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Abstract : In [MVFO01], a continuous time stochastic extension s/~ 3 (' of finite Petri box calculus
P BC' [BDH92] was proposed. In [M\VVCCO03], iteration operator was added to sPBC.

Algebra s P BC has an interleaving semantics, but P BC has a step one.

We constructed a discrete time stochastic extension dts P BC of finite P BC' [Tar05] and

enriched it with iteration [Tar06].
The step operational semantics is defined in terms of labeled probabilistic transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs (LDTSPNSs) called

discrete time stochastic Petri boxes (dts-boxes).
We propose a variety of stochastic equivalences and investigate their interrelations.

It is explained how to use the equivalences for transition systems and discrete time Markov chains

reduction.
A logical characterization of the equivalences is presented via probabilistic modal logics.
We demonstrate how to apply the equivalences to compare stationary behaviour.

A congruence relation is defined. The case studies of performance evaluation are presented.
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Introduction

Previous work

e Continuous time (subsets of 7> (): interleaving semantics
— Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:
exponential transition firing delays,
Continuous time Markov chain (CTMC).
— Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:
exponential and zero transition firing delays,

Semi-Markov chain (SMC).
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e Discrete time (subsets of IV): interleaving and step semantics

— Discrete time stochastic Petri nets (DTSPNSs) [Mol85,Z2G94]:
geometric transition firing delays,
Discrete time Markov chain (DTMC).

— Discrete time deterministic and stochastic Petri nets (DTDSPNSs) [ZFHO1]:
geometric and fixed transition firing delays,
Semi-Markov chain (SMC).

— Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:
phase and fixed transition firing delays,

Semi-Markov chain (SMC).
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e prBPA, AC P [And99]

Stochastic process algebras
o VI'T'I PP [HR94]
o (GSPA [BKLL95]
o PFE P A [Hil96]
e ST [Prig6]
o M P A [BG098]
o GSMPAI[BBG09S]
e sACP [AHRO00]
e TC Pt [MViog]
More stochastic process calculi
e '/ PP [GHR93]
o T'PC(C'S [Han94]
o PV — TIPP [Ret95]
o PP AI[NFL95]

StAF P, [BT01]
SM — PEP A [Brad05]
1PEPA[HBC13]

Algebra P B(C' and its extensions

Petri box calculus P B(C' [BDH92]

Time Petri box calculus ¢ P BC [Kou00]

Timed Petri box calculus 7' P BC' [MFOO]

Stochastic Petri box calculus s P BC' [MVF01,MVCCO03]

Ambient Petri box calculus AP BC [FM03]

Arc time Petri box calculus at P BC' [Nia05]

Generalized stochastic Petri box calculus gs P B (' [MVCRO08]
Discrete time stochastic Petri box calculus dts P BC' [Tar05,Tar06]

Discrete time stochastic and immediate Petri box calculus
dtsiPBC [TMV10,TMV13]



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 8

Classification of stochastic process algebras

Time Interleaving semantics Non-interleaving semantics

Continuous || MTIPP (CTMC), PEPA (CTMP), | GSPA (GSMP), S7, GSM P A (GSMP)
EMPA (SMC, CTMC),
sPBC (CTMC), gsPBC' (SMC)

Discrete TC P4t (DTMRC) sACP, dtsPBC (DTMC),
dtsi P BC' (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.

The underlying stochastic process: in parentheses near the SPA names.
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Transition labeling
e CTSPNSs [Buc95]
e GSPNs [Buc98]
e DTSPNs [BTOO]
Stochastic equivalences
e Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]
® SPAs [HR94,Hil94,BG098]
e Markov process algebras (MPAS) [Buc94,BKe01]
e CTSPNSs [Buc95]
e GSPNs [Buc98]
e Stochastic automata (SAs) [Buc99]

e Stochastic event structures (SESs) [MCWO03]
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Syntax

The set of all finite multisets over X is ]N)gn

The set of all subsets (powerset) of X is 2X

Act = {a,b, ...} is the set of elementary actions.

Act = {a, I;, ...} is the set of conjugated actions (conjugates) s.t. @ # a and a=a.
A = Act U Act is the set of all actions.

L= ﬂ\f“‘ln is the set of all multiactions.

The alphabetof a« € Lis A(a) = {z € A | a(x) > 0}.

