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1.

Abstract. In the last decades, a number of stochastic enrichmentsookeps algebras was con-
structed to allow one for specification of stochastic preesswithin the well-developed framework
of algebraic calculi. In [40], a continuous time stochastitension of finite Petri box calculus
(PBC) was proposed calledPBC. The algebrasPBC has interleaving semantics due to the
properties of continuous time distributions. At the sameetiP BC' has step semantics, and it could
be natural to propose its concurrent stochastic enrichm&atconstruct a discrete time stochastic
extensionits PBC of finite PBC'. A step operational semantics is defined in terms of labesed t
sition systems based on action and inaction rules. A ddpatdtsemantics is defined in terms of
a subclass of labeled discrete time stochastic Petri n&3 GPNs) called discrete time stochastic
Petri boxes (dts-boxes). A consistency of both semantidsiisonstrated. In addition, we define a
variety of probabilistic equivalences that allow one toritiy stochastic processes with similar be-
haviour which are differentiated by too strict notion of #emantic equivalence. The interrelations
of all the introduced equivalences are investigated.

Keywords: Stochastic Petri nets, stochastic process algebras, Betrcalculus, discrete time,
transition systems, operational semantics, dts-boxemtdgonal semantics, empty loops, proba-
bilistic equivalences.

Introduction

189

Stochastic Petri nets (SPNs) are a well-known model for tiagime analysis of discrete dynamic event
systems proposed in [43, 44, 17]. Essentially, SPNs arelalbigl language for specification and per-

formance analysis of concurrent systems. A stochasticegscorresponding to this formal model is a
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Markov chain generated and analyzed by well-developedighgos and methods. Firing probabilities
distributed along continuous or discrete time scale arecésgd with transitions of an SPN. Thus, there
exist SPNs with continuous and discrete time. Markov chafrike corresponding types are associated
with the SPNs. As a rule, for SPNs with continuous time (CTSRExponential or phase distributions
of transition probabilities are used. For SPNs with disctehe (DTSPNSs), geometric or combinations
of geometric distributions are usually used. Transitioh€ 8SPNs fire one by one at continuous time
moments. Hence, the semantics of this model is an interlgamie. In this semantics, parallel computa-
tions are modeled by all possible execution sequences ofdb®ponents. Transitions of DTSPNs fire
concurrently in steps at discrete time moments. Hencentbdel has a step semantics. In this semantics,
parallel computations are modeled by sequences of comtwceurrences (steps) of their components.
In [10, 11], a labeling for transitions of CTSPNs with actioames was proposed. The labeling allows
SPNs to model processes with functionally similar compésiethe transitions corresponding to the
similar components are labeled by the same action. Moreowercan compare labeled SPNs by differ-
ent behavioural equivalences, and this makes possiblesttk@tochastic processes specified by labeled
SPNs for functional similarity. Therefore, one can comgaoth functional and performance properties,
and labeled SPNs turn into a formalism for quantitative amalitptive analysis.

Algebraic calculi occupy a special place among formal medei specification of concurrent sys-
tems and analysis of their behavioral properties. In suobgss algebras (PAs), a system or a process is
specified by an algebraic formula. A verification of the pmies is accomplished at a syntactic level by
means of well-developed systems of equivalences, axioghg&rence rules. One of the first PAs was
CCS (Calculus of Communicating Systems) [42]. Process algehaze been acknowledged to be very
suitable formalism to operate with real time and stochastgtems as well. In the last years, stochastic
extensions of PAs called stochastic process algebras j®&ame very popular as a modeling frame-
work. SPAs do not just specify actions that can happen (@gtigk features) as usual process algebras,
but they associate some quantitative parameters withrec({muantitative characteristics). The papers
[20, 9, 21, 16, 47, 12] propose a variety of SPAs. Processedgeallow one to specify processes in a
compositional way via an expressive formal syntax. On themhand, Petri nets provide one with an
ability for visual representation of a process structuré execution. Hence, the relationship between
SPNs and SPAs is of particular interest, since it allows talmoe advantages of both models. For this,
a semantics of algebraic formulas in terms of Petri nets isliysdefined. In the stochastic case, the
Markov chain of the stochastic process specified by an SRAUtar is built based on the state transition
graph of the corresponding SPN.

As arule, stochastic process calculi proposed in the titezaare based on interleaving. As a semantic
domain, the interleaving formalism of transition systessded. For example, an extensior@f'S with
probabilities and time called PCC'S was defined in [19]. An enrichment & P A with probabilistic
choice,pr BP A, as well as an extension pf BP A with parallel composition operator named> P,
have been proposed in [1]. A standard way for probabilistitersion of process algebras into the
calculi of probabilistic transition systems was descriredR2]. The most popular SPAs proposed so
fararePEPA [21], TIPP [20] andEM P A [2]. It is worth to mention the stochastic process calculus
PPA constructed in [46, 45] as well. Therefore, an investigatd a stochastic extension for more
expressive and powerful algebraic calculi is an importastie. At present, the development of step or
“true concurrency” (such that parallelism is consideredh @asnusal independence) SPAs is in the very
beginning. One can mention a concurrent SPA of finite presessA F' Py with step semantics proposed
in [14]. At the same time, there still exists no algebra ofriité concurrent stochastic processes.



I.V. Tarasyuk / Stochastic Petri box calculus with disctéatee 191

Petri box calculus RBC) is a flexible and expressive process algebra based onicalCi$ [42]
and AF P, [23]. PBC was introduced more that0 years ago [4], and it was well explored since that
time [3, 25, 8, 15, 5, 26, 6, 7]. Its goal was to propose a coitipnal semantics for high level constructs
of concurrent programming languages in terms of elemerRatyi nets. ThusP BC' serves as a bridge
between theory and applications. FormulasPgdBC are combined not from single actions (including
the invisible one) and variables only, asiit'S, but from multisets of actions called multiactiormaéic
formulag as well. In contrast t@’C'S, concurrency and synchronization are different operatioan-
current constructs Synchronization is defined as a unary multi-way stepwyseration based on com-
munication of actions and their conjugates. The other foretdal operations are sequence and choice
(sequential constructs The calculus includes also restriction and relabeladgs{raction construcjs To
specify infinite processes, refinement, recursion andtiteraperations were addeti¢rarchical con-
structg. Thus, unlikeC'C'S, algebraP BC' has an additional iteration construction to specify innéss
in the cases when finite Petri nets can be used as the senmaetigrétation. Fo? BC', denotational
semantics in terms of a subclass of Petri nets equipped mighface and considered up to isomorphism
was proposed. This subclass is called Petri boxes. ThelealE\BC has a step operational semantics
in terms of labeled transition systems based on structy@dational semantics (SOS) rules. A pomset
operational semantics ¢t BC' was defined in [25] such that the partial order informatiors wetracted
from “decorated” step traces. In these step sequencesaniidhs were annotated with an information
on the relative position of the expression part they werezedrfrom.

A stochastic extension d? BC' called stochastic Petri box calculusHBC) was proposed in [40,
39, 41, 31, 35, 34, 36, 29]. IaPBC, multiactions have stochastic durations that follow nivgag:x-
ponential distribution. Each multiaction is instantare@nd equipped with a rate that is a parameter
of the corresponding exponential distribution. The execubf a multiaction is possible only after the
corresponding stochastic time delay. Just a finite paf® BIC' was used for the stochastic enrichment.
This means that P BC' has neither refinement or recursion or iteration operatiégnhgenotational se-
mantics was defined in terms of a subclass of labeled contgtime stochastic Petri nets (CTSPNSs)
called stochastic Petri boxes (s-boxes). The calca8C has interleaving operational semantics in
terms of labeled transition systems. Note that we havel@aeng behaviour here because of the fact
that a simultaneous firing of any two transitions has zerdaidity in accordance to the properties of
continuous time distributions. Current research in thésbh has an aim to extend the specification abil-
ities of sPBC and to define an appropriate congruence relation over agefarmulas. Recent results
on constructing iteration fos P BC were reported in [38, 30]. In the papers [32, 33], a humberegi n
equivalence relations were proposed for regular termsPdBC to choose later a suitable candidate for
a congruence. In [37], the special multiactions with zemoetidelay were added taPBC. A deno-
tational semantics of suchs&”BC extension was defined via a subclass of labeled generali2éts S
(GSPNs). The subclass is called generalized stochastidiBres (gs-boxes). Nevertheless, there is still
no stochastic extension ¢fBC' with step semantics. It could be done with the use of label€8ENs
as a semantic area, since discrete time models allow forucTd action occurrences. The enrichment
based of DTSPNs would be natural becat’3eC has a step operational semantics.

A notion of equivalence is very important in formal theory afmputing processes and systems.
Behavioural equivalences are applied during verificatimge both to compare behaviour of systems
and reduce their structure. At present time, there existeat gliversity of different equivalence notions
for concurrent systems, and their interrelations were axgtllored in the literature. The most popular
and widely used one is bisimulation. Unfortunately, the tioered behavioural equivalences take into
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account only functional (qualitative) but not performar{geantitative) aspects of system behaviour.
Additionally, the equivalences are often interleaving ©rend they do not respect concurrency. SPAs
inherited from untimed PAs a possibility to apply equivales for comparison of specified processes.
Like equivalences for other stochastic models, the ralatior SPAs have special requirements due to
the probabilities summation. The states from which sinfilémre behaviours start have to be grouped
into equivalence classes. The classes form elements ofytiregated state space, and they are defined
a posteriori while searching for equivalences on stateespa model. In [12], a notion of interleaving
stochastic bisimulation equivalence for process termsimesduced. At the same time, no appropriate
equivalence notion was defined for concurrent SPAs so faus,Tihis desirable to propose an equiv-
alence relation for parallel SPAs that relates formulaiégag processes with similar behavior and
differentiates those having non-similar one from a cen@éwpoint.

