2) sy a

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

Figure 11: The transition system and the underlying DTMC without empty loops of E for E = (({a}, ρ)‖
({â}, χ)) sy a

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

RG∗(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

{t1,t2},

P
‖∗
14

t1,P
∗
12 t2,P

∗
13

t2,P
∗
24 t1,P

∗
34

❄

t(1)(2),

P sy∗
14

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

DTMC∗(N)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

P∗
12 P∗

13

P∗
24 P∗

34

❄

P∗
14

Figure 12: The reachability graph and the underlying DTMC without empty loops of N = Boxdts(E) for
E = (({a}, ρ)‖({â}, χ)) sy a

33

5.3 Stochastic trace equivalences

Trace equivalences are the least discriminating ones. In a trace semantics, the behavior of a system is associated
with the set of all possible sequences of activities, i.e. protocols of work or computations. Thus, the points of
choice of an external observer between several extensions of a particular computation are not taken into account.

Formal definitions of stochastic trace relations resemble those of trace equivalences for standard Petri nets
[128] or process algebras, but additionally we have to take into account the probabilities of sequences of (multisets
of) actions like in [43, 151]. First, we have to multiply occurrence probabilities for all (multisets of) activities
along every path starting from the initial state of the transition system corresponding to a dynamic expression.
The product is the probability of the sequence of multiaction parts of the (multisets of) activities along the
path. Second, we should calculate a sum of probabilities for all paths corresponding to the same sequence of
multiaction parts.

When concurrency aspects are not relevant, the interleaving behaviour is to be considered. The interleaving
semantics abstracts from steps with more than one element. After such an abstraction, one has to normalize
the probabilities of the remaining one-element steps. We need to do this since the sum of outgoing probabilities
should always be equal to one for each state to form a probability distribution. For this, a special interleaving

transition relation is proposed. Let G be a dynamic expression, s, s̃ ∈ DR(G) and s
(α,ρ)
→→ s̃. We write s

(α,ρ)
⇀⇀ P s̃,

where P = pt∗((α, ρ), s) is the probability to execute the activity (α, ρ) in s after possible empty loops, when only
one-element steps are allowed, defined as

pt∗((α, ρ), s) =
PT ∗({(α, ρ)}, s)∑

{(β,χ)}∈Exec(s) PT
∗({(β, χ)}, s)

.

Note that we have first abstracted from empty loops and then from steps with more than one element. We
could perform the abstractions in the reverse order, the result will be the same. The reason is that, at every
stage, we abstract from some transitions of a given transition system and then normalize the probabilities of
the remaining ones. Hence, the result of each sequence of abstractions and normalizations coincides with that
of the abstraction at once from all the transitions we have abstracted from in this sequence and the subsequent
overall normalization. Let us prove it formally.

Let Γ ∈ Exec(s) and |Γ| ≤ 1. The probability to execute the multiset of activities Γ in s, when only
zero-element steps (i.e. empty loops) or one-element steps are allowed, is

pt(Γ, s) =
PT (Γ, s)

PT (∅, s) +
∑

{(β,χ)}∈Exec(s) PT ({(β, χ)}, s)
.

When we have first abstracted from empty loops and then from steps with more than one element, we get

pt∗((α, ρ), s) = PT∗({(α,ρ)},s)∑
{(β,χ)}∈Exec(s) PT

∗({(β,χ)},s) =
1

1−PT(∅,s)PT ({(α,ρ)},s)
1

1−PT (∅,s)

∑
{(β,χ)}∈Exec(s) PT ({(β,χ)},s)

=

PT ({(α,ρ)},s)∑
{(β,χ)}∈Exec(s) PT ({(β,χ)},s) .

When we have first abstracted from steps with more than one element and then from empty loops, we get

pt∗((α, ρ), s) = pt({(α,ρ)},s)∑
{(β,χ)}∈Exec(s) pt({(β,χ)},s)

=
1

PT(∅,s)+
∑

{(γ,θ)}∈Exec(s) PT({(γ,θ)},s)PT ({(α,ρ)},s)

1
PT (∅,s)+

∑
{(γ,θ)}∈Exec(s) PT ({(γ,θ)},s)

∑
{(β,χ)}∈Exec(s) PT ({(β,χ)},s)

=

PT ({(α,ρ)},s)∑
{(β,χ)}∈Exec(s) PT ({(β,χ)},s) , i.e. the same expression as in the previous paragraph.

Note that in the definitions below we shall consider L(Γ) ∈ INL
fin for Γ ∈ INSL

fin, i.e. i.e. (possibly empty)
multisets of multiactions. The multiactions can be empty as well. In this case, L(Γ) contains the elements ∅,
but it is not empty itself.

Definition 5.6 An interleaving stochastic trace of a dynamic expression G is a pair (σ, pt∗(σ)), where σ =
α1 · · ·αn ∈ L∗ and

pt∗(σ) =
∑

{(α1,ρ1),...,(αn,ρn)|[G]≈=s0
(α1,ρ1)
⇀⇀ s1

(α2,ρ2)
⇀⇀ ···

(αn,ρn)
⇀⇀ sn}

n∏

i=1

pt∗((αi, ρi), si−1).

We denote the set of all interleaving stochastic traces of a dynamic expression G by IntStochT races(G).
Two dynamic expressions G and G′ are interleaving stochastic trace equivalent, denoted by G ≡is G′, if

IntStochT races(G) = IntStochT races(G′).

Definition 5.7 A step stochastic trace of a dynamic expression G is a pair (Σ, PT ∗(Σ)), where Σ = A1 · · ·An ∈
(INL

fin \ {∅})∗ and

34

PT ∗(Σ) =
∑

{Γ1,...,Γn|[G]≈=s0
Γ1→→s1

Γ2→→···
Γn→→sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1).

We denote the set of all step stochastic traces of a dynamic expression G by StepStochT races(G). Two
dynamic expressions G and G′ are step stochastic trace equivalent, denoted by G ≡ss G′, if

StepStochT races(G) = StepStochT races(G′).

Example 5.4 Let E = (({a}, 12)‖({â}, 12)) sy a. Then IntStochT races(E) = {(∅, 17), ({a}, 37), ({â}, 37),

({a}{â}, 37), ({â}{a}, 37)} and StepStochT races(E) = {({∅}, 1
10), ({{a}}, 3

10), ({{â}}, 3
10), ({{a}}{{â}}, 3

10),
({{â}}{{a}}, 3

10), ({{â}, {a}}, 3
10)}.

5.4 Stochastic bisimulation equivalences

Bisimulation equivalences respect the particular points of choice in the behavior of a modeled system. We intend
to present a definition of stochastic bisimulation equivalences. The definition is parameterized for the cases of
interleaving or step semantics.

To define stochastic bisimulation equivalences, we have to consider a bisimulation as an equivalence relation
that partitions the states of the union of the transition systems TS∗(G) and TS∗(G′) of two dynamic expressions
G and G′ to be compared. For G and G′ to be bisimulation equivalent, the initial states of their transition
systems, [G]≈ and [G′]≈, are to be related by a bisimulation having the following transfer property: two states
are related if in each of them the same (multisets of) multiactions can occur, and the resulting states belong to
the same equivalence class. In addition, the sums of probabilities for all such occurrences should be the same
for both states.

Thus, in our definitions, we follow the approach of [21,23,64,70,71,87,88], but we implement step semantics
instead of interleaving one considered in these papers. Recall also that we use the generative probabilistic
transition systems, like in [71], in contrast to the reactive model, treated in [87, 88], and we take transition
probabilities instead of transition rates from [21, 23, 64, 70]. Thus, stochastic bisimulation equivalences, which
we define further are (in the probabilistic sense) comparable only with interleaving probabilistic bisimulation
equivalence from [71], and our step equivalence is obviously stronger while our interleaving one is similar to the
mentioned relation.

Hence, the difference between bisimulation and trace equivalences is that we do not consider all possible
occurrences of (multisets of) multiactions from the initial states, but only such that lead (stepwise) to the
states belonging to the same equivalence class. Note that our interleaving stochastic bisimulation equivalence
resembles in some sense weak bisimulation one from [24, 25], but we abstract from empty loops only instead
of any transitions with the initial and the final states from the same equivalence class (with respect to the
mentioned equivalence).

First, we introduce several helpful notations. Let G be a dynamic expression and H ⊆ DR(G). Then, for

any s ∈ DR(G) and A ∈ INL
fin \ {∅}, we write s

A
→→P H, where P = PM∗

A(s,H) is the overall probability to
move from s into the set of states H via non-empty steps with the multiaction part A after possible empty loops
defined as

PM∗
A(s,H) =

∑

{Γ|∃s̃∈H s
Γ
→→s̃, L(Γ)=A}

PT ∗(Γ, s).

The summation in the definition above reflects the probability of the event union.

We write s
A
→→ H if ∃P s

A
→→P H.

We write s →→P H if ∃A s
A
→→ H, where P = PM∗(s,H) is the overall probability to move from s into the

set of states H via any non-empty steps after possible empty loops defined as

PM∗(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→→s̃}

PT ∗(Γ, s).

We propose the corresponding interleaving transition relation s
α
⇀⇀P H, where P = pm∗

α(s,H) is the overall
probability to move from s into the set of states H via steps with the multiaction part {α} after possible empty
loops, when only one-element steps are allowed, defined as

35

pm∗
α(s,H) =

∑

{(α,ρ)|∃s̃∈H s
(α,ρ)
→→ s̃}

pt∗((α, ρ), s).

We write s
α
⇀⇀ H if ∃P s

α
⇀⇀P H.

To introduce a stochastic bisimulation between dynamic expressions G and G′, we should consider the
“composite” set of states DR(G) ∪ DR(G′). The reason is that we have to identify the probabilities to come
from any two equivalent states into the same “composite” equivalence class (with respect to the stochastic
bisimulation) on this set. Note that, for G 6= G′, transitions starting from the states of DR(G) (or DR(G′))
always lead to those from the same set, since DR(G) ∩ DR(G′) = ∅, and this allows us to “mix” the sets of
states in the definition of stochastic bisimulation.

Definition 5.8 Let G and G′ be dynamic expressions. An equivalence relation R ⊆ (DR(G) ∪DR(G′))2 is a
⋆-stochastic bisimulation between G and G′, ⋆ ∈{interleaving, step}, denoted by R : G↔⋆sG

′, ⋆ ∈ {i, s}, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R

• ∀x ∈ L and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INL
fin \ {∅} and →֒=→→, if ⋆ = s;

s1
x
→֒P H ⇔ s2

x
→֒P H.

Two dynamic expressions G and G′ are ⋆-stochastic bisimulation equivalent, ⋆ ∈{interleaving, step}, denoted
by G↔⋆sG

′, if ∃R : G↔⋆sG
′, ⋆ ∈ {i, s}.

Let R⋆s(G,G
′) =

⋃
{R | R : G↔⋆sG

′}, ⋆ ∈ {i, s}, be the union of all ⋆-stochastic bisimulations between G
and G′, ⋆ ∈{interleaving, step}. The following proposition demonstrates that the relation R⋆s(G,G

′) is also an
equivalence and R⋆s(G,G

′) : G↔⋆sG
′, ⋆ ∈ {i, s}.

Proposition 5.2 Let G and G′ be dynamic expressions and G↔⋆sG
′, ⋆ ∈ {i, s}. Then R⋆s(G,G

′) is the largest
⋆-stochastic bisimulation between G and G′, ⋆ ∈{interleaving, step}.

Proof. See Appendix A.2. ⊓⊔
In [5], an algorithm for strong probabilistic bisimulation on labeled probabilistic transition systems (a re-

formulation of probabilistic automata) was proposed with time complexity O(n2m), where n is the number of
states and m is the number of transitions. In [19], a decision algorithm for strong probabilistic bisimulation on
generative labeled probabilistic transition systems was constructed with time complexity O(m log n) and space
complexity O(m + n). In [44], a polynomial algorithm for strong probabilistic bisimulation on probabilistic
automata was presented. The mentioned algorithms for interleaving probabilistic bisimulation equivalence can
be adapted for ↔ss using the method from [72], applied to get the decidability results for step bisimulation
equivalence. The method takes into account that transition systems in interleaving and step semantics differ
only by availability of the additional transitions corresponding to parallel execution of activities in the latter
(which is our case).

5.5 Stochastic isomorphism

Stochastic isomorphism is weaker than =ts∗. The main idea of the following definition is to collect the probabil-
ities of all transitions between the same pair of states such that the transition labels have the same multiaction
parts. We use summation, since it is the probability of the event union.

Let G be a dynamic expression and s, s̃ ∈ DR(G) such that s
A
→→P {s̃}. In this case, we write s

A
→→P s̃.

Thus, P is the overall probability to enter into the one-element set of states {s̃} starting in s via steps with
the multiaction part A. In other words, P is a sum of all the probabilities of steps with the multiaction part A
between the states s and s̃.

Definition 5.9 Let G,G′ be dynamic expressions. A mapping β : DR(G) → DR(G′) is a stochastic isomor-
phism between G and G′, denoted by β : G =sto G

′, if

1. β is a bijection such that β([G]≈) = [G′]≈;

2. ∀s, s̃ ∈ DR(G) ∀A ∈ INL
fin \ {∅} s

A
→→P s̃ ⇔ β(s)

A
→→P β(s̃).

Two dynamic expressions G and G′ are stochastically isomorphic, denoted by G =sto G
′, if ∃β : G =sto G

′.

36

5.6 Interrelations of the stochastic equivalences

Note that all the algebraic equivalences of dynamic expressions we have defined, with the exception of ≈, can
be transferred to the net level, i.e. to the corresponding marked dts-boxes. It is possible, since, by Theorem
5.1, the transition systems without empty loops of the former and the reachability graphs without empty loops
of the latter are isomorphic. In the figures with examples of dts-boxes corresponding to the expressions related
by the algebraic equivalences, we shall also depict their net analogues (denoted by the same symbols).

We now intend to compare the introduced stochastic equivalences and obtain the lattice of their interrelations.

Proposition 5.3 Let ⋆ ∈ {i, s}. For dynamic expressions G and G′ the following holds:

G↔⋆sG
′ ⇒ G ≡⋆s G

′.

Proof. See Appendix A.3. ⊓⊔

Proposition 5.4 For dynamic expressions G and G′ the following holds:

G =ts∗ G
′ ⇔ G =ts G

′.

Proof. (⇐) It is enough to note that the abstraction from empty loops is based on transition probabilities which
are the same for isomorphic transition systems.

(⇒) Note that TS(G) and TS∗(G) (as well as TS(G′) and TS∗(G′)) differ by presence of empty loops and by
values of transition probabilities only. The sets of states, the labeling area, the non-empty multisets of activities
which label the transitions and the initial states coincide. We have isomorphism of TS∗(G) and TS∗(G′). For
a state s of TS∗(G), let s′ be the state of TS∗(G′) such that these two states are related by the isomorphism of

TS∗(G) and TS∗(G′). Then Exec(s) = {Γ | ∃s̃ s
Γ
→→ s̃} ∪ {∅} = {Γ | ∃s̃′ s′

Γ
→→ s̃′} ∪ {∅} = Exec(s′). Note that

in the previous equality we can always find the pairs of states s and s′ related by the isomorphism of TS∗(G)
and TS∗(G′). Further, the definition of PT (Γ, s) depends on Exec(s) only rather than on concrete s. Thus, for
each state s of TS(G) the probabilities of outgoing transitions will be the same as for the corresponding state
s′ of TS(G′). Hence, TS(G) and TS(G′) are isomorphic. ⊓⊔

Note that, though isomorphism of transition systems with and without empty loops appears to be the same
relation, the equivalences defined on these two types of transition systems could be different. This is the case
when the relations abstract from concrete activities which can occur (more exactly, from their probability parts)
and take into account the overall probabilities to execute multiactions only. It is clear that the equivalences
defined through transition systems with empty loops imply the relations based on those without empty loops,
but the reverse implication is not valid.

For instance, we have defined stochastic isomorphism with the use of transition systems without empty loops.
We can define the corresponding relation based on transition systems with empty loops as well. Then the latter
equivalence will be strictly stronger than the former. As mentioned above, we have decided to abstract from
empty loops because of the difficulties with infinite internal behavior. We now can give another reason for this
decision: the equivalences based on transition systems with empty loops are somewhat unusual. The following
example explains why.

Example 5.5 Let E = ({a}, 12), E′ = ({a}, 12)1[]({a}, 12)2 and E′′ = ({a}, 13)1[]({a}, 13)2.

It is easy to see that (one-element) multisets of activities which label the transitions of TS∗(E), TS∗(E′),
TS∗(E′′), and non-empty transitions (i.e. those which are not empty loops) of TS(E), TS(E′), TS(E′′), have
the same multiaction part {{a}}.

Then E =sto E′ =sto E′′, since the probability of the only one non-empty transition in TS∗(E) is 1, the
probability of both non-empty transitions in TS∗(E′) and TS∗(E′′) is 1

2 , and 1 = 1
2 + 1

2 .

On the other hand, E is not equivalent to E′ with respect to the stronger version of stochastic isomorphism,
since the probability of the only one non-empty transition in TS(E) is 1

2 , whereas the probability of both non-

empty transitions in TS(E′) is 1
3 , and

1
2 6= 2

3 = 1
3 + 1

3 .

In addition, E′ is not equivalent to E′′ with respect to the stronger version of stochastic isomorphism,
since the probability of both non-empty transitions in TS(E′) is 1

3 , whereas the probability of both non-empty

transitions in TS(E′′) is 1
4 , and

1
3 + 1

3 = 2
3 6= 1

2 = 1
4 + 1

4 .

On the other hand, E is equivalent to E′′ with respect to the stronger version of stochastic isomorphism,
since the probability of the only one non-empty transition in TS(E) is 1

2 , the probability of both non-empty

transitions in TS(E′′) is 1
4 , and

1
2 = 1

4 + 1
4 .

The transition systems with and without empty loops of E, E′ and E′′ are presented in Figure 13.

37

E′

E′

TS(E′)✞✝ ✲

✞✝ ✲

TS(E)

✲ ✛

✞✝ ✲

✞✝ ✲

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

∅, 12

∅,1

({a}, 12),
1
2

❄

☛
✡
✟
✠

E

E

∅, 13

∅,1

({a}, 12)1,
1
3 ({a}, 12)2,

1
3

E′

E′

TS∗(E′)TS∗(E)

✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

({a}, 12),1

❄

☛
✡
✟
✠

E

E

({a}, 12)1,
1
2 ({a}, 12)2,

1
2

E′′

E′′

TS(E′′)✞✝ ✲

✞✝ ✲✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛
✡
✟
✠

∅, 12

∅,1

({a}, 12)1,
1
4 ({a}, 12)2,

1
4

E′′

E′′

TS∗(E′′)

✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛
✡
✟
✠({a}, 12)1,

1
2 ({a}, 12)2,

1
2

Figure 13: Properties of the stochastic isomorphism based on transition systems with empty loops

In the continuous time setting of sPBC there are no problems with equivalences like in the example above,
but only interleaving relations can be introduced. On the other hand, the concurrency information from expres-
sions has to be preserved in their transition systems to define correctly the congruence relation [103, 104, 107].

In the following, the symbol ‘ ’ will denote “nothing”, and the equivalences subscribed by it are considered
as those without any subscription such as ‘is’, ‘ss’, ‘sto’ or ‘ts’.

Theorem 5.2 Let ↔,↔↔∈ {≡,↔,=,≈} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts}. For dynamic expressions G and G′

G↔⋆ G
′ ⇒ G↔↔⋆⋆ G

′

iff there exists a directed path from ↔⋆ to ↔↔⋆⋆ in the graph in Figure 14.

Proof. (⇐) Let us check the validity of implications in the graph in Figure 14.

• The implications ↔ss→↔is, ↔∈ {≡,↔} are valid, since single activities are one-element multisets.

• The implications ↔⋆s →≡⋆s, ⋆ ∈ {i, s}, are valid by Proposition 5.3.

• The implication =sto→ ↔ss is proved as follows. Let β : G =sto G
′. Then it is easy to see that S : G↔ssG

′,
where S = {(s, β(s)) | s ∈ DR(G)}.

• The implication =ts→=sto is valid, since stochastic isomorphism is that of transition systems without
empty loops up to merging of transitions with labels having identical multiaction parts.

• The implication ≈→=ts is valid, since the transition system of a dynamic formula is defined based on its
structural equivalence class.

(⇒) The absence of additional nontrivial arrows (not resulting from the combination of the existing ones by
transitivity) in the graph in Figure 14 is proved by the following examples.

(a) Let E = ({a}, 12)‖({b}, 12) and E′ = (({a}, 12); ({b}, 12))[](({b}, 12); ({a}, 12)). Then E↔isE
′, but E 6≡ss E′,

since only in TS∗(E′) multiactions {a} and {b} cannot be executed concurrently.

(b) Let E = ({a}, 12); (({b}, 12)[]({c}, 12)) and E′ = (({a}, 12); ({b}, 12))[](({a}, 12); ({c}, 12)). Then E ≡ss E′, but

E↔/ isE′, since only in TS∗(E′) a multiaction {a} can be executed so that no multiaction {b} can occur
afterwards.

(c) Let E = ({a}, 12); ({b}, 12) and E′ = ({a}, 12); ({b}, 12)[]({a}, 12); ({b}, 12). Then E↔ssE
′, but E 6=sto E′,

since TS∗(E′) has more states than TS∗(E).

(d) Let E = ({a}, 12) and E′ = ({a}, 12)1[]({a}, 12)2. Then E =sto E′, but E 6=ts E′, since TS(E) has only one

transition from the initial to the final state while TS(E′) has two such ones.

38

≡is ≡ss

↔is ↔ss

❄ ❄

≈

❄

✛

✛

=sto

❄

❄

=ts

Figure 14: Interrelations of the stochastic equivalences

(e) Let E = ({a}, 12); ({â}, 12) and E′ = (({a}, 12); ({â}, 12)) sy a. Then E =ts E′, but E 6≈ E′, since E and E′

cannot be reached from each other by applying inaction rules. ⊓⊔

Example 5.6 In Figure 15, the marked dts-boxes corresponding to the dynamic expressions from equivalence
examples of Theorem 5.2 are presented, i.e. N = Boxdts(E) and N ′ = Boxdts(E′) for each picture (a)–(e).

6 Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and DTMCs of expressions
(reachability graphs and DTMCs of dts-boxes), as well as the expressions (the dts-boxes) themselves. Reductions
of graph-based models, like transition systems, reachability graphs and DTMCs, result in those with less states
(the graph nodes). A reduction of expressions should result in the shorter ones with simpler structure, i.e. to
those having less operators and activities. The goal of the reduction is to decrease the number of states in
the semantic representation of the modeled system while preserving its important qualitative and quantitative
properties. Thus, the reduction allows one to simplify the behavioural and performance analysis of systems.

The following example demonstrates how the stochastic equivalences can be used to simplify process expres-
sions. Accordingly, the net analogues of the relations can be used for reduction of dts-boxes.

Example 6.1

Let E = (({a}, 12); ({b}, 12))‖(({c}, 12); ({d}, 12)) and

E′ = ((({a, x}, 12); (({b, y1},
1
2)[]({b, y2},

1
2)))‖(({a, x̂}, 12); (({b, ŷ2, y′2},

1
2)[]({d, v1},

1
2)))‖

(({c, z}, 12); (({b, ŷ′2},
1
2)[]({d, v̂1, v′1},

1
2)))‖(({c, ẑ}, 12); (({d, v̂′1},

1
2)[]({d, v2},

1
2)))‖(({b, ŷ1},

1
4)[]({d, v̂2},

1
4)))

sy x sy y1 sy y2 sy y′2 sy z sy v1 sy v′1 sy v2 rs x rs y1 rs y2 rs y′2 rs z rs v1 rs v′1 rs v2.

Then E↔ssE
′, but E 6=sto E′, since TS∗(E′) has more states than TS∗(E). It is clear that the syntax of E

is much simpler than that of E′, but both static expressions have the same semantics induced by ↔ss. Hence,
E is a simplification of E′ with respect to ↔ss.

In Figure 16, the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e. N =
Boxdts(E) and N ′ = Boxdts(E′). Thus, N is a reduction of N ′ up to the net version of ↔ss.

In the general case, the procedure of expressions reduction cannot be transferred smoothly from a transition
systems level. The problem is that the transition system of the reduced expression in some cases can be further
reduced in such a way that it will not correspond to any expression anymore. At the net level, the reduced

39

({a}, 12) ({b},12) ({a}, 12) ({a}, 12)

({b},12) ({c}, 12)({b}, 12) ({c}, 12)

({a}, 12)({a}, 12) ({b}, 12)

({b}, 12) ({a}, 12)

✍✌✎☞ ✍✌✎☞

✍✌✎☞ ✍✌✎☞
✉ ✉

✍✌✎☞ ✍✌✎☞ ✍✌✎☞ ✍✌✎☞
✍✌✎☞✉ ✍✌✎☞✉ ✍✌✎☞✉

✍✌✎☞
✍✌✎☞

✍✌✎☞ ✍✌✎☞

❄ ❄

❄ ❄ ❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

��✠
❩❩⑦ ��✠

❩❩⑦

❙
❙✇

�
�✠

❙
❙✇

�
�✠

❙
❙✇

�
�✠

��✠
❩❩⑦

e

x

e

x

x x x

e e e

(a) (b)N N ′ N N ′

↔is

6≡ss
≡ss

↔/ is

({a}, 12) ({a}, 12)

({b},12) ({b}, 12)

✍✌✎☞ ✍✌✎☞
✍✌✎☞✉

✍✌✎☞

❄

❄

❄

❄

��✠
❩❩⑦

❙
❙✇

�
�✠

x

e

N ′

({a}, 12)

({b}, 12)

✍✌✎☞❄
❄

✍✌✎☞✉

✍✌✎☞x

e

N(c)

❄

❄

↔ss

6=sto

({a}, 12)

✍✌✎☞❄
✍✌✎☞✉ e

x

N(d)

❄ =sto

6=ts

({a}, 12) ({a}, 12)

✍✌✎☞

✍✌✎☞
❙
❙✇

�
�✠

��✠
❩❩⑦

x

✉ e
N ′

({a}, 12)

✍✌✎☞❄
✍✌✎☞✉ e
N(e)

❄

=ts

6≈

({a}, 12)

({â}, 12)

✍✌✎☞❄
❄

✍✌✎☞✉

✍✌✎☞x

e

N ′

❄

❄

(∅, 14)

❙
❙
❙
❙
❙✇

✡
✡

✡
✡

✡✡✢

✞ ☎
✝ ✆

❄

✻
({â}, 12)

✍✌✎☞
❄

✍✌✎☞x❄

Figure 15: Dts-boxes of the dynamic expressions from equivalence examples of Theorem 5.2

✍✌✎☞

✍✌✎☞
✍✌✎☞

✍✌✎☞

✍✌✎☞ ✍✌✎☞

✉ ✉
❄

❄

❄

❄

❄

❄

❄

❄

N

↔ss

6=sto

✍✌✎☞ ✍✌✎☞

✍✌✎☞✍✌✎☞✍✌✎☞✍✌✎☞✍✌✎☞

✍✌✎☞✍✌✎☞✍✌✎☞✍✌✎☞✍✌✎☞

✉ ✉

✉

N ′

❄

❄

❄

❄

❄

❄

❄

❄

❩
❩⑦

✑
✑✑✰

✚
✚❂

❩
❩❩⑦

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✏✏✏✏✏✏✮
PPPPPPq

❳❳❳❳❳③
✘✘✘✘✘✾

({a}, 14)

({b}, 18)

({c}, 14)

({d}, 18)

({a}, 14) ({c}, 14)

({b}, 18) ({d}, 18)({b}, 18) ({d},18)

e

x

e

x

e

x

e

xx xx

e

✍✌✎☞ ✍✌✎☞✉ e✉ e
❙❙✇ ✓✓✴

✡✡✢ ❏❏❫

❙❙✇ ✓✓✴

✡✡✢ ❏❏❫

Figure 16: Reduction of a dts-box up to ↔ss

40

transition system will be isomorphic to the reachability graph of a non-safe net which naturally cannot be a
dts-box of any expression.