An activity (stochastic multiaction) is a pair (c, p), where

a € Land p € (0;1) is the probability of multiaction .

S L is the set of all activities.

The alphabet of (o, p) € SLis Ao, p) = A(a).

The alphabetof I' € IN$/A is A(L') = Uy, pyerA().

For (cv, p) € SL, its multiaction partis L(cv, p) = « and its probability partis (v, p) = p.

The multiaction part of I' € IN¥~ is L(T) = D (a.p)er O

10



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 11

The : sequential execution ;, choice [|, parallelism

, relabeling [ f], restriction rs,
synchronization sy and iteration | % * |.

Sequential execution and choice have the standard interpretation.

Parallelism unlike that in standard process algebras.

—_—

Relabeling functions f : A — A are bijections preserving conjugates: Vo € A f(2) = f(z).
Fora € L, let f(a) =) . f(x) Forl' € ]N}%ﬁ let f(I') = D0 per(f(@), p).

Restriction over a € Act: any process behaviour containing a a

Let o, 8 € L be two multiactions s.t. fora € Act wehavea € cvanda € S,ora € canda € £5.

Synchronization of aw and 3 by a is ab, 0 = 7:

alz)+ B(x)—1, z=aorx =a;
a(z) + B(x), otherwise.

In the iteration, the subprocess is executed first,

then the one is performed zero or more times, finally, the one is executed.



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 12

Static expressions specify the structure of processes.

Definition 1 Let (cr, p) € SLand a € Act. A static expression of dtsPBC'is

E:= (a,p) | E;E | E|E | E||E | E[f] | Evsa| Esya | [ExE<E].

Stat Expr is the set of all static expressions of dtsPBC.

Definition 2 Let (o, p) € SLand a € Act. A regular static expression of dtsPBC'is

B = (a,p) | B:E | E)E| E|E | Elf] | Evsa| Esya| [ExD+E],
where D ::= («a,p) | D;E | D||D | D|f] | Drsa | Dsya | |DxD+E].

RegStatExpr is the set of all regular static expressions of dtsPBC'.
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Dynamic expressions specify the states of processes.
Dynamic expressions are obtained from static ones annotated with upper or lower bars.

The underlying static expression of a dynamic one: removing all upper and lower bars.

Definition 3 Let B € StatExpr and a € Act. A dynamic expression of dtsPBC'is

G:=FE|E|GE|EG|GE|E[G|G|G|G[f]|Grsa|Gsya |
GxExE| | [ExG*E]| | [ExExG].

DynFExpr is the set of all dynamic expressions of dtsPBC.
Definition 4 A dynamic expression is regular if its underlying static expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsPBC.

13
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Operational semantics
Inaction rules

Inaction rules: instantaneous structural transformations.

Let I/, F', K € RegStatExpr and a € Act.

Inaction rules for overlined and underlined regular static expressions

B = B F E.F = E;F b F = B F
E[F = B(F B[F = B[F E[F = B[F
|F = E[|F E|F = E|F E|F = E||F
E[f] = E[f Elf] = E[f] FErsa= Ersa
rsa= Ersa Esya= Esya Lsya= Esya
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Let &/, F' € RegStatExpr, G, H, (NJ, H € RegDynFExpr and a € Act.

Inaction rules

G=C oc{ul} G=C. ol G=G Hoil G=G
GoE=GoE EoG=FEoG G||H=G| H G||H=G| H Gl f]l=GIf]
G=0G, oeirs,sy} G:>C~¥~ G=G _ G=G _
Goa=Goa [GxExF|=[GxExF| |[ExG*F|=[ExGx*F| [ExFxG|=[E+«Fx*G]

Definition 5 A regular dynamic expression is operative if no inaction rule can be applied to it.
OpRegDyn Expr is the set of all operative regular dynamic expressions of dtsP BC.
We shall consider regular expressions only and omit the word “regular”.

Definition 6 = (:> U <:)* is the structural equivalence of dynamic expressions in dtsPBC.
(G and GG’ are structurally equivalent, G=~G’, if they can be reached each from other by applying

inaction rules in a forward or backward direction.
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Action and empty loop rules
Action rules: execution of non-empty multisets of activities at a time step.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (a p),(B,x) € SL, E, F € RegStatExpr, G,H € OpRegDynFExpr,
G,H € RegDynExpr, a € ActandT, A € INSENA{D}, TV € INRE.