We did some work on the development of concurrent discrete $PNs and SPAs as well as on
defining a variety of concurrent probabilistic equivalenda [13], labeled weighted discrete time SPNs
(LWDTSPNSs) were proposed that is a modification of DTSPNg#ydition labeling and weights. Tran-
sitions of LWDTSPNs are labeled by actions that represesthehtary activities and can be visible
or invisible to an external observer. For this net class, mlyer of new probabilistie-trace andr-
bisimulation equivalences were defined that abstract fimnsible actions (denoted by) and respect
concurrency in different degrees (interleaving and stigiioms). In addition, probabilistic relations that
require back or back-forth simulation were introduced. Apleation of the probabilistic back-forth
T-bisimulation equivalences to compare stationary behanvod the LWDTSPNs was demonstrated. In
[14], a stochastic algebra of finite nondeterministic pesesStAF Py was proposed with semantics in
terms of a subclass of LWDTSPNs and LDTSPNs called stochasticlic nets (SANs). The calculus
defined is a stochastic extension of algeldr& P, introduced in [24]. The calculuStAF P, specifies
concurrent stochastic processes. Another feature of gebe is a net semantics allowing one to pre-
serve the level of parallelism, since Petri nets is a clas$itue concurrency” model. Usually, transition
systems are used for this purpose, but they are not ablegeatsoncurrency completely. An axiomati-
zation for the semantic equivalence$fA F' Py was proposed. It was proved that any algebraic formula
could be reduced to the “fully stratified” one with the usehd axiom system. This simplifies semantic
comparison of formulas.

In this paper, we propose a discrete time stochastic exterddifinite PBC calleddtsPBC. The
work consists of the following stages. First, we presentyigax ofdtsPBC. Each multiaction of
the initial calculusPBC is associated with a probability. Such a pair is called sistib multiaction
or activity. Second, we propose semanticslofPBC'. A step operational semantics is constructed in
terms of labeled transition systems based on action antdionaailes. The difficulty here is a careful
elaboration of step probabilities for formulas with paeaim and synchronization as well as the conflict
resolving mechanism related to the probabilistic choidee @enotational semantics is defined in terms
of a subclass of labeled DTSPNs (LDTSPNSs) called discrete stochastic Petri boxes (dts-boxes). A
consistency of operational and denotational semanticsiged. In the last part, we define a number of
probabilistic equivalences in the algebraic setting bagadhnsition systems without empty behaviour.
These relations are weaker than the semantic equivalerzeBBC. They are used to identify stochas-
tic processes with similar behaviour which are differeetisby the semantic equivalence that is too strict
in many cases. The interrelations diagram of all the intoeduequivalences is built. The earlier report
on the results presented here is [49].

The paper is organized as follows. In the next Section 2 aagywit calculusdts PBC' is presented.
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Then, in Section 3 we construct operational semantics oaldpebra in terms of labeled transition sys-
tems. In Section 4 we propose denotational semantics basadsobclass of LDTSPNs. Section 5 is
devoted to the construction and the interrelations of godisdc algebraic equivalences based on tran-
sition systems without empty loops. The concluding Sec@osummarizes the results obtained and
outlines research perspectives in this area.

2. Syntax

Petri box calculusP BC was proposed in [4]. Its formulas specify Petri boxes (PBs3pecial class
of labeled Petri nets. In this section we propose a syntaxsofete time stochastic extension of finite
PBC calleddiscrete time stochastic Petri box calculdss P BC' with semantics in terms of discrete
time stochastic Petri boxes (dtsPBs), a special class of3fNs.

First, we recall a definition of multiset that is an extens@nhe set notion by allowing several
identical elements.

Definition 2.1. Let X be a set. A finitemultiset (bag)M over X is a mappingV/ : X — IN such that
{z € X | M(z) > 0}| < oo, I.e., it can contain finite number of elements only.

We denote theset of all finite multiset®ver X by ijf. WhenVz € X M(z) < 1, Mis a
proper set. Theardinality of a multiset)/ is defined agM| = >y M(xz). We writex € M if
M(z) >0andM C M'if Vz € X M(x) < M'(x). We define(M + M')(x) = M(x) + M'(x) and
(M — M')(xz) = max{0, M (z) — M'(x)}.

Let Act = {a,b, ...} be the set oklementary actionsThenAct = {a,b,...} is the set otonjunc-
tive actions (conjugatesuch thaiz # a anda = a. Let A = Act U Act be the set ofll actions and
L= 17\7}4 be the set ofll multiactions Note that}) € £, this corresponds to an internal activity, i.e., the
execution of a multiaction that contains no visible acti@ames. Thealphabetof o € £ is defined as
Ala) ={z € A| a(z) > 0}.

An activity (stochastic multiactiony a pair(«, p), wherea € £ andp € (0;1) is the probability of
the multiaction. The multiaction probabilities are used to calculate pbiliges of state changes (steps)
at discrete time moments. The multiaction probabilitiesraguired not to be equal 19 since otherwise,
the multiactions with probability always happen in a step, and all other with the less proliabildo
not. In this case, technical difficulties appear with cotslieesolving, see [44]. LefL be the set of
all activities Let us note that the same multiactianc £ may have different probabilities in the same
specification. Thalphabetof (o, p) € SL is defined asd(«, p) = A(«). For(a, p) € SL, we define
its multiaction partasL(«, p) = a and itsprobability partasQ(«, p) = p.

Activities are combined into formulas by the following opgons: sequential execution choice]],
parallelism||, relabeling[f], restrictionrs andsynchronizationy.

Relabeling functiong : A — A are bijections preserving conjugates, i, € A f(z) = f/(;).
Let o, 8 € £ be two multiactions such that for some actior Act we haven € aanda € fora €
anda € S. Then synchronization af ands by a is defined asy &, 5 = v, where

) alz)+B(x) -1, z=ao0rz=a;
e) = { a(z) + B(z), otherwise
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Static expressions specify the structure of a system. Ahaik see, they agree to unmarked SPNs.
Definition 2.2. Let («a, p) € SL anda € Act. A static expressionf dtsPBC is defined as

E:= (ap) | EsE| E[E | E|E | Elf] | Ersa| Esya.

Let Stat Expr denote the set dll static expressionsf dtsPBC.
Dynamic expressions specify the states of a system. As wiesslga they agree to marked SPNs.

Definition 2.3. Let (a, p) € SL, a € Act andE € StatExpr. A dynamic expressioaf dtsPBC'is
defined as

G:=F|E|G;E|E;G|GE|E|G|G|G|G[f]|Grsa]| G sya.
Let DynExpr denote the set dadll dynamic expressionsf dtsPBC.

3. Operational semantics
In this section we construct a step operational semantiterins of labeled transition systems.

3.1. Inaction rules

First, we define inaction rules for overlined and underliségtic expressions. Let, F' € StatExpr
anda € Act.

EFLErF BFrieF EBFrler EIFLE)F EJFLEF
EIF % E)F EIESE)F  EFSEF  E|IESEIF B[S ES
E[f]gE[f] Ersa 5 Ersa ErsagErsa EsyagEsya EsyagEsya

_ Second, we propose inaction rules for arbitrary dynamicesgions. Let) € StatExpr, G, H, é,
H € DynFEzxpr anda € Act.

ANe GACNT‘, oc{rs,sy}
0.5

oo GBGoelll GRGoclull _ ehé 0 i G t
G[f] Goa—Goa

GoELGoE BoGAEG  c|HAGIH GlHSG|IH  Glf

Note that the rule % G is intentionally included in the set of rules above. It retfeg non-zero
probability to stay in a state at the next time moment thanigessential feature of discrete time stochastic
processes.

A dynamic expressioli7 is operativeif no inaction rule can be applied to it, with the exception of
G % G. Note that any dynamic expression can be always transfoimed (not necessarily unique)

operative one using inaction rules. l@p Dyn Expr denote the set dll operative dynamic expressions
of dtsPBC.
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Definition 3.1. Let ~ = (ﬂ U &)* be dynamic expression isomorphismdis PBC. Thus, two

dynamic expression§ and G’ areisomorphic denoted byG ~ G, if they can be reached from each
other by applying inaction rules.

3.2. Action rules

Now we propose action rules which describe expressionfsemations due to the execution of multisets
of activities. Let(a, p), (8,x) € SL, E € StatExpr, G,H € OpDynExpr, G,H € DynExpr and
a € Act. Moreover, lefl’, A € INF“. Thealphabetof I' € INF“ is defined asA(T") = U, pyerA(a).

(@ p) {(ap)} (v, p) [eiE: (el [eiE: [eie cLa
P rola,p T~ T .~ T = [ T~
G:ELGE EGSEG GlESG)E EJGSE)G GIlHSG|H
HLH GLG, HAH cLa GSG, a,ag A(D) aLa
GIHLG|H GlH=2G1HE  qfNay)  GrsabGrsa Gsyablsya

Gsya Tl 160} & sya, a € Ala), a € A(SB)

F+{(a®_a§7p-x)} G sya

Gsya

Note that in the last rule we multiply the probabilities ofisiaronized multiactions since this corre-
sponds to the probability of event intersection.