An autobisimulation is a bisimulation between an expression and itself.
For a dynamic expression G and a step stochastic autobisimulation on it R : G↔ssG, let K ∈ DR(G)/R and

s1, s2 ∈ K. We have ∀K̃ ∈ DR(G)/R ∀A ∈ INL
fin \ {∅} s1

A
→→P K̃ ⇔ s2

A
→→P K̃. The previous equality is valid

for all s1, s2 ∈ K, hence, we can rewrite it as K
A
→→P K̃, where P = PM∗

A(K, K̃) = PM∗
A(s1, K̃) = PM∗

A(s2, K̃).

We write K
A
→→ K̃ if ∃P K

A
→→P K̃ and K →→ K̃ if ∃A K

A
→→ K̃.

The similar arguments allow us to use the notation K →→P K̃, where P = PM∗(K, K̃) = PM∗(s1, K̃) =

PM∗(s2, K̃).
The average sojourn time in the equivalence class (w.r.t. R) of states K is

SJR(K) =
1

1 − PM(K,K)
.

The average sojourn time vector for the equivalence classes (w.r.t. R) of states of G, denoted by SJR, has
the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (w.r.t. R) of states K is

V ARR(K) =
PM(K,K)

(1 − PM(K,K))2
.

The sojourn time variance vector for the equivalence classes (w.r.t. R) of states of G, denoted by V ARR,
has the elements V ARR(K), K ∈ DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be the union of all step stochastic autobisimulations on G. By Proposition

5.2, Rss(G) is the largest step stochastic autobisimulation on G. Based on the equivalence classes with respect
to Rss(G), the quotient (by ↔ss) transition systems without empty loops and the quotient (by ↔ss) underlying
DTMCs without empty loops of expressions can be defined. The mentioned equivalence classes become the
quotient states. Every quotient transition between two such composite states represents all steps (having the
same multiaction part in case of the transition system quotient) from the first state to the second one.

Definition 6.1 Let G be a dynamic expression. The quotient (by ↔ss) (labeled probabilistic) transition system
without empty loops of G is a quadruple TS∗

↔ss
(G) = (S↔ss

, L↔ss
, T↔ss

, s↔ss
), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
= (INL

fin \ {∅}) × (0; 1];

• T↔ss
= {(K, (A,PM∗

A(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K
A
→→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→→P K̃.

The quotient (by ↔ss) transition systems without empty loops of static expressions can be defined as well.
For E ∈ RegStatExpr, let TS∗

↔ss
(E) = TS∗

↔ss
(E).

The quotient (by ↔ss) sojourn time vector of G is defined as SJ↔ss
= SJRss(G).

The quotient (by ↔ss) sojourn time variance vector of G is defined as V AR↔ss
= V ARRss(G).

Definition 6.2 Let G be a dynamic expression. The quotient (by ↔ss) underlying DTMC without empty
loops of G, denoted by DTMC∗

↔ss
(G), has the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the

transitions K →→P K̃, where P = PM∗(K, K̃).

The quotient (by ↔ss) underlying DTMCs without empty loops of static expressions can be defined as well.
For E ∈ RegStatExpr, let DTMC∗

↔ss
(E) = DTMC∗

↔ss
(E).

The quotients of both transition systems without empty loops and underlying DTMCs without empty loops
are the minimal reductions of the mentioned objects modulo step stochastic bisimulations. The quotients can be
used to simplify analysis of system properties which are preserved by ↔ss, since less states should be examined
for it. Such reduction method resembles that from [3] based on place bisimulation equivalence for PNs, excepting
that the former method merges states, while the latter one merges places.

Moreover, the algorithms exist to construct the quotients of transition systems by an equivalence (like
bisimulation one) [125] and those of (discrete or continuous time) Markov chains by ordinary lumping [49]. The
algorithms have time complexity O(m log n) and space complexity O(m + n), where n is the number of states

41

and m is the number of transitions. As mentioned in [152], the algorithm from [49] can be easily adjusted
to produce quotients of labeled probabilistic transition systems by the probabilistic bisimulation equivalence.
In [152], the symbolic partition refinement algorithm on state space of CTMCs was proposed. The algorithm
can be straightforwardly accommodated to DTMCs, interactive MCs, Markov reward models, Markov decision
processes, Kripke structures and labeled probabilistic transition systems. Such a symbolic lumping uses memory
efficiently due to compact representation of the state space partition. The symbolic lumping is time efficient,
since fast algorithm of the partition representation and refinement is applied. In [53], a polynomial-time algo-
rithm for minimizing behaviour of probabilistic automata by probabilistic bisimulation equivalence was outlined
that results in the canonical quotient structures. One could adapt the above algorithms for our framework of
transition systems and DTMCs.

The comprehensive quotient examples will be presented in Section 10.

7 Logical characterization

In this section, a logical characterization of stochastic bisimulation equivalences is accomplished via formulas of
probabilistic modal logics. The results obtained could be interpreted as an operational characterization of the
corresponding logical equivalences. Dynamic expressions are considered as logically equivalent if they satisfy
the same formulas.

7.1 Logic iPML

The probabilistic modal logic PML has been introduced in [87] on probabilistic transition systems without
invisible actions for logical interpretation of the interleaving probabilistic bisimulation equivalence. On the
basis of PML, we propose a new interleaving modal logic iPML used for characterization of the interleaving
stochastic bisimulation equivalence.

Definition 7.1 Let ⊤ denote the truth and α ∈ L, P ∈ (0; 1]. A formula of iPML is defined as follows:

Φ ::= ⊤ | ¬Φ | Φ ∧ Φ | ∇α | 〈α〉PΦ.

We define 〈α〉Φ = ∃P 〈α〉PΦ.
iPML denotes the set of all formulas of the logic iPML.

Definition 7.2 Let G be a dynamic expression and s ∈ DR(G). The satisfaction relation |=G⊆ DR(G)×iPML
is defined as follows:

1. s |=G ⊤ — always;

2. s |=G ¬Φ, if s 6|=G Φ;

3. s |=G Φ ∧ Ψ, if s |=G Φ and s |=G Ψ;

4. s |=G ∇α, if not s
α
→→ DR(G);

5. s |=G 〈α〉PΦ, if ∃H ⊆ DR(G) s
α
⇀⇀Q H, Q ≥ P and ∀s̃ ∈ H s̃ |=G Φ.

Note that 〈α〉QΦ implies 〈α〉PΦ, if Q ≥ P .

Definition 7.3 We write G |=G Φ, if [G]≈ |=G Φ. Two dynamic expressions G and G′ are logically equivalent
in iPML, denoted by G =iPML G

′, if ∀Φ ∈ iPML G |=G Φ ⇔ G′ |=G′ Φ.

Let G be a dynamic expression and s ∈ DR(G), α ∈ L. The set of states reached from s by execution

of multiaction α, the image set, is defined as Image(s, α) = {s̃ | ∃{(α, ρ)} ∈ Exec(s) s
(α,ρ)
→→ s̃}. A dynamic

expression G is an image-finite one, if ∀s ∈ DR(G) ∀α ∈ L |Image(s, α)| <∞.

Theorem 7.1 For image-finite dynamic expressions G and G′

G↔isG
′ ⇔ G =iPML G

′.

42

Proof. As the subsequent Theorem 7.2, but with state changes due to execution of single multiactions and the
interleaving transition relation. ⊓⊔

Hence, in the interleaving semantics, we obtained a logical characterization of the stochastic bisimulation
relation or, symmetrically, an operational characterization of the probabilistic modal logic equivalence.

Example 7.1 Let E = ({a}, 12); (({b}, 12)[]({c}, 12)) and E′ = (({a}, 12); ({b}, 12))[](({a}, 12); ({c}, 12)). Then

E 6=iPML E′, because for Φ = 〈{a}〉1〈{b}〉 1
2
⊤ we have E |=E Φ, but E′ 6|=E′ Φ, since in TS∗(E′) a multiaction

{a} can be executed so that no multiaction {b} can occur afterwards.

7.2 Logic sPML

On the basis of PML, we propose a new step modal logic sPML used for characterization of the step stochastic
bisimulation equivalence.

Definition 7.4 Let ⊤ denote the truth and A ∈ INL
fin \ {∅}, P ∈ (0; 1]. A formula of sPML is defined as

follows:

Φ ::= ⊤ | ¬Φ | Φ ∧ Φ | ∇A | 〈A〉PΦ.

We define 〈A〉Φ = ∃P 〈A〉PΦ.
sPML denotes the set of all formulas of the logic sPML.

Definition 7.5 Let G be a dynamic expression and s ∈ DR(G). The satisfaction relation |=G⊆ DR(G)×sPML
is defined as follows:

1. s |=G ⊤ — always;

2. s |=G ¬Φ, if s 6|=G Φ;

3. s |=G Φ ∧ Ψ, if s |=G Φ and s |=G Ψ;

4. s |=G ∇A, if not s
A
→→ DR(G);

5. s |=G 〈A〉PΦ, if ∃H ⊆ DR(G) s
A
→→Q H, Q ≥ P and ∀s̃ ∈ H s̃ |=G Φ.

Note that 〈A〉QΦ implies 〈A〉PΦ, if Q ≥ P .

Definition 7.6 We write G |=G Φ, if [G]≈ |=G Φ. Two dynamic expressions G and G′ are logically equivalent
in sPML, denoted by G =sPML G

′, if ∀Φ ∈ sPML G |=G Φ ⇔ G′ |=G′ Φ.

LetG be a dynamic expression and s ∈ DR(G), A ∈ INL
fin\{∅}. The set of states reached from s by execution

of a multiset of multiactions A, the image set, is defined as Image(s, A) = {s̃ | ∃Γ ∈ Exec(s) L(Γ) = A, s
Γ
→→ s̃}.

A dynamic expression G is an image-finite one, if ∀s ∈ DR(G) ∀A ∈ INAct
fin |Image(s, A)| <∞.

Theorem 7.2 For image-finite dynamic expressions G and G′

G↔ssG
′ ⇔ G =sPML G

′.

Proof. (⇐) To simplify the presentation, we propose the indicator function Ξ that recovers a dynamic expression
by a state belonging to its derivation set. For a dynamic expression G and s ∈ DR(G) we define Ξ(s) = G.

Let us define the equivalence relation R = {(s1, s2) ∈ (DR(G) ∪ DR(G′))2 | ∀Φ ∈ sPML s1 |=Ξ(s1) Φ ⇔
s2 |=Ξ(s2) Φ}. We have ([G]≈, [G

′]≈) ∈ R. Let us prove that R is a step stochastic bisimulation.

Assume that [G]≈
A
→→P H ∈ (DR(G) ∪ DR(G′))/R. Let [G′]≈

A
→→P′

1
s′1, . . . , [G

′]≈
A
→→P′

i
s′i, [G

′]≈
A
→→P′

i+1

s′i+1, . . . , [G
′]≈

A
→→P′

n
s′n be the changes of the state [G′]≈ as a result of executing the multiset of multiactions

A. Since the dynamic expression G′ is image-finite one, the number of such changes is finite. The state changes
are ordered so that s′1, . . . , s

′
i ∈ H and s′i+1, . . . , s

′
n 6∈ H.

Then ∃Φi+1, . . . ,Φn ∈ sPML such that ∀j (i + 1 ≤ j ≤ n) ∀s ∈ H s |=Ξ(s) Φj , but s′j 6|=G′ Φj . We have

[G]≈ |=G 〈A〉P (∧nj=i+1Φj) and [G′]≈ |=G′ 〈A〉P′(∧nj=i+1Φj), where P ′ =
∑i
j=1 P

′
j .

Assume that P > P ′. Then [G′]≈ 6|=G′ 〈A〉P(∧nj=i+1Φj), which contradicts to ([G]≈, [G
′]≈) ∈ R. Hence,

P ≤ P ′. Consequently, [G′]≈
A
→→P′ H, where P ≤ P ′. By symmetry of R, we have P ≥ P ′. Thus, P = P ′, and

R is a step stochastic bisimulation.

43

(⇒) Let for dynamic expressions G and G′ we have G↔ssG
′. Then ∃R : G↔ssG

′ and ([G]≈, [G
′]≈) ∈ R. It

is sufficient to consider only the cases ∇A and 〈A〉PΦ, since the remaining cases are trivial.
The case ∇A.

Assume that [G]≈ |=G ∇A. Then it does not hold that [G]≈
A
→→ DR(G). Hence, there exist no Γ and s̃ such

that [G]≈
Γ
→→ s̃ and L(Γ) = A. Since summing by the empty index set produces zero, the transitions from each

state always lead to the states of the derivation set to which that state belongs and ([G]≈, [G
′]≈) ∈ R, we get

0 =
∑

{Γ|∃s̃∈DR(G) [G]≈
Γ
→→s̃, L(Γ)=A}

PT ∗(Γ, [G]≈) = PM∗
A([G]≈, DR(G)) = PM∗

A([G]≈, DR(G) ∪DR(G′)) =
∑

H∈(DR(G)∪DR(G′))/R
PM∗

A([G]≈,H) =
∑

H∈(DR(G)∪DR(G′))/R
PM∗

A([G′]≈,H) =

PM∗
A([G′]≈, DR(G) ∪ DR(G′)) = PM∗

A([G′]≈, DR(G′)) =
∑

{Γ′|∃s̃′∈DR(G′) [G′]≈
Γ′
→→s̃′, L(Γ′)=A}

PT ∗(Γ′, [G′]≈).

Hence, there exist no Γ′ and s̃′ such that [G′]≈
Γ′

→→ s̃′ and L(Γ′) = A. Thus, it does not hold that [G′]≈
A
→→ DR(G′)

and we have [G′]≈ |=G′ ∇A.
The case 〈A〉PΦ.

Assume that [G]≈ |=G 〈A〉PΦ. Then ∃H ⊆ DR(G) such that [G]≈
A
→→Q H, Q ≥ P and ∀s ∈ H s |=Ξ(s) Φ.

Let us define H̃ =
⋃
{H ∈ (DR(G) ∪ DR(G′))/R | H ∩ H 6= ∅}. Then ∀s̃ ∈ H̃ ∃s ∈ H (s, s̃) ∈ R. Since

∀s ∈ H s |=Ξ(s) Φ, we have ∀s̃ ∈ H̃ s̃ |=Ξ(s̃) Φ by the induction hypothesis.

Since H ⊆ H̃, we get [G]≈
A
→→Q̃ H̃, Q̃ ≥ Q. Since H̃ is the union of the equivalence classes with respect to

R, we have ([G]≈, [G
′]≈) ∈ R implies [G′]≈

A
→→Q̃ H̃. Since Q̃ ≥ Q ≥ P , we get [G′]≈ |=G′ 〈A〉PΦ. Therefore, G′

satisfies all the formulas which G does. By symmetry of R, G satisfies all the formulas which G′ does. Thus,
the sets of satisfiable formulas for G and G′ coincide. ⊓⊔

Hence, in the step semantics, we obtained a logical characterization of the stochastic bisimulation relation
or, symmetrically, an operational characterization of the probabilistic modal logic equivalence.

Example 7.2 Let E = ({a}, 12)‖({b}, 12) and E′ = (({a}, 12); ({b}, 12))[](({b}, 12); ({a}, 12)). Then E↔isE
′ but

E 6=sPML E′, because for Φ = 〈{a, b}〉 1
3
⊤ we have E |=E Φ, but E′ 6|=E′ Φ, since only in TS∗(E′) multiactions

{a} and {b} cannot be executed concurrently.

8 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour of stochastic processes
in their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior,
i.e. expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness
of behaviour, since there can exist a deadlock (blocking) within the body (the second argument) of iteration
when the corresponding subprocess does not reach its final state by some reasons. Let us define the expression
Stop = ({g}, 12) rs g specifying the special process analogous to the one used in the examples of [103, 104, 107].
The latter is a continuous time stochastic analogue of the stop process proposed in [15]. Stop is a discrete time
stochastic analogue of the stop, it is only able to perform empty loops with probability 1 and never terminates.
Note that in the specification of Stop one could use an arbitrary action from A and any probability belonging
to the interval (0; 1). In particular, if the body of iteration contains the Stop expression, then the iteration will
be “broken”. On the other hand, the iteration body can be left after a finite number of its repeated executions
and then the iteration termination is started. To avoid executing any activities after the iteration body, we take
Stop as the termination argument of iteration.

Like in the framework of DTMCs, in DTSPNs the most common systems for performance analysis are
ergodic (irreducible, positive recurrent and aperiodic) ones. For ergodic DTSPNs, the steady-state marking
probabilities exist and can be determined. In [99], the following sufficient (but not necessary) conditions for
ergodicity of DTSPNs are stated: liveness (for each transition and any reachable marking there exists a sequence
of markings from it leading to the marking enabling that transition), boundedness (for any reachable marking
the number of tokens in every place is not greater than some fixed number) and nondeterminism (the transition
probabilities are strictly less than 1).

Consider dts-box of a dynamic expression G = [E ∗ F ∗ Stop] specifying a process for which we assume that
it has no deadlocks while (repetitive) running the body F of the iteration operator. Then the three ergodicity
conditions are satisfied: the subnet corresponding to the looping of the iteration body F is live, safe (1-bounded)
and nondeterministic (since all markings of the subnet are non-terminal, the probabilities of transitions from
them are strictly less than 1). Hence, according to [97,99], for the dts-box, its underlying DTMC, restricted to
the markings of the mentioned subnet, is ergodic. The isomorphism between DTMCs of expressions and those
of the corresponding dts-boxes, which is stated by Proposition 4.1, guarantees that DTMC(G) is ergodic, if
restricted to the states between [[E ∗ F ∗ Stop]]≈ and [[E ∗ F ∗ Stop]]≈.

44

However, it has been shown in [31] that even live, safe and nondeterministic DTSPNs (as well as live and
safe CTSPNs and GSPNs) may be non-ergodic.

In this section, we consider only the process expressions such that their underlying DTMCs contain exactly
one closed communication class of states, and this class should also be ergodic to ensure uniqueness of the
stationary distribution, which is also the limiting one. The states not belonging to that class do not disturb
the uniqueness, since the closed communication class is single, hence, they all are transient. Then, for each
transient state, the steady-state probability to be in it is zero while the steady-state probability to enter into
the ergodic class starting from that state is equal to one. Remember that a communication class of states
is their equivalence class w.r.t. communication relation, i.e. a maximal subset of communicating states. A
communication class of states is closed if only the states belonging to it are accessible from every its state.

8.1 Theoretical background

The following methods of transient and stationary analysis are based on those from [61, 62].
Let G be a dynamic expression. The elements P∗

ij (1 ≤ i, j ≤ n = |DR(G)|) of the (one-step) transition
probability matrix (TPM) P∗ for DTMC∗(G) are defined as

P∗
ij =

{
PM∗(si, sj), si →→ sj ;
0, otherwise.

The transient (k-step, k ∈ IN) PMF ψ∗[k] = (ψ∗
1 [k], . . . , ψ∗

n[k]) for DTMC∗(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗
1 [0], . . . , ψ∗

n[0]) is the initial PMF defined as

ψ∗
i [0] =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMF ψ∗ = (ψ∗

1 , . . . , ψ
∗
n) for DTMC∗(G) is a solution of the equation system

{
ψ∗(P∗ − I) = 0
ψ∗1T = 1

,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is that of n values 1.
Note that the vector ψ∗ exists and is unique, if DTMC∗(G) is ergodic. Then DTMC∗(G) has a single

steady state, and we have ψ∗ = limk→∞ ψ∗[k]. We shall consider only Markov chains with at most one steady
state.

For s ∈ DR(G) with s = si (1 ≤ i ≤ n) we define ψ∗[k](s) = ψ∗
i [k] (k ∈ IN) and ψ∗(s) = ψ∗

i .

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following standard performance
indices (measures) can be calculated based on the steady-state PMF ψ∗ for DTMC∗(G) [97, 99].

• The average recurrence (return) time in the state s (i.e. the number of discrete time units or steps required
for this) is 1

ψ∗(s) .

• The fraction of residence time in the state s is ψ∗(s).

• The fraction of residence time in the set of states S or the probability of the event determined by a condition
that is true for all states from S is

∑
s∈S ψ

∗(s).

• The relative fraction of residence time in the set of states S with respect to that in S̃ is
∑

s∈S ψ
∗(s)∑

s̃∈S̃
ψ∗(s̃) .

• The steady-state probability to perform a step with a multiset of activities ∆ is∑
s∈DR(G) ψ

∗(s)
∑

{Γ|∆⊆Γ} PT
∗(Γ, s).

• The probability of the event determined by a reward function r on the states is
∑

s∈DR(G) ψ
∗(s)r(s), where

∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

We have intentionally decided to evaluate performance of the modeled systems with the use of the underlying
DTMCs without empty loops of the corresponding expressions. This allows us to identify the expressions up to
the equivalences defined on the basis of their transition systems without empty loops. Nevertheless, from the
theoretical viewpoint, it is interesting to determine a relationship between steady-state PMFs for the underlying

45

DTMCs with and without empty loops. The following theorem proposes the equation that relates the mentioned
steady-state PMFs.

First, we introduce some helpful notation. For a vector v = (v1, . . . , vn), let Diag(v) be a diagonal matrix
of order n with the elements Diagij(v) (1 ≤ i, j ≤ n) defined as

Diagij(v) =

{
vi, i = j;
0, otherwise.

Theorem 8.1 Let G be a dynamic expression and EL be its empty loops abstraction vector. Then the steady-
state PMFs ψ for DTMC(G) and ψ∗ for DTMC∗(G) are related as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)EL(s)∑

s̃∈DR(G) ψ
∗(s̃)EL(s̃)

.

Proof. Note that the TPM P and the steady-state PMF ψ for DTMC(G) are defined like the corresponding
notions P∗ and ψ∗ for DTMC∗(G).

Let PT (∅) be a vector with the elements PT (∅, s), s ∈ DR(G). By definition of PM∗(s, s̃), we have
P∗ = Diag(EL)(P−Diag(PT (∅))). Further,

ψ∗(P∗ − I) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by Diag(EL)(P−Diag(PT (∅))) we obtain

ψ∗Diag(EL)(P−Diag(PT (∅))) = ψ∗ and ψ∗Diag(EL)P = ψ∗(Diag(EL)Diag(PT (∅)) + I).

Note that ∀s ∈ DR(G) EL(s)PT (∅, s) + 1 = PT (∅,s)
1−PT (∅,s) + 1 = 1

1−PT (∅,s) = EL(s), hence,

Diag(EL)Diag(PT (∅)) + I = Diag(EL). Thus,

ψ∗Diag(EL)P = ψ∗Diag(EL).

Then, for v = ψ∗Diag(EL), we have

vP = v and v(P− I) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing its elements by their sum, since
we should have ψ1T = 1 as a result:

ψ =
1

v1T
v =

1

ψ∗Diag(EL)1T
ψ∗Diag(EL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)EL(s)∑

s̃∈DR(G) ψ
∗(s̃)EL(s̃)

.

It is easy to check that ψ is a solution of the equation system

{
ψ(P− I) = 0
ψ1T = 1

,

hence, it is indeed the steady-state PMF for DTMC(G). ⊓⊔

8.2 Steady state and equivalences

The following proposition demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class coincide. One can also interpret the result stating that the mean
recurrence time for an equivalence class is the same for both expressions.

Proposition 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ψ∗ be the steady-state PMF for

DTMC∗(G), ψ′∗ be the steady-state PMF for DTMC∗(G′). Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′).

46

Proof. See Appendix A.4. ⊓⊔
Note that in the proof of Proposition 8.1 a limit construction was used to go from transient to stationary

case. Thus, the result of this proposition is valid as well if we replace steady-state probabilities with transient
ones in its statement.

Let G be a dynamic expression. The transient PMF ψ∗
↔ss

[k] (k ∈ IN) and the steady-state PMF ψ∗
↔ss

for

DTMC∗
↔ss

(G) are defined like the corresponding notions ψ∗[k] and ψ∗ for DTMC∗(G).

By Proposition 8.1, we have ∀K ∈ DR(G)/Rss(G)

ψ∗
↔ss

(K) =
∑

s∈K

ψ∗(s).

Thus, for every equivalence class K ∈ DR(G)/Rss(G), the value of ψ∗
↔ss

corresponding to K is the sum of all

values of ψ∗ corresponding to the states from K. Hence, using DTMC∗
↔ss

(G) instead of DTMC∗(G) simplifies

the analytical solution, since we have less states, but constructing the TPM for DTMC∗
↔ss

(G), denoted by

P∗
↔ss

, also requires some efforts, including determining Rss(G) and calculating the probabilities to move from

one equivalence class to other. The behaviour of DTMC∗
↔ss

(G) stabilizes quicker than that of DTMC∗(G) (if

each of them has a single steady state), since P∗
↔ss

is denser matrix than P∗ due to the fact that the former
matrix is smaller and the transitions between the equivalence classes “include” all the transitions between the
states belonging to these equivalence classes.

The following example demonstrates that the result of Proposition 8.1 does not hold for ↔is.

Example 8.1 Let E = [({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop] and

E′ = [({a}, 12) ∗ (({b}, 12); ((({c}, 12)1; ({d}, 12)1)[](({d}, 12)2; ({c}, 12)2))) ∗ Stop]. We have E↔isE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop]]≈,

s4 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop]]≈,

s5 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1; ({d}, 12)1)[](({d}, 12)2; ({c}, 12)2))) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1; ({d}, 12)1)[](({d}, 12)2; ({c}, 12)2))) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1; ({d}, 12)1)[](({d}, 12)2; ({c}, 12)2))) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1; ({d}, 12)1)[](({d}, 12)2; ({c}, 12)2))) ∗ Stop]]≈,

s′5 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1; ({d}, 12)1)[](({d}, 12)2; ({c}, 12)2))) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,

3

8
,

1

8
,

1

8

)
, ψ′∗ =

(
0,

1

3
,

1

3
,

1

6
,

1

6

)
.

Consider the equivalence class (with respect to Rss(E,E′)) H = {s3, s
′
3}. We have

∑
s∈H∩DR(E) ψ

∗(s) =

ψ∗(s3) = 3
8 , whereas

∑
s′∈H∩DR(E′) ψ

′∗(s′) = ψ′∗(s′3) = 1
3 . Thus, ↔is does not guarantee coincidence of

steady-state probabilities to enter into an equivalence class.
In Figure 17, the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e. N =

Boxdts(E) and N ′ = Boxdts(E′).

The following example demonstrates that the result of Proposition 8.1 does not even hold for the intersection
of ↔is and ≡ss.

Example 8.2 Let E = [({a}, 12) ∗ (({b}, 12); (({c}, 12)‖({d}, 12))) ∗ Stop] and
E′ = [({a}, 12)∗(({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3)))))∗Stop]. We have

E↔isE
′ and E ≡ss E′.

DR(E) is given in the Example 8.1.
DR(E′) consists of the equivalence classes

47

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 12) ({d}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 12)

❏
❏❫

✁
✁☛

❏❏❫ ✓✓✴

❏
❏❫

✁
✁☛

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({d},12)1 ({c}, 12)2

✍✌✎☞ ✍✌✎☞
❄ ❄

({c}, 12)1

✍✌✎☞x

✍✌✎☞❄

({d},12)2

��✠
❩❩⑦

❄ ❄

({b}, 12)

✍✌✎☞
❄

❄

✥

✦

★

✧✠ ✍

✲ ✛

✠ ✍

↔is

6≡ss✬

✫

✥

✦

✲ ✛

Figure 17: ↔is does not guarantee coincidence of steady-state probabilities to enter into an equivalence class

s′1 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈,

s′5 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈,

s′6 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈,

s′7 = [[({a}, 12) ∗ (({b}, 12); ((({c}, 12)1‖({d}, 12)1))[]((({c}, 12)2; ({d}, 12)2)[](({d}, 12)3; ({c}, 12)3))))) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,

3

8
,

1

8
,

1

8

)
, ψ′∗ =

(
0,

13

38
,

13

38
,

3

38
,

3

38
,

3

38
,

3

38

)
.