Action and empty loop rules

@ o, pP LG )
ElG— G B (a, p) Her)} (o, p) SC1 G%G’si{”ﬂ}
GoE—GoFE
Lo : r =~ r ~
EoG5EoG G|HS G| H G||HS G| H
P3 GLG, HSH I, GLG Rs G5 G, aagA(r)
I‘—|—A () ~
G||H 5G| H G[f]|— G[f] Grsa>Grsa
I1 GHa 2 GHa 13 GHa
~ ' +{(c,p) }+{ (B, ~
Svl aLla Sv2 G sy a o) bt} >G sy a, aca, a€p
Y e uE G a y M4 {(aBabr 0} |
Yy y G sy a >G sy a

16
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Comparison of inaction, action and empty loop rules

Rules

State change

Time progress

Activities execution

Inaction rules

Action rules

Empty loop rule

17
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Transition systems

Definition 7 Letm € IN. The numbering of expressions is
L= n| (¢t)(e).

Num is the set of all numberings of expressions.

The content of a numbering ¢ € Num is

{c}, L € IN;

Cont(t1) U Cont(ta), ¢= (t1)(t2).

BTRNUM:The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

Cont(r) =

18
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|Gl~ = {H | G = H} is the equivalence class of G € RegDynFExpr w.r.t.
Definition 8 The derivation set D R(() of a dynamic expression G is the minimal set:
¢ [G]~ € DR(G);
o if [H]~ € DR(G)and 30 H - H then [H]~ € DR(G).
Let G be a dynamic expression and s, § € DR(G).

~ F ~
The set of all multisets of activities executable from s is Fxec(s) ={I' | 3H € sdH H — H}.

LetI' € FExec(s) \ {0}. The probability that the multiset of activities I is ready for execution in s:

PFT,s)= ] »- 11 (1-X).

(a,p)el’  {{(B:x)}eEzec(s)|[(B,x) '}

In the case I = () we define

H{(B,x)}EExec(s)(l —x), FExec(s)# {0},

1, otherwise.

PF(0,s) =
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Let I" € Ezec(s). The probability to execute the multiset of activities I in s:

PF(T,s)
ZAEEJZeC(S) PF(Aﬂ S) .

PT(T,s) =

The probability to move from s to s by executing any multiset of activities:

PM(s,3) = > PT(T,s).

(T|3Hes 3Hes HSHY

Calculation of the probability functions >, P71, P\ fors; € DR(E)and E = ({a}, p)[|({a}, x)

s\l 0 el p)) [{Hal, )1 | B

PE | (1=p)1=x) | p(L=Xx) | x(L=p) |1=px

PT (1—p)(1—x) p(1—x) x(1—p) 1
1—px 1—px 1—pXx
1—p)(1— —
PM o< 1P_)EOX X) (s1) % (52) 1
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Definition 9 The (labeled probabilistic) transition system of a dynamic expression (s is

TS(G) — (SG7 LG7 TG7 SG)’ where
e the set of statesis S = DR(G);
e the setof labelsis Lo = INSA x (0;1];

e the set of transitions is

T = {(s, (T, PT(T, 5)),3) | s,5 € DR(G), 3H € s3H € § H - H}:
e the initial state is s = [G]~.
A transition (s, (I', P), 5) € T is written as s p8.

. T .. r . - r .
We write s—sif 9P s —p sand s—sif dI' s — s.

21
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Definition 10 Let G, G’ be dynamic expressions and T'S(G) = (Sq, La, Ta, sa),
TS(G") = (Sgr, Lar, Ter, S+ ) be their transition systems. A mapping 3 : Sg — Sg is an
isomorphism between T'S(G) and T'S(G'), 5 : TS(G)=TS(G), if

1. Bis abijections.t. B(sa) = sqr;

2.V5,5€ SVl s 5p § & B(s) S B(S).
TS(G)and T'S(G") are isomorphic, T'S(G)~TS(G"),if 36 : TS(G) ~ T'S(G").
For E € RegStatExpr,letTS(E) =TS (E).

Definition 11 G and G’ are equivalent w.r.t. transition systems, G—=;.G", it T'S(G)~TS(G").
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For a dynamic expression (7, a discrete random variable is associated with every state s € DR(G).

The random variables (residence time in the states) are
the probability to stay in the state s € D R(() for k — 1 moments and leave it at the moment k > 1 is
PM(s,s)*=1(1 — PM(s,s)).