3.3. Transition systems

Now we define transition systems associated with dynamicesspns. Note that expressions of
dtsPBC' can contain identical activities. To avoid technical diffiees such as the proper calculation of
state change probabilities for multiple transitions, we always enumerate coinciding activities from
left to right in the syntax of expressions. In the followinge suppose that all identical activities are
enumerated. The new activities generated from the synidation will be annotated with the concate-
nation of the numbering of the activities they come from. [Siew activities will be considered up to the
permutation of their numbering resulting from the applimas of the second rule for synchronization.
After such an enumeration the multisets of activities ovemvas in the action rules will be proper sets.

Definition 3.2. Let G be a dynamic expression. Thed|~. = {H | G ~ H} is the equivalence class
of G with respect to isomorphism. Thierivation seof G, denoted byD R(G), is the minimal set such
that

e [G]~ € DR(G);
o if [H]~ € DR(G) anddI' H 5 H then[H]~ € DR(G).

Let G be a dynamic expression afll]~ € DR(G).

The set ofall multisets of activities executable froif is defined asExec(H) = {I' | 3J €
(H]~ 3775 T}

LetT’ € Exec(H). The probability that the activities froi try to happenn H is
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PFE(I,H) = [] » 1T (1 =)
(ap)el {{(B.x)}eEzec(H)|(B,x)€T}

WhenEzec(H) = 0, we definePF((), H) = 1, since we stay it in this case.

Thus, PF(T', H) could be interpreted asjaint probability of independent events. Each such an
event is interpreted as trying or not trying to occur of aipatér activity fromI". The multiplication in
the definition is used because it reflects the probabilityweheintersection.

The probability that the activities frori happenin H is

PF(T, H)
PT(T, H) = .
zAEEmec(H) PF(A>H)

Thus, PT(T", H) is the probability that the multiset of activitidstries to happemormalizedby the
probability to occur forany multiset executable front/. The denominator of the fraction above is a
summation since it reflects the probability of the event nnio

The probability that the execution ahyactivities change#/ to His

PM(H,H) = > PT(T,J).

{T|3J€[H]~,JE[H]~ J5T}

SincePM (H, ﬁ) is the probability forany multiset of activities to chang# to H, we use summa-
tion in the definition.

Definition 3.3. Let G be a dynamic expression. Tllabeled probabilistic) transition systeof G is a
quadruplel’S(G) = (Sa, La, —a, sa), Where

¢ the set ofstatesis S¢ = DR(G);
o the set ofabelsis Lo C IN?* x (0;1];

o the set otransitionsis —¢= {([H]~, (T, PT(T', H)), [H]~) | [H]~ € DR(G), H > HY;

o theinitial stateis s¢ = [G]~.

Thus, the transition systeffiS(G) associated with a dynamic expressi@rdescribes all steps that
happen at discrete moments of time with some (one-step)apiiitly and consist of multisets of ac-
tivities. These steps change states, and the states ammotherphism classes of dynamic expressions
obtained by application of action rules starting from th@ressions belonging t@]~. A transition

(s,(I,P),s) €e—¢ will be written ass £>p 5. Itis interpreted as follows: the probability to change the
states to § as a result of executing is P. The step probabilities belong to the intery@ 1]. The value

1 is the case when we cannot leave a state, and thus theretbgistsly transition from the state to itself.

We write s 5 5if 3P s £>7> 5. For one-element multisét = {(a, p)} we write s (a—’p>)7> 5 and

,p) .
s @85

Note thatl" could be the empty set, and its execution does not changeorpbiem classes. This
corresponds to the application of inaction rules to the @sgions from the equivalence classes. We have
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to keep track of such executions calleahpty loopsbecause they have nonzero probabilities. It follows
from the definition ofPF((), H) and the fact that multiaction probabilities cannot be edqoalas they
belong to the interva(l0; 1).

Definition 3.4. Let G, G’ be dynamic expressions afith (G) = (S¢, L, —a, sa),

TS(G") = (S¢r, Lgr, — ¢, sgr) be their transition systems. A mapping: S¢ — S is anisomor-
phismbetweenT'S(G) andT'S(G’), denoted by3 : T'S(G) ~ T'S(G), if 8 is a bijection such that
B(sg) = sgr andVs, 5 € Sg VI s £>7> s < pB(s) £>7> B(5). Two transition system$'S(G) and
T'S(G") areisomorphic denoted byl'S(G) ~ T'S(G'), if 38 : TS(G) ~ T'S(G').

Transition systems of static expressions can be defined lhskee £ € StatExpr let TS(E) =
TS(E).

Definition 3.5. Two dynamic expression§ and G’ areisomorphic with respect to transition systems
denoted byG =;; G/, if TS(G) ~ TS(G).

Definition 3.6. Let G' be a dynamic expression. Thederlying discrete time Markov chain (DTMC)
of G, denoted byDT' M C(G), has the state spadeR(G) and transition§H]~ —p,, [H]~, if

o [H]~ 5 [H]~.

(HH)

Note that for a dynamic expressighwe havePM (H, ﬁ) = Z{FHH} ] }7?, i.e., the proba-
~—P ~

bility of each DT M C(G) transition from a state to 5 is a sum of probabilities of'S(G) transitions
from s to s.

Underlying DTMCs of static expressions can be defined as WellE' € StatExpr let
DTMC(E) = DTMC(E).

Example 3.1. Let By = ({a}, p)[|({a}, p), E2 = ({b},x) andE = Ej; E». The identical activities of
the composite static expression are enumerated as follews:(({a}, p)1[]({a}, p)2); ({b}, x). In Fig-

ure 1 the transition systefiS(E) and the underlying DTM@T M C(E) are presented. Note that for
the reason of simplicity in the graphical representatiatestare depicted by expressions belonging to the
corresponding equivalence classes, and singleton nisloactivities are written without braces. Let us
demonstrate how the transition probabilities are caledlaFor instance, we haver'({({a}, p)1 },_E) =
PF({({a}.p)2}.E) = p(1 — p) and PF(0,E) = (1 — p)*. Hence,Y" pyeem PF(A,E) =
2p(1—p)+ (1= p)? = 1—p2. Thus,PT({({a}, p)1 }, B) = PT({({a}, p)2}, B) = &4 = £ and
PT(0,E) = % = }%Z. The other probabilities are calculated in a more stragtiird way.

4. Denotational semantics

In this section we construct denotational semantics in g¢eofna subclass of labeled DTSPNs called
discrete time stochastic Petri boxes (dts-boxes). Sincpragose stochastic extension of finite part of
PBC(C, the dts-boxes will have finite observable behaviour.
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DTMC(E)

.
)

Figure 1. The transition system and the underlying DTM@dbr E = (({a}, p)1[]({a}, p)2); ({b}, x)

4.1.

Labeled DTSPNs

Now we introduce a class of labeled discrete time stoch&stin nets.

Definition 4.1. A labeled DTSPN (LDTSPNS a tupleN = (Pn,Tn, Wn,Qn, Ly, My ), where

Py and Ty are finite sets oplacesandtransitions respectively, such tha®y U Ty # () and
PyvnTy =0

Wy : (Pv x Ty)U(Tn x Py) — IN is a function describing thereights of arcdetween places
and transitions;

Qn : Ty — (0; 1) is thetransition probabilityfunction associating transitions with probabilities;

Ly : Ty — Act; is thetransition labelingfunction assigning labels from a finite set of visible
actionsAct or an invisible actiorr to transitions (i.e.Act, = Act U {7});

My € IN;™ is theinitial marking,

A graphical representation of LDTSPNSs is as that for stashtidreled Petri nets but with probabilities
written near the corresponding transitions. In the casetbbabilities are not specified in the picture,
they are considered to be of no importance in the correspgreiamples, such as those used to describe
stationary behaviour. The arc weights are depicted nean.tAdhe names of places and transitions are
depicted near them when needed. If the names are omittedsedt it is supposed that the places and
transitions are numbered from left to right and from top tavdo

Let N be an LDTSPNand € Ty, U € leTN. The precondition®t and thepostconditiont® of ¢
are the multisets of places defined(&s (p) = W (p, t) and(t®)(p) = Wi (¢, p). Theprecondition®U
and thepostcondition/* of U are the multisets of places defined*ds= ), *t andU*® =}, t°.

A transitiont € T is enabled in a marking/ € ]NJ{DN of LDTSPNN if *¢ C M. Let Ena(M)
be the set ofall transitions such that each of them is enabled in a markidg A set of transitions



I.V. Tarasyuk / Stochastic Petri box calculus with disctéatee 199

U C Ena(M) is enabled in a marking/ if *U C M. Firings of transitions are atomic operations, and
transitions may fire concurrently in steps. We assume thataalsitions participating in a step should
differ, hence, only sets (not multisets) of transitions rfieg. Thus, we do not allow self-concurrency,
i.e., firing of transitions concurrently to themselves. sTikgstriction is introduced because we would like
to avoid technical difficulties while calculating probatiés for multisets of transitions as we shall see
after the following formal definitions.

Let M be a marking of an LDTSPW. A transitiont € Ena(M) fires with probabilityQ 5 (¢) when
no other transitions conflicting with it are enabled. &t C M. The probability that the transitions
from U try to firein M is

FuM) =[Jov®) - T @ -nw).

teU u€Ena(M)\U

In the casd/ = () we define

HueEna(M)(l —Qn(u)), Ena(M)# 0;

PE®,M) = { 1, Ena(M) = 0.

Thus, PF(U, M) could be interpreted asjaint probability of independent events. Each such an
event is interpreted as trying or not trying to fire of a patiae transition from{. The multiplication
in the definition is used because it reflects the probabilitgvent intersection. When no transitions are
enabled inM, we havePF((), M) = 1, since we stay il in this case.

