CARL
VON
OSSIETZKY

universitdt|OLDENBURG

BERICHTE

AUS DEM DEPARTMENT FUR INFORMATIK

der Fakultat Il - Informatik, Wirtschafts- und Rechtswissenschaften

Herausgeber: Die Professorinnen und Professoren

des Departments fur Informatik

Equivalence relations for behaviour-

preserving reduction and modular

performance evaluation in dtsPBC

Dr. Igor Tarasyuk

Bericht

Nummer 01/10 — April 2010

ISSN 1867-9218

OSSIETZKY
universitat|OLDENBURG

BERICHTE

AUS DEM DEPARTMENT FUR INFORMATIK

der Fakultat Il - Informatik, Wirtschafts- und Rechtswissenschaften

Herausgeber: Die Professorinnen und Professoren
des Departments fur Informatik

Equivalence relations for behaviour-
preserving reduction and modular

performance evaluation in dtsPBC

Dr. Igor Tarasyuk

Bericht

Nummer 01/10 — April 2010
ISSN 1867-9218

Equivalence relations for behaviour-preserving reduction
and modular performance evaluation in dtsPBC' *

Icor V. TARASYUK

A.P. Ershov Institute of Informatics Systems
Siberian Branch of the Russian Academy of Sciences
6, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia

itar@iis.nsk.su

Abstract

In the last decades, a number of stochastic enrichments of process algebras was constructed to specify
stochastic processes within the well-developed framework of algebraic calculi. In 2003, a continuous time
stochastic extension sPBC of finite Petri box calculus (PBC') was enriched with iteration operator by H.S.
MaAcIA, V.R. VALERO, D.L. CAzZORLA and F.G. CUARTERO. In 2006, the author added iteration to the
discrete time stochastic extension dtsPBC' of finite PBC. In this paper, in the framework of the dtsPBC
with iteration, we define a variety of stochastic equivalences. They allow one to identify stochastic processes
with similar behaviour that are however differentiated by the standard semantic equivalence of the calculus.
The interrelations of all the introduced equivalences are investigated. It is explained how the equivalences
we propose can be used to reduce transition systems of expressions. A logical characterization of the equiv-
alences is presented via formulas of the new probabilistic modal logics. We demonstrate how to apply the
equivalences to compare stationary behaviour. A problem of preservation of the equivalences by algebraic
operations is discussed. As a result, we define an equivalence that is a congruence relation. At last, two case
studies of performance evaluation in the algebra are presented.

Keywords: stochastic Petri net, stochastic process algebra, Petri box calculus, iteration, discrete time, tran-
sition system, operational semantics, dts-box, denotational semantics, empty loop, stochastic equivalence,
reduction, modal logic, stationary behaviour, congruence relation, performance evaluation.

Contents

1 Introduction

2 Syntax

3 Operational semantics

3.1 Inactionrules L e e e
3.2 Actionrules s
3.3 Transition systems L e e e

Denotational semantics
4.1 Labeled DTSPNs e s e
4.2 Algebra of dts-boxes e

Stochastic equivalences

5.1 Empty loops in transition systemso
5.2 Empty loops in reachability graphs
5.3 Stochastic trace equivalences
5.4 Stochastic bisimulation equivalences
5.5 Stochastic isomorphismo
5.6 Interrelations of the stochastic equivalences oL

*This work was supported in part by Deutsche Forschungsgemeinschaft (DFG), grant 436 RUS 113/1002/01, and Russian
Foundation for Basic Research (RFBR), grant 09-01-91334.

6 Reduction modulo equivalences 30

7 Logical characterization 31
71 LogiciPML 31
7.2 Logic SPML« e e e 32

8 Stationary behaviour 33
8.1 Theoretical background L 33
8.2 Steady state and equivalences L 35
8.3 Preservation of performance and simplification of its analysis 38

9 Preservation by algebraic operations 39

10 Performance evaluation 42
10.1 Shared memory system L e 42

10.1.1 The standard system L e 42
10.1.2 The abstract system and its reduction Lo oL 46
10.1.3 The generalized system Lo 50
10.2 Dining philosophers systemo 50
10.2.1 The standard system 50
10.2.2 The abstract system and its reductions oL oL 56
10.2.3 The generalized system L L 64

11 Conclusion 67

A Proof of Proposition 5.2 72

B Proof of Proposition 8.1 73

C Proof of Theorem 8.2 74

1 Introduction

Stochastic Petri nets (SPNs) are a well-known model for quantitative analysis of discrete dynamic event systems
proposed initially in [57]. Essentially, SPNs are a high level language for specification and performance analysis
of concurrent systems. A stochastic process corresponding to this formal model is a Markov chain generated
and analyzed by well-developed algorithms and methods. Firing probabilities distributed along continuous or
discrete time scale are associated with transitions of an SPN. Thus, there exist SPNs with continuous [57, 35]
and discrete [58] time. Markov chains of the corresponding types are associated with the SPNs. As a rule, for
SPNs with continuous time (CTSPNs), exponential or phase distributions of transition probabilities are used.
For SPNs with discrete time (DTSPNs), geometric or combinations of geometric distributions are usually used.
Transitions of CTSPNs fire one by one at continuous time moments. Hence, the semantics of this model is
an interleaving one. In this semantics, parallel computations are modeled by all possible execution sequences
of their components. Transitions of DTSPNs fire concurrently in steps at discrete time moments. Hence, this
model has a step semantics. In this semantics, parallel computations are modeled by sequences of concurrent
occurrences (steps) of their components. In [26, 27], a labeling for transitions of CTSPNs with action names was
proposed. The labeling allows SPNs to model processes with functionally similar components: the transitions
corresponding to the similar components are labeled by the same action. Moreover, one can compare labeled
SPNs by different behavioural equivalences, and this makes possible to check stochastic processes specified by
labeled SPNs for functional similarity. Therefore, one can compare both functional and performance properties,
and labeled SPNs turn into a formalism for quantitative and qualitative analysis.

Algebraic calculi occupy a special place among formal models for specification of concurrent systems and
analysis of their behavioral properties. In such process algebras (PAs), a system or a process is specified by
an algebraic formula. Verification of the properties is accomplished at a syntactic level by means of well-
developed systems of equivalences, axioms and inference rules. The most well-known of the first PAs are
Theory of Communicating Sequential Processes (T'C'SP) [41] and Calculus of Communicating Systems (CCS)
[56]. Process algebras have been acknowledged to be very suitable formalism to operate with real time and
stochastic systems as well. In the last years, stochastic extensions of PAs, called stochastic process algebras
(SPAs), became very popular as a modeling framework. SPAs do not just specify actions which can happen
(qualitative features) as usual process algebras, but they associate some quantitative parameters with actions

(quantitative characteristics). The most popular SPAs proposed so far are Markovian Timed Processes for
Performance Evaluation (MTIPP) [42], Performance Evaluation Process Algebra (PEPA) [39] and Extended
Markovian Process Algebra (EMPA) [13].

In MTIPP, every activity is a pair consisting of the action name (including the symbol 7 for the internal,
invisible action) and the parameter of exponential distribution of the activity duration (the rate). The operations
are prefiz, choice, parallel composition including synchronization on the specified action set and recursion. It
is possible to specify processes by recursive equations as well. The interleaving semantics is defined on the
basis of Markovian (i.e., extended with the specification of rates) labeled transition systems. Note that we have
the interleaving behaviour here because the exponential probability distribution function is a continuous one,
and a simultaneous firing of any two activities has zero probability according to the properties of continuous
time distributions. The continuous time Markov chains (CTMCs) can be derived from the mentioned transition
systems to analyze the performance issues.

In PEPA, activities are the pairs consisting of action types (including the unknown, unimportant type)
and activity rates. The rate is either the parameter of exponential distribution of the activity duration or it is
unspecified, denoted by T. An activity with unspecified rate is passive by its action type. The set of operations
includes prefiz, choice, cooperation, hiding and constants whose meaning is given by the defining equations
including the recursive ones. The cooperation is accomplished on the set of action types (the cooperation set)
on which the components must synchronize or cooperate. If the cooperation set is empty, the cooperation
operator turns into the parallel combinator. The semantics is interleaving, it is defined via the extension of
labeled transition systems with a possibility to specify activity rates. Based on the transition systems, the
continuous time Markov processes (CTMPs) are generated which are used for performance evaluation with the
help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can be external or internal
(denoted by 7) according to types. There are three kinds of actions according to rates: timed ones with
exponentially distributed durations (essentially, the actions from MTIPP and PEPA), immediate ones with
priorities and weights (the actions analogous to immediate transitions of generalized SPNs, GSPNs) and passive
ones (similar to passive actions of PEPA). Timed actions specify activities that are relevant for performance
analysis. Immediate actions model logical events and the activities that are irrelevant from the performance
viewpoint or much faster than others. Passive actions model activities waiting for the synchronization with
timed of immediate ones, and express nondeterministic choice. The set of operators consist of prefiz, functional
abstraction, functional relabeling, alternative composition and parallel composition ones. Parallel composition
includes synchronization on the set of action types like in TC'SP. The syntax also includes recursive definitions
given by means of constants. The semantics is interleaving and based on the labeled transition systems enriched
with the information on action rates. For the exponentially timed kernel of the algebra (the sublanguage
including only exponentially timed and passive actions), it is possible to construct CTMCs from the transition
systems of the process terms to analyze the performance.

An extension of CCS with probabilities and time, called TPCCS, was defined in [38]. An enrichment of
Basic Process Algebra (BPA) with probabilistic choice, prBPA, as well as extension of the latter with parallel
composition operator named AC P have been proposed in [1]. A stochastic process calculus Priced Process
Algebra (PPA) based on CCS was constructed in [71, 74]. The papers [24, 32, 76, 16] propose a variety of other
SPAs. A standard way for probabilistic extension of process algebras into the calculi of probabilistic transition
systems was described in [43].

One can see that the stochastic process calculi proposed in the literature are based on interleaving, as a rule.
As a semantic domain, the interleaving formalism of transition systems is often used. Therefore, investigation
of a stochastic extension for more expressive and powerful algebraic calculi is an important issue. At present,
the development of step or “true concurrency” (such that parallelism is considered as a causal independence)
SPAs is in the very beginning. At the same time, there does not yet exist an algebra of infinite concurrent
stochastic processes.

Process algebras allow one to specify processes in a compositional way via an expressive formal syntax.
On the other hand, Petri nets provide one with an ability for visual representation of a process structure and
execution. Hence, the relationship between SPNs and SPAs is of particular interest. To combine advantages of
both models, a semantics of algebraic formulas in terms of Petri nets is usually defined. In the stochastic case,
the Markov chain of the stochastic process specified by an SPA formula is built based on the state transition
graph of the corresponding SPN.

Petri box calculus (PBC) is a flexible and expressive process algebra based on calculi CC'S [56]. Note that
some operations of PBC are similar to those of the algebra Algebra of Finite Processes (AF Py) [47]. PBC was
proposed fifteen years ago [5], and it was well explored since that time [4, 19, 29, 46, 48, 17, 18, 30, 31, 33, 40,
6, 7, 44, 8,9, 10, 11]. Its goal was to propose a compositional semantics for high level constructs of concurrent
programming languages in terms of elementary Petri nets. Thus, PBC serves as a bridge between theory and

applications. Formulas of PBC are combined not from single actions (including the invisible one) and variables
only, like in CCS, but from multisets of elementary actions and their conjugates, called multiactions (basic
formulas) as well. The empty multiset of actions is allowed that is considered as the silent multiaction spec-
ifying some invisible or internal activity. In contrast to C'C'S, concurrency and synchronization are different
operations (concurrent constructs). Synchronization is defined as a unary multi-way stepwise operation based
on communication of actions and their conjugates. The CC'S approach with conjugate matching labels was ex-
tended to define synchronization in PBC. This approach was preferred as being more flexible and compositional
than that of the process algebras TC'SP and COSY [12] where synchronization is accomplished over common
action names. Moreover, synchronization operation of PBC' is asynchronous in contrast to the approach of
Synchronous CCS (SCCS) [56] where it is synchronous. The other fundamental operations are sequence and
choice (sequential constructs). The calculus includes also restriction and relabeling (abstraction constructs). To
specify infinite processes, refinement, recursion and iteration operations were added (hierarchical constructs).
Thus, unlike C'C'S, the algebra PBC has an additional iteration construction to specify infiniteness in the cases
when finite Petri nets can be used as the semantic interpretation. For PBC, a denotational semantics was
proposed in terms of a subclass of Petri nets equipped with interface and considered up to isomorphism. This
subclass is called Petri boxes. The calculus PBC has a step operational semantics in terms of labeled transition
systems based on the structural operational semantics (SOS) rules. Pomset operational semantics of PBC was
defined in [48] such that the partial order information was extracted from “decorated” step traces. In these step
sequences, multiactions were annotated with an information on the relative position of the expression part they
were derived from. More detailed comparison of PBC with other well-known process algebras can be found in
[5, 8]. Last years, several extensions of PBC were presented.

A time extension of PBC, called time Petri box calculus (¢PBC'), was proposed in [49]. In tPBC, timing
information is added by combining instantaneous multiactions and time delays. Its denotational semantics was
defined in terms of a subclass of labeled time Petri nets (tPNs), called time Petri boxes (ct-boxes). tPBC has an
interleaving time operational semantics in terms of labeled transition systems. Another time enrichment of PBC,|
called Timed Petri box calculus (TTPBC), was defined in [54, 55]. In contrast to ¢tPBC, multiactions of TPBC
are not instantaneous but have time durations. Additionally, in TPBC there exist no “illegal” multiaction
occurrences unlike tPBC'. The complexity of “illegal” occurrences mechanism was one of the main intentions to
construct T'PBC though the calculus appeared to be more complicated than ¢t PBC'. The denotational semantics
of TPBC was defined in terms of a subclass of labeled Timed Petri nets (TPNs), called Timed Petri boxes (T-
boxes). TPBC has a step timed operational semantics in terms of labeled transition systems. Note that tPBC
and TPBC differ in ways they capture time information, and they are not in competition but complement
each other. The third time extension of PBC), called arc time Petri box calculus (atPBC'), was constructed
in [73, 72]. In atPBC, multiactions are associated with time delay intervals. Its denotational semantics was
defined on a subclass of arc time Petri nets (atPNs), where time restrictions associated with the arcs, called
arc time Petri boxes (at-boxes). atPBC possesses a step operational semantics in terms of labeled transition
systems.

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was proposed in [68, 69, 70, 59,
64, 65, 66, 52]. In sPBC, multiactions have stochastic durations that follow negative exponential distribution.
Each multiaction is instantaneous and equipped with a rate that is a parameter of the corresponding exponential
distribution. The execution of a multiaction is possible only after the corresponding stochastic time delay. Only
a finite part of PBC was used for the stochastic enrichment. This means that sPBC has neither refinement
nor recursion nor iteration operations. Its denotational semantics was defined in terms of a subclass of labeled
CTSPNs, called stochastic Petri boxes (s-boxes). Calculus sPBC has an interleaving operational semantics in
terms of labeled transition systems. Current research in this branch has an aim to extend the specification abili-
ties of sPBC and to define appropriate congruence relation over algebraic formulas. The results on constructing
the iteration for sPBC were reported in [61, 62]. In the papers [60, 63], a number of new equivalence relations
were proposed for regular terms of sPBC to choose later a suitable candidate for a congruence. In [67], the
special multiactions with zero time delay were added to sPBC. A denotational semantics of such an sPBC
extension was defined via a subclass of labeled generalized SPNs (GSPNs). The subclass is called generalized
stochastic Petri boxes (gs-boxes).

An ambient extension of PBC, called Ambient Petri box calculus (APBC), was proposed in [34]. Ambi-
ent calculus is used to model behaviour of mobile systems. Ambient is a named environment delimited by a
boundary. The ambients can be moved to a new location thus modeling mobility. The algebra APBC includes
ambients and mobility capabilities. Hence, it could be interpreted as an extension of the Ambient Calculus
with the operations of PBC'. Basic actions of APBC' are capabilities defined over ambient names and standard
multiactions of PBC'. Only finite part of PBC was taken for the ambient enrichment. Moreover, only concur-
rency and sequence were transferred into APBC' from the set of PBC operations in [34]. This reduced algebra
was called Simple Ambient Petri box calculus (SAPBC). A denotational semantics was defined in terms of

Elementary Object Systems (EOSs) that are two-level net systems composed from a system net and object
nets. Object nets could be interpreted as high-level tokens of the system net modeling the execution of mobilie
processes. The calculus SAPBC has a step operational semantics in terms of labeled transition systems.

Nevertheless, there were no stochastic extension of PBC with step semantics until recent times. It can be
done with the use of labeled DTSPNs as a semantic area, since discrete time models allow for concurrent action
occurrences. The enrichment based on DTSPNs is natural because PBC' has a step operational semantics.

A notion of equivalence is very important in formal theory of computing processes and systems. Behavioural
equivalences are applied during verification stage both to compare behaviour of systems and reduce their struc-
ture. At present time, there exists a great diversity of different equivalence notions for concurrent systems, and
their interrelations were well explored in the literature. The most popular and widely used one is bisimulation.
Unfortunately, the mentioned behavioural equivalences take into account only functional (qualitative) but not
performance (quantitative) aspects of system behaviour. Additionally, the equivalences are often interleaving
ones, and they do not respect concurrency. SPAs inherited from untimed PAs a possibility to apply equiv-
alences for comparison of specified processes. Like equivalences for other stochastic models, the relations for
SPAs have special requirements due to the summation of probabilities. The states from which similar future
behaviours start have to be grouped into equivalence classes. The classes form elements of the aggregated state
space, and they are defined a posteriori while searching for equivalences on state space of a model. Interleaving
probabilistic weak trace equivalence was proposed in [28] on labeled probabilistic transition systems and in [89)
it was defined on labeled CTMCs. Interleaving probabilistic strong bisimulation equivalence was proposed in
[20, 50, 51] on labeled probabilistic transition systems, in [42] on labeled CTMCs and in [39] on probabilistic
process algebras. Interleaving probabilistic equivalences were defined for probabilistic processes in [37]. Inter-
leaving probabilistic weak bisimulation equivalence was introduced in [24] on Markovian process algebras, in
[25] on stochastic automata, in [26] on labeled CTSPNs and in [27] on GSPNs. Interleaving probabilistic weak
and strong bisimulation equivalences were proposed in [14] on labeled probabilistic transition systems and in
[15] they were defined on labeled DTMCs and CTMCs. In [16], a notion of interleaving stochastic weak bisim-
ulation equivalence for process terms was introduced. The authors proved that the equivalence is preserved
by formula composition within SPAs considered in the paper, i.e., the relation is a congruence. At the same
time, no appropriate equivalence notion was defined for concurrent SPAs so far. Thus, it is desirable to propose
an equivalence relation for parallel SPAs that relates formulas specifying processes with similar behavior and
differentiates those having non-similar one from a certain viewpoint. It would be fine to find a relation that is a
congruence with respect to the algebraic operations. In this case, the formulas combined by algebraic operations
from equivalent subformulas will be equivalent as well. This is very significant property while bottom-up design
of processes.

We did some work on the development of concurrent discrete time SPNs and SPAs as well as on defining a
variety of concurrent probabilistic equivalences. In [21], labeled weighted DTSPNs (LWDTSPNSs) were proposed
that is a modification of DTSPNs by transition labeling and weights. In [23, 83], labeled DTSPNs (LDTSPNs)
were introduced. Transitions of LWDTSPNs and LDTSPNs are labeled by actions which represent elementary
activities and can be visible or invisible to an external observer. For these two net classes, a number of new prob-
abilistic 7-trace and 7-bisimulation equivalences were defined that abstract from invisible actions (denoted by 7)
and respect concurrency in different degrees (interleaving and step relations). In addition, probabilistic relations
that require back or back-forth simulation were introduced. An application of the probabilistic back-forth 7-
bisimulation equivalences to compare stationary behaviour of the LWDTSPNs or LDTSPNs was demonstrated.
In [78, 23], a logical characterization was presented for interleaving and step probabilistic 7-bisimulation equiv-
alences via formulas of the new probabilistic modal logics. The characterization means that two LWDTSPNs or
LDTSPNs are (interleaving or step) probabilistic 7-bisimulation equivalent if they satisfy the same formulas of
the corresponding probabilistic modal logic. Thus, instead of comparing nets operationally, one have to check
the corresponding satisfaction relation only applying standard verification techniques. The new interleaving and
step logics are modifications of that, called PM L, was proposed in [50] on probabilistic transition systems with
visible actions. In [22, 23, 83], a stochastic algebra of finite nondeterministic processes StAF Py was proposed
with semantics in terms of a subclass of LWDTSPNs and LDTSPNS, called stochastic acyclic nets (SANs). The
calculus defined is a stochastic extension of the algebra AF P, introduced in [45]. StAF P, specifies concurrent
stochastic processes. Another feature of the algebra is a net semantics allowing one to preserve the level of
parallelism, since Petri nets is a classical “true concurrency” model. Usually, transition systems are used for
this purpose, but they are not able to respect concurrency completely. An axiomatization for the semantic
equivalence of StAF P, was proposed. It was proved that any algebraic formula could be reduced to the “fully
stratified” one with the use of the axiom system. This simplifies semantic comparison of formulas. In [79, 83,
we considered different classes of stochastic Petri nets. We explored how transition labeling could be defined to
compare SPNs by equivalences. An suitability of the SPN classes for modeling and analysis of different kinds of
dynamic systems was investigated. In [80, 82|, a discrete time stochastic extension dtsPBC of finite PBC was

constructed. A step operational and a net denotational semantics of dtsPBC were defined, and their consis-
tency was demonstrated. In addition, a variety of probabilistic equivalences were proposed to identify stochastic
processes with similar behaviour which are differentiated by the semantic equivalence. The interrelations of all
the introduced equivalences were studied. In [81, 84, 85, 86, 87], we constructed an enrichment of dtsPBC with
the iteration operator used to specify infinite processes. In [88], we presented the extension dtsiPBC of the
latter calculus with immediate multiactions.

Let us consider the difference between dtsPBC and the classical SPAs MTIPP, PEPA and EMPA. In
dtsPBC, every activity is a pair consisting of the multiaction (not just an action, as in the classical SPAs) and
its (conditional) probability (not the rate, as in the mentioned SPAs) to be executed under condition that no
other multiaction can happen at the current discrete time moment. Algebra dtsPBC has sequence operator
in contrast to prefix one in the three SPAs which we compare with. One can combine arbitrary expressions
with sequence operation, i.e., it is more flexible than the prefix one, where the first argument should be a single
activity. Choice operator in dtsPBC' is analogous to that in MTIPP and PEPA as well as to the alternative
composition in EM PA, in the sense that choice is determined by the first activity that appears, i.e., by the
activity with maximal execution probability. On the other hand, concurrency and synchronization in dtsPBC
are the different operations (this feature is inherited from PBC) unlike the situation in the classical SPAs
where parallel composition (combinator) has a synchronization capability. Relabeling in dtsPBC' is analogous
to that in EM PA, but it is additionally extended to conjugated actions. Restriction operation in dtsPBC' is
similar to hiding in PEPA and functional abstraction in EM PA, but it is extended to conjugated actions too.
The synchronization on an elementary action collects all the pairs consisting of this elementary action and its
conjugate which are contained in the multiactions from the synchronized activities. The operation produces new
activities such that the first element of every resulting activity is the union of the multiactions from which all the
mentioned pairs of conjugated actions are removed, and the second element is the product of the probabilities
of the activities involved in the synchronization. Thus, there is a difference with the way synchronization
is applied in the mentioned SPAs where it is accomplished over identical action names, and every resulting
activity consist of the same action name and the sum of the rates of the initial activities. Algebra dtsPBC has
no recursion operation or a possibility for recursive definitions, but it includes iteration operation that gives
an ability to specify infinite behaviour with the explicitly defined start and termination. Iteration allows for a
syntactic description of many realistic processes with loops. Calculus dtsPBC has a discrete time semantics,
and time delays in the states are geometrically distributed unlike the mentioned SPAs with continuous time
semantics and exponentially distributed activity delays. As a consequence, the semantics of dtsPBC' is the
step one in contrast to the interleaving semantics of the three SPAs mentioned above. The performance issues
can be investigated based on the discrete time Markov chain (DTMC) extracted from the labeled probabilistic
transition system associated with each expression of dtsPBC. Note that in the classical SPAs we generate
CTMCs from the transition systems. In addition, dtsPBC has a denotational semantics in terms of LDTSPNs
from which the corresponding DTMCs can be derived as well. Thus, the multiaction labels and the set of very
flexible and powerful operations, as well as a step operational and a Petri net denotational semantics allowing
for really concurrent execution of activities (or transitions) are the main advantages of dtsPBC' with respect to
other well-known SPAs like MTIPP, PEPA and EM PA.

In this paper, we investigate equivalence notions for dtsPBC' with iteration. First, we present the syntax of
the extended dtsPBC. Each multiaction of the initial calculus PBC is associated with a probability. Such a
pair is called stochastic multiaction or activity. Second, we propose semantics of dtsPBC'. The step operational
semantics is constructed in terms of labeled probabilistic transition systems based on action and inaction rules.
The denotational semantics is defined in terms of a subclass of LDTSPNS, called discrete time stochastic Petri
boxes (dts-boxes). Consistency of operational and denotational semantics is proved. Further, we define a number
of stochastic equivalences in the algebraic setting based on transition systems without empty behaviour. These
relations are weaker than the semantic equivalence of dtsPBC'. They are used to identify stochastic processes
with similar behaviour which are differentiated by the semantic equivalence that is too discriminate in many
cases. The interrelations diagram of all the introduced equivalences is built. We describe how the stochastic
equivalences can be used to reduce transition systems of expressions and the related formalisms. We present
a characterization of the stochastic bisimulation equivalences via two new probabilistic modal logics based on
PML. Tt is demonstrated how to compare stochastic processes in their steady states with the use of the
relations. Moreover, a problem of preservation of the equivalence notions by algebraic operations is discussed.
The proposed equivalences are used to construct a congruence relation. At the end, we present two case studies
explaining how to analyze performance of systems within the calculus. We consider algebraic models of shared
memory system and dining philosophers one.

The paper is organized as follows. In the next Section 2, the syntax of the extended calculus dtsPBC
is presented. Then, in Section 3, we construct the operational semantics of the algebra in terms of labeled
transition systems. In Section 4, we propose the denotational semantics based on a subclass of LDTSPNs.

Section 5 is devoted to the construction and the interrelations of stochastic algebraic equivalences based on
transition systems without empty loops. In Section 6 we explain how one can reduce transition systems and
the related formalisms modulo the equivalences. A logical characterization of the equivalences is presented in
Section 7. In Section 8, an application of the relations to comparison of stationary behaviour is investigated.
Preservation of the equivalences by the algebraic operations, i.e., a congruence problem is discussed in Section 9.
Section 10 contains two examples of performance evaluation for systems specified by the algebraic expressions.
The concluding Section 11 summarizes the results obtained and outlines research perspectives in this area.

2 Syntax

In this section, we propose the syntax of the discrete time stochastic extension of finite PBC enriched with
iteration, called discrete time stochastic Petri box calculus (dtsPBC).

First, we recall a definition of multiset that is an extension of the set notion by allowing several identical
elements.

Definition 2.1 Let X be a set. A finite multiset (bag) M over X is a mapping M : X — IN such that
{z e X | M(z) >0} < o0, i.e., it can contain a finite number of elements only.

We denote the set of all finite multisets over X by IV }X The cardinality of a multiset M is defined as
|IM| = > cx M(xz). We write x € M if M(xz) > 0and M C M’ if Vo € X M(x) < M'(x). We define
(M 4+ M")(x) = M(x) + M'(x) and (M — M')(z) = max{0, M (z) — M'(z)}. When Vx € X M(z) <1, M is a
proper set such that M C X. The set of all subsets of X is denoted by 2%,

Let Act = {a,b,...} be the set of elementary actions. Then Act = {a,b,...} is the set of conjugated actions

(conjugates) such that a # & and @ = a. Let A = ActU Act be the set of all actions, and L =]]\7;»4 be the set of
all multiactions. Note that () € £, this corresponds to an internal activity, i.e., the execution of a multiaction
that contains no visible action names. The alphabet of « € L is defined as A(a) = {z € A | a(z) > 0}.

An activity (stochastic multiaction) is a pair («, p), where o € £ and p € (0;1) is the probability of the
multiaction a. The multiaction probabilities are used to calculate the probabilities of state changes (steps) at
discrete time moments. The multiaction probabilities are required not to be equal to 1, since otherwise, the
multiactions with probability 1 always happen in a step (i.e., they are instantaneous, since they have zero time
delay) and all other with the less probabilities do not. In this case, technical difficulties appear with conflicts
resolving, see [58]. In this version of the algebra, we do not allow instantaneous multiactions. On the other hand,
there is no sense to allow zero probabilities of multiactions, since they would never be performed in this case.
Let SL be the set of all activities. Let us note that the same multiaction o € £ may have different probabilities
in the same specification. The alphabet of («, p) € SL is defined as A(«, p) = A(a). For (a, p) € SL, we define
its multiaction part as L(«, p) = o and its probability part as Q(a, p) = p.

Activities are combined into formulas by the following operations: sequential execution ;, choice [|, parallelism
I, relabeling [f] of actions, restriction rs over a single action, synchronization sy on an action and its conjugate,
and iteration [**] with three arguments: initialization, body and termination.

Sequential execution and choice have the standard interpretation like in other process algebras, but paral-
lelism does not include synchronization unlike the corresponding operation in CCS.