The mean value formula: the average sojourn time in the state s is

1
~ 1—PM(s,s)

SJ(s)

The average sojourn time vector S.J of G has the elements S.J(s), s € DR(G).

Analogously: the sojourn time variance in the state s is

PM(s,s)
(1—PM(s,s))?

VAR(s) =

The sojourn time variance vector VAR of G has the elements VAR(s), s € DR(G).
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Definition 12 The underlying discrete time Markov chain (DTMC) of a dynamic expression (7,
DTMC(G), has the state space D R((G), the initial state |G|~ and transitions s—p 3, if s — § and
P = PDM{(s,s).

For E € RegStatExpr,let DTMC(E) = DTMC(E).
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DTMC(E)

1—p

1+p

2p

1tp

The transition system and the underlying DTMC of E for £ = (({a}, p)1[]({a}, p)2); ({b}, x)

Let By = ({a}, p)[|({a}, p), E2 = ({0}, x) and E = Ey; Es.
The identical activities of the composite static expression are enumerated as:

b= (({a}vp)l[]({a}ap)2)§ ({b}7X)
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TS(E) DTMC(E)
[El*E2*ESD C@Q*ES] '
1—p 1—p
0,175 h T
({a}ap)17 ({a},p)g, 12_pp
p p
1+p 1+p v
(B, +E3 -5y C_T=17259))
(1—x)(1—6) ({b}.x), 10
R x(1—9) e
1—x0 0(1—x)
({c},0), ﬁ
0(1—x)
I=x0 Y
0,1 1

EXPRIT:The transition system and the underlying DTMC of E for E = [(({a}, p)1[]|({a}, p)2) * ({b}, x) * ({c}, )]

Let E1 = ({a}, p)[|({a}, p), B2 = ({0}, X), B3 = ({c},0) and E = [E} * Es x E3].

The identical activities of the composite static expression are enumerated as:

E = [(({a}, p)1l({a}, p)2) * ({0}, x) * ({c}. 0)].
DR(E) consists of 51 = [[E] * Fo * E3||~, 50 = [[E] * Fo x E3|~, 53 = [[E1 * Fy x E3]]~.
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The average sojourn time vector of Eis

14+p 1—x0 )
SJ = : , 00 |.
( 2p " 0(1—x)

The sojourn time variance vector of F is

VAR — (1—p2 (1—9)(1—x9)700).

4p 7 0*(1 —x)?

27
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Denotational semantics

Labeled DTSPNs

Definition 13 A labeled discrete time stochastic Petri net (LDTSPN) is
N = (PN, Tn, Wn,QnN, Ly, MN), where

e Py and Ty are finite sets of places and transitions (Py U Tx # 0, Py NTn = 0);
o Wy :(Py xTyn)U(Tn x Py)— IN is the arc weight function;
e O : T — (0;1) is the transition probability function;
e L : TN — Listhe transition labeling function;
o My € W}Z\fb is the initial marking.
Concurrent transition firings at discrete time moments.

LDTSPNs have step semantics.

28
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A transition ¢ € Ty is enabled in a marking M € EV]Z];; of LDTSPN N if *t C M.
Ena( M) is the set of all transitions enabled in M.
A set of transitions U C Ena (M) is enabled in M if *U C M.

Thent € Ena(M) fires in the next time moment with probability {2 (%), if no different transition is
enabled in M, i.e. Ena(M) = {t}.

Let U C Ena(M), U # ()and *U C M. The probability that the set of transitions U is ready for
firing in M

PrUM)=]]an@) - J] (1-Qn(w).

teU u€Ena(M)\U

In the case U = () we define

HuEEna(M)(l o QN(U’)) Ena’(M) 7é Q);

1 otherwise.

PF(, M) =
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Let U C Ena(M) and *U C M. The probability that the set of transitions U fires in M

P - PF(U, M)
7 > (vCEnamnsveay PEV. M)

—~—

fU = () then M = M.

Firing of U changes marking M to M=M—"°U+ U?*, MEMDM where P = PT(U, M).
We write M 50 it 3P M gp Mand M—Mit3U M % M.

For U = {t} we write M-S M and M-5M.