Consider the equivalence class (with respect to Rss(E,E′)) H = {s3, s′3}. We have
∑

s∈H∩DR(E) ψ
∗(s) =

ψ∗(s3) = 3
8 , whereas

∑
s′∈H∩DR(E′) ψ

′∗(s′) = ψ′∗(s′3) = 13
38 . Thus, the intersection of ↔is and ≡ss does not

guarantee coincidence of steady-state probabilities to enter into an equivalence class.
In Figure 18, the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e. N =

Boxdts(E) and N ′ = Boxdts(E′).

By Proposition 8.1, ↔ss preserves the quantitative properties of the stationary behaviour (the level of
DTMCs). We now intend to demonstrate that the qualitative properties of the stationary behaviour based on
the multiaction labels are preserved as well (the level of transition systems).

Definition 8.1 A derived step trace of a dynamic expression G is a chain Σ = A1 · · ·An ∈ (INL
fin \ {∅})∗,

where ∃s ∈ DR(G) s
Γ1→→ s1

Γ2→→ · · ·
Γn→→ sn, L(Γi) = Ai (1 ≤ i ≤ n). Then the probability to execute the derived

step trace Σ in s is

PT ∗(Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→→s1

Γ2→→···
Γn→→sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1).

48

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 12) ({d},12)

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 12)

❏
❏❫

✁
✁☛

❏❏❫ ✓✓✴

❏
❏❫

✁
✁☛

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({d},12)2 ({c}, 12)3

✍✌✎☞ ✍✌✎☞
❄ ❄

({c}, 12)2

✍✌✎☞x

({d}, 12)3

❄ ❄

({b}, 12)

✥

✦

★

✧✠ ✍

✲ ✛

✍

↔is

↔/ ss ✥

✦

≡ss

✍✌✎☞ ✍✌✎☞
❏❏❫ ✓✓✴

❏
❏❫

✁
✁☛✲ ✛

✍✌✎☞ ✍✌✎☞
❄ ❄

❏
❏❫

✁
✁☛

✟✟✟✟✙
❍❍❍❍❥

({c},12)1 ({d},12)1

✏✏✏✏✏✮
PPPPPq

★

✧✠

✥

✦✍

✲ ✛✬

✫

✩

✪✧

★

✧ ✦✑

Figure 18: The intersection of ↔is and ≡ss does not guarantee coincidence of steady-state probabilities to enter
into an equivalence class

The following theorem demonstrates that, for two dynamic expressions related by ↔ss, the steady-state
probabilities to enter into an equivalence class and start a derived step trace from it coincide.

Theorem 8.2 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ψ∗ be the steady-state PMF for

DTMC∗(G), ψ′∗ be the steady-state PMF for DTMC∗(G′) and Σ be a derived step trace of G and G′. Then
∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s)PT ∗(Σ, s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′)PT ∗(Σ, s′).

Proof. See Appendix A.5. ⊓⊔
Note that in the proof of Theorem 8.2 the result of Proposition 8.1 was used that is also valid for the

transient probabilities. Thus, the result of this theorem is valid as well if we replace steady-state probabilities
with transient ones in its statement.

Let G be a dynamic expression, ϕ∗ be the steady-state PMF for DTMC∗(G), ϕ∗
↔ss∗

be the steady-state

PMF for DTMC∗
↔ss∗

(G) and Σ be a derived step trace of G. By Theorem 8.2, we have ∀K ∈ DR(G)/Rss∗(G)

ϕ∗
↔ss∗

(K)PT ∗(Σ,K) =
∑

s∈K

ϕ∗(s)PT ∗(Σ, s),

where ∀s ∈ K PT ∗(Σ,K) = PT ∗(Σ, s).
We now present a result that does not concern the steady-state probabilities, but it reveals two very important

properties of residence time in the equivalence classes. The following proposition demonstrates that, for two
dynamic expressions related by ↔ss, the sojourn time averages in an equivalence class coincide, as well as the
sojourn time variances in it.

Proposition 8.2 Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G′)).

Proof. See Appendix A.6. ⊓⊔

49

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 12)1 ({c}, 12)2

({b}, 12)

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({c}, 12)1 ({c}, 12)2

✍✌✎☞ ✍✌✎☞
❄ ❄

({b}, 12)1

✍✌✎☞x

❄

({b}, 12)2

��✠
❩❩⑦

❄ ❄

✍✌✎☞✥

✦

★

✧✠ ✍ ✠ ✍

=sto

6=ts

✲ ✛✍✌✎☞❄
❄

��✠
❩❩⑦
✍✌✎☞❄

✲ ✛ ✥

✦

★

✧

Figure 19: ↔ss preserves steady-state behaviour and sojourn time properties in the equivalence classes

Example 8.3 Let E = [({a}, 12) ∗ (({b}, 12); (({c}, 12)1[]({c}, 12)2)) ∗ Stop] and

E′ = [({a}, 12) ∗ ((({b}, 12)1; ({c}, 12)1)[](({b}, 12)2; ({c}, 12)2)) ∗ Stop]. We have E =sto E′, hence, E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)1[]({c}, 12)2)) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)1[]({c}, 12)2)) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b}, 12); (({c}, 12)1[]({c}, 12)2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 12) ∗ ((({b}, 12)1; ({c}, 12)1)[](({b}, 12)2; ({c}, 12)2)) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ ((({b}, 12)1; ({c}, 12)1)[](({b}, 12)2; ({c}, 12)2)) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ ((({b}, 12)1; ({c}, 12)1)[](({b}, 12)2; ({c}, 12)2)) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ ((({b}, 12)1; ({c}, 12)1)[](({b}, 12)2; ({c}, 12)2)) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

1

2
,

1

2

)
, ψ′∗ =

(
0,

1

2
,

1

4
,

1

4

)
.

Consider the equivalence class (with respect to Rss(E,E′)) H = {s3, s′3, s
′
4}. Observe that the steady-state prob-

abilities for H coincide:
∑

s∈H∩DR(E) ψ
∗(s) = ψ∗(s3) = 1

2 = 1
4 + 1

4 = ψ′∗(s′3)+ψ′∗(s′4) =
∑
s′∈H∩DR(E′) ψ

′∗(s′).

Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence class H and start the step trace Σ
from it coincide as well: ψ∗(s3)(PT ∗({({c}, 12)1}, s3) + PT ∗({({c}, 12)2}, s3)) = 1

2

(
1
2 + 1

2

)
= 1

2 = 1
4 · 1 + 1

4 · 1 =
ψ′∗(s′3)PT ∗({({c}, 12)1}, s′3) + ψ′∗(s′4)PT ∗({({c}, 12)2}, s′4).

Further, the sojourn time averages in the equivalence class H coincide: SJRss(E,E′)∩(DR(E))2(H∩DR(G)) =

SJRss(E,E′)∩(DR(E))2({s3}) = 1
1−PM({s3},{s3})

= 1
1−PM(s3,s3)

= 1
1− 1

2

= 2 = 1
1− 1

2

= 1
1−PM(s′3,s

′
3)

=
1

1−PM(s′4,s
′
4)

= 1
1−PM({s′3,s

′
4},{s

′
3,s

′
4})

= SJRss(E,E′)∩(DR(E′))2({s′3, s
′
4}) = SJRss(E,E′)∩(DR(E′))2(H ∩DR(G′)).

Next, the sojourn time variances in the equivalence class H coincide: V ARRss(E,E′)∩(DR(E))2(H∩DR(G)) =

V ARRss(E,E′)∩(DR(E))2({s3}) = PM({s3},{s3})
(1−PM({s3},{s3}))2

= PM(s3,s3)
(1−PM(s3,s3))2

=
1
2

(1− 1
2)2 = 2 =

1
2

(1− 1
2)2 =

PM(s′3,s
′
3)

(1−PM(s′3,s
′
3))

2 =
PM(s′4,s

′
4)

(1−PM(s′4,s
′
4))

2 =
PM({s′3,s

′
4},{s

′
3,s

′
4})

(1−PM({s′3,s
′
4},{s

′
3,s

′
4}))

2 = V ARRss(E,E′)∩(DR(E′))2({s′3, s
′
4}) =

V ARRss(E,E′)∩(DR(E′))2(H ∩DR(G′)).
In Figure 19, the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e. N =

Boxdts(E) and N ′ = Boxdts(E′).

50

E TS∗(E) TS∗
↔∗

ss
(E) DTMC∗

↔∗
ss

(E) ψ∗
↔∗

ss
✲ ✲ ✲ ✲ Performance✲

Figure 20: Equivalence-based simplification of performance evaluation

8.3 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter into a set of similar states or, after
coming in it, to start a step trace from this set. The similarity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence classes. Proposition 8.1 and Theorem 8.2 guarantee coincidence
of the mentioned indices for the expressions related by ↔ss. Thus, ↔ss preserves performance of stochastic
systems modeled by expressions of dtsPBC. Moreover, Example 8.1 demonstrates that it is the weakest relation
among the relations we considered that has the performance preservation property.

In addition, obviously, it is easier to evaluate performance with the use of a DTMC with less states, since in
this case the size of the transition probability matrix will be smaller, and we shall solve systems of less equations
to calculate steady-state probabilities. The reasoning above validates the following method of performance
analysis simplification.

1. The system under investigation is specified by a static expression of dtsPBC.

2. The transition system without empty loops of the expression is constructed.

3. After examining this transition system for self-similarity and symmetry, a step stochastic autobisimulation
equivalence for the expression is determined.

4. The quotient underlying DTMC without empty loops of the expression is constructed from the quotient
transition system without empty loops.

5. The steady-state probabilities and performance indices based on this DTMC are calculated.

The limitation of the method above is its applicability only to the expressions such that their underlying
DTMCs contain exactly one closed communication class of states, and this class should also be ergodic to ensure
uniqueness of the stationary distribution. If a DTMC contains several closed communication classes of states
that are all ergodic then several stationary distributions may exist, which depend on the initial PMF. There is
an analytical method to determine stationary probabilities for DTMCs of this kind as well [84]. Note that the
underlying DTMC of every process expression has only one initial PMF (that at the time moment 0), hence, the
stationary distribution will be unique in this case too. The general steady-state probabilities are then calculated
as the sum of the stationary probabilities of all the ergodic classes of states, weighted by the probabilities to
enter into these classes, starting from the initial state and passing through some transient states. In addition,
it is worth applying the method only to the systems with similar subprocesses or symmetry in their behaviour.

For transition systems reduction one can also use an analogue of the approach described in [85]: first perform
the fast symmetry reduction based on the method from [80], then construct a quotient of the resulting transition
system by bisimulation equivalence by applying the time-optimal partition refinement algorithm from [49] to
the state space of this system. As mentioned in [85], for a number of practical case studies, minimization by
bisimulation results in more significant state space reduction than symmetry reduction, but the latter is much
faster that the former, since symmetries are determined on a syntactical level. In [8], the effective analysis
methods were proposed for partially symmetric models as well.

Figure 20 presents the main stages of the equivalence-based simplification of performance evaluation de-
scribed above.

9 Preservation by algebraic operations

An important question concerning equivalence relations is whether two compound expressions always remain
equivalent if they are constructed from pairwise equivalent subexpressions. The equivalence having the men-
tioned property of preservation by algebraic operations is called a congruence. To be a congruence is a desirable
property but not an obligatory one, since many important behavioural equivalences are not congruences. As
a rule, a congruence relation is too discriminate, i.e. it differentiates too many formulas. This is the reason
why a weaker but more interesting equivalence notion that is not a congruence is preferred in many cases when
process behaviour is to be compared.

51

({a}, 12) ({a}, 13)

✍✌✎☞ ✍✌✎☞

✍✌✎☞ ✍✌✎☞
✉ ✉
❄ ❄

❄ ❄

e

x

e

x

N1

({a}, 12) ({b}, 12)

✍✌✎☞

✍✌✎☞
❙
❙✇

�
�✠

��✠
❩❩⑦

x

✉ e
NN ′

1

({b}, 12)

✍✌✎☞

✍✌✎☞
✉
❄

❄

e

x

N2

({a}, 13) ({b}, 12)

✍✌✎☞

✍✌✎☞
❙
❙✇

�
�✠

��✠
❩❩⑦

x

✉ e
N ′

=sto

6=ts
6≡is

Figure 21: The equivalences between ≡is and =sto are not congruences

({a}, 12) ({a}, 12)

✍✌✎☞ ✍✌✎☞

✍✌✎☞ ✍✌✎☞
✉ ✉
❄ ❄

❄ ❄

e

x

e

N1 NN ′
1

({b},12)

✍✌✎☞

✍✌✎☞
✉
❄

❄

e

x

N2 N ′

=ts

6≈

✍✌✎☞x

({a}, 12)

✍✌✎☞

✍✌✎☞
✉
❄

❄

e

({a}, 12)

✍✌✎☞

✍✌✎☞
✉
❄

❄

e

({b}, 12)

✍✌✎☞
❄

❄
x

6≡is

✍✌✎☞
({b},12)

✍✌✎☞
❄

❄
x

Figure 22: The equivalences between ≡is and =ts are not congruences

Definition 9.1 Let ↔ be an equivalence of dynamic expressions. Two static expressions E and E′ are equiv-
alent with respect to ↔, denoted by E ↔ E′, if E ↔ E′.

Let us investigate which algebraic equivalences we proposed are congruences on static expressions.
The following example demonstrates that no equivalence between ≡is and =sto is a congruence.

Example 9.1 Let E = ({a}, 12), E′ = ({a}, 13) and F = ({b}, 12). We have E =sto E′, since both TS∗(E)

and TS∗(E′) have the transitions with the multiaction part {a} of their labels and probability 1. On the other
hand, E[]F 6≡is E′[]F , since only in TS∗(E′[]F) the probabilities of the transitions with the multiaction parts
{a} and {b} of their labels are different (13 and 2

3 , respectively). Thus, no equivalence between ≡is and =sto is
a congruence.

In Figure 21, the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e. N1 =
Boxdts(E), N ′

1 = Boxdts(E′), N2 = Boxdts(F) and N = Boxdts(E[]F), N ′ = Boxdts(E′[]F).

The following proposition demonstrates that all the equivalences between ≡is and =ts are not congruences.

Proposition 9.1 Let ⋆ ∈ {is, ss}, ⋆⋆ ∈ {sto, ts}. The equivalences ≡⋆, ↔⋆, =⋆⋆ are not preserved by algebraic
operations.

Proof. Let E = ({a}, 12), E′ = ({a}, 12); Stop and F = ({b}, 12). We have E =ts E′, since both TS(E) and

TS(E′) have the transitions with the multiaction part {a} of their labels and probability 1
2 . On the other hand,

E;F 6≡is E′;F , since only in TS∗(E′;F) no other transition can fire after the transition with the multiaction
part {a} of its label. Thus, no equivalence between ≡is and =ts is a congruence.

In Figure 22, the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e.
N1 = Boxdts(E), N ′

1 = Boxdts(E′), N2 = Boxdts(F) and N = Boxdts(E[]F), N ′ = Boxdts(E′[]F). ⊓⊔
The following proposition demonstrates that ≈ is a congruence.

Proposition 9.2 The equivalence ≈ is preserved by algebraic operations.

52

Proof. By definition of ≈. ⊓⊔
We suppose that, for an analogue of =ts to be a congruence, we have to equip transition systems of expressions

with two extra transitions skip and redo like in [103, 107]. This allows one to avoid difficulties demonstrated in
the example from the proof of Proposition 9.1 with unexpected termination due to the Stop process. At the
same time, such an enrichment of transition systems does not overcome the problems explained in Example 9.1
with abstraction from empty loops. Hence, the equivalences between ≡is and =sto defined on the basis of the
enriched transition systems will still be non-congruences.

To define the analogue of =ts mentioned above, we shall introduce a notion of sr-transition system. It has
the final state and two extra transitions from the initial state to the final one and back. Note that sr-transition
systems do not have the loop transitions from the final state to itself. First, in Table 7, we propose the rules
for skip and redo. In this table, E ∈ RegStatExpr.

Table 7: Rules for skip and redo

Sk E
skip
→ E Rd E

redo
→ E

We now can define sr-transition systems of dynamic expressions in the form E, where E is a static expression.
This syntactic restriction is necessary to take into account two additional rules above. We assume that skip

has probability 0, hence, it will be never executed. On the other hand, redo has probability 1, hence, it will be
immediately executed at the next time moment if it is enabled.

Definition 9.2 Let E be a static expression and TS(E) = (S,L, T , s). The (labeled probabilistic) sr-transition
system of E is a quadruple TSsr(E) = (Ssr , Lsr, Tsr, ssr), where

• Ssr = S ∪ {[E]≈};

• Lsr ⊆ (INSL
fin × (0; 1]) ∪ {(skip, 0), (redo, 1)};

• Tsr = T \ {([E]≈, (∅, 1), [E]≈)} ∪ {([E]≈, (skip, 0), [E]≈), ([E]≈, (redo, 1), [E]≈)};

• ssr = s.

We define a new notion of isomorphism for sr-transition systems, since we should take care of their final
states.

Definition 9.3 Let E,E′ be static expressions and TSsr(E) = (Ssr , Lsr, Tsr, ssr),
TSsr(E′) = (S′

sr , L
′
sr, T

′
sr, s

′
sr) be their sr-transition systems. A mapping β : Ssr → S′

sr is an isomorphism
between TSsr(E) and TSsr(E′), denoted by β : TSsr(E) ≃ TSsr(E′), if

1. β is a bijection such that β(ssr) = s′sr and β([E]≈) = [E′]≈;

2. ∀s, s̃ ∈ Ssr ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

Two sr-transition systems TSsr(E) and TSsr(E′) are isomorphic, denoted by TSsr(E) ≃ TSsr(E′), if ∃β :
TSsr(E) ≃ TSsr(E′).

sr-transition systems of static expressions can be defined as well. For E ∈ RegStatExpr, let TSsr(E) =
TSsr(E).

Example 9.2 Let E = ({a}, 12). In Figure 23, the transition systems TSsr(E) and TSsr(E; Stop) are presented.
In the latter sr-transition system (unlike the former one) the final state can be reached by executing the transition
(skip, 0) only from the initial state.

Definition 9.4 Two dynamic expressions E and E′ are equivalent with respect to sr-transition systems, de-
noted by E =tssr E′, if TSsr(E) ≃ TSsr(E′).

Note that sr-transition systems without empty loops can be defined, as well as the equivalence =tssr∗ based
on them. At the same time, the coincidence of =tssr and =tssr∗ can be proved similar to that of =ts and =ts∗.

53

TSsr(E; Stop)✞✝ ✲

✞✝ ✲ ❄

E;Stop

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

TSsr(E)✞✝ ✲∅, 12

({a}, 12),
1
2

❄

E

E

☛✡ ✟✠
☛✡ ✟✠ E;Stop

E;Stop

∅, 12

({a}, 12),
1
2

∅,1

✘

✙✛

✘

✙✛

redo,1

skip,0

redo,1 skip,0

✬

✫

✲✲★

✧
6≃

Figure 23: The sr-transition systems of E and E; Stop for E = ({a}, 12)

≡is ≡ss

↔is ↔ss

❄ ❄

≈

❄

✛

✛

=sto

❄

❄

=tssr

❄

=ts

Figure 24: Interrelations of the stochastic equivalences and the new congruence

54

Theorem 9.1 Let ↔,↔↔∈ {≡,↔,=,≈} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts, tssr}. For dynamic expressions G and G′

G↔⋆ G
′ ⇒ G↔↔⋆⋆ G

′

iff there exists a directed path from ↔⋆ to ↔↔⋆⋆ in the graph in Figure 24.

Proof. (⇐) Let us check the validity of implications in the graph in Figure 24.

• The implication =tssr→=ts is valid, since sr-transition systems have more states and transitions than
usual ones.

• The implication ≈→=tssr is valid, since the sr-transition system of a dynamic formula is defined based
on its structural equivalence class.

(⇒) The absence of additional nontrivial arrows (not resulting from the combination of the existing ones by
transitivity) in the graph in Figure 24 is proved by the following examples.

• Let E = ({a}, 12) and E′ = ({a}, 12); Stop. We have E =ts E′ as demonstrated in the example from the

proof of Proposition 9.1. On the other hand, E 6=tssr E′, since only in TSsr(E′) after the transition with
multiaction part of label {a} we do not reach the final state (see Example 9.2).

• Let E = ({a}, 12) and E′ = (({a}, 12); ({â}, 12)) sy a. Then E =tssr E′, since E =ts E′ as demonstrated in

the last example from the proof of Theorem 5.2, and the final states of both TSsr(E′) and TSsr(E′) are
reachable from the others with “normal” transitions (i.e. not with skip only). On the other hand, E 6≈ E′.
⊓⊔

The following theorem demonstrates that =tssr is a congruence of static expressions with respect to the
operations of dtsPBC.

Theorem 9.2 Let a ∈ Act and E,E′, F,K ∈ RegStatExpr. If E =tssr E′ then

1. E ◦ F =tssr E′ ◦ F , F ◦ E =tssr F ◦ E′, ◦ ∈ {; , [], ‖};

2. E[f] =tssr E′[f];

3. E ◦ a =tssr E′ ◦ a, ◦ ∈ {rs, sy};

4. [E ∗ F ∗K] =tssr [E′ ∗ F ∗K], [F ∗ E ∗K] =tssr [F ∗ E′ ∗K], [F ∗K ∗ E] =tssr [F ∗K ∗ E′].

Proof. First, we have no problems with termination, hence, the composite sr-transition systems built from
the isomorphic ones can always execute the same multisets of activities. Second, the probabilities of the
corresponding transitions of the composite systems coincide, since the probabilities are calculated from identical
values. ⊓⊔

10 Performance evaluation

The standard analysis technique for DTMCs consists in the investigation of their transient and stationary
behaviour and the subsequent calculation of some performance indices based on the steady-state probabilities.
In this section with a case studies of a number of systems we demonstrate how steady-state distribution can be
used for performance evaluation. The examples also illustrate the method of performance analysis simplification
described above. The behaviour of all the systems which we consider here includes non-empty transitions only.

10.1 Shared memory system

10.1.1 The standard system

Consider a model of two processors accessing a common shared memory described in [6,7,92] in the continuous
time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic setting
of dtsPBC, where concurrent execution of activities is possible, while no two transitions of a GSPN may fire
simultaneously (in parallel). The model works as follows. After activation of the system (turning the computer
on), two processors are active, and the common memory is available. Each processor can request an access
to the memory. When a processor starts acquisition of the memory, the other processor should wait until the

55

✲

✛

✛

✲

Processor 1 Processor 2Memory

Figure 25: The diagram of the shared memory system

former one ends its memory operations, and the system returns to the state with both active processors and
the available common memory. The diagram of the system is depicted in Figure 25.

Let us explain the meaning of actions from syntax of the dtsPBC expressions which will specify the system
modules. The action a corresponds to the system activation. The actions ri (1 ≤ i ≤ 2) represent the common
memory request of processor i. The actions bi and ei correspond to the beginning and the end, respectively,
of the common memory access of processor i. The other actions are used for communication purposes only via
synchronization, and we abstract from them later using restriction.

The static expression of the first processor is E1 = [({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop].

The static expression of the second processor is E2 = [({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop].

The static expression of the shared memory is E3 = [({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2);

({ẑ2},
1
2))) ∗ Stop]. The static expression of the shared memory system with two processors is E = (E1‖E2‖E3)

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.
Let us illustrate an effect of synchronization. In the result of synchronization of activities ({bi, yi},

1
2) and

({ŷi},
1
2) we obtain the new activity ({bi},

1
4) (1 ≤ i ≤ 2). The synchronization of ({ei, zi},

1
2) and ({ẑi},

1
2)

produces ({ei},
1
4) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2},

1
2) with ({x1},

1
2) is ({a, x̂2},

1
4),

and that of synchronization of ({a, x̂1, x̂2},
1
2) with ({x2},

1
2) is ({a, x̂1},

1
4). After applying synchronization to

({a, x̂2},
1
4) and ({x2},

1
2), as well as to ({a, x̂1},

1
4) and ({x1},

1
2), we obtain the same activity ({a}, 18).

DR(E) consists of the equivalence classes

s1 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s2 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s3 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s4 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s5 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

56

✛
✚
✘
✙s1

✛
✚
✘
✙s2

✛
✚
✘
✙s6

✛
✚
✘
✙s3

✛
✚
✘
✙s5

✛
✚
✘
✙s8

✛
✚
✘
✙s4

✛
✚
✘
✙s7

✛
✚
✘
✙s9

❄

❄

❄

❄

❄

❄

TS∗(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

✬

✫

✩

✪✲ ✛

({a}, 1
8
),1

({r1}, 1
2
), 1

3
({r2}, 1

2
), 1

3

{({r1},
1
2
),({r2}, 1

2
)}, 1

3

({b1}, 1
4
), 1

5
({b2}, 1

4
), 1

5

({r2}, 1
2
), 3

5
({r1}, 1

2
), 3

5
({r2}, 1

2
), 3

5
({r1}, 1

2
), 3

5

{({r1}, 1
2
),

({e2}, 1
4
)}, 1

5

{({r2}, 1
2
),

({e1}, 1
4
)}, 1

5

({e1}, 1
4
), 1

5
({e2}, 1

4
), 1

5

({b1}, 1
4
), 1

2
({b2}, 1

4
), 1

2

{({r2}, 1
2
),

({b1}, 1
4
)}, 1

5

{({r1}, 1
2
),

({b2}, 1
4
)}, 1

5

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁✁☛

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆❯

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

({e1}, 1
4
),1 ({e2}, 1

4
),1

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐

Figure 26: The transition system without empty loops of the shared memory system

s6 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s7 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s8 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s9 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈.

The states are interpreted as follows: s1 is the initial state, s2: the system is activated and the memory is
not requested, s3: the memory is requested by the first processor, s4: the memory is requested by the second
processor, s5: the memory is allocated to the first processor, s6: the memory is requested by two processors,
s7: the memory is allocated to the second processor, s8: the memory is allocated to the first processor and
the memory is requested by the second processor, s9: the memory is allocated to the second processor and the
memory is requested by the first processor.

In Figure 26, the transition system without empty loops TS∗(E) is presented. In Figure 27, the underlying
DTMC without empty loops DTMC∗(E) is depicted.

The TPM for DTMC∗(E) is

57

✛
✚
✘
✙s1

✛
✚
✘
✙s2

✛
✚
✘
✙s6

✛
✚
✘
✙s3

✛
✚
✘
✙s5

✛
✚
✘
✙s8

✛
✚
✘
✙s4

✛
✚
✘
✙s7

✛
✚
✘
✙s9

❄

❄

❄

❄

❄

❄

DTMC∗(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�
�
�
��✒

✲ ✛

✛ ✲

✬

✫

✩

✪✲ ✛

1

1
3

1
3

1
3

1
5

1
5

3
5

3
5

3
5

3
5

1
5

1
5

1
5

1
5

1
2

1
2

1
5

1
5

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁✁☛

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆❯

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

1 1

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐

Figure 27: The underlying DTMC without empty loops of the shared memory system

Table 8: Transient and steady-state probabilities of the shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0
ψ∗
2 [k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144
ψ∗
3 [k] 0 0 0.3333 0 0.2467 0.2489 0.0592 0.2484 0.2000 0.1071 0.2368 0.1794
ψ∗
5 [k] 0 0 0 0.0667 0 0.0493 0.0498 0.0118 0.0497 0.0400 0.0214 0.0359
ψ∗
6 [k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201
ψ∗
8 [k] 0 0 0 0.2333 0.2400 0.0493 0.2318 0.1910 0.0956 0.2221 0.1662 0.1675

P∗ =

0 1 0 0 0 0 0 0 0
0 0 1

3
1
3 0 1

3 0 0 0
0 0 0 0 1

5
3
5 0 1

5 0
0 0 0 0 0 3

5
1
5 0 1

5
0 1

5 0 1
5 0 0 0 3

5 0
0 0 0 0 0 0 0 1

2
1
2

0 1
5

1
5 0 0 0 0 0 3

5
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

.