—

Relabeling functions f : A — A are bijections preserving conjugates, i.e., Vo € A f(&) = f(z). Relabeling
is extended to multiactions in a usual way: for a € £ we define f(a) =3 ., f(z).

Restriction over an action ¢ means that for a given expression any process behaviour containing a or its
conjugate a is not allowed.

Let a, 8 € L be two multiactions such that for some action a € Act we have a € a and a € § or & € a and
a € B. Then synchronization of o and 3 by a is defined as a @, 8 = -y, where

_J al@)+Bx)—1, x=aorxz=4q
(@) = { a(z) + B(x), otherwise.

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more
times, and, finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expressions correspond to unmarked
LDTSPNs (note that LDTSPNs are marked by definition).

Definition 2.2 Let (o, p) € SL and a € Act. A static expression of dtsPBC is defined as

E:= (a,p) | E;E | E[JE | E|E|E[f]|Ersa|Esyal||[E*FExE]

Let StatExpr denote the set of all static expressions of dtsPBC.

To make the grammar above unambiguous, one can add parentheses in the productions with binary oper-
ations: (E; E), (E[JE), (E||E) or to associate priorities with operations. However, here and further we prefer
the PBC approach: we add parentheses to resolve ambiguities only and we assume no priorities.

To avoid inconsistency of the iteration operator, we should not allow any concurrency in the highest level
of the second argument of iteration. This is not a severe restriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction.

Definition 2.3 Let («, p) € SL and a € Act. A regular static expression of dtsPBC is defined as

Ei= (ap) | B;E|E|E | E|E|Ef] | Evsa| Esyal[E+DxE|,
where D = (a,p) | D;E | D[|D | D[f]| D rsa|D syal|[Dx*DxE].

Let RegStatExpr denote the set of all reqular static expressions of dtsPBC.

Dynamic expressions specify the states of processes. Dynamic expressions are combined from static ones
which are annotated with upper or lower bars and specify active components of the system at the current
instant of time. As we shall see, dynamic expressions correspond to LDTSPNs (which are marked by default).
The dynamic expression with upper bar (the overlined one) E denotes the initial, and that with lower bar (the
underlined one) E denotes the final state of the process specified by a static expression E. The underlying static
ezxpression of a dynamic one is obtained by removing all upper and lower bars from it.

Definition 2.4 Let F € StatEzpr and a € Act. A dynamic expression of dtsPBC' is defined as

Gu= F|E|GE|EG|GE|E|G|GIG|GIf]|Grsa|Gsya|[G+xExE]|[ExG+E]|[ExE=*G).

Let DynExpr denote the set of all dynamic expressions of dtsPBC.

Note that if the underlying static expression of a dynamic one is not regular, the corresponding LDTSPN
can be non-safe (though, it is 2-bounded in the worst case, see [8]). A dynamic expression is regular if its
underlying static expression is regular.

Let RegDynFExpr denote the set of all reqular dynamic expressions of dtsPBC.

In the following, we shall consider regular static and dynamic expressions only, hence, we can omit the word
“regular”.

3 Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems.

3.1 Inaction rules

Inaction rules describe expression transformations due to the execution of the empty multiset of activities. The
rules will be used later to define the empty loop transitions which reflect a non-zero probability to stay in the
current state at the next time moment, which is an essential feature of discrete time stochastic processes. As we
shall see, for every empty loop transition, its net analog in an LDTSPN does not change the current marking
corresponding to the initial dynamic expression from the applied inaction rule.

First, in Table 1, we define inaction rules for the dynamic expressions in the form of overlined and underlined
static ones. In this table, E, F, K € RegStatExpr and a € Act.

Table 1: Inaction rules for overlined and underlined static expressions

EFSEF EF L ETF E;F 5 B F E[F > E|F

EF % E[F E[F % E[F EIE > EIF E|F > B|[F

E|F % B|F Elf] % Elf Elf1 % Bl ErsalErsa

Ersa Ersa Esyangya EsyagEsya [E*F*K]g[E*F*K]
[E*F*K]A[E*F*K] [E*E*K]A[E*F*K] [E*E*K]A[E*F*F] [E*F*K]A[E*F*K]

Second, in Table 2, we propose inaction rules for the dynamic expressions in the arbitrary form. In this
table, E, F € RegStatExpr, G,H,G,H € RegDynFExpr and a € Act.

Table 2: Inaction rules for arbitrary dynamic expressions

Gha G2Cechll GG ocfull) G326 HAH

GoE—GoE EoG—EoG G||H—G|H G||H—=G|H

cAG GHG, oelrssy} ehte] aha fehe]
G[f]&a[f] GoatGoa [G*E*F]&[a*E*F] [E*G*F]g[E*a*F] [E*F*G]g[E*F*a]

A regular dynamic expression G is operative if no inaction rule can be applied to it, with the exception of
c¢ta.

Let OpRegDynFExpr denote the set of all operative regular dynamic expressions of dtsPBC.

Note that any dynamic expression can be always transformed into a (not necessarily unique) operative one
by using the inaction rules.

Definition 3.1 Let =~ = (g U &)* be structural equivalence of dynamic expressions in dtsPBC. Thus, two
dynamic expressions G and G’ are structurally equivalent, denoted by G ~ G’, if they can be reached from each
other by applying the inaction rules in forward or backward direction.

Note that the rule G % G was intentionally included in the set of inaction rules to define later the empty loop
transitions for the states corresponding to the dynamic expressions like («, p) to which no different structurally
equivalent ones exist, hence, the corresponding equivalence class is the singleton one. This is a new rule that
has no prototype among inaction rules of PBC.

3.2 Action rules

Action rules describe expression transformations due to the execution of non-empty multisets of activities. The
rules will be used later to define transitions representing the state changes when some non-empty multisets
of activities are executed. As we shall see, for every such transition, its net analog in an LDTSPN changes
the current marking corresponding to the initial dynamic expression from the applied action rule, unless there
is a self-loop produced by the iterative execution of a non-empty multiset (which should be additionally the
one-element one, i.e., the single activity, since we do not allow concurrency in the highest level of the second
argument of iteration).

Let T' €]N]‘c%. Relabeling is extended to the multisets of activities as follows: f(I') = >, ,er(f(a), p).
The alphabet of T is defined as A(I') = Uq, p)erA(a).

In Table 3, we define action rules. In this table, (a,p),(8,x) € SL, E,F € RegStatExpr, G,H €
OpRegDynExpr, G,H € RegDynExpr and a € Act. Moreover, I', A € IN}% \ {0}.

Table 3: Action rules

I T~ T ~ ~ ~
B (a,p) '8 (a,p) sc1 G2C ol gog oG cclilll py __G2G p2 _HoH
’ — GoELGoE EoGLEG tell): &iNeT ;| fell): aie] Vi
- - > P 2e 2 2
p3 GoC. HSH cha Rs G2C. aa2AM) 11 GHG 2 [eRVe]
GIERC\H arn Barn GrsabGrsa [G*ExF] S [GrExF) [ExGx F| S [E«GxF)
aha Svi1 aha Sv2 G sy aF+{(a’pﬁ{(ﬁ’X)}G sy a, a€a, 4€P
R — yl —== y T+ {(a®afor)}~
[ExF+G)—[E*F*G)| G sy a—G sy a G sy a — G sy a

Note that in the second rule for synchronization Sy2 we multiply the probabilities of synchronized mul-
tiactions, since this corresponds to the probability of the events intersection. This is a new rule that has no
analogous action rule in PBC.

Observe also that we do not allow a self-synchronization, i.e., a synchronization of an activity with itself. The
purpose of this restriction is to avoid rather cumbersome and unexpected behaviour as well as many technical
difficulties.

3.3 Transition systems

Now we intend to construct labeled probabilistic transition systems associated with dynamic expressions. The
transition systems will be used to define operational semantics of expressions of dtsPBC.

(a) @ (b) (c)

Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

Note that expressions of dtsPBC can contain identical activities. To avoid technical difficulties, such as
the proper calculation of the state change probabilities for multiple transitions, we must enumerate coinciding
activities, for instance, from left to right in the syntax of expressions. The new activities resulted from syn-
chronization will be annotated with the concatenation of the numbering of the activities they come, hence, the
numbering should have a tree structure to reflect the effect of multiple synchronizations. Now we define the
numbering which encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.2 Let « € IN. The numbering of expressions is defined as

=] (0)(0).
Let Num denote the set of all numberings of expressions.

Example 3.1 The numbering 1 encodes the binary tree depicted in Figure 1(a) with the root labeled by 1. The
numbering (1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two
leaves labeled by 1 and 2. The numbering (1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one
internal node, which is the root for the subtree (2)(3), and three leaves labeled by 1,2 and 3.

The new activities resulting from the applications of the second rule for synchronization Sy2 in different
orders should be considered up to the permutation of their numbering. In this way, we shall recognize the
different instances of the same activity. If we compare the contents of different numberings, i.e., the sets of
natural numbers in them, we shall be able to identify the mentioned instances.

The content of a numbering ¢ € Num is

(), L€ IN;
Cont (1) = { Cont(t1) U Cont(r2), ¢ = (11)(e2)-

After we apply the enumeration, the multisets of activities from the expressions will be the proper sets. In
the following, we suppose that the identical activities are enumerated when it is needed to avoid ambiguity.
This enumeration is considered to be implicit.

Let X be some set. We denote the cartesian product X x X by X2. Let £ C X2 be an equivalence relation on
X. Then the equivalence class (with respect to £) of an element © € X is defined by [z]e = {y € X | (z,y) € £}.
The equivalence € partitions X into the set of equivalence classes X /e = {[z]c | z € X }.

Definition 3.3 Let G be a dynamic expression. Then |Gl = {H | G = H} is the equivalence class of G with
respect to the structural equivalence. The derivation set of a dynamic expression G, denoted by DR(G), is the
minimal set such that

e [G]~ € DR(G);
o if [Hl~ € DR(G) and 3T H 5 H then [H]~ € DR(G).

Let G be a dynamic expression and s, § € DR(G).

The set of all the multisets of activities executable in s is defined as Exec(s) = {T'|3H € s 3H H 5 H}.
Let I € Ezec(s) \ {0}. The probability that the multiset of activities T' is ready for execution in s is

PFT,s)= [»- 1T (1 =)

(p)el’ {{(B:x)}eEzec(s)|(B,x)€I'}

In the case I' = () we define

10

PF(D,s) = { {0 emmecs) (I = x), Ezec(s) # {0}

, otherwise.

Thus, PF(T,s) could be interpreted as a joint probability of independent events. Each such an event is
interpreted as readiness or not readiness for execution of a particular activity from I'. The multiplication in
the definition is used because it reflects the probability of the events intersection. When only empty multiset
of activities can be executed in s, i.e., EFzec(s) = (), we have PF (0, s) = 1, since we stay in s in this case. Note
that the definition of PF (T, s) (as well as the definitions of other probability functions which we shall present)
is based on the enumeration of activities which is considered implicit.

Let T' € Exzec(s). The probability to execute the multiset of activities T in s is

PF(T,s)
ZAEEmec(s) PF(A5 S) '

Thus, PT(T, s) is the probability that I" is ready for execution in s normalized by the analagous probability
for any multiset executable in s. The denominator of the fraction above is a sum since it reflects the probability
of the events union.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations of G is equal to
1. More formally, Vs € DR(G) > repyecs) PT(I',5) = 1. This obviously follows from the definition of PT'(T', s)
and guarantees that PT(T", s) defines a probability distribution.

The probability to move from s to 5 by executing any multiset of activities is

PT(T,s) =

PM(s,3) = > PT(T, s).
{T|3Hes 3Hes HSHY

Since PM(s,3) is the probability for any multiset of activities (including the empty one) to change s
to §, we use summation in the definition. Note that Vs € DR(G) Y PM(s,8) =

2 2

{5|3Hes 3Hes 3r HSH)

PT(F7 S) = ZFGEmec(s) PT(F? 8) =1

{3|3Hes 3Hes 3r HSH) “~“{T|3Hes 3Hes HSHY

Definition 3.4 Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadru-
ple TS(G) = (Sa, La, Ta, sa), where

the set of states is S¢ = DR(G);

the set of labels is Lg C]N]‘c% x (0;1];

the set of transitions is Tg = {(s, (I, PT(T, s)),3) | s € DR(G), 3H € s 3H € 5§ H EN H};

the initial state is sg = [G]x.

The definition of T'S(G) is correct, i.e., for every state the sum of the probabilities of all the transitions
starting from it is 1. This is guaranteed by the note after the definition of PT(T',s). Thus, we have defined
the generative model of probabilistic processes, according to the classification from [37]. The reason is that the
sum of the probabilities of the transitions with all possible labels should be equal to 1, not only of those with
the same labels (up to enumeration of activities they include) as in the reactive models, and we do not have the
nested choice as in the stratified models.

The transition system T'S(G) associated with a dynamic expression G describes all steps that happen at
moments of discrete time with some (one-step) probability and consist of multisets of activities. Every step
happens instantaneously after one discrete time unit delay, and the step can change the current state to another
one. The states are the structural equivalence classes of dynamic expressions obtained by application of action

rules starting from the expressions belonging to [G]~. A transition (s, (I',P), §) € T will be written as s 5ps
It is interpreted as follows: the probability to change the state s to § in the result of executing I' is P.
Note that T' can be the empty multiset, and its execution does not change the current state (i.e., the

equivalence class), since we have a loop transition s AP s from a state s to itself in the result of executing the
empty multiset. This corresponds to the application of inaction rules to the expressions from the equivalence
class. We have to keep track of such executions, called empty loops, because they have nonzero probabilities.
This follows from the definition of PF((), s) and the fact that multiaction probabilities cannot be equal to 1 as
they belong to the interval (0;1). The the step probabilities belong to the interval (0; 1]. The step probability is
1 in the case when we cannot leave a state s, hence, there exists the only transition from it, namely, the empty

0
loop one s =7 s.

11

We write s §if IP s —+p § and s — § if 30 s > 5. For a one-element multiset of activities T' = {(a, p)}

. op) - o) -
we write s (—p>)7> Sand s (—p>) s.

Isomorphism is a coincidence of systems up to renaming of their components or states.

Definition 3.5 Let G,G’ be dynamic expressions and TS(G) = (Sq, La, Ta, s¢),
TS(G") = (Sar,Lar, Tar, sar) be their transition systems. A mapping B : S¢ — Sg s an isomorphism between
TS(G) and TS(G'), denoted by 5 : TS(G) ~TS(G), if

1. B is a bijection such that B(sg) = sqv;

2. Vs,5€ Sg VI s £>7> 5 < B(s) E>7p B(3).

Two transition systems TS(G) and T'S(G') are isomorphic, denoted by TS(G) ~ TS(G'), if 38 : TS(G) ~
TS(G").

Transition systems of static expressions can be defined as well. For E € RegStatExpr, let TS(E) = TS(E).

Definition 3.6 Two dynamic expressions G and G’ are equivalent with respect to transition systems, denoted
by G =5 G, if TS(G) ~TS(G").

Definition 3.7 Let G be a dynamic expression. The underlying discrete time Markov chain (DTMC) of G,
denoted by DTMC(G), has the state space DR(G) and the transitions s —p 3, if s — § and P = PM (s, 3).

Underlying DTMCs of static expressions can be defined as well. For E € RegStatExpr, let DTMC(E) =
DTMC(E).

For a dynamic expression G, a discrete random variable is associated with every state of DTMC/(G). The
variable captures a residence time in the state. One can interpret staying in a state in the next discrete time
moment as a failure and leaving it as a success of some trial series. It is easy to see that the random variables
are geometrically distributed, since the probability to stay in the state s € DR(G) for k — 1 time moments and
leave it at moment k > 1 is PM(s,s)*~1(1 — PM (s, s)) (the residence time is k in this case). The mean value
formula for geometrical distribution allows us to calculate the average sojourn time in the state s as

1
 1—PM(s,s)
The average sojourn time vector of G, denoted by SJ, is that with the elements SJ(s), s € DR(G).

SJ(s)

Example 3.2 Let E1 = ({a}, p)[|({a},p), F2 = ({b},x), Es = ({c},0) and E = [Ey * Ey x E3]. The identical
activities of the composite static expression are enumerated as follows: E = [(({a}, p)1[]({a}, p)2) * ({b}, x) *
({c},0)]. In Figure 2 the transition system T'S(E) and the underlying DTMC DTMC(E) are presented. Note
that, for simplicity of the graphical representation, states are depicted by expressions belonging to the corre-
sponding equivalence classes, and singleton multisets of activities are written without braces. DR(E) consists
of the equivalence classes s1 = [[E1 * B2 * E3)|~, sa = [[E1 * By * E3)|~, s3 = [[E1 * Ea * E3)]~.
Let us demonstrate how the transition probabilities are calculated. For instance, we have

PF({({a},p)1},s1) = PF({({a}, p)2}. 51) = p(1 — p) and PF(0,51) = (1 - p)*. Hence,

Y ncmzec(sy) PF(Ass1) = 2p(1 = p) + (1 = p)*> = 1 = p*. Thus, PT({({a},p)1},51) = PT({({a},p)2},51) =

p— — —_ 2 — 2 p— cgegq e
Pl(l_pg’) — (1f(pl)(lp-i)-p) — ﬁ and PT(0,s,) = (1_22 = (1£1p)(”1)+p) = %ﬁ. The other probabilities are calculated

n a similar way.
The average sojourn time vector is

1+p 1—x0 >
SJ=(—FL —— 2).
(2p 0(1 - x)

4 Denotational semantics

In this section, we define the denotational semantics in terms of a subclass of LDTSPNs, called discrete time
stochastic Petri boxes (dts-boxes).

12

TS(E) DTMC(E)

(((B1+Ea=E3] [Ey+EaxEg]

0,12 =

o

==

"T¥p 2
({a}.p)1, ({a}.p)2, e
L L
T+p 1+p

[E1*Eg*E3]

A=) (1-0) ({b}%), 1-0
R] (10 T—x0
1—x0
({c}.0), * 24—
0(1—x)
1—x6
0,1 1

Figure 2: The transition system and the underlying DTMC of E for E = [(({a}, p)1[]({a}, p)2)* ({b}, x)* ({c}, 0)]

4.1 Labeled DTSPNs

Let us introduce a class of labeled discrete time stochastic Petri nets. First, we present a formal definition
(construction, syntax) of labeled discrete time stochastic Petri nets.

Definition 4.1 A labeled DTSPN (LDTSPN) is a tuple N = (Pn,Tn, Wn,Qn, Ln, My), where

e Py and Ty are finite sets of places and transitions, respectively, such that Py UTy # 0 and Py NTy = 0;

)

e Wy : (PN X Tn)U (Tn x Py) — IN is a function providing the weights of arcs between places and
transitions;

Qn : Tn — (0;1) 4s the transition probability function associating transitions with probabilities;

o Ly : TN — L is the transition labeling function assigning multiactions to transitions;

My € IN;DN is the initial marking.

A graphical representation of LDTSPNs is like that for standard labeled Petri nets, but with probabilities
written near the corresponding transitions. In the case the probabilities are not given in the picture, they are
considered to be of no importance in the corresponding examples, such as those used to describe stationary
behaviour. The weights of arcs are depicted near them. The names of places and transitions are depicted
near them when needed. If the names are omitted but used, it is supposed that the places and transitions are
numbered from left to right and from top to down.

Now we define a behaviour (functioning, semantics) of LDTSPNs.

Let N be an LDTSPN and ¢t € Ty, U € IN'¥. The precondition *t and the postcondition t* of ¢ are
the multisets of places defined as (*t)(p) = Wx(p,t) and (t*)(p) = Wn(t,p). The precondition *U and the
postcondition U® of U are the multisets of places defined as *U =3, ., *t and U® =3, t°.

A transition ¢ € T is enabled in a marking M €]N;DN of LDTSPN N if *¢ C M. Let Ena(M) be the
set of all transitions (such that each of them is) enabled in a marking M. A set of transitions U C Ena(M)
is enabled in a marking M if *U C M. Firings of transitions are atomic operations, and transitions may fire
concurrently in steps. We assume that all transitions participating in a step should differ, hence, only the
sets (not multisets) of transitions may fire. Thus, we do not allow self-concurrency, i.e., firing of transitions
concurrently to themselves. This restriction is introduced because we would like to avoid technical difficulties
while calculating probabilities for multisets of transitions as we shall see after the following formal definitions.

Let M be a marking of an LDTSPN N. A transition ¢t € Ena(M) fires with probability Qn(¢) when no
other transitions conflicting with it are enabled.

Let U C Ena(M), U # 0 and *U C M. The probability that the set of transitions U is ready for firing in
M is

PRUM)=]ov®-] (0 —n(w).
teU u€Ena(M)\U

In the case U =) we define

13

PF(@ M) _ HueEna(M)(l - QN(“’))? Ena(M) 7é (Z);
’ 1 otherwise.

3

Thus, PF(U, M) could be interpreted as a joint probability of independent events. Each such an event is
interpreted as readiness or not readiness for firing of a particular transition from U. The multiplication in the
definition is used because it reflects the probability of the events intersection. When no transitions are enabled
in M, we have PF (), M) = 1, since we stay in M in this case.

Let U C Ena(M), U # () and *U C M. The concurrent firing of the transitions from U changes the

marking M to M = M — *U + U®, denoted by M EM)]T/[/, where P = PT(U, M) is the probability that the set
of transitions U fires in M defined as

PF(U, M)

PT(U,M) = :
Z{V\'VQM} PF(V,M)

In the case U = () we have M = M and

PF(0, M)
> (vieveay PF(V. M)

Thus, PT(U, M) is the probability that the set U is ready for firing in M normalized by the corresponding
probability for any set enabled in M. The denominator of the fraction above is a sum since it reflects the
probability of the events union.

Note that for all markings of an LDTSPN N the sum of outgoing probabilities is equal to 1. More formally,
VM e]N;DN PT0, M)+ > rjevcary PT(U, M) = 1. This obviously follows from the definition of PT'(U, M)
and guarantees that it defines a probability distribution.

We write M 5 M if 3P M %p M and M — M if 3U M % M. For one-element set of transitions U = {t}

we WriteM—t>vaandM—t>M.

PT (0, M) =

Definition 4.2 Let N be an LDTSPN.
e The reachability set of N, denoted by RS(N), is the minimal set of markings such that
— My € RS(N);
— if M € RS(N) and M — M then M € RS(N).
e The reachability graph of N, denoted by RG(N), is a directed labeled graph with the set of nodes RS(N)
and an arc labeled with (U, P) between nodes M and M if M Y M.

e The underlying discrete time Markov chain (DTMC) of N, denoted by DTMC(N), has the state space
RS(N) and the transitions M —p M, if M — M, where P = PM(M, M) is the probability to move
from M to M by firing any set of transitions defined as

PM(M,M)= > PT(UM).
(wmEan

Since PM (M, M) is the probability for any (including the empty one) transition set to change mark-
ing M to M, we use summation in the definition. Note that VM € RS(N)

2 itm—iny 2psan PTWUM) = X ppevcany PTWU, M) = 1.
Let N be an LDTSPN and M € RS(N). The average sojourn time in the marking M is

Z{IV[\M%]\%} PM(M, M) =

1
 1—PM(M,M)
The average sojourn time vector of N, denoted by SJ, is that with the elements SJ(M), M € RS(N).

SJ(M)

Example 4.1 In Figure 8 an LDTSPN N with two visible transitions t; (labeled by {a}), t2 (labeled by
{b}) and one invisible transition ts (labeled by () is presented. Transition probabilities of N are denoted by
p=Qn(t1), x = Qn(t2), 0 = Qn(ts). In the figure one can see the reachability graph RG(N) and the un-
derlying DTMC DTMC(N) as well. RS(N) consists of the markings M1 = (1,1,0), My = (0,1,1), M3 =
(1,0,1), My = (0,0,2).

14

Figure 3: LDTSPN, its reachability graph and the underlying DTMC

The average sojourn time vector is

1 111
SJ = (77_7_7_> .
ptx—px x p 0
The elements P;j(1 < 1,5 < 4) of (one-step) transition probability matriz (TPM) for DT MC(N) are defined
as

P — PM(Mi,Mj), Mi—>Mj;
Y00, otherwise.

Thus, the TPM is

(1-pA=x) p(l=x) x(T-=p) px
- X 0 X
0 1—-p p
0 0 1-40
The steady-state probability mass function (PMF) ¢ = (11, ¥2,v3,14) for DTMC(N) is the solution of the
equation system

Y(P-E)=0
1T =1 ’

where E is the unitary matriz of dimension four and 0 = (0,0,0,0), 1 = (1,1,1,1).
For the case p = x = 0 we have

b= 1 1—p 1—p 2-p
\5-=3p"5-3p"5-3p"5-3p) "
The inverse of the steady-state PMF for DTMC(N) is its mean recurrence time vector
5—=3p 5—=3p 5—3p
1—p’ 1—=p 2—p)"
Each element of RC is the mean number of steps to return to the corresponding marking. For instance, one

can see that the average time to come back to the initial marking My = My in the long-term behaviour belongs
in the interval (2;5), since p € (0;1).

RC = <5—3p,

4.2 Algebra of dts-boxes

Now we propose discrete time stochastic Petri boxes and associated algebraic operations to define a net repre-
sentation of dtsPBC expressions.

Definition 4.3 A discrete time stochastic Petri box (dts-box) is a tuple N = (Pn,Tn, Wn, AN), where

e Py and T are finite sets of places and transitions, respectively, such that Py UTxN # () and Py NTn = 0;

15

o Wy : (PyxTn)U(Tnx Py) — IN is a function providing the weights of arcs between places and transitions
and vice versa;

e Ay is the place and transition labeling function such that

— An|py 1 Pv — {e,i,x} (it specifies entry, internal and exit places, respectively);

—Anlry TN = {o] o C Wfﬁ x SL} (it associates transitions with the relabeling relations on
activities).

Moreover, ¥t € T *t # 0 # t*. In addition, for the set of entry places of N defined as °N = {p € Py |
An(p) = e} and the set of exit places of N defined as N° = {p € Py | An(p) = x} the following condition holds:
ON # 0 # NO, .(ON) — 0 — (NO)..

A dts-box is plain if Vt € Ty An(t) € SL, ie., An(t) is the constant relabeling that will be defined
later. A marked plain dts-boz is a pair (N, My), where N is a plain dts-box and My €]N;DN is the initial

marking. We shall use the following notation: N = (N,°N) and N = (N, N°). Note that a marked plain dts-
box (Py,Tn, Wn,An, M) could be interpreted as the LDTSPN (Py,Tn, Wi, Qn, Ly, My), where functions
Qn and Ly are defined as follows: ¥Vt € Ty Qn(t) = Q(An(t)) and Ly(t) = L(An(t)). The behaviour of
marked dts-boxes follows from the firing rule of LDTSPNs. A plain dts-box N is n-bounded (n € IN) if N
is so, i.e., VM € RS(N) Vp € Py M(p) < n, and it is safe if it is 1-bounded. A plain dts-box N is clean if
VM € RS(N)°NCM = M =°Nand N° C M = M = N°, if there are tokens in all its entry (exit) places
then no other places have tokens.

To define semantic function that associates a plain dts-box with every static expression of dtsPBC, we need
to propose the enumeration function Enu : Ty — Num. It associates the numberings with transitions of plain
dts-box N in accordance with those of activities. In the case of synchronization, the function associates with
the resulting new transition the concatenation of the parenthesized numberings of the transitions it comes from.

The structure of the plain dts-box corresponding to a static expression is constructed like in PBC, see
[17, 18, 8]. Le., we use simultaneous refinement and relabeling meta-operator (net refinement) in addition to
the operator dts-boxes corresponding to the algebraic operations of dtsPBC' and featuring transformational
transition relabelings. Thus, as we shall see in Theorem 4.1, the resulting plain dts-boxes are safe and clean.
In the definition of the denotational semantics, we shall apply standard constructions used for PBC. Let ©
denotes operator box and u denotes transition name from PBC setting.

The relabeling relations ¢ C EV;»% x SL are defined as follows:

0ida = {({(e, p)}, (e, p)) | (e, p) € SL} is the identity relabeling keeping the interface as it is;

® 0(a,p) = {(0, (v, p))} is the constant relabeling that can be identified with (o, p) € SL itself;

o) = {{(e, 0}, (f(@),0) | (e, p) € SLY;
Ors a = {({(avp)}v (a,p)) | (a,p) €SL, a,a ¢ a};

Osy o i the least relabeling relation containing in ;4 such that if (T, (o, p)), (A, (8, X)) € 0sy « and
ac€a, acfthen (T+A, (a®efB,pX)) € 0sy a-

The plain and operator dts-boxes are presented in Figure 4. Note that the symbol i is usually omitted.
Now we define the enumeration function Enu for every operator of dtsPBC. Let Boxgs(E) =
(Pg,Tr, Wg, Ag) be the plain dts-box corresponding to a static expression E, and Enug be the enumeration
function for Tr. We shall use the analogous notation for static expressions F' and K.

o Boxgs(EoF)=0sBoxas(E), Boxas(F)), o€ {;,[,|}. Since we do not introduce new transitions, we
preserve the initial numbering;:

| Enug(t), teTg;
Enu(t) o { EnuF(t), te TF.

o Bowxgis(E[f]) = Oy (Boxass(E)). Since we only replace the labels of some multiactions by a bijection, we
preserve the initial numbering;:

Enu(t) = Enug(t), t € Tg.