30
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Definition 14 Let /N be an LDTSPN.

e The reachability set RS (V) is the minimal set of markings s.t.
— My € RS(N);
—if M € RS(N)and M — M then M € RS(N).

e The reachability graph RG(N) Is a directed labeled graph with
— the set of nodes RS(INV);

—~—

— an arc labeled by (U, P) from node M to M it M gp M.

e The underlying Discrete Time Markov Chain (DTMC) DT'M C'(N') is a DTMC with
— the state space RS(NV);
— a transition M%p]\j, where P = PM (M, ]/\\4/) is the probability to move from M to M by

firing any set of transitions:

—~—

PM(M,M)= Y PT(U M)

(UIMS M)

— the initial state M .
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Let N be an LDTSPN and M € RS(IN). The average sojourn time in the marking M is

1
- 1—PM(M,M)

SJ(M)

The average sojourn time vector S.J of N has the elements SJ (M), M € RS(N).

The sojourn time variance in the marking M is

PM (M, M)
(1— PM(M,M))?

VAR(M) =

The sojourn time variance vector VAR of N has the elements VAR(M), M € RS(

N).

32



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus

ke

pla)l [{b}x
th to
p3

t3| 0|0
A,

LDTSPN, its reachability graph and the underlying DTMC
The transitions: ¢1 (labeled by {a}), 2 (labeled by {b}) and t3 (labeled by ().
The transition probabilities: p = Qn(t1), x = Qn(t2), 0 = Qn(t3).
RS(N) consistsof My = (1.1,0), My =(0,1.1), Mg = (1,0,1), My = (0,0,2).
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The average sojourn time vector of /V:

x| =
X | =
| =
N

1
SJ:( |
p+ X — pX

The sojourn time variance vector of /V:

l—p—x+px 1—x 1—0p 1—9)
var( ox e 0y
(p+x—=px)? " x*  p* 62

The elements P;; (1 < 4,7 < 4) of (one-step) transition probability matrix (TPM) of DT'M C'(N ):

PM(s;,s;) s; — 8;;
p | PMGis) s,

0 otherwise.
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The (one-step) TPM:

0 1 — 0
p_ X X
0 0 1—p 0
\ / 0 0 1-6 )
The steady-state PMF 1) is a solution of
H(P—1) =0
01T =1 ’

where | is the identity matrix of size four and 0 = (0,0,0,0), 1 = (1,1,1,1).

35
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Forp=yx =20

v = 1 l—p 1—p 2—0p
- \b—=3p'5-3p'5-3p"5-3p)°

The inverse of the steady-state PMF is the mean recurrence time vector

5-3p 5—3p 5—3
}K%:(S—Sm & P p).

l—p ' 1—p 2—0p

The average time to come back to the initial marking M = M7 in the long-term behaviour is in (2; 5).
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Algebra of dts-boxes
Definition 15 A discrete time stochastic Petri box (dts-box) is N = (Pn, Tn, W, An), where

e Py and Ty are finite sets of places and transitions, respectively, s.t. Py U Ty # () and
Py NTy =0
o Wy :(Py xTyn)U(Tn x Py) — IN is afunction of the weights of arcs between places and
transitions and vice versa;
e A\ is the place and transition labeling function s.t.
— AN|py : Py — {e, i, x} (it specifies entry, internal and exit places);
—~ ANy 1 Tn — {0] 0 € IN25 x SL} (it associates transitions with the relabeling relations).
Moreover, Vi € Ty °t # () # t°.
For the set of entry places of N, °N = {p € Py | Anx(p) = e}, and the set of exit places of IV,
N°® ={p € Py | An(p) =x},itholds: °N £ () # N°and ®*(°N) = () = (N°)*.
A dts-box is plain if V& € Ty An (1) = 0(a,p). Where 0(o ) = {(0, (o, p))} is the constant
relabeling, identified with (v, p).