Let U be a transition set that is enabled/ifi. Concurrent firing of the transitions frofi changes
the markingd to M = M — *U + U*, denoted by\ 5 pry;.ar) M, where the probability of this step
is

PF(U, M)
PT(U, M) = .
>ovieveny PE(V, M)

In the casé/ = () we haveM = M and

PF((Q,M)
> vievemy PE(V, M)
Thus, PT(U, M) is the probability that the séf tries to firenormalizedby the probability to fire

for any set enabled in/. The denominator of the fraction above is a summation sihceflects the
probability of the event union.

We write A/ % M if 3P M Emp M. For one-element transition st = {t} we write M/ L M
andM 5 M.

PT(0, M) =

Definition 4.2. Let N be an LDTSPN.
e Thereachability sebf N, denoted byRS(N), is the minimal set of markings such that
— My € RS(N);
— if M € RS(N)and3U M % M thenM € RS(N).
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Figure 2. LDTSPN, its reachability graph and the underhiigviC

e Thereachability graphof N, denoted byRG(N), is a directed labeled graph with the set of nodes
RS(N) and an arc labeled witfi/, P) between nodes/ and M if M Yp M.

e Theunderlying discrete time Markov chain (DTM6%) N, denoted byDT M C(N), has the state

spaceRS(N) and transitions\/ = pM(M.AT) M,if 3U M LA M, where the transition probability
is

PM(M,M)= Y PT(UM).

)VESYa!

Thus,PM (M, ]\7) is the probability fomnytransition set to change markidd to M, hence we use
summation in the definition.

Example 4.1. In Figure 2 an LDTSPN with two visible transitioris (labeled bya), t5 (labeled byb)
and one invisible transitioty (labeled byr) is depicted. Transition probabilities 6f are denoted by
p=Qn(t1), x = Qn(t2), 0 = Qn(t3). Inthe figure one can see the reachability gr&h(NV) and the
underlying DTMCDT M C(N ) as well. The reachability set consists of markidgs = (1,1,0), My =
(0,1,1), M3 = (1,0,1), My = (0,0,2).

4.2. Algebra of dts-boxes

Now we propose discrete time stochastic Petri boxes andiasso algebraic operations to define a net
representation afts PBC expressions.

Definition 4.3. A plain discrete time stochastic Petri box (plain dts-baxa tuple
N = (PN, T, Whn, AN), where

e Py and Ty are finite sets oplacesandtransitions respectively, such thaty U Ty # () and
PyNTyn =0
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e Wy : (PyxTn)U(Tn x Py) — IN is a function describing theeights of arcdbetween places
and transitions and vice versa;

e Ay is theplace and transition labelinfunction such that\ ; : Py — {e, i, x} (it specifiesentry,
internalandexitplaces, respectively) antdy : Ty — SL (it associates activities with transitions).

Moreover,Vt € Ty *t # () # t*, *t Nt* = (. In addition, if we define the set @ntry places ofN as
°N = {p € Px | An(p) = e}, and the set oéxit places ofN asN° = {p € Py | An(p) = x}, then
the following is required to hol®® N £ () # N°, *(°N) = ) = (N°)*.

A marked plain dts-bois a pair(/N, My ), whereN is a plain dts-box and/y € ]NJfN is theinitial
marking We shall use the following notationV = (N,°N) and N = (N, N°). Note that a marked
plain dts-box(Py, Tn, W, An, M) could be interpreted as the LDTSPN
(PN, Tn,Wn,Qn, Ly, My), where functions2y and L are defined as followsyt € Ty Qn(t) =
Q(AN(t), Ln(t) = L(AN(t)). In this case, the label of silent transitions from the LDTSPN corre-
sponds to the multiaction paftof activities which label unobservable transitions of tleeresponding
dts-box. The behaviour of marked dts-boxes follows fromfitieg rule of LDTSPNs. A plain dts-box
N issafe if Nis, i.e.,vM € RS(N) M C Py. A plain dts-boxN is cleanif N° C M = M = N°,
i.e., if there are tokens in exit places then all and only pltes have tokens.

To define semantic function that associates a plain dts-bthkevery static expression dtsPBC,
we need to propose trenumeratiorfunction Enu : Ty — IN*. It associates the numbers with transi-
tions of a plain dts-boxV in accordance with the enumeration of activities from leftight in the syntax
of the underlying static expression. In the case of synaghation, the function associates the concatena-
tion of the numbering of the transitions it comes from witk tesulting new transition. The transitions
resulting from synchronization are considered up to thenpé&ation of their numbering resulting from
the applications of the second rule for synchronizatiorhé&dorresponding expression.

The structure of the plain dts-box corresponding to a steqression is constructed asiBC, see
[8, 6]. l.e., we use simultaneous refinement and relabeliatproperator (net refinement) in addition to
the operator dts-boxesorresponding to the algebraic operationsgiafP BC and featuring transforma-
tional transition relabelings. Thus, the resulting plais-ldoxes are safe and clean. In the definition of
denotational semantics we shall use standard constraatieed forP? BC'. For convenience, we only use
slightly different notation:p, ©® andw stand forp (relabeling),f2 (operator box) ana (transition name)
from PBC setting, respectively.

The relabeling relations C ]N;?ﬁ x SL are defined as follows:

o 0ia={{(a,p)}, (e, p) | (e, p) € SL} is theidentity relabeling keeping the interface as it is;

o o = {{(e, )}, (F(a), p) | (@, p) € SL};

® Orsa = {({(Oé,p)}, (Oé,p) | (Oé,p) €SL, a,a ¢ .A(Oé)},

® 0. o IS the least relabeling relation containedgiy such that if(T, { (o + {a},p)} € 0sy » and
(A’ {(/8 + {d}7X)} € Osya then(r + A7 {(04 + ﬁ,P : X)} € QOsy a-

The plain and operator dts-boxes are presented in FigurBesyimboi is usually omitted.

Now we define the enumeration functi@mu for every operator ofits PBC'. Let Box 45(E) =
(Pg, T, Wg,Qg, Lg) be the plain dts-box corresponding to a static expresgipand Enug be the
enumeration function fdf's.
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Figure 3. The plain and operator dts-boxes

Bozgs(E o F) = Oo(Boxgs(E), Borgs(F)), o € {;,][],]|}. Since we do not introduce new
transitions, we preserve the initial enumeration:

Enu(t) Enug(t), te€ Tg;
nu =
EnuF(t), telr.

Boxgs(E[f]) = O((Boxas(FE)). Since we only change the labels of some multiactions by a
bijection, we preserve the initial enumeration:

Enu(t) = Enug(t), t € Tg.

Bozgs(E rs a) = O o(Boxgs(E)). Since we remove all transitions labeled with a multiaction
containinga or &, this does not change the enumeration of the remainingitiams

Enu(t) = Enug(t), t € Tg, a,a & Lg(t).

Boxgs(E sy a) = Ogy o(Boxgs(F)). Note thatvv, w € Tg such thatlg(v) = o + {a},

Lg(w) = f+{a}, the new transition resulting from synchronization efandw has labelL(t) =
a—+ 3, probabilityQ(t) = Qg (v)-Qg(w) and enumerationu(t) = Enug(v)- Enug(w). Thus,
the enumeration is defined as

EnuE(t), teTg;
Enug(v) - Enug(w), tresults from synchronization efandw.

Enu(t) = {
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To avoid introducing redundant transitions generated Imglssonizing the same transition set in a
different order, we only consider a single one of them in tlanpdts-box.

Now we can formally define denotational semantics as a homuaimsm.

Definition 4.4. Let (o, p) € SL, a € Act andE, F € StatExpr. Thedenotational semanticsf
dtsPBC'is a mappingBoz s from Stat Exzpr into the area of plain dts-boxes defined as follows:

1. Bozgs((, p)i) = Nia,p),s
2. Boxgis(E o F) = Oo(Boxgs(E), Boxgs(F)), o€ {;,[], | };
3. Boxdts(E[f]) = @[f](BOI‘dts(E));

4. Boxgs(E o a) = Ooq(Boxgs(E)), o € {rs,sy}.

The dts-boxes of dynamic expressions can be defined as well' & Stat Expr let Boxgs(E) =
Boxgs(E) and Borgs(E) = Boxgs(F). Note that any dynamic expression can be decomposed into
overlined or underlined static expressions or those witlwearlines and underlines, and the definition
of dts-boxes is compositional.

Isomorphism is a coincidence of systems up to renaming aftbenponents or states. Letdenote
isomorphism between transition systems or DTMCs and rdwlitlyegraphs. Due to the space restric-
tions, we omit the corresponding definitions as they reseittialt of the isomorphism between transition
systems. Note that the names of transitions of the dts-bmegmonding to a static expression could be
identified with the enumerated activities of the latter.

Theorem 4.1. For any static expressiofi

TS(E) ~ RG(Boxgs(E)).

Proof:
What concerns qualitative (functional) behaviour, we hiénesame isomorphism as iBC.

The quantitative behaviour is equal by the following reasdtirst, the activities of a static expression
have probability parts coinciding with the probabilitiefstioe transitions belonging to the corresponding
plain dts-box. Second, in both semantics, conflicts ardwvedwia the same probability functions. O

Proposition 4.1. For any static expressiofi

DTMC(E) ~ DTMC(Boxgs(E)).

Proof:

By Theorem 4.1 and definitions of the underlying DTMCs for aliyric expressions and LDTSPNSs, since
transition probabilities of the associated DTMCs are thessof those belonging to transition systems
or reachability graphs. O
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TS(E)

( (E1llE2)sy q

0,P11
({a},p), P12

({d}vx)vp24

(E1|E2)sy q

0,Pag

Figure 4. The transition system and the underlying DTM@dbr E = (({a}, p)||({a}, %)) sy a

Example 4.2. Let By = ({a},p), B = ({a}.x) andE = (E1[|E2) sy a = (({a}, p)[({a},x)) sy a.
In Figure 4 the transition systeffiS(FE) and the underlying DTMCDT M C(E) are presented. In
Figure 5 the marked dts-baX = Box g, (E), its reachability graptlRG(N) and the underlying DTMC
DTMC(N) are presented. It is easy to see that(E) and RG(N) are isomorphic as well as
DTMC(E)andDTMC(N).

The probabilitiesP;; (1 < 4,5 < 4) are calculated as follows. Note that the symlsgl inscribes
probability of the transition generated by synchronizatiand the symba| inscribes that of the transi-
tion corresponding to the concurrent execution of two &@s. To avoid complex notation, we use the

1

normalization factoN" = T

Pu=N(1-p)(1-x)(1-px) P12 = Np(1 —x)(1 - px)

7713—NX(1— p)(1 — px) P =Npx(1 = p)(1 —x)
14—NPX( PX) Pa=1-x

Pay = x Pz =1—p

Pss=p Pag =1

Pr =P + Pl = Npx(2 — p— X)
Consider the case= x = 5. Then the transition probabilities will be the following:
| 3 1

1 4
P11 = Pi2 = P13z = 731|4 =13 P = 13 Pog = Poy = P33 = P34 = 2 Paa =1, Py = 13

5. Probabilistic equivalences

In this section we propose a number of probabilistic eqeiveés of expressions. Semantic equivalence
= IS tOO strict in many cases, hence, we need weaker equialeotions to compare behaviour of
processes specified by algebraic formulas.
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Figure 5. The marked dts-bdX¥ = Boz g, (F) for E = (({a}, p)||({a}, x)) sy a, its reachability graph and the
underlying DTMC

To identify processes with intuitively similar behaviondato be able to apply standard constructions
and techniques, we should abstract from infinite behavi®@incedtsPBC is a stochastic extension
of finite PBC, the only source of infinite behaviour are empty loops, thee,transitions which do not
change states and have empty multiaction parts of theitdal®uring such an abstraction, we should
collect the probabilities of the empty loops. Note that tbsulting probabilities are those defined for
infinite number of empty steps. In the following, we explaowhto abstract from empty loops both in
the algebraic setting efts PBC and in the net one of LDTSPNSs.

5.1. Empty loops in transition systems

Let G be a dynamic expression. Transition systéi$i(G) can have loops going from a state to itself

which are labeled by the empty set and have non-zero pratyaihe empty loops ﬂ)p s appears when
no activities occur at a time step, and this happens with gmsiive probability. Obviously, in this case
the current state remains unchanged.

Let G be a dynamic expression affd|. € DR(G). Theprobability to stay ifH]~ duetok (k > 1)
empty loopss (PT(0, H))*. Theprobability to execute ifif]~ a non-empty multiset of activitidsafter
possible empty loogs

PT(T, H)

PT*(T',H) = PT(T', H) Z T(0, H ’fzm.

The valuek = 0 in the summation above corresponds to the case when no eogpty bccur. Note
that PT*(T', H) < 1, hence, it is really a probability, sinde7' (), H) + PT(I', H) < PT(0, H) +
ZAEEJ:EC(H)\(Z) PT(A’ H) = ZAEEZ’@C(H) PT(A’ H) =

Definition 5.1. The (labeled probabilistic) transition system without empigps7S*(G) has the state
spaceD R(G) and the transition&H |~ ~» pre (v sy [H]~, if [H]~ > [H]~, T # 0.
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Note that7'S*(G) describes the viewpoint of a person who observes steps foihigyi include non-
empty multisets of activities.

We writes —» 5if 3P s —F»p 5. For one-element transition set= {(«, p) } we writes ()

,p) -
S (—») S.

We decided to consider an empty loop followed by a non-emfap snly just for convenience.
Alternatively, we could consider a non-empty step succgdmean empty loop or a non-empty step
preceded and succeeded by empty loops. In both cases ownsegbegins or/and ends with loops
that do not change states. Only overall probabilities ofe¢htiaree evolutions can differ since empty
loops have positive probabilities. To avoid inconsistentyefinitions and too complex description,
we consider sequences ending with a non-empty step thahbése in some sense a construction of
branching bisimulation [18].

Transition systems without empty loops of static expressioan be defined as well. F& €
StatExpr let TS*(E) = TS*(E).

p§and

Definition 5.2. Two dynamic expression§ and G’ areisomorphic with respect to transition systems
without empty loopsdenoted byG =, G', if T'S*(G) ~ T'S*(G’).

Definition 5.3. The underlying DTMC without empty loop@T' M C*(G) has the state spadeR(G)
and transition§H]~ — ..y 7 [H]~, if 3T [H]~ - [H]~, where the transition probability is

PM*(H,H) = > P H)

{D|[H]~—»[H]~}

Underlying DTMCs without empty loops of static expressiamas be defined as well. Fdr <
StatExpr let DTMC*(E) = DTMC*(E).

When concurrency aspects are not relevant, interleavingvieur is considered. Interleaving seman-
tics abstracts from steps with more than one element. Aftelh &n abstracting, one has to normalize
probabilities of the remaining one-element steps. We nedd it since the sum of outgoing probabilities
should always be equal to one for each marking to form a pitityadlistribution. For this, a speciah-
terleaving transition relatioris proposed. Letr be a dynamic expression aag € DR(G), {(a,p)} €
Exec(H). We writes ¢ @) sandQ = L —

5 X

{{(B,x)}eEzec(H), SEDR(G)|s — 55}

«,p
—

osifs

5.2. Empty loops in reachability graphs

Let N be an LDTSPN. Reachability grapRG(N) can have loops going from a state to itself which

are labeled by an emptyset and have non-zero probabilitg.emipty loop)/ ﬂ)p M appears when no
transitions fire at a time step, and this happens with somiéyzoprobability. Obviously, in this case the
current marking remains unchanged.

Let N be an LDTSPN and/ € RS(N). Theprobability to stay inM due tok (k > 1) empty loops
is (PT(, M))*. Theprobability to execute i/ a non-empty transition séf after possible empty loops
is
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PT(U, M)

PT*(U,M) = PT(U,M) - Z::(PT(G),M))k = T P30

k=0

The valuek = 0 in the summation above corresponds to the case when no eogpty bccur. Note
that PT*(U, M) < 1, hence, it is really a probability, sindeT'((, M) + PT(U, M) < PT(0, M) +

Definition 5.4. Thereachability graph without empty loog3G* (V) with the set of node®.S(N) and
the set of arcs corresponding to the transitiofis% PT*(U,M) M,if M UM , U 0.

Note thatRG*(N) describes the viewpoint of a person who observes steps biiey include
non-empty transition sets.

We write M % M if 3P M S M. For one-element transition sét= {t} we write M Lop M
andM 2 M.

We decided to consider an empty loop followed by a non-emt#p snly just for convenience.
Alternatively, we could consider a non-empty step succgdmean empty loop or a non-empty step
preceded and succeeded by empty loops. In both cases ownsegbegins or/and ends with loops
that do not change markings. Only overall probabilitieshefse three evolutions can differ since empty
loops have positive probabilities. To avoid inconsistengydefinitions and too complex description,
we consider sequences ending with a non-empty step thahbdse in some sense a construction of
branching bisimulation [18].

Definition 5.5. The underlying DTMC without empty loop@T' M C*(N) has the state spadeS(N)
and transitions\/ = p (M) M,if 3U M R M, where the transition probability is
PM*(M, M) = > PT*(U,M).

{U€Ena(M)| M50}

When concurrency aspects are not relevant, interleavihgvbeur is considered. Interleaving se-
mantics abstracts from steps with more than one elemengr Afich an abstracting, one has to normal-
ize probabilities of the remaining one-element steps. Rigr & speciainterleaving transition relation
is proposed. LefV be an LDTSPN and/, M ¢ RS(N), t € Ena(M). We write M —t“Q M if
M —t»p MandQ = P

Z{uGEna(}M), WERS(N)\Mﬂ»fﬁ}

=-
Theorem 5.1. For any static expressiofi

TS*(E) ~ RG*(Boxgs(E)).

Proof:
As Theorem 4.1. O
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Proposition 5.1. For any static expressiol

DTMC*(E) ~ DTMC*(Bozg(E)).

Proof:
As Proposition 4.1. O

Note that Theorem 5.1 guarantees that the net versions ebraig equivalences could be easily
defined. For every equivalence on the empty loops free tianssystem of a dynamic expression, a
similarly defined analogue exists on the empty loops freehaaility graph of the corresponding dts-
box.

Example 5.1. Let E and N be those from Example 4.2. In Figure 6 the transition syst&si(E) and
the underlying DTMCDT M C*(E) without empty loops are presented. In Figure 7 the readhabil
graphRG*(N) and the underlying DTM@T M C*(N) without empty loops are presented. It is easy
to see thaf'S*(E) and RG*(N) are isomorphic as well aB@T M C*(E) andDTMC*(N).

The probabilitiesP;; (1 < i,j < 4) are calculated as follows. Note that the symisgl inscribes
probability of the transition generated by synchronizatiand the symba| inscribes that of the transi-
tion corresponding to the concurrent execution of two &@s. To avoid complex notation, we use the

normalization factolV* = p+x_2p2X_12pX2+2p2X2. The probabilitiesP;; (1 < 4,5 < 4) are taken from

Example 4.2.
Piy = 11)71%1 = N*p(1 = x)(1 = px) Pl = 11’%511 = N*x(1 = p)(1 = px)
* P; ” * P ”
Py = 173_715‘11 = N*px(1 - p)(1 —x) Pl = 17;715‘11 = N*px(1 - px)
Pou=1op; =1 Pay = 1op5 =1

. * « _ PY4Pl y
Piy =P + Pl = gl = Nopx(2 = p =)

Consider the case= y = % Then the transition probabilities will be the following:

Piy ="Pi3 = P{L ~ 10 P = 10° Poy =Py =1, Piy = 5

5.3. Probabilistic trace equivalences

Trace equivalences are the least discriminating ones. drirtfite semantics, the behavior of a system
is associated with the set of all possible sequences ofitétivi.e., protocols of work or computations.
Thus, the points of choice of an external observer betwearaeextensions of a particular computation
are not taken into account.

Formal definitions of probabilistic trace relations reséathose of trace equivalences for standard
Petri nets [48] or process algebras, but additionally weehtavtake into account the probabilities of
sequences of (multisets of) multiactions. First, we havawdtiply occurrence probabilities for all (mul-
tisets of) activities along every path starting from theidistate of the transition system corresponding
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75*(E) DTMC*(E)

(E1llEg)sy a

({a}vp)J}/ \({i}vXLIPTS
ooy oy it )
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Figure 6. The transition system and the underlying DTMC withempty loops of2 from Example 4.2

DTMC*(N)

Figure 7. The reachability graph and the underlying DTMChwitt empty loops ofV from Example 4.2
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to a dynamic expression. The product is the probability ef $equence of multiaction parts of the
(multisets of) activities along the path. Second, we shoaldulate a sum of probabilities for all paths
corresponding to the same sequence of multiaction parts.

ForT € ]N]‘?‘: we define itsmultiaction partby L(T') = 37, ,)er @ Note that£(T) € INF, i.e,
L(T') is a multiset of multiactions.

Definition 5.6. An interleaving probabilistic tracef a dynamic expressio@ with
TS(G) = (Sa, La, —a, sq) is a pair(o, P), wheres = o - - - o, € L* and

P = > 117

(a101) (ag.02)  (an,pn) i=1
{(ar,p1)ss(an,pn)lse = pyst = py P g s}

We denote a set @l interleaving probabilistic tracesf a dynamic expressiof’ by
IntProbTraces(G). Two dynamic expressions andG’ areinterleaving probabilistic trace equivalent
denoted byG =,, G, if

IntProbTraces(G) = IntProbTraces(G').

Definition 5.7. A step probabilistic tracef a dynamic expressio& with T'S(G) = (S, L, — ¢, 5G)
is a pair(3, P), whereX = A4, --- 4, € (INf)* and

P = > 117

ot
(D1 Tnlsgdp 51 8my B, 50, L) =A; (1<i<n)} '

We denote a set @il step tracef a dynamic expressio@ by Step ProbTraces(G). Two dynamic
expressionss andG’ arestep probabilistic trace equivalerienoted byG =, G/, if

StepProbTraces(G) = StepProbTraces(G').

5.4. Probabilistic bisimulation equivalences

Bisimulation equivalences respect completely the pdgiquoints of choice in the behavior of a modeled
system. We intend to present a parameterized definitionodfgtnilistic bisimulation equivalences.

To define probabilistic bisimulation equivalences, we himveonsider a bisimulation as @guiva-
lencerelation which partitions the states of thaion of the transition system#S(G) andT'S(G’) of
two dynamic expressions andG’ to be compared. Far andG’ to be bisimulation equivalent, the ini-
tial states of their transition systems; ands¢-, are to be related by a bisimulation having the following
transfer property: two states are related if in each of tHersame (multisets of) multiactions can occur,
and the resulting statdselong to the same equivalence class addition, sums of probabilities for all
such occurrences should be the same for both states. Thaosr gefinitions, we follow the approach
of [27, 28]. Hence, the difference between bisimulation &tlade equivalences is that we do not con-
siderall possibleoccurrences of (multisets of) multiactions from the inigtates, but only such that lead
(stepwise) to the statémlonging to the same equivalence class
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First, we introduce several helpful notations. Let for aaiyic expressiols we haveH C DR(G).
Then for somes € DR(G) andA € INF we writes 3o H if

Q= > P.
{T|s2»ps, L(T)=A, s5eH}

Thus, Q is the overall probability to come into the set of staf¢sstarting froms via steps with
multiaction partA. The summation above reflects the probability of the evermtrun

We write s <5 H if 3Q s é»g #. In a similar way, we define the notioss*o # ands - H
based on the interleaving transition relation.

For a setX, we denote its cartesian produttx X by X2, Let€ C X2 be an equivalence relation
on X. Then anequivalence clas@with respect tc€) of z € X is [z]e = {y € X | (z,y) € £}. The
equivalencee partitions X into theset of equivalence classés/s = {[z]¢ | z € X }.

Definition 5.8. Let G be a dynamic expression afitb (G) = (Sg, Lg, — ¢, sg) be its transition sys-
tem. AnequivalenceelationR C DR(G)? is ax-probabilistic bisimulatiorbetween states, ands, of
TS(G), « €{interleaving, step, denoted byR : 514,50, * € {i, s}, if VH € DR(G)/r

o Vr e Land— = — if x =1

. Vmeﬂ\ffﬁand%:—»,if*:s;

81<£>Q’H - SQ‘i)QH.

Two statess; andss arex-probabilistic bisimulation equivalent €{interleaving, step, denoted by
51524552, if IR : 8152452, X S {i, S}.

To introduce bisimulation between dynamic expressi@@ndG’, we should consider a “composite”
set of stateD R(G) U DR(G’).

Definition 5.9. Let G, G’ be dynamic expressions afith(G) = (Sg, Lg, —a, s¢),
TS(G") = (Sg/, Lar, — ¢, Scv) be their transition systems. A relatidd C (DR(G) U DR(G'))? is
ax-probabilistic bisimulationbetweenGG andG’, x €{interleaving, step, denoted byR : Gﬁ*pG/, if
R :sGe,sar, * € {45}

Two dynamic expression§ and G’ are x-probabilistic bisimulation equivalent €{interleaving,
steg, denoted byG' >, ,G', if IR : GG, x € {i, s}.

5.5. Stochastic isomorphism

Stochastic isomorphism is a relation that is weaker thaedtjugvalence with respect to the isomorphism
of the associated transition systems without empty loope. fain idea of the following definition is to
summarize probabilities of all transitions between theeaair of states such that the transition labels
have the same multiaction parts. We use summation, singdhieiprobability of event union.

Definition 5.10. Let G, G’ be dynamic expressions afdS(G) = (Sq, Lg, —a,s¢), TS(G) =
(S¢ry Lar, — ¢, Sgr) be their transition systems. A mappiny: Sg — S¢ is astochastic isomor-
phismbetween andG’, denoted bys : G =4, G, if
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1. B is a bijection such that(sg) = s¢r;

2.Vs,5 € Sg if s »p 5thendl”, P’ such that(s) »p 5(3), £(T) = L(I') and

> Q= > Q';

{AlsD o5, L(N)=L(A)} {A18(5) % o/ B(3), LIT)=L(A")}

3.Vs,§ € Ser if s’ —bps & thendT, P such thaz—(s') —vp B~1(5), L(T) = £(I") and

> e- > o

(A3 03, LT)=L(A)) {AIB=1(s) B op~1(3), LI)=L(A)}

Two dynamic expressions andG’ arestochastically isomorphjadenoted byG =, G/, if
35 . G =sto G/.

5.6. Interrelations of the probabilistic equivalences

Now we compare the introduced probabilistic equivalencebabtain the lattice of their interrelations.
Proposition 5.2. Let x € {i, s}. For dynamic expressiors andG’ the following holds:

GG = (=, G

Proof:
We present here a sketch of the proof from [49]. It is enougprove forx = s, sincex = i is a
particular case with the interleaving transition relatidret R : G« ,,G’ and(sy,s2) € R. We have

VA € INEVH € (DR(G) UDR(Q))/r s1 o H & s2 o H. LetH = [s1]g = [s2]r. We
can rewrite this identity a( i‘»g H, since for all states fror# their probabilities of moving inté{ as
a result of execution oft coincide. Let(A; --- A,,P) € StepProbT'races(G). SinceR : GG,
we havesg 2o, Hi1 N DR(G) Bo, -+ 8o H,NDR(G) & s¢ 2o, HiNDR(G) Bo,
e éﬁﬁgn H, N DR(G"). Next, we prove that the sum of probabilities of all the pabgg through the

states fron#, N DR(G), ..., H, N DR(G) coincides with the product &y, ..., Q,,i.e.,[[L; Qi =

I ;. This result can also be applied@.
Z{F17~~~7Fn|36‘£}’7’1"'F_g’/?nsny L(T3)=A;, si€H; (1<i<n)} Hl:l Pi PP

It is enough to see now that the summation aléequivalence classds the same as that oval
states hence, oveall multisets of activitiessince their executions result the states:

n n
E{F17...7Fn|sG5%P1...F—%nsm Ll(FZ-):AZ-}HZ_l ‘ Z{Hl,...,HH\sGil»Ql~~~11§QanﬂDR(G)} =1 9
n n /
Z 4 " H.: Q; = z , Pl
{1, Halser oy B o, HaNDR(GN)} = (oD sy l8 s poy=ay
1ot nl°G P Pron i i

Thus, (A;--- Ay, P) € StepProbTraces(G’) and StepProbTraces(G) C StepProbTraces(G').
The reverse inclusion is proved by symmetry. O
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1

—ts

=sto

ﬁip -~ ﬁsp

Sip —— Ssp

Figure 8. Interrelations of the probabilistic equivalesice

Proposition 5.3. For dynamic expressions andG’ the following holds:
G —ts* G, s G =ts Gl.