16

Na,p): Oy Ors a ©

& © © © ©
l l l l 1

S
@
@

‘(Ot,p) t; ‘ 0[] ‘ U] ‘ Ors a ‘ Urs q ‘ Osy a ‘ Usy a ‘ Qid u} Oid u[l**]
! !
ONENORINO O Gy e,
o, Oid | u? Cid | uf

Figure 4: The plain and operator dts-boxes

e Boxgs(F rs a) = Oy o(Boxgs(E)). Since we remove all transitions labeled with multiactions containing
a or a, this does not change the numbering of the remaining transitions:

Enu(t) = Enug(t), t € Ty, a,a & L(Ag(t)).

Bozgs(E sy a) = Ogy o(Bozxgs(E)). Note that Vv, w € Tg such that Ag(v) = (a,p), Ap(w) = (B,X)
and a € «, @ € B, the new transition ¢ resulting from synchronization of v and w has the label A(t) =
(a @ B, p- x) and the numbering Enu(t) = (Enug(v))(Enug(w)).

Thus, the enumeration function is defined as

Enu(t) = Enug(t), t € Tg;
| (BFnug(v))(Enug(w)), tresults from synchronization of v and w.

When we synchronize the same set of transitions in different orders, we obtain several resulting tran-
sitions with the same label and probability, but with the different numberings having the same con-
tent. In this case, we shall consider only single one from the resulting transitions in the plain dts-
box to avoid introducing redundant transitions. For example, if the transitions ¢ and u are generated
by synchronizing v and w in different orders, we have A(t) = (a ®q B,p - x) = A(u), but Enu(t) =
(Enug(v))(Enug(w)) # (Enug(w))(Enug(v)) = Enu(u) whereas Cont(Enu(t)) = Cont(Enu(v)) U
Cont(Enu(w)) = Cont(Enu(u)). Then only one transition ¢ (or, symmetrically, u) will appear in
Boxgis(E sy a).

Box s ([E* F* K]) = O (Boxgts(E), Boxas(F), Borays(K)). Since we do not introduce new transitions,
we preserve the initial numbering:

EnuE(t), teTg;
Enu(t) =< Enup(t), teTr;
EnuK(t), teTk.

Now we can formally define the denotational semantics as a homomorphism.

Definition 4.4 Let (o, p) € SL, a € Act and E, F, K € RegStatExpr. The denotational semantics of dtsPBC
18 a mapping Boxg:s from RegStatExpr into the area of plain dts-boxes defined as follows:

1. Boxgss((a,p)i) = Nia,p).s
2. Boxas(E o F) = O4(Boxas(E), Boxais(F)), o € {;,[], |}
3. BO:Z?dtS(E[fD = @[f] (Boxdts(E));

17

4. Boxgis(E o a) = Ooq(Boxais(E)), o € {rs,sy};
5. Boxgis([E * F % K]) = O (Borais(E), Boxats(F), Boxas(K)).

The dts-boxes of dynamic expressions can be defined as well. For E € RegStatExpr, let Borg(E) =
Bozgis(E) and Boxgis(E) = Boxars(E).

Note that any dynamic expression can be decomposed into overlined or underlined static expressions or
those without overlines and underlines. The definition of dts-boxes for arbitrary dynamic expressions should
be compositional as well. Hence, we are to apply the net operations to the dts-boxes of these three types of
expressions where all and only places containing one token each are the entry or the exit ones or no places
contain tokens at all. The operations are applied to the dts-boxes with tokens like to those without them, but
preserving the tokens in places.

Theorem 4.1 For any static expression E, Boxgs (E) is safe and clean.

Proof. The structure of the net is obtained as in PBC, combining both refinement and relabeling. Consequently,
the dts-boxes thus obtained will be safe and clean. O

Let ~ denote isomorphism between transition systems or between DTMCs and reachability graphs that re-
lates the initial states. Due to the space restrictions, we omit the corresponding definitions as they resemble that
of the isomorphism between transition systems. Note that the names of transitions of the dts-box corresponding
to a static expression could be identified with the enumerated activities of the latter.

Theorem 4.2 For any static expression FE
TS(E) ~ RG(Bozas(E)).

Proof. As for the qualitative (functional) behaviour, we have the same isomorphism as in PBC.

The quantitative behaviour is the same by the following reasons. First, the activities of an expression have
probability parts coinciding with the probabilities of the transitions belonging to the corresponding dts-box.
Second, both in stochastic processes specified by expressions and in dts-boxes, conflicts are resolved via the
analogous probability functions used to construct the corresponding transition systems and reachability graphs.
O

Proposition 4.1 For any static expression E

DTMC(E) ~ DTMC(Bozas(E)).

Proof. By Theorem 4.2 and definitions of underlying DTMCs for dynamic expressions and LDTSPNs, since
transition probabilities of the associated DTMCs are the sums of those belonging to transition systems or
reachability graphs. a

Example 4.2 Let E be from Ezample 3.2. In Figure 5 the marked dts-box N = Bowxas(E), its reachability
graph RG(N) and the underlying DTMC DTMC(N) are presented. It is easy to see that TS(E) and RG(N)
are isomorphic, as well as DTMC(E) and DTMC(N).

Consider the next example that demonstrates synchronization.

Example 4.3 Let E1 = ({a},p), E2 = ({a},x) and E = (E1[|E2) sy a = (({a}, p)||({a}, x)) sy a. In Figure
6 the transition system T'S(E) and the underlying DTMC DTMC(E) are presented. In Figure 7 the marked
dts-box N = Bozas(F), its reachability graph RG(N) and the underlying DTMC DTMC(N) are depicted. It
is easy to see that TS(E) and RG(N) are isomorphic, as well as DTMC(E) and DTMC(N).

The probabilities Pi; (1 < 1,5 < 4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol || inscribes that of the transition corresponding

to the concurrent execution of two activities. To avoid complexr notation, we use the normalization factor

N = 1

Piu=N1-p)(1-x)1—-px) Piz=Np(l—-x)(1~px) P13 = Nx(1—p)(1—px)
Pii =Npx(1=p)(1-x) Ply=Npx(1 = px) Par=1-x

Pos = x Pyz=1—p P3a=0p

Pa=1 Pra =Py +Ply=Npx(2—p—x)

18

e 100
=
0, ey
tdake] dabed byt t2 7 2
Co10)
— - 1-6 1-6
97% t?”xl(—xe) T—x0
({c},0) e e
(0] 1, ta, 2253 L

@ 001 001
0,1 1

Figure 5: The marked dts-box N = Bowxas(E) for E = [(({a}, p)1[]({a}, p)2) * ({b}, x) * ({c}, 0)], its reachability
graph and the underlying DTMC

TS(E)
((E1llE2)sy a

0,P11
({a},p), P12 ({a},x),P1s
{|({a},p))
{0},)b [{ar)}

(B1lB2)sy a
S!
0, P22 PPN

({&})X)77)24

((Eq||E2)sy a

0,Paa

({a}.p),Psa

Figure 6: The transition system and the underlying DTMC of E for E = (({a},p)||({a}, X)) sy a

Consider the case p = x = % Then the transition probabilities will be the following:

3 1 1 4

=Pl =Pis =Pl = 2 PY =~ Py = Py = Pay = Pay = =, =1, P = —.

P11 12 = Piz =P, 130 P =13 P22 Poy = Ps3 4= 75 Paa =13

The following example demonstrates that without the syntactic restriction on regularity of expressions the
corresponding marked dts-boxes may be not safe.

Example 4.4 Let E = [(({a}, p) * (({b},) |[({c}, 8)) * ({d}, d)]. In Figure 8 the marked dts-box N = Box4s(F)
is presented. The initial marking is My = (1,0,0,0,0,0). The marking My = (0,1,1,1,1,0) is obtained from
My by firing the transition ({a},p). Then in the marking Ms = (0,1,1,2,0,0) obtained from My by firing
({b}, x) there are 2 tokens in the place py. Symmetrically, in the marking My = (0,1,1,0,2,0) obtained from
My by firing ({c},0) there are 2 tokens in the place ps. Thus, allowing concurrency in the second argument
of iteration in the expression E can lead to non-safeness of the corresponding marked dts-box N, though, it is
2-bounded in the worst case, see [8]. The origin of the problem is that N has as a self-loop with two subnets
which can function independently. This explains why do we consider reqular expressions only.

5 Stochastic equivalences

In this section, we propose a number of stochastic equivalences of expressions. The semantic equivalence =
is too discriminate in many cases, i.e., from our viewpoint, it differentiates too many processes with similar
behaviour. Hence, we need weaker equivalence notions to compare behaviour of processes specified by algebraic
formulas.

To identify processes with intuitively similar behavior and to be able to apply standard constructions and
techniques, we should abstract from infinite internal behaviour. Since dtsPBC' is a stochastic extension of a

19

N

A

t|daro)] [@eo] [darnlt,

o Do

Figure 7: The marked dts-box N = Bozus(E) for E = (({a},p)||({@}, X)) sy a, its reachability graph and the
underlying DTMC

({d},¢)

Figure 8: The marked dts-box N = Bowgs(E) for E = [(({a}, p) * (({b}, X)||({c},0)) * ({d}, #)]

20

finite part of PBC with iteration, the only source of infinite silent behaviour are empty loops, i.e., the transitions
which are labeled by the empty multiset of activities and do not change states. During such an abstraction, we
should collect the probabilities of empty loops. Note that the resulting probabilities are those defined for an
infinite number of empty steps. In the following, we explain how to abstract from the empty loops both in the
algebraic setting of dtsPBC and in the net one of LDTSPNs.

Notice that we do not consider as a silent behaviour the execution of the iteration body built only from
activities with the empty multiaction parts, even when the body consists from the single activity (0, p) whose
execution does not change the current state of the transition system. The reason is that we skip only the empty
steps at the considered abstraction level, but the the iteration body consist at least from one activity.

5.1 Empty loops in transition systems

Let G be a dynamic expression. A transition system 7'S(G) can have loops going from a state to itself which

are labeled by the empty multiset and have non-zero probability. Such empty loops s 2)7; s appear when no
activities occur at a time step, and this happens with some positive probability. Obviously, the current state
remains unchanged in this case.

Let G be a dynamic expression and s € DR(G).

The probability to stay in s due to k (k > 1) empty loops is

(PT(D, 5)).

Let T' € Exec(s) \ {0}. The probability to execute the non-empty multiset of actiwvities T in s after possible
empty loops is
> PT(T,s)

PT*(T,s) = PT(T, s) kZ:O(PT((ZJ, $)F = TP EL(s)PT(T,s),

where EL(s) = #(@75) is the empty loops abstraction factor. The empty loops abstraction vector of G,
denoted by EL, is that with the elements FL(s), s € DR(G). The value k& = 0 in the summation above
corresponds to the case when no empty loops occur.

Note that after abstraction from transition probabilities with empty multisets of activities, the remaining
transition probabilities are normalized. In order to calculate transition probabilities PT (T, s), we had to nor-
malize PF (T, s). Then, to obtain transition probabilities of non-empty steps PT*(T, s), we have to normalize
PT(T,s). Thus, we have a two-stage normalization as a result.

Note that PT*(T',s) < 1, hence, it is really a probability, since PT(0, s) + PT(T,s) < PT(0,s) +
Yonerzecs)\ {0y PT(D,8) = Yo ncprec(s) PT(A,s) = 1. Moreover, PT*(I',s) defines a probability distribu-
tion, since Vs € DR(G) such that s is not a terminal state, i.e., there exist transitions from it, we have
ZFEEzec(s)\{@} pPT™ (F7 S) =1

Definition 5.1 The (labeled probabilistic) transition system without empty loops T'S*(G) has the state space
DR(G) and the transitions s Lp S, if s 5 5, T #0 and P = PT*(T,s).

The definition of T'S*(G) is correct, i.e., for every state excluding the terminal ones the sum of the probabil-
ities of all the transitions starting from it is 1. This is guaranteed by the note after the definition of PT*(T, s).

Note that T'S*(G) describes the viewpoint of a person who observes steps only if they include non-empty
multisets of activities.

We write s —» § if 3P s —»p § and s —» 5 if 30 s —» 5. For a one-element multiset of activities I = {(a, p)}
))

. (ap) (a,p) ~
we write s —'p S and s —» §.

We decided to consider empty loops followed only by a non-empty step just for convenience. Alternatively,
we could take a non-empty step succeeded by empty loops or a non-empty step preceded and succeeded by
empty loops. In all these three cases our sequence begins or/and ends with the loops which do not change
states. At the same time, the overall probabilities of the evolutions can differ, since empty loops have positive
probabilities. To avoid inconsistency of definitions and too complex description, we consider sequences ending
with a non-empty step. It resembles in some sense a construction of branching bisimulation [36].

Transition systems without empty loops of static expressions can be defined as well. For £ € RegStatExpr,
let TS*(E) =TS*(E).
Definition 5.2 Two dynamic expressions G and G’ are equivalent with respect to transition systems without

empty loops, denoted by G =45 G', if TS*(G) =~ TS*(G").

21

T5*(E) DTMC*(E)

({a}.p)2, 3 1

(a}.p)1.5

(B Faeba) |) ([El*@:)
({b}x), x(1-6)
x(1-0) XFo=2x6
x+0—2x60 6(1—x)
({C}79)7 X+9—*§X9
0(1—x)
x+60—2x0

[E1*Ego*E3] [E1*Eo*E3]

Figure 9: The transition system and the underlying DTMC without empty loops of E from Example 3.2

Definition 5.3 The underlying DTMC without empty loops DT MC*(G) has the state space DR(G) and the
transitions s —»p 8, if s —» 5, where P = PM*(s,§) is the probability to move from s to § by executing any
non-empty multiset of activities after possible empty loops defined as

vl o . | EL(s)(PM(s,s) — PT(0,s)), s=35;
PM(s,5) = ZF PT(T, s) = { EL(s)PM(s,3), otherwise.
(T1s 55}

Note that Vs € DR(G) such that s is not a terminal state, i.e., there exist transitions from it, we have
D (515 PM™(5,8) = X (51555} st_r»g} PT(L,8) = Y repaecs oy P17 (I, 5) = 1.

Underlying DTMCs without empty loops of static expressions can be defined as well. For £ € RegStatExpr,
let DTMC*(E) = DTMC*(E).

Example 5.1 Let E be from Ezample 3.2. In Figure 9 the transition system T'S™ (E) and the underlying DTMC
without empty loops DTMC*(E) are presented.
Let us demonstrate how the transition probabilities of non-empty steps are calculated. For instance, we have

PT(0,s1) = ;—Z and % = 12%. Hence, since PT({({a}, p)1},s1) = 74, we have
PT*({({a},p)1},81) = %&})’51) =15 12% = 3. According to the same pattern, we obtain
PT*({({a},p)2},s1) = 3. The other probabilities are calculated in a similar way.

5.2 Empty loops in reachability graphs

Let N be an LDTSPN. Reachability graph RG(N) can have loops going from a marking to itself which are

labeled by the empty set and have non-zero probability. Such empty loop M g”p M appears when no transitions
fire at a time step, and this happens with some positive probability. Obviously, in this case the current marking
remains unchanged.

Let N be an LDTSPN and M € RS(N).
The probability to stay in M due to k (k > 1) empty loops is

(PT(, M))*.

Let U C Ena(M), U # 0 and *U C M. The probability that the non-empty set of transitions U fires in M
after possible empty loops is

. B > _ PT(UM)
PT*(U,M) = PT(U, M) kz:%(PT((ZJ, M)k = TPT(ID ~ EL(M)PT(U, M),

where EL(M) = m is the empty loops abstraction factor. The empty loops abstraction vector of N,

denoted by EL, is that with the elements EL(M), M € RS(N). The value k¥ = 0 in the summation above
corresponds to the case when no empty loops occur.

22

Note that PT*(U, M) < 1, hence, it is really a probability, since PT(0, M) + PT(U,M) < PT(0,M) +
> vieveny PT(V, M) = 1. Moreover, PT*(U, M) defines a probability distribution, since VM € RS(N) such
that M is not a terminal marking, i.e., there exist transitions from it, we have Z{U#(BPUQM} PT*(U,M) = 1.

Definition 5.4 The reachability graph without empty loops RG*(N) has the set of nodes RS(N) and the arcs
corresponding to the transitions M E»p M, if M L M,U#0 and P = PT*(U,M).

Note that RG*(NN) describes the viewpoint of a person who observes steps only if they include non-empty
transition sets.

We write M % M if 3P M E»p M and M —» M if 3U M % M. For a one-element set of transitions
U = {t} we write M Lsp M and M - M.

Definition 5.5 The underlying DTMC without empty loops DTMC*(N) has the state space RS(N) and the

transitions M —»p M, if M — M, where P = PM*(M, M) is the probability to move from M to M by firing
any non-empty set of transitions after possible empty loops defined as

PM*(M,M)= Y PI*(UM)=

{ EL(M)(PM(M, M) — PT(®,M)), M = ;
wm S

EL(M)PM (M, M), otherwise.

Note that VM € RS(N) such that M is not a terminal marking, i.e., there exist transitions from it, we have

Yowim—iny P M) =30 ity 2o i DLW M) =3 e vcan PTT(U M) = 1.

Theorem 5.1 For any static expression E
TS*(E) ~ RG*(Boxas(E)).

Proof. As Theorem 4.2. O

Proposition 5.1 For any static expression E
DTMC*(E) ~ DTMC*(Bozg(E)).

Proof. As Proposition 4.1. O

Note that Theorem 5.1 guarantees that the net versions of algebraic equivalences could be easily defined.
For every equivalence on the transition system without empty loops of a dynamic expression, a similarly defined
analogue exists on the reachability graph without empty loops of the corresponding dts-box.

Example 5.2 Let E be from Example 3.2 and N be from Ezample 4.2. In Figure 10 the reachability graph
RG*(N) and the underlying DTMC without empty loops DTMC*(N) are presented. It is easy to see that
TS*(E) and RG*(N) are isomorphic as well as DTMC*(E) and DTMC*(N).

Consider the next example that demonstrates synchronization.

Example 5.3 Let E and N be those from Ezample 4.3. In Figure 11 the transition system TS*(E) and the
underlying DTMC without empty loops DT MC*(E) are presented. In Figure 12 the reachability graph RG*(N)
and the underlying DTMC without empty loops DTMC*(N) are depicted. It is easy to see that TS*(E) and
RG*(N) are isomorphic as well as DTMC*(E) and DTMC*(N).

The probabilities P;; (1 <i,5 <4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol || inscribes that of the transition corresponding
to the concurrent execution of two activities. To avoid complexr notation, we use the normalization factor

N* = P+X72p2X*12PX2+2f’2X2' The probabilities Pi; (1 <1i,j5 <4) are taken from Ezxample 4.3.

Pio = 128 = N"p(1 = x)(1 — px) Piy = 125 = N*x(1 — p)(1 — px)
P = i = N px(1 - p)(1 - X) Pl = f%‘u = N*px(1 = px)
Po= 2 =1 Pis = 1o =1

I A W CR

. Then the transition probabilities will be the following:

(SIS

Consider the case p=x =
7312:7>13:731||4:_107 P =1 Py =P =1, 731423,

23

DTMC*(N)

100

x(1—0)
x+0—2x60

Figure 10: The reachability graph and the underlying DTMC without empty loops of NV from Example 4.2

75*(E)

((El IE2)sy a

DTMC*(E)

({d}7X))Pf3

(B1lE2)sy a (B1lE2)sy a

({a},x), P34 ({a}.p), P34

(E1llE2)sy a

(E1llEg)sy a

Figure 11: The transition system and the underlying DTMC without empty loops of E from Example 4.3

RG*(N) DTMC*(N)

(1100)

(0011)

Figure 12: The reachability graph and the underlying DTMC without empty loops of NV from Example 4.3

24

5.3 Stochastic trace equivalences

Trace equivalences are the least discriminating ones. In a trace semantics, the behavior of a system is associated
with the set of all possible sequences of activities, i.e., protocols of work or computations. Thus, the points of
choice of an external observer between several extensions of a particular computation are not taken into account.

Formal definitions of stochastic trace relations resemble those of trace equivalences for standard Petri nets
[77] or process algebras, but additionally we have to take into account the probabilities of sequences of (multisets
of) actions like in [28, 89]. First, we have to multiply occurrence probabilities for all (multisets of) activities
along every path starting from the initial state of the transition system corresponding to a dynamic expression.
The product is the probability of the sequence of multiaction parts of the (multisets of) activities along the
path. Second, we should calculate a sum of probabilities for all paths corresponding to the same sequence of
multiaction parts.

When concurrency aspects are not relevant, the interleaving behaviour is to be considered. The interleaving
semantics abstracts from steps with more than one element. After such an abstracting, one has to normalize
the probabilities of the remaining one-element steps. We need to do this since the sum of outgoing probabilities
should always be equal to one for each state to form a probability distribution. For this, a special interleaving

transition relation is proposed. Let G be a dynamic expression, s,§ € DR(G) and s (oig) 5. We write s (OAp)p S,
where P = pt*((«, p), s) is the probability to execute the activity (c, p) in s after possible empty loops when only
one-element steps are allowed defined as

PT*({(a,p)},)
Z{(ﬁ X)}EEzec(s) PT™ ({(B X)})

Note that we have first abstracted from empty loops and then from steps with more than one element. We
could perform the abstractions in the reverse order, the result will be the same. The reason is that, at every
stage, we abstract from some transitions of a given transition system and then normalize the probabilities of
the remaining ones. Hence, the result of each sequence of abstractions coincides with that of the abstraction at
once from all the transitions we have abstracted from in this sequence.

For T €]Nfﬁ, we define its multiaction part by L(I') = 3_, ,er a. Note that in the definitions below we

shall consider L(T") € IN fL \ {0}, i.e., the non-empty multisets of multiactions. These multiactions can be empty,
and in this case £(T") will contain the elements (), hence, it will not be empty.

pt*((e, p); 8) =

Definition 5.6 An interleaving stochastic trace of a dynamic expression G is a pair (o,pt*(c)), where o =
ay--an € L7 and

n

pt*(o) = Z pr*((ai7pi)78i—1)-
(a1,p1) (@2.p2) (an,pn) =1
so =N Tlsp TN

{(a1,p1),..., (an,pn)|[Gle=

We denote the set of all interleaving stochastic traces of a dynamic expression G by IntStochTraces(G).
Two dynamic expressions G and G’ are interleaving stochastic trace equivalent, denoted by G =;5 G, if

IntStochTraces(G) = IntStochTraces(G').

Definition 5.7 A step stochastic trace of a dynamic expression G is a pair (X, PT*(X)), where X = Ay --- A, €

(leﬁ \{0})* and
PT*(%) = > ﬁ PT*(L;, 8i-1).

T r =1
Ty Tl [Gla=s0-3s13-Bs., £(T))=A; (1<i<n)} '

We denote the set of all step stochastic traces of a dynamic expression G by StepStochTraces(G). Two
dynamic expressions G and G’ are step stochastic trace equivalent, denoted by G =5 G, if

StepStochTraces(G) = StepStochTraces(G").

({a},2), ({a},3),

Example 5.4 Let E = (({a},3)|({a}, 1)) sy a. Then IntStochTraces(E)={(0,1),
{{a}}, %), ({{a}}{{d}}v%),

({aH{a}, 2), ({a}{a},7)} and StepStochTraces(E E) ={({0}. 1), {{a}} 15), (
({{a}H{{a}}, 55). ({H{a}, {a}} 15)}-

1
7
a

25

5.4 Stochastic bisimulation equivalences

Bisimulation equivalences respect the particular points of choice in the behavior of a modeled system. We intend
to present a definition of stochastic bisimulation equivalences. The definition is parameterized for the cases of
interleaving or step semantics.

To define stochastic bisimulation equivalences, we have to consider a bisimulation as an equivalence rela-
tion which partitions the states of the union of the transition systems 7'S*(G) and T'S*(G’) of two dynamic
expressions G and G’ to be compared. For G and G’ to be bisimulation equivalent, the initial states of their
transition systems, [G]~ and [G']~, are to be related by a bisimulation having the following transfer property:
two states are related if in each of them the same (multisets of) multiactions can occur, and the resulting
states belong to the same equivalence class. In addition, sums of probabilities for all such occurrences should
be the same for both states. Thus, in our definitions, we follow the approach of [50, 51]. Hence, the difference
between bisimulation and trace equivalences is that we do not consider all possible occurrences of (multisets
of) multiactions from the initial states, but only such that lead (stepwise) to the states belonging to the same
equivalence class. Note that our interleaving stochastic bisimulation equivalence resembles in some sense weak
bisimulation one from [14, 15], but we abstract from empty loops only instead of any transitions with the initial
and the final states from the same equivalence class (with respect to the mentioned equivalence).

First, we introduce several helpful notations. Let G be a dynamic expression and H C DR(G). Then for

some s € DR(G) and A € INfF \ {0} we write s Ap H, where P = PM?(s,H) is the overall probability to
move from s into the set of states H via non-empty steps with the multiaction part A after possible empty loops
defined as

PM(s,H) = > PT*(T,s).
{T|35€H s35, £L(I)=A}
The summation in the definition above reflects the probability of the events union.
We write s 2> Hif AP s i‘»p H.

We write s —p H if A s 4 H, where P = PM*(s,H) is the overall probability to move from s into the
set of states H via any non-empty steps after possible empty loops defined as

PM*(s,H)= Y PT*I,s).
{T|35€H s5}
We propose the corresponding interleaving transition relation s ~>p H, where P = pm? (s, H) is the overall

probability to move from s into the set of states H via steps with the multiaction part {a} after possible empty
loops when only one-element steps are allowed defined as

pmg (s, H) = > pt*((a, p), 5).
{(ap)|35eH 525}

To introduce stochastic bisimulation equivalence between dynamic expressions G and G, we should consider
a “composite” set of states DR(G) U DR(G’). The reason is that we have to identify the probabilities to
come from any two equivalent states into the same “composite” equivalence class on this set. Note that
transitions starting from the states of DR(G) (or DR(G’)) always lead to those from the same set, since
DR(G)NDR(G') = B, and this allows us to “mix” the sets of states in the definition of stochastic bisimulation.

Definition 5.8 Let G and G’ be dynamic expressions. An equivalence relation R C (DR(G) U DR(G"))? is a
*-stochastic bisimulation between G and G’, * €{interleaving, step}, denoted by R : G, G', x € {i, s}, if:

1. ([G)~, [G'~) € R.
2. (81782) ER = VH e (DR(G) @] DR(GI))/R

o Vx € L and —=—, if x =1i;
o Vx E]Nf\{(i)} and —=—», if x = s;

x xT
s1 —=pH & s9—p H.

Two dynamic expressions G and G’ are *x-stochastic bisimulation equivalent, x €{interleaving, step}, denoted
by G, G, if IR : G, G, * € {i, s}.

26

5.5 Stochastic isomorphism

Stochastic isomorphism is a relation that is weaker than =;,,. The main idea of the following definition is to
collect the probabilities of all transitions between the same pair of states such that the transition labels have
the same multiaction parts. We use summation, since it is the probability of the events union.

Let G be a dynamic expression and s,§ € DR(G) such that s Ap {5}. In this case, we write s Ap s
Thus, P is the overall probability to come into the one-element set of states {5} starting in s via steps with
the multiaction part A. In other words, P is a sum of all the probabilities of steps with the multiaction part A
between the states s and s.

Definition 5.9 Let G, G’ be dynamic expressions. A mapping § : DR(G) — DR(G") is a stochastic isomor-
phism between G and G', denoted by B : G =g0 G, if

1. B is a bijection such that B([Glx) = [G']~;

2. Vs,5€ DR(G) VA€ INF\ {0} s Bp 5 & B(s) Bp B(3).

Two dynamic expressions G and G’ are stochastically isomorphic, denoted by G =4, G', if 36 : G =4, G'.

5.6 Interrelations of the stochastic equivalences

Note that all the algebraic equivalences of dynamic expressions we have defined, with the exception of ~, can
be transferred to the net level, i.e., to the corresponding marked dts-boxes. It is possible, since by Theorem 5.1
the transition systems without empty loops of the former and the reachability graphs without empty loops of
the latter are isomorphic. In the figures with examples of dts-boxes corresponding to the expressions related by
the algebraic equivalences, we shall also depict their net analogues (denoted by the same symbols).

Now we intend to compare the introduced stochastic equivalences and obtain the lattice of their interrelations.

Proposition 5.2 Let x € {i,s}. For dynamic expressions G and G’ the following holds:

Go, .G = G=,G.

Proof. See Appendix A. O

Proposition 5.3 For dynamic expressions G and G’ the following holds:
G=1x G & G=4G.

Proof. (<) It is enough to note that the abstraction from empty loops is based on transition probabilities which
are the same for isomorphic transition systems.

(=) Note that T'S(G) and T'S*(G) (as well as T'S(G’) and T'S*(G”)) differ by presence of empty loops and by
values of transition probabilities only. The sets of states, the labeling area, the non-empty multisets of activities
which label the transitions and the initial states coincide. We have isomorphism of 7'S*(G) and T'S*(G"). For
a state s of TS*(G), let s’ be the state of T'S*(G’) such that these two states are related by the isomorphism of
TS*(G) and TS*(G'). Then Exec(s) = {T'| 35 s = s} U {0} = {T' | 3§ &' 2 &} U{0} = Ezec(s'). Note that
in the previous equality we can always find the pairs of states s and s’ related by the isomorphism of T'S*(G)
and T'S*(G"). Further, the definition of PT(T, s) depends on Exec(s) only rather than on concrete s. Thus, for
each state s of T'S(G) the probabilities of outgoing transitions will be the same as for the corresponding state
s' of TS(G"). Hence, T'S(G) and T'S(G’) are isomorphic. O

Note that, though isomorphism of transition systems with and without empty loops appears to be the
same relation, the equivalences defined on these two types of transition systems could be different. This is the
case when the relations abstract from concrete activities which can happen (more exactly, from their probability
parts) and take into account the overall probabilities to execute multiactions only. It is clear that the equivalences
defined through transition systems with empty loops imply the relations based on those without empty loops,
but the reverse implication is not valid.