A marked plain dts-box is a pair (N, M ), where IV is a plain dts-box and M € ﬂ\fﬁfl is its marking.
Let N = (N,°N)and N = (N, N°).
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N(oz,p)L

O

7

Orf]

0

©

O
id Oid

S

rsa

a | Us g

Usy q

The plain and operator dts-boxes

—
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Definition 16 Let (o, p) € SL, a € Actand E, F, K € RegStatFExpr. The denotational
semantics of dts P BC' is a mapping Box ;s from RegStat Expr into plain dts-boxes:

1. Boxgts (047/0 1,) N(a

7p)b;

o(Bozars(E), Boxars(F)), o € {;, 1], [|};

(e, p)

(EoF) =0

3. Boxgss(E|[f]) = O(y)(Boxass(E));
(Eca) = ©
(

2. Boxgis(EoF

4, BOZUdtS EOCL) oa(BOxdts(E))a oS {rS,Sy};

5. Box s ([E*F+K|) = O, ,1(Boxgs(E), Boxgis(F), Boxgss(K)).

For E € RegStatExpr,let Box(E) = Boxgis(E) and Boxgis(E) = Boxgs(E).
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We denote isomorphism of transition systems by =,
and the same symbol denotes isomorphism of reachability graphs and DTMCs

as well as isomorphism between transition systems and reachability graphs.

- 1 For any static expression £

TS(E)~RG(Boxgs(E)).

_ 1 For any static expression £

DTMC(E)~DTMC(Boxgs(E)).

40
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N DTMC(N)
1-p
1+p
tl {a'}ap)l {a'}ap)Z t2 12—pp
Y
({0} £ 010)
0, (1_1X—)§<19_9) ts3, xl(i;g) 11_—X09
({c}.0)] t4 £, 8= 0(1—x)
T1—x6 1—x6
Y Y
0,1 1

BOXIT:The marked dts-box N = Boxas(F) for E = [(({a}, p)1[]({a}, p)2) * ({0}, x) * ({c},0)], its
reachability graph and the underlying DTMC



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus

TS(E)

' Z(El I E2)sy a)

0,P11
({a}ap)77312

({&}’X)’P13

({&}7X)77324 ({a}vp)’P34

a@ireT
0,Psa

EXPR:The transition system and the underlying DTMC of E for E = (({a}, p)||({a}, X)) sy a
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@N&mﬁ

t1{atp) | (@,0x)

5N

BOX:The marked dts-box N = Box g (E) for E = (({a}, p)||({a}, x)) sy a, its reachability graph
and the underlying DTMC
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The normalization factor N/ =

1
1—p?x—px>+p*x*"

P11 =N(1-p)(1—x)(1 - px) Pia = Np(1 —x)(1 — px)

Pis = Nx(1—p)(1 - px) Py =Npx(1—p)(1—x)
Pl = Npx(1 = px) Pa2=1-x

Pas = X Psg=1—p

Pss=p Pas =1

Thecase p = x =

D=

Pii=Piz=Piz =P} = 3 Py = 3

4
7722—7324—7733—7334—— Paa=1, Pra = —.

44
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N RG(N)
P1 @ e 100000
! 0.5 ¥ {ipt3}. i
o (STl 011110 Ja=
D2 P3

L — — 011200 011020
/ to ts \ l I

1
({c}.3) "8
) AZR

011001

N

\ Pa \ s/ D5 /
({d},3)
l
o

The marked dts-box N = Bozg4:s(E) for E = [(({a}, %) x (({b}, %)H({c}, %)) x ({d}, %)]
and its reachability graph
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1,0,0,0,0,0) is the initial marking.

(1, )

(0,1,1,1,1,0) is obtained from M7 by firing .

(0,1,1,2,0,0) is obtained from M by firing 75 and has 2 tokens in the place py.
M, = (0,1,1,0,2.0) is obtained from M5 by firing 73 and has 2 tokens in the place ps.

Concurrency in the second argument of iteration in F can lead to non-safeness of the corresponding

marked dts-box IV, but it is 2-bounded in the worst case.

The origin of the problem: /N has as a self-loop with two subnets which can function independently.
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Stochastic equivalences

Empty loops in transition systems
Let G be a dynamic expression and s € DR(G).
The probability to stay in s due to k (k > 1) empty loops is (PT'(0, s))".

LetI' € FExec(s) \ {0}, i.e. PT((),s) < 1. The probability to execute the non-empty multiset of
activities I" in s after possible empty loops:

- PT (T, s)
PT*(T PT(T, 7 = FL(s)PT(I'
( 78) S kZ:O @ 1 L PT(@, S) (8) ( 78)7
where F'L(s) = 1_P%(® 5 is the empty loops abstraction factor.

The empty loops abstraction vector E'L of G has the elements £ L(s), s € DR(G).

Definition 17 The (labeled probabilistic) transition system without empty loops 1'S™ (G) has the state
| N r .
space D R((G) and the transitions s—»p3§,if s — §, I' Z and P = PT*(T, s).

. T .. r . - I .
We write s—»sif 3P s —»p sand s—»sif dI' s —» s.

ForI' = {(a, p) } we write 3(—»)735 and s'%%3.
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For E € RegStatExpr,letTS*(E) = TS*(E).
Definition 18 (G and G’ are equivalent w.r.t. transition systems without empty loops, G—=;..G’, if
TS*(G)~TS*(G").

Definition 19 The underlying DTMC without empty loops DT M C* () has the state space D R(G)
and transitions s—»p§, if s —» S, where P = PM™(s, 5) is the probability to move from s to S by

executing any non-empty multiset of activities after possible empty loops:

EL(s)(PM(s,s) — PT(0,s)), s=S35;

PM™(s, 5) PT*(T, s)
Z EL(s)PM(s,s), otherwise,

{F|s—»s}

where PM (s,s) — PT((, s) is the probability to stay in s due to any non-empty loop, i.e.

by executing any non-empty multiset of activities.

For E € RegStatExpr,let DTMC*(E) = DTMC*(E).
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75*(E)

L~
QEl *EQ*EgD

>

({a}.0)1,3 ({a}.p)2,3

ngﬂ)e
x+60—2x
({c},0),

0(1—x)
x+0—-2x0¢

(El xEoxEg]

X+60—2x6

DTMC*(E)

e

\[E1*Eg*E3]

Y
)

0(1—x)

Y

(El * EoxEg]

x(1-0)

X+60—2x6

49

The transition system and the underlying DTMC without empty loops of Ein Figure EXPRIT
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Empty loops in reachability graphs

Let N be an LDTSPN and M € RS(N).

The probability to stay in M due to k (k > 1) empty loops is (PT(0, M))*.

Let U C Ena(M), U # (Qand*U C M,i.e. PT (0, M) < 1. The probability that the non-empty

set of transitions U fires in M after possible empty loops:

PT(U, M)

T PT0.ID EL(M)PT(U, M),

PT*(U,M) = PT(U,M)» (PT(0,M))* =
k=0

where F/L(M) = 1_PTl(® a7y is the empty loops abstraction factor.

The empty loops abstraction vector /L of N has the elements EL(M), M € RS(N).

Definition 20 The reachability graph without empty loops RG™* (V') with the set of nodes RS(INV)

and the set of arcs corresponding to the transitions Mg»p]\/Z it M S M, U +# () and
P =PIT*(U,M).

We write M -2 M it 3P M S5 M and M—s M it 3U M 2 M.
For U = {t} we write M -5 M and M- M.
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Definition 21 The underlying DTMC without empty loops DT'M C* (') has the state space RS (N )
and transitions M —»p M, it M —» M, where P = PM™* (M, M) is the probability to move from M

to M by firing any non-empty set of transitions after possible empty loops:

PM*(M, M) =Y PT*(U,M) =

{(UeEna(M)| MM}
EL(M)(PM (M, M) — PT(0,M)), M = M:;
EL(M)PM (M, M), otherwise,

where PM (M, M) — PT((), M) is the probability to stay in M due to any non-empty loop, i.e.

by firing any non-empty multiset of transitions.
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- 2 For any static expression £

TS*(E)~RG*(Boxgs(E)).

_ 2 For any static expression £

DTMC*(E)~DTMC*(Boxg.s(E)).

52
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RG*(N) DTMC*(N)
100
1
\
(010 I O
x(1-90)
x+6—2x6
tyg, % %
Y Y
001 001

The reachability graph and the underlying DTMC without empty loops of /V in Figure BOXIT
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T5*(E) DTMC*(E)

((E1|IE2)Sy9

({&}7X)7,Pf3

The transition system and the underlying DTMC without empty loops of Ein Figure EXPR
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Y

The reachability graph and the underlying DTMC without empty loops of [V in Figure BOX

95
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L * _ 1
The normalization factor N'* = =202 x—2px 22022

Piy = 125— = N*p(1 — x)(1 — px)

7’?3217313 = N*x(1 = p)(1 - px)

P = 1 = Npx(1 = p)(1 =)
Pl = 2l = A px(1 - px)

Poy = 113723422 -

Py = 113%133 =1

N

Thecase p = x =

* * * 3 SV 3k ]- * * * 2
7)12:7313:7394 = Piy = 10’ Poy=Pzy=1, Py = 5
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Stochastic trace equivalences