Proof:
(<) It is enough to note that the abstraction from empty loogmaied on transition probabilities which
are the same for isomorphic transition systems.

(=) Note thatT'S(G) andT'S*(G) (as well asT’S(G’) andT'S*(G")) differ by presence of empty
loops and by values of transition probabilities only. Thts gd states, the labeling area, the non-empty
multisets of activities which label the transitions and ihidal states coincide. We have isomorphism
of TS*(G) andT'S*(G"). For a statdH]|~ of T'S*(G), let [H']~ be the state of 'S*(G’) such that
these two states are related by the isomorphisri’ 8f(G) and TS*(G’). Then Ezec(H) = {T" |
I[H)~ [Hl~ 2 [H2} U {0} = {T | IH)~ [H]~ 2 [H']~} U {0} = Exec(H'). Note that in
the previous equality we can always find the pairs of stﬁﬁég and [IA{/’]: related by isomorphism of
TS*(G) andT'S*(G"). Further, the definition ofT'(T", H) depends orEzec(H ) only rather than on
concreteH. Thus, for each statg?]~. of 7'S(G) the probabilities of outgoing transitions will be the
same as for the corresponding stgi#®|. of 7'S(G’). Hence, we havé'S(G) ~ T'S(G"). O

Theorem 5.2. Let <, «»€ {=, <, =,~} and*,xx € {_, ip, sp, sto, ts}, where the symbol_' denotes
no subscription of an expression. For dynamic expressivbaadG’
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G, G = Gy G

iff in the graph in Figure 8 there exists a directed path fremto «»,..

Proof:
(«) Let us check the validity of implications in the graph in &ig 8.

The implications« ;,— <, <>€ {=, <>} are valid, since single activities are one-element mul-
tisets.

The implicationst», , —=,,, * € {i, s}, are valid by Proposition 5.2.

The implication=4,— <, is proved as follows. Lef : G =4, G'. Then it is easy to see that
S : G, G', whereS = {(s,8(s)) | s € DR(G)}.

The implication=;;—=4, is valid, since stochastic isomorphism is that of empty fofipe tran-
sition systems up to merging of transitions with labels hgvdentical multiaction parts.

The implication~—=; is valid, since the transition system of a dynamic formuldeBned based
on its isomorphism class.

(=) An absence of additional nontrivial arrows (not resultfrgm the combination of the existing
ones) in the graph in Figure 8 is proved by the following exE®p As in the previous examples, we
assume that conflicting transitions have equal weights aologilities.

Let E = ({a}, )II({b}. 3) and E' = (({a}, £): ({b}, D)(({B}. 1): ({a}, 1)), ThenEss, 7,
but £ #,, E’, since only inT'S*(E’) multiactions{a} and{b} cannot be executed concurrently.

Let B = ({a}, 1); ({6}, (e}, ) and B = (({a, 1) ({0}, 1)0(({a}, 3); (e}, ). Then
E =, E', but E< ;, E’, since only inT'S*(E’) a multiaction{a} can be executed so that no
multiaction{b} can occur afterwards.

Let E = ({a}, ); ({0}, §) and B' = ({a}, 1); ({b}, H)[({a}, 1); ({6}, 3). ThenEe, 7, but
E #4, E', since only inT'S*(E") there is a transition with multiaction part of labgt} and
probability 1 that is single one between its start and final states suchthbaransition has no
corresponding transition set iRS*(E’). Note that inT'S*(E”), the only transition with the same
multiaction part of label has probabili%c

Let E = ({a},3) andE’ = ({a}, 3)[|({a}, ). ThenE =, E', but E #, E’, since only
TS(E’) has two transitions.
Let E = ({a}, 3) andE’ = (({a}, 3); ({a}, 3)) sy a. ThenE =, E’, butE % E’, sinceE and

E’ cannot be reached from each other by applying inaction.rules
O

Example 5.2. In Figure 9 the marked dts-boxes corresponding to the dynarpressions from equiv-
alence examples of Theorem 5.2 are presented,N.es Boxrg(E) and N’ = Boxg,(E’) for each
picture (a)—(e). Since all the equivalences of dynamic esgions can be transferred to the correspond-
ing marked dts-boxes, we depict also the net analogues tetkby the same symbols) of the algebraic
equivalences which relate the nets.
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Figure 9. Dts-boxes of the dynamic expressions from egeimad examples of Theorem 5.2
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6. Conclusion

In this paper, we have proposed a discrete time stochaggosign of P BC calleddts P BC with con-
current step operational semantics based on transitideragsand denotational semantics in terms of
a subclass of LDTSPNs. A consistency of operational andtdéopal semantics was established. In
addition, we have defined a number of probabilistic algebeguivalences which have natural net ana-
logues on LDTSPNSs. The equivalences abstract from empfslootransition systems corresponding
to dynamic expressions. The diagram of interrelationsHeralgebraic equivalences was constructed.

Future work consists in the construction a congruenceioaldased on some probabilistic algebraic
equivalence we defined. We can also abstract from the sitdnites in the definitions of the equiva-
lences, i.e., from the activities with empty multiactiorrtpal he abstraction from empty loops and that
from silent activities could be done in one step as well. Tl@nnpoint here is that we should collect
probabilities during the abstraction from an internalatti As a result, we shall have the algebraic
analogues of the net probabilistic equivalences from [#3, Moreover, we plan to extendtsPBC
with infiniteness constructs such as iteration and recarsithe difficulty here is a proper handle the
infinite summation and multiplication of step probabiktias well as a safety of the dts-boxes resulting
from expressions specifying loops.

Acknowledgements | thank E. Best for supervision and encouraging discussitumsg my work at

the University of Oldenburg, Germany. | am also grateful tR.Walero and H.S. Macia for many
valuable advices as well as to their colleagues from the Rigjigtechnic School of Albacete, Spain, for
presentations and kind hospitality. Many thanks to the gmmus referees for their helpful comments.

References

[1] Andova, S.: Process algebra with probabilistic choi¢ect. Notes Comp. Sci., vol. 1601 dkct. Notes
Comp. Sci.Springer, 1999, 111-129.

[2] Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory concurrent processes with nondeterminism,
priorities, probabilities and timeélheor. Comput. S¢i202, 1998, 1-54, http://www.sti.uniurb.it/bernardo/
documents/tcs202.pdf.

[3] Best, E., Deuvillers, R., Esparza, J.: General refinenagit recursion operations in the box calculus, Lect.
Notes Comp. Sci., vol. 665 dfect. Notes Comp. S¢Bpringer, 1993, 130-140.

[4] Best, E., Devillers, R., Hall, J. G.: The box calculus:ewncausal algebra with multi-label communication,
Advances in Petri Nets 1992ect. Notes Comp. Sci., vol. 609 akct. Notes Comp. SciSpringer, 1992,
21-69.

[5] Best, E., Devillers, R., Koutny, M.: Petri nets, procalgebras and concurrent programming languages, Lect.
Notes Comp. Sci., vol. 1492 afect. Notes Comp. S¢iSpringer, 1998, 1-84, http://parsys.informatik.uni-
oldenburg.de/"best/publications/apnf.ps.gz.

[6] Best, E., Devillers, R., Koutny, M Petri net algebra EATCS Monographs on Theor. Comput. Sci., Springer,
2001, 378 pages.

[7] Best, E., Devillers, R., Koutny, M.: The box algebra = #Pekts + process expressions)formation and
Computation178 2002, 44—-100.



I.V. Tarasyuk / Stochastic Petri box calculus with disctéatee 217

[8] Best, E., Koutny, M.: A refined view of the box algebfroc. 16" ICATPN 1995Lect. Notes Comp. Sci.,
vol. 935 ofLect. Notes Comp. SeBpringer, 1995, 1-20, http://parsys.informatik.urdesiburg.de/"best/
publications/pn95.ps.gz.

[9] Buchholz, P.: Markovian process algebra: compositio @equivalenceProc. 2™ Int. Workshop on Process
Algebras and Performance Modelling (PAPM) 19%%beitsberichte des IMMD, number 27 in Arbeits-
berichte des IMMD, University of Erlangen, Germany, 1994-30.

[10] Buchholz, P.: A notion of equivalence for stochastitrPeets, Proc. 16" ICATPN 1995Lect. Notes Comp.
Sci., vol. 935 ofLect. Notes Comp. ScBpringer, 1995, 161-180.

[11] Buchholz, P.: Iterative decomposition and aggregatiblabeled GSPNsProc. 19t ICATPN 1998 Lect.
Notes Comp. Sci., vol. 1420 dfect. Notes Comp. ScBpringer, 1998, 226—-245.

[12] Buchholz, P., Kemper, P.: Quantifying the dynamic bhabaof process algebras, Lect. Notes Comp. Sci.,
vol. 2165 ofLect. Notes Comp. S¢Bpringer, 2001, 184-199.

[13] Buchholz, P., Tarasyuk, I. VA class of stochastic Petri nets with step semantics andeglaquivalence
notions Technische Berichte TUD-FI00-12, Fakultat Informafikchnische Universitat Dresden, Germany,
2000, 18 pages, ftp://ftp.inf.tu-dresden.de/pub/beeithd00-12.ps.gz.

[14] Buchholz, P., Tarasyuk, I. V.: Net and algebraic apphms to probabilistic modelingJoint Novosibirsk
Computing Center and Institute of Informatics Systemseinll Series Computer Sciends, 2001, 31-64,
Novosibirsk, Russia, http://itar.iis.nsk.su/files/ifggges/spnpancc.pdf.

[15] Deuvillers, R.: Petri boxes and finite processes, Lectel Comp. Sci., vol. 1119 dfect. Notes Comp. Sgi.
Springer, 1996, 465-480.

[16] Donatelli, S., Ribaudo, M., Hillston, J.: A comparisohperfomance evaluation process algebra and gener-
alized stochastic Petri net®roc. 6" Int. Workshop on Petri Nets and Performance Models (PNPN519
IEEE Computer Society Press, Durham, USA, 1995, 158-168.

[17] Florin, G., Natkin, S.: Les reseaux de Petri stochastfy Technique et Science Informatiqukg 1985,
143-160.

[18] van Glabbeek, R. J.: The linear time — branching timespen II; the semantics of sequential systems with
silent moves. Extended abstratoc. 4"* CONCUR 1993Lect. Notes Comp. Sci., vol. 715 akct. Notes
Comp. Sci.Springer, 1993, 66-81.

[19] Hansson, H.: Time and probability in formal design oftdbuted systemsReal-Time Safety Critical Sys-
tems 1, 1994.

[20] Hermanns, H., Rettelbach, M.: Syntax, semantics,\ed@mces and axioms for MTIPPyoc.2"¢ Int. Work-
shop on Process Algebras and Performance Modelling (PAF@4,1Arbeitsberichte des IMMD, number 27
in Arbeitsberichte des IMMD, University of Erlangen, Gemya1994, 71-88, http://ftp.informatik.uni-
erlangen.de/local/inf7/papers/Hermanns/sys@xanticsequivalencesxiomsfor MTIPP.ps.gz.

[21] Hillston, J.: A compositional approach to performance modellit@ambridge University Press, UK, 1996,
158 pages, http://www.dcs.ed.ac.uk/pepa/book.pdf.

[22] Jonsson, B., Yi, W., Larsen, K. G.: Probabilistic exdiems of process algebras, iHandbook of Process
Algebra(J. A. Bergstra, A. Ponse, S. A. Smolka, Eds.), chapter 1de\li#r Science B.V., Amsterdam, The
Netherlands, 2001, 685-710.

[23] Kotov, V. E.: An algebra for parallelism based on Pegts) Lect. Notes Comp. Sci., vol. 64 béct. Notes
Comp. Sci.Springer, 1978, 39-55.



218

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

I.V. Tarasyuk / Stochastic Petri box calculus with disctatee

Kotov, V. E., A.Cherkasova, L.: On structural propestiof generalized processes, Lect. Notes Comp. Sci.,
vol. 188 ofLect. Notes Comp. ScBpringer, 1985, 288-306.

Koutny, M.: Partial order semantics of box expressjohgct. Notes Comp. Sci., vol. 815 afct. Notes
Comp. Sci.Springer, 1994, 318-337.

Koutny, M., Best, E.: Operational and denotational aatits for the box algebraheor. Comput. Sgi211,
1999, 1-83, http://parsys.informatik.uni-oldenburg@dest/publications/tcs.ps.gz.

Larsen, K. G., Skou, A.: Bisimulation through probadtit testing,Information and Computatiqi94, 1991,
1-28.

Larsen, K. G., Skou, A.: Compositional verification abpabilistic processes, Lect. Notes Comp. Sci., vol.
630 ofLect. Notes Comp. ScBpringer, 1992, 456-471.

Macia, H.: sPBC: Una extenén Markoviana del Petri box calculysTechnical report, Departamento de
Informatica, Universidad de Castilla-La Mancha, Alba;&pain, 2003, Ph. D. thesis, 249 pages, in Spanish,
http://www.info-ab.uclm.es/retics/publications/20§BBCthesis03. pdf.

Macia, H., Valero, V., Cazorla, D., Cuartero, F.: iducing the iteration in sSPB@roc. 24" FORTE 2004
Lect. Notes Comp. Sci., vol. 3235 akct. Notes Comp. SciSpringer, 2004, 292-308, http://www.info-
ab.uclm.es/retics/publications/2004/forte04.pdf.

Macia, H., Valero, V., Cuartero, FA congruence relation in finite sPBClechnical Report DIAB-02-01-
31, Departamento de Informatica, Universidad de Cadt#laMancha, Albacete, Spain, 2002, 34 pages,
http://www.info-ab.uclm.es/retics/publications/200220131.ps.

Macia, H., Valero, V., Cuartero, F.: Defining equivadé® relations in sPBCProc. 1%¢ Int. Conf. on the
Principles of Software Engineering (PriSE) 20®uenos Aires, Argentina, 2004, 195-205, http://www.info
ab.uclm.es/retics/publications/2004/prise04.pdf.

Macia, H., Valero, V., Cuartero, F., de Frutos, D.: Agouence relation for sPBC, 2004, 62 pages, submitted.

Macia, H., Valero, V., Cuartero, F., Pelayo, F.: Imypirg the synchronization in stochastic Petri box calculus,
Actas de las Il Jornadas sobre Programacion y Lenguajes (EERQO002 El Escorial, Spain, 2002.

Macia, H., Valero, V., Cuartero, F., Pelayo, R:new proposal for the synchronization in sPBGchnical
Report DIAB-02-01-26, Departamento de Informatica, énsidad de Castilla-La Mancha, Albacete, Spain,
2002, 15 pages, http://www.info-ab.uclm.es/sec-abBA@aewproposalsysPBC.ps.

Macia, H., Valero, V., Cuartero, F., Pelayo, F.: A ngmshronization in finite stochastic Petri box calculus,
Proc. 3"? International IEEE Conference on Application of Concuwgno System DesigtEEE Computer
Society Press, Guimaraes, Portugal, 2003, 216-225//atgpw.info-ab.uclm.es/retics/publications/2003/
acsd03.pdf.

Macia, H., Valero, V., Cuartero, F., Ruiz, M. C.: sPB&Markovian extension of Petri box calculus with
immediate multiactions, 2005, 27 pages, work in progress.

Macia, H., Valero, V., D., C., Cuartero, Antroducing the iteration in sPBCTechnical Report DIAB-03-
01-37, Departamento de Informatica, Universidad de @adta Mancha, Albacete, Spain, 2003, 20 pages,
http://www.info-ab.uclm.es/descargas/tecnicalregdBitAB-03-01-37/diab030137.zip.

Macia, H., Valero, V., de-Frutos, D.: sPBC: a Markaviextension of finite Petri box calculufroc. 9t*
IEEE Int. Workshop on Petri Nets and Performance Models (MNBPOO], IEEE Computer Society Press,
Aachen, Germany, 2001, 207-216, http://www.info-ab.ueBfretics/publications/2001/pnpmO01.ps.

Macia, H., Valero, V., de Frutos, D.: sPBC: a Markovittension of finite PBCActas de 1X Jornadas de
Concurrencia (JC) 200/1Sitges, Spain, 2001, 243—-256, http://www.info-ab.uebfretics/publications/2001/
mvfjcOl.ps.



I.V. Tarasyuk / Stochastic Petri box calculus with disctéatee 219

[41] Macia, H., Valero, V., de Frutos, D., Cuartero, F.: &xtling PBC with Markovian multiaction®roc. XXVII
Conferencia Latinoamericana de Infoatica (CLEI) 2001(J. A. Montilva, |. Besembel, Eds.), Universidad
de los Andes, Mérida, Venezuela, 2001, 12 pages, httpulimfo-ab.uclm.es/retics/publications/2001/
clei0l.ps.

[42] Milner, R. A. J.:Communication and concurrenciPrentice-Hall, Upper Saddle River, NJ, USA, 1989, 260
pages.

[43] Molloy, M. K.: Performance analysis using stochasttrets,|EEE Transactions on Computingl, 1982,
913-917.

[44] Molloy, M. K.: Discrete time stochastic Petri netisEE Transactions on Software Engineeriig, 1985,
417-423.

[45] Nlfiez, M.: An axiomatization of probabilistic testj, Lect. Notes Comp. Sci., vol. 1601 béct. Notes
Comp. Sci.Springer, 1999, 130-150, http://dalila.sip.ucm.es/ntieos/manolo/papers/arts99.ps.gz.

[46] Nlfez, M., de Frutos, D., Llana, L.: Acceptance trimsprobabilistic processes, Lect. Notes Comp. Sci.,
vol. 962 ofLect. Notes Comp. S¢Bpringer, 1995, 249-263, http://dalila.sip.uclm.esfheos/manolo/
papers/concur95.ps.gz.

[47] Ribaudo, M.: Stochastic Petri net semantics for stetihg@rocess algebr&roc. 6" Int. Workshop on Petri
Nets and Performance Models (PNPM) 20(HEE Computer Society Press, Durham, USA, 1995, 148-157.

[48] Tarasyuk, I. V.: Equivalence notions applied to designconcurrent systems with the use of Petri nets,
Programming and Computer Softwag, 1998, 162—-175.

[49] Tarasyuk, I. V.:Discrete time stochastic Petri box calculuBerichte aus dem Department fiir Informatik
3/05, Carl von Ossietzky Universitat Oldenburg, Germ&0@5, 25 pages, http://www.iis.nsk.su/persons/
itar/dtspbcihcov.pdf.