For instance, we have defined stochastic isomorphism with the use of transition systems without empty
loops. We can define the corresponding relation based on transition systems with empty loops as well. Then
the latter equivalence will be strictly stronger than the former. As mentioned above, we decided to abstract
from empty loops because of the difficulties with infinite internal behavior. Now we can give another reason
for this decision: the equivalences based on transition systems with empty loops are rather cumbersome. The
following example explains why.

27

TS(E) TS(E) TS

L E
0.3
{ah.2).3 ({a}. 223 ({ah3)1
Cle) D
0,1

Figure 13: A problem with the stochastic isomorphism based on transition systems with empty loops

~
~

—sto

iy —— s

=5 *+—— —gs

Figure 14: Interrelations of the stochastic equivalences

Example 5.5 Let E = ({a},3) and E' = ({a},3)1[({a},3)2. Then E =4, E', but E is not equivalent to
E’ according to the stronger version of stochastic isomorphism, since the probability of the only non-empty
transition in TS(F) is %, whereas the probability of both non-empty transitions in TS(E') is %, and % #+ % + %

On the other hand, the probability of the only non-empty transition in TS*(E) is 1, the probability of both

non-empty transitions in TS*(E’) is %, and 1 = % + % The transition systems with and without empty loops

of E and E are presented in Figure 13.

In the continuous time setting of sPBC' there are no problems with equivalences like in the example above,
but only interleaving relations can be introduced. On the other hand, the concurrency information from ex-
pressions has to be preserved in their transition systems to define correctly the congruence relation [59, 60, 63].

In the following, the symbol ‘_’ will denote “nothing”, and the equivalences subscribed by it are considered

R)

as those without any subscription such as ‘is’, ‘ss’, ‘sto’ or ‘ts’.
Theorem 5.2 Let <3, 4»€ {=, &, =,&} and *,+x € {_,is, ss, sto, ts}. For dynamic expressions G and G’
GG = G G
iff there exists a directed path from <>, to ¥, in the graph in Figure 1.

Proof. (<) Let us check the validity of implications in the graph in Figure 14.
e The implications > 5s—4>s, <€ {=, <>} are valid, since single activities are one-element multisets.

e The implications <>, , —»=,s, * € {i, s}, are valid by Proposition 5.2.

28

({ah.3)] |(0}:3) ({ah.3)] |({b1:3)
#
® O QO O

{b},2> [{a},2>\ lrd| |aead] |

-4

() N (d) N ()

@‘*R eﬂ@e@e

[t d)])] [dard)] \{a},2>\ " R))))
ﬁss l

Q #sto @ Q @

[qerd] jwrd] @)

O,

Figure 15: Dts-boxes of the dynamic expressions from equivalence examples of Theorem 5.2

e The implication =g,— >, is proved as follows. Let 8 : G =4, G'. Then it is easy to see that S : G, G,
where § = {(s,8(s)) | s € DR(G)}.

e The implication =;3—=4, is valid, since stochastic isomorphism is that of transition systems without
empty loops up to merging of transitions with labels having identical multiaction parts.

e The implication ~—=, is valid, since the transition system of a dynamic formula is defined based on its
structural equivalence class.

(=) The absence of additional nontrivial arrows (not resulting from the combination of the existing ones)
in the graph in Figure 14 is proved by the following examples.

o Let £ = ({a},3)[({b}.5) and E' = (({a}, 5); ({0}, 5))[(({b}. 3): ({a}, 3)). Then E»; E, but E #,, E,
since only in T'S*(E’) multiactions {a} and {b} cannot be executed concurrently.

o Let B = ({a}, 3): ({0}, 3)[1({c}, 3)) and E" = (({a}, 3); ({b}. 5)[(({a}, 3); ({c}, 3)). Then E' =, E, but
E< i E’, since only in T'S*(E’) a multiaction {a} can be executed so that no multiaction {b} can occur
afterwards.

o Let £ = ({a}, 5); ({0}, 3) and E' = ({a}, 3): ({b}. 5)[[({a}, 3): ({b}. 5). Then B [E', but E #u E,
since T'S*(E’) has more states than 7.S*(E).

e Let E = ({a},3) and E' = ({a}, 3)1[({a}, 3)2. Then E =, E’, but E #;, E’, since only TS(E’) has

two transitions.

o Let E = ({a},3); ({a}, 3) and E' = (({a},1); ({a}, 1)) sy a. Then E =, E', but E % FE’, since E and E’
cannot be reached from each other by applying inaction rules. a

Example 5.6 In Figure 15 the marked dts-boxes corresponding to the dynamic expressions from equivalence

ezamples of Theorem 5.2 are presented, i.e., N = Boxas(E) and N' = Boxa5(E’) for each picture (a)-(e).

29

[q@rd)| |dand| [aend)[aerd)] |danbdard)]

O ® ORORO
Figure 16: Reduction of a dts-box up to &,

6 Reduction modulo equivalences

The equivalences we proposed can be used to reduce transition systems and DTMCs of expressions (reachability
graphs and DTMCs of dts-boxes) as well as the expressions (the dts-boxes) themselves. Under the reductions
of graph-based models like transition systems, reachability graphs and DTMCs we understand those with less
states (the graph nodes). A reduction of expressions should result to the shorter ones with simpler structure,
i.e., to those having less operators and activities. The goal of the reduction is to decrease the number of states in
the semantic representation of the modeled system while preserving its important qualitative and quantitative
properties. Thus, the reduction allows one to simplify behavioural and performance analysis of systems.

The following example demonstrates how the stochastic equivalences can be used to simplify process expres-
sions. Accordingly, the net analogues of the relations can be used for reduction of dts-boxes.

Example 6.1 Let E = (({a},3); ({0}, 3))I(({c}, 3); ({d}. 3)) and E" = (({a, 2}, 3): ({b,vn},) 1({b, 2}, 5)))
I(({a, 2}, 5); ({6, 72, w3}, 5)1({d, va},)DIHes 23, 5)5 ({0, 5}, 3)D({d, 71,01 1 9D I(e, 23, 5)5 (({d, w1})]
({d, v2},)0 91}, 1) [({d 52}, §))) Sy @ Sy y1 Sy y2 Sy Y5 Sy 2 Sy v1 Sy v} Sy V2 1S T 1S Y1 IS Yo IS Y5 1S 2 15 01
rs v) rs va. Then Ex E', but E #4, E', since TS*(E') has more states than TS*(E). It is clear that the
syntax of E is much simpler than that of E’, but both static expressions have the same semantics induced by
... Hence, E is a simplification of E' with respect to <.

In Figure 16 the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e., N =
Bowgis(E) and N' = Boxas(E’). Thus, N is a reduction of N’ up to the net version of ..

In the general case, the procedure of expressions reduction cannot be transferred smoothly from a transition
systems level. The problem is that the transition system of the reduced expression in some cases can be further
reduced in such a way that it will not correspond to any expression anymore. At the net level, the reduced
transition system will be isomorphic to the reachability graph of a non-safe net which naturally cannot be a
dts-box of any expression.

An autobisimulation (equivalence) is a bisimulation (equivalence) between an expression and itself.

For a dynamic expression G and the step stochastic autobisimulation equivalence G+ .G on it let

—SS

K € DR(G)/, and s1,52 € K. We have VK € DR(G)/ws VA € INF\ {0} 51 5p K & s2 bp K. The

previous equality is valid for all s1,s2 € K, hence, we can rewrite it as & i‘»p C, where P = PM;;(/C,IE) =
PMz(sl,IC) = PME(SQ,IC)

We write £ 3 K if 3P K p K and K - K if AL S K.

The similar arguments allow us to use the notation K —»p K, where P = PM*(K,K) = PM*(s1,K) =
PM*(s5,K).

Based on the equivalence classes with respect to ., the quotient transition systems without empty loops
and quotient underlying DTMC without empty loops of expressions can be defined.

Definition 6.1 The quotient (by +..) (labeled probabilistic) transition system without empty loops of a

dynamic expression G is a quadruple TS, (G)= (So_,Leo ,Te, 5o,), where

¢ So =DR(G)/w

30

o Ly C(INF\{0}) x (0;1];

o To = {(K.(A,PM;(K,K)),K) | K € DR(G)/w_, K5 K};

The transition (K, (4,P),K) € Te.. will be written as K A K.
The quotient (by) transition systems without empty loops of static expressions can be defined as well.

For B € RegStatExpr, let T'S;, (E)=TS; (E).

Definition 6.2 Let G be a dynamic expression. The quotient (by) underlying DTMC without empty
loops of G, denoted by DTMC?, (G), has the state space DR(G)/«_ and the transitions K —»p K, where

P = PM*(K,K).

The quotient (by «»,,) underlying DTMCs without empty loops of static expressions can be defined as well.

For E € RegStatExpr, let DTMC;, (E)= DTMC?, (E).

—Lss

The comprehensive reduction examples will be presented in Section 10.

7 Logical characterization

In this section, a logical characterization of stochastic bisimulation equivalences is accomplished via formulas of
probabilistic modal logics. The results obtained could be interpreted as an operational characterization of the
corresponding logical equivalences. Dynamic expressions are considered as logically equivalent if they satisfy
the same formulas.

7.1 Logic «+PML

The probabilistic modal logic PM L has been introduced in [50] on probabilistic transition systems without
invisible actions for logical interpretation of the interleaving probabilistic bisimulation equivalence. On the
basis of PM L, we propose a new interleaving modal logic ¢PM L used for characterization of the interleaving
stochastic bisimulation equivalence.

Definition 7.1 Let T denote the truth and o € L, P € (0;1]. A formula of iPML is defined as follows:
D= T|-D|PAD| (a)pD.

We define {a)® = 3P (a)p®.
iPML denotes the set of all formulas of the logic iPM L.

Definition 7.2 Let G be a dynamic expression and s € DR(G). The satisfaction relation = C DR(G) xiPML
1s defined as follows:

1. sEe T — always;

2. s kg P, if s e P;

3 sEcPAY, ifskEq ® and s E¢ V;

4. s =g (Q)p®, if IH C DR(G) s 2o H, Q>P and V5 € H 5 =g ®.
Note that (a)o® implies {(a)p®, if Q > P.

Definition 7.3 We write G =g @, if [G]~ Ea ®. Two dynamic expressions G and G’ are logically equivalent
m iPML, denoted by G =;pmL G/, vaq) € iPML G ':G d = G ':G’ d.

Let G be a dynamic expression and s € DR(G), a € L. The set of states reached from s by execution

(

of multiaction a, the image set, is defined as I'mage(s,a) = {5 | I{(a, p)} € Exzec(s) s) §}. A dynamic

expression G is an image-finite one, if Vs € DR(G) Va € L |Image(s, a)| < oo.

Theorem 7.1 For image-finite dynamic expressions G and G’

GﬁisGl S G =iPMIL G

31

Proof. As the subsequent Theorem 7.2, but with state changes due to execution of single multiactions and the

interleaving transition relation. a
Hence, in the interleaving semantics, we obtained a logical characterization of the stochastic bisimulation

relation or, symmetrically, an operational characterization of the probabilistic modal logic equivalence.

Example 7.1 Let E = ({a}, 3); ({6}, 5)({c}, 3)) and E" = (({a}, 3); ({0}, 5))[(({a}, 3); ({c}, 3)). Then
E #ipur B, because for @ = ({a})1({b})1 T we have E =5 @, but £ 57 @, since in TS™(E') a multiaction

{a} can be executed so that no multiaction {b} can occur afterwards.

7.2 Logic sPML

On the basis of PM L, we propose a new step modal logic sPM L used for characterization of the step stochastic
bisimulation equivalence.

Definition 7.4 Let T denote the truth and A € ﬂVjL \ {0}, P € (0;1]. A formula of sPML is defined as
follows:

Q= T|D|PAD|(A)pD.

We define (A)® = 3P (A)pd.
sPML denotes the set of all formulas of the logic sPM L.

Definition 7.5 Let G be a dynamic expression and s € DR(G). The satisfaction relation F¢C DR(G)xsPML
1s defined as follows:

1. sEe T — always;
2. s ':G —|(I), ZfS l?éG ‘I),‘
3 sEGPAY, ifskEq ® and s E¢ V;

4. sk=c (A)p®, if IH C DR(G) s Do H, OQ>P and Vs € H § =¢ ®.
Note that (A)o® implies (A)p®, if Q > P.

Definition 7.6 We write G =g @, if (G~ Eg ®. Two dynamic expressions G and G’ are logically equivalent
in sSPML, denoted by G =sppp G, if VO € sSPML G E¢ @ & G g ©.

Let G be a dynamic expression and s € DR(G), A € INF\{0}. The set of states reached from s by execution

of a multiset of multiactions A, the image set, is defined as Image(s, A) = {§ | II' € Exec(s) L(T') = A, s Ly S}.
A dynamic expression G is an image-finite one, if Vs € DR(G) VA € lN]f‘Ct [Image(s, A)| < oo.

Theorem 7.2 For image-finite dynamic expressions G and G’

GﬁSSGI S G =sPML G

Proof. (<) To simplify the presentation, we propose the indicator function = that recovers a dynamic expression
by a state belonging to its derivation set. For a dynamic expression G and s € DR(G) we define Z(s) = G.
Let us define the equivalence relation R = {(s1,s2) € (DR(G) U DR(G"))? | V@ € sPML s; Ez(5,) ¢ ©
52 Fa(s,) ®}. We have ([G]x, [G']x) € R. Let us prove that R is a step stochastic bisimulation.
A

Assume that [Gl~ “bp» H € (DR(G) UDR(G"))/r. Let [G'lx Dp; sh,... [Gx Dpr s, [Cx Dy

~ ~ i+1
Sii1se |Gx 44»73; s, be changes of the state [G’]~ in the result of execution of the multiset of multiactions
A. Since dynamic expression G’ is an image-finite one, the number of such state changes is finite. The state
changes are ordered so that s7,...s; € H and s} ,...s;, € H.
Then 3®;41,...,®, € sSPML such that Vj (i +1 < j <n) Vs € H s Fz(s) ®;, but s} o ®;. We have
(Gl~ Fc (A)p(Nj—i11®;) and [G']x For <A>(1,Ei p{)_‘(/\?:i-i-lq)j)'
17

_ i=

Assume that P > 7% Pj. Then [G']x Fer (A)a-p)~(A]=11®)) and [G']~ FEar (A)p(Aj_;y1®;) what
contradicts to ([G]x, [G']~) € R. Hence, P < 37", P}. Consequently, [G']~ Ap H, P< > =1 P; <P By
symmetry of <., we have P > P’. Thus, P = P’, and R is a step stochastic bisimulation.

SR

32

(=) Tt is sufficient to consider only the case (A)p®, since all other cases are trivial. Let for dynamic
expressions G and G G, G'. Then [Glae,[G']~. Assume that [G]x Eg (A)p®. Then IH C DR(G) U

DR(G') such that [Glx 3o H, Q> P and Vs € H s =) P.

Let us define H = [J{H € (DR(G) UDR(G"))/w. | HNH # 0}. Then V3 € H Is € H so,,5. Since
Vs € H s Fz(s) P, we have V5 € H 35 F=(s) ® by the induction hypothesis.

Since H C 7-7, we have [G]~ f»é 7-7, é > Q. Since H is the union of the equivalence classes with respect to

©, we have [Ga e, [G]~ implies [G']~ 44»5 H. Since @ > Q > P, we have [(/]~ =¢ (A)p®. Therefore, G

—~1s87

satisfies all the formulas which G does. By symmetry of <., G satisfies all the formulas which G’ does. Thus,
the sets of formulas satisfiable for G and G’ coincide. O
Hence, in the step semantics, we obtained a logical characterization of the stochastic bisimulation relation

or, symmetrically, an operational characterization of the probabilistic modal logic equivalence.

Example 7.2 Let B = ({a}, HI({},3) and B = (({a}, 1); ({0},)I({b}, 2): ({a}, 1)) Then B, 7 but
E #spur B, because for ® = ({a,b})1T we have £ =5 ©, but £ g7 @, since only in T'S*(E') multiactions

{a} and {b} cannot be executed concurrently.

8 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare behaviour of stochastic processes in
their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior,
i.e., expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness
of behaviour, since there can exist a deadlock within the body (the second argument) of iteration when the
corresponding subprocess does not reach its final state by some reasons.

Like in the framework of DTMCs, in DTSPNs the most interesting systems for performance analysis are
ergodic (recurrent non-null, aperiodic and irreducible) ones. For ergodic DTSPNs; the steady-state marking
probabilities exist and can be determined. In [58], the following sufficient conditions for ergodicity of DTSPNs
are stated: liveness (for each transition and any reachable marking there exist a sequence of markings from it
leading to the marking enabling that transition), boundedness (the number of tokens in every place is not greater
than some fixed number for any reachable marking) and nondeterminism (the transition probabilites are strictly
less than 1). For a dts-box with infinite behaviour these three conditions are partially satisfied: the dts-box is
live within the body of each iteration operator it contains, it is safe (1-bounded) and nondeterministic. Hence,
the parts of its DTMC corresponding to the execution of the iteration bodies are ergodic. The isomorphism
between DTMCs of expressions and the corresponding dts-boxes which is stated by Proposition 5.1 guarantees
that DTMCs of expressions with infinite behaviour are ergodic if restricted to the states in which the iteration
bodies are executed.

In this section, we shall consider the expressions such that their underlined DTMCs contain one irreducible
subset of states to guarantee the existence of the single steady state.

8.1 Theoretical background

Let G be a dynamic expression. The elements P;; (1 <4,j < n = |[DR(G)]) of (one-step) transition probability
matrix (TPM) P* for DTMC*(G) are defined as

Pr = PM*(si,85), 8i —» sj;
K 0, otherwise.
The transient (k-step, k € IN) probability mass function (PMF) ¢*[k] = (Y5[k], ..., ¥} [k]) for DTMC*(G)
is the solution of the equation system
o [K] = ¢*[0)(P*)",
where *[0] = (¢5[0],...,%X[0]) is the initial PMF defined as

* _ 17 S = [G]%7
i [0l = { 0, otherwise.

Note also that ¢*[k + 1] = ¢*[k]P* (k € IN).
The steady-state PMF ¢* = (¢7,...,¢7) for DTMC*(G) is the solution of the equation system

33

v (P*—E)=0
{ w* 1T =1 ’
where E is the unitary matrix of dimension n and 0 is a vector with n values 0, 1 is that with n values 1.
When DTMC*(G) has the single steady state, we have ¢* = limy_, oo ¢*[k].
For s € DR(G) with s = s; (1 < i < n) we define ¢*[k](s) = ¢;[k] (k € IN) and *(s) = ;.
Let G be a dynamic expression and s,§ € DR(G). The following standard performance indices (measures)
can be calculated based on the steady-state PMF for DT MC*(G).

e The average recurrence (return) time in the state s (i.e., the number of discrete time units or steps required
for this) is w%(s)

e The fraction of residence time in the state s is ¥*(s).

P (s1)
P*(s2) "

e The fraction of residence time in the set of states S C DR(G) or the probability of the event determined
by a condition that is true for all states from Sis Y g *(s).

e The relative fraction of residence time in the state s1 with respect to that in the state s is

e The steady-state probability to perform a step with an activity (o, p) is
> seprc) ¥ (8) Xiripery PT (L, 5).

e The probability of the event determined by a reward function r on the states is ZSQDR(G) P*(s)r(s).

We have intentionally decided to evaluate performance of the modeled systems with the use of the underlying
DTMCs without empty loops of the corresponding expressions. This allows us to identify the expressions up to
the equivalences defined on the basis of their transition systems without empty loops. Nevertheless, from the
theoretical viewpoint, it is interesting to establish a relationship between steady-state PMFs for the underlying
DTMCs with and without empty loops. The following theorem proposes the equation that relates the mentioned
steady-state PMF's.

First, we introduce some helpful notation. For a vector v = (v1,...,v,), let Diag(v) be a diagonal matrix
of dimension n with the elements Diag;;(v) (1 <i,j < n) defined as

Vi, ©=17;

Diagi;(v) = { 0, otherwise.

Theorem 8.1 Let G be a dynamic expression and EL be its empty loops abstraction vector. Then the steady-
state PMFs v for DTMC(G) and ¢* for DTMC*(G) are related as follows: Vs € DR(G)

Y (s)EL(s)
sepre) VT (S)EL(3)

v(s) = 5

Proof. Note that the TPM P and the steady-state PMF ¢ for DTMC(G) are defined like the corresponding
notions for DT MC*(QG).

Let PT (@) be a vector with the elements PT(, s), s € DR(G). We have P* = Diag(EL)(P— Diag(PT(0))).
Further,

Y*(P* —E) =0 and ¢*P* = ¢*.
After replacement of P* by the expression with P we obtain

¢*Diag(EL)(P — Diag(PT(0))) = ¢* and ¢*Diag(EL)P = ¢*(Diag(EL)Diag(PT(0)) + E).

Note that Vs € DR(G) EL(s)PT(0,s) +1= % +1= W = FEL(s), hence,

Diag(EL)Diag(PT(0)) + E = Diag(EL). Thus,

Y*Diag(EL)P = ¢*Diag(EL).
Then for v = ¢¥*Diag(FL) we have

vP =v and v(P — E) = 0.

34

In order to calculate ¥ on the basis of v, we must normalize it by dividing its elements by their sum, since
we should have 917 = 1 as a result:

1 1
017" = Y*Diag(EL)1T
Thus, the elements of ¢ are calculated as follows: Vs € DR(G)
¥*(s)EL(s)
> sepr(c) V*(5)EL(S)
It is easy to check that v is the solution of the equation system
Y(P - E)=0
1T =1 ’
hence, it is indeed the steady-state PMF for DTMC(G). O

Y= Y*Diag(EL).

¥(s) =

8.2 Steady state and equivalences

The following proposition demonstrates that for two dynamic expressions related by <., the steady-state
probabilities to come in an equivalence class coincide. One can also interpret the result stating that the mean
recurrence time for an equivalence class is the same for both expressions.

Proposition 8.1 Let G,G’ be dynamic expressions with R : G&,,G'. Then VH € (DR(G)U DR(G"))/®r

Z 1/}* (S) — Z 7//*(5/)-

s€HNDR(G) s'€HNDR(G’)

Proof. See Appendix B. O

Note that in the proof of Proposition 8.1 a limit construction us used to go from transient to stationary
case. Thus, the result of this proposition is valid as well if we replace steady-state probabilities with transient
ones in its statement.

We define the expression Stop = ({c}, %) rs ¢ specifying the special process analogous to the one used in the
examples of [59, 60, 63]. The latter is a continuous time stochastic analogue of the stop process proposed in [8].
Stop is a discrete time stochastic analogue of the stop, it is only able to perform empty loops with probability 1
and never terminates. Note that in the specification of Stop one could use an arbitrary action from A and any
probability belonging to the interval (0;1).

The following example demonstrates that the result of Proposition 8.1 does not hold for &,..

Example 8.1 Let E = [({a}, 3) * ({b}, 3): ({c}, 3)I({d}, 5))) * Stop] and -
= [({a}, 3) = ({0}, 2): (e}, 3)1s ({d},)1 [(({d}, 3)2; ({c}, 3)2))) = Stop]. We have B, E.

DR(E) consists of the equivalence classes
= [[({a}, 3) * ({b}, 3);: (({e} D{a} 3))
{a}. 5) = ({0}, 3)s (({c}, 2)||({d}, 2))
{a}, 3) * ({8}, 3): (e}, 2)I({d}, 3))
{a}, 3) * ({6}, 5)5 (e},)1 ({d}, %))
{a} 5) = ({0}, 3): (({c},)1 ({d}, 3))) = Stop

DR(E") consists of the equivalence classes

x Stop

~3

x Stop

Jl~
Jl~
* Stop]]
Il
I~

~3

Q

)

— — — —

* Stop

—~ o~ —~

Q

)

I
[
[
[

st = [[({a}, 3) * ({6}, 2); (e}, 3)1s ({d})0 D(({d}, 3)2: ({e}, 5)2))) * Stop]]~,
sy = [[({a}, 3) * ({6}, 2); ((({e}s)15 ({d}s 3)0)(Hd}, 5)2; ({e}, 5)2))) * Stop]]~,
8{3 = [[({a}v 2) (({b}v 2)7 ((({C}v 2)17 ({d}7 2)1)[](({d}7 2)27 ({C}v 2)2))) * StOP]]zv
s = [[({a}, 3) = ({b}, 2)5 (e} 3)1s ({ah, 3)0) 0(({d}, 3)23 ({e}, 5)2))) * Stop]]~,
s = [[({a}, 3) * ({8}, 2)s (e}, 3)1s ({d}, 5)0)[(({d},)25 ({e}, 3)2))) * Stop]]~.
The steady-state PMFs 1* for DTMC*(E) and " for DTMC*(E’) are
3311 % 1111
W:@@@@@)w :@556@)

35

Figure 17: &, does not guarantee a coincidence of steady-state probabilities to come in an equivalence class

Consider the equwalence class H = {ss,s5}. We have ZseHmDR(E) V*(s) = ¢Y*(s3) = %, whereas
s%) = =. Thus, ©,, does not guarantee a coincidence of steady-state probabilities
wennpr@E) ¥ (8 "(sy) = 5. Th is d tg t incid teady-state probabiliti

to come in cm equwalence class.
In Figure 17 the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e., N =

Boxgis(E) and N' = Boxgs(E').

The following example demonstrates that the result of Proposition 8.1 does not even hold for the intersection
of &, and =g,.

Example 8.2 Let E = [({a},) *
= [({a}, 3)*(({b}, 3): ((({e} 3)
E<—> E’ andE =5 E’

({0}, %) (({e},)II({d} 3))) * Stop| and
1I({d},)1))[]((({6} 3)2i ({d},%)z)ﬂ(({dL%)3;({6}7%)3)))))*St0p]- We have

DR() is given in the E:L’ample 8.1. DR(E") consists of the equwalence classes
= [[({a}, 3) = ({0}, 3): (e}, 2)all{d},)T} 5)2: ({d}, 3)2)[(({d}, 3)s: ({e}, 5)3)))) * Stop]~,
é [({a}, 3) = ({0}, 3): (e} 3)all({d}, $)))((({e}s 5)2: ({d}, 5)2)[(({d}, 5)3; ({c}, 3)3))))) * Stop]]~,
s = [[({a}, 3) = (({b},) ({eh ol ({d}, 9)))D(({e}s 5)2: ({d}, 5)2)[(({d}, 5)35 ({c}, 3)3))))) * Stop]]~,
si = [[({a}, 3) = (({b}, 3): ({ch phll({d},)N}, 5)2: ({d} 5)2)[(({d}, 5)s5 ({c}, 3)3))))) = Stop]]~,
s5 = [[({a}, 3) = (({b}, 3): (e} 3ll({d},)N}, 5)2: ({d} 5)2)[1(({d}, 5)35 ({c}, 3)3))))) = Stop]]~,
s6 = [[({a}, 3) = (463,) (Hek DIl O ek 12 (),)2)1({d}, $)s: ([} 3)3))))) * Stopll=,
st =[l({a}, 3) = (({b}, 3): (({c}, %)1||({d} %)_1))[]((({0} D2i ({d}, $)2)0(({d},)35 ({c}, 3)3))))) * Stop]].
The steady state PMFs 4* for DTMC*(E) and " for DTMC (E") are

. (,3311\ . (13133 3 3 3
/l/} - <O’ 3 3 3)7 /(Z) - <O’ 38’38’38738738738) :

Consider the equivalence class H = {s3, s5}. We have ZseHmDR(E) V*(s) = p*(s3) = 2, whereas

Doy ' eHNDR(E 1//*(") =" (sh) = £2. Thus, the intersection of <;, and =, does not guarantee a coincidence

of steady- state probabilities to come in an equivalence class.
In Figure 18 the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e., N =

Boxgis(E) and N' = Boxas(E').

36

Figure 18: The intersection of «;, and =, does not guarantee a coincidence of steady-state probabilities to
come in an equivalence class

By Proposition 8.1, +», preserves the quantitative properties of stationary behaviour (the level of DTMCs).
Now we intend to demonstrate that the qualitative properties of stationary behaviour based of the multiaction

labels are preserved as well (the level of transition systems).

Definition 8.1 A step trace of a dynamic expression G is a chain ¥ = Ay---A, € (INf \ {0})* where

ds € DR(G) s e s, L(T;) = A; (1 <i<n). Then the probability to execute the step trace ¥

in s is

PT*(%,s) = > ﬁPT*(Fi, Sic1).

r T =
{1, Tols=s0-s13. s, £(0)=A; (1<i<n)}"

The following theorem demonstrates that for two dynamic expressions related by ., the steady-state
probabilities to come in an equivalence class and start a step trace from it coincide.

Theorem 8.2 Let G, G’ be dynamic expressions with R : G, ,G' and ¥ be a step trace. ThenVH € (DR(G)U
DR(G")/=

Y WrE)PTH(S,) = > W()PTH(E,).

s€HNDR(G) s'€HNDR(G’)

Proof. See Appendix C. O

Note that in the proof of Theorem 8.2 a limit construction us used to go from transient to stationary case.
Thus, the result of this theorem is valid as well if we replace steady-state probabilities with transient ones in
its statement.

Example 8.3 Let E = [({a}, 1) * ({t}. 1); ({c}.)ill({c}. 1)2)) = Stop] and -
E' =[({a}, 3) * ({6}, $)1; (e})00}, 3)2; ({e}s 3)2)) * Stop]. We have E =y, E', hence, B¢y B

DR(E) consists of the equivalence classes

s1=[[({a}, 3) = (({b},) (({c}, 3)1l({e}, 3)2)) * Stopllx,

37

Figure 19: « . implies a coincidence of the steady-state probabilities to come in an equivalence class and start
a trace from it

S2 = [[({a}v 2) (({b}v 2) (({C}v 2) []({C}v %)2)) * Stop]]%v
= [[({a}, 3) * ({8}, 3)s (({e}, 3)10({e} 3)2)) * Stop]]~.

DR(E') consists of the equivalence classes

st =1[l({a}, 3) = ({6} 9)r: (e} 2)DN(B} 5)2: ({c}, 3)2)) * Stopll~,
sh = [[({a}, 5) = (({b} 5)1: (e} 3))1(({0}, 5)2; ({e}, 5)2)) * Stop]]~,
sh = [[({a}, 3) = ({8},)1 (e})N}, 5)2: ({c}, 5)2)) * Stopllx,
si = [[({a}, 3) = ({8},)1 (e}, 1)) N(({B}, 5)2: ({c}, 3)2)) * Stop]~.-

The steady-state PMFs 1* for DTMC*(E) and " for DTMC*(E’) are

L (11 . (111
/l/} _<O’2’2>7/¢) _<O’2’4’4)'

Consider the equivalence class H = {ss,s5,s,}. One can see that the steady-state probabilities for H
coimcide: Y ycynpn) V() = ¥7(s2) = 3 = L1 = 07(6) V76D = Toepnpram ¥ (). Let
Y = {{c}}. The steady-state probabilities to come in the equivalence class H and start the step trace ¥ from
it coincide as well: 1/)*(83)(PT*({({C},%)1},83) + PT*({({C}7%)2}753)) = %(% 4 %) = % — % .1+ % -1 =
P (s5) PT*({({c},)1}, 8) + 0" (si) PT*({({c}, 5)2}, 1)

In Figure 19 the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e., N =
Bozgis(E) and N' = Boxgs(E').

8.3 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to come in a set of similar states or,
after coming in, to start a step trace from this set. The similarity of states is usually captured by an equiv-
alence relation, hence, the sets are often the equivalence classes. Proposition 8.1 and Theorem 8.2 guarantee
a coincidence of the mentioned indices for the expressions related by <,,. Thus, <, preserves performance
of stochastic systems modeled by expressions of dtsPBC. Moreover, Example 8.1 demonstrates that it is the
weakest relation we considered that has the performance preservation property.

In addition, obviously, it is easier to evaluate performance with the use of a DTMC with less states, since
in this case the dimension of the transition probability matrix will be smaller, and we shall solve systems of
less equations to calculate steady-state probabilities. The reasoning above validates the following method of
performance analysis simplification.

1. The system under investigation is specified by a static expression of dtsPBC.

2. The transition system without empty loops of the expression is constructed.

38

/

PN

[dab)| [dend)] 24, [dabd)] [dend)

Yoo

Figure 20: The equivalences between =;; and =g, are not congruences

3. After examining this transition system for self-similarity and symmetry, a step stochastic autobisimulation
equivalence for the expression is determined.

4. The quotient underlying DTMC without empty loops of the expression is constructed.
5. The steady-state probabilities and performance indices based on this DTMC are calculated.

The limitation of the method above is its applicability only to the expressions such that their corresponding
DTMCs contain one irreducible subset of states. L.e., an existence of exactly one stationary state is required. If
a DTMC contains several irreducible subsets of states then several steady states can exist which depend on the
initial PMF. There is the analytical method to determine the stable states for DTMCs of this kind as well. Note
that for every expression the underlying DTMC without empty loops has by definition only one PMF (that at
the time moment 0), hence, the stationary state will be only one in this case too. In addition, there is a sense
to apply the method only to the systems with similar branches or symmetry in their behaviour.

9 Preservation by algebraic operations

An important question concerning equivalence relations is whether two compound expressions always remain
equivalent if they are constructed from pairwise equivalent subexpressions. The equivalence having the men-
tioned property of preservation by algebraic operations is called a congruence. To be a congruence is a desirable
property but not an obligatory one, since many important behavioural equivalences are not congruences. As
a rule, a congruence relation is too discriminate, i.e., it differentiates too many formulas. This is the reason
why a weaker but more interesting equivalence notion that is not a congruence is preferred in many cases when
process behaviour is to be compared.

Definition 9.1 Let <> be an equivalence of dynamic expressions. Two static expressions E and E' are equiv-
alent with respect to <, denoted by E <+ E’, if E <+ E'.

Let us investigate which algebraic equivalences we proposed are congruences on static expressions.
The following example demonstrates that no equivalence between =;5 and =, is a congruence.

Example 9.1 Let E = ({a},3), E' = ({a},3) and F = ({b},3). We have E =y, E', since both T'S*(E)
and T'S*(E’) have the transitions with the multiaction part {a} of their labels and probability 1. On the other
hand, E[|F #, E'[|F, since only in TS*(E’[]) the probabilities of the transitions with the multiaction parts
{a} and {b} of their labels are different (% and %, respectively). Thus, no equivalence between =5 and =g, is
a congruence.

In Figure 20 the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e., N1 =

Bowgis(E), N| = Boxgs(E"), Ny = Bozgs(F) and N = Boxgs(E[|]F), N' = Boxas(E'[|F).

The following proposition demonstrates that all the equivalences between =;; and =;5 are not congruences.

Proposition 9.1 Let x € {i, s}, xx € {sto,ts}. The equivalences =, <
operations.

+» =+ are not preserved by algebraic

Proof. Let E = ({a},3), E' = ({a},3);Stop and F = ({b},%). We have E =, E’, since both T'S(E) and
T'S(E’) have the transitions with the multiaction part {a} of their labels and probability +. On the other hand,
E;F #,5 E'; F, since only in TS*(E’; F') no other transition can fire after the transition with the multiaction
part {a} of its label. Thus, no equivalence between =;5 and =, is a congruence.

39

=
2

©

—
~
s}
o le—|
=
~—

Figure 21: The equivalences between =;; and =;; are not congruences

In Figure 21 the marked dts-boxes corresponding to the dynamic expressions above are presented, i.e.,

Ny = Boxgs(E), N1 = Borgs(E'), Ny = Borgs(F) and N = Boxgs(E[|F), N' = Boxags(E'[|F). m|
The following proposition demonstrates that ~ is a congruence.

Proposition 9.2 The equivalence = is preserved by algebraic operations.

Proof. By definition of =. a

We suppose that, for an analogue of = to be a congruence, we have to equip transition systems of expressions
with two extra transitions skip and redo like in [59, 63]. This allows one to avoid difficulties demonstrated in
the example from the proof of Proposition 9.1 with unexpected termination due to the Stop process. At the
same time, such an enrichment of transition systems does not overcome the problems explained in Example 9.1
with abstraction from empty loops. Hence, the equivalences between =;; and =4, defined on the basis of the
enriched transition systems will still be non-congruences.

To define the analogue of =;; mentioned above, we shall introduce a notion of sr-transition system. It has
the final state and two extra transitions from the initial state to the final one and back. Note that sr-transition
systems do not have the loop transitions from the final state to itself. First, we propose the rules for skip and
redo. Let 2 € RegStatExpr.

F s£>p E E rﬂo E

Now we can define sr-transition systems of dynamic expressions in the form E, where E is a static expression.
This syntactic restriction is needed to take into account two additional rules above. We assume that skip has
probability 0, hence, it will be never executed. On the other hand, redo has probability 1, hence, it will be
immediately executed at the next time moment if it is enabled.

Definition 9.2 Let E be a static expression and TS(E) = (S, L, T,s). The (labeled probabilistic) sr-transition
system of E is a quadruple T'Ss.(E) = (Ssr, Lsr, Tor, Ssr), where

Ssr =SU {[E]z};

o L, C (]Nfﬁ x (0;1]) U {(skip, 0), (redo, 1) };

Tor = T\A{([E]~, (0,1), [E]~)} U{([E]x, (skip, 0), [E]~), ([E]~, (redo, 1), [E]~)};

® S5 =S.

We define a new notion of isomorphism for sr-transition systems, since we should take care of their final
states.

Definition 9.3 Let E, E’ be static expressions and T'Ss.(E) = (Ssr, Lsr, Tary Ssr),
TSs(E") = (S.,., L., T.., s..) be their sr-transition systems. A mapping B : Ssy — S.,. is an isomorphism

between T'Ss.(E) and T'Ss-(E"), denoted by B : TSs-(E) ~ TSs-(E"), if

40

TS (E; Stop)
0.3

) ({a}.3).3

E;Stop

[

redo,1 skip,0

E;Stop

Figure 22: The sr-transition systems of E and E;Stop for E = ({a}, 1)

1. B is a bijection such that B(ssr) = sh,. and B([Elx) = [E]~;

2.Vs,5€ 8 VI s p § & B(s) Dp B(3).
Two sr-transition systems TSy, (E) and TSs.(E') are isomorphic, denoted by T'Ss,(E) ~ TSe(E), if 38 :
TS, (E) =~ TSy (EV).

sr-transition systems of static expressions can be defined as well. For E € RegStatExpr, let TS, (E) =
TS (E).

Example 9.2 Let E = ({a},1). In Figure 22 the transition systems T'Ss.(E) and T'S,-(E; Stop) are presented.
In the latter sr-transition system (unlike the former one) the final state can be reached by executing the transition
(skip, 0) only from the initial state.

Definition 9.4 Two dynamic_expressions_F and E' are equivalent with respect to sr-transition systems, de-
noted by E =y5r E', if TSer(F) ~TSs.(E").

Note that sr-transition systems without empty loops can be defined, as well as the equivalence =g, based
on them. At the same time, the coincidence of =4 and =44+ can be proved similar to that of =;5s and =;..

Theorem 9.1 Let <3, 4»€ {=, &, =,~} and *,*xx € {_,is, s, sto, ts,tssr}. For dynamic expressions G and G’

Ge, G = G, G

iff there exists a directed path from <>, to «». in the graph in Figure 23.

Proof. (<) Let us check the validity of implications in the graph in Figure 23.

e The implication =;ss-—=¢s is valid, since sr-transition systems have more states and transitions than
usual ones.

e The implication ~—=;4, is valid, since the sr-transition system of a dynamic formula is defined based
on its structural equivalence class.

(=) The absence of additional nontrivial arrows (not resulting from the combination of the existing ones)
in the graph in Figure 23 is proved by the following examples.

e Let E = ({a},3) and E' = ({a}, 3);Stop. We have E =;, E’ as demonstrated in the example from the
proof of Proposition 9.1. On the other hand, E #.,, E’, since only in T'S,,(E’) after the transition with
multiaction part of label {a} we do not reach the final state, see Example 9.2.

e Let E = ({a},3) and E' = (({a}, 3); ({a}, 3)) sy a. Then E =, E', since E =, E as demonstrated
in the last example from the proof of Theorem 5.2, and the final states of both T'Ss,.(E’) and T'Ss,.(E’)

are reachable from the others with “normal” transitions (i.e., not with skip only). On the other hand,
E#E. O

41

Q

—tssr

ts

—sto

Dy —— s

=5 *+—— —gs

Figure 23: Interrelations of the stochastic equivalences and the new congruence

The following theorem demonstrates that =44 is a congruence of static expressions with respect to the
operations of dtsPBC.

Theorem 9.2 Let a € Act and E,E' | F, K € RegStatExpr. If E =4 E' then
1. EOF:tssr E/OF, FoE:tseroElu o€ {;7[]7H};

2. [f] —tssr E/[f]’
3. Eoa =t E'oa, o€ {rs,sy};

4. [ExFx K] =ts5r |[B'*Fx K|, [FxE*xK|=tssr [FxE'« K|, [F*KxE] =56 [F % KxF'].

Proof. First, we have no problems with termination, hence, the composite sr-transition systems built from
the isomorphic ones can always execute the same multisets of activities. Second, the probabilities of the
corresponding transitions of the composite systems coincide, since the probabilities are calculated from identical
values. a

10 Performance evaluation

The standard analysis technique for DTMCs consists in the investigation of their transient and stationary
behaviour and the subsequent calculation of some performance indices based on the steady-state probabilities.
In this section with a case studies of a number of systems we demonstrate how steady-state distribution can be
used for performance evaluation. The examples also illustrate the method of performance analysis simplification
described above. The behaviour of all the systems which we consider here includes non-empty transitions only.

10.1 Shared memory system
10.1.1 The standard system

Consider a model of two processors accessing a common shared memory described in [53, 2, 3] in the continuous
time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic setting of

42

Processor 1 Memory Processor 2

Ootd [[
Ootd [
ooo oono
oooano ooonoon
s s o | s I |

Figure 24: The diagram of the shared memory system

dtsPBC where concurrent execution of activities is possible. The model performs as follows. After activation
of the system (turning the computer on), two processors are active, and the common memory is available. Each
processor can request an access to the memory. When a processor starts an acquisition of the memory, another
processor should wait until the former one ends its memory operations, and the system returns to the state with
both active processors and the available common memory. The diagram of the system is depicted in Figure 24.

Let us explain the meaning of actions from syntax of the dtsPBC expressions which will specify the system
modules. The action a corresponds to the system activation. The actions r; (1 <14 < 2) represent the common
memory request of processor i. The actions b; and e; correspond to the beginning and the end, respectively,
of the common memory access of processor i. The other actions are used for communication purpose only via
synchronization, and we abstract from them later using restriction.

The static expression of the first processor is By = [({z1}, 1) * (({r1},2); ({b1, 31}, 3); ({e1, 21}, 1)) * Stop).
The static expression of the second processor is Ey = [({z2}, 5) * (({r2}, i) ({b2, y21, 2) ({e2, 22}, 3)) * Stop].
The static expression of the shared memory is F3 = [({a, 77,72},) * ({91}, 3); {ZA}, 2))[](({y2}, 3)i
({22}, 3))) * Stop|. The static expression of the shared memory system with two processors is E = (F || Ez| E3)
SY 1 SY X2 SY Y1 SY Y2 SY Z1 SY 22 ISX1 IS X IS Y1 IS Y2 IS 21 IS Zo2.

Let us illustrate an effect of synchronization. In the result of synchronization of activities ({bi, Yi},3) and
({7}, 1) we obtain the new activity ({b;},3) (1 < i < 2). The synchronization of ({e;, 2},) and ({z}, é)
produces ({e;}, 1) (1 < i < 2). The result of synchronization of ({a, xl,xg}, 1) with ({1}, 2) is ({a, 73}, 1),
and that of synchronization of ({a, 71,73}, %) with ({22}, 2) is ({a, 71}, %). After applying synchronization to
({a, 73}, 1) and ({2}, %), as well as to ({a, 71}, ;) and ({z1}, 5) we obtain the same activity ({a}, 3).

DR(E) consists of the equivalence classes

s1=[([({z1}, 1) » (({Tl}vz) ({b1,51}: 3); ({ers 21}, 5)) * Stop] [[[({z2}, 3) * ({2}, 3): ({b2, w21}, 3); ({e2, 22}, 3)) *
Stop]|[({a, 71,72},) (((E?ﬁ}, 3); ({71} 3) ({72}, 3); ({72}, 3))) #Stop]) sy @1 Sy 2 Sy y1 Sy yo Sy 21 Sy 22 1S 21
s To IS Y1 IS Yo IS 21 IS 22|n,

s2 = [([({z1}, 3) (({7”1}72)7({
Stop]||[({a, 21, Z2}, 3)* ((({#1},

IS To IS Y1 IS Y2 IS 21 IS 22,

1,Y } %) ({61721}7 2))*St0p]||[({.%‘2}, 2) (({T2}7 2) ({b27y2}7 2) ({62722}7 2))
3): ({21)08} 5): ({22}, 5))) *Stop]) sy @1 sy xa sy y1 sy ya sy 21 Sy 22 15 71

s3 = [((({z1},3) * ({ra}, 5); (b1,
Stop]||[({a, 21, 72},)= ((({
rs o rS Yj s Ya s 21 rs 22]
se=[([({z1}, 5) ({1}, B);
Stop][|[({a, 71,72}, 5) * ((({
IS Lo IS Y1 IS Yo IS 21 IS 22)a,
ss = [([({z1}, 3) * ({1},)
Stop]||[({a, 21, 72},)+ ((({
rs To rS Yj s Yz rs 21 rs 22]
s6 = [([(({z1},3) * ({r1}, 5); ({b1,
Stop]||[({a, 21, 72},)= ((({
IS T2 IS Yy IS Yz IS 21 1S 29 -
st=[((({za}. 5)* ({1} 3) (. 3)i (fex, 21}, 3)) # Stopl[[({w2}, 3) * (({r}, §): ({2, 2}, 3): ({ez 22},) +

Stopl|[({a, 75,73}, §) ¢ ({711 3 (AL DDA 2 (B D) Ston) sy s sy vz sy sy o sy 215y 22 151

); {bhyl},g) (fer, 21},) Stop][[({w2}, 3) + ({72},); (b2, w2}, 3): ({ez, 223, 3)) +

ih)i (A} 2) ({52} 5): ({22}, 5))) «Stop]) sy @1 sy w2 sy y1 sy ya sy z1 5y 22 s 21

({blvyl}v 2) ({61721}7 2)) *StOP]”[({x?}v 2) (({T2}7 2) ({b27y2}7 2) ({62722}7 2))
1} 3)s (1A})02}, 3); ({22}, 3))) #Stop]) sy w1 sy w2 sy y1 sy y2 sy 215y 22 rs a1

({blvyl}v 2) ({61721}7 2)) *StOP]||[({fC2}= 2) (({T2}7 2) ({b27y2}7 2) ({62722}7 2))
1hg)i ({2) ({2} 3): ({223, 3)))*Stop]) sy @1 sy w2 sy y1 sy ya sy 21 5y 22 rs 21

2y mv 2 @>

); (b1, 51}, 3)s ({exs 21}, 5)) + Stop]l[[({z2}, 3) * ({r2}, 5)s ({b2, w2},) ({e2, 22}, 5)) *
boa)i (A) 0(({72}), 5); ({22}, 5))) *Stop]) sy 1 sy @2 sy y1 sy y2 sy 21 sy 22 1s a1

17
);

43

{H{r1t 3, {{ra}. %),
83 ({e2}. P} 4 i 81) Hert, 3.2 84

(b1}, 4). ¢ (b2}, 3). %

{r1}.4).3

C SN 7)

({2}, 5);

({p1}.3)}.%

Tdr1t.5))

He1}.)%
({b2}.)}, %

(Head 1)1

1y 3 1y 3
(r2).1). 2 H{r2}.5) 8 Hr1}t.3) 8 ({r11.d).2
{{r1h$)|{ra}. $)). 3
(fer}:3)1 ({eah 1

Figure 25: The transition system without empty loops of the shared memory system

IS To IS Y1 IS Ya IS 21 IS 22,

ss = [([({z1} 5) * ({1} 3): (b}, 3)s ({ens 21}, 5)) = Stopl[[[({z2}, 5) * ({72}, 3) ({b2, 2}, 5)5 ({e2, 22}, 3))
stoplll[({a, 71, 73}, 1)+ ({71} 2): (LA L IDI(UFa}, 1) ({5}, 1))+ Stop]) sy a1 sy w2 sy ya sy ya sy 21 sy 25 15 21
IS To IS Y1 IS Yo IS 21 IS 22)a,
so = [([({z1}, 3)* (({r1}, 3); {br, w1}, 2): ({en, 21}, 2)) # Stop][[[({w2}, 2) * ({r2}, 3); ({b2, w2}, 3); ({ea, 22}, 1)) =
Stop]|[({a. 77, 73}, 1) ({7}, £): ({4}, D). 3): (). 1)) xStop)) sy 21 sy 2 sy 1 sy v sy 215y 22 151
IS To IS Y1 IS Yo IS 21 IS 22]x.

The states are interpreted as follows: s; is the initial state, so: the system is activated and the memory is
not requested, s3: the memory is requested by the first processor, s4: the memory is requested by the second
processor, s5: the memory is allocated to the first processor, sg: the memory is requested by two processors,
s7: the memory is allocated to the second processor, sg: the memory is allocated to the first processor and
the memory is requested by the second processor, sg: the memory is allocated to the second processor and the
memory is requested by the first processor.

In Figure 25 the transition system without empty loops T'S*(E) is presented. In Figure 26 the underlying
DTMC without empty loops DT MC*(E) is depicted.

The TPM for DTMC*(E) is

0100 00O0O00O0
1 1 1
003 3035000
0000%§0%0
000002 £ 0%

P*:o%o%ooo%o
oooooooié
1 1

0+ 100000 3
000100000
(000 10 00 0 0 0]

In Table 4 the transient and the steady-state probabilities ¥} [k] (i € {1,2,3,5,6,8}) of the shared memory
system at the time moments k (0 < k < 10) and k = oo are presented, and in Figure 27 the alteration diagram
(evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for the
states s1, S2, 83, S5, S¢, Sg only, since the corresponding values coincide for s3, s4 as well as for s5, sy as well as
for sg, Sg.

The steady-state PMF for DTMC*(E) is

44

ut=
o]
ot

=

ulw

=

2

W=

y

S

alw

Figure 26: The underlying DTMC without empty loops of the shared memory system

Table 4: Transient and steady-state probabilities of the shared memory system

| k || 0 | 1 | 2 3 | 4 | 5 6 7 8 9 10 | 00 |

Y[kl || 1]0 0 0 0 0 0 0 0 0 0 0
skl |01 0 0 0.0267 0 0.0197 | 0.0199 | 0.0047 | 0.0199 | 0.0160 | 0.0144
31k] | 001 0.3333 0 0.2467 | 0.2489 | 0.0592 | 0.2484 | 0.2000 | 0.1071 | 0.2368 | 0.1794
=kl {010 0 0.0667 0 0.0493 | 0.0498 | 0.0118 | 0.0497 | 0.0400 | 0.0214 | 0.0359
¢lk] || 0101 0.3333 | 0.4000 0 0.3049 | 0.2987 | 0.0776 | 0.3047 | 0.2416 | 0.1351 | 0.2201
HERI 0 0.2333 | 0.2400 | 0.0493 | 0.2318 | 0.1910 | 0.0956 | 0.2221 | 0.1662 | 0.1675

—— ¥1"[K]

g

-—m— Y3"lK]

——a—— Y5"[K]

-~ — Yg"lK]

—— Yg"lK]

Figure 27: Transient probabilities alteration diagram of the shared memory system

45

(w3 fwrd] || fend] e b
! l l l
|

({e2:221.3)

({61,21}!%)‘ k{a}vé* k{;;}’%*

\ AN L/
O, ® ®

Figure 28: The marked dts-boxes of two processors and shared memory

72097 4187 4187 4187 209’ 418 209’ 209

We can now calculate the main performance indices.

3 75 75 15 46 15 35 35
b (ol BT D 01 B gy,

e The average recurrence time in the state so, where no processor requests the memory, called the average
system run-through, is % = 2% = 69%.
2
e The common memory is available only in the states ss, s3, s4, s6. The steady-state probability that the
memory is available is ¢35 + 15 + ¥ + 9§ = 2% + % + % + % = %. Then the steady-state probability
124 _ 85

that the memory is used (i.e., not available), called the shared memory utilization, is 1 — 555 = 555-

e The common memory request of the first processor ({r1}, %) is only possible from the states ss, s4, 57.
In each of the states the request probability is the sum of the execution probabilities for all multisets of
activities containing ({r1},%). Thus, the steady-state probability of the shared memory request from the

first processor is 1} Z{F\({m},%)el"} PT*(T, s2) + ¢ Z{F\({n},%)er} PT*(T, s4) +
x x — 3 (1.1 75 (3, 1 15 (3, 1) _ 38
(U Z{m({n}-é)GF} PT*(I, s7) = 209 (5 + §) + 718 (3 + 5) + 78 (3 + 5) — 209"

In Figure 28 the marked dts-boxes corresponding to the dynamic expressions of two processors and shared

memory are presented, i.e., N; = Boxgs(E;) (1 < i < 3). In Figure 29 the marked dts-box corresponding to

the dynamic expression of the shared memory system is depicted, i.e., N = Boxgs(E).

10.1.2 The abstract system and its reduction

Let us consider a modification of the shared memory system with abstraction from identifiers of the processors,
i.e., such that the processors are indistinguishable. For example, we can just see that a processor requires
memory or the memory is allocated to it but cannot observe which processor is it. We call this system the
abstract shared memory one.

The static expression of the first processor is Fi = [({z1}, 2)* ({r}, 3); ({b, 11}, 3); ({e, 21}, 2)) = Stop]. The
static expression of the second processor is Fy = [({z2}, 1)+ (({r}, 3); ({b,y2}, 3); ({€, 22}, 3)) *Stop]. The static
expression of the shared memory is Fs = [({a, 71,73}, 3) « ({1}, 3): ({Zi 1, D)1(({7a}, 2); ({22}, 1)) * Stop].
The static expression of the abstract shared memory system with two processors is F' = (F1|| Fz|| F3) sy x1 sy @2
SY Y1 SY Y2 SY 21 SY Z2 IS X1 IS XTa IS Y1 IS Yz IS 21 IS Za.

46

Figure 29: The marked dts-box of the shared memory system

DR(F) resembles DR(E), and T.S*(F) is similar to TS*(E). We have DTMC*(F) = DTMC*(E). Thus,
the TPM and the steady-state PMF for DT MC*(F) and DT MC*(E) coincide.

The first and second performance indices are the same for the standard and the abstract systems. Let us
consider the following performance index based on non-identified viewpoint to the processors.

e The common memory request of a processor ({r}, %) is only possible from the states ss, s3, S4, S5, S7-
In each of the states the request probability is the sum of the execution probabilities for all multisets of
activities containing ({r }, %) Thus, the steady-state probability of the shared memory request from the first

processor is 5 3 ryry,1yery PT (T 52) + 95 2o r ((r).1)ery PT*(I‘ s3) —H/Jj{ Z{F\({r},%)el‘} PT*(T,54) +
U5 2 iy peny P17 (T, 55) + 93 Ciriion pery 1 (Cosr) =5 (5 +3+3) + 45 (3 +)+
47158 (g +) + 41158 (g +) + 41158 (g + %) = 209

The marked dts-boxes corresponding to the dynamic expressions of the standard and the abstract two
processors and shared memory are similar as well as the marked dts-boxes corresponding to the dynamic
expression of the standard and the abstract shared memory systems.

Let us consider a reduction of the abstract shared memory system. Note that T'S*(F) can be reduced
by merging the equivalent states sz, ss as well as ss5,s7 as well as sg, Sg, thus, it can be transformed into a
transition system with six states only. But the resulted reduction of the initial transition system 7'.S*(F) will
not correspond to some dtsPBC expression anymore.

For the step stochastic autobisimulation equivalence F« F we have DR(F)/H L= = {K1, K2, K3, K4, K5,
Ke}, where IC; = {s1} (the initial state), Ko = {s2} (the system is activated and the memory is not requested),
K3 = {s3,s4} (the memory is requested by one processor), K4 = {ss5,s7} (the memory is allocated to a
processor), K5 = {s¢} (the memory is requested by two processors), K¢ = {ss, S9} (the memory is allocated to
a processor and the memory is requested by another processor).

In Figure 30 the quotient transition system without empty loops TS:*_}SS (F) is presented. In Figure 31 the

quotient underlying DTMC without empty loops DT MCZ, (F) is depicted.
The TPM for DTMCy, (F) is

47

(ko
1

< KK, {eh.4 /%D

{r}.2 {{rh{rtts

{{r} b}
< IC6), {b}.1 \ ICE) >

Figure 30: The quotient transition system without empty loops of the abstract shared memory system

prMC,, (F)
(K

alw

Figure 31: The quotient underlying DTMC without empty loops of the abstract shared memory system

48

Table 5: Transient and steady-state probabilities of the quotient abstract shared memory system

| k fJofi] 2 [3 [4 [5 | 6 [7 | 8 [9 | 10 [= |
TRIL[0] O 0 0 0 0 0 0 0 0 0
CRITOTT] o 0 |0.0267| 0 |0.0197]0.0199 | 0.0047 | 0.0199 | 0.0160 | 0.0144
SR 0] 0]0.6667| 0 |0.4933]0.4978 | 0.1184 | 0.4967 | 0.4001 | 0.2142 | 0.4735 | 0.3589
CTRITOTo] 0 [01333] 0 | 0.0987 | 0.0996 | 0.0237 | 0.0993 | 0.0800 | 0.0428 | 0.0718
I [0 0]0.3333[0.4000 | 0 | 0.3049 | 0.2987 | 0.0776 | 0.3047 | 0.2416 | 0.1351 | 0.2201
TRITOT0] 0 [0.4667 | 0.4800 | 0.0987 | 0.4636 | 0.3821 | 0.1912 | 0.4443 | 0.3325 | 0.3349

Figure 32: Transient probabilities alteration diagram of the quotient abstract shared memory system

01 0 0 0 0
2 1
EEREE

w_ |00 0 % 21
PP=lo 119 ¢ 3
00 0 0 0 1
00 1 0 0 0

In Table 5 the transient and the steady-state probabilities 1. [k] (1 < i < 6) of the quotient abstract shared
memory system at the time moments k& (0 < k < 10) and k = oo are presented, and in Figure 32 the alteration
diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF for DTMCQW(F) is

g (o T8 15 46 70
720972097 41872097209)

We can now calculate the main performance indices.

e The average recurrence time in the state KCo, where no processor requests the memory, called the average
system run-through, is ﬁ = 23ﬁ = 69%.
2
e The common memory is available only in the states Ko, K3,K5. The steady-state probability that the
memory is available is wé* 4+ wé* 4+ 1/]{5* e % 4+ % + 24769 = % Then the steady—state probablhty that
124 _ 85

the memory is used (i.e., not available), called the shared memory utilization, is 1 — 555 = 209

49

e The common memory request of a processor {r} is only possible from the states Ko, K3, K4. In each of
the states the request probability is the sum of the execution probabilities for all multisets of multiac-
tions containing {r}. Thus, the steady state probability of the shared memory request from a processor is

] * % ~
2 Z{A,Ia{r}eA, K2 BK} PM; (K2, K) + 94 Z{A,za{r}eA, s K} PM(K, K) +
* 2 1 75 (3 4 1 15 (3, 1\ _ 75

DY PM3(K.K) = 555 (3+3) + 505 (B +3) + 305 B +3) = 3

One can see that the performance indices are the same for the complete and the quotient shared memory
systems. The coincidence of the first and second performance indices obviously illustrates the result of Propo-
sition 8.1. The coincidence of the third performance index is due to the Theorem 8.2: one should just apply its
result to the step traces {{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}} of the expression F' and itself, and then sum
the left and right parts of the three resulting equalities.

{AK|{r}eA, Ks 5K}

10.1.3 The generalized system

An interesting problem is to find out which influence to performance have the multiaction probabilities from
the specification E of the shared memory system. Suppose that all the mentioned multiactions have the same
generalized probability p. The resulting specification K of the generalized shared memory system is defined as
follows.

The static expression of the first processor is K1 = [({x1},p) * (({r1},0); ({b1, 11}, 0); ({e1, 21}, p)) * Stop].
The static expression of the second processor is Ko = [({z2}, p)* (({r2}, p); ({b2, y2}, p); ({e2, 22}, p)) *Stop]. The
static expression of the shared memory is K3 = [({a, 71,732}, p) * ({1}, p); (AL o) (52}, p); ({22}, p))) *
Stop]. The static expression of the generalized shared memory system with two processors is K = (K1 || K2||K3)
Sy T1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS T1 IS To S Y1 IS Yo IS 21 IS 2a.

The TPM for DTMC*(K) is

[0 1 0 0 0 0 0 0 T
1— 1—
0 0 ﬁ ﬁ (O : 25% 0 O2 0
1— 1—
0 0 0 0 20 Tpff (10 - - 0
- p(1—p
ﬁ* 0 (10) 0 02 0 1+pﬁp2 14+p—p? 1 0 2 1+57P2
= p(1—p _
0 e 0 1+5_p2 0 0 0 —1+pfp2 0
0 0 0 0 0 0 0 : :
(1—p) 2 1-p?
0 1”+p_’;2 1+5_p2 0 0 0 0 0 1+pﬁp2
0 0 0 1 0 0 0 0 0
L 0 0 1 0 0 0 0 0 0]
The steady-state PMF for DTMC*(K) is
o = (0 p?(=2+5p—4p>+p") 4 —5p2 + 1208 — 5t 4 (19074+360° 269" —460° +150°) (~2+5p—4p°+°)
= \Y T6-0p114p2+10p° —14p5 1355 24 p° p° = 5p —6—9p114p2 +10p3 —14pi 13,5)

o [4- 507 4 12p% — 5yt 4 Q00 B0 i o N2 BT |

& 20+ p? — 59"+ 2p" + R L SR A) [

3 [8 80+ 3707 — 5897 + 21t 4 LTS0S *g‘fﬁjﬁﬁf’{z;f322(412;5”‘4”2+”3)} ,
& [20+ 0 — 5 + 2pt + S e o) et)

L [8 3107 4 54p% — 10p* 4 T2 400 o005 AT (20—) :

L8312 4 5493 — 19p* + (77p%+222p° —46p* —200p° +57p%) (—2+5p—4p>+p)D

48 —6—9p+14p2+10p3 —14p%+3p5
One can now proceed with performance evaluation according to the same pattern as in the case p = %
considered earlier.
The abstract generalized shared memory system and its reduction are considered like the corresponding
notions for the non-generalized system.

10.2 Dining philosophers system
10.2.1 The standard system

Consider a model of five dining philosophers, for which the Petri net interpretation was proposed in [75]. We shall
investigate this dining philosophers system in the discrete time stochastic setting of dtsPBC'. The philosophers

50

WOy
O
S

@T@

Figure 33: The diagram of the dining philosophers system

occupy a round table, and there is one fork between every neighboring persons, hence, there are five forks on
the table. A philosopher needs two forks to eat, namely, his left and right ones. Hence, all five philosophers
cannot eat together, since otherwise there will not be enough forks available, but only one of two of them who
are not neighbors. The model performs as follows. After activation of the system (coming the philosophers in
the dining room), five forks are placed on the table. If the left and right forks are available for a philosopher,
he takes them simultaneously and begins eating. At the end of eating, the philosopher places both his forks
simultaneously back on the table. The strategy to pick up and release two forks simultaneously prevents the
situation when a philosopher takes one fork but is not able to pick up the second one since their neighbor has
already done so. In particular, we avoid a deadlock when all the philosophers take their left (right) forks and
wait until their right (left) forks will be available. The diagram of the system is depicted in Figure 33.

One can explore what happens if there will be another number of philosophers at the table. The most
interesting is to find the maximal sets of philosophers which can dine together, since all other combinations of
the dining persons will be the subsets of these maximal sets. For the system with 1 philosopher the only maximal
set is {1}. For the system with 2 philosophers the maximal sets are {1}, {2}. For the system with 3 philosophers
the maximal sets are {1}, {2}, {3}. For the system with 4 philosophers the maximal sets are {1,3}, {2,4}. For
the system with 5 philosophers the maximal sets are {1,3}, {1,4}, {2,4}, {2,5}, {3,5}. For the system with 6
philosophers the maximal sets are {1,3,5}, {2,4,6}. For the system with 7 philosophers the maximal sets are
{1,3,5}, {1,3,6}, {1,4,6}, {2,4,6}, {2,4,7}, {2,5,7}, {3,5,7}. Thus, the system demonstrates a nontrivial
behaviour when at least 5 philosophers occupy the table.

Since the neighbors cannot dine together, the maximal number of the dining persons for the system with
n philosophers will be %], i.e., the maximal natural number that is not greater than . Note that if the
philosopher ¢ belongs to some maximal set then the philosopher (i + 1) mod n will belong to the next one. Let
us calculate how many such different maximal sets are there. If n is an even number then there will be only 2
maximal sets of § dining persons, namely, the philosophers numbered with all odd natural numbers which are
not greater than n and those numbered with all even natural numbers which are not greater than n. If n is an
odd number then there will be n maximal sets of "T_l dining persons, since, starting from some maximal set
one can “shift” clockwise n — 1 times by one element modulo n until the next maximal set will coincide with
the initial one.

Now we proceed with 5 dining philosophers system. Let us explain the meaning of actions from syntax of the
dtsPBC expressions which will specify the system modules. The action a corresponds to the system activation.
The actions b; and e; correspond to the beginning and the end, respectively, of eating of philosopher ¢ (1 < i < 5).
The other actions are used for communication purpose only via synchronization, and we abstract from them
later using restriction. Note that the expression of each philosopher includes two alternative subexpressions
such that the second one specifies a resource (fork) sharing with the right neighbor.

The static expression of the philosopher i (1 <i < 4) is E; = [({z;}, 3) * ({bi, %}, 3); ({es, z 3)1
(({yi+1}, 3); ({zi+1}, 3))) * Stop]. The static expression of the philosopher 5 is Es = [({a, 21, 72,732, T4}, 5) *
({65,751}, 3); ({es, 25}, 3))0(({w1}, 3); ({z1}, 3))) * Stop]. The static expression of the dining philosophers sys-
tem is F = (E1||E2||E3||E4||Es) sy €1 Sy @2 Sy T3 SY T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 Sy 24 SY 25 IS X1
IS Lo IS T3 IS Xy ISYL IS Y2 ISY3ISYLISYs IS Z1 IS ZyISZ3IS2Z41IS 2Z5.

o1

Let us illustrate an effect of synchronization. In the result of synchronization of the activities ({b;,y;}, 1)
and ({#;},3) we obtain the new activity ({b;},%) (1 < ¢ < 5). The synchronization of ({e;, 2},3) and
({z:}, 3) produces ({e;},1) (1 <i < 5). The result of synchronization of ({a,71, 72,73, 74}, 3) and ({z1},3)
is ({a,72,73,71},). The result of synchronization of ({a, 73,773,753}, 1) and ({z2},3) is ({a, 73,71},). The
result of synchronization of ({a,73,73},%) and ({z3},3) is ({a,Z1},). The result of synchronization of
({avﬁ}v %6) and ({.%'4}, %) is ({a}7 31_2)

DR(E) consists of the equivalence classes

s1= [([({z1}, 3) * ({01, 51} 3): Qens 2% 5))1(({y2}s 5); ({22}, 3))) = Stop] [[({22}, 5) * ({b2, 2}, 5);

({e2, 22}, 5) (({ys}: 3)s ({28}, 3))) = Stopl [[({zs}, 3) = ({bs, G}, 5)s ({es, 2}, 3))1(({va} 3): ({22}, 3))) + Stop]
I[({za}, 3) * ((({ba, G}, 5); ({ea, 22} 5D (s} 5); ({251, 5))) * Stop][[[({a, 71, 72, 72, T4}, 5) * ({05, 55}, 5);
({es, z5, a0}, 1) ({21}, 3))) + Stop]) sy a1 sy @2 Sy T3 Sy T4 Sy Y1 Sy Y2 Sy Y3 Sy Ya SY Y5 Sy 21 SY 22 SY 23
SY 24 SY Z5 IS X1 IS X2 IS X3 IS Ty IS YL ISY2ISY3ISYyrSYsIS 21 IS 2ZoIS2Z31IKS241S Z5]z,

s2 = [([({w1}, 3) * ({01, 71}, 5)s Hens 2}) (w2}, 5); ({22}, 3))) = Stop][[[({22}, 5) * (({b2, 2}, 5);

({e2, 22}, 3)[((ys}: 3)s ({28}, 3))) * Stopl ({5}, 3) = (({bs, 4}, 5)s ({es, 2}, 5))1(({wa}, 3): ({24}, 3))) * Stop]
I[({wa}, 3) * (({ba, g}, 5); {ea, 2} 5D (({ws) 5); ({251, 5))) * Stop][[[({a, 71, 72, 72, 74}, 5) * ({05, 55}, 5);

({es. 553 s)0(({y1}, 2); ({21}, 3))) * Stop]) sy @1 Sy @2 Sy @3 Sy T4 Sy Y1 Sy Y2 SY Y3 Sy Ya SY Ys SY 21 SY 22 Sy 23
SY 24 SY Z5 IS X1 IS T2 IS X3 IS Ty IS YL ISY2ISY3ISYyIrSYsIS 21 IS 2Z2IS 23S 241S Z5]z,

s3 = [([({z1}, 5) * (b1, 71}, 5)s Hens 21}, 5)) (w2}, 3); ({22}, 5))) * Stopl ({2}, 5) * (({b2, 72}, 5);

({e2, 22}, 3) ({3}, 5); ({23}, 3))) * Stopl[I[({w3}, 3) * ({3, 63}, 5); ({es, 23}, 5))1(({ya}, 3); ({24}, 3))) * Stop]
I({za}, 3) * ((({bas G2}, 5); {eas Za}s s)D({ys}s 3); ({25} 3))) * Stopl[[[({a, 71,72, 72, T}, 5) * ({5, G5} 3);
({es, 25}, 3)0(({w1}, 5); ({21}, 5))) * Stop]) sy @1 sy @2 Sy 23 Sy 4 Sy Y1 SY Y2 SY Y3 SY Ya SY Ys SY 21 SY 22 SY 23
SY 24 SY 25 IS L1 IS To IS T3 IS Ty IS Y1 IS Yo IS Y3 IS Ya S Ys IS 21 IS 2 IS 23 IS 24 IS 25|x,

se=[([({z1}, 5) * (b1, 71}, 5)s Hews 21}, $) (w2}, 3); ({22}, 3))) * Stopl ({2}, 5) * (({b2, 72}, 3);

({e2, 22}, 3) ({3}, 5);: ({23}, 3))) * Stop][[[({w3}, 3) * ({3, 83}, 5); ({es, 23}, 5))1(({ya}, 5); ({24}, 5))) * Stop]
I({za}, 3) * ((({bas G2}, 5); {eas Za}s s)D0({ys}s 3); ({25} 3))) * Stopl[[[({a, 71,72, 72, T}, 5) * (({bs, G5} 3);

({es, 25}, N0({wa}, 2): ({21}, 3))) = Stop]) sy @1 sy @2 Sy &3 Sy T4 Sy Y1 Sy Y2 Sy Y3 SY Ya SY Y5 Sy 21 SY 22 SY 23
SY 24 SY Z5 IS X1 IS T2 IS X3 IS Ty IS YL ISY2ISY3ISYyrSYsIS 21 IS 2Z2IS 23S 241IS Z5]z,

ss = [([({z1}, 5) * (b1, 71}, 5)s Hens 21}, 5)) (w2}, 3); ({22}, 3))) = Stopl ({2}, 5) * (({b2, 72}, 3);

({e2, 22}, 3) ({3}, 5); ({23}, 3))) * Stopl[[[({w}, 3) * ({3, 63}, 5); ({es, 23}, 5))1(({ya}, 5); ({24}, 5))) * Stop]
I({za}, 3) * ((({ba; G2}, 5); {eas Za}s 3D 0({ys}s 3); ({25} 3))) * Stopl[[[({a, 71,72, T2, T}, 5) * (({bs, G5} 3);
({es, 25}, 3)0(({w1}, 5); ({21}, 5))) * Stop]) sy @1 sy @2 Sy 23 Sy 4 Sy Y1 SY Y2 SY Y3 SY Ya SY Ys SY 21 SY 22 SY 23
SY 24 SY 25 IS L1 IS To IS T3 IS Ty IS Y1 IS Yo IS Y3 IS Ya S Ys IS 21 IS 23 IS 23 IS 24 IS 25|x,

se = [([({z1}, 5) * (b1, 71} 5); Hews 21}, D0y}, 3); ({22}, 3))) * Stopl ({2}, 3) * (({b2, 72}, 3);

({e2, 22}, 3) ({3}, 5); ({23}, $))) Stopl[I[({w}, 3) * ({3, 63}, 5); ({es, 23}, 5))1(({ya}, 5); ({24}, 5))) * Stop]
I({za}, 3) * ((({ba, G2}, 5); ({eas Za}s s)D0({ys}s 3); ({25} 3))) * Stopl[[[({a, 71,72, 72, T}, 5) * ({5, G5}, 3);
({es, 25},)0(({w1}, 5); ({21}, 5))) * Stop]) sy @1 sy @2 Sy 23 Sy 4 Sy Y1 SY Y2 SY Y3 SY Y SY Ys SY 21 SY 22 SY 23
SY 24 SY 25 IS L1 IS XTo IS T3 IS Ty IS Y1 IS Yo IS Y3 IS Ya IS Ys IS 21 IS 23 IS 23 IS 24 IS 25|x,

st = [([({z1} 3) * ({01, 91}, 5)s (Hens 2% g)0(({ye}, 3)s ({22}, 3))) = Stop]ll[({22}, 5) * ({02, %2}, 3):

({e2. 533 D)0(({us}. 3): ((za). 2))) # Stopl ({3}, 1) * ({bs. B): (e 233 DD(({ua}, 3): ({2}, 3))) * Stop]
I[({za}, 5) * (({ba, g}, 3); ({eas Zab, 5))0(({ys}, 3); ({25}, 5))) * Stop]||[({a, 71, 72, %2, Ta}, 5) * ({05, 95}, 3);
({es, 25}, %))[](({yﬁ, %)§ ({21}, %))) * Stop]) sy o1 Sy T2 Sy T3 Sy X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Ys SY 21 SY 22 Sy 23
SY 24 SY Z5 IS X1 IS X2 IS X3 IS Ty IS YL ISY2ISY3 IS Yy rSYsIS 21 IS 2Z2IS2Z31IKS241S Z5]z,

ss = [([({1}, 3) * ({01, 31}, 3); ({ens 213, g0 (({ye}, 3); ({22}, 3))) = Stop]l[[({w2}, 5) * ({02,923 3);
({2, 221, DD0(({ys} 2)s ({25},) +Stopll[[({ws},)+ (({bs, B}, 3 (es, B3 DD(({wa}, 3); [zl) = Stop)
I[({za}, 3) * (({ba, g}, 5); ({eas Zads 5D 0({ys}, 3)s ({25}, 3))) * Stopl|l[({a, 71, 72, %2, Ta}, 5) * ({05, 95}, 3);
({es, 25}, %))[](({yﬁ, %)§ ({=1}, %))) * Stop]) sy &1 Sy T2 Sy T3 Sy X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Ys SY 21 SY 22 Sy 23
SY 24 SY 25 IS T1 IS T2 IS T3 IS Ty IS Y1 S Y2 S Y3 IS Ya IS Ys IS 21 IS 29 IS 23 IS 24 IS Z5]z,

so = [([({z1}, 3) * ({01, 91}, 5); ({ens 213, g0 (({ye}, 3); ({22}, 3))) = Stop]ll[({w2}, 5) * ({02,923, 3);

({e2, 221, D0(({ys}, 3); [zsh, 5))) #Stoplll[({ms},) (({bs, G}, 1) (ess 1 ID(({wa} 3); ({21}, 1))+ Stop)

92

Table 6: Transient and steady-state probabilities of the dining philosophers system

Lk fofrf 2 [38 [4 | 5 [6 [7 [8 | 9 | 10 [c |
G [1]0] 0 0 0 0 0 0 0 0 0 0

V3l 01| 0 [0.2403 | 0.1541 | 0.1981 | 0.1716 | 0.1884 | 0.1776 | 0.1846 | 0.1800 | 0.1818
w3 [F] 00 0.1500 | 0.0701 | 0.1189 | 0.0878 | 0.1079 | 0.0949 | 0.1033 | 0.0979 | 0.1014 | 0.1000
w;[F] [00 0.0500 | 0.0818 | 0.0503 | 0.0726 | 0.0578 | 0.0674 | 0.0612 | 0.0652 | 0.0626 | 0.0636

I[({a}, 5) * ((({ba, Ga}, 5); (e, 2}, 3) (s} 3): ({25}, 5))) * Stop]ll[({a, 71, 72, T2, 71}, 3) *+ ({55, 55}, 3);

({es, 25}, %))[](({yﬁ, %)§ ({=1}, %))) * Stop]) Sy @1 Sy X Sy T3 Sy T4 Sy Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 SY 22 SY 23
SY 24 SY Z5 IS X1 IS X2 IS X3 IS Ty IS YL ISY2ISY3ISYyIrSYsIS 21 IS Z2IS2Z31IKS241S Z5]z,

s10 = [([({z1}, 3) * ({01, 71}, 3)s Hews 2k)0y} 3); ({22}, 3))) = Stop][[[({22}, 3) * ({b2, 52}, 5);

({e2, 22}, 5)[((ys} 3)s ({8}, 5))) = Stopl[[[({zs}, 5) = ({bs, G}, 5); ({es, 2}, 5))1(({wa} 3);: ({22}, 3))) * Stop]
I[({za}, 3) * ((({ba, g}, 5); ({ea, 22}, 3D (({ys}s 5); ({25}, 5))) * Stop][[[({a, 71, 72, 72, Ta}, 5) * ({05, 75},)5
({es, 25}, 5))0(({y1}. 5); ({21}, 3))) * Stop]) sy @1 sy @ Sy @3 Sy T4 Sy Y1 SY Y2 SY Y3 SY Ya SY Y5 Sy 21 SY 22 Sy 23
SY 24 SY Z5 IS X1 IS X2 IS X3 IS Ty IS YL ISY2ISY3ISYyIrSYsIS 21 IS 2Z2IS2Z31IKS241S Z5]z,

si = [([({z1}, 5) * ({01, 1} 5)s (e A% 2))(({w2} 5): ({22}, 5))) * Stop] [[({w2}, 5) = (({b2, 72}, 5);
({e2, 22}, 5D [(({ys} 3)s ({28}, 5))) + Stopl [[({zs}, 5) = ({bs, G}, 5); ({es, 2}, 5))1(({wa}, 3): ({22}, 3))) + Stop]

I[({za}, 5) * ((({ba, g3}, 5); (e, 2}, 3) (s} 3): ({253, 5))) * Stop]ll[({a, 71, T2, T2, 71}, 3) * ({65, 55}, 3);

({es, 25}, %))[](({yﬁ, %)§ ({=1}, %))) * Stop]) Sy @1 Sy 2o Sy T3 Sy T4 Sy Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 SY 22 SY 23
SY 24 SY Z5 IS X1 IS T2 IS X3 IS Ty IS YL ISY2ISY3ISYyISYsIS 21 IS Z2IS2Z31IKS241S Z5]z,

s12 = [([({z1}, 3) * ({01 1} 5)s (e A% 2)) ({2} 3): ({22}, 5))) * Stopl [({22}, 5) * (({b2, 72}, 5);
({e2, 22}, 5D [(({ys} 3)s ({28}, 5))) = Stopl[[({zs}, 5) = ({bs, G}, 5); ({es, 2}, 5))1(({wa}, 3): ({22}, 3))) + Stop]

I[({za}, 3) * (({ba, g1}, 3); ({eas Zad, 3)0(({ys}, 3); ({25}, 3))) * Stop]||[({a, 71, 72, %2, 1}, 5) * ({05, 95}, 3);
({es, 25}, %))[](({yﬁ, %)§ ({21}, %))) * Stop]) sy x1 Sy T2 Sy @3 SY T4 Sy Y1 SY Y2 SY Y3 SY Ya SY Y5 SY 21 Sy 22 SY 23
SY 24 SY Z5 IS X1 IS X2 IS X3 IS Ty IS YL ISY2ISY3ISYyrSYsIS 21 IS2Z2IS 23S 241S Z5]z.

The states are interpreted as follows: s; is the initial state, so: the system is activated and no philosophers
dine, s3: philosopher 1 dines, s4: philosophers 1 and 4 dine, s5: philosophers 1 and 3 dine, sg: philosopher 4
dines, s7: philosopher 3 dines, sg: philosophers 2 and 4 dine, sg: philosophers 3 and 5 dine, s19: philosopher 2
dines, s11: philosopher 5 dines, s12: philosophers 2 and 5 dine.

In Figure 34 the transition system without empty loops T'S*(E) is presented. In Figure 35 the underlying
DTMC without empty loops DT MC*(E) is depicted.

The TPM for DTMC*(E) is

o1 0 0 0 0 0 0O O O 0 O
o0 2 L L 3 3 1 1 3 3 L

3 20 239 %0 210 210 20 20 20 20 20

0 ¢ 0 51 3y 3y wm 0 0 0 0 0
0%2007000000
oz?ooo§ooooo
S R I A O A
0 &% &£ 0 & 0 0 0 & 0 £ o
o%ooo%ooo%oo
ozoooogooo%o
R SR B O

0 3y 0 0 0 0 55 0 55 5 0 g
(0o £ 00 0 0 0 0 0 2 2 0 |

In Table 6 the transient and the steady-state probabilities ¥ [k] (1 < i < 4) of the dining philosophers
system at the time moments k (0 < k < 10) and k = oo are presented, and in Figure 36 the alteration diagram
(evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for the

states s1, ..., 4 only, since the corresponding values coincide for s3, sg, s7, S10, S11 as well as for sy, s5, Ss, S9, S12.
The steady-state PMF for DTMC*(E) is

93

({e2},),
3
7

{oar, 1)

Figure 34

Head ¥ &

75*(E)

53

(eat, 1), 2

Abay 1)

{1)
({ea}.) {({ba}.)
& Herd, Hr 4

{e1h 1), 35

{He1), «

(ead, 1,2

{{eh
{4}, b 55

(fead.)

({1 1),
ezt)Y 41

e h i)

{{b1} 1),
(b3}, Dt 25

({3, 1), &

{{e1}, 1)
ez} D)%

59

{({e2}.9)
({ead,)},

{{b2}.)
({1})Y 55

(fe2}.). 7

{({b2}. 9,
(b2}, 1) 55

{{e2}.)
({esh, 1)), %

{({vs5}, 4).({e2}, DY 71

(es).)1

{2} 1),
{51,155

{{es} 1)
Hesh b2

(b5}, 1) 55

S10)

3
1

{{b2}, 1), ({es}. DY 1
({e2},3).2

(b5}, 30, &%

(es) 1), 2

o 3

{3} 1),
(esh v 4

S11

(fe1}.§).2

e}, 1
« 53,4),

({b5}.3),
3

11

: The transition system without empty loops of the dining philosophers system

54

DTMC*(E)

~lw

e

Figure 35: The underlying DTMC without empty loops of the dining philosophers system

95

—— yy17[K]

A
R 2
e 2

Figure 36: Transient probabilities alteration diagram of the dining philosophers system

"117107 1101107 10”10 110° 110" 10 10" 110

We can now calculate the main performance indices.

. 21 v 7 11 7 7 1 1 7
= i)

e The average recurrence time in the state so, where all the forks are available, called the average system
g L =1 _pgl
run-through, is we 2= 55.
e Nobody eats in the state sa. Then, the fraction of time when no philosophers dine is 5 = 1—21

Only one philosopher eats in the states ss,sg, s7,S10,511. Then, the fraction of time when only one
philosopher dines is ¥3 + g + VY3 + 93 + ¥ = 11—0 + % + % + % + 11—0 = %

Two philosophers eat together in the states s4, S5, Ss, Sg, s12. Then, the fraction of time when two philoso-
phers dine is ¥f + 03 + 05 + U5 + 92 = 115 + 115 + 115 + 115 + 115 = 75

Ths reéative7 fraction of time when two philosophers dine with respect to when only one philosopher dines

1S§'T:—1.

e The beginning of eating of first philosopher ({b1}, i) is only possible from the states so, sg, s7. In each of
the states the beginning of eating probability is the sum of the execution probabilities for all multisets of
activities containing ({b1},). Thus, the steady-state probability of the beginning of eating of first philoso-

pher i 65 3 1y yery PTV(T52) + ity pery P 56) 407 ey prery PT7T57) =
121 (20+20+20)+110(3 +11)+1_0(%+111)_ 110

In Figure 37 the marked dts-boxes corresponding to the dynamic expressions of the dining philosophers are
presented, i.e., N; = Boxais(E;) (1 <i < 5). In Figure 38 the marked dts-box corresponding to the dynamic
expression of the dining philosophers system is depicted, i.e., N = Boxgis(F).

10.2.2 The abstract system and its reductions

Let us consider a modification of the dining philosophers system with abstraction from personalities, i.e., such
that all the philosophers are indistinguishable. For example, we can just see that one or two philosophers dine
but cannot observe who they are. We call this system the abstract dining philosophers one.

The static expression of the philosopher i (1 <i < 4) is F; = [({z;}, 3) * ({0, 3}, 3); ({e zl}, ;))[]
(({yit1}s 2) ({zit1}, 2))) * Stop]. The static expression of the philosopher 5 is F5 = [({a, 71,72, %2, 74}, 5) *
(({b, 35}, 3); ({e, 55}, 3NI(({w1}, 3); ({21}, 3))) =Stop]. The static expression of the abstract dining philosophers
system is F' = (F || Fa||F5||F4||F5) sy @1 Sy @2 Sy T3 Sy T4 SY Y1 SY Y2 SY Ys SY Ya SY Ys SY 21 Sy 22 Sy 23 SY 24
SY Z5 IS T1 IS X IS X3 IS Ty ¥S Y1 ISY2 IS Y3 IS YL IS Ys S Z1 IS ZoIS2Z3IS24IS 25.

56

[n1}.4]

]

}%)‘

k{ys},ﬂ ‘({bswys

i
7

)({Zs}é)(‘({esfs},%)‘

AN

)({yz;},ﬂ ‘(m@},%)‘

)({24},ﬂ ‘({%2;},%)‘

A

k{ya},ﬂ ‘({%@}%)‘

)({z?,},%)(‘({ew?}%)‘

AN

}%)‘

o~

)({yz},%i ‘({bwz

)({22}7%)(‘({ezv;;}w%)‘

AN

},%)‘

~

‘({b17y1

A},%)‘

‘({elvzl

AN

Figure 37: The marked dts-boxes of the dining philosophers

({8s}.4)

({64.3)

({va}.3)

et]

({b2.4)

fteat 4]

NN

({0114

[tea)]

-

ULV TUTUT)

& & & ©

Figure 38: The marked dts-box of the dining philosophers system

o7

Table 7: Transient and steady-state probabilities of the reduced abstract dining philosophers system

L~ fofe] 2 [38 [4 [5 [6 [7 | 8 [9 [10 [o |
TRI1]0] O 0 0 0 0 0 0 0 0 0
SR 01 0 [0.2403 [0.1541 | 0.1981 | 0.1716 | 0.1884 | 0.1776 | 0.1846 | 0.1800 | 0.1818
STk [0 [0 0.3750 | 0.1753 | 0.2973 | 0.2195 | 0.2697 | 0.2372 | 0.2583 | 0.2446 | 0.2535 | 0.2500
7[K] [0 [0 0.2500 | 0.4091 | 0.2513 | 0.3628 | 0.2890 | 0.3371 | 0.3059 | 0.3261 | 0.3130 | 0.3182

DR(F) resembles DR(E), and T.S*(F) is similar to TS*(E). We have DTMC*(F) = DTMC*(E). Thus,
the TPM and the steady-state PMF for DTMC*(F) and DT MC*(FE) coincide.