(

Let G be a dynamic expression, s, § € DR(G) and s “¢) 3. We write S<%)p§, where
P = pt*((a, p), s) is the probability to execute the activity (a, p) in s after possible empty loops when

only one-element steps are allowed:

— PT*({(O‘7/0)},S)
Z{(B,x)}eEscec(s) PT*({(B,x)},s)

pt*((a; p), s)

ForI' € ﬁ\ffzﬁ we consider L(I") € ﬂ\fﬁn i.e. (possibly empty) multisets of multiactions.
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Definition 22 An interleaving stochastic trace of a dynamic expression G is a pair (o, pt* (o)), where

o=a«q- o, € L and

% _ n t* Y ).
pt (J) Z{(a1,01),...,(ampn)|[G]zzso(aﬂpl)&(ahpw---(an—’fn)Sn} Hz:lp ((O&“pz)jsz 1)

We denote a set of all interleaving stochastic traces of a dynamic expression G by

IntStochTraces(G).

(G and G’ are interleaving stochastic trace equivalent, G=;.G’, if

IntStochTraces(G) = IntStochTraces(G").

et E = (({a}. 1) ({a}. 1)) sy
IntStochTraces(E) = {(0. ), ({a}.2), ({a}.2), ({a}{a}. 2), ({a}{a}. 2)}.



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 59

Definition 23 A step stochastic trace of a dynamic expression G is a pair (X, PT™(3)), where
S = Ay Ay, € (IVE, \ {0})° anc

PT*(%) =) [[imy PT (I, si-1).

(T1,  Tol[Gla=s03s1-3 -8 £(T)=A; (1<i<n)}

We denote a set of all step stochastic traces of a dynamic expression G by StepStochTraces(G).

(G and G’ are step stochastic trace equivalent, G=..G’, if

StepStochTraces(G) = StepStochTraces(G").

Let £ = (({a}, 3)({a}, 5)) sy a.

StepStochTraces(E) = {({0}, 1), ({{a}}. 1), ({{a}}, 15), ({{a}H{{a}}, 55).
({{a} {a}}, 55), ({{a}, {a}} 55)}
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Stochastic bisimulation equivalences

Let G be a dynamic expressionand H C DR(G). Fors € DR(G)and A € IN%, \ {0} we write

A . . : :
s—»pH, where P = PM (s, H) is the overall probability to move from s into the set of states H via

non-empty steps with the multiaction part A after possible empty loops:

PM% (s, H) = > PT*(T, s).

(T|35€H s—»5, L(T)=A)

. A . A
We write s—»H if 3P s —»p H.

A
We write s—»pH if 3A s = H, where P = PM* (s, H) is the overall probability to move from s into

the set of states H via any non-empty steps after possible empty loops:

PM*(s,H)= > PT*T,s).

{T|35€H s—»5}
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We write s—~p 7, where P = pm? (s, H) is the overall probability to move from s into the set of states

‘H via steps with the multiaction part {oz} after possible empty loops when only one-element steps are
allowed:

pmg (s, M) = > pt*((a, p), s).

{(a,p)|35eH s' 25}

We write s—H if IP s —~p H.
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Definition 24 Let GG and G’ be dynamic expressions. An equivalence relation

R C (DR(G) U DR(G"))? is a x-stochastic bisimulation between G and G’
* €{interleaving, step}, R : G, .G', » € {i, s}, if:

1. ([G]a, [G']~) € R.

2. (s1,80) € R = YH € (DR(G) UDR(G")) /=
o Vr € Land —=—if » = 1;
o Vo € INE \ {0} and —=—, if » = s;

x x
S1 —=p H & so —p H.

Two dynamic expressions GG and G’ are %-stochastic bisimulation equivalent, % E{interleaving, step},

G G ifdR : G+, G, » € {i, s}

Ris(G,G") = {R | R : G<>,.G"}, » € {1, s}, is the union of all x-stochastic bisimulations
between G and G’, x €{interleaving, step}.

_ 3 Let G and G’ be dynamic expressions and G+« , .G, « € {i, s}. Then R,s(G, G")

is the largest x-stochastic bisimulation between G and G’ * €{interleaving, step}.



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus

Stochastic isomorphism
: : ~ A ~ : A <
Let G be a dynