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Abstract. In the last decades, a number of stochastic enrichments of process algebras was con-
structed to allow one for specification of stochastic processes within the well-developed framework
of algebraic calculi. In [40], a continuous time stochasticextension of finite Petri box calculus
(PBC) was proposed calledsPBC. The algebrasPBC has interleaving semantics due to the
properties of continuous time distributions. At the same time,PBC has step semantics, and it could
be natural to propose its concurrent stochastic enrichment. We construct a discrete time stochastic
extensiondtsPBC of finitePBC. A step operational semantics is defined in terms of labeled tran-
sition systems based on action and inaction rules. A denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic Petri nets (LDTSPNs) called discrete time stochastic
Petri boxes (dts-boxes). A consistency of both semantics isdemonstrated. In addition, we define a
variety of probabilistic equivalences that allow one to identify stochastic processes with similar be-
haviour which are differentiated by too strict notion of thesemantic equivalence. The interrelations
of all the introduced equivalences are investigated.

Keywords: Stochastic Petri nets, stochastic process algebras, Petribox calculus, discrete time,
transition systems, operational semantics, dts-boxes, denotational semantics, empty loops, proba-
bilistic equivalences.

1. Introduction

Stochastic Petri nets (SPNs) are a well-known model for quantitative analysis of discrete dynamic event
systems proposed in [43, 44, 17]. Essentially, SPNs are a high level language for specification and per-
formance analysis of concurrent systems. A stochastic process corresponding to this formal model is a
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Markov chain generated and analyzed by well-developed algorithms and methods. Firing probabilities
distributed along continuous or discrete time scale are associated with transitions of an SPN. Thus, there
exist SPNs with continuous and discrete time. Markov chainsof the corresponding types are associated
with the SPNs. As a rule, for SPNs with continuous time (CTSPNs), exponential or phase distributions
of transition probabilities are used. For SPNs with discrete time (DTSPNs), geometric or combinations
of geometric distributions are usually used. Transitions of CTSPNs fire one by one at continuous time
moments. Hence, the semantics of this model is an interleaving one. In this semantics, parallel computa-
tions are modeled by all possible execution sequences of their components. Transitions of DTSPNs fire
concurrently in steps at discrete time moments. Hence, thismodel has a step semantics. In this semantics,
parallel computations are modeled by sequences of concurrent occurrences (steps) of their components.
In [10, 11], a labeling for transitions of CTSPNs with actionnames was proposed. The labeling allows
SPNs to model processes with functionally similar components: the transitions corresponding to the
similar components are labeled by the same action. Moreover, one can compare labeled SPNs by differ-
ent behavioural equivalences, and this makes possible to check stochastic processes specified by labeled
SPNs for functional similarity. Therefore, one can compareboth functional and performance properties,
and labeled SPNs turn into a formalism for quantitative and qualitative analysis.

Algebraic calculi occupy a special place among formal models for specification of concurrent sys-
tems and analysis of their behavioral properties. In such process algebras (PAs), a system or a process is
specified by an algebraic formula. A verification of the properties is accomplished at a syntactic level by
means of well-developed systems of equivalences, axioms and inference rules. One of the first PAs was
CCS (Calculus of Communicating Systems) [42]. Process algebras have been acknowledged to be very
suitable formalism to operate with real time and stochasticsystems as well. In the last years, stochastic
extensions of PAs called stochastic process algebras (SPAs) became very popular as a modeling frame-
work. SPAs do not just specify actions that can happen (qualitative features) as usual process algebras,
but they associate some quantitative parameters with actions (quantitative characteristics). The papers
[20, 9, 21, 16, 47, 12] propose a variety of SPAs. Process algebras allow one to specify processes in a
compositional way via an expressive formal syntax. On the other hand, Petri nets provide one with an
ability for visual representation of a process structure and execution. Hence, the relationship between
SPNs and SPAs is of particular interest, since it allows to combine advantages of both models. For this,
a semantics of algebraic formulas in terms of Petri nets is usually defined. In the stochastic case, the
Markov chain of the stochastic process specified by an SPA formula is built based on the state transition
graph of the corresponding SPN.

As a rule, stochastic process calculi proposed in the literature are based on interleaving. As a semantic
domain, the interleaving formalism of transition systems is used. For example, an extension ofCCS with
probabilities and time calledTPCCS was defined in [19]. An enrichment ofBPA with probabilistic
choice,prBPA, as well as an extension ofprBPA with parallel composition operator namedACP+

π

have been proposed in [1]. A standard way for probabilistic extension of process algebras into the
calculi of probabilistic transition systems was describedin [22]. The most popular SPAs proposed so
far arePEPA [21], TIPP [20] andEMPA [2]. It is worth to mention the stochastic process calculus
PPA constructed in [46, 45] as well. Therefore, an investigation of a stochastic extension for more
expressive and powerful algebraic calculi is an important issue. At present, the development of step or
“true concurrency” (such that parallelism is considered asa causal independence) SPAs is in the very
beginning. One can mention a concurrent SPA of finite processesStAFP0 with step semantics proposed
in [14]. At the same time, there still exists no algebra of infinite concurrent stochastic processes.
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Petri box calculus (PBC) is a flexible and expressive process algebra based on calculi CCS [42]
andAFP0 [23]. PBC was introduced more than10 years ago [4], and it was well explored since that
time [3, 25, 8, 15, 5, 26, 6, 7]. Its goal was to propose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementaryPetri nets. Thus,PBC serves as a bridge
between theory and applications. Formulas ofPBC are combined not from single actions (including
the invisible one) and variables only, as inCCS, but from multisets of actions called multiactions (basic
formulas) as well. In contrast toCCS, concurrency and synchronization are different operations (con-
current constructs). Synchronization is defined as a unary multi-way stepwise operation based on com-
munication of actions and their conjugates. The other fundamental operations are sequence and choice
(sequential constructs). The calculus includes also restriction and relabeling (abstraction constructs). To
specify infinite processes, refinement, recursion and iteration operations were added (hierarchical con-
structs). Thus, unlikeCCS, algebraPBC has an additional iteration construction to specify infiniteness
in the cases when finite Petri nets can be used as the semantic interpretation. ForPBC, denotational
semantics in terms of a subclass of Petri nets equipped with interface and considered up to isomorphism
was proposed. This subclass is called Petri boxes. The calculus PBC has a step operational semantics
in terms of labeled transition systems based on structural operational semantics (SOS) rules. A pomset
operational semantics ofPBC was defined in [25] such that the partial order information was extracted
from “decorated” step traces. In these step sequences, multiactions were annotated with an information
on the relative position of the expression part they were derived from.

A stochastic extension ofPBC called stochastic Petri box calculus (sPBC) was proposed in [40,
39, 41, 31, 35, 34, 36, 29]. InsPBC, multiactions have stochastic durations that follow negative ex-
ponential distribution. Each multiaction is instantaneous and equipped with a rate that is a parameter
of the corresponding exponential distribution. The execution of a multiaction is possible only after the
corresponding stochastic time delay. Just a finite part ofPBC was used for the stochastic enrichment.
This means thatsPBC has neither refinement or recursion or iteration operations. A denotational se-
mantics was defined in terms of a subclass of labeled continuous time stochastic Petri nets (CTSPNs)
called stochastic Petri boxes (s-boxes). The calculussPBC has interleaving operational semantics in
terms of labeled transition systems. Note that we have interleaving behaviour here because of the fact
that a simultaneous firing of any two transitions has zero probability in accordance to the properties of
continuous time distributions. Current research in this branch has an aim to extend the specification abil-
ities of sPBC and to define an appropriate congruence relation over algebraic formulas. Recent results
on constructing iteration forsPBC were reported in [38, 30]. In the papers [32, 33], a number of new
equivalence relations were proposed for regular terms ofsPBC to choose later a suitable candidate for
a congruence. In [37], the special multiactions with zero time delay were added tosPBC. A deno-
tational semantics of such asPBC extension was defined via a subclass of labeled generalized SPNs
(GSPNs). The subclass is called generalized stochastic Petri boxes (gs-boxes). Nevertheless, there is still
no stochastic extension ofPBC with step semantics. It could be done with the use of labeled DTSPNs
as a semantic area, since discrete time models allow for concurrent action occurrences. The enrichment
based of DTSPNs would be natural becausePBC has a step operational semantics.

A notion of equivalence is very important in formal theory ofcomputing processes and systems.
Behavioural equivalences are applied during verification stage both to compare behaviour of systems
and reduce their structure. At present time, there exists a great diversity of different equivalence notions
for concurrent systems, and their interrelations were wellexplored in the literature. The most popular
and widely used one is bisimulation. Unfortunately, the mentioned behavioural equivalences take into
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account only functional (qualitative) but not performance(quantitative) aspects of system behaviour.
Additionally, the equivalences are often interleaving ones, and they do not respect concurrency. SPAs
inherited from untimed PAs a possibility to apply equivalences for comparison of specified processes.
Like equivalences for other stochastic models, the relations for SPAs have special requirements due to
the probabilities summation. The states from which similarfuture behaviours start have to be grouped
into equivalence classes. The classes form elements of the aggregated state space, and they are defined
a posteriori while searching for equivalences on state space of a model. In [12], a notion of interleaving
stochastic bisimulation equivalence for process terms wasintroduced. At the same time, no appropriate
equivalence notion was defined for concurrent SPAs so far. Thus, it is desirable to propose an equiv-
alence relation for parallel SPAs that relates formulas specifying processes with similar behavior and
differentiates those having non-similar one from a certainviewpoint.

We did some work on the development of concurrent discrete time SPNs and SPAs as well as on
defining a variety of concurrent probabilistic equivalences. In [13], labeled weighted discrete time SPNs
(LWDTSPNs) were proposed that is a modification of DTSPNs by transition labeling and weights. Tran-
sitions of LWDTSPNs are labeled by actions that represent elementary activities and can be visible
or invisible to an external observer. For this net class, a number of new probabilisticτ -trace andτ -
bisimulation equivalences were defined that abstract from invisible actions (denoted byτ ) and respect
concurrency in different degrees (interleaving and step relations). In addition, probabilistic relations that
require back or back-forth simulation were introduced. An application of the probabilistic back-forth
τ -bisimulation equivalences to compare stationary behaviour of the LWDTSPNs was demonstrated. In
[14], a stochastic algebra of finite nondeterministic processesStAFP0 was proposed with semantics in
terms of a subclass of LWDTSPNs and LDTSPNs called stochastic acyclic nets (SANs). The calculus
defined is a stochastic extension of algebraAFP0 introduced in [24]. The calculusStAFP0 specifies
concurrent stochastic processes. Another feature of the algebra is a net semantics allowing one to pre-
serve the level of parallelism, since Petri nets is a classical “true concurrency” model. Usually, transition
systems are used for this purpose, but they are not able to respect concurrency completely. An axiomati-
zation for the semantic equivalence ofStAFP0 was proposed. It was proved that any algebraic formula
could be reduced to the “fully stratified” one with the use of the axiom system. This simplifies semantic
comparison of formulas.

In this paper, we propose a discrete time stochastic extension of finitePBC calleddtsPBC. The
work consists of the following stages. First, we present thesyntax ofdtsPBC. Each multiaction of
the initial calculusPBC is associated with a probability. Such a pair is called stochastic multiaction
or activity. Second, we propose semantics ofdtsPBC. A step operational semantics is constructed in
terms of labeled transition systems based on action and inaction rules. The difficulty here is a careful
elaboration of step probabilities for formulas with parallelism and synchronization as well as the conflict
resolving mechanism related to the probabilistic choice. The denotational semantics is defined in terms
of a subclass of labeled DTSPNs (LDTSPNs) called discrete time stochastic Petri boxes (dts-boxes). A
consistency of operational and denotational semantics is proved. In the last part, we define a number of
probabilistic equivalences in the algebraic setting basedof transition systems without empty behaviour.
These relations are weaker than the semantic equivalence ofdtsPBC. They are used to identify stochas-
tic processes with similar behaviour which are differentiated by the semantic equivalence that is too strict
in many cases. The interrelations diagram of all the introduced equivalences is built. The earlier report
on the results presented here is [49].

The paper is organized as follows. In the next Section 2 a syntax of calculusdtsPBC is presented.
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Then, in Section 3 we construct operational semantics of thealgebra in terms of labeled transition sys-
tems. In Section 4 we propose denotational semantics based on a subclass of LDTSPNs. Section 5 is
devoted to the construction and the interrelations of probabilistic algebraic equivalences based on tran-
sition systems without empty loops. The concluding Section6 summarizes the results obtained and
outlines research perspectives in this area.

2. Syntax

Petri box calculusPBC was proposed in [4]. Its formulas specify Petri boxes (PBs),a special class
of labeled Petri nets. In this section we propose a syntax of discrete time stochastic extension of finite
PBC called discrete time stochastic Petri box calculusdtsPBC with semantics in terms of discrete
time stochastic Petri boxes (dtsPBs), a special class of LDTSPNs.

First, we recall a definition of multiset that is an extensionof the set notion by allowing several
identical elements.

Definition 2.1. Let X be a set. A finitemultiset (bag)M overX is a mappingM : X → IN such that
|{x ∈ X |M(x) > 0}| <∞, i.e., it can contain finite number of elements only.

We denote theset of all finite multisetsover X by INX
f . When∀x ∈ X M(x) ≤ 1, M is a

proper set. Thecardinality of a multisetM is defined as|M | =
∑

x∈X M(x). We writex ∈ M if
M(x) > 0 andM ⊆ M ′ if ∀x ∈ X M(x) ≤ M ′(x). We define(M +M ′)(x) = M(x) +M ′(x) and
(M −M ′)(x) = max{0,M(x) −M ′(x)}.

Let Act = {a, b, . . .} be the set ofelementary actions. ThenÂct = {â, b̂, . . .} is the set ofconjunc-
tive actions (conjugates)such thata 6= â and ˆ̂a = a. LetA = Act ∪ Âct be the set ofall actions, and
L = INA

f be the set ofall multiactions. Note that∅ ∈ L, this corresponds to an internal activity, i.e., the
execution of a multiaction that contains no visible action names. Thealphabetof α ∈ L is defined as
A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction)is a pair(α, ρ), whereα ∈ L andρ ∈ (0; 1) is the probability of
the multiactionα. The multiaction probabilities are used to calculate probabilities of state changes (steps)
at discrete time moments. The multiaction probabilities are required not to be equal to1, since otherwise,
the multiactions with probability1 always happen in a step, and all other with the less probabilities do
not. In this case, technical difficulties appear with conflicts resolving, see [44]. LetSL be the set of
all activities. Let us note that the same multiactionα ∈ L may have different probabilities in the same
specification. Thealphabetof (α, ρ) ∈ SL is defined asA(α, ρ) = A(α). For (α, ρ) ∈ SL, we define
its multiaction partasL(α, ρ) = α and itsprobability partasΩ(α, ρ) = ρ.

Activities are combined into formulas by the following operations:sequential execution;, choice[],
parallelism‖, relabeling[f ], restrictionrs andsynchronizationsy.

Relabeling functionsf : A → A are bijections preserving conjugates, i.e.,∀x ∈ A f(x̂) = f̂(x).
Let α, β ∈ L be two multiactions such that for some actiona ∈ Act we havea ∈ α andâ ∈ β or â ∈ α
anda ∈ β. Then synchronization ofα andβ by a is defined asα⊕a β = γ, where

γ(x) =

{
α(x) + β(x)− 1, x = a or x = â;

α(x) + β(x), otherwise.
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Static expressions specify the structure of a system. As we shall see, they agree to unmarked SPNs.

Definition 2.2. Let (α, ρ) ∈ SL anda ∈ Act. A static expressionof dtsPBC is defined as

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a.

Let StatExpr denote the set ofall static expressionsof dtsPBC.
Dynamic expressions specify the states of a system. As we shall see, they agree to marked SPNs.

Definition 2.3. Let (α, ρ) ∈ SL, a ∈ Act andE ∈ StatExpr. A dynamic expressionof dtsPBC is
defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a.

LetDynExpr denote the set ofall dynamic expressionsof dtsPBC.

3. Operational semantics

In this section we construct a step operational semantics interms of labeled transition systems.

3.1. Inaction rules

First, we define inaction rules for overlined and underlinedstatic expressions. LetE,F ∈ StatExpr
anda ∈ Act.

E;F
∅
→ E;F E;F

∅
→ E;F E;F

∅
→ E;F E[]F

∅
→ E[]F E[]F

∅
→ E[]F

E[]F
∅
→ E[]F E[]F

∅
→ E[]F E‖F

∅
→ E‖F E‖F

∅
→ E‖F E[f ]

∅
→ E[f ]

E[f ]
∅
→ E[f ] E rs a

∅
→ E rs a E rs a

∅
→ E rs a E sy a

∅
→ E sy a E sy a

∅
→ E sy a

Second, we propose inaction rules for arbitrary dynamic expressions. LetE ∈ StatExpr, G,H, G̃,
H̃ ∈ DynExpr anda ∈ Act.

G
∅
→ G G

∅
→G̃, ◦∈{;,[]}

G◦E
∅
→G̃◦E

G
∅
→G̃, ◦∈{;,[]}

E◦G
∅
→E◦G̃

G
∅
→G̃

G‖H
∅
→G̃‖H

H
∅
→H̃

G‖H
∅
→G‖H̃

G
∅
→G̃

G[f ]
∅
→G̃[f ]

G
∅
→G̃, ◦∈{rs,sy}

G◦a
∅
→G̃◦a

Note that the ruleG
∅
→ G is intentionally included in the set of rules above. It reflects a non-zero

probability to stay in a state at the next time moment that is an essential feature of discrete time stochastic
processes.

A dynamic expressionG is operativeif no inaction rule can be applied to it, with the exception of

G
∅
→ G. Note that any dynamic expression can be always transformedinto a (not necessarily unique)

operative one using inaction rules. LetOpDynExpr denote the set ofall operative dynamic expressions
of dtsPBC.
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Definition 3.1. Let ≃ = (
∅
→ ∪

∅
←)∗ be dynamic expression isomorphism indtsPBC. Thus, two

dynamic expressionsG andG′ are isomorphic, denoted byG ≃ G′, if they can be reached from each
other by applying inaction rules.

3.2. Action rules

Now we propose action rules which describe expression transformations due to the execution of multisets
of activities. Let(α, ρ), (β, χ) ∈ SL, E ∈ StatExpr, G,H ∈ OpDynExpr, G̃, H̃ ∈ DynExpr and
a ∈ Act. Moreover, letΓ,∆ ∈ INSL

f . Thealphabetof Γ ∈ INSL
f is defined asA(Γ) = ∪(α,ρ)∈ΓA(α).

(α, ρ)
{(α,ρ)}
−→ (α, ρ) G

Γ
→G̃

G;E
Γ
→G̃;E

G
Γ
→G̃

E;G
Γ
→E;G̃

G
Γ
→G̃

G[]E
Γ
→G̃[]E

G
Γ
→G̃

E[]G
Γ
→E[]G̃

G
Γ
→G̃

G‖H
Γ
→G̃‖H

H
Γ
→H̃

G‖H
Γ
→G‖H̃

G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

G
Γ
→G̃

G[f ]
f(Γ)
−→G̃[f ]

G
Γ
→G̃, a,â6∈A(Γ)

G rs a
Γ
→G̃ rs a

G
Γ
→G̃

G sy a
Γ
→G̃ sy a

G sy a
Γ+{(α,ρ)}+{(β,χ)}

−→ G̃ sy a, a ∈ A(α), â ∈ A(β)

G sy a
Γ+{(α⊕aβ,ρ·χ)}

−→ G̃ sy a

Note that in the last rule we multiply the probabilities of synchronized multiactions since this corre-
sponds to the probability of event intersection.

3.3. Transition systems

Now we define transition systems associated with dynamic expressions. Note that expressions of
dtsPBC can contain identical activities. To avoid technical difficulties such as the proper calculation of
state change probabilities for multiple transitions, we can always enumerate coinciding activities from
left to right in the syntax of expressions. In the following,we suppose that all identical activities are
enumerated. The new activities generated from the synchronization will be annotated with the concate-
nation of the numbering of the activities they come from. Such new activities will be considered up to the
permutation of their numbering resulting from the applications of the second rule for synchronization.
After such an enumeration the multisets of activities over arrows in the action rules will be proper sets.

Definition 3.2. Let G be a dynamic expression. Then[G]≃ = {H | G ≃ H} is the equivalence class
of G with respect to isomorphism. Thederivation setof G, denoted byDR(G), is the minimal set such
that

• [G]≃ ∈ DR(G);

• if [H]≃ ∈ DR(G) and∃ΓH
Γ
→ H̃ then[H̃]≃ ∈ DR(G).

LetG be a dynamic expression and[H]≃ ∈ DR(G).
The set ofall multisets of activities executable fromH is defined asExec(H) = {Γ | ∃J ∈

[H]≃ ∃J̃ J
Γ
→ J̃}.

Let Γ ∈ Exec(H). The probability that the activities fromΓ try to happenin H is
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PF (Γ,H) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(H)|(β,χ)6∈Γ}

(1− χ).

WhenExec(H) = ∅, we definePF (∅,H) = 1, since we stay inH in this case.
Thus,PF (Γ,H) could be interpreted as ajoint probability of independent events. Each such an

event is interpreted as trying or not trying to occur of a particular activity fromΓ. The multiplication in
the definition is used because it reflects the probability of event intersection.

The probability that the activities fromΓ happenin H is

PT (Γ,H) =
PF (Γ,H)∑

∆∈Exec(H) PF (∆,H)
.

Thus,PT (Γ,H) is the probability that the multiset of activitiesΓ tries to happennormalizedby the
probability to occur forany multiset executable fromH. The denominator of the fraction above is a
summation since it reflects the probability of the event union.

The probability that the execution ofanyactivities changesH to H̃ is

PM(H, H̃) =
∑

{Γ|∃J∈[H]≃,J̃∈[H̃]≃ J
Γ
→J̃}

PT (Γ, J).

SincePM(H, H̃) is the probability foranymultiset of activities to changeH to H̃, we use summa-
tion in the definition.

Definition 3.3. Let G be a dynamic expression. The(labeled probabilistic) transition systemof G is a
quadrupleTS(G) = (SG, LG,→G, sG), where

• the set ofstatesis SG = DR(G);

• the set oflabelsis LG ⊆ INSL
f × (0; 1];

• the set oftransitionsis→G= {([H]≃, (Γ, PT (Γ,H)), [H̃ ]≃) | [H]≃ ∈ DR(G), H
Γ
→ H̃};

• the initial state is sG = [G]≃.

Thus, the transition systemTS(G) associated with a dynamic expressionG describes all steps that
happen at discrete moments of time with some (one-step) probability and consist of multisets of ac-
tivities. These steps change states, and the states are the isomorphism classes of dynamic expressions
obtained by application of action rules starting from the expressions belonging to[G]≃. A transition

(s, (Γ,P), s̃) ∈→G will be written ass
Γ
→P s̃. It is interpreted as follows: the probability to change the

states to s̃ as a result of executingΓ isP. The step probabilities belong to the interval(0; 1]. The value
1 is the case when we cannot leave a state, and thus there existsthe only transition from the state to itself.

We write s
Γ
→ s̃ if ∃P s

Γ
→P s̃. For one-element multisetΓ = {(α, ρ)} we write s

(α,ρ)
−→P s̃ and

s
(α,ρ)
−→ s̃.

Note thatΓ could be the empty set, and its execution does not change isomorphism classes. This
corresponds to the application of inaction rules to the expressions from the equivalence classes. We have
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to keep track of such executions calledempty loops, because they have nonzero probabilities. It follows
from the definition ofPF (∅,H) and the fact that multiaction probabilities cannot be equalto 1 as they
belong to the interval(0; 1).

Definition 3.4. LetG,G′ be dynamic expressions andTS(G) = (SG, LG,→G, sG),
TS(G′) = (SG′ , LG′ ,→G′ , sG′) be their transition systems. A mappingβ : SG → SG′ is an isomor-
phismbetweenTS(G) andTS(G′), denoted byβ : TS(G) ≃ TS(G′), if β is a bijection such that

β(sG) = sG′ and∀s, s̃ ∈ SG ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃). Two transition systemsTS(G) and

TS(G′) areisomorphic, denoted byTS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Transition systems of static expressions can be defined as well. For E ∈ StatExpr let TS(E) =
TS(E).

Definition 3.5. Two dynamic expressionsG andG′ are isomorphic with respect to transition systems,
denoted byG =ts G

′, if TS(G) ≃ TS(G′).

Definition 3.6. Let G be a dynamic expression. Theunderlying discrete time Markov chain (DTMC)
of G, denoted byDTMC(G), has the state spaceDR(G) and transitions[H]≃ →PM(H,H̃) [H̃]≃, if

∃Γ [H]≃
Γ
→ [H̃]≃.

Note that for a dynamic expressionG we havePM(H, H̃) =
∑

{Γ|[H]≃
Γ
→P [H̃]≃}

P, i.e., the proba-

bility of eachDTMC(G) transition from a states to s̃ is a sum of probabilities ofTS(G) transitions
from s to s̃.

Underlying DTMCs of static expressions can be defined as well. ForE ∈ StatExpr let
DTMC(E) = DTMC(E).

Example 3.1. Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ) andE = E1;E2. The identical activities of
the composite static expression are enumerated as follows:E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ). In Fig-
ure 1 the transition systemTS(E) and the underlying DTMCDTMC(E) are presented. Note that for
the reason of simplicity in the graphical representation states are depicted by expressions belonging to the
corresponding equivalence classes, and singleton multisets of activities are written without braces. Let us
demonstrate how the transition probabilities are calculated. For instance, we havePF ({({a}, ρ)1}, E) =
PF ({({a}, ρ)2}, E) = ρ(1 − ρ) and PF (∅, E) = (1 − ρ)2. Hence,

∑
∆∈Exec(E) PF (∆, E) =

2ρ(1− ρ)+ (1− ρ)2 = 1− ρ2. Thus,PT ({({a}, ρ)1}, E) = PT ({({a}, ρ)2}, E) = ρ(1−ρ)
1−ρ2

= ρ
1+ρ

and

PT (∅, E) = (1−ρ)2

1−ρ2
= 1−ρ

1+ρ
. The other probabilities are calculated in a more straightforward way.

4. Denotational semantics

In this section we construct denotational semantics in terms of a subclass of labeled DTSPNs called
discrete time stochastic Petri boxes (dts-boxes). Since wepropose stochastic extension of finite part of
PBC, the dts-boxes will have finite observable behaviour.
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Figure 1. The transition system and the underlying DTMC ofE for E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ)

4.1. Labeled DTSPNs

Now we introduce a class of labeled discrete time stochasticPetri nets.

Definition 4.1. A labeled DTSPN (LDTSPN)is a tupleN = (PN , TN ,WN ,ΩN , LN ,MN ), where

• PN andTN are finite sets ofplacesand transitions, respectively, such thatPN ∪ TN 6= ∅ and
PN ∩ TN = ∅;

• WN : (PN × TN )∪ (TN ×PN )→ IN is a function describing theweights of arcsbetween places
and transitions;

• ΩN : TN → (0; 1) is thetransition probabilityfunction associating transitions with probabilities;

• LN : TN → Actτ is the transition labelingfunction assigning labels from a finite set of visible
actionsAct or an invisible actionτ to transitions (i.e.,Actτ = Act ∪ {τ});

• MN ∈ INPN

f is theinitial marking.

A graphical representation of LDTSPNs is as that for standard labeled Petri nets but with probabilities
written near the corresponding transitions. In the case theprobabilities are not specified in the picture,
they are considered to be of no importance in the corresponding examples, such as those used to describe
stationary behaviour. The arc weights are depicted near them. The names of places and transitions are
depicted near them when needed. If the names are omitted but used, it is supposed that the places and
transitions are numbered from left to right and from top to down.

Let N be an LDTSPN andt ∈ TN , U ∈ INTN

f . Theprecondition•t and thepostconditiont• of t
are the multisets of places defined as(•t)(p) = WN (p, t) and(t•)(p) = WN (t, p). Theprecondition•U
and thepostconditionU• of U are the multisets of places defined as•U =

∑
t∈U

•t andU• =
∑

t∈U t•.

A transitiont ∈ TN is enabled in a markingM ∈ INPN

f of LDTSPNN if •t ⊆ M . Let Ena(M)
be the set ofall transitions such that each of them is enabled in a markingM . A set of transitions
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U ⊆ Ena(M) is enabled in a markingM if •U ⊆ M . Firings of transitions are atomic operations, and
transitions may fire concurrently in steps. We assume that all transitions participating in a step should
differ, hence, only sets (not multisets) of transitions mayfire. Thus, we do not allow self-concurrency,
i.e., firing of transitions concurrently to themselves. This restriction is introduced because we would like
to avoid technical difficulties while calculating probabilities for multisets of transitions as we shall see
after the following formal definitions.

LetM be a marking of an LDTSPNN . A transitiont ∈ Ena(M) fires with probabilityΩN(t) when
no other transitions conflicting with it are enabled. Let•U ⊆ M . The probability that the transitions
from U try to fire in M is

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1−ΩN (u)).

In the caseU = ∅ we define

PF (∅,M) =

{ ∏
u∈Ena(M)(1− ΩN (u)), Ena(M) 6= ∅;

1, Ena(M) = ∅.

Thus,PF (U,M) could be interpreted as ajoint probability of independent events. Each such an
event is interpreted as trying or not trying to fire of a particular transition fromU . The multiplication
in the definition is used because it reflects the probability of event intersection. When no transitions are
enabled inM , we havePF (∅,M) = 1, since we stay inM in this case.

Let U be a transition set that is enabled inM . Concurrent firing of the transitions fromU changes

the markingM to M̃ = M − •U +U•, denoted byM
U
→PT (U,M) M̃ , where the probability of this step

is

PT (U,M) =
PF (U,M)∑

{V |•V⊆M} PF (V,M)
.

In the caseU = ∅ we haveM = M̃ and

PT (∅,M) =
PF (∅,M)∑

{V |•V⊆M} PF (V,M)
.

Thus,PT (U,M) is the probability that the setU tries to firenormalizedby the probability to fire
for any set enabled inM . The denominator of the fraction above is a summation since it reflects the
probability of the event union.

We writeM
U
→ M̃ if ∃P M

U
→P M̃ . For one-element transition setU = {t} we writeM

t
→P M̃

andM
t
→ M̃ .

Definition 4.2. LetN be an LDTSPN.

• Thereachability setof N , denoted byRS(N), is the minimal set of markings such that

– MN ∈ RS(N);

– if M ∈ RS(N) and∃U M
U
→ M̃ thenM̃ ∈ RS(N).



200 I.V. Tarasyuk / Stochastic Petri box calculus with discretetime

a b

τ

ρ χ

θ

✍✌✎☞✍✌✎☞

✍✌✎☞
✉ ✉
❄ ❄

❏❏❫ ✡✡✢

❄2

✎

✍

✔

✕✕✖

✲ ✛

N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

RG(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✩

✪

✛✞✝ ✲

✞✝ ✲

✞✝ ✲

✞✝ ✲

∅,(1−ρ)(1−χ)

∅,1−χ ∅,1−ρ

∅,1−θ

{t1,t2},
ρχ

t1,ρ(1−χ) t2,(1−ρ)χ

t2,χ t1,ρ

t3,θ

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

DTMC(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏
❏❫

✓
✓

✓
✓✴

✩

✪

✛

ρχ

ρ(1−χ) (1−ρ)χ

χ ρ

θ

✞✝ ✲

✞✝ ✲

✞✝ ✲

✞✝ ✲

(1−ρ)(1−χ)

1−χ 1−ρ

1−θ

Figure 2. LDTSPN, its reachability graph and the underlyingDTMC

• Thereachability graphof N , denoted byRG(N), is a directed labeled graph with the set of nodes

RS(N) and an arc labeled with(U,P) between nodesM andM̃ if M
U
→P M̃ .

• Theunderlying discrete time Markov chain (DTMC)of N , denoted byDTMC(N), has the state

spaceRS(N) and transitionsM →
PM(M,M̃)

M̃ , if ∃U M
U
→ M̃ , where the transition probability

is

PM(M,M̃ ) =
∑

{U |M
U
→M̃}

PT (U,M).

Thus,PM(M,M̃ ) is the probability foranytransition set to change markingM to M̃ , hence we use
summation in the definition.

Example 4.1. In Figure 2 an LDTSPN with two visible transitionst1 (labeled bya), t2 (labeled byb)
and one invisible transitiont3 (labeled byτ ) is depicted. Transition probabilities ofN are denoted by
ρ = ΩN (t1), χ = ΩN (t2), θ = ΩN (t3). In the figure one can see the reachability graphRG(N) and the
underlying DTMCDTMC(N) as well. The reachability set consists of markingsM1 = (1, 1, 0), M2 =
(0, 1, 1), M3 = (1, 0, 1), M4 = (0, 0, 2).

4.2. Algebra of dts-boxes

Now we propose discrete time stochastic Petri boxes and associated algebraic operations to define a net
representation ofdtsPBC expressions.

Definition 4.3. A plain discrete time stochastic Petri box (plain dts-box)is a tuple
N = (PN , TN ,WN ,ΛN ), where

• PN andTN are finite sets ofplacesand transitions, respectively, such thatPN ∪ TN 6= ∅ and
PN ∩ TN = ∅;
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• WN : (PN × TN )∪ (TN ×PN )→ IN is a function describing theweights of arcsbetween places
and transitions and vice versa;

• ΛN is theplace and transition labelingfunction such thatΛN : PN → {e, i, x} (it specifiesentry,
internalandexitplaces, respectively) andΛN : TN → SL (it associates activities with transitions).

Moreover,∀t ∈ TN
•t 6= ∅ 6= t•, •t ∩ t• = ∅. In addition, if we define the set ofentryplaces ofN as

◦N = {p ∈ PN | ΛN (p) = e}, and the set ofexit places ofN asN◦ = {p ∈ PN | ΛN (p) = x}, then
the following is required to hold:◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.

A marked plain dts-boxis a pair(N,MN ), whereN is a plain dts-box andMN ∈ INPN

f is theinitial

marking. We shall use the following notation:N = (N, ◦N) andN = (N,N◦). Note that a marked
plain dts-box(PN , TN ,WN ,ΛN ,MN ) could be interpreted as the LDTSPN
(PN , TN ,WN ,ΩN , LN ,MN ), where functionsΩN andLN are defined as follows:∀t ∈ TN ΩN (t) =
Ω(ΛN (t)), LN (t) = L(ΛN (t)). In this case, the labelτ of silent transitions from the LDTSPN corre-
sponds to the multiaction part∅ of activities which label unobservable transitions of the corresponding
dts-box. The behaviour of marked dts-boxes follows from thefiring rule of LDTSPNs. A plain dts-box
N is safe, if N is, i.e.,∀M ∈ RS(N) M ⊆ PN . A plain dts-boxN is cleanif N◦ ⊆M ⇒ M = N◦,
i.e., if there are tokens in exit places then all and only exitplaces have tokens.

To define semantic function that associates a plain dts-box with every static expression ofdtsPBC,
we need to propose theenumerationfunctionEnu : TN → IN∗. It associates the numbers with transi-
tions of a plain dts-boxN in accordance with the enumeration of activities from left to right in the syntax
of the underlying static expression. In the case of synchronization, the function associates the concatena-
tion of the numbering of the transitions it comes from with the resulting new transition. The transitions
resulting from synchronization are considered up to the permutation of their numbering resulting from
the applications of the second rule for synchronization to the corresponding expression.

The structure of the plain dts-box corresponding to a staticexpression is constructed as inPBC, see
[8, 6]. I.e., we use simultaneous refinement and relabeling meta-operator (net refinement) in addition to
theoperator dts-boxescorresponding to the algebraic operations ofdtsPBC and featuring transforma-
tional transition relabelings. Thus, the resulting plain dts-boxes are safe and clean. In the definition of
denotational semantics we shall use standard constructions used forPBC. For convenience, we only use
slightly different notation:̺ ,Θ andu stand forρ (relabeling),Ω (operator box) andv (transition name)
from PBC setting, respectively.

The relabeling relations̺⊆ INSL
f × SL are defined as follows:

• ̺id = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL} is theidentity relabeling keeping the interface as it is;

• ̺[f ] = {({(α, ρ)}, (f(α), ρ) | (α, ρ) ∈ SL};

• ̺rs a = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL, a, â 6∈ A(α)};

• ̺sy a is the least relabeling relation contained in̺id such that if(Γ, {(α + {a}, ρ)} ∈ ̺sy a and
(∆, {(β + {â}, χ)} ∈ ̺sy a then(Γ + ∆, {(α + β, ρ · χ)} ∈ ̺sy a.

The plain and operator dts-boxes are presented in Figure 3. The symboli is usually omitted.
Now we define the enumeration functionEnu for every operator ofdtsPBC. LetBoxdts(E) =

(PE , TE ,WE ,ΩE , LE) be the plain dts-box corresponding to a static expressionE, andEnuE be the
enumeration function forTE .
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Figure 3. The plain and operator dts-boxes

• Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖}. Since we do not introduce new
transitions, we preserve the initial enumeration:

Enu(t) =

{
EnuE(t), t ∈ TE ;

EnuF (t), t ∈ TF .

• Boxdts(E[f ]) = Θ[f ](Boxdts(E)). Since we only change the labels of some multiactions by a
bijection, we preserve the initial enumeration:

Enu(t) = EnuE(t), t ∈ TE .

• Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions labeled with a multiaction
containinga or â, this does not change the enumeration of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ LE(t).

• Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that∀v,w ∈ TE such thatLE(v) = α+ {a},
LE(w) = β+{â}, the new transitiont resulting from synchronization ofv andw has labelL(t) =
α+β, probabilityΩ(t) = ΩE(v)·ΩE(w) and enumerationEnu(t) = EnuE(v)·EnuE(w). Thus,
the enumeration is defined as

Enu(t) =

{
EnuE(t), t ∈ TE;

EnuE(v) · EnuE(w), t results from synchronization ofv andw.
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To avoid introducing redundant transitions generated by synchronizing the same transition set in a
different order, we only consider a single one of them in the plain dts-box.

Now we can formally define denotational semantics as a homomorphism.

Definition 4.4. Let (α, ρ) ∈ SL, a ∈ Act andE,F ∈ StatExpr. The denotational semanticsof
dtsPBC is a mappingBoxdts from StatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i ;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs,sy}.

The dts-boxes of dynamic expressions can be defined as well. ForE ∈ StatExpr let Boxdts(E) =
Boxdts(E) andBoxdts(E) = Boxdts(E). Note that any dynamic expression can be decomposed into
overlined or underlined static expressions or those without overlines and underlines, and the definition
of dts-boxes is compositional.

Isomorphism is a coincidence of systems up to renaming of their components or states. Let≃ denote
isomorphism between transition systems or DTMCs and reachability graphs. Due to the space restric-
tions, we omit the corresponding definitions as they resemble that of the isomorphism between transition
systems. Note that the names of transitions of the dts-box corresponding to a static expression could be
identified with the enumerated activities of the latter.

Theorem 4.1. For any static expressionE

TS(E) ≃ RG(Boxdts(E)).

Proof:
What concerns qualitative (functional) behaviour, we havethe same isomorphism as inPBC.

The quantitative behaviour is equal by the following reasons. First, the activities of a static expression
have probability parts coinciding with the probabilities of the transitions belonging to the corresponding
plain dts-box. Second, in both semantics, conflicts are resolved via the same probability functions. ⊓⊔

Proposition 4.1. For any static expressionE

DTMC(E) ≃ DTMC(Boxdts(E)).

Proof:
By Theorem 4.1 and definitions of the underlying DTMCs for dynamic expressions and LDTSPNs, since
transition probabilities of the associated DTMCs are the sums of those belonging to transition systems
or reachability graphs. ⊓⊔
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Figure 4. The transition system and the underlying DTMC ofE for E = (({a}, ρ)‖({â}, χ)) sy a

Example 4.2. Let E1 = ({a}, ρ), E2 = ({â}, χ) andE = (E1‖E2) sy a = (({a}, ρ)‖({â}, χ)) sy a.
In Figure 4 the transition systemTS(E) and the underlying DTMCDTMC(E) are presented. In
Figure 5 the marked dts-boxN = Boxdts(E), its reachability graphRG(N) and the underlying DTMC
DTMC(N) are presented. It is easy to see thatTS(E) andRG(N) are isomorphic as well as
DTMC(E) andDTMC(N).

The probabilitiesPij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbolsy inscribes
probability of the transition generated by synchronization, and the symbol‖ inscribes that of the transi-
tion corresponding to the concurrent execution of two activities. To avoid complex notation, we use the
normalization factorN = 1

1−ρ2χ−ρχ2+ρ2χ2 .

P11 = N (1− ρ)(1− χ)(1− ρχ) P12 = Nρ(1− χ)(1 − ρχ)

P13 = Nχ(1− ρ)(1− ρχ) Psy

14 = Nρχ(1− ρ)(1 − χ)

P
‖
14 = Nρχ(1− ρχ) P22 = 1− χ

P24 = χ P33 = 1− ρ

P34 = ρ P44 = 1

P14 = P
sy

14 + P
‖
14 = Nρχ(2− ρ− χ)

Consider the caseρ = χ = 1
2 . Then the transition probabilities will be the following:

P11 = P12 = P13 = P
‖
14 =

3

13
, Psy

14 =
1

13
, P22 = P24 = P33 = P34 =

1

2
, P44 = 1, P14 =

4

13
.

5. Probabilistic equivalences

In this section we propose a number of probabilistic equivalences of expressions. Semantic equivalence
=ts is too strict in many cases, hence, we need weaker equivalence notions to compare behaviour of
processes specified by algebraic formulas.
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Figure 5. The marked dts-boxN = Boxdts(E) for E = (({a}, ρ)‖({â}, χ)) sy a, its reachability graph and the
underlying DTMC

To identify processes with intuitively similar behavior, and to be able to apply standard constructions
and techniques, we should abstract from infinite behaviour.SincedtsPBC is a stochastic extension
of finite PBC, the only source of infinite behaviour are empty loops, i.e.,the transitions which do not
change states and have empty multiaction parts of their labels. During such an abstraction, we should
collect the probabilities of the empty loops. Note that the resulting probabilities are those defined for
infinite number of empty steps. In the following, we explain how to abstract from empty loops both in
the algebraic setting ofdtsPBC and in the net one of LDTSPNs.

5.1. Empty loops in transition systems

Let G be a dynamic expression. Transition systemTS(G) can have loops going from a state to itself

which are labeled by the empty set and have non-zero probability. Theempty loops
∅
→P s appears when

no activities occur at a time step, and this happens with somepositive probability. Obviously, in this case
the current state remains unchanged.

LetG be a dynamic expression and[H]≃ ∈ DR(G). Theprobability to stay in[H]≃ due tok (k ≥ 1)
empty loopsis (PT (∅,H))k . Theprobability to execute in[H]≃ a non-empty multiset of activitiesΓ after
possible empty loopsis

PT ∗(Γ,H) = PT (Γ,H) ·
∞∑

k=0

(PT (∅,H))k =
PT (Γ,H)

1− PT (∅,H)
.

The valuek = 0 in the summation above corresponds to the case when no empty loops occur. Note
thatPT ∗(Γ,H) ≤ 1, hence, it is really a probability, sincePT (∅,H) + PT (Γ,H) ≤ PT (∅,H) +∑

∆∈Exec(H)\∅ PT (∆,H) =
∑

∆∈Exec(H) PT (∆,H) = 1.

Definition 5.1. The (labeled probabilistic) transition system without empty loopsTS∗(G) has the state

spaceDR(G) and the transitions[H]≃
Γ
→→PT ∗(Γ,H) [H̃ ]≃, if [H]≃

Γ
→ [H̃ ]≃, Γ 6= ∅.
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Note thatTS∗(G) describes the viewpoint of a person who observes steps only if they include non-
empty multisets of activities.

We writes
Γ
→→ s̃ if ∃P s

Γ
→→P s̃. For one-element transition setΓ = {(α, ρ)} we writes

(α,ρ)
→→ P s̃ and

s
(α,ρ)
→→ s̃.
We decided to consider an empty loop followed by a non-empty step only just for convenience.

Alternatively, we could consider a non-empty step succeeded by an empty loop or a non-empty step
preceded and succeeded by empty loops. In both cases our sequence begins or/and ends with loops
that do not change states. Only overall probabilities of these three evolutions can differ since empty
loops have positive probabilities. To avoid inconsistencyof definitions and too complex description,
we consider sequences ending with a non-empty step that resembles in some sense a construction of
branching bisimulation [18].

Transition systems without empty loops of static expressions can be defined as well. ForE ∈
StatExpr let TS∗(E) = TS∗(E).

Definition 5.2. Two dynamic expressionsG andG′ are isomorphic with respect to transition systems
without empty loops, denoted byG =ts∗ G

′, if TS∗(G) ≃ TS∗(G′).

Definition 5.3. The underlying DTMC without empty loopsDTMC∗(G) has the state spaceDR(G)

and transitions[H]≃ →→PM∗(H,H̃)
[H̃]≃, if ∃Γ [H]≃

Γ
→→ [H̃]≃, where the transition probability is

PM∗(H, H̃) =
∑

{Γ|[H]≃
Γ
→→[H̃]≃}

PT ∗(Γ,H).

Underlying DTMCs without empty loops of static expressionscan be defined as well. ForE ∈
StatExpr let DTMC∗(E) = DTMC∗(E).

When concurrency aspects are not relevant, interleaving behaviour is considered. Interleaving seman-
tics abstracts from steps with more than one element. After such an abstracting, one has to normalize
probabilities of the remaining one-element steps. We need to do it since the sum of outgoing probabilities
should always be equal to one for each marking to form a probability distribution. For this, a specialin-
terleaving transition relationis proposed. LetG be a dynamic expression ands, s̃ ∈ DR(G), {(α, ρ)} ∈

Exec(H). We writes
(α,ρ)
⇀⇀ Q s̃ if s

(α,ρ)
→→ P s̃ andQ = P∑

{{(β,χ)}∈Exec(H), s̄∈DR(G)|s
(β,χ)
→→

P
s̄}

P
.

5.2. Empty loops in reachability graphs

Let N be an LDTSPN. Reachability graphRG(N) can have loops going from a state to itself which

are labeled by an emptyset and have non-zero probability. The empty loopM
∅
→P M appears when no

transitions fire at a time step, and this happens with some positive probability. Obviously, in this case the
current marking remains unchanged.

LetN be an LDTSPN andM ∈ RS(N). Theprobability to stay inM due tok (k ≥ 1) empty loops
is (PT (∅,M))k . Theprobability to execute inM a non-empty transition setU after possible empty loops
is
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PT ∗(U,M) = PT (U,M) ·
∞∑

k=0

(PT (∅,M))k =
PT (U,M)

1− PT (∅,M)
.

The valuek = 0 in the summation above corresponds to the case when no empty loops occur. Note
thatPT ∗(U,M) ≤ 1, hence, it is really a probability, sincePT (∅,M) + PT (U,M) ≤ PT (∅,M) +∑

{V |•V⊆M} PT (V,M) = 1.

Definition 5.4. Thereachability graph without empty loopsRG∗(N) with the set of nodesRS(N) and

the set of arcs corresponding to the transitionsM
U
→→PT ∗(U,M) M̃ , if M

U
→ M̃, U 6= ∅.

Note thatRG∗(N) describes the viewpoint of a person who observes steps only if they include
non-empty transition sets.

We writeM
U
→→ M̃ if ∃P M

U
→→P M̃ . For one-element transition setU = {t} we writeM

t
→→P M̃

andM
t
→→ M̃ .

We decided to consider an empty loop followed by a non-empty step only just for convenience.
Alternatively, we could consider a non-empty step succeeded by an empty loop or a non-empty step
preceded and succeeded by empty loops. In both cases our sequence begins or/and ends with loops
that do not change markings. Only overall probabilities of these three evolutions can differ since empty
loops have positive probabilities. To avoid inconsistencyof definitions and too complex description,
we consider sequences ending with a non-empty step that resembles in some sense a construction of
branching bisimulation [18].

Definition 5.5. The underlying DTMC without empty loopsDTMC∗(N) has the state spaceRS(N)

and transitionsM →→
PM∗(M,M̃)

M̃ , if ∃U M
U
→→ M̃ , where the transition probability is

PM∗(M,M̃ ) =
∑

{U∈Ena(M)|M
U
→→M̃}

PT ∗(U,M).

When concurrency aspects are not relevant, interleaving behaviour is considered. Interleaving se-
mantics abstracts from steps with more than one element. After such an abstracting, one has to normal-
ize probabilities of the remaining one-element steps. For this, a specialinterleaving transition relation

is proposed. LetN be an LDTSPN andM,M̃ ∈ RS(N), t ∈ Ena(M). We writeM
t
⇀⇀Q M̃ if

M
t
→→P M̃ andQ = P∑

{u∈Ena(M), M∈RS(N)|M
u
→→

P
M}

P
.

Theorem 5.1. For any static expressionE

TS∗(E) ≃ RG∗(Boxdts(E)).

Proof:
As Theorem 4.1. ⊓⊔
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Proposition 5.1. For any static expressionE

DTMC∗(E) ≃ DTMC∗(Boxdts(E)).

Proof:
As Proposition 4.1. ⊓⊔

Note that Theorem 5.1 guarantees that the net versions of algebraic equivalences could be easily
defined. For every equivalence on the empty loops free transition system of a dynamic expression, a
similarly defined analogue exists on the empty loops free reachability graph of the corresponding dts-
box.

Example 5.1. Let E andN be those from Example 4.2. In Figure 6 the transition systemTS∗(E) and
the underlying DTMCDTMC∗(E) without empty loops are presented. In Figure 7 the reachability
graphRG∗(N) and the underlying DTMCDTMC∗(N) without empty loops are presented. It is easy
to see thatTS∗(E) andRG∗(N) are isomorphic as well asDTMC∗(E) andDTMC∗(N).

The probabilitiesP∗
ij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbolsy inscribes

probability of the transition generated by synchronization, and the symbol‖ inscribes that of the transi-
tion corresponding to the concurrent execution of two activities. To avoid complex notation, we use the
normalization factorN ∗ = 1

ρ+χ−2ρ2χ−2ρχ2+2ρ2χ2 . The probabilitiesPij (1 ≤ i, j ≤ 4) are taken from
Example 4.2.

P∗
12 =

P12
1−P11

= N ∗ρ(1− χ)(1− ρχ) P∗
13 =

P13
1−P11

= N ∗χ(1− ρ)(1 − ρχ)

Psy∗
14 =

P sy

14
1−P11

= N ∗ρχ(1− ρ)(1− χ) P
‖∗
14 =

P
‖
14

1−P11
= N ∗ρχ(1− ρχ)

P∗
24 =

P24
1−P22

= 1 P∗
34 =

P34
1−P33

= 1

P∗
14 = P

sy∗
14 + P

‖∗
14 =

P sy

14+P
‖
14

1−P11
= N ∗ρχ(2− ρ− χ)

Consider the caseρ = χ = 1
2 . Then the transition probabilities will be the following:

P∗
12 = P

∗
13 = P

‖∗
14 =

3

10
, Psy∗

14 =
1

10
, P∗

24 = P
∗
34 = 1, P∗

14 =
2

5
.

5.3. Probabilistic trace equivalences

Trace equivalences are the least discriminating ones. In the trace semantics, the behavior of a system
is associated with the set of all possible sequences of activities, i.e., protocols of work or computations.
Thus, the points of choice of an external observer between several extensions of a particular computation
are not taken into account.

Formal definitions of probabilistic trace relations resemble those of trace equivalences for standard
Petri nets [48] or process algebras, but additionally we have to take into account the probabilities of
sequences of (multisets of) multiactions. First, we have tomultiply occurrence probabilities for all (mul-
tisets of) activities along every path starting from the initial state of the transition system corresponding
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Figure 6. The transition system and the underlying DTMC without empty loops ofE from Example 4.2
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Figure 7. The reachability graph and the underlying DTMC without empty loops ofN from Example 4.2
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to a dynamic expression. The product is the probability of the sequence of multiaction parts of the
(multisets of) activities along the path. Second, we shouldcalculate a sum of probabilities for all paths
corresponding to the same sequence of multiaction parts.

ForΓ ∈ INSL
f , we define itsmultiaction partby L(Γ) =

∑
(α,ρ)∈Γ α. Note thatL(Γ) ∈ INL

f , i.e,
L(Γ) is a multiset of multiactions.

Definition 5.6. An interleaving probabilistic traceof a dynamic expressionG with
TS(G) = (SG, LG,→G, sG) is a pair(σ,P), whereσ = α1 · · ·αn ∈ L

∗ and

P =
∑

{(α1,ρ1),...,(αn,ρn)|sG
(α1,ρ1)
⇀⇀ P1

s1
(α2,ρ2)
⇀⇀ P2

···
(αn,ρn)

⇀⇀ Pnsn}

n∏

i=1

Pi.

We denote a set ofall interleaving probabilistic tracesof a dynamic expressionG by
IntProbTraces(G). Two dynamic expressionsG andG′ areinterleaving probabilistic trace equivalent,
denoted byG ≡ip G

′, if

IntProbTraces(G) = IntProbTraces(G′).

Definition 5.7. A step probabilistic traceof a dynamic expressionG with TS(G) = (SG, LG,→G, sG)
is a pair(Σ,P), whereΣ = A1 · · ·An ∈ (INL

f )
∗ and

P =
∑

{Γ1,...,Γn|sG
Γ1→→P1

s1
Γ2→→P2

···
Γn→→Pnsn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

Pi.

We denote a set ofall step tracesof a dynamic expressionG byStepProbTraces(G). Two dynamic
expressionsG andG′ arestep probabilistic trace equivalent, denoted byG ≡sp G

′, if

StepProbTraces(G) = StepProbTraces(G′).

5.4. Probabilistic bisimulation equivalences

Bisimulation equivalences respect completely the particular points of choice in the behavior of a modeled
system. We intend to present a parameterized definition of probabilistic bisimulation equivalences.

To define probabilistic bisimulation equivalences, we haveto consider a bisimulation as anequiva-
lencerelation which partitions the states of theunion of the transition systemsTS(G) andTS(G′) of
two dynamic expressionsG andG′ to be compared. ForG andG′ to be bisimulation equivalent, the ini-
tial states of their transition systems,sG andsG′ , are to be related by a bisimulation having the following
transfer property: two states are related if in each of them the same (multisets of) multiactions can occur,
and the resulting statesbelong to the same equivalence class. In addition, sums of probabilities for all
such occurrences should be the same for both states. Thus, inour definitions, we follow the approach
of [27, 28]. Hence, the difference between bisimulation andtrace equivalences is that we do not con-
siderall possibleoccurrences of (multisets of) multiactions from the initial states, but only such that lead
(stepwise) to the statesbelonging to the same equivalence class.
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First, we introduce several helpful notations. Let for a dynamic expressionG we haveH ⊆ DR(G).

Then for somes ∈ DR(G) andA ∈ INL
f we writes

A
→→Q H if

Q =
∑

{Γ|s
Γ
→→P s̃, L(Γ)=A, s̃∈H}

P.

Thus,Q is the overall probability to come into the set of statesH starting froms via steps with
multiaction partA. The summation above reflects the probability of the event union.

We writes
A
→→ H if ∃Q s

A
→→Q H. In a similar way, we define the notionss

α
⇀⇀Q H ands

α
⇀⇀ H

based on the interleaving transition relation.
For a setX, we denote its cartesian productX ×X by X2. Let E ⊆ X2 be an equivalence relation

onX. Then anequivalence class(with respect toE) of x ∈ X is [x]E = {y ∈ X | (x, y) ∈ E}. The
equivalenceE partitionsX into theset of equivalence classesX/E = {[x]E | x ∈ X}.

Definition 5.8. Let G be a dynamic expression andTS(G) = (SG, LG,→G, sG) be its transition sys-
tem. AnequivalencerelationR ⊆ DR(G)2 is a⋆-probabilistic bisimulationbetween statess1 ands2 of
TS(G), ⋆ ∈{interleaving, step}, denoted byR : s1↔⋆ps2, ⋆ ∈ {i, s}, if ∀H ∈ DR(G)/R

• ∀x ∈ L and→֒ =⇀⇀, if ⋆ = i;

• ∀x ∈ INL
f and→֒ =→→, if ⋆ = s;

s1
x
→֒Q H ⇔ s2

x
→֒Q H.

Two statess1 ands2 are⋆-probabilistic bisimulation equivalent, ⋆ ∈{interleaving, step}, denoted by
s1↔⋆ps2, if ∃R : s1↔⋆ps2, ⋆ ∈ {i, s}.

To introduce bisimulation between dynamic expressionsG andG′, we should consider a “composite”
set of statesDR(G) ∪DR(G′).

Definition 5.9. LetG,G′ be dynamic expressions andTS(G) = (SG, LG,→G, sG),
TS(G′) = (SG′ , LG′ ,→G′ , sG′) be their transition systems. A relationR ⊆ (DR(G) ∪ DR(G′))2 is
a ⋆-probabilistic bisimulationbetweenG andG′, ⋆ ∈{interleaving, step}, denoted byR : G↔⋆pG

′, if
R : sG↔⋆psG′ , ⋆ ∈ {i, s}.

Two dynamic expressionsG andG′ are⋆-probabilistic bisimulation equivalent, ⋆ ∈{interleaving,
step}, denoted byG↔⋆pG

′, if ∃R : G↔⋆pG
′, ⋆ ∈ {i, s}.

5.5. Stochastic isomorphism

Stochastic isomorphism is a relation that is weaker than theequivalence with respect to the isomorphism
of the associated transition systems without empty loops. The main idea of the following definition is to
summarize probabilities of all transitions between the same pair of states such that the transition labels
have the same multiaction parts. We use summation, since it is the probability of event union.

Definition 5.10. Let G,G′ be dynamic expressions andTS(G) = (SG, LG,→G, sG), TS(G′) =
(SG′ , LG′ ,→G′ , sG′) be their transition systems. A mappingβ : SG → SG′ is a stochastic isomor-
phismbetweenG andG′, denoted byβ : G =sto G

′, if
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1. β is a bijection such thatβ(sG) = sG′ ;

2. ∀s, s̃ ∈ SG if s
Γ
→→P s̃ then∃Γ′,P ′ such thatβ(s)

Γ′

→→P ′ β(s̃), L(Γ) = L(Γ′) and

∑

{∆|s
∆
→→Qs̃, L(Γ)=L(∆)}

Q =
∑

{∆′|β(s)
∆′
→→Q′β(s̃), L(Γ)=L(∆′)}

Q′;

3. ∀s′, s̃′ ∈ SG′ if s′
Γ′

→→P ′ s̃′ then∃Γ,P such thatβ−1(s′)
Γ
→→P β−1(s̃′), L(Γ) = L(Γ′) and

∑

{∆′|s′
∆′
→→Q′ s̃′, L(Γ)=L(∆′)}

Q′ =
∑

{∆|β−1(s′)
∆
→→Qβ−1(s̃′)), L(Γ)=L(∆)}

Q.

Two dynamic expressionsG andG′ arestochastically isomorphic, denoted byG =sto G
′, if

∃β : G =sto G
′.

5.6. Interrelations of the probabilistic equivalences

Now we compare the introduced probabilistic equivalences and obtain the lattice of their interrelations.

Proposition 5.2. Let ⋆ ∈ {i, s}. For dynamic expressionsG andG′ the following holds:

G↔⋆pG
′ ⇒ G ≡⋆p G

′.

Proof:
We present here a sketch of the proof from [49]. It is enough toprove for⋆ = s, since⋆ = i is a
particular case with the interleaving transition relation. LetR : G↔spG

′ and(s1, s2) ∈ R. We have

∀A ∈ INL
f ∀H̃ ∈ (DR(G) ∪ DR(G′))/R s1

A
→→Q H̃ ⇔ s2

A
→→Q H̃. LetH = [s1]R = [s2]R. We

can rewrite this identity asH
A
→→Q H̃, since for all states fromH their probabilities of moving intõH as

a result of execution ofA coincide. Let(A1 · · ·An,P) ∈ StepProbTraces(G). SinceR : G↔spG
′,

we havesG
A1→→Q1 H1 ∩ DR(G)

A2→→Q2 · · ·
An→→Qn Hn ∩ DR(G) ⇔ sG′

A1→→Q1 H1 ∩ DR(G′)
A2→→Q2

· · ·
An→→Qn Hn ∩DR(G′). Next, we prove that the sum of probabilities of all the pathsgoing through the

states fromH1 ∩DR(G), . . . ,Hn ∩DR(G) coincides with the product ofQ1, . . . ,Qn, i.e.,
∏n

i=1Qi =∑
{Γ1,...,Γn|sG

Γ1→→P1
···

Γn→→Pnsn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1Pi. This result can also be applied toG′.

It is enough to see now that the summation overall equivalence classesis the same as that overall
states, hence, overall multisets of activities, since their executions result the states:∑

{Γ1,...,Γn|sG
Γ1→→P1

···
Γn→→Pnsn, L(Γi)=Ai}

∏n
i=1Pi =

∑
{H1,...,Hn|sG

A1→→Q1
···

An→→QnHn∩DR(G)}

∏n
i=1Qi =

∑
{H1,...,Hn|sG′

A1→→Q1
···

An→→QnHn∩DR(G′)}

∏n
i=1Qi =

∑
{Γ′

1,...,Γ
′
n|sG′

Γ′
1→→P′

1
···

Γ′
n→→P′

n
s′n, L(Γ

′
i)=Ai}

∏n
i=1P

′
i.

Thus, (A1 · · ·An,P) ∈ StepProbTraces(G′) andStepProbTraces(G) ⊆ StepProbTraces(G′).
The reverse inclusion is proved by symmetry. ⊓⊔
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Figure 8. Interrelations of the probabilistic equivalences

Proposition 5.3. For dynamic expressionsG andG′ the following holds:

G =ts∗ G
′ ⇔ G =ts G

′.

Proof:
(⇐) It is enough to note that the abstraction from empty loops isbased on transition probabilities which
are the same for isomorphic transition systems.

(⇒) Note thatTS(G) andTS∗(G) (as well asTS(G′) andTS∗(G′)) differ by presence of empty
loops and by values of transition probabilities only. The sets of states, the labeling area, the non-empty
multisets of activities which label the transitions and theinitial states coincide. We have isomorphism
of TS∗(G) andTS∗(G′). For a state[H]≃ of TS∗(G), let [H ′]≃ be the state ofTS∗(G′) such that
these two states are related by the isomorphism ofTS∗(G) andTS∗(G′). ThenExec(H) = {Γ |

∃[H̃]≃ [H]≃
Γ
→→ [H̃]≃} ∪ {∅} = {Γ | ∃[H̃ ′]≃ [H ′]≃

Γ
→→ [H̃ ′]≃} ∪ {∅} = Exec(H ′). Note that in

the previous equality we can always find the pairs of states[H̃]≃ and[H̃ ′]≃ related by isomorphism of
TS∗(G) andTS∗(G′). Further, the definition ofPT (Γ,H) depends onExec(H) only rather than on
concreteH. Thus, for each state[H]≃ of TS(G) the probabilities of outgoing transitions will be the
same as for the corresponding state[H ′]≃ of TS(G′). Hence, we haveTS(G) ≃ TS(G′). ⊓⊔

Theorem 5.2. Let↔,↔↔∈ {≡,↔,=,≃} and⋆, ⋆⋆ ∈ { , ip, sp, sto, ts}, where the symbol ‘’ denotes
no subscription of an expression. For dynamic expressionsG andG′
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G↔⋆ G
′ ⇒ G↔↔⋆⋆ G

′

iff in the graph in Figure 8 there exists a directed path from↔⋆ to↔↔⋆⋆.

Proof:
(⇐) Let us check the validity of implications in the graph in Figure 8.

• The implications↔sp→↔ip, ↔∈ {≡,↔} are valid, since single activities are one-element mul-
tisets.

• The implications↔⋆p →≡⋆p, ⋆ ∈ {i, s}, are valid by Proposition 5.2.

• The implication=sto→ ↔sp is proved as follows. Letβ : G =sto G′. Then it is easy to see that
S : G↔spG

′, whereS = {(s, β(s)) | s ∈ DR(G)}.

• The implication=ts→=sto is valid, since stochastic isomorphism is that of empty loops free tran-
sition systems up to merging of transitions with labels having identical multiaction parts.

• The implication≃→=ts is valid, since the transition system of a dynamic formula isdefined based
on its isomorphism class.

(⇒) An absence of additional nontrivial arrows (not resultingfrom the combination of the existing
ones) in the graph in Figure 8 is proved by the following examples. As in the previous examples, we
assume that conflicting transitions have equal weights and probabilities.

• Let E = ({a}, 12)‖({b},
1
2 ) andE′ = (({a}, 12 ); ({b},

1
2))[](({b},

1
2 ); ({a},

1
2)). ThenE↔ipE

′,
butE 6≡sp E′, since only inTS∗(E′) multiactions{a} and{b} cannot be executed concurrently.

• Let E = ({a}, 12); (({b},
1
2)[]({c},

1
2)) andE′ = (({a}, 12); ({b},

1
2))[](({a},

1
2); ({c},

1
2)). Then

E ≡sp E′, but E↔/ ipE′, since only inTS∗(E′) a multiaction{a} can be executed so that no
multiaction{b} can occur afterwards.

• Let E = ({a}, 12 ); ({b},
1
2) andE′ = ({a}, 12); ({b},

1
2)[]({a},

1
2 ); ({b},

1
2). ThenE↔spE

′, but
E 6=sto E′, since only inTS∗(E′) there is a transition with multiaction part of label{a} and
probability 1 that is single one between its start and final states such thatthe transition has no
corresponding transition set inTS∗(E′). Note that inTS∗(E′), the only transition with the same
multiaction part of label has probability12 .

• Let E = ({a}, 12) andE′ = ({a}, 12 )[]({a},
1
2). ThenE =sto E′, but E 6=ts E′, since only

TS(E′) has two transitions.

• Let E = ({a}, 12) andE′ = (({a}, 12); ({â},
1
2)) sy a. ThenE =ts E′, butE 6≃ E′, sinceE and

E′ cannot be reached from each other by applying inaction rules.
⊓⊔

Example 5.2. In Figure 9 the marked dts-boxes corresponding to the dynamic expressions from equiv-
alence examples of Theorem 5.2 are presented, i.e.,N = Boxdts(E) andN ′ = Boxdts(E′) for each
picture (a)–(e). Since all the equivalences of dynamic expressions can be transferred to the correspond-
ing marked dts-boxes, we depict also the net analogues (denoted by the same symbols) of the algebraic
equivalences which relate the nets.
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Figure 9. Dts-boxes of the dynamic expressions from equivalence examples of Theorem 5.2
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6. Conclusion

In this paper, we have proposed a discrete time stochastic extension ofPBC calleddtsPBC with con-
current step operational semantics based on transition systems and denotational semantics in terms of
a subclass of LDTSPNs. A consistency of operational and denotational semantics was established. In
addition, we have defined a number of probabilistic algebraic equivalences which have natural net ana-
logues on LDTSPNs. The equivalences abstract from empty loops in transition systems corresponding
to dynamic expressions. The diagram of interrelations for the algebraic equivalences was constructed.

Future work consists in the construction a congruence relation based on some probabilistic algebraic
equivalence we defined. We can also abstract from the silent activities in the definitions of the equiva-
lences, i.e., from the activities with empty multiaction part. The abstraction from empty loops and that
from silent activities could be done in one step as well. The main point here is that we should collect
probabilities during the abstraction from an internal activity. As a result, we shall have the algebraic
analogues of the net probabilistic equivalences from [13, 14]. Moreover, we plan to extenddtsPBC
with infiniteness constructs such as iteration and recursion. The difficulty here is a proper handle the
infinite summation and multiplication of step probabilities as well as a safety of the dts-boxes resulting
from expressions specifying loops.
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[37] Macià, H., Valero, V., Cuartero, F., Ruiz, M. C.: sPBC:a Markovian extension of Petri box calculus with
immediate multiactions, 2005, 27 pages, work in progress.
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[40] Macià, H., Valero, V., de Frutos, D.: sPBC: a Markovianextension of finite PBC,Actas de IX Jornadas de
Concurrencia (JC) 2001, Sitges, Spain, 2001, 243–256, http://www.info-ab.uclm.es/retics/publications/2001/
mvfjc01.ps.



I.V. Tarasyuk / Stochastic Petri box calculus with discretetime 219
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