The first performance index and the second group of the indices are the same for the standard and the
abstract systems. Let us consider the following performance index based on non-personalized viewpoint to the
philosophers.

e The beginning of eating of a philosopher ({b}, i) is only possible from the states s, s3, sg, S7, S10, S11-
In each of the states the beginning of eating probability is the sum of the execution probabilities for all
multisets of activities containing ({b}, 7). Thus, the steady-state probability of the beginning of eating of
a philosopher is
V3 2 qriqey, prery P17 52) + 05 3 oy byery BT 83) + 96 2qryquy. pyery PT7 (T 56) +
4 ZS{FI({li}-,z)GBF} PT*(T, s)+1¢i‘o g{rul{b}-&)ger} PT*(T, s10) + %11 2 qry(oy, & per) PBT*(F{ 311)3: 1
?(?)2_0+12_0+32_0+12_0+21_0t2_0t2_0"’;’2_0t%+20)+ (11+11+11+11)+Z(ﬁ+ﬁ+ﬁ+ﬁ)+
iErtatatam)+ti(d+tatata)ta (11+11+11+ﬁ)=ﬁ

The marked dts-boxes corresponding to the dynamic expressions of the standard and the abstract dining
philosophers are similar as well as the marked dts-boxes corresponding to the dynamic expression of the standard
and the abstract dining philosophers systems.

Let us consider a reduction of the abstract dining philosophers system. The static expression of the
philosopher 1 is F{ = [({z},3) * (({b},2); ({e}, 1)) * Stop]. The static expression of the philosopher 2 is
F5 = [({a, &}, 75) = (({b}, 2); ({e}, 1)) = Stop]. The static expression of the reduced abstract dining philosophers
system is I = (F{||F3) sy @ rs x.

DR(F") consists of the equivalence classes

st = [([{}, 3) = (40}, 21 (e},) = Stop][[({a, 3}, 15) * ({0}, 2)ai ({e}, 1)2) * Stop]) sy rs alx,
sh = [([({=}, 3) = ({0}, $)1s ({e}, 1) + Stopl|[[({a, @}, 75) * (({b},)23 ({e},)2) = Stop]) sy @ rs 2],
s = [([({=}, 3) = ({0}, $)1: ({e}, 1)) + Stop|[[({a, 2}, 75) * (({b},)23 ({e}, 1)2) = Stop]) sy @ rs 2],
si = [([({=}, 3) = ({0}, $)1: ({e}, 1)) + Stopl|[[({a, 2}, 75) * (({b}, 2)2: ({e}, 7)2) = Stop]) sy @ rs 2],
s5 = [([({=}, 3) = ({0}, B)1: ({e}, 1)1) = Stop][[({a, 3}, 15) = ({0}, 3)2; ({e}, 7)2) * Stop]) sy x rs 2]~

The states are interpreted as follows: s is the initial state, s}: the system is activated and no philosophers
dine, sj, sy: one philosopher dines, s;: two philosophers dine.

We have F«, F’ with (DR(F) UDR(F"))/ e = {Hi1, Ha, H3z, Ha}, where Hy = {51, 51} (the initial state),
Ho = {s2,55} (the system is activated and no philosophers dine), Hs = {s3, s¢, 57, 510, 511, sk, s4} (one philoso-
pher dines), Hy = {54, s5, Ss, 9, S12, S5} (two philosophers dine). One can see that F’ is a reduction of F with
respect to <>,

In Figure 39 the transition system without empty loops T.S*(F’) is presented. In Figure 40 the underlying
DTMC without empty loops DT MC*(F') is depicted.

The TPM for DTMC*(F") is

0 1 0 0 0

o o 3 3 1

P* = 0 = (8) i é
o oo ¥

111 131 3 11

0 7z 7 7 0

In Table 7 the transient and the steady-state probabilities .[k] (i € {1,2,3,5}) of the reduced abstract
dining philosophers system at the time moments k (0 < k < 10) and k = oo are presented, and in Figure 41 the
alteration diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider the
probabilities for the states s}, s5, s%, s5 only, since the corresponding values coincide for sj, s}.

The steady-state PMF for DTMC*(F) is

o8

TS*(F)

51

({a}, g3).1

(el P17 ({v}.8)2.8

Hed bra

({v}.8)1.8
{({b},)1,
2 5
(er g2 1 ey 2204
ezt 71

{{} 81,
)1 Her Prah i

(e}, 1.2

(o} 31,

({e},1)2.2

Figure 39: The transition system without empty loops of the reduced abstract dining philosophers system
DTMC*(F')
/

Figure 40: The underlying DTMC without empty loops of the reduced abstract dining philosophers system

99

—— YK

* g Ik
g
e

We can now calculate the main performance indices.

e The average recurrence time in the state s,, where all the forks are available, called the average system

g L — 1 _ gl
run-through, is At =53.

2

ﬁ .

Only one philosopher eats in the states s4, sj. Then, the fraction of time when only one philosopher dines
: /% r* 1 1 __1

sY3" +y =3+3=23

Two philosophers eat together in the state si. Then, the fraction of time when two philosophers dine is
/% 7

Nobody eats in the state s,. Then, the fraction of time when no philosophers dine is ¥}" =

5 — 22°
The relative fmctwn of time when two philosophers dine with respect to when only one philosopher dines
7.2

mﬁ'T:ﬁ

The beginning of eating of a philosopher ({b}, 2) is only possible from the states s}, s5,s}. In each of

the states the beginning of eating probability is the sum of the execution probabilities for all multisets

of activities containing ({b},) Thus, the steady state probability of the begmm'ng of eating of a philoso-

PheT is % Z{m ({b},2)er} PT* (T, s5) + 95" Xirivy.2yery PTHT, 85) + 007 X iry oy, 2)ery PTHT, 84) =
(+ +)"'1(161"’121)"'411(161""121)_11

One can see that the performance indices are the same for the complete and the reduced abstract dining
philosophers systems. The coincidence of the first performance index as well as the second group of indices
obviously illustrates the result of Proposition 8.1. The coincidence of the third performance index is due to the
Theorem 8.2: one should just apply its result to the step traces {{b}}, {{b},{b}}, {{b},{e}} of the expressions
F and F’, and then sum the left and right parts of the three resulting equalities.

In Figure 42 the marked dts-boxes corresponding to the dynamic expressions of the reduced abstract dining
philosophers are presented, i.e., N/ = Boxas(F]) (1 <i < 2). In Figure 43 the marked dts-box corresponding
to the dynamic expression of the reduced abstract dining philosophers system is depicted, i.e., N’ = Bozass(F').

Note that T'S*(F’) can be reduced further by merging the equivalent states sj and sj, thus, it can be

transformed into a transition system with four states only. But the resulted reduction of the initial transition
system T'S*(F) will not correspond to some dtsPBC expression anymore.

For the step stochastic autobisimulation equivalence F< F we have DR(F Ve, = {Ki,Ke, K5, Ka},

where K; = {s1} (the initial state), Ko = {s2} (the system is activated and no philosophers dine), K3 =
{s3, s6, $7, $10, 511} (one philosopher dines), Iy = {s4, s5, S5, 9, $12} (two philosophers dine).

60

| |
~Q O

(@rd| ()]

Figure 42: The marked dts-boxes of the reduced abstract dining philosophers

Figure 43: The marked dts-box of the reduced abstract dining philosophers system

TS:, (F)

—Lss

{v},3

{e} &
{{o}.{6}},2

-gcy

{o}{edt &

{{e}.{e}} 4

{e}.2
(o}, 11

Figure 44: The quotient transition system without empty loops of the abstract dining philosophers system

Table 8: Transient and steady-state probabilities of the quotient abstract dining philosophers system

L & Jofi] 2 [3 | 4 [5 [6 [7 [8 [9 | 10 | o< |
TTRITL[0] 0 0 0 0 0 0 0 0 0 0
TR JO[T[0 [0.2403]0.1541 | 0.1981 | 0.1716 | 0.1884 | 0.1776 | 0.1846 | 0.1800 | 0.1818
77Tk [[0] 0 0.7500 | 0.3506 | 0.5946 | 0.4391 | 0.5394 | 0.4745 | 0.5165 | 0.4893 | 0.5069 | 0.5000
k] 0 [0]0.2500 | 0.4091 | 0.2513 | 0.3628 | 0.2890 | 0.3371 | 0.3059 | 0.3261 | 0.3130 | 0.3182

In Figure 44 the quotient transition system without empty loops T'S7, (F) is presented. In Figure 45 the
quotient underlying DTMC without empty loops DT M C*ﬁ(F) is depicted.

The TPM for DTMCY, (F)is

0 1 0 O

. oo & 1
P — 0 2 3@
il 1

0 = % 0

In Table 8 the transient and the steady-state probabilities 1 *[k] (1 < i < 4) of the quotient abstract dining
philosophers system at the time moments k£ (0 < k < 10) and k£ = oo are presented, and in Figure 46 the
alteration diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF for DTMC7, (F) is

. 2 1 7
=0, =2, —).
v (’11’2’22>

We can now calculate the main performance indices.

e The average recurrence time in the state o, where all the forks are available, called the average system
run-through, is ﬁ = 1—21 = 5%.
2

62

pTMCE, (F)

—Lss

Figure 45: The quotient underlying DTMC without empty loops of the abstract dining philosophers system

RRRRR 2 1
gk
— = g [K]

Figure 46: Transient probabilities alteration diagram of the quotient abstract dining philosophers system

63

nx _ 2

e Nobody eats in the state Ky. Then, the fraction of time when no philosophers dine is Vg

-
Only one philosopher eats in the state 3. Then, the fraction of time when only one philosopher dines is
v
Two philosophers eat together in the state 4. Then, the fraction of time when two philosophers dine is
=&
Ths reéative7 fraction of time when two philosophers dine with respect to when only one philosopher dines
1S 55 "1 = 11

e The beginning of eating of a philosopher {b} is only possible from the states K2,K3. In each of the
states the beginning of eating probability is the sum of the execution probabilities for all multisets of
multiactions containing {b}. Thus, the steady-state probability of the beginning of eating of a philosopher

PM} (Ko, K) + 45" 32 PMj(Ks,K) =7 (3 +3) +

. 1% “
is 92 Z{A,za{b}eA, K2 5K} {AK|{b}eA, KsHK} 11
L(s42)=28
2 \T1 T 11 I
One can see that the performance indices are the same for the complete and the quotient abstract dining
philosophers systems. The explanation of this fact is just the same as that presented earlier for the complete

and the reduced abstract dining philosophers systems.

10.2.3 The generalized system

An interesting problem is to find out which influence to performance have the multiaction probabilities from
the specification E of the dining philosophers system. Suppose that all the mentioned multiactions have the
same probability p. The resulting specification K of the generalized dining philosophers system is defined as
follows.

The static expression of the philosopher i (1 <i<4)is K; = [({x:}, p) * (({bs,5i}, 0); ({eis Zi }, 0))]]
({yi+1},p); {zix1}, p))) * Stop|. The static expression of the philosopher 5 is K5 = [({a, 71,72, %2, T4}, p) *
((({bs, U5}, p); ({es, 251, p)) 1 (w1}, p); ({21}, p))) % Stop]. The static expression of the generalized dining philoso-
phers system is K = (K1 || Ka|| K3|| K4||K5) sy o1 Sy X2 Sy T3 Sy T4 SY Y1 SY Y2 SY Y3 SY Ya SY Y5 Sy 21 SY 22 SY 23 SY 24
SY 25 IS X1 ISXQ IS XT3 IS Ty ISYL ISY2 IS Y3 ISYL IS Ys IS Z1 IS ZoIS2Z3IS24I[S 25.

DR(K) consists of the 12 states which are interpreted as follows: 3; is the initial state, §3: the system is
activated and no philosophers dine, §3: philosopher 1 dines, §4: philosophers 1 and 4 dine, s5: philosophers 1
and 3 dine, Sg: philosopher 4 dines, §7: philosopher 3 dines, Sg: philosophers 2 and 4 dine, 59: philosophers 3
and 5 dine, §19: philosopher 2 dines, $11: philosopher 5 dines, 512: philosophers 2 and 5 dine.

The TPM for DTMC*(K) is

0 1 0 0 0 0 0 0 0 0 0
0 0 1-p? p? g2 1= 1-p* P2 P2 1=p® 1=p* p?
12 5 1_5p2 1_5p2 p52 p52 5 5 5 5 5
0 55 0 5% 75 555 f 0 0 0 0 0
0 £, = 0 0 = 0 0 0 0 0 0
2— 2 2— 2 2— 2
£ p p
0 32 §j§§ 0 0 0 & 0 0 0 0 0
1—p2 1_p2 1_p2 2
=~ O 3_22 3f£2 3_22 O O O 3_22 O 35’)2 O O
P* = 1—p2 o 1—p2 1—p? 0
0 =5 2, 0 oo 0 0 =& 0 £ 0
£ P p e P L2 P
0 £5 0 0 0 e 9 0 0 - 0
2 2p 2—p 2—p
0 £5 0 0 0 0 £ 0 0 0 i 0
17S2 02 g 1-p? pf 1-p2
Oamr 0 0 0 e 0 e 0 0w e
O 0 0 0 3m 0 5h fm 0 5h
1— 1—
_O prz 0 0 0 0 0 0 2_22 2_22 0 l
The steady-state PMF for DTMC*(K) is
12)*7 0 1 1 2 — p? 2 — p? 1 1 2 — p? 2 — p? 1 1 2 — p?
“\23=02)10° 10(3— p2)’ 10(3 — p2) 10’ 10’ 10(3 — p2)° 10(3 — p2) 10’ 10" 10(3 — p2))~

We can now calculate the main performance indices.

e The average recurrence time in the state So, where all the forks are available, called the average system
run-through, is # =2(3 - p?).
2

64

e Nobody eats in the state 5. Then, the fraction of time when no philosophers dine is 155 = ﬁ.

Only one philosopher eats in the states 53,56,57,510,511 Then the fraction of time when only one
hiloso herdmemsw —i—z/J —I—w —i—z/J —I—w !
p D 3 6 7 10 11~ 10" 10 10 0710 2

Two philosophers eat together in the states 54, S5, 88, 59, S12. Then the fmctwn of time when two phzloso—

—p —p° 2—p®> _ _2-p°
phers dine is w4 +'l/15 +w8 +w9 +'l/112 10(3 p2) + 10(3 %) + 10(3 %) + 10(3 p2) + 10(3 2 2(3-p%)"
The relative fraction of time when two philosophers dine with respect to when only one philosopher dines
2—p? L2 _ 2—p?

26—57) 17 3-p7

is

e The beginning of eating of first philosopher ({1}, p?) is only possible from the states 32, 36, 57. In each of
the states the beginning of eating probability is the sum of the execution probabilities for all multisets of
activities containing ({1}, p*). Thus, the steady-state probability of the beginning of eating of first philoso-
pheris ¥4 2 iy prrery PT7 (T 52) +¢3 2rinyprery PT (0 86) 97 2 aryqony pyery PT (T 57) =

1 1—p2? 2 2 1 1— 2 . 3+2
(5 +%+%)+ﬁ(0?)"'E(p2+)_10(3—pp2)'

2(3—p?) 3—p

Let us consider a modification of the generalized dining philosophers system with abstraction from person-
alities. We call this system the abstract generalized dining philosophers one.

The static expression of the philosopher i (1 <i <4)is L; = [({z:},p) * ({b, 7i }, p); ({e, Zi}s p)]]
({yi+1}, p); {zi+1},p))) * Stop]. The static expression of the philosopher 5 is Ly = [({a, %1, T2, T2, T4}, p) *
(({b, 75}, p); ey 25}, Py}, p); ({21}, p))) * Stop]. The static expression of the abstract generalized dining
philosophers system is L = (Ly || La|| L3|| La||Ls) sy @1 Sy @2 Sy @3 Sy T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 SY 22 SY 23
SY 24 SY Z5 IS X1 IS X2 IS X3 IS T4 ISYL ISY2SY3 IS Yy lrSYs IS 21 ISZ2IlS2Z3IS24IS 25,

DR(L) resembles DR(K), and T'S*(L) is similar to T'S*(K). We have DTMC*(L) = DTMC*(K). Thus,
the TPM and the steady-state PMF for DTMC*(L) and DTMC*(K) coincide.

The first performance index and the second group of the indices are the same for the standard and the abstract
generalized systems. Let us consider the following performance index based on non-personalized viewpoint to
the philosophers.

e The beginning of eating of a philosopher ({b},p?) is only possible from the states 32, 33, 36, 37, 510, 511-
In each of the states the beginning of eating probability is the sum of the execution probabilities for all
multisets of activities containing ({b}, p?). Thus, the steady-state probability of the beginning of eating of
a philosopher is
U3 3 ey ryery PTY (T3 52) + 85 Xy oy omyery PT7 (0 58) + 08 Xy poyery PT(T, 56) +
V7 S ry(epmyery P 57) + 050 Xy oy poyery PT (05 510) + 91 Xy qoy p2yery PT(T,511) =

1 1_—&2 22y 1=p® | p° 1=p° | p? 1_—&2 22 1=p® | p?

T +5+5+5+5+ Fi el)y

1 (1=p° 1—p? o 1 (1=p° 1*;)2 o 1 (1=p° 1—p? P’
0(3 p2+ 2+3,p2+3,p2 +10 3— p2+ 2+ 24_3*;}2 +10 3— p2+ 2+37p2+37p2 +
1 (1=p° 1—p? o 1 (1=p° P\ _ __ 3

10 (3 p? + p? + 3—p? + 3—p? + 10 \ 3—p2 + p? + 2 + 3—p2) T 2(3—p3)"

Let us consider a reduction of the abstract generalized dining philosophers system. The static expression of
the philosopher 1 is [({x} p) * ({b}, 522> £2); ({e}, p?)) * Stop]. The static expression of the philosopher 2

is Ly = [({a, 2}, p*) * (({b}, gy) ({e}, p?)) * Stop]. The static expression of the reduced abstract generalized
dining philosophers system is L' = (L}||L}) sy @ rs .

DR(L’) consists of the 5 states which are interpreted as follows: §) is the initial state, §5: the system is
activated and no philosophers dine, §5, §4: one phrlosopher dines, 55 two phrlosophers dine.

We have Le L’ with (DR(L)U DR(L'))/« = {7—[1,7-[2,7-[3,7-[4} where H; = {31, } (the initial state),
Hy = {82, 84} (the system is activated and no philosophers dine), Hy = {83, 36, 87, 810, 511, 85, 54 } (one philoso-
pher dines), H4 = {4, 55, 35, 59, 512, St} (two philosophers dine). One can see that L’ is a reduction of L with

respect to <, -
The TPM for DTMC*(L/) is

0 1 0 0 0
1—p% 1-p? 2
0 0 —p p
2 2 22 2 1p 2
pPr—| 0 1= 0 20" 20=p7)
= 3—p? 3—p2 3—p2
0 1= 20 0 2(1-p%)
3,52 3— p2 3,p2
0 2 1-p°> 1=p® 0
2—p2 2—p2 2—p2

The steady-state PMF for DTMC*(L') is

,lzl*_ 0 1 ll 2_p2
S\ 2B3-p2)474'2(3-p2))

We can now calculate the main performance indices.

e The average 1 recurrence time in the state §,, where all the forks are available, called the average system
wZ =2(3-p?).

e Nobody eats in the state 35. Then, the fraction of time when no philosophers dine is 15’2* = ﬁ.

Only one philosopher eats in the states 53, 3}. Then, the fraction of time when only one philosopher dines

1sw wzl—i—l——

Two philosophers eat together in the state §5. Then, the fraction of time when two philosophers dine is
e 2—p?

5 7 26—
The relative fraction of time when two philosophers dine with respect to when only one philosopher dines
2 2 2—p2

. 2—p
BaE— 17 35,7

e The beginning of eating of a philosopher ({b}, 327’);2) is only possible from the states §5, 5%, §4. In each of the
states the beginning of eating probability is the sum of the execution probabilities for all multisets of activ-

ities containing ({b}, i) Thus, the steady-state probability of the beginning of eating of a philosopher is
e * * * AN
5 X ey, 22y PO 8) 95 Xy oy, ey P70 8) 08 Xy 4y 2oy P, 80) =

1 1 1— 1 (20 2 1 1) 2 _ 3
2(3792)(2p+ p+p)+ ((39p)+3fp2)+4((3pp + pp)_2(3*pz)'

One can see that the performance indices are the same for the complete and the reduced abstract generalized
dining philosophers systems. The coincidence of the first performance index as well as the second group of indices
obviously illustrates the result of Proposition 8.1. The coincidence of the third performance index is due to the
Theorem 8.2: one should just apply its result to the step traces {{b}}, {{b},{b}}, {{b},{e}} of the expressions
L and I/, and then sum the left and right parts of the three resulting equalities.

Note that 7'S*(L’) can be reduced further by merging the equivalent states 55 and 3§}, thus, it can be
transformed into a transition system with four states only. But the resulted reduction of the initial transition
system T.S*(L) will not correspond to some dtsPBC expression anymore.

For the step stochastic autobisimulation equivalence L, L we have DR(L)/ o, = {IEl, ’EQ, 163, 164},
where Ky = {3} (the initial state), Ko = {35} (the system is activated and no philosophers dine), K3 =
{83, 86, §7, 810, 511} (one philosopher dines), Ky = {84, 85, 83, 89, §12} (two philosophers dine).

The TPM for DTMC’j‘_> (L) is

0 1 0 0
9 2
P//* _ 0 0 2 1 2p P 2
1—p 2p 2(1)
0 372;)2 37p22 3—p
2(1-p%)
0 prz 27;2 0

The steady-state PMF for DTMC* L

0" = (0 1 1 2-p?
23-p7)"272B8-p%) /)

We can now calculate the main performance indices.

e The average recurrence time in the state l%g, where all the forks are available, called the average system
run-through, is ﬁ =2(3 — p?).
2

e Nobody eats in the state iCo. Then, the fraction of time when no philosophers dine is 1/)”* =3 1

3—p?)"
Only one philosopher eats in the state iCs. Then, the fraction of time when only one philosopher dines is
~/3/* — %
Two philosc;phers eat together in the state 164. Then, the fraction of time when two philosophers dine is
i = 2(23_—pp2)'

66

The relative fraction of time when two philosophers dine with respect to when only one philosopher dines
2—p? 2 _ 2—p?

Bo2G—0h 17 3747

e The beginning of eating of a philosopher {b} is only possible from the states Eg,i&g. In each of the
states the beginning of eating probability is the sum of the execution probabilities for all multisets of
multiactions containing {b}. Thus, the steady-state probability of the beginning of eating of a philosopher

s % * 11 * _ 1 2 2
V5" 24 Rispea, Radiy TMAK R)FUE" 20) 2 yen, oy TMAKs, K) = gy (L=p%)+07)+
1 (2(1—92) L2003

2\ 3-p? 3—p%) 7 2(3-p?)"

One can see that the performance indices are the same for the complete and the quotient abstract generalized
dining philosophers systems. The explanation of this fact is just the same as that presented earlier for the
complete and the reduced abstract generalized dining philosophers systems.

11 Conclusion

In this paper, we have considered a discrete time stochastic extension dtsPBC of a finite part of PBC enriched
with iteration. The calculus has the concurrent step operational semantics based on transition systems and
the denotational semantics in terms of a subclass of LDTSPNs. Within the context of dtsPBC with iteration,
we have defined a number of stochastic algebraic equivalences which have natural net analogues on LDTSPNs.
The equivalences abstract from empty loops in transition systems corresponding to dynamic expressions. The
diagram of interrelations for the algebraic equivalences has been constructed. We have explained how one can
reduce transition systems and DTMCs as well as expressions and dts-boxes modulo the stochastic equivalences.
We have presented a logical characterization of stochastic bisimulation equivalences. An application of the equiv-
alences to comparison of stationary behaviour has been demonstrated, and we have found which equivalences
from those we proposed guarantee an identity of stationary behaviour. We have proved that the weakest one
from the relations having the property is the step stochastic bisimulation equivalence. A congruence relation has
been proposed. Case studies of performance evaluation in the framework of the calculus have been presented.
An advantage of our framework is twofold. First, one can specify in it concurrent composition and synchro-
nization of (multi)actions, whereas this is not possible in classical Markov chains. Second, algebraic formulas
represent processes in a more compact way than Petri nets and allow one to apply syntactic transformations
and comparisons.

Future work consists in abstracting from the silent activities in the definitions of the equivalences, i.e., from
the activities with empty multiaction part. The abstraction from empty loops and that from silent activities
could be done in one step as well. The main point here is that we should collect probabilities during such
abstractions from an internal activity. As a result, we shall have the algebraic analogues of the net stochastic
equivalences from [21, 22]. Moreover, we plan to extend dtsPBC with recursion to enhance the specification
power of the calculus.

Acknowledgements I would like to thank Eike Best for many advices and encouraging discussions during
my research work at Computer Science Department, Carl von Ossietzky University of Oldenburg, Germany.

References

[1] ANDOVA S. Process algebra with probabilistic choice. Lecture Notes in Computer Science 1601, p. 111-129,
1999.

S

BALBO G. Introduction to stochastic Petri nets. Lecture Notes in Computer Science 2090, p. 84-155, 2001.

=)

BALBO G. Introduction to generalized stochastic Petri nets. Lecture Notes in Computer Science 4486,
p. 83-131, 2007.

[4] BEsT E., DEVILLERS R., ESPARZA J. General refinement and recursion operations in the box calculus.
Lecture Notes in Computer Science 665, p. 130-140, 1993.

[5] BEST E., DEVILLERS R., HALL J.G. The boz calculus: a new causal algebra with multi-label communica-
tion. Lecture Notes in Computer Science 609, p. 21-69, 1992.

[6] BEST E., DEVILLERS R., KOUTNY M. Petri nets, process algebras and concurrent programming languages.
Lecture Notes in Computer Science 1492, p. 1-84, 1998, http://parsys.informatik.uni-oldenburg.de/
“best/publications/apnf.ps.gz.

67

[7]

[16]

[17]

[18]

BesT E., DEVILLERS R., KOUTNY M. The box algebra: a model of nets and process expressions. Lecture
Notes in Computer Science 1639, p. 344-363, 1999.

BEesT E., DEVILLERS R., KOUTNY M. Petri net algebra. EATCS Monographs on Theoretical Computer
Science, 378 p., Springer Verlag, 2001.

BEsT E., DEVILLERS R., KOUTNY M. A unified model for nets and process algebras. In: Handbook of
Process Algebra, Chapter 14, p. 873-944, (Bergstra J.A., Ponse A., Smolka S.A., eds.), Elsevier Science
B.V., Amsterdam, The Netherlands, 2001, http://parsys.informatik.uni-oldenburg.de/ best/
publications/handbook.ps.gz.

BEST E., DEVILLERS R., KOUTNY M. Recursion and Petri nets. Acta Informatica 37(11-12), p. 781-829,
2001, http://parsys.informatik.uni-oldenburg.de/ best/publications/bdk-recursion.ps.gz.

BesT E., DEVILLERS R., KOUTNY M. The bozx algebra = Petri nets + process expressions. Information
and Computation 178, p. 44-100, 2002.

BesT E. COSY and its relationship to CSP. Lecture Notes in Computer Science 255, p. 416-440, 1986.

BERNARDO M., GORRIERI R. A tutorial on EMPA: a theory of concurrent processes with nondeterminism,
priorities, probabilities and time. Theoretical Computer Science 202, p. 1-54, July 1998,
http://www.sti.uniurb.it/bernardo/documents/tcs202.pdf.

BAIER C., HERMANNS H. Weak bisimulation for fully probabilistic processes. Lecture Notes in Computer
Science 1254, p. 119-130, 1997, http://web.informatik.uni-bonn.de/1/baier/papers/BHI7 .ps.

BAIER C., HERMANNS H., KATOEN J.-P., WoOLF V. Comparative branching-time semantics for Markov
chains. Lecture Notes in Computer Science 2761, p. 492-507, 2003, http://www.inf .tu-dresden.de/
content/institutes/thi/algi/publikationen/texte/11_00.pdf.

BucHHOLZ P., KEMPER P. Quantifying the dynamic behavior of process algebras. Lecture Notes in Com-
puter Science 2165, p. 184-199, 2001.

BEsT E., KOuTNY M. A refined view of the box algebra. Lecture Notes in Computer Science 935, p. 1-20,
1995.

BEesT E., KouTNy M. Solving recursive net equations. Lecture Notes in Computer Science 944, p. 605623,
1995.

BEST E., LINDE-GOERS H.G. Compositional process semantics of Petri boxes. Lecture Notes in Computer
Science 802, p. 250-270, 1993.

BrLoom B., MEYER A. A remark on bisimulation between probabilistic processes. Lecture Notes in Com-
puter Science 363, p. 26—40, 1989.

BucHHOLZ P., TARASYUK 1. V. A class of stochastic Petri nets with step semantics and related equivalence
notions. Technische Berichte TUD-FI00-12, 18 p., Fakultit Informatik, Technische Universitat Dresden,
Germany, November 2000, ftp://ftp.inf.tu-dresden.de/pub/berichte/tud00-12.ps.gz.

BucHHOLZ P., TARASYUK 1.V. Net and algebraic approaches to probablistic modeling. Joint Novosibirsk
Computing Center and Institute of Informatics Systems Bulletin, Series Computer Science 15, p. 31-64,
Novosibirsk, 2001, http://www.iis.nsk.su/persons/itar/spnpancc.pdf.

BucHuOLZ P., TARASYUK 1.V. Fquivalences for stochastic Petri nets and stochastic process algebras.
Vestnik, Quartal Journal of Novosibirsk State University, Series: Mathematics, Mechanics and Informatics
6(1), p. 1442, Novosibirsk State University, Novosibirsk, 2006 (in Russian), http://www.iis.nsk.su/
persons/itar/vestnik06.pdf.

BucHHOLZ P. Markovian process algebra: composition and equivalence. In: Herzog U. and Rettelbach M.,
editors, Proceedings of 2"* Workshop on Process Algebras and Performance Modelling, Arbeitsberichte
des IMMD 27, p. 11-30, University of Erlangen, Germany, 1994.

BucHHOLZ P. Equivalence relations for stochastic automata networks. In: W.J. Stewart, ed., Computation
with Markov Chains, p. 197-216, Kluwer Academic Publishers, USA, 1995.

68

[26]

27]

28]

[29]

[45]

[46]

BucHHOLZ P. A notion of equivalence for stochastic Petri nets. Lecture Notes in Computer Science 935,
p. 161-180, 1995.

BucHHOLZ P. Iterative decomposition and aggregation of labeled GSPNs. Lecture Notes in Computer Sci-
ence 1420, p. 226-245, 1998.

CHRISTOFF 1. Testing equivalence and fully abstract models of probabilistic processes. Lecture Notes in
Computer Science 458, p. 126-140, 1990.

DEVILLERS R. Construction of S-invariants and S-components for refined Petri boxes. Lecture Notes in
Computer Science 691, p. 242-261, 1993.

DEVILLERS R. S-invariant analysis of general recursive Petri boxes. Acta Informatica 32(4), p. 313-345,
1995.

DEVILLERS R. Petri boxes and finite processes. Lecture Notes in Computer Science 1119, p. 465-480, 1996.

DONATELLI S., RIBAUDO M., HILLSTON J. A comparison of perfomance evaluation process algebra and
generalized stochastic Petri nets. Proceedings of 6" International Workshop on Petri Nets and Performance
Models, Durham, USA, IEEE Computer Society Press, p. 158-168, 1995.

EspARrRzA J., BRUNS G. Trapping mutual exclusion in the box calculus. Theoretical Computer Science 153,
p. 95-128, 1996.

DE FrRUTOS D.E., MARROQUIN O.A. Ambient Petri nets. Electronic Notes in Theoretical Computer
Science 85(1), 27 p., 2003, http://www.elsevier.nl/gej-ng/31/29/23/138/47/27/85.1.005.ps,
http://www.elsevier.nl/locate/entcs/volume85.html.

FLORIN G., NATKIN S. Les reseauz de Petri stochastiques. Technique et Science Informatique 4(1), 1985.

VAN GLABBEEK R.J. The linear time — branching time spectrum II: the semantics of sequential systems
with silent moves. FExtended abstract. Lecture Notes in Computer Science 715, p. 66-81, 1993.

VAN GLABBEEK R.J., SMOLKA S.A., STEFFEN B. Reactive, generative, and stratified models of probabi-
listic processes. Information and Computation 121(1), p. 59-80, 1995, http://boole.stanford.edu/pub/
prob.ps.gz.

HanssoN H. Time and probability in formal design of distributed systems. In: Real-Time Safety Critical
Systems, Volume 1, Elsevier, The Netherlands, 1994.

HiLLsToN J. A compositional approach to performance modelling. 158 p., Cambridge University Press,
Great Britain, 1996, http://www.dcs.ed.ac.uk/pepa/book.pdf.

HeskeETH M., KOUTNY M. An axiomatization of duplication equivalence in the Petri box calculus. Lecture
Notes in Computer Science 1420, p. 165-184, 1998.

HoARE C.A.R. Communicating sequential processes. Prentice-Hall, London, Great Britain, 1985.

HERMANNS H., RETTELBACH M. Syntax, semantics, equivalences and axioms for MTIPP. Proceedings
of 2"4 Workshop on Process Algebras and Performance Modelling, Regensberg / Erlangen (Herzog U.,
Rettelbach M., eds.), Arbeitsberichte des IMMD 27, p. 71-88, University of Erlangen, Germany, 1994,
http://ftp.informatik.uni-erlangen.de/local/inf7/papers/Hermanns/syntax_semantics_
equivalences_axioms_for_MTIPP.ps.gz.

JONSSON B., YI W., LARSEN K.G. Probabilistic extensions of process algebras. In: Handbook of Process
Algebra, Chapter 11, p. 685-710, (Bergstra J.A., Ponse A., Smolka S.A., eds.), Elsevier Science B.V.,
Amsterdam, The Netherlands, 2001.

Kourny M., BEST E. Operational and denotational semantics for the box algebra. Theoretical Computer
Science 211(1-2), p. 1-83, 1999, http://parsys.informatik.uni-oldenburg.de/ best/
publications/tcs.ps.gz.

Kotov V.E., CHERKASOVA L.A. On structural properties of generalized processes. Lecture Notes in Com-
puter Science 188, p. 288-306, 1985.

Kourny M., EsparzA J., BEST E. Operational semantics for the Petri box calculus. Lecture Notes in
Computer Science 836, p. 210-225, 1994.

69

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[62]

Kortov V.E. An algebra for parallelism based on Petri nets. Lecture Notes in Computer Science 64, p.
39-55, 1978.

KouTNy M. Partial order semantics of box expressions. Lecture Notes in Computer Science 815, p. 318—
337, 1994.

KourNny M. A compositional model of time Petri nets. Lecture Notes in Computer Science 1825, p.
303-322, 2000.

LArsSeN K.G., SkoU A. Bisimulation through probabilistic testing. Information and Computation 94(1),
p- 1-28, 1991.

LARSEN K.G., SKOU A. Compositional verification of probabilistic processes. Lecture Notes in Computer
Science 630, p. 456-471, 1992.

MAcIA H.S. sPBC: Una extensién Markoviana del Petri box calculus. Ph.D. thesis, 249 p., Departamento
de Informética, Universidad de Castilla-La Mancha, Albacete, Spain, December 2003 (in Spanish),
http://www.info-ab.uclm.es/retics/publications/2003/sPBCthesis03.pdf.

MARSAN M.A., BALBO G., CONTE G., DONATELLI S., FRANCESCHINIS G. Modelling with generalized
stochastic Petri nets. Wiley Series in Parallel Computing, John Wiley and Sons, 316 p., 1995,
http://wuw.di.unito.it/ greatspn/GSPN-Wiley/.

MARROQUIN O.A., DE FRUTOS D.E. TPBC: timed Petri box calculus. Technical Report, Departamento
de Sistemas Infofméticos y Programacién, Universidad Complutense de Madrid, Madrid, Spain, 2000 (in
Spanish).

MARROQUIN O.A., DE FrRUTOS D.E. Eztending the Petri box calculus with time. Lecture Notes in Com-
puter Science 2075, p. 303-322, 2001.

MiILNER R.A.J. Communication and concurrency. Prentice-Hall, 260 p., Upper Saddle River, NJ, USA,
1989.

MovrLoYy M. Performance analysis using stochastic Petri nets. IEEE Transactions on Software Engineering
31(9), p. 913-917, 1982.

MorLoy M. Discrete time stochastic Petri nets. IEEE Transactions on Software Engineering 11(4), p.
417-423, 1985.

MacIiA H.S., VALERO V.R., CUARTERO F.G. A congruence relation in finite sPBC. Technical Report
DIAB-02-01-31, 34 p., Department of Computer Science, University of Castilla-La Mancha, Albacete,
Spain, October 2002, http://www.info-ab.uclm.es/retics/publications/2002/tr020131.ps.

MaciA H.S., VALERO V.R., CUARTERO F.G. Defining equivalence relations in sPBC. Proceedings of 15¢
International Conference on the Principles of Software Engineering - 04 (PriSE’04), p. 195-205, Buenos
Aires, Argentina, November 2004, http://www.info-ab.uclm.es/retics/publications/2004/
prise04.pdf.

MacIiA H.S., VALERO V.R., CAzoRLA D.L., CUARTERO F.G. Introducing the iteration in sPBC. Tech-
nical Report DIAB-03-01-37, 20 p., Department of Computer Science, University of Castilla-La Mancha,
Albacete, Spain, September 2003, http://www.info-ab.uclm.es/descargas/tecnicalreports/
DIAB-03-01-37/diab030137.zip.

MaciA H.S., VALERO V.R., CazoRLA D.L., CUARTERO F.G. Introducing the iteration in sPBC. Pro-
ceedings of the 24" International Conference on Formal Techniques for Networked and Distributed Systems
- 04 (FORTE’04), Madrid, Spain, Lecture Notes in Computer Science 3235, p. 292-308, October 2004,
http://www.info-ab.uclm.es/retics/publications/2004/forte04.pdf.

MaciA H.S., VALERO V.R., CUARTERO F.G., DE FrRUuTOS D.E. 4 congruence relation for sPBC. Formal
Methods in System Design 32(2), p. 85-128, Springer, The Netherlands, April 2008.

MacIiA H.S., VALERO V.R., CUARTERO F.G., PELAYO F.L. A new proposal for the synchronization in
sPBC. Technical Report DIAB-02-01-26, 15 p., Department of Computer Science, University of Castilla-
La Mancha, Albacete, Spain, June 2002, http://www.info-ab.uclm.es/sec-ab/Tecrep/
newproposalsysPBC.ps.

70

[65]

[66]

MacIA H.S., VALERO V.R., CUARTERO F.G., PELAYO F.L. Improving the synchronization in stochastic
Petri box calculus. Actas de las II Jornadas sobre Programacion y Lenguajes - 02 (PROLE’02), El Escorial,
Spain, November 2002.

MacIiA H.S., VALERO V.R., CUARTERO F.G., PELAYO F.L. A new synchronization in finite stochastic
Petri boz calculus. Proceedings of 3" International IEEE Conference on Application of Concurrency to
System Design - 03 (ACSD’03), p. 216-225, Guimaraes, Portugal, IEEE Computer Society Press, June
2003, http://www.info-ab.uclm.es/retics/publications/2003/acsd03.pdf.

MacIA H.S., VALERO V.R., CUARTERO F.G., Ruiz M.C.D. sPBC: a Markovian extension of Petri box
calculus with immediate multiactions. Fundamenta Informaticae 87(3—4), p. 367406, IOS Press, Amster-
dam, The Netherlands, 2008.

MacIA H.S., VALERO V.R., DE FrRUTOS D.E. sPBC: a Markovian extension of finite Petri box calculus.
Proceedings of 9" IEEE International Workshop on Petri Nets and Performance Models - 01 (PNPM’01),
p- 207-216, Aachen, Germany, IEEE. Computer Society Press, September 2001,
http://www.info-ab.uclm.es/retics/publications/2001/pnpmO1.ps.

MaciA H.S., VALERO V.R., DE FrRuTOS D.E. sPBC: a Markovian extension of finite PBC. Actas de IX
Jornadas de Concurrencia - 01 (JC’01), p. 243-256, Sitges, Spain, June 2001,
http://www.info-ab.uclm.es/retics/publications/2001/mvfjcO1.ps.

MacIiA H.S., VALERO V.R., DE FrRUuTOS D.E., CUARTERO F.G. FEztending PBC with Markovian mul-
tiactions. Proceedings of XXVII Conferencia Latinoamericana de Informética - 01 (CLEI’01) (Montilva,
J.A., Besembel, I, eds.), 12 p., Mérida, Venezuela, Universidad de los Andes, September 2001,
http://www.info-ab.uclm.es/retics/publications/2001/cleiO1.ps.

NUNEZ M.G., DE FRUTOS D.E., LLANA L.D. Acceptance trees for probabilistic processes. Lecture Notes
in Computer Science 962, p. 249-263, 1995.

NIAOURIS A. An algebra of Petri nets with arc-based time restrictions. Lecture Notes in Computer Science
3407, p. 447-462, 2005.

N1AOURIS A., KOUTNY M. An algebra timed-arc Petri nets. Technical Report Series CS-TR-895, 60 p.,
School of Computer Science, University of Newcastle upon Tyne, Great Britain, March 2005,
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf.

NUNEZ M.G. An aziomatization of probabilistic testing. Lecture Notes in Computer Science 1601, p.
130-150, 1999, http://dalila.sip.ucm.es/miembros/manolo/papers/arts99.ps.gz.

PETERSON J.L. Petri net theory and modeling of systems. Prentice-Hall, 1981.

RIBAUDO M. Stochastic Petri net semantics for stochastic process algebra. Proceedings of 6! International
Workshop on Petri Nets and Performance Models, p. 148-157, Durham, NC, USA, IEEE Computer Society
Press, 1995.

TARASYUK 1.V. Equivalence notions applied to designing concurrent systems with the use of Petri nets.
Programming and Computer Software 24(4), p. 162-175, Nauka, Moscow, 1998,
http://www.maik.rssi.ru/journals/procom.htm.

TARASYUK 1.V. Logical characterization of probabilistic T-bisimulation equivalences. Joint Novosibirsk
Computing Center and Institute of Informatics Systems Bulletin, Series Computer Science 20, p. 97-111,
Novosibirsk, 2004, http://www.iis.nsk.su/persons/itar/prlogncc.pdf.

TARASYUK I.V. Stochastic Petri nets: a formalism for modeling and performance analysis of computing
processes. System Informatics 9, p. 135-194, SB RAS Publisher, Novosibirsk, 2004 (in Russian),
http://www.iis.nsk.su/persons/itar/spnsi.pdf.

TARASYUK 1.V. Discrete time stochastic Petri box calculus. Berichte aus dem Department fiir Informatik
3/05, 25 p., Carl von Ossietzky Universitat Oldenburg, Germany, November 2005,
http://www.iis.nsk.su/persons/itar/dtspbcib_cov.pdf.

TARASYUK L. V. Iteration in discrete time stochastic Petri box calculus. Bulletin of the Novosibirsk Com-
puting Center, Series Computer Science, LIS Special Issue 24, p. 129-148, NCC Publisher, Novosibirsk,
2006, http://www.iis.nsk.su/persons/itar/dtsitncc.pdf.

71

[82] TARASYUK 1.V. Stochastic Petri box calculus with discrete time. Fundamenta Informaticae 76(1-2), p.
189-218, I0S Press, Amsterdam, The Netherlands, February 2007, http://www.iis.nsk.su/persons/
itar/dtspbcfi.pdf.

[83] TARASYUK 1.V. Fquivalences for behavioural analysis of concurrent and distributed computing systems.
321 p., Academic Publisher “Geo”, Novosibirsk, 2007 (ISBN 978-5-9747-0098-9, in Russian).

[84] TARASYUK I.V. Investigating equivalence relations in dtsPBC. Berichte aus dem Department fiir Infor-
matik 5/08, 57 p., Carl von Ossietzky Universitidt Oldenburg, Germany, October 2008,
http://www.iis.nsk.su/persons/itar/dtspbcit_cov.pdf.

[85] TARASYUK 1.V. A notion of congruence for dtsPBC'. Bulletin of the Novosibirsk Computing Center, Series
Computer Science, IIS Special Issue 28, p. 121-141, NCC Publisher, Novosibirsk, 2008,
http://www.iis.nsk.su/persons/itar/dtcgncc.pdf.

[86] TARASYUK 1.V. Performance evaluation in dtsPBC'. Proceedings of 18t" Workshop on Concurrency, Spec-
ification and Programming - 09 (CS&P’09), Krakéw-Przegorzaly, Poland, September 28-30, 2009, L. Czaja,
M. Szczuka, editors, p. 602-615, Warsaw University, 2009, http://www.iis.nsk.su/persons/itar/
dtsshmcsp.pdf.

[87] TARASYUK I.V. Modeling and performance analysis of concurrent processes in the algebra dtsPBC'. Vest-
nik, Quartal Journal of Novosibirsk State University, Series: Mathematics, Mechanics, Informatics 9(4),
p. 90-117, Novosibirsk State University, Novosibirsk, 2009 (in Russian), http://www.iis.nsk.su/
persons/itar/vestnik09.pdf.

[88] TARASYUK I.V., MACIA H.S., VALERO V.R. Discrete time stochastic Petri box calculus with immediate
multiactions. Technical Report DIAB-10-03-1, 25 p., Department of Computer Systems, High School of
Computer Science Engineering, University of Castilla-La Mancha, Albacete, Spain, March 2010,
http://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-10-03-1/dtsipbc.pdf.

[89] WoLF V., BAIER C., MAJSTER-CEDERBAUM M. Trace machines for observing continuous-time Markov
chains. Proceedings of the 3"% International Workshop on Quantitative Aspects of Programming Lan-
guages (QAPL’05), Edinburgh, The Great Britain, 2005, Electronic Notes in Theoretical Computer Science
153(2), p. 259277, 2005.

A Proof of Proposition 5.2

It is enough to prove the statement of the proposition for x = s, since x = i is a particular case of the previous
one with one-element multisets of multiactions and interleaving transition relation.

Let R : No , N', H € (DR(G)UDR(G"))/r and s,5 € H. We have VH € (DR(G) UDR(G"))/r YA €
leﬁ \ {0} s AprH & 5 3p H. The previous equality is valid for all s,§ € H, hence, we can rewrite it
as H 2p H and denote PM(H,H) = PMz(s,ﬁ) — PM?(5,H). Note that transitions from the states of
DR(G) always lead to those from the same set, hence, Vs € DR(G) PM}(s,H) = PM}(s,H N DR(G)). The
same is true for DR(G").

Let (Ay--- Ay, Q) € StepStochTraces(G). Taking into account the notes above and R : G&,,G’, we have
VH1,...,VH, € (DR(G)UDR(G"))/r [Glx 235, Hi Bp, -+ Bp Hy & (G Dp, Hy Bp, - 25 Ho

Now we intend to prove that the sum of probabilities of all the paths starting in [G]~ and going through
the states from Hy,...,H, is equal to the product of Py,...,P,, which is essentially the probability of the
“composite” path starting in Ho = [[G]~]r and going through the equivalence classes Hi, ..., H, in T'S*(G):

> [1PT(Ti,si0) = [[PMa, (Hir, H).
(Cao TGl D8, (D) =Ay, sicHy (1<i<n)} =l

We prove this equality by induction on the step trace length n.
en=1

(CullClaTher, CT0=As, sctiay T L (1, [Gls) = PM}, ([Glx, Ha) = PM 3, (Ho, Ha).

72

en—>n+1

n+1 * o
2 5ty Pasi I} PT* (T, 5021 =
{Fl T, Fn+1|[G] —»-—HSn H} Sn+1, L() A, s;€H; (1<1<n+1)}

{Tht1lsn ﬁ; Snt1, L(Tni1)=Ant1, $n€Hn, snt1€Hn+1} ALl Dnl[Gla—3—sn, L(Ti)=A;, si€H; (1<i<n)}
[[i—, PT*(Ti,5i-1) PT*(Tpy1, 80) =
r
Z{Fl7-~~7Pn|[G]z—}>"'l;T>§Svl, L(T;)=A;, si€H; (1<i<n)}

" PTH(T;, 50 PT*(Tpiy,sn)| =
Hlil (1) Z{Fn+1|snrn—;>rlsn+1, LT p4+1)=Ant1, $n€Hn, Sn+1€EHnt1} (1):|
Hi:l PT* (Fu Si*l)PMZnJrl (Sn, HnJrl) =
(T1 T l[Cla DB, £(T)=A;, s;cH: (1<i<n)} [Tiey PT* (Vi sic) PMR, (H, Honir) =
PM3, ., (Hn, Hni1) Z{rl,...,rn\[c]zg..&;sm L(T)=A;, s;€H; (1<i<n)} [Tz PT(T, 851) =

PM}, (Mo, Hog) [Timy PM3, (Hioa, 1) = [T PM, (Hioa, He).

(T1 e T |Gl TS5, L(T)=A,, si€H, (1<i<n)}

1 TIn

Note that the equality we have just proved can also be applied to G’.
Now we only need to see that the summation over all multisets of activities is the same as the summation
Ty

over all equivalence clusses: Q= Z{rl Tol[Gla s, £(T)=A:, (1<i<n)} [Tz PT"(Fipsi-1) =
Hn Z{Fl, ALal[Gla D5, L0)=As, si€M; (1<i<n)} [[imy PT* (T, 501) =
,,,,, w, Ty PMA, (Hi1, Hi) =
2 o [T, PT* (D)) =
PP S D liG e D, (D)= Ay, sjers (1<igm)) !
oo [[Z, PT*(T, s7_y)-

ir5i—1

.....

{ry,....,°1 |[G’]z —»sn, L(T)=A;, (1<i<n)}
Hence (A - An, Q) € StepStochTraces(G'), and we have StepStochTraces(G) C StepStochTraces(G').
The reverse inclusion is proved by symmetry. a

B Proof of Proposition 8.1

The proof is an extension of results from [26] to the process algebra framework and discrete time case.
It is enough to prove the statement of the proposition for transient PMFs only, since ¢* = limg_, o ¢*[k]
and " = limy_; o ¥’ " [k]. We proceed by induction on k.

e k=0

Note that the only nonzero values of the initial PMFs of DTMC*(G) and DTMC*(G") are ¥*[0](|G]~)
and *[0]([G']~). The only equivalence class containing [G]x or [G']~ is Ho = {[G]~, [’]z} Thus,
Yseronpric) VI01(s) = ¥ [0]([Glx) = 1 = ¥ [0]([G']~) = Xy enonnriar ¥ [01(s)-
As for other equivalence classes, VH € ((DR(G) UDR(G"))/®r) \ Ho we have
ZsGHﬂDR(G) Pr[0](s) =0 = Zs’eHmDR(G') P [0](s").

o k—k+1
Let # € (DR(G) UDR(G'))/r and sy, s, € H. We have VH € (DR(G) U DR(G"))/r VA € INF\ {0}

Y] Y] * 7\ * _
s1 —»p H & so —»p H. Therefore, PM*(s1,H) = Z{P\agleﬁ I PT (NF, 51) =
D AENENOY 235 e o1 B, £y—ny L L L581) = Daenveqoy PMA(s1, H) =

Loaenprioy PMA2 1) = Loaewpvio) 2riss,eit 5,55, coy=ay TT (152) =

Z{r\agzeﬁ LI _ B N
can denote PM*(H,H) = PM*(s1,H) = PM*(s2, H). Note that transitions from the states of DR(G)
always lead to those from the same set, hence, Vs € DR(G) PM*(s,H) = PM*(s, N DR(G)). The
same is true for DR(G").
By induction hypothesis, 3~ cnpric) ¥7[K](s) = Xy cunpric) Y [Kk](s"). Further,
ZseﬁmDR(G) Pk +1)(8) = ZsGHﬂDR(G) ZseDR(G) Ut [k)(s)PM™(s,5) =

s€DR(G) ZSE;{QDR(G) Y [k](s)PM*(s,5) = ZseDR(G) ¥ [k](s) de«;gﬂDR(G) PM*(s,5) =
> on EseHﬁDR 0)1/’ (k](s) > S€HNDR(G) PM*(s,5) =
> EseHmDR(G) V(K] (s) Z PT*(L,s) =

PT*(T, s9) = PM*(SQ,ﬁ). Since we have the previous equality for all s1,s2 € H, we

€HNDR(G) Z{r\s—»s}

73

2m Zsennprc) V() Z{F\ageﬁmDR(G) 555} PT*(T,8) =

2o EseHmDRN(G) U k](s)PM* (5, H) = Yoy Zse’HﬂDR(g) ¥ [k](s)PM*(H, H) =

2o PM*(H,H) Ese’HﬂDR(G) w*[k](S)NZ o PM*(H,H) Es/eHmDR(Gf) P (K] (s)NZ

> n Zs/eHmDR G") W*[J(s")PM*(H,H) = >y Zs/eH/mDR(G/) Y[R (s) PM*(s', H) =

Y Ywennpren ¥ KIS Z{F‘Eg/engR(G,) LN PT*(T',s") =

PTOIN "€HNDR(G) U k](s") ngengR(G/) Z{F\Eé’ s 5s) PT(I, ") =

Yo Xsennprian ¥ KI() Yo ciinpriay PM7(s,8) =

Zs’GDR(G’) Wk](S/) Zgfef-lmDR(G’) PM*(s',5) = ZS’EDR(G’) Zg/eﬁmDR(G’) YR8) PM*(s',8') =
Z;/eﬁmDR(G/) ZS'GDR(G') Y [k](s")PM*(s',5") = Zg/egﬂDR(G/) [k +1)(3). O

C Proof of Theorem 8.2

The main idea of the proof is similar to that from [21, 22] but in the algebraic setting.
Let # € (DR(G)UDR(G'))/z and s,5 € H. We have VH € (DR(G) U DR(G'))/r VA € INFA\A{0} s Ap

H o s i‘ﬁp H. The previous equality is valid for all 5,5 € H, hence, we can rewrite it as ‘H i‘»79 H and denote
PMA(H,H) = PM}(s,H) = PM}(5,H). Note that transitions from the states of DR(G) always lead to those

from the same set, hence, Vs € DR(G) PM} (s, H) = PM}(s, H N DR(G)). The same is true for DR(G').
Let ¥ = Ay --- A, be a step trace of G and G'. We have IHy,...,IH, € (DR(G) UDR(G"))/r Ho i;}pl

Hq i%pz e iﬁpn ‘H,. Now we intend to prove that the sum of probabilities of all the paths starting in every
so € Ho and going through the states from H,...,H, is equal to the product of Py, ..., Py:

n
3 [1P7 (i, si-1) HPMA i1, M)
n . :1
{T1rTnlso—b-Bs,, L(OT)=A;, sieH; (1<i<n)} "

We prove this equality by induction on the step trace length n.

en=1

PT*(T = PM?* = PM?* .
(TrfsoTher. £—As. 1€} (T'1, 80) 4, (s0,H1) 4, (Ho, Ha)

en—>n+1
Hn+1 PT*(F“ 51'71) —

I T
Py To Togalsob - Bsn ' snin, LO0)=As, si€H; (1<i<n+1)}
r, r .
{Tn+t1lsn —J>;18n+17 L(Tny1)=Ant1, 85n€Hn, Snt1€Hn11} {Fl,...,f‘n\so—»»»»—gsn, L(T3)=A;, si€H; (1<i<n)}
n
Hi:l PT*(F“ Si_l)PT*(Fn+1, Sn) =
Z{F17~~~7Fn|503"'&$5n7 L(Ti)=Ai, si€H; (1<i<n)}
n
H»_ PT*(FZ Sifl)z T PT*(Fn+1 Sn) =
=t ’ {Tosilsn 3 snt1, LTns1)=Ans1, 5n€Hn, Sni1€Hnt1} ’
n
[PT*(Li, si-1)PM} (S0, Hig1) =
n
- PT*(T';,s8,_1)PM Hin H =
{P17~~-7Fn|50£%>---r—?>sn, L(Ti)=A;, si€H; (1<i<n)} Hl—l (25 9% 1) An+1() n-l—l)
PM? Hn, H " PT*(Ty,si-1) =
A (P, "+1)Z{Fl,...,rn\soiknﬂksn, L(Ti)=Ai, si€H; (1<i<n)} [lies (T, 8i-1)
n n+1
PMy (Mo, Hpg1) [Limy PMA,(Hio1, Ha) = [L2y PMA,(Hioa, Ha).
Let sg, 50 € Ho. We have
PM*(Ay---A,,s0) = " PT*(T;,8i-1) =
(v Anso) =200 b eTba,, £ro—ar, azigny Limt TT o si1)
n
L PT*(T;,8,-1) =
DV Z{rl Tolsod - Bs,, L(T)=A;, si€M; (1<i<n)} ~ =1 (i 5i-1)
n * o
ZHh SHn HZ 1 PMAl (Hi717Hi) -
n /T = o
»»»»» Moo T F, _ [[im, PT* (L, 5-1) =

{T1,..., T|50—»—»8n, L(T)=A;, 5,€H; (1§i§n)}
® L PT*(T,5,1) = PM*(A; - Ay, 5).

r
{l1,..., Fn|50—%>'--r—gsm L(Ti)=A;, si€M; (1<i<n)}

(Trr Folsod 5., £(F)=As, (1<i<n)}
Since we have the previous equality for all sg, 59 € Ho, we can denote PM*(A; -+ - Ay, Ho) =
PM*(Al . '-An,SQ) = PM*(Al .- 'An,go).

74

By Proposition 8.1, 37 c3npric) ¥ () = Xy ennpricn ' (s"). Now we can complete the proof:
Ysennprc) Y S)PT (X, 8) = X icnnprc) ¥ (5)PT (X, H) = PT*(3,H) 3 sennpric) ¥ () =
PT*(3,MH) Xy ennpren ¥ (8) = Xvennpren ¥ (8)PT(Z,H) =
ES’EHODR(G’) (s)PTH(E,).

(0]

	Deckblatt Igor Tarasyuk
	Igor Tarasyuk
	dtspbcpeib