In Table 8, the transient and the steady-state probabilities ψ∗
i [k] (i ∈ {1, 2, 3, 5, 6, 8}) of the shared memory

system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 28, the alteration diagram
(evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for
the states s1, s2, s3, s5, s6, s8 only, since the corresponding values coincide for s3, s4, as well as for s5, s7, and for
s8, s9.

The steady-state PMF for DTMC∗(E) is

ψ∗ =

(
0,

3

209
,

75

418
,

75

418
,

15

209
,

46

209
,

15

418
,

35

209
,

35

209

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state s2, where no processor requests the memory, called the average
system run-through, is 1

ψ∗
2

= 209
3 = 69 2

3 .

58

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ8
*@kD

Ψ6
*@kD

Ψ5
*@kD

Ψ3
*@kD

Ψ2
*@kD

Ψ1
*@kD

Figure 28: Transient probabilities alteration diagram of the shared memory system

• The common memory is available only in the states s2, s3, s4, s6. The steady-state probability that the
memory is available is ψ∗

2 +ψ∗
3 +ψ∗

4 +ψ∗
6 = 3

209 + 75
418 + 75

418 + 46
209 = 124

209 . Then the steady-state probability
that the memory is used (i.e. not available), called the shared memory utilization, is 1 − 124

209 = 85
209 .

• The common memory request of the first processor ({r1},
1
2) is only possible from the states s2, s4, s7. In

each of the states, the request probability is the sum of the execution probabilities for all multisets of
activities containing ({r1},

1
2). Thus, the steady-state probability of the shared memory request from the

first processor is ψ∗
2

∑
{Γ|({r1},

1
2)∈Γ} PT

∗(Γ, s2) + ψ∗
4

∑
{Γ|({r1},

1
2)∈Γ} PT

∗(Γ, s4) +

ψ∗
7

∑
{Γ|({r1},

1
2)∈Γ} PT

∗(Γ, s7) = 3
209

(
1
3 + 1

3

)
+ 75

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
= 38

209 .

In Figure 29, the marked dts-boxes corresponding to the dynamic expressions of two processors and shared
memory are presented, i.e. Ni = Boxdts(Ei) (1 ≤ i ≤ 3). In Figure 30, the marked dts-box corresponding to
the dynamic expression of the shared memory system is depicted, i.e. N = Boxdts(E).

10.1.2 The abstract system and its reduction

Let us consider a modification of the shared memory system with abstraction from identifiers of the processors,
i.e. such that the processors are indistinguishable. For example, we can just see that a processor requires
memory or the memory is allocated to it but cannot observe which processor is it. We call this system the
abstract shared memory one. To implement the abstraction, we replace the actions ri, bi, ei (1 ≤ i ≤ 2) in the
system specification by r, b, e, respectively.

The static expression of the first processor is F1 = [({x1},
1
2) ∗ (({r}, 12); ({b, y1},

1
2); ({e, z1},

1
2)) ∗Stop]. The

static expression of the second processor is F2 = [({x2},
1
2)∗ (({r}, 12); ({b, y2},

1
2); ({e, z2},

1
2))∗Stop]. The static

expression of the shared memory is F3 = [({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop].

The static expression of the abstract shared memory system with two processors is F = (F1‖F2‖F3) sy x1 sy x2
sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(F) resembles DR(E), and TS∗(F) is similar to TS∗(E). We have DTMC∗(F) ≃ DTMC∗(E). Thus,
the TPM and the steady-state PMF for DTMC∗(F) and DTMC∗(E) coincide.

The first and second performance indices are the same for the standard and the abstract systems. Let us
consider the following performance index based on non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, 12) is only possible from the states s2, s3, s4, s5, s7. In
each of the states, the request probability is the sum of the execution probabilities for all multisets of
activities containing ({r}, 12). Thus, the steady-state probability of the shared memory request from a
processor is ψ∗

2

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s2)+ψ∗
3

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s3)+ψ∗
4

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s4)+

59

({e2,z2},
1
2)

({b2,y2},
1
2)

✍

✍✌✎☞✉ e

({r2},
1
2)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x

✍✌✎☞

✜

✢

✛

({e1,z1},
1
2)

✍✌✎☞
({b1,y1},

1
2)

✍✌✎☞x

({r1},
1
2)

✍✌✎☞
❄

❄

✠

✍✌✎☞✉ e

✍✌✎☞

❄

✛

✚

✲

({x1},
1
2)

❄

❄

❄

❄

❄

❄

({x2},
1
2)

❄

❄

N1 N2

({a,x̂1,x̂2},
1
2)

({ẑ1},
1
2) ({ẑ2},

1
2)

({ŷ1},
1
2) ({ŷ2},

1
2)

✍✌✎☞❄
��✠ ❅❅❘

✠✍✕✖

✻✻

N3

✍✌✎☞x

✍✌✎☞✉
❄

e

✍✌✎☞❄
❄
✍✌✎☞❄
❄

Figure 29: The marked dts-boxes of two processors and shared memory

({a}, 18)

✍✌✎☞✉
❄

e

N

({e1},
1
4) ({e2},

1
4)

✍✌✎☞ ✍✌✎☞
({b1},

1
4)

✍✌✎☞x

({b2},
1
4)

({r1},
1
2)

✍✌✎☞
❄

❄

✠ ✍

✍✌✎☞✉ e✍✌✎☞✉ e
❅❅❘ ��✠

✍✌✎☞

❄

({r2},
1
2)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x✍✌✎☞x

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❄

✚
✚❂

❩
❩⑦

��✠ ❅❅❘

✠✍

✛

✚

✜

✢

✲ ✛

✕✖

✻✻

Figure 30: The marked dts-box of the shared memory system

60

TS∗
↔ss

(F)

✛
✚
✘
✙K6

✛
✚
✘
✙K5

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

{a},1

{e}, 15

{b},1

{r}, 35 {{r},{r}}, 13

{r}, 23

{r}, 35

{b}, 15

{e},1

{{r},{e}}, 15

{{r},{b}}, 15

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✡✢

❏
❏
❏
❏
❏
❏❏❫

✓
✓

✓
✓

✓
✓✓✴

❏
❏

❏
❏

❏
❏❏❪❏❏

❏
❏
❏
❏❏❫

✓
✓
✓
✓
✓
✓✼

Figure 31: The quotient transition system without empty loops of the abstract shared memory system

ψ∗
5

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s5) + ψ∗
7

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s7) = 3
209

(
1
3 + 1

3 + 1
3

)
+ 75

418

(
3
5 + 1

5

)
+

75
418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
= 75

209 .

The marked dts-boxes corresponding to the dynamic expressions of the standard and the abstract two
processors and shared memory are similar, as well as the marked dts-boxes corresponding to the dynamic
expression of the standard and the abstract shared memory systems.

Let us consider a reduction of the abstract shared memory system. Note that TS∗(F) can be reduced
by merging the equivalent states s3, s4, as well as s5, s7, as well as s8, s9, thus, it can be transformed into a
transition system with six states only. But the resulting reduction of the initial transition system TS∗(F) will
not correspond to some dtsPBC expression anymore.

We have DR(F)/Rss(F) = {K1,K2,K3,K4,K5,K6}, where K1 = {s1} (the initial state), K2 = {s2} (the

system is activated and the memory is not requested), K3 = {s3, s4} (the memory is requested by one processor),
K4 = {s5, s7} (the memory is allocated to a processor), K5 = {s6} (the memory is requested by two processors),
K6 = {s8, s9} (the memory is allocated to a processor and the memory is requested by another processor).

In Figure 31, the quotient transition system without empty loops TS∗
↔ss

(F) is presented. In Figure 32, the

quotient underlying DTMC without empty loops DTMC∗
↔ss

(F) is depicted.

The TPM for DTMC∗
↔ss

(F) is

P′∗ =

0 1 0 0 0 0
0 0 2

3 0 1
3 0

0 0 0 1
5

3
5

1
5

0 1
5

1
5 0 0 3

5
0 0 0 0 0 1
0 0 1 0 0 0

.

In Table 9, the transient and the steady-state probabilities ψ′
i
∗
[k] (1 ≤ i ≤ 6) of the quotient abstract shared

memory system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 33, the alteration
diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF for DTMC∗
↔ss

(F) is

61

DTMC∗
↔ss

(F)

✛
✚
✘
✙K6

✛
✚
✘
✙K5

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

1

1
5

1

3
5

1
3

2
3

3
5

1
5

1

1
5

1
5

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✡✢

❏
❏
❏
❏
❏
❏❏❫

✓
✓

✓
✓

✓
✓✓✴

❏
❏

❏
❏

❏
❏❏❪❏❏

❏
❏
❏
❏❏❫

✓
✓
✓
✓
✓
✓✼

Figure 32: The quotient underlying DTMC without empty loops of the abstract shared memory system

Table 9: Transient and steady-state probabilities of the quotient abstract shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′
1
∗
[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗
[k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144

ψ′
3
∗
[k] 0 0 0.6667 0 0.4933 0.4978 0.1184 0.4967 0.4001 0.2142 0.4735 0.3589

ψ′
4
∗
[k] 0 0 0 0.1333 0 0.0987 0.0996 0.0237 0.0993 0.0800 0.0428 0.0718

ψ′
5
∗
[k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201

ψ′
6
∗[k] 0 0 0 0.4667 0.4800 0.0987 0.4636 0.3821 0.1912 0.4443 0.3325 0.3349

62

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ6’*@kD

Ψ5’*@kD

Ψ4’*@kD

Ψ3’*@kD

Ψ2’*@kD

Ψ1’*@kD

Figure 33: Transient probabilities alteration diagram of the quotient abstract shared memory system

ψ′∗ =

(
0,

3

209
,

75

209
,

15

209
,

46

209
,

70

209

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state K2, where no processor requests the memory, called the average
system run-through, is 1

ψ′
2
∗ = 209

3 = 69 2
3 .

• The common memory is available only in the states K2,K3,K5. The steady-state probability that the
memory is available is ψ′

2
∗

+ ψ′
3
∗

+ ψ′
5
∗

= 3
209 + 75

209 + 46
209 = 124

209 . Then the steady-state probability that
the memory is used (i.e. not available), called the shared memory utilization, is 1 − 124

209 = 85
209 .

• The common memory request of a processor {r} is only possible from the states K2,K3,K4. In each of
the states, the request probability is the sum of the execution probabilities for all multisets of multiac-
tions containing {r}. Thus, the steady-state probability of the shared memory request from a processor is
ψ′
2
∗ ∑

{A,K|{r}∈A, K2
A
→→K}

PM∗
A(K2,K) + ψ′

3
∗ ∑

{A,K|{r}∈A, K3
A
→→K}

PM∗
A(K3,K) +

ψ′
4
∗ ∑

{A,K|{r}∈A, K4
A
→→K}

PM∗
A(K4,K) = 3

209

(
2
3 + 1

3

)
+ 75

209

(
3
5 + 1

5

)
+ 15

209

(
3
5 + 1

5

)
= 75

209 .

One can see that the performance indices are the same for the complete and the quotient abstract shared
memory systems. The coincidence of the first and second performance indices obviously illustrates the result of
Proposition 8.1. The coincidence of the third performance index is due to Theorem 8.2: one should just apply
its result to the step traces {{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}} of the expression F and itself, and then
sum the left and right parts of the three resulting equalities.

10.1.3 The generalized system

Let us determine which is the influence of the multiaction probabilities from specification of the shared memory
system on its performance. Suppose that all the mentioned multiactions have the same generalized probability
ρ ∈ (0; 1). The resulting specification K of the generalized shared memory system is defined as follows.

The static expression of the first processor is K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({b1, y1}, ρ); ({e1, z1}, ρ)) ∗ Stop].
The static expression of the second processor is K2 = [({x2}, ρ)∗(({r2}, ρ); ({b2, y2}, ρ); ({e2, z2}, ρ))∗Stop]. The
static expression of the shared memory is K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ))) ∗
Stop]. The static expression of the generalized shared memory system with two processors is K = (K1‖K2‖K3)
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(K) consists of the 9 states which are interpreted as follows: s̃1 is the initial state, s̃2: the system is
activated and the memory is not requested, s̃3: the memory is requested by the first processor, s̃4: the memory

63

is requested by the second processor, s̃5: the memory is allocated to the first processor, s̃6: the memory is
requested by two processors, s̃7: the memory is allocated to the second processor, s̃8: the memory is allocated
to the first processor and the memory is requested by the second processor, s̃9: the memory is allocated to the
second processor and the memory is requested by the first processor.

The TPM for DTMC∗(K) is

P̃∗ =

0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 ρ(1−ρ)
1+ρ−ρ2

1−ρ2

1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0

0 0 0 0 0 1−ρ2

1+ρ−ρ2
ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

.

The steady-state PMF for DTMC∗(K) is

ψ̃∗ = 1
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) (0, 2ρ

2(2 − ρ)(1 − ρ)2, (2 − ρ)(1 + ρ− ρ2)2, (2 − ρ)(1 + ρ− ρ2)2,

ρ(2 − ρ− 4ρ2 + 4ρ3 − ρ4), 2(2 + ρ− 5ρ2 + ρ3 + ρ4), ρ(2 − ρ− 4ρ2 + 4ρ3 − ρ4),
2 + 3ρ− 6ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).

We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where no processor requests the memory, called the average

system run-through, is 1
ψ̃∗

2

= 6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

ρ2(2−ρ)(1−ρ)2 .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6. The steady-state probability that the

memory is available is ψ̃∗
2 + ψ̃∗

3 + ψ̃∗
4 + ψ̃∗

6 = ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + (2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) +

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) + 2+ρ−5ρ2+ρ3+ρ4

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 . Then the steady-state

probability that the memory is used (i.e. not available), called the shared memory utilization, is 1 −
4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 2+5ρ−7ρ2−3ρ3+5ρ4−ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

• The common memory request of the first processor ({r1}, ρ) is only possible from the states s̃2, s̃4, s̃7. In
each of the states, the request probability is the sum of the execution probabilities for all multisets of
activities containing ({r1}, ρ). Thus, the steady-state probability of the shared memory request from the
first processor is
ψ̃∗
2

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
4

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃4) + ψ̃∗
7

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃7) =
ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ
2−ρ + ρ

2−ρ

)
+ (2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
= 2+3ρ−4ρ2−2ρ3+2ρ4

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) .

10.1.4 The abstract generalized system and its reduction

Let us consider a modification of the generalized shared memory system with abstraction from identifiers of the
processors. We call this system the abstract generalized shared memory one.

The static expression of the first processor is L1 = [({x1}, ρ) ∗ (({r}, ρ); ({b, y1}, ρ); ({e, z1}, ρ)) ∗ Stop]. The
static expression of the second processor is L2 = [({x2}, ρ) ∗ (({r}, ρ); ({b, y2}, ρ); ({e, z2}, ρ)) ∗ Stop]. The static
expression of the shared memory is L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ))) ∗ Stop].
The static expression of the abstract shared memory generalized system with two processors is L = (L1‖L2‖L3)
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(L) resembles DR(K), and TS∗(L) is similar to TS∗(K). We have DTMC∗(L) ≃ DTMC∗(K). Thus,
the TPM and the steady-state PMF for DTMC∗(L) and DTMC∗(K) coincide.

The first and second performance indices are the same for the generalized system and its abstract modifica-
tion. Let us consider the following performance index based on non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, ρ) is only possible from the states s̃2, s̃3, s̃4, s̃5, s̃7. In
each of the states, the request probability is the sum of the execution probabilities for all multisets of

64

activities containing ({r}, ρ). Thus, the steady-state probability of the shared memory request from a
processor is ψ̃∗

2

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
3

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃3) + ψ̃∗
4

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃4) +

ψ̃∗
5

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃5) + ψ̃∗
7

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃7) =
ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ
2−ρ + 1−ρ

2−ρ + ρ
2−ρ

)
+ (2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+ ρ(2−ρ−4ρ2+4ρ3−ρ4)

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
= (2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where K̃1 = {s̃1} (the initial state), K̃2 = {s̃2} (the

system is activated and the memory is not requested), K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor), K̃5 = {s̃6} (the memory is requested by two processors),

K̃6 = {s̃8, s̃9} (the memory is allocated to a processor and the memory is requested by another processor).
The TPM for DTMC∗

↔ss
(L) is

P̃′∗ =

0 1 0 0 0 0

0 0 2(1−ρ)
2−ρ 0 ρ

2−ρ 0

0 0 0 ρ(1−ρ)
1+ρ−ρ2

1−ρ2

1+ρ−ρ2
ρ2

1+ρ−ρ2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1
0 0 1 0 0 0

.

The steady-state PMF for DTMC∗
↔ss

(L) is

ψ̃′∗ = 1
6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 (0, ρ2(2 − ρ)(1 − ρ)2, (2 − ρ)(1 + ρ− ρ2)2,

ρ(2 − ρ− 4ρ2 + 4ρ3 − ρ4), 2 + ρ− 5ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where no processor requests the memory, called the average

system run-through, is 1
ψ̃′∗

2

= 6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

ρ2(2−ρ)(1−ρ)2 .

• The common memory is available only in the states K̃2, K̃3, K̃5. The steady-state probability that the

memory is available is ψ̃′∗
2 + ψ̃′∗

3 + ψ̃′∗
5 = ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + (2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 +
2+ρ−5ρ2+ρ3+ρ4

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 . Then the steady-state probability that the mem-

ory is used (i.e. not available), called the shared memory utilization, is 1 − 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 =
2+5ρ−7ρ2−3ρ3+5ρ4−ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

• The common memory request of a processor {r} is only possible from the states K̃2, K̃3, K̃4. In each of
the states, the request probability is the sum of the execution probabilities for all multisets of multiac-
tions containing {r}. Thus, the steady-state probability of the shared memory request from a processor is

ψ̃′∗
2

∑
{A,K̃|{r}∈A, K̃2

A
→→K̃}

PM∗
A(K̃2, K̃) + ψ̃′∗

3

∑
{A,K̃|{r}∈A, K̃3

A
→→K̃}

PM∗
A(K̃3, K̃) +

ψ̃′∗
4

∑
{A,K̃|{r}∈A, K̃4

A
→→K̃}

PM∗
A(K̃4, K̃) = ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
2(1−ρ)
2−ρ + ρ

2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+ ρ(2−ρ−4ρ2+4ρ3−ρ4)

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
=

(2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

One can see that the performance indices are the same for the complete and the quotient abstract generalized
shared memory systems. The coincidence of the first and second performance indices obviously illustrates the
result of Proposition 8.1. The coincidence of the third performance index is due to Theorem 8.2: one should
just apply its result to the step traces {{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}} of the expression L and itself,
and then sum the left and right parts of the three resulting equalities.

10.2 Dining philosophers system

10.2.1 The standard system

Consider a model of five dining philosophers, for which the Petri net interpretation was proposed in [121].
We shall investigate this dining philosophers system in the discrete time stochastic setting of dtsPBC, where

65

Figure 34: The diagram of the dining philosophers system

concurrent execution of activities is possible, while in the previous models of the system, based on PNs, no
parallel transition firings were considered. The philosophers occupy a round table, and there is one fork between
every neighboring persons, hence, there are five forks on the table. A philosopher needs two forks to eat, namely,
his left and right ones. Hence, all five philosophers cannot eat together, since otherwise there will not be enough
forks available, but only one of two of them who are not neighbors. The model works as follows. After the
activation of the system (the philosophers come in the dining room), five forks are placed on the table. If the
left and right forks are available for a philosopher, he takes them simultaneously and begins eating. At the end
of eating, the philosopher places both his forks simultaneously back on the table. The strategy to pick up and
release two forks simultaneously prevents the situation when a philosopher takes one fork but is not able to pick
up the second one since their neighbor has already done so. In particular, we avoid a deadlock when all the
philosophers take their left (right) forks and wait until their right (left) forks will be available. The diagram of
the system is depicted in Figure 34.

One can explore what happens if there will be another number of philosophers at the table. The most
interesting is to find the maximal sets of philosophers which can dine together, since all other combinations
of the dining persons will be the subsets of these maximal sets. For the system with 1 philosopher the only
maximal set is ∅. For the system with 2 philosophers the maximal sets are {1}, {2}. For the system with 3
philosophers the maximal sets are {1}, {2}, {3}. For the system with 4 philosophers the maximal sets are
{1, 3}, {2, 4}. For the system with 5 philosophers the maximal sets are {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}. For
the system with 6 philosophers the maximal sets are {1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}. For the system
with 7 philosophers the maximal sets are {1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}, {2, 4, 7}, {2, 5, 7}, {3, 5, 7}.
Thus, the system demonstrates a nontrivial behaviour when at least 5 philosophers occupy the table.

Since the neighbors cannot dine together, the maximal number of the dining persons for the system with
n philosophers will be ⌊n2 ⌋, i.e. the maximal natural number that is not greater than n

2 . Note that if the
philosopher i belongs to some maximal set then the philosopher i(mod n) + 1 will belong to the next one. Let
us calculate how many such different maximal sets consisting of the maximal number of the philosophers (⌊n2 ⌋)
are there. If n is an even number then there will be only 2 such maximal sets of n

2 dining persons, namely, the
philosophers numbered with all odd natural numbers which are not greater than n and those numbered with all
even natural numbers which are not greater than n. If n is an odd number then there will be n such maximal
sets of n−1

2 dining persons, since, starting from some maximal set one can “shift” clockwise n− 1 times by one
element modulo n until the next maximal set will coincide with the initial one.

We now proceed with the 5 dining philosophers system. Let us explain the meaning of actions from the
syntax of the dtsPBC expressions which will specify the system modules. The action a corresponds to the
system activation. The actions bi and ei correspond to the beginning and the end, respectively, of eating of
philosopher i (1 ≤ i ≤ 5). The other actions are used for communication purposes only via synchronization,
and we abstract from them later using restriction. Note that the expression of each philosopher includes two
alternative subexpressions such that the second one specifies a resource (fork) sharing with the right neighbor.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Ei = [({xi},
1
2) ∗ ((({bi, ŷi},

1
2); ({ei, ẑi},

1
2))[]

(({yi+1},
1
2); ({zi+1},

1
2))) ∗ Stop]. The static expression of the philosopher 5 is E5 = [({a, x̂1, x̂2, x̂2, x̂4},

1
2) ∗

((({b5, ŷ5},
1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop]. The static expression of the dining philosophers sys-

66

tem is E = (E1‖E2‖E3‖E4‖E5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1
rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

Let us illustrate an effect of synchronization. In the result of synchronization of the activities ({bi, yi},
1
2)

and ({ŷi},
1
2) we obtain the new activity ({bi},

1
4) (1 ≤ i ≤ 5). The synchronization of ({ei, zi},

1
2) and

({ẑi},
1
2) produces ({ei},

1
4) (1 ≤ i ≤ 5). The result of synchronization of ({a, x̂1, x̂2, x̂3, x̂4},

1
2) and ({x1},

1
2)

is ({a, x̂2, x̂3, x̂4},
1
4). The result of synchronization of ({a, x̂2, x̂3, x̂4},

1
4) and ({x2},

1
2) is ({a, x̂3, x̂4},

1
8). The

result of synchronization of ({a, x̂3, x̂4},
1
8) and ({x3},

1
2) is ({a, x̂4},

1
16). The result of synchronization of

({a, x̂4},
1
16) and ({x4},

1
2) is ({a}, 1

32).

DR(E) consists of the equivalence classes

s1 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s2 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s3 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s4 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s5 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s6 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

67

s7 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s8 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s9 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s10 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s11 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s12 = [([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2))) ∗ Stop]‖

[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2))) ∗ Stop]‖

[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2))) ∗ Stop]‖

[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2))) ∗ Stop]‖

[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5
rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈.

The states are interpreted as follows: s1 is the initial state, s2: the system is activated and no philosophers
dine, s3: philosopher 1 dines, s4: philosophers 1 and 4 dine, s5: philosophers 1 and 3 dine, s6: philosopher 4
dines, s7: philosopher 3 dines, s8: philosophers 2 and 4 dine, s9: philosophers 3 and 5 dine, s10: philosopher 2
dines, s11: philosopher 5 dines, s12: philosophers 2 and 5 dine.

In Figure 35, the transition system without empty loops TS∗(E) is presented. In Figure 36, the underlying
DTMC without empty loops DTMC∗(E) is depicted.

The TPM for DTMC∗(E) is

68

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s4

✛
✚
✘
✙s6

✛
✚
✘
✙s7

✛
✚
✘
✙s8

✛
✚
✘
✙s9

✛
✚
✘
✙s10

✛
✚
✘
✙s11

✛
✚
✘
✙s12

✛
✚
✘
✙s3

✛
✚
✘
✙s1

TS∗(E)

✻

❄

❄

✻

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙♦❙

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇

PPPPPPPPPPPPPPPPP✐
PPPPPPPPPPPPPPPPPq

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮

❳❳❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳②

❄

✻

✘✘✘✘✘✘✘✘✘✘✘✾
✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳❳② ❳❳❳❳❳❳❳❳❳③

❏
❏

❏
❏

❏
❏

❏
❏

❏❏❪

✻

❄

✘✘✘✘✘✘✘✘✘✘✘✿
✘✘✘✘✘✘✘✘✘✾

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✣
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✛ ✲
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❖ ❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

✚✚❃✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❂

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙
❙♦

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

({a}, 1
32

),1

({e4}, 1
4
), 3

7

({b4}, 1
4
), 3

11

({b3}, 1
4
), 3

11

({e3}, 1
4
), 3

7

({e1}, 1
4
), 3

7
({b1}, 1

4
), 3

11

({b5}, 1
4
),

3
11

({e5}, 1
4
),

3
7

({e3}, 1
4
), 3

7

({b3}, 1
4
), 3

11

({b2}, 1
4
), 3

11

({e2}, 1
4
), 3

7

({e5}, 1
4
), 3

7

({b5}, 1
4
), 3

11

({b4}, 1
4
), 3

11

({e4}, 1
4
), 3

7

({e2}, 1
4
),

3
7

({b2}, 1
4
),

3
11

({e1}, 1
4
), 3

7
({b1}, 1

4
), 3

11

({b1}, 1
4
), 3

20

({e1}, 1
4
), 3

11

{({b1}, 1
4
),

({b3}, 1
4
)}, 1

20

{({e1}, 1
4
),

({e3}, 1
4
)}, 1

7

({b3}, 1
4
), 3

20

({e3}, 1
4
), 3

11

{({b3}, 1
4
),

({b5}, 1
4
)}, 1

20

{({e3}, 1
4
),

({e5}, 1
4
)}, 1

7

({b5}, 1
4
), 3

20

({e5}, 1
4
), 3

11

{({b2}, 1
4
),

({b5}, 1
4
)}, 1

20

{({e2}, 1
4
),

({e5}, 1
4
)}, 1

7

({b2}, 1
4
), 3

20

({e2}, 1
4
), 3

11

{({b2}, 1
4
),

({b4}, 1
4
)}, 1

20

{({e2}, 1
4
),

({e4}, 1
4
)}, 1

7

({b4}, 1
4
), 3

20

({e4}, 1
4
), 3

11

{({b1}, 1
4
),

({b4}, 1
4
)}, 1

20

{({e1}, 1
4
),

({e4}, 1
4
)}, 1

7

{({b1}, 1
4
),

({e4}, 1
4
)},

1
11

{({b4}, 1
4
),

({e1}, 1
4
)}, 1

11

{({b3}, 1
4
),

({e1}, 1
4
)},

1
11

{({b1}, 1
4
),

({e3}, 1
4
)}, 1

11

{({b5}, 1
4
),

({e3}, 1
4
)},

1
11

{({b3}, 1
4
),

({e5}, 1
4
)}, 1

11

{({b5}, 1
4
),({e2}, 1

4
)}, 1

11

{({b2}, 1
4
),({e5}, 1

4
)}, 1

11

{({b4}, 1
4
),

({e2}, 1
4
)},

1
11

{({b2}, 1
4
),

({e4}, 1
4
)}, 1

11

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮
PPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPP✐

❏
❏

❏
❏

❏
❏

❏
❏

❏❪
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✡
✡
✡
✡
✡
✡
✡
✡
✡✣✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩❩⑦❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩❩⑥

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✗

Figure 35: The transition system without empty loops of the dining philosophers system

69

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s4

✛
✚
✘
✙s6

✛
✚
✘
✙s7

✛
✚
✘
✙s8

✛
✚
✘
✙s9

✛
✚
✘
✙s10

✛
✚
✘
✙s11

✛
✚
✘
✙s12

✛
✚
✘
✙s3

✛
✚
✘
✙s1

DTMC∗(E)

✻

❄

❄

✻

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙♦❙

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇

PPPPPPPPPPPPPPPPP✐
PPPPPPPPPPPPPPPPPq

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮

❳❳❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳②

❄

✻

✘✘✘✘✘✘✘✘✘✘✘✾
✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳❳② ❳❳❳❳❳❳❳❳❳③

❏
❏

❏
❏

❏
❏

❏
❏

❏❏❪

✻

❄

✘✘✘✘✘✘✘✘✘✘✘✿
✘✘✘✘✘✘✘✘✘✾

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✣
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✛ ✲
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❖ ❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

✚✚❃✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❂

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙
❙♦

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

1

3
7

3
11

3
11

3
7

3
7

3
11

3
11

3
7

3
7

3
11

3
11

3
7

3
7

3
11

3
11

3
7

3
7

3
11

3
7

3
11

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮
PPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPP✐

❏
❏

❏
❏

❏
❏

❏
❏

❏❪
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✡
✡
✡
✡
✡
✡
✡
✡
✡✣✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩❩⑦❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩❩⑥

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✗

Figure 36: The underlying DTMC without empty loops of the dining philosophers system

70

Table 10: Transient and steady-state probabilities of the dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0
ψ∗
2 [k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818
ψ∗
3 [k] 0 0 0.1500 0.0701 0.1189 0.0878 0.1079 0.0949 0.1033 0.0979 0.1014 0.1000
ψ∗
4 [k] 0 0 0.0500 0.0818 0.0503 0.0726 0.0578 0.0674 0.0612 0.0652 0.0626 0.0636

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ4
*@kD

Ψ3
*@kD

Ψ2
*@kD

Ψ1
*@kD

Figure 37: Transient probabilities alteration diagram of the dining philosophers system

P∗ =

0 1 0 0 0 0 0 0 0 0 0 0
0 0 3

20
1
20

1
20

3
20

3
20

1
20

1
20

3
20

3
20

1
20

0 3
11 0 3

11
3
11

1
11

1
11 0 0 0 0 0

0 1
7

3
7 0 0 3

7 0 0 0 0 0 0
0 1

7
3
7 0 0 0 3

7 0 0 0 0 0
0 3

11
1
11

3
11 0 0 0 3

11 0 1
11 0 0

0 3
11

1
11 0 3

11 0 0 0 3
11 0 1

11 0
0 1

7 0 0 0 3
7 0 0 0 3

7 0 0
0 1

7 0 0 0 0 3
7 0 0 0 3

7 0
0 3

11 0 0 0 1
11 0 3

11 0 0 1
11

3
11

0 3
11 0 0 0 0 1

11 0 3
11

1
11 0 3

11
0 1

7 0 0 0 0 0 0 0 3
7

3
7 0

.

In Table 10, the transient and the steady-state probabilities ψ∗
i [k] (1 ≤ i ≤ 4) of the dining philosophers

system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 37, the alteration diagram
(evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for the
states s1, . . . , s4 only, since the corresponding values coincide for s3, s6, s7, s10, s11, as well as for s4, s5, s8, s9, s12.

The steady-state PMF for DTMC∗(E) is

ψ∗ =

(
0,

2

11
,

1

10
,

7

110
,

7

110
,

1

10
,

1

10
,

7

110
,

7

110
,

1

10
,

1

10
,

7

110

)
.

Note that we do not have the problem of individual starvation in our model, since, for each philosopher,
the time intervals when he does not eat are finite. In other words, there are no infinite time periods when
the philosopher does not eat. It means that his steady-state probability to eat is not equal to zero. For
example, the first philosopher eats in the states s3, s4, s5, hence, the stationary probability that he eats is

71

({e1,ẑ1}, 1
2
) ({z2},

1
2)

({b1,ŷ1}, 1
2
) ({y2},

1
2)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

N1

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
({x1},

1
2)

❄

❄

({e2,ẑ2}, 1
2
) ({z3},

1
2)

({b2,ŷ2}, 1
2
) ({y3},

1
2)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

N2

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
({x2},

1
2)

❄

❄

({e3,ẑ3}, 1
2
) ({z4},

1
2)

({b3,ŷ3}, 1
2
) ({y4},

1
2)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

N3

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
({x3},

1
2)

❄

❄

({e4,ẑ4}, 1
2
) ({z5},

1
2)

({b4,ŷ4}, 1
2
) ({y5},

1
2)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

N4

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
({x4},

1
2)

❄

❄

({e5,ẑ5}, 1
2
) ({z1},

1
2)

({b5,ŷ5}, 1
2
) ({y1},

1
2)

✍✌✎☞
��✠ ❅❅❘

✠✍✕✖

✻✻

N5

✍✌✎☞x

✍✌✎☞❄
❄
✍✌✎☞❄
❄

✍✌✎☞✉ e
❄

❄

({a,x̂1,x̂2,x̂3,x̂4},
1
2)

Figure 38: The marked dts-boxes of the dining philosophers

ψ∗
3 +ψ∗

4 +ψ∗
5 = 1

10 + 7
110 + 7

110 = 5
21 . Thus, the first philosopher eats with a positive probability in the long-time

behaviour of the system. The argumentation for other philosophers is the same.
We can now calculate the main performance indices.

• The average recurrence time in the state s2, where all the forks are available, called the average system
run-through, is 1

ψ∗
2

= 11
2 = 5 1

2 .

• Nobody eats in the state s2. Then, the fraction of time when no philosophers dine is ψ∗
2 = 2

11 .

Only one philosopher eats in the states s3, s6, s7, s10, s11. Then, the fraction of time when only one
philosopher dines is ψ∗

3 + ψ∗
6 + ψ∗

7 + ψ∗
10 + ψ∗

11 = 1
10 + 1

10 + 1
10 + 1

10 + 1
10 = 1

2 .

Two philosophers eat together in the states s4, s5, s8, s9, s12. Then, the fraction of time when two philoso-
phers dine is ψ∗

4 + ψ∗
5 + ψ∗

8 + ψ∗
9 + ψ∗

12 = 7
110 + 7

110 + 7
110 + 7

110 + 7
110 = 7

22 .

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines
is 7

22 · 2
1 = 7

11 .

• The beginning of eating of first philosopher ({b1},
1
4) is only possible from the states s2, s6, s7. In each of

the states, the beginning of eating probability is the sum of the execution probabilities for all multisets of
activities containing ({b1},

1
4). Thus, the steady-state probability of the beginning of eating of first philoso-

pher is ψ∗
2

∑
{Γ|({b1},

1
4)∈Γ} PT

∗(Γ, s2) + ψ∗
6

∑
{Γ|({b1},

1
4)∈Γ} PT

∗(Γ, s6) + ψ∗
7

∑
{Γ|({b1},

1
4)∈Γ} PT

∗(Γ, s7) =
2
11

(
3
20 + 1

20 + 1
20

)
+ 1

10

(
3
11 + 1

11

)
+ 1

10

(
3
11 + 1

11

)
= 13

110 .

In Figure 38, the marked dts-boxes corresponding to the dynamic expressions of the dining philosophers are
presented, i.e. Ni = Boxdts(Ei) (1 ≤ i ≤ 5). In Figure 39, the marked dts-box corresponding to the dynamic
expression of the dining philosophers system is depicted, i.e. N = Boxdts(E).

10.2.2 The abstract system and its reductions

Let us consider a modification of the dining philosophers system with abstraction from personalities, i.e. such
that all the philosophers are indistinguishable. For example, we can just see that one or two philosophers dine
but cannot observe who they are. We call this system the abstract dining philosophers one. To implement the
abstraction, we replace the actions bi and ei (1 ≤ i ≤ 5) in the system specification by b and e, respectively.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Fi = [({xi},
1
2) ∗ ((({b, ŷi},

1
2); ({e, ẑi},

1
2))[]

(({yi+1},
1
2); ({zi+1},

1
2))) ∗ Stop]. The static expression of the philosopher 5 is F5 = [({a, x̂1, x̂2, x̂2, x̂4},

1
2) ∗

((({b, ŷ5},
1
2); ({e, ẑ5},

1
2))[](({y1},

1
2); ({z1},

1
2)))∗Stop]. The static expression of the abstract dining philosophers

system is F = (F1‖F2‖F3‖F4‖F5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4
sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(F) resembles DR(E), and TS∗(F) is similar to TS∗(E). We have DTMC∗(F) ≃ DTMC∗(E). Thus,
the TPM and the steady-state PMF for DTMC∗(F) and DTMC∗(E) coincide.

72

({a}, 1
32)

✍✌✎☞✉
❄

e

N

({e2},
1
4) ({e3},

1
4)

✍✌✎☞ ✍✌✎☞
({b2},

1
4)

✍✌✎☞x

({b3},
1
4)

✍✌✎☞✉ e✍✌✎☞✉ e

✍✌✎☞x ✍✌✎☞x

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

��✠ ❅❅❘

✠✍✕✖

✻✻

✍✌✎☞✉ e ✍✌✎☞✉ e

✍✌✎☞x ✍✌✎☞x

✍✌✎☞
❅❅❘

✠✖

✻
✍✌✎☞

��✠

✍✕

✻

({e1},
1
4)

✍✌✎☞
({b1},

1
4)

✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

��✠

✍✕

✻

({e4},
1
4)

✍✌✎☞
({b4},

1
4)

✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❅❅❘

✠✖

✻
✍✌✎☞

��✠

✍✕

✻

({e5},
1
4)

✍✌✎☞
({b5},

1
4)

✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❅❅❘

✠✖

✻
✍✌✎☞

❅❅❘

✠✖

✻

✫ ✪

✻

✛ ✘
❄

❄

✏✏✏✏✏✏✏✏✏✏✮

PPPPPPPPPPq

◗
◗
◗
◗◗s

✑
✑

✑
✑✑✰

PPPPPq
✏✏✏✏✏✮

❩
❩⑦

✚
✚❂

Figure 39: The marked dts-box of the dining philosophers system

The first performance index and the second group of the indices are the same for the standard and the
abstract systems. Let us consider the following performance index based on non-personalized viewpoint to the
philosophers.

• The beginning of eating of a philosopher ({b}, 14) is only possible from the states s2, s3, s6, s7, s10, s11. In
each of the states, the beginning of eating probability is the sum of the execution probabilities for all
multisets of activities containing ({b}, 14). Thus, the steady-state probability of the beginning of eating of
a philosopher is
ψ∗
2

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s2) + ψ∗
3

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s3) + ψ∗
6

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s6) +

ψ∗
7

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s7) + ψ∗
10

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s10) + ψ∗
11

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s11) =
2
11

(
3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+

1
4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
= 6

11 .

The marked dts-boxes corresponding to the dynamic expressions of the standard and the abstract dining
philosophers are similar, as well as the marked dts-boxes corresponding to the dynamic expression of the
standard and the abstract dining philosophers systems.

Let us consider a reduction of the abstract dining philosophers system. The static expression of the
philosopher 1 is F ′

1 = [({x}, 12) ∗ (({b}, 25); ({e}, 14)) ∗ Stop]. The static expression of the philosopher 2 is
F ′
2 = [({a, x̂}, 1

16) ∗ (({b}, 25); ({e}, 14)) ∗ Stop]. The static expression of the reduced abstract dining philosophers
system is F ′ = (F ′

1‖F
′
2) sy x rs x.

DR(F ′) consists of the equivalence classes

s′1 = [([({x}, 12) ∗ (({b}, 25)1; ({e}, 14)1) ∗ Stop]‖[({a, x̂}, 1
16) ∗ (({b}, 25)2; ({e}, 14)2) ∗ Stop]) sy x rs x]≈,

s′2 = [([({x}, 12) ∗ (({b}, 25)1; ({e}, 14)1) ∗ Stop]‖[({a, x̂}, 1
16) ∗ (({b}, 25)2; ({e}, 14)2) ∗ Stop]) sy x rs x]≈,

s′3 = [([({x}, 12) ∗ (({b}, 25)1; ({e}, 14)1) ∗ Stop]‖[({a, x̂}, 1
16) ∗ (({b}, 25)2; ({e}, 14)2) ∗ Stop]) sy x rs x]≈,

s′4 = [([({x}, 12) ∗ (({b}, 25)1; ({e}, 14)1) ∗ Stop]‖[({a, x̂}, 1
16) ∗ (({b}, 25)2; ({e}, 14)2) ∗ Stop]) sy x rs x]≈,

s′5 = [([({x}, 12) ∗ (({b}, 25)1; ({e}, 14)1) ∗ Stop]‖[({a, x̂}, 1
16) ∗ (({b}, 25)2; ({e}, 14)2) ∗ Stop]) sy x rs x]≈.

The states are interpreted as follows: s′1 is the initial state, s′2: the system is activated and no philosophers
dine, s′3, s

′
4: one philosopher dines, s′5: two philosophers dine.

Consider the equivalence R : F↔ssF
′ such that (DR(F) ∪ DR(F ′))/R = {H1,H2,H3,H4}, where H1 =

{s1, s′1} (the initial state), H2 = {s2, s′2} (the system is activated and no philosophers dine), H3 = {s3, s6, s7, s10,
s11, s

′
3, s

′
4} (one philosopher dines), H4 = {s4, s5, s8, s9, s12, s′5} (two philosophers dine). One can see that F ′ is

a reduction of F with respect to ↔ss.

73

✛
✚
✘
✙

TS∗(F ′)

s
′
1

✛
✚
✘
✙s′3

✛
✚
✘
✙s′4

✛
✚
✘
✙s

′
5

✛
✚
✘
✙s

′
2

❄

❄

✻

✲✛

�
�
�
�
�
��✒�
�

�
�

�
�✠ ❅

❅
❅

❅
❅

❅■

❅
❅

❅
❅

❅
❅❅■❅

❅
❅
❅
❅
❅❘ �

�
�
�
�
�✒�
�

�
�

�
��✠

❅
❅
❅
❅
❅
❅❅❘

({a}, 1
32

),1

({e}, 1
4
)1, 3

11
({b}, 2

5
)2, 3

8

({e}, 1
4
)2, 3

7
({b}, 2

5
)1, 6

11

({b}, 2
5
)1, 3

8
({e}, 1

4
)2, 3

11

({b}, 2
5
)2, 6

11
({e}, 1

4
)1, 3

7

{({b}, 2
5
)2,

({e}, 1
4
)1}, 2

11

{({b}, 2
5
)1,

({e}, 1
4
)2}, 2

11
{({e}, 1

4
)1,

({e}, 1
4
)2}, 1

7

{({b}, 2
5
)1,

({b}, 2
5
)2}, 1

4

Figure 40: The transition system without empty loops of the reduced abstract dining philosophers system

Table 11: Transient and steady-state probabilities of the reduced abstract dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′
1
∗
[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗
[k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ′
3
∗
[k] 0 0 0.3750 0.1753 0.2973 0.2195 0.2697 0.2372 0.2583 0.2446 0.2535 0.2500

ψ′
5
∗
[k] 0 0 0.2500 0.4091 0.2513 0.3628 0.2890 0.3371 0.3059 0.3261 0.3130 0.3182

In Figure 40, the transition system without empty loops TS∗(F ′) is presented. In Figure 41, the underlying
DTMC without empty loops DTMC∗(F ′) is depicted.

The TPM for DTMC∗(F ′) is

P′∗ =

0 1 0 0 0
0 0 3

8
3
8

1
4

0 3
11 0 2

11
6
11

0 3
11

2
11 0 6

11
0 1

7
3
7

3
7 0

.

In Table 11, the transient and the steady-state probabilities ψ′
i
∗
[k] (i ∈ {1, 2, 3, 5}) of the reduced abstract

dining philosophers system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 42,
the alteration diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider
the probabilities for the states s′1, s

′
2, s

′
3, s

′
5 only, since the corresponding values coincide for s′3, s

′
4.

The steady-state PMF for DTMC∗(F ′) is

ψ′∗ =

(
0,

2

11
,

1

4
,

1

4
,

7

22

)
.

We can now calculate the main performance indices.

74

✛
✚
✘
✙

DTMC∗(F ′)

s
′
1

✛
✚
✘
✙s

′
3

✛
✚
✘
✙s

′
4

✛
✚
✘
✙s′5

✛
✚
✘
✙s′2

❄

❄

✻

✲✛

�
�
�
�
�
��✒�
�

�
�

�
�✠ ❅

❅
❅

❅
❅

❅■

❅
❅

❅
❅

❅
❅❅■❅

❅
❅
❅
❅
❅❘ �

�
�
�
�
�✒�
�

�
�

�
��✠

❅
❅
❅
❅
❅
❅❅❘

1

3
11

3
8

3
7

6
11

3
8

3
11

6
11

3
7

2
11

2
11

1
7

1
4

Figure 41: The underlying DTMC without empty loops of the reduced abstract dining philosophers system

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ5’*@kD

Ψ3’*@kD

Ψ2’*@kD

Ψ1’*@kD

Figure 42: Transient probabilities alteration diagram of the reduced abstract dining philosophers system

75

({x}, 12)

✍✌✎☞✉ e
N ′

1

({e}, 14) ({e}, 14)

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b},25)

✍✌✎☞x

✥

✦

★

✧✠ ✍

✲ ✛

({b}, 25)
❄

❄

❄

❄

✍✌✎☞✉ e

✍✌✎☞x

({a,x̂}, 1
16)

N ′
2

❄

❄

❄

❄

Figure 43: The marked dts-boxes of the reduced abstract dining philosophers

• The average recurrence time in the state s′2, where all the forks are available, called the average system
run-through, is 1

ψ′
2
∗ = 11

2 = 5 1
2 .

• Nobody eats in the state s′2. Then, the fraction of time when no philosophers dine is ψ′
2
∗ = 2

11 .

Only one philosopher eats in the states s′3, s
′
4. Then, the fraction of time when only one philosopher dines

is ψ′
3
∗

+ ψ′
4
∗

= 1
4 + 1

4 = 1
2 .

Two philosophers eat together in the state s′5. Then, the fraction of time when two philosophers dine is
ψ′
5
∗

= 7
22 .

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines
is 7

22 · 2
1 = 7

11 .

• The beginning of eating of a philosopher ({b}, 25) is only possible from the states s′2, s
′
3, s

′
4. In each of

the states, the beginning of eating probability is the sum of the execution probabilities for all multisets
of activities containing ({b}, 25). Thus, the steady-state probability of the beginning of eating of a philoso-
pher is ψ′

2
∗ ∑

{Γ|({b}, 25)∈Γ} PT
∗(Γ, s′2) + ψ′

3
∗ ∑

{Γ|({b}, 25)∈Γ} PT
∗(Γ, s′3) + ψ′

4
∗ ∑

{Γ|({b}, 25)∈Γ} PT
∗(Γ, s′4) =

2
11

(
3
8 + 3

8 + 1
4

)
+ 1

4

(
6
11 + 2

11

)
+ 1

4

(
6
11 + 2

11

)
= 6

11 .

One can see that the performance indices are the same for the complete and the reduced abstract dining
philosophers systems. The coincidence of the first performance index, as well as the second group of indices
obviously illustrates the result of Proposition 8.1. The coincidence of the third performance index is due to
Theorem 8.2: one should just apply its result to the step traces {{b}}, {{b}, {b}}, {{b}, {e}} of the expressions
F and F ′, and then sum the left and right parts of the three resulting equalities.

In Figure 43, the marked dts-boxes corresponding to the dynamic expressions of the reduced abstract dining
philosophers are presented, i.e. N ′

i = Boxdts(F ′
i) (1 ≤ i ≤ 2). In Figure 44, the marked dts-box corresponding

to the dynamic expression of the reduced abstract dining philosophers system is depicted, i.e. N ′ = Boxdts(F ′).
Note that TS∗(F ′) can be reduced further by merging the equivalent states s′3 and s′4, thus, it can be

transformed into a transition system with four states only. But the resulting reduction of the initial transition
system TS∗(F) will not correspond to some dtsPBC expression anymore.

We have DR(F)/Rss(F) = {K1,K2,K3,K4}, where K1 = {s1} (the initial state), K2 = {s2} (the system is

activated and no philosophers dine), K3 = {s3, s6, s7, s10, s11} (one philosopher dines), K4 = {s4, s5, s8, s9, s12}
(two philosophers dine).

In Figure 45, the quotient transition system without empty loops TS∗
↔ss

(F) is presented. In Figure 46, the

quotient underlying DTMC without empty loops DTMC∗
↔ss

(F) is depicted.

The TPM for DTMC∗
↔ss

(F) is

76

({a}, 1
32)

✍✌✎☞✉ e
N ′

({e}, 14)1 ({e}, 14)2

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 25)1

❏
❏❫

✁
✁☛

✍✌✎☞x

✥

✦

★

✧✠ ✍

✲ ✛

({b}, 25)2

❄

❄

❄

❄

✍✌✎☞✉ e
✓✓✴❙❙✇

✍✌✎☞x
Figure 44: The marked dts-box of the reduced abstract dining philosophers system

✛
✚
✘
✙

TS∗
↔ss

(F)

K1

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

❄

❄

✻

❅
❅

❅
❅

❅
❅■

�
�
�
�
�
�✒�
�

�
�

�
��✠

❅
❅
❅
❅
❅
❅❅❘

{a},1

{b}, 34

{b}, 6
11

{e}, 3
11

{e}, 67

{{e},{e}}, 17

{{b},{b}}, 14✞✝✲
{{b},{e}}, 2

11

Figure 45: The quotient transition system without empty loops of the abstract dining philosophers system

77

✛
✚
✘
✙

DTMC∗
↔ss

(F)

K1

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

❄

❄

✻

❅
❅

❅
❅

❅
❅■

�
�
�
�
�
�✒�
�

�
�

�
��✠

❅
❅
❅
❅
❅
❅❅❘

1

3
4

6
11

3
11

6
7

1
7

1
4

✞✝✲
2
11

Figure 46: The quotient underlying DTMC without empty loops of the abstract dining philosophers system

Table 12: Transient and steady-state probabilities of the quotient abstract dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′′
1
∗
[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′′
2
∗
[k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ′′
3
∗
[k] 0 0 0.7500 0.3506 0.5946 0.4391 0.5394 0.4745 0.5165 0.4893 0.5069 0.5000

ψ′′
4
∗
[k] 0 0 0.2500 0.4091 0.2513 0.3628 0.2890 0.3371 0.3059 0.3261 0.3130 0.3182

P′′∗ =

0 1 0 0
0 0 3

4
1
4

0 3
11

2
11

6
11

0 1
7

6
7 0

 .

In Table 12, the transient and the steady-state probabilities ψ′′
i
∗
[k] (1 ≤ i ≤ 4) of the quotient abstract

dining philosophers system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 47,
the alteration diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF for DTMC∗
↔ss

(F) is

ψ′′∗ =

(
0,

2

11
,

1

2
,

7

22

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state K2, where all the forks are available, called the average system
run-through, is 1

ψ′′
2

∗ = 11
2 = 5 1

2 .

• Nobody eats in the state K2. Then, the fraction of time when no philosophers dine is ψ′′
2
∗

= 2
11 .

78

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ4’’ *@kD

Ψ3’’ *@kD

Ψ2’’ *@kD

Ψ1’’ *@kD

Figure 47: Transient probabilities alteration diagram of the quotient abstract dining philosophers system

Only one philosopher eats in the state K3. Then, the fraction of time when only one philosopher dines is
ψ′′
3
∗

= 1
2 .

Two philosophers eat together in the state K4. Then, the fraction of time when two philosophers dine is
ψ′′
4
∗

= 7
22 .

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines
is 7

22 · 2
1 = 7

11 .

• The beginning of eating of a philosopher {b} is only possible from the states K2,K3. In each of the
states, the beginning of eating probability is the sum of the execution probabilities for all multisets of
multiactions containing {b}. Thus, the steady-state probability of the beginning of eating of a philosopher
is ψ′′

2
∗ ∑

{A,K|{b}∈A, K2
A
→→K}

PM∗
A(K2,K) + ψ′′

3
∗ ∑

{A,K|{b}∈A, K3
A
→→K}

PM∗
A(K3,K) = 2

11

(
3
4 + 1

4

)
+

1
2

(
6
11 + 2

11

)
= 6

11 .

One can see that the performance indices are the same for the complete and the quotient abstract dining
philosophers systems. The explanation of this fact is just the same as that presented earlier for the complete
and the reduced abstract dining philosophers systems.

10.2.3 The generalized system

Let us determine which is the influence of the multiaction probabilities from specification of the dining philoso-
phers system on its performance. Suppose that all the mentioned multiactions have the same generalized
probability ρ ∈ (0; 1). The resulting specification K of the generalized dining philosophers system is defined as
follows.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Ki = [({xi}, ρ) ∗ ((({bi, ŷi}, ρ); ({ei, ẑi}, ρ))[]
(({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop]. The static expression of the philosopher 5 is K5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗
((({b5, ŷ5}, ρ); ({e5, ẑ5}, ρ))[](({y1}, ρ); ({z1}, ρ)))∗Stop]. The static expression of the generalized dining philoso-
phers system is K = (K1‖K2‖K3‖K4‖K5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4
sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(K) consists of the 12 states which are interpreted as follows: s̃1 is the initial state, s̃2: the system is
activated and no philosophers dine, s̃3: philosopher 1 dines, s̃4: philosophers 1 and 4 dine, s̃5: philosophers 1
and 3 dine, s̃6: philosopher 4 dines, s̃7: philosopher 3 dines, s̃8: philosophers 2 and 4 dine, s̃9: philosophers 3
and 5 dine, s̃10: philosopher 2 dines, s̃11: philosopher 5 dines, s̃12: philosophers 2 and 5 dine.

The TPM for DTMC∗(K) is

79

P̃∗ =

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1−ρ2

5
ρ2

5
ρ2

5
1−ρ2

5
1−ρ2

5
ρ2

5
ρ2

5
1−ρ2

5
1−ρ2

5
ρ2

5

0 1−ρ2

3−ρ2 0 1−ρ2

3−ρ2
1−ρ2

3−ρ2
ρ2

3−ρ2
ρ2

3−ρ2 0 0 0 0 0

0 ρ2

2−ρ2
1−ρ2

2−ρ2 0 0 1−ρ2

2−ρ2 0 0 0 0 0 0

0 ρ2

2−ρ2
1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0 0 0 0

0 1−ρ2

3−ρ2
ρ2

3−ρ2
1−ρ2

3−ρ2 0 0 0 1−ρ2

3−ρ2 0 ρ2

3−ρ2 0 0

0 1−ρ2

3−ρ2
ρ2

3−ρ2 0 1−ρ2

3−ρ2 0 0 0 1−ρ2

3−ρ2 0 ρ2

3−ρ2 0

0 ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0

0 ρ2

2−ρ2 0 0 0 0 1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0

0 1−ρ2

3−ρ2 0 0 0 ρ2

3−ρ2 0 1−ρ2

3−ρ2 0 0 ρ2

3−ρ2
1−ρ2

3−ρ2

0 1−ρ2

3−ρ2 0 0 0 0 ρ2

3−ρ2 0 1−ρ2

3−ρ2
ρ2

3−ρ2 0 1−ρ2

3−ρ2

0 ρ2

2−ρ2 0 0 0 0 0 0 0 1−ρ2

2−ρ2
1−ρ2

2−ρ2 0

.

The steady-state PMF for DTMC∗(K) is

ψ̃∗ =

(
0,

1

2(3 − ρ2)
,

1

10
,

2 − ρ2

10(3 − ρ2)
,

2 − ρ2

10(3 − ρ2)
,

1

10
,

1

10
,

2 − ρ2

10(3 − ρ2)
,

2 − ρ2

10(3 − ρ2)
,

1

10
,

1

10
,

2 − ρ2

10(3 − ρ2)

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where all the forks are available, called the average system
run-through, is 1

ψ̃∗
2

= 2(3 − ρ2).

• Nobody eats in the state s̃2. Then, the fraction of time when no philosophers dine is ψ̃∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the states s̃3, s̃6, s̃7, s̃10, s̃11. Then, the fraction of time when only one
philosopher dines is ψ̃∗

3 + ψ̃∗
6 + ψ̃∗

7 + ψ̃∗
10 + ψ̃∗

11 = 1
10 + 1

10 + 1
10 + 1

10 + 1
10 = 1

2 .

Two philosophers eat together in the states s̃4, s̃5, s̃8, s̃9, s̃12. Then, the fraction of time when two philoso-

phers dine is ψ̃∗
4 + ψ̃∗

5 + ψ̃∗
8 + ψ̃∗

9 + ψ̃∗
12 = 2−ρ2

10(3−ρ2) + 2−ρ2

10(3−ρ2) + 2−ρ2

10(3−ρ2) + 2−ρ2

10(3−ρ2) + 2−ρ2

10(3−ρ2) = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines

is 2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .

• The beginning of eating of first philosopher ({b1}, ρ2) is only possible from the states s̃2, s̃6, s̃7. In each of
the states, the beginning of eating probability is the sum of the execution probabilities for all multisets of
activities containing ({b1}, ρ2). Thus, the steady-state probability of the beginning of eating of first philoso-
pher is ψ̃∗

2

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
6

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s̃6) + ψ̃∗
7

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s̃7) =

1
2(3−ρ2)

(
1−ρ2

5 + ρ2

5 + ρ2

5

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2

)
= 3+ρ2

10(3−ρ2) .

10.2.4 The abstract generalized system and its reductions

Let us consider a modification of the generalized dining philosophers system with abstraction from personalities.
We call this system the abstract generalized dining philosophers one.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Li = [({xi}, ρ) ∗ ((({b, ŷi}, ρ); ({e, ẑi}, ρ))[]
(({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop]. The static expression of the philosopher 5 is L5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗
((({b, ŷ5}, ρ); ({e, ẑ5}, ρ))[](({y1}, ρ); ({z1}, ρ))) ∗ Stop]. The static expression of the abstract generalized dining
philosophers system is L = (L1‖L2‖L3‖L4‖L5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3
sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(L) resembles DR(K), and TS∗(L) is similar to TS∗(K). We have DTMC∗(L) ≃ DTMC∗(K). Thus,
the TPM and the steady-state PMF for DTMC∗(L) and DTMC∗(K) coincide.

The first performance index and the second group of the indices are the same for the generalized system and
its abstract modification. Let us consider the following performance index based on non-personalized viewpoint
to the philosophers.

• The beginning of eating of a philosopher ({b}, ρ2) is only possible from the states s̃2, s̃3, s̃6, s̃7, s̃10, s̃11.
In each of the states, the beginning of eating probability is the sum of the execution probabilities for all

80

multisets of activities containing ({b}, ρ2). Thus, the steady-state probability of the beginning of eating of
a philosopher is
ψ̃∗
2

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
3

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃3) + ψ̃∗
6

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃6) +

ψ̃∗
7

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃7) + ψ̃∗
10

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃10) + ψ̃∗
11

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃11) =

1
2(3−ρ2)

(
1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
= 3

2(3−ρ2) .

Let us consider a reduction of the abstract generalized dining philosophers system. The static expression of

the philosopher 1 is L′
1 = [({x}, ρ) ∗ (({b}, 2ρ2

1+ρ2); ({e}, ρ2)) ∗ Stop]. The static expression of the philosopher 2

is L′
2 = [({a, x̂}, ρ4) ∗ (({b}, 2ρ2

1+ρ2); ({e}, ρ2)) ∗ Stop]. The static expression of the reduced abstract generalized

dining philosophers system is L′ = (L′
1‖L

′
2) sy x rs x.

DR(L′) consists of the 5 states which are interpreted as follows: s̃′1 is the initial state, s̃′2: the system is
activated and no philosophers dine, s̃′3, s̃

′
4: one philosopher dines, s̃′5: two philosophers dine.

Consider the equivalence R : L↔ssL
′ such that (DR(L) ∪ DR(L′))/R = {H̃1, H̃2, H̃3, H̃4}, where H̃1 =

{s̃1, s̃′1} (the initial state), H̃2 = {s̃2, s̃′2} (the system is activated and no philosophers dine), H̃3 = {s̃3, s̃6, s̃7, s̃10,

s̃11, s̃
′
3, s̃

′
4} (one philosopher dines), H̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12, s̃′5} (two philosophers dine). One can see that L′ is

a reduction of L with respect to ↔ss.
The TPM for DTMC∗(L′) is

P̃′∗ =

0 1 0 0 0

0 0 1−ρ2

2
1−ρ2

2 ρ2

0 1−ρ2

3−ρ2 0 2ρ2

3−ρ2
2(1−ρ2)
3−ρ2

0 1−ρ2

3−ρ2
2ρ2

3−ρ2 0 2(1−ρ2)
3−ρ2

0 ρ2

2−ρ2
1−ρ2

2−ρ2
1−ρ2

2−ρ2 0

.

The steady-state PMF for DTMC∗(L′) is

ψ̃′∗ =

(
0,

1

2(3 − ρ2)
,

1

4
,

1

4
,

2 − ρ2

2(3 − ρ2)

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state s̃′2, where all the forks are available, called the average system
run-through, is 1

ψ̃′∗
2

= 2(3 − ρ2).

• Nobody eats in the state s̃′2. Then, the fraction of time when no philosophers dine is ψ̃′∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the states s̃′3, s̃
′
4. Then, the fraction of time when only one philosopher dines

is ψ̃′∗
3 + ψ̃′∗

4 = 1
4 + 1

4 = 1
2 .

Two philosophers eat together in the state s̃′5. Then, the fraction of time when two philosophers dine is

ψ̃′∗
5 = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines

is 2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .

• The beginning of eating of a philosopher ({b}, 2ρ2

1+ρ2) is only possible from the states s̃′2, s̃
′
3, s̃

′
4. In each of the

states, the beginning of eating probability is the sum of the execution probabilities for all multisets of ac-

tivities containing ({b}, 2ρ2

1+ρ2). Thus, the steady-state probability of the beginning of eating of a philosopher

is ψ̃′∗
2

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′2)+ψ̃′∗
3

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′3)+ψ̃′∗
4

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′4) =

1
2(3−ρ2)

(
1−ρ2

2 + 1−ρ2

2 + ρ2
)

+ 1
4

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
+ 1

4

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
= 3

2(3−ρ2) .

One can see that the performance indices are the same for the complete and the reduced abstract generalized
dining philosophers systems. The coincidence of the first performance index, as well as the second group of
indices obviously illustrates the result of Proposition 8.1. The coincidence of the third performance index is
due to Theorem 8.2: one should just apply its result to the step traces {{b}}, {{b}, {b}}, {{b}, {e}} of the
expressions L and L′, and then sum the left and right parts of the three resulting equalities.

81

Note that TS∗(L′) can be reduced further by merging the equivalent states s̃′3 and s̃′4, thus, it can be
transformed into a transition system with four states only. But the resulting reduction of the initial transition
system TS∗(L) will not correspond to some dtsPBC expression anymore.

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4}, where K̃1 = {s̃1} (the initial state), K̃2 = {s̃2} (the system is

activated and no philosophers dine), K̃3 = {s̃3, s̃6, s̃7, s̃10, s̃11} (one philosopher dines), K̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12}
(two philosophers dine).

The TPM for DTMC∗
↔ss

(L) is

P̃′′∗ =

0 1 0 0
0 0 1 − ρ2 ρ2

0 1−ρ2

3−ρ2
2ρ2

3−ρ2
2(1−ρ2)
3−ρ2

0 ρ2

2−ρ2
2(1−ρ2)
2−ρ2 0

 .

The steady-state PMF for DTMC∗
↔ss

(L) is

ψ̃′′∗ =

(
0,

1

2(3 − ρ2)
,

1

2
,

2 − ρ2

2(3 − ρ2)

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where all the forks are available, called the average system
run-through, is 1

ψ̃′′∗
2

= 2(3 − ρ2).

• Nobody eats in the state K̃2. Then, the fraction of time when no philosophers dine is ψ̃′′∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the state K̃3. Then, the fraction of time when only one philosopher dines is
ψ̃′′∗
3 = 1

2 .

Two philosophers eat together in the state K̃4. Then, the fraction of time when two philosophers dine is

ψ̃′′∗
4 = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines

is 2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .

• The beginning of eating of a philosopher {b} is only possible from the states K̃2, K̃3. In each of the
states, the beginning of eating probability is the sum of the execution probabilities for all multisets of
multiactions containing {b}. Thus, the steady-state probability of the beginning of eating of a philosopher is

ψ̃′′∗
2

∑
{A,K̃|{b}∈A, K̃2

A
→→K̃}

PM∗
A(K̃2, K̃) + ψ̃′′∗

3

∑
{A,K̃|{b}∈A, K̃3

A
→→K̃}

PM∗
A(K̃3, K̃) = 1

2(3−ρ2) ((1− ρ2) + ρ2) +

1
2

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
= 3

2(3−ρ2) .

One can see that the performance indices are the same for the complete and the quotient abstract generalized
dining philosophers systems. The explanation of this fact is just the same as that presented earlier for the
complete and the reduced abstract generalized dining philosophers systems.

Let us consider what is the effect of quantitative changes of the parameter ρ upon performance of the quotient
abstract generalized dining philosophers system in its steady state. Remember that ρ ∈ (0; 1) is the probability
of every multiaction in the specification of the system. The closer is ρ to 0, the less is the probability to execute
some activities at every discrete time tick, hence, the system will most probably stand idle. The closer is ρ to
1, the greater is the probability to execute some activities at every discrete time tick, hence, the system will
most probably operate.

The steady-state probabilities ψ̃′′∗
1 = 0 and ψ̃′′∗

3 = 1
2 are constants. Therefore, only ψ̃′′∗

2 = 1
2(3−ρ2) and

ψ̃′′∗
4 = 2−ρ2

2(3−ρ2) depend on ρ. Note that ψ̃′′∗
2 + ψ̃′′∗

4 = 1
2(3−ρ2) + 2−ρ2

2(3−ρ2) = 1
2 , hence, the sum of these steady-

state probabilities does not depend on ρ. This fact has the interpretation in terms of performance indices: the
fraction of time when no or two philosophers dine coincides with that when only one philosopher dines, and
both fractions are equal to 1

2 .

In Figure 48, the plots of ψ̃′′∗
2 and ψ̃′′∗

4 as functions of ρ are depicted. The diagrams are symmetric with
respect to the constant probability 1

4 . One can see that, the more is value of ρ, the less is difference between

ψ̃′′∗
2 and ψ̃′′∗

4 . Since ψ̃′′∗
4 − ψ̃′′∗

2 = 2−ρ2

2(3−ρ2) −
1

2(3−ρ2) = 1−ρ2

2(3−ρ2) , the difference tends to 1
6 when ρ approaches 0,

whereas it tends to 0 when ρ approaches 1. Notice that, however, we do not allow ρ = 0 or ρ = 1. The difference
can be treated as that between the fractions of time when two and when no philosophers dine.

82

0.2 0.4 0.6 0.8 1.0
Ρ

0.05

0.10

0.15

0.20

0.25

0.30

Ψ
�

4
²*

Ψ
�

2
²*

Figure 48: Steady-state probabilities ψ̃′′∗
2 and ψ̃′′∗

4 as functions of the parameter ρ

From the performance viewpoint, it is more interesting is to consider the expression ψ̃′′∗
3 + ψ̃′′∗

4 − ψ̃′′∗
2 =

1
2 + 2−ρ2

2(3−ρ2) − 1
2(3−ρ2) = 2−ρ2

3−ρ2 . Its value tends to 2
3 when ρ approaches 0, whereas it tends to 1

2 when ρ

approaches 1. The value can be interpreted as the difference between the fractions of time when some (one or
two) and when no philosophers dine. Thus, when ρ is closer to 0, more time is spent for eating and less time
remains for thinking, i.e. dining is preferred. When ρ is closer to 1, the situation is symmetric, i.e. thinking is
preferred.

The influence of value ρ to the main performance indices presented before is investigated according to the
same pattern as above.

11 Conclusion

In this paper, we have considered a discrete time stochastic extension dtsPBC of a finite part of PBC enriched
with iteration. The calculus has a concurrent step operational semantics based on transition systems and a
denotational semantics in terms of a subclass of LDTSPNs. Within the context of dtsPBC with iteration, we
have defined a number of stochastic algebraic equivalences which have natural net analogues on LDTSPNs.
The equivalences abstract from empty loops in transition systems corresponding to dynamic expressions. The
diagram of interrelations for the algebraic equivalences has been constructed. We have explained how one can
reduce transition systems and DTMCs, as well as expressions and dts-boxes modulo the stochastic equivalences.
We have presented a logical characterization of the stochastic bisimulation equivalences. An application of the
equivalences to comparison of the stationary behaviour has been demonstrated, and we have found which of the
equivalences we proposed guarantee identity of the stationary behaviour in the equivalence classes. We have
proved that the weakest of the relations having this property is the step stochastic bisimulation equivalence. A
congruence relation has been proposed.

A method of modeling, performance evaluation and performance preserving reduction of concurrent stochas-
tic systems was proposed based on steady-state probabilities analysis. The transition systems and underlying
DTMCs of expressions were reduced w.r.t. step stochastic bisimulation equivalence that guarantees identity
of the stationary behaviour and thus preserves performance measures. The method was applied to the shared
memory system and dining philosophers system, as well as to their generalized versions with a variable prob-
ability of activities. This probability was interpreted as a parameter of the performance index functions. The
influence of the parameter value to the systems’ performance was analyzed with the goal of optimization.

The advantage of our framework is twofold. First, one can specify in it concurrent composition and synchro-
nization of (multi)actions, whereas this is not possible in classical Markov chains. Second, algebraic formulas
represent processes in a more compact way than Petri nets and allow one to apply syntactic transformations
and comparisons. Process algebras are compositional by definition and their operations naturally correspond
to operators of programming languages. Hence, it is much easier to construct a complex model in the algebraic
setting than in PNs. The complexity of PNs generated for practical models in the literature demonstrates that it
is not straightforward to construct such PNs directly from the system specifications. dtsPBC is well suited for

83

the discrete time applications, whose discrete states change with a global time tick, such as business processes,
neural and transportation networks, computer and communication systems, timed web services [150], as well
as for those, in which the distributed architecture or the concurrency level should be preserved while modeling
and analysis (remember that, in step semantics, we have additional transitions due to concurrent executions).

Future work consists in abstracting from the silent activities in the definitions of the equivalences, i.e. from
the activities with empty multiaction part. The abstraction from empty loops and that from silent activities
could be done in one step as well. The main point here is that we should collect probabilities during such
abstractions from an internal activity. As a result, we shall have the algebraic analogues of the net stochastic
equivalences from [36,37]. Moreover, we plan to extend dtsPBC with recursion to enhance specification power
of the calculus.

References

[1] van der Aalst W.M.P., van Hee K.M., Reijers H.A. Analysis of discrete-time stochastic Petri nets.
Statistica Neerlandica 54(2), p. 237–255, 2000,
http://tmitwww.tm.tue.nl/staff/hreijers/H.A. Reijers Bestanden/Statistica.pdf.

[2] Andova S. Process algebra with probabilistic choice. Lecture Notes in Computer Science 1601, p. 111–129,
1999.

[3] Autant C., Schnoebelen Ph. Place bisimulations in Petri nets. Lecture Notes in Computer Science
616, p. 45–61, June 1992.

[4] Bravetti M., D’Argenio P.R. Tutte le algebre insieme: concepts, discussions and relations of stochastic
process algebras with general distributions. Lecture Notes in Computer Science 2925, p. 44–88, 2004,
http://www.cs.unibo.it/~bravetti/papers/voss03.ps.

[5] Baier C. Polynomial time algorithms for testing probabilistic bisimulation and simulation. Lecture Notes
in Computer Science 1102, p. 50–61, 1996, http://www.inf.tu-dresden.de/content/institutes/thi/
algi/publikationen/texte/27_00_old.pdf.

[6] Balbo G. Introduction to stochastic Petri nets. Lecture Notes in Computer Science 2090, p. 84–155, 2001.

[7] Balbo G. Introduction to generalized stochastic Petri nets. Lecture Notes in Computer Science 4486,
p. 83–131, 2007.

[8] Baarir S., Beccuti M., Dutheillet C., Franceschinis G., Haddad S. Lumping partially symmetric
stochastic models. Performance Evaluation 68, p. 21–44, 2011.

[9] Bravetti M., Bernardo M., Gorrieri R. Towards performance evaluation with general distributions
in process algebras. Lecture Notes in Computer Science 1466, p. 405–422, September 1998,
http://www.cs.unibo.it/~bravetti/papers/concur98.ps.

[10] Best E., Devillers R., Esparza J. General refinement and recursion operations in the box calculus.
Lecture Notes in Computer Science 665, p. 130–140, 1993.

[11] Bernardo M., Donatiello L., Gorrieri R. A formal approach to the integration of performance
aspects in the modeling and analysis of concurrent systems. Information and Computation 144(2), p.
83–154, August 1998, http://www.sti.uniurb.it/bernardo/documents/ic144.pdf.

[12] Best E., Devillers R., Hall J.G. The box calculus: a new causal algebra with multi-label communica-
tion. Lecture Notes in Computer Science 609, p. 21–69, 1992.

[13] Best E., Devillers R., Koutny M. Petri nets, process algebras and concurrent programming languages.
Lecture Notes in Computer Science 1492, p. 1–84, 1998, http://parsys.informatik.uni-oldenburg.de/
~best/publications/apnf.ps.gz.

[14] Best E., Devillers R., Koutny M. The box algebra: a model of nets and process expressions. Lecture
Notes in Computer Science 1639, p. 344–363, 1999.

[15] Best E., Devillers R., Koutny M. Petri net algebra. EATCS Monographs on Theoretical Computer
Science, 378 p., Springer Verlag, 2001.

84

[16] Best E., Devillers R., Koutny M. A unified model for nets and process algebras. In: Handbook of
Process Algebra, Chapter 14, p. 873–944, (Bergstra J.A., Ponse A., Smolka S.A., eds.), Elsevier Science
B.V., Amsterdam, The Netherlands, 2001, http://parsys.informatik.uni-oldenburg.de/~best/
publications/handbook.ps.gz.

[17] Best E., Devillers R., Koutny M. Recursion and Petri nets. Acta Informatica 37(11–12), p. 781–829,
2001, http://parsys.informatik.uni-oldenburg.de/~best/publications/bdk-recursion.ps.gz.

[18] Best E., Devillers R., Koutny M. The box algebra = Petri nets + process expressions. Information
and Computation 178, p. 44–100, 2002.

[19] Baier C., Engelen B., Majster-Cederbaum M. Deciding bisimilarity and similarity for probabilistic
processes. Journal of Computer and System Sciences 60(1), p. 187–231, Elsevier, February 2000.

[20] Bernardo M. Theory and application of extended Markovian process algebra. Ph.D. thesis, 276 p., Uni-
versity of Bologna, Italy, February 1999, http://www.sti.uniurb.it/bernardo/documents/
phdthesis.pdf.

[21] Bernardo M. A survey of Markovian behavioral equivalences. Lecture Notes in Computer Science 4486,
p. 180–219, 2007, http://www.sti.uniurb.it/bernardo/documents/sfm07pe.pdf.

[22] Best E. COSY and its relationship to CSP. Lecture Notes in Computer Science 255, p. 416–440, 1986.

[23] Bernardo M., Gorrieri R. A tutorial on EMPA: a theory of concurrent processes with nondeterminism,
priorities, probabilities and time. Theoretical Computer Science 202, p. 1–54, July 1998,
http://www.sti.uniurb.it/bernardo/documents/tcs202.pdf.

[24] Baier C., Hermanns H. Weak bisimulation for fully probabilistic processes. Lecture Notes in Computer
Science 1254, p. 119–130, 1997, http://web.informatik.uni-bonn.de/l/baier/papers/BH97.ps.

[25] Baier C., Hermanns H., Katoen J.-P., Wolf V. Comparative branching-time semantics for Markov
chains. Lecture Notes in Computer Science 2761, p. 492–507, 2003, http://www.inf.tu-dresden.de/
content/institutes/thi/algi/publikationen/texte/11_00.pdf.

[26] Bergstra J.A., Klop J.W. Algebra of communicating processes with abstraction. Theoretical Computer
Science 37, p. 77–121, 1985.

[27] Buchholz P., Kemper P. Quantifying the dynamic behavior of process algebras. Lecture Notes in Com-
puter Science 2165, p. 184–199, 2001.

[28] Brinksma E., Katoen J.-P., Langerak R., Latella D. A stochastic causality-based process algebra.
The Computer Journal 38(7), p. 552–565, 1995, http://eprints.eemcs.utwente.nl/6387/01/
552.pdf.

[29] Best E., Koutny M. A refined view of the box algebra. Lecture Notes in Computer Science 935, p. 1–20,
1995.

[30] Best E., Koutny M. Solving recursive net equations. Lecture Notes in Computer Science 944, p. 605–623,
1995.

[31] Bause F., Kritzinger P.S. Stochastic Petri nets: an introduction to the theory. Vieweg Verlag, 2nd

edition, 218 p., 2002, http://ls4-www.cs.tu-dortmund.de/cms/de/home/bause/bause_kritzinger_
spn_book_print.pdf.

[32] Best E., Linde-Göers H.G. Compositional process semantics of Petri boxes. Lecture Notes in Computer
Science 802, p. 250–270, 1993.

[33] Bloom B., Meyer A. A remark on bisimulation between probabilistic processes. Lecture Notes in Com-
puter Science 363, p. 26–40, 1989.

[34] Bravetti M. Specification and analysis of stochastic real-time systems. Ph.D. thesis, 432 p., University of
Bologna, Italy, February 2002, http://www.cs.unibo.it/~bravetti/papers/phdthesis.ps.gz.

[35] Brinksma E., Hermanns H. Process algebra and Markov chains. Lecture Notes in Computer Science
2090, p. 183–231, 2001.

85

[36] Buchholz P., Tarasyuk I.V. A class of stochastic Petri nets with step semantics and related equivalence
notions. Technische Berichte TUD-FI00-12, 18 p., Fakultät Informatik, Technische Universität Dresden,
Germany, November 2000, ftp://ftp.inf.tu-dresden.de/pub/berichte/tud00-12.ps.gz.

[37] Buchholz P., Tarasyuk I.V. Net and algebraic approaches to probabilistic modeling. Joint Novosibirsk
Computing Center and Institute of Informatics Systems Bulletin, Series Computer Science 15, p. 31–64,
Novosibirsk, 2001, http://itar.iis.nsk.su/files/itar/pages/spnpancc.pdf.

[38] Buchholz P., Tarasyuk I.V. Equivalences for stochastic Petri nets and stochastic process algebras.
Vestnik, Quartal Journal of Novosibirsk State University, Series: Mathematics, Mechanics and Informatics
6(1), p. 14–42, Novosibirsk State University, Novosibirsk, 2006 (in Russian),
http://itar.iis.nsk.su/files/itar/pages/vestnik06.pdf.

[39] Buchholz P. Markovian process algebra: composition and equivalence. In: Herzog U. and Rettelbach M.,
editors, Proceedings of 2nd Workshop on Process Algebras and Performance Modelling, Arbeitsberichte
des IMMD 27, p. 11–30, University of Erlangen, Germany, 1994.

[40] Buchholz P. Equivalence relations for stochastic automata networks. In: W.J. Stewart, ed., Computation
with Markov Chains, p. 197–216, Kluwer Academic Publishers, USA, 1995.

[41] Buchholz P. A notion of equivalence for stochastic Petri nets. Lecture Notes in Computer Science 935,
p. 161–180, 1995.

[42] Buchholz P. Iterative decomposition and aggregation of labeled GSPNs. Lecture Notes in Computer Sci-
ence 1420, p. 226–245, 1998.

[43] Christoff I. Testing equivalence and fully abstract models of probabilistic processes. Lecture Notes in
Computer Science 458, p. 126–140, 1990.

[44] Cattani S., Segala R. Decision algorithms for probabilistic bisimulation. Lecture Notes in Computer
Science 2421, p. 371–385, 2002, http://www.cs.bham.ac.uk/~dxp/papers/CS02.pdf,
http://qav.cs.ox.ac.uk/papers/CS02.pdf.

[45] Daws C. Symbolic and parametric model checking of discrete-time Markov chains. Proceedings of 1st In-
ternational Colloquium on Theoretical Aspects of Computing - 04 (ICTAC’04), Lecture Notes in Computer
Science 3407, p. 280–294, 2005.

[46] Devillers R. Construction of S-invariants and S-components for refined Petri boxes. Lecture Notes in
Computer Science 691, p. 242–261, 1993.

[47] Devillers R. S-invariant analysis of general recursive Petri boxes. Acta Informatica 32(4), p. 313–345,
1995.

[48] Devillers R. Petri boxes and finite processes. Lecture Notes in Computer Science 1119, p. 465–480, 1996.

[49] Derisavi S., Hermanns H., Sanders W.H. Optimal state-space lumping of Markov chains. Information
Processing Letters 87(6), p. 309–315, 2003.

[50] Degano P., Priami C. Non-interleaving semantics for mobile processes. Theoretical Computer Science
216(1–2), p. 237–270, March 1999.

[51] Donatelli S., Ribaudo M., Hillston J. A comparison of performance evaluation process algebra and
generalized stochastic Petri nets. Proceedings of 6th International Workshop on Petri Nets and Performance
Models, Durham, USA, IEEE Computer Society Press, p. 158–168, 1995.

[52] Esparza J., Bruns G. Trapping mutual exclusion in the box calculus. Theoretical Computer Science 153,
p. 95–128, 1996.

[53] Eisentraut Ch., Hermanns H., Schuster J., Turrini A., Zhang L. The quest for minimal quotients
for probabilistic automata. Lecture Notes in Computer Science 7795, p. 16–31, 2013.

[54] de Frutos E.D., Marroqúın A.O. Ambient Petri nets. Electronic Notes in Theoretical Computer
Science 85(1), 27 p., 2003, http://www.elsevier.nl/gej-ng/31/29/23/138/47/27/85.1.005.ps,
http://www.elsevier.nl/locate/entcs/volume85.html.

[55] Florin G., Natkin S. Les reseaux de Petri stochastiques. Technique et Science Informatique 4(1), 1985.

86

[56] Fourneau J.M. Collaboration of discrete-time Markov chains: Tensor and product form. Performance
Evaluation 67, p. 779–796, 2010.

[57] Gilmore S., Hillston J., Kloul L., Ribaudo M. PEPA nets: a structured performance modelling
formalism. Performance Evaluation 54, p. 79–104, 2003, http://www.dcs.ed.ac.uk/pepa/
pepanetsJournal.pdf.

[58] van Glabbeek R.J. The linear time – branching time spectrum II: the semantics of sequential systems
with silent moves. Extended abstract. Lecture Notes in Computer Science 715, p. 66–81, 1993.

[59] van Glabbeek R.J., Smolka S.A., Steffen B. Reactive, generative, and stratified models of probabi-
listic processes. Information and Computation 121(1), p. 59–80, 1995, http://boole.stanford.edu/pub/
prob.ps.gz.

[60] Hansson H. Time and probability in formal design of distributed systems. In: Real-Time Safety Critical
Systems, Volume 1, Elsevier, The Netherlands, 1994.

[61] Haverkort B.R. Markovian models for performance and dependability evaluation. Lecture Notes in Com-
puter Science 2090, p. 38–83, 2001, http://www-i2.informatik.rwth-aachen.de/Teaching/Seminar/
VOSS2005/have01.pdf.

[62] Herzog U. Formal methods for performance evaluation. Lecture Notes in Computer Science 2090, p.
1–37, 2001.

[63] Hillston J. The nature of synchronisation. Proceedings of the 2nd International Workshop on Process
Algebra and Performance Modelling - 94 (PAPM’94), Regensberg / Erlangen (U. Herzog, M. Rettelbach,
eds.), Arbeitsberichte des IMMD 27, p. 51–70, University of Erlangen, Germany, November 1994,
http://www.dcs.ed.ac.uk/pepa/synchronisation.pdf.

[64] Hillston J. A compositional approach to performance modelling. 158 p., Cambridge University Press, UK,
1996, http://www.dcs.ed.ac.uk/pepa/book.pdf.

[65] Han T., Katoen J.-P., Mereacre A. Approximate parameter synthesis for probabilistic time-bounded
reachability. Proceedings of 29th IEEE Real-Time Systems Symposium - 08 (RTSS’08), p. 173–182, IEEE
Computer Society Press, New York, USA, 2008.

[66] Hesketh M., Koutny M. An axiomatization of duplication equivalence in the Petri box calculus. Lecture
Notes in Computer Science 1420, p. 165–184, 1998.

[67] Hoare C.A.R. Communicating sequential processes. Prentice-Hall, London, UK, 1985,
http://www.usingcsp.com/cspbook.pdf.

[68] Horváth A., Paolieri M., Ridi L., Vicario E. Probabilistic model checking of non-Markovian models
with concurrent generally distributed timers. Proceedings of 8th International Conference on the Quantita-
tive Evaluation of Systems - 11 (QEST’11), p. 131–140, Aachen, Germany, September 2011,
http://www.di.unito.it/~horvath/publications/papers/HoPaRiVi11.pdf.

[69] Horváth A., Paolieri M., Ridi L., Vicario E. Transient analysis of non-Markovian models using
stochastic state classes. Performance Evaluation 69(7–8), p. 315–335, 2012.

[70] Hermanns H., Rettelbach M. Syntax, semantics, equivalences and axioms for MTIPP. Proceedings
of 2nd Workshop on Process Algebras and Performance Modelling, Regensberg / Erlangen (Herzog U.,
Rettelbach M., eds.), Arbeitsberichte des IMMD 27, p. 71–88, University of Erlangen, Germany, 1994,
http://ftp.informatik.uni-erlangen.de/local/inf7/papers/Hermanns/syntax_semantics_

equivalences_axioms_for_MTIPP.ps.gz.

[71] Jou C.-C., Smolka S.A. Equivalences, congruences and complete axiomatizations for probabilistic pro-
cesses. Lecture Notes in Computer Science 458, p. 367–383, 1990.

[72] Jategaonkar L., Meyer A.R. Deciding true concurrency equivalences on safe, finite nets. Theoretical
Computer Science 154(1), p. 107–143, 1996.

[73] Jonsson B., Yi W., Larsen K.G. Probabilistic extensions of process algebras. In: Handbook of Process
Algebra, Chapter 11, p. 685–710, (Bergstra J.A., Ponse A., Smolka S.A., eds.), Elsevier Science B.V.,
Amsterdam, The Netherlands, 2001.

87

[74] Katoen J.-P., D’Argenio P.R. General distributions in process algebra. Lecture Notes in Computer
Science 2090, p. 375–429, 2001.

[75] Kahn G. Natural semantics. Proceedings of 4th Annual Symposium on Theoretical Aspects of Computer
Science - 87 (STACS’87), February 1987, p. 22–39, Springer, London, UK, 1987.

[76] Koutny M., Best E. Operational and denotational semantics for the box algebra. Theoretical Computer
Science 211(1–2), p. 1–83, 1999, http://parsys.informatik.uni-oldenburg.de/~best/
publications/tcs.ps.gz.

[77] Katoen J.-P., Brinksma E., Latella D., Langerak R. Stochastic simulation of event structures.
Proceedings of 4th International Workshop on Process Algebra and Performance Modelling - 96 (PAPM’96)
(M. Ribaudo, ed.), p. 21–40, CLUT Press, Torino, Italy, July 1996,
http://eprints.eemcs.utwente.nl/6487/01/263_KLLB96b.pdf.

[78] Kotov V.E., Cherkasova L.A. On structural properties of generalized processes. Lecture Notes in Com-
puter Science 188, p. 288–306, 1985.

[79] Koutny M., Esparza J., Best E. Operational semantics for the Petri box calculus. Lecture Notes in
Computer Science 836, p. 210–225, 1994.

[80] Kwiatkowska M.Z., Norman G.J., Parker D. Symmetry reduction for probabilistic model checking.
Lecture Notes in Computer Science 4144, p. 234–248, 2006.

[81] Kotov V.E. An algebra for parallelism based on Petri nets. Lecture Notes in Computer Science 64, p.
39–55, 1978.

[82] Koutny M. Partial order semantics of box expressions. Lecture Notes in Computer Science 815, p. 318–
337, 1994.

[83] Koutny M. A compositional model of time Petri nets. Lecture Notes in Computer Science 1825, p.
303–322, 2000.

[84] Kulkarni V.G.Modeling and analysis of stochastic systems. Texts in Statistical Science, 542 p., Chapman
and Hall / CRC Press, 2010.

[85] Katoen J.-P., Zapreev I.S., Hahn E.M., Hermanns H., Jansen D.N. The ins and outs of the
probabilistic model checker MRMC. Performance Evaluation 68, p. 90–104, 2011.

[86] Lanotte R., Maggiolo-Schettini A., Troina A. Parametric probabilistic transition systems for sys-
tem design and analysis. Formal Aspects of Computing 19, p. 93–109, 2007.

[87] Larsen K.G., Skou A. Bisimulation through probabilistic testing. Information and Computation 94(1),
p. 1–28, 1991.

[88] Larsen K.G., Skou A. Compositional verification of probabilistic processes. Lecture Notes in Computer
Science 630, p. 456–471, 1992.

[89] Markovski J., D’Argenio P.R., Baeten J.C.M., de Vink E.P. Reconciling real and stochastic time:
the need for probabilistic refinement. Formal Aspects of Computing 24(4–6), p. 497–518, 2012.

[90] Macià H.S. sPBC: Una extensión Markoviana del Petri box calculus. Ph.D. thesis, 249 p., Departamento
de Informática, Universidad de Castilla - La Mancha, Albacete, Spain, December 2003 (in Spanish),
http://www.info-ab.uclm.es/retics/publications/2003/sPBCthesis03.pdf.

[91] Marsan M.A. Stochastic Petri nets: an elementary introduction. Lecture Notes in Computer Science 424,
p. 1–29, 1990.

[92] Marsan M.A., Balbo G., Conte G., Donatelli S., Franceschinis G. Modelling with generalized
stochastic Petri nets. Wiley Series in Parallel Computing, John Wiley and Sons, 316 p., 1995,
http://www.di.unito.it/~greatspn/GSPN-Wiley/.

[93] Marroqúın A.O., de Frutos E.D. TPBC: timed Petri box calculus. Technical Report, Departamento
de Sistemas Infofmáticos y Programación, Universidad Complutense de Madrid, Madrid, Spain, 2000 (in
Spanish).

88

[94] Marroqúın A.O., de Frutos E.D. Extending the Petri box calculus with time. Lecture Notes in Com-
puter Science 2075, p. 303–322, 2001.

[95] Merlin P.M., Farber D.J. Recoverability of communication protocols: implications of a theoretical study.
IEEE Transactions on Communications 24(9), p. 1036–1043, 1976.

[96] Milner R.A.J. Communication and concurrency. Prentice-Hall, 260 p., Upper Saddle River, NJ, USA,
1989.

[97] Molloy M.K. On the integration of the throughput and delay measures in distributed processing models.
Ph. D. thesis, Report CSD-810-921, 108 p., University of California, Los Angeles, CA, USA, 1981.

[98] Molloy M.K. Performance analysis using stochastic Petri nets. IEEE Transactions on Software Engi-
neering 31(9), p. 913–917, 1982.

[99] Molloy M.K. Discrete time stochastic Petri nets. IEEE Transactions on Software Engineering 11(4), p.
417–423, 1985.

[100] Milner R.A.J., Parrow J.G., Walker D.J. A calculus of mobile processes, I. Information and Com-
putation 100(1), p. 1–40, September 1992.

[101] Milner R.A.J., Parrow J.G., Walker D.J. A calculus of mobile processes, II. Information and
Computation 100(1), p. 41–77, September 1992.

[102] Montanari U., Pistore M., Yankelevich D. Efficient minimization up to location equivalence. Lec-
ture Notes in Computer Science 1058, p. 265–279, 1996.

[103] Macià S.H., Valero R.V., Cuartero G.F. A congruence relation in finite sPBC. Technical Report
DIAB-02-01-31, 34 p., Department of Computer Science, University of Castilla - La Mancha, Albacete,
Spain, October 2002, http://www.info-ab.uclm.es/retics/publications/2002/tr020131.ps.

[104] Macià S.H., Valero R.V., Cuartero G.F. Defining equivalence relations in sPBC. Proceedings of
1st International Conference on the Principles of Software Engineering - 04 (PriSE’04), p. 195–205, Buenos
Aires, Argentina, November 2004, http://www.info-ab.uclm.es/retics/publications/2004/
prise04.pdf.

[105] Macià S.H., Valero R.V., Cazorla L.D., Cuartero G.F. Introducing the iteration in sPBC. Tech-
nical Report DIAB-03-01-37, 20 p., Department of Computer Science, University of Castilla - La Mancha,
Albacete, Spain, September 2003, http://www.info-ab.uclm.es/descargas/tecnicalreports/
DIAB-03-01-37/diab030137.zip.

[106] Macià S.H., Valero R.V., Cazorla L.D., Cuartero G.F. Introducing the iteration in sPBC. Pro-
ceedings of the 24th International Conference on Formal Techniques for Networked and Distributed Systems
- 04 (FORTE’04), Madrid, Spain, Lecture Notes in Computer Science 3235, p. 292–308, October 2004,
http://www.info-ab.uclm.es/retics/publications/2004/forte04.pdf.

[107] Macià S.H., Valero R.V., Cuartero G.F., de Frutos E.D. A congruence relation for sPBC. Formal
Methods in System Design 32(2), p. 85–128, Springer, The Netherlands, April 2008.

[108] Macià S.H., Valero R.V., Cuartero G.F., Pelayo L.F. A new proposal for the synchronization in
sPBC. Technical Report DIAB-02-01-26, 15 p., Department of Computer Science, University of Castilla
- La Mancha, Albacete, Spain, June 2002, http://www.info-ab.uclm.es/sec-ab/Tecrep/
newproposalsysPBC.ps.

[109] Macià S.H., Valero R.V., Cuartero G.F., Pelayo L.F. Improving the synchronization in stochastic
Petri box calculus. Actas de las II Jornadas sobre Programacion y Lenguajes - 02 (PROLE’02), El Escorial,
Spain, November 2002.

[110] Macià S.H., Valero R.V., Cuartero G.F., Pelayo L.F. A new synchronization in finite stochastic
Petri box calculus. Proceedings of 3rd International IEEE Conference on Application of Concurrency to
System Design - 03 (ACSD’03), p. 216–225, Guimarães, Portugal, IEEE Computer Society Press, June
2003, http://www.info-ab.uclm.es/retics/publications/2003/acsd03.pdf.

[111] Macià S.H., Valero R.V., Cuartero G.F., Ruiz D.M.C. sPBC: a Markovian extension of Petri box
calculus with immediate multiactions. Fundamenta Informaticae 87(3–4), p. 367–406, IOS Press, Amster-
dam, The Netherlands, 2008.

89

[112] Macià S.H., Valero R.V., de Frutos E.D. sPBC: a Markovian extension of finite Petri box calculus.
Proceedings of 9th IEEE International Workshop on Petri Nets and Performance Models - 01 (PNPM’01),
p. 207–216, Aachen, Germany, IEEE Computer Society Press, September 2001,
http://www.info-ab.uclm.es/retics/publications/2001/pnpm01.ps.

[113] Macià S.H., Valero R.V., de Frutos E.D. sPBC: a Markovian extension of finite PBC. Actas de
IX Jornadas de Concurrencia - 01 (JC’01), p. 243–256, Sitges, Spain, June 2001,
http://www.info-ab.uclm.es/retics/publications/2001/mvfjc01.ps.

[114] Macià S.H., Valero R.V., de Frutos E.D., Cuartero G.F. Extending PBC with Markovian mul-
tiactions. Proceedings of XXVII Conferencia Latinoamericana de Informática - 01 (CLEI’01) (Montilva,
J.A., Besembel, I., eds.), 12 p., Mérida, Venezuela, Universidad de los Andes, September 2001,
http://www.info-ab.uclm.es/retics/publications/2001/clei01.ps.

[115] Markovski J., de Vink E.P. Extending timed process algebra with discrete stochastic time. Proceedings
of 12th International Conference on Algebraic Methodology and Software Technology - 08 (AMAST’08),
Urbana, IL, USA, Lecture Notes of Computer Science 5140, p. 268–283, 2008.

[116] Markovski J., de Vink E.P. Performance evaluation of distributed systems based on a discrete real-
and stochastic-time process algebra. Fundamenta Informaticae 95(1), p. 157–186, IOS Press, Amsterdam,
The Netherlands, 2009.

[117] Núñez G.M., de Frutos E.D., Llana D.L. Acceptance trees for probabilistic processes. Lecture Notes
in Computer Science 962, p. 249–263, 1995.

[118] Niaouris A. An algebra of Petri nets with arc-based time restrictions. Lecture Notes in Computer Science
3407, p. 447–462, 2005.

[119] Niaouris A., Koutny M. An algebra timed-arc Petri nets. Technical Report Series CS-TR-895, 60 p.,
School of Computer Science, University of Newcastle upon Tyne, UK, March 2005,
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf.

[120] Núñez G.M. An axiomatization of probabilistic testing. Lecture Notes in Computer Science 1601, p.
130–150, 1999, http://dalila.sip.ucm.es/miembros/manolo/papers/arts99.ps.gz.

[121] Peterson J.L. Petri net theory and modeling of systems. Prentice-Hall, 1981.

[122] Plotkin G.D. A structural approach to operational semantics. Technical Report DAIMI FN-19, Com-
puter Science Department, Aarhus University, Aarhus, Denmark, 1981.

[123] Priami C. Stochastic π-calculus with general distributions. Proceedings of 4th International Workshop on
Process Algebra and Performance Modelling - 96 (PAPM’96) (M. Ribaudo, ed.), p. 41–57, CLUT Press,
Torino, Italy, 1996.

[124] Priami C. Language-based performance prediction for distributed and mobile systems. Information and
Computation 175(2), p. 119–145, 2002.

[125] Paige R., Tarjan R.E. Three partition refinement algorithms. SIAM Journal of Computing 16(6), p.
973–989, 1987.

[126] Ramchandani C. Perfomance evaluation of asynchronous concurrent systems by timed Petri nets. Ph.
D. thesis, Massachusetts Institute of Technology, Cambridge, USA, 1973.

[127] Ribaudo M. Stochastic Petri net semantics for stochastic process algebra. Proceedings of 6th International
Workshop on Petri Nets and Performance Models, p. 148–157, Durham, NC, USA, IEEE Computer Society
Press, 1995.

[128] Tarasyuk I.V. Equivalence notions applied to designing concurrent systems with the use of Petri nets.
Programming and Computer Software 24(4), p. 162–175, Nauka, Moscow, 1998,
http://www.maik.rssi.ru/journals/procom.htm.

[129] Tarasyuk I.V. Logical characterization of probabilistic τ-bisimulation equivalences. Joint Novosibirsk
Computing Center and Institute of Informatics Systems Bulletin, Series Computer Science 20, p. 97–111,
Novosibirsk, 2004, http://itar.iis.nsk.su/files/itar/pages/prlogncc.pdf.

90

[130] Tarasyuk I.V. Stochastic Petri nets: a formalism for modeling and performance analysis of computing
processes. System Informatics 9, p. 135–194, SB RAS Publisher, Novosibirsk, 2004 (in Russian),
http://itar.iis.nsk.su/files/itar/pages/spnsi.pdf.

[131] Tarasyuk I.V. Discrete time stochastic Petri box calculus. Berichte aus dem Department für Informatik
3/05, 25 p., Carl von Ossietzky Universität Oldenburg, Germany, November 2005,
http://itar.iis.nsk.su/files/itar/pages/dtspbcib_cov.pdf.

[132] Tarasyuk I.V. Iteration in discrete time stochastic Petri box calculus. Bulletin of the Novosibirsk Com-
puting Center, Series Computer Science, IIS Special Issue 24, p. 129–148, NCC Publisher, Novosibirsk,
2006, http://itar.iis.nsk.su/files/itar/pages/dtsitncc.pdf.

[133] Tarasyuk I.V. Stochastic Petri box calculus with discrete time. Fundamenta Informaticae 76(1–2), p.
189–218, IOS Press, Amsterdam, The Netherlands, February 2007, http://itar.iis.nsk.su/files/
itar/pages/dtspbcfi.pdf.

[134] Tarasyuk I.V. Equivalences for behavioural analysis of concurrent and distributed computing systems.
321 p., Academic Publisher “Geo”, Novosibirsk, 2007 (ISBN 978-5-9747-0098-9, in Russian).

[135] Tarasyuk I.V. Investigating equivalence relations in dtsPBC. Berichte aus dem Department für Infor-
matik 5/08, 57 p., Carl von Ossietzky Universität Oldenburg, Germany, October 2008,
http://itar.iis.nsk.su/files/itar/pages/dtspbcit_cov.pdf.

[136] Tarasyuk I.V. A notion of congruence for dtsPBC. Bulletin of the Novosibirsk Computing Center,
Series Computer Science, IIS Special Issue 28, p. 121–141, NCC Publisher, Novosibirsk, 2008,
http://itar.iis.nsk.su/files/itar/pages/dtcgncc.pdf.

[137] Tarasyuk I.V. Performance evaluation in dtsPBC. Proceedings of 18th Workshop on Concurrency,
Specification and Programming - 09 (CS&P’09), Kraków-Przegorza ly, Poland, September 28–30, 2009, L.
Czaja, M. Szczuka, editors, p. 602–615, Warsaw University, 2009, http://itar.iis.nsk.su/files/itar/
pages/dtsshmcsp.pdf.

[138] Tarasyuk I.V. Modeling and performance analysis of concurrent processes in the algebra dtsPBC. Vest-
nik, Quartal Journal of Novosibirsk State University, Series: Mathematics, Mechanics, Informatics 9(4),
p. 90–117, Novosibirsk State University, Novosibirsk, 2009 (in Russian),
http://itar.iis.nsk.su/files/itar/pages/vestnik09.pdf.

[139] Tarasyuk I.V. Equivalence relations for behaviour-preserving reduction and modular performance evalua-
tion in dtsPBC. Berichte aus dem Department für Informatik 01/10, 75 p., Carl von Ossietzky Universität
Oldenburg, Germany, April 2010, http://itar.iis.nsk.su/files/itar/pages/dtspbcpeib_cov.pdf.

[140] Tarasyuk I.V. Performance preserving equivalences for dtsPBC. Bulletin of the Novosibirsk Computing
Center, Series Computer Science, IIS Special Issue 31, p. 155–178, NCC Publisher, Novosibirsk, 2010,
http://itar.iis.nsk.su/files/itar/pages/dtspencc.pdf.

[141] Tarasyuk I.V. Performance analysis of the dining philosophers system in dtsPBC. Pre-proceedings of
8th Ershov Informatics Conference - 11 (PSI’11), 17 p., Novosibirsk, Russia, 2011,
http://itar.iis.nsk.su/files/itar/pages/dtsdphpsi.pdf.

[142] Tarasyuk I.V. Equivalences for modular performance analysis in dtsPBC. Berichte aus dem Department
für Informatik 04/11, 41 p., Carl von Ossietzky Universität Oldenburg, Germany, October 2011,
http://itar.iis.nsk.su/files/itar/pages/dtsdphib_cov.pdf.

[143] Tarasyuk I.V. Performance evaluation of the generalized shared memory system in dtsPBC. Bulletin
of the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue 32, p. 127–155, NCC
Publisher, Novosibirsk, 2011, http://itar.iis.nsk.su/files/itar/pages/dtsgsmncc.pdf.

[144] Tarasyuk I.V. Equivalence relations for modular performance evaluation in dtsPBC. Mathematical
Structures in Computer Science 24(1), p. 78–154 (e240103), Cambridge University Press, Cambridge,
UK, February 2014, http://itar.iis.nsk.su/files/itar/pages/dtsdphms.pdf.

[145] Tarasyuk I.V., Macià S.H., Valero R.V. Discrete time stochastic Petri box calculus with immediate
multiactions. Technical Report DIAB-10-03-1, 25 p., Department of Computer Systems, High School of
Computer Science Engineering, University of Castilla - La Mancha, Albacete, Spain, March 2010,
http://itar.iis.nsk.su/files/itar/pages/dtsipbc.pdf,
http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf.

91

[146] Tarasyuk I.V., Macià S.H., Valero R.V. Stochastic equivalence for modular performance evaluation
in dtsiPBC. Technical Report DIAB-11-06-2, 50 p., Department of Computer Systems, High School of
Computer Science Engineering, University of Castilla - La Mancha, Albacete, Spain, June 2011,
http://itar.iis.nsk.su/files/itar/pages/dtsipbceq.pdf,
http://www.dsi.uclm.es/descargas/technicalreports/DIAB-11-06-2/report_dtsipbdeq.pdf.

[147] Tarasyuk I.V., Macià S.H., Valero R.V. Discrete time stochastic Petri box calculus with immediate
multiactions. Pre-proceedings of 6th International Workshop on Practical Applications of Stochastic Mod-
elling - 12 (PASM’12), 21 p., Imperial College London, UK, September 2012,
http://itar.iis.nsk.su/files/itar/pages/dtsipbcpasm.pdf.

[148] Tarasyuk I.V., Macià S.H., Valero R.V. Applying stochastic equivalence to performance evaluation
in dtsiPBC. Technical Report DIAB-12-10-2, 62 p., Department of Computer Systems, High School of
Computer Science Engineering, University of Castilla - La Mancha, Albacete, Spain, October 2012,
http://itar.iis.nsk.su/files/itar/pages/dtsipbcpe.pdf, http://www.dsi.uclm.es/descargas/
technicalreports/DIAB-12-10-2/technicalreport_dtsiPBC_oct2012.pdf.

[149] Tarasyuk I.V., Macià S.H., Valero R.V. Discrete time stochastic Petri box calculus with immediate
multiactions dtsiPBC. Proceedings of 6th International Workshop on Practical Applications of Stochastic
Modelling - 12 (PASM’12) and 11th International Workshop on Parallel and Distributed Methods in Veri-
fication - 12 (PDMC’12), Electronic Notes in Theoretical Computer Science, 25 p., Elsevier, August 2013
(ISSN 1571-0661), http://itar.iis.nsk.su/files/itar/pages/dtsipbcentcs.pdf.

[150] Valero R.V., Cambronero P.M.E. Using unified modelling language to model the publish/subscribe
paradigm in the context of timed Web services with distributed resources. Mathematical and Computer
Modelling of Dynamical Systems 23(6), p. 570–594, Tailor and Francis, 2017.

[151] Wolf V., Baier C., Majster-Cederbaum M. Trace machines for observing continuous-time Markov
chains. Proceedings of the 3rd International Workshop on Quantitative Aspects of Programming Languages
(QAPL’05), Edinburgh, UK, 2005, Electronic Notes in Theoretical Computer Science 153(2), p. 259–277,
2006.

[152] Wimmer R., Derisavi S., Hermanns H. Symbolic partition refinement with automatic balancing of
time and space. Performance Evaluation 67, p. 816–836, 2010.

A Proofs

A.1 Proof of Theorem 4.2

At some points, the present proof for dtsPBC goes along the lines from the respective proofs for PBC [13–16,
29, 76].

We first give a necessary definition. Let (PN , TN ,WN ,ΩN ,LN ,MN) be an LDTSPN. A set of transitions
U ⊆ Ena(M) is fireable at a marking M ∈ INPN

fin, if •U ⊆ M and Ena(M) ⊆ TsN . In other words, a set of
transitions U is fireable at a marking M , if it has enough tokens in its input places at M . Let Fire(M) be the
set all transition sets fireable at M . By the definition of fireability, it follows that Fire(M) ⊆ 2TN . A transition
t ∈ Ena(M) is fireable at a marking M , denoted by t ∈ Fire(M), if {t} ∈ Fire(M). A transition t ∈ Fire(M)
fires with probability ΩN (t) when no different transition is fireable at M , i.e. Fire(M) = {∅, {t}}. By the
definition of fireability, ∀U ∈ Fire(M) 2U \ {∅} ⊆ Fire(M).

Let N = Boxdts(E). We define a mapping β : DR(E) → RS(N) so that β([G]≈) = MG iff [G]≈ ∈ DR(E)
and (N,MG) = Boxdts(G). Then, like in PBC [13–16, 29, 76], one can see that β is a bijection, since for each
dynamic expression G its structural equivalence class [G]≈ defines a single corresponding marking MG in the
dts-box Boxdts(G) and vice versa.

Clearly, [E]≈ ∈ DR(E) and Boxdts(E) = Boxdts(E) = N = (N, ◦N) = (N,ME). Hence, β([E]≈) = ME .
Thus, β binds the initial states of the transition system TS(E) and the corresponding reachability graph RG(N).

Let [G]≈ ∈ DR(E) and β([G]≈) = MG ∈ RS(N). We now prove by induction on the structure of dynamic
expressions and corresponding dts-boxes that Exec([G]≈) and Fire(MG) are isomorphic. This means that for
every Γ ∈ Exec([G]≈) there exists U ∈ Fire(MG) such that U consists of the transitions corresponding to the
activities from Γ and vice versa: (α, ρ)ι ∈ Γ ⇔ tι ∈ U , where ΛN(tι) = ̺(α,ρ). Thus, the corresponding
activities and transitions have the same probabilities, as well as the same multiaction labels and numberings.
We can write U = U(Γ) and Γ = Γ(U), to indicate such a correspondence.

92

Actually, each Γ and the corresponding U are completely defined by the sets of their numberings Num(Γ) =
{ι | (α, ρ)ι ∈ Γ} = {ι | tι ∈ U} = Num(U), since each activity and transition have a unique numbering. More-
over, Exec([G]≈) and Fire(MG) are completely defined by the sets of their numberings Num(Exec([G]≈)) =
{Num(Γ) | Γ ∈ Exec([G]≈)} = {Num(U) | U ∈ Fire(MG)} = Num(Fire(MG)).

• If final(G) then G ≈ E and Exec([G]≈) = Exec([E]≈) = {∅}. On the other hand, Boxdts(G) =
Boxdts(E) = N = (N,N◦) = (N,ME) and Fire(MG) = Fire(ME) = {∅} = Exec([G]≈).

• If G = (α, ρ)ι then Exec([G]≈) = {∅, {(α, ρ)ι}}. On the other hand, Boxdts(G) = (N(α,ρ)ι ,
•tι), where

ΛN(tι) = ̺(α,ρ), and Fire(MG) = Fire(•tι) = {∅, {tι}}, which is isomorphic to Exec([G]≈).

• If G = H ;E, where H ∈ OpRegDynExpr, E ∈ RegStatExpr, then

Exec([H ;E]≈) =

{
Exec([H]≈), ¬final(H);
Exec([E]≈) final(H).

On the other hand, Boxdts(G) = Boxdts(H ;E) = (Boxdts(⌊H⌋;E),MH;E), and for Boxdts(H) =
(Boxdts(⌊H⌋),MH), Boxdts(E) = NE = (NE ,

◦NE) = (NE ,ME), we have

Fire(MH;E) =

{
Fire(MH), MH 6= N◦

H ;
Fire(ME), MH = N◦

H ;

which is isomorphic to Exec([H ;E]≈).

• If G = E;H , where E ∈ RegStatExpr, H ∈ OpRegDynExpr, then

Exec([E;H]≈) = Exec([H]≈).

On the other hand, Boxdts(G) = Boxdts(E;H) = (Boxdts(E; ⌊H⌋),ME;H), and for Boxdts(H) =
(Boxdts(⌊H⌋),MH), we have

Fire(ME;H) = Fire(MH);

which is isomorphic to Exec([E;H]≈).

• If G = H []E, where H ∈ OpRegDynExpr, E ∈ RegStatExpr, then

Exec([H []E]≈) =

{
Exec([H]≈), ¬init(H);
Exec([H]≈) ∪ Exec([E]≈), init(H).

On the other hand, Boxdts(G) = Boxdts(H []E) = (Boxdts(⌊H⌋[]E),MH[]E), and for Boxdts(H) =

(Boxdts(⌊H⌋),MH), Boxdts(E) = NE = (NE ,
◦NE) = (NE ,ME), we have

Fire(MH[]E) =

{
Fire(MH), MH 6= ◦NH ;
Fire(MH) ∪ Fire(ME), MH = ◦NH ;

which is isomorphic to Exec([H []E]≈).

If G = E[]H , where E ∈ RegStatExpr, H ∈ OpRegDynExpr, then the constructions are similar.

• If G = H‖Z, where H,Z ∈ OpRegDynExpr, then

Exec([H‖Z]≈) = Exec([H]≈) ∪ Exec([Z]≈) ∪ (Exec([H]≈) ⊙ Exec([Z]≈)),

where Exec([H]≈) ⊙ Exec([Z]≈) = {Γ + ∆ | Γ ∈ Exec([H]≈), ∆ ∈ Exec([Z]≈)}.

On the other hand, Boxdts(G) = Boxdts(H‖Z) = (Boxdts(⌊H⌋‖Z),MH‖Z), and for Boxdts(H) =
(Boxdts(⌊H⌋),MH), Boxdts(Z) = (Boxdts(⌊Z⌋),MZ), we have

Fire(MH‖Z) = Fire(MH) ∪ Fire(MZ) ∪ (Fire(MH) ⊙ Fire(MZ)),

where Fire(MH) ⊙ Fire(MZ) = {U ∪ T | U ∈ Fire(MH), T ∈ Fire(MZ)}; which is isomorphic to
Exec([H‖Z]≈).

93

• If G = H [f], where H ∈ OpRegDynExpr, then

Exec([H [f]]≈) = {f(Γ) | Γ ∈ Exec([H]≈)}.

On the other hand, Boxdts(G) = Boxdts(H [f]) = (Boxdts(⌊H⌋[f]),MH[f]), and for Boxdts(H) =
(Boxdts(⌊H⌋),MH), we have

Fire(MH[f]) = {f(U) | U ∈ Fire(MH)},

where f(U) = {tι ∈ U | ΛH(tι) = ̺(α,ρ), ΛH[f](tι) = ̺(f(α),ρ)}; which is isomorphic to Exec([H [f]]≈).

• If G = H rs a, where H ∈ OpRegDynExpr, then

Exec([H rs a]≈) = {Γ − Γa | Γ ∈ Exec([H]≈)},

where Γa = {(α, ρ)ι ∈ Γ | (a ∈ α) ∨ (â ∈ α)}, a ∈ Act.

On the other hand, Boxdts(G) = Boxdts(H rs a) = (Boxdts(⌊H⌋ rs a),MH rs a), and for Boxdts(H) =
(Boxdts(⌊H⌋),MH), we have

Fire(MH rs a) = {U \ Ua | U ∈ Fire(MH)},

where Ua = {tι ∈ U | ΛH(tι) = ̺(α,ρ), (a ∈ α)∨(â ∈ α)}, a ∈ Act; which is isomorphic to Exec([H rs a]≈).

• If G = H sy a, where H ∈ OpRegDynExpr, then

Exec([H sy a]≈)=
Exec([H]≈) ∪ {Γ + {(α⊕a β, ρ · χ)(ι1)(ι2)} | Γ + {(α, ρ)ι1} + {(β, χ)ι2} ∈ Exec([H]≈),
a ∈ α, â ∈ β}.

On the other hand, Boxdts(G) = Boxdts(H sy a) = (Boxdts(⌊H⌋ sy a),MH sy a), and for Boxdts(H) =
(Boxdts(⌊H⌋),MH), we have

Fire(MH sy a)=
Fire(MH) ∪ {U ∪ {t(ι1)(ι2)}|ΛH sy a(t(ι1)(ι2))=̺(α⊕aβ,ρ·χ), U ∪ {vι1 , wι2}∈Fire(MH),
ΛH(vι1) = ̺(α,ρ), ΛH(wι2) = ̺(β,χ), a ∈ α, â ∈ β};

which is isomorphic to Exec([H sy a]≈).

• If G = [H ∗ E ∗ F], where H ∈ OpRegDynExpr, E, F ∈ RegStatExpr, then

Exec([[H ∗ E ∗ F]]≈) =

{
Exec([H]≈), ¬final(H);
Exec([E]≈) ∪ Exec([F]≈), f inal(H).

On the other hand, Boxdts(G) = Boxdts([H ∗ E ∗ F]) = (Boxdts(⌊H⌋ ∗ E ∗ F),M[H∗E∗F]), and for
Boxdts(H) =
(Boxdts(⌊H⌋),MH), Boxdts(E) = NE = (NE ,

◦NE) = (NE ,ME), Boxdts(F) = NF = (NF ,
◦NF) =

(NF ,MF), we have

Fire(M[H∗E∗F]) =

{
Fire(MH), MH 6= N◦

H ;
Fire(ME) ∪ Fire(MF), MH = N◦

H ;

which is isomorphic to Exec([[H ∗ E ∗ F]]≈).

• If G = [E ∗H ∗ F], where E,F ∈ RegStatExpr, H ∈ OpRegDynExpr, then

Exec([[E ∗H ∗ F]]≈) =

{
Exec([H]≈), ¬init(H) ∧ ¬final(H);

Exec([H]≈) ∪ Exec([F]≈), init(H) ∨ final(H).

On the other hand, Boxdts(G) = Boxdts([E ∗ H ∗ F]) = (Boxdts(E ∗ ⌊H⌋ ∗ F),M[E∗H∗F]), and for
Boxdts(H) =
(Boxdts(⌊H⌋),MH), Boxdts(F) = NF = (NF ,

◦NF) = (NF ,MF), we have

Fire(M[E∗H∗F]) =

{
Fire(MH), MH 6= ◦NH ∧MH 6= N◦

H ;
Fire(MH) ∪ Fire(MF), MH = ◦NH ∨MH = N◦

H ;

which is isomorphic to Exec([[E ∗H ∗ F]]≈).

94

• If G = [E ∗ F ∗H], where E,F ∈ RegStatExpr, H ∈ OpRegDynExpr, then

Exec([[E ∗ F ∗H]]≈) =

{
Exec([H]≈), ¬init(H);

Exec([F]≈) ∪Exec([H]≈), init(H).

On the other hand, Boxdts(G) = Boxdts([E ∗ F ∗ H]) = (Boxdts(E ∗ F ∗ ⌊H⌋),M[E∗F∗H]), and for

Boxdts(F) =
NF = (NF ,

◦NF) = (NF ,MF), Boxdts(H) = (Boxdts(⌊H⌋),MH), we have

Fire(M[E∗F∗H]) =

{
Fire(MH), MH 6= ◦NH ;
Fire(MF) ∪ Fire(MH), MH = ◦NH ;

which is isomorphic to Exec([[E ∗ F ∗H]]≈).

Thus, we have proved that Exec([G]≈) and Fire(MG) are isomorphic. It remains to check the homo-

morphism property, stating that for all [G]≈, [G̃]≈ ∈ DR(E) and for all corresponding Γ ∈ Exec([G]≈), U ∈

Fire(MG) it holds [G]≈
Γ
→P [G̃]≈ ⇔ MG = β([G]≈)

U
→P β([G̃]≈) = MG̃.

The probability functions PF (Γ, [G]≈) and PT (Γ, [G]≈) depend only on the structure of Exec([G]≈), as well
as on the probabilities of stochastic multiactions from its elements. Analogously, PF (U,MG) and PT (U,MG)
depend only on the structure of Fire(MG), as well as the probabilities of stochastic transitions from its elements.
Further, PF (Γ, [G]≈) and PT (Γ, [G]≈) are respectively defined in the same way (using the same formulas and
cases) as PF (U,MG) and PT (U,MG), for each pair of the corresponding (multi)set of activities Γ and transition
set U . Obviously, the isomorphism of Exec([G]≈) and Fire(MG) guarantees coincidence of their structure as
well as the mentioned probabilities and weights. Hence, if U corresponds to Γ then PF (Γ, [G]≈) = PF (U,MG)
and PT (Γ, [G]≈) = PT (U,MG).

We also have L(Γ) = L(U), where L(U) =
∑

{t∈U|ΛG(t)=̺(α,ρ)}
α is the multiaction part of a set of transitions

U ⊆ TN . Thus, each transition [G]≈
Γ
→P s̃ in TS(E) has a corresponding one MG

U
→P M̃ in RG(N) with

L(Γ) = L(U) and vice versa. Observe that the structure of the plain and operator dts-boxes in dtsPBC is
similar to that of the plain and operator boxes in PBC. Hence, like in PBC [13–16,29, 76], we can prove that

s̃ = [G̃]≈ and M̃ = MG̃ with (N,MG̃) = Boxdts(G̃) for the dynamic expression G̃ such that G
Γ
→ G̃. Therefore,

by construction of β, we get β([G̃]≈) = MG̃. ⊓⊔

A.2 Proof of Proposition 5.2

It is enough to prove the statement for ⋆ = s, since the case ⋆ = i is considered analogously.
Like it has been done for strong equivalence in Proposition 8.2.1 from [64], we shall prove the following fact

about step stochastic bisimulation. Let us have ∀j ∈ J Rj : G↔ssG
′ for some index set J . Then the transitive

closure of the union of all relations R = (∪j∈JRj)
+ is also an equivalence and R : G↔ssG

′.
Since ∀j ∈ J Rj is an equivalence, by definition of R, we get that R is also an equivalence.
Let j ∈ J , then, by definition of R, (s1, s2) ∈ Rj implies (s1, s2) ∈ R. Hence, ∀Hjk ∈ (DR(G) ∪

DR(G′))/Rj
∃H ∈ (DR(G) ∪DR(G′))/R Hjk ⊆ H. Moreover, ∃J ′ H = ∪k∈J ′Hjk.

We denote R(n) = (∪j∈JRj)
n. Let (s1, s2) ∈ R, then, by definition of R, ∃n > 0 (s1, s2) ∈ R(n). We shall

prove that R : G↔ssG
′ by induction on n.

It is clear that ∀j ∈ J Rj : G↔ssG
′ implies ∀j ∈ J ([G]≈, [G

′]≈) ∈ Rj and we have ([G]≈, [G
′]≈) ∈ R by

definition of R.
It remains to prove that (s1, s2) ∈ R implies ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL

fin \ {∅} PM∗
A(s1,H) =

PM∗
A(s2,H).

• n = 1

In this case, (s1, s2) ∈ R implies ∃j ∈ J (s1, s2) ∈ Rj . Since Rj : G↔ssG
′, we get ∀H ∈ (DR(G) ∪

DR(G′))/R ∀A ∈ INL
fin \ {∅}

PM∗
A(s1,H) =

∑

k∈J ′

PM∗
A(s1,Hjk) =

∑

k∈J ′

PM∗
A(s2,Hjk) = PM∗

A(s2,H).

• n→ n+ 1

Suppose that ∀m ≤ n (s1, s2) ∈ R(m) implies ∀H ∈ (DR(G)∪DR(G′))/R ∀A ∈ INL
fin\{∅} PM

∗
A(s1,H) =

PM∗
A(s2,H).

95

Then (s1, s2) ∈ R(n + 1) implies ∃j ∈ J (s1, s2) ∈ Rj ◦ R(n), i.e. ∃s3 ∈ (DR(G) ∪ DR(G′)) such that
(s1, s3) ∈ Rj and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get PM∗
A(s1,H) = PM∗

A(s3,H). By the induction hypothesis, we get
PM∗

A(s3,H) = PM∗
A(s2,H). Thus, ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL

fin \ {∅}

PM∗
A(s1,H) = PM∗

A(s3,H) = PM∗
A(s2,H).

By definition, Rss(G,G
′) is at least as large as the largest step stochastic bisimulation between G and G′. It

follows from the proved above that Rss(G,G
′) is an equivalence and Rss(G,G

′) : G↔ssG
′, hence, it is the

largest step stochastic bisimulation between G and G′. ⊓⊔

A.3 Proof of Proposition 5.3

It is sufficient to prove the statement of the proposition for ⋆ = s, since ⋆ = i is a particular case of the previous
one with one-element multisets of multiactions and interleaving transition relation.

Let H ∈ (DR(G) ∪DR(G′))/R and s, s̄ ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin \ {∅} s

A
→→P

H̃ ⇔ s̄
A
→→P H̃. The previous equality is valid for all s, s̄ ∈ H, hence, we can rewrite it as H

A
→→P H̃ and denote

PM∗
A(H, H̃) = PM∗

A(s, H̃) = PM∗
A(s̄, H̃). Note that transitions from the states of DR(G) always lead to those

from the same set, hence, ∀s ∈ DR(G) PM∗
A(s, H̃) = PM∗

A(s, H̃ ∩DR(G)). The same is true for DR(G′).
Let (A1 · · ·An,Q) ∈ StepProbT races(G). Taking into account the notes above and R : G↔ssG

′, we have

∀H1, . . . ,Hn ∈ (DR(G) ∪DR(G′))/R [G]≈
A1→→P1 H1

A2→→P2 · · ·
An→→Pn

Hn ⇔ [G′]≈
A1→→P1 H1

A2→→P2 · · ·
An→→Pn

Hn.
We now intend to prove that the sum of probabilities of all the paths starting in [G]≈ and going through

the states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn, which is essentially the probability of the
“composite” path going through the equivalence classes H1, . . . ,Hn in TS∗(G):

∑

{Γ1,...,Γn|[G]≈
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1) =

n∏

i=1

PM∗
Ai

(Hi−1,Hi).

We prove this equality by induction on the step trace length n.

• n = 1
∑

{Γ1|[G]≈
Γ1
→→s1, L(Γ1)=A1, s1∈H1}

PT ∗(Γ1, [G]≈) = PM∗
A1

([G]≈,H1) = PM∗
A1

(H0,H1).

• n→ n+ 1
∑

{Γ1,...,Γn,Γn+1|[G]≈
Γ1
→→···

Γn→→sn
Γn+1
→→ sn+1, L(Γi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT

∗(Γi, si−1) =
∑

{Γ1,...,Γn|[G]≈
Γ1
→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∑
{Γn+1|sn

Γn+1
→→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}∏n

i=1 PT
∗(Γi, si−1)PT ∗(Γn+1, sn) =∑

{Γ1,...,Γn|[G]≈
Γ1
→→···

Γn
→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}[∏n

i=1 PT
∗(Γi, si−1)

∑
{Γn+1|sn

Γn+1
→→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT ∗(Γn+1, sn)

]
=

∑
{Γ1,...,Γn|[G]≈

Γ1→→···
Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1)PM∗
An+1

(sn,Hn+1) =
∑

{Γ1,...,Γn|[G]≈
Γ1
→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1)PM∗
An+1

(Hn,Hn+1) =

PM∗
An+1

(Hn,Hn+1)
∑

{Γ1,...,Γn|[G]≈
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =

PM∗
An+1

(Hn,Hn+1)
∏n
i=1 PM

∗
Ai

(Hi−1,Hi) =
∏n+1
i=1 PM

∗
Ai

(Hi−1,Hi).

Note that the equality we have just proved can also be applied to G′.
We now only need to see that the summation over all multisets of activities is the same as the summation

over all equivalence classes: Q =
∑

{Γ1,...,Γn|[G]≈
Γ1→→···

Γn→→sn, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =
∑

H1,...,Hn

∑
{Γ1,...,Γn|[G]≈

Γ1→→···
Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =
∑

H1,...,Hn

∏n
i=1 PM

∗
Ai

(Hi−1,Hi) =∑
H1,...,Hn

∑
{Γ′

1,...,Γ
′
n|[G

′]≈
Γ′
1→→···

Γ′
n→→s′n, L(Γ′

i)=Ai, s′i∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γ′
i, s

′
i−1) =

∑
{Γ′

1,...,Γ
′
n|[G

′]≈
Γ′
1→→···

Γ′
n→→s′n, L(Γ′

i)=Ai, (1≤i≤n)}

∏n
i=1 PT

∗(Γ′
i, s

′
i−1).

Hence, (A1 · · ·An,Q) ∈ StepProbT races(G′), and we have StepProbT races(G) ⊆ StepProbT races(G′).
The reverse inclusion is proved by symmetry. ⊓⊔

96

A.4 Proof of Proposition 8.1

The proof is an extension of results from [41] to the process algebra framework and discrete time case.
It is sufficient to prove the statement of the proposition for transient PMFs only, since ψ∗ = limk→∞ ψ∗[k]

and ψ′∗ = limk→∞ ψ′∗[k]. We proceed by induction on k.

• k = 0

Note that the only nonzero values of the initial PMFs ofDTMC∗(G) andDTMC∗(G′) are ψ∗[0]([G]≈) and
ψ∗[0]([G′]≈). Let H0 be the equivalence class containing [G]≈ and [G′]≈. Then

∑
s∈H0∩DR(G) ψ

∗[0](s) =

ψ∗[0]([G]≈) = 1 = ψ′∗[0]([G′]≈) =
∑
s′∈H0∩DR(G′) ψ

′∗[0](s′).

As for other equivalence classes, ∀H ∈ ((DR(G)∪DR(G′))/R)\H0 we have
∑

s∈H∩DR(G) ψ
∗[0](s) = 0 =∑

s′∈H∩DR(G′) ψ
′∗[0](s′).

• k → k + 1

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin \ {∅}

s1
A
→→P H̃ ⇔ s2

A
→→P H̃. Therefore, PM∗(s1, H̃) =

∑
{Γ|∃s̃1∈H̃ s1

Γ
→→s̃1}

PT ∗(Γ, s1) =
∑
A∈INL

fin
\{∅}

∑
{Γ|∃s̃1∈H̃ s1

Γ
→→s̃1, L(Γ)=A}

PT ∗(Γ, s1) =
∑
A∈INL

fin
\{∅} PM

∗
A(s1, H̃) =

∑
A∈INL

fin
\{∅} PM

∗
A(s2, H̃) =

∑
A∈INL

fin
\{∅}

∑
{Γ|∃s̃2∈H̃ s2

Γ
→→s̃2, L(Γ)=A}

PT ∗(Γ, s2) =
∑

{Γ|∃s̃2∈H̃ s2
Γ
→→s̃2}

PT ∗(Γ, s2) = PM∗(s2, H̃). Since we have the previous equality for all s1, s2 ∈ H, we

can denote PM∗(H, H̃) = PM∗(s1, H̃) = PM∗(s2, H̃). Note that transitions from the states of DR(G)

always lead to those from the same set, hence, ∀s ∈ DR(G) PM∗(s, H̃) = PM∗(s, H̃ ∩ DR(G)). The
same is true for DR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ
∗[k](s) =

∑
s′∈H∩DR(G′) ψ

′∗[k](s′). Further,∑
s̃∈H̃∩DR(G) ψ

∗[k + 1](s̃) =
∑

s̃∈H̃∩DR(G)

∑
s∈DR(G) ψ

∗[k](s)PM∗(s, s̃) =∑
s∈DR(G)

∑
s̃∈H̃∩DR(G) ψ

∗[k](s)PM∗(s, s̃) =
∑

s∈DR(G) ψ
∗[k](s)

∑
s̃∈H̃∩DR(G) PM

∗(s, s̃) =∑
H

∑
s∈H∩DR(G) ψ

∗[k](s)
∑

s̃∈H̃∩DR(G) PM
∗(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)
∑

s̃∈H̃∩DR(G)

∑
{Γ|s

Γ
→→s̃}

PT ∗(Γ, s) =
∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)
∑

{Γ|∃s̃∈H̃∩DR(G) s
Γ
→→s̃}

PT ∗(Γ, s) =
∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)PM∗(s, H̃) =
∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)PM∗(H, H̃) =
∑

H PM∗(H, H̃)
∑

s∈H∩DR(G) ψ
∗[k](s) =

∑
H PM∗(H, H̃)

∑
s′∈H∩DR(G′) ψ

′∗[k](s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)PM∗(H, H̃) =
∑

H

∑
s′∈H′∩DR(G′) ψ

′∗[k](s′)PM∗(s′, H̃) =∑
H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)
∑

{Γ|∃s̃′∈H̃∩DR(G′) s′
Γ
→→s̃′}

PT ∗(Γ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)
∑

s̃′∈H̃∩DR(G′)

∑
{Γ|∃s̃′ s′

Γ
→→s̃′}

PT ∗(Γ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)
∑

s̃′∈H̃∩DR(G′) PM
∗(s′, s̃′) =∑

s′∈DR(G′) ψ
′∗[k](s′)

∑
s̃′∈H̃∩DR(G′) PM

∗(s′, s̃′) =
∑
s′∈DR(G′)

∑
s̃′∈H̃∩DR(G′) ψ

′∗[k](s′)PM∗(s′, s̃′) =∑
s̃′∈H̃∩DR(G′)

∑
s′∈DR(G′) ψ

′∗[k](s′)PM∗(s′, s̃′) =
∑

s̃′∈H̃∩DR(G′) ψ
′∗[k + 1](s̃′). ⊓⊔

A.5 Proof of Theorem 8.2

The main idea of the proof is similar to that from [36, 37] but in the algebraic setting.

Let H ∈ (DR(G) ∪DR(G′))/R and s, s̄ ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin \ {∅} s

A
→→P

H̃ ⇔ s̄
A
→→P H̃. The previous equality is valid for all s, s̄ ∈ H, hence, we can rewrite it as H

A
→→P H̃ and denote

PM∗
A(H, H̃) = PM∗

A(s, H̃) = PM∗
A(s̄, H̃). Note that transitions from the states of DR(G) always lead to those

from the same set, hence, ∀s ∈ DR(G) PM∗
A(s, H̃) = PM∗

A(s, H̃ ∩DR(G)). The same is true for DR(G′).

Let Σ = A1 · · ·An be a step trace of G and G′. We have ∃H0, . . . ,Hn ∈ (DR(G) ∪ DR(G′))/R H0
A1→→P1

H1
A2→→P2 · · ·

An→→Pn
Hn. We now intend to prove that the sum of probabilities of all the paths starting in every

s0 ∈ H0 and going through the states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn:

∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1) =

n∏

i=1

PM∗
Ai

(Hi−1,Hi).

We prove this equality by induction on the step trace length n.

97

• n = 1
∑

{Γ1|s0
Γ1
→→s1, L(Γ1)=A1, s1∈H1}

PT ∗(Γ1, s0) = PM∗
A1

(s0,H1) = PM∗
A1

(H0,H1).

• n→ n+ 1
∑

{Γ1,...,Γn,Γn+1|s0
Γ1→→···

Γn→→sn
Γn+1
→→ sn+1, L(Γi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT

∗(Γi, si−1) =
∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∑
{Γn+1|sn

Γn+1
→→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}∏n

i=1 PT
∗(Γi, si−1)PT ∗(Γn+1, sn) =∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}[∏n
i=1 PT

∗(Γi, si−1)
∑

{Γn+1|sn
Γn+1
→→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT ∗(Γn+1, sn)

]
=

∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1)PM∗
An+1

(sn,Hn+1) =
∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1)PM∗
An+1

(Hn,Hn+1) =

PM∗
An+1

(Hn,Hn+1)
∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =

PM∗
An+1

(Hn,Hn+1)
∏n
i=1 PM

∗
Ai

(Hi−1,Hi) =
∏n+1
i=1 PM

∗
Ai

(Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have
PT ∗(A1 · · ·An, s0) =

∑
{Γ1,...,Γn|s0

Γ1
→→···

Γn→→sn, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =
∑

H1,...,Hn

∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =
∑

H1,...,Hn

∏n
i=1 PM

∗
Ai

(Hi−1,Hi) =∑
H1,...,Hn

∑
{Γ1,...,Γn|s̄0

Γ1→→···
Γn→→s̄n, L(Γi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, s̄i−1) =
∑

{Γ1,...,Γn|s̄0
Γ1→→···

Γn→→s̄n, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT

∗(Γi, s̄i−1) = PT ∗(A1 · · ·An, s̄0).

Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote PT ∗(A1 · · ·An,H0) =
PT ∗(A1 · · ·An, s0) = PT ∗(A1 · · ·An, s̄0).

By Proposition 8.1,
∑
s∈H∩DR(G) ψ

∗(s) =
∑

s′∈H∩DR(G′) ψ
′∗(s′). We now can complete the proof:∑

s∈H∩DR(G) ψ
∗(s)PT ∗(Σ, s) =

∑
s∈H∩DR(G) ψ

∗(s)PT ∗(Σ,H) = PT ∗(Σ,H)
∑

s∈H∩DR(G) ψ
∗(s) =

PT ∗(Σ,H)
∑

s′∈H∩DR(G′) ψ
′∗(s′) =

∑
s′∈H∩DR(G′) ψ

′∗(s′)PT ∗(Σ,H) =
∑

s′∈H∩DR(G′) ψ
′∗(s′)PT ∗(Σ, s′). ⊓⊔

A.6 Proof of Proposition 8.2

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
fin

s1
A
→P H̃ ⇔ s2

A
→P H̃. Therefore, PM(s1, H̃) =

∑
{Γ|∃s̃1∈H̃ s1

Γ
→s̃1}

PT (Γ, s1) =
∑

A∈INL
fin

∑
{Γ|∃s̃1∈H̃ s1

Γ
→s̃1, L(Γ)=A}

PT (Γ, s1) =
∑
A∈INL

fin
PMA(s1, H̃) =

∑
A∈INL

fin
PMA(s2, H̃) =

∑
A∈INL

fin

∑
{Γ|∃s̃2∈H̃ s2

Γ
→s̃2, L(Γ)=A}

PT (Γ, s2) =
∑

{Γ|∃s̃2∈H̃ s2
Γ
→s̃2}

PT (Γ, s2) = PM(s2, H̃). Since we have

the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃). Note that

transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈ DR(G) PM(s, H̃) =

PM(s, H̃ ∩ DR(G)). The same is true for DR(G′). Hence, for all s ∈ H ∩ DR(G), we obtain PM(H, H̃) =

PM(s, H̃) = PM(s, H̃ ∩ DR(G)) = PM(H ∩ DR(G), H̃ ∩ DR(G)). The same is true for DR(G′). Finally,

PM(H ∩DR(G), H̃ ∩DR(G)) = PM(H, H̃) = PM(H ∩DR(G′), H̃ ∩DR(G′)).
We now prove the proposition statement for the sojourn time averages. Let H ∈ (DR(G) ∪ DR(G′))/R.

We have H ∩DR(G) ∈ DR(G)/R and H ∩DR(G′) ∈ DR(G′)/R. By definition of the average sojourn time in
an equivalence class of states, we get SJR∩(DR(G))2(H ∩DR(G)) = 1

1−PM(H∩DR(G),H∩DR(G)) = 1
1−PM(H,H) =

1
1−PM(H∩DR(G′),H∩DR(G′)) = SJR∩(DR(G′))2(H ∩DR(G′)).

The proposition statement for the sojourn time variances is proved similarly to that for the averages. ⊓⊔

98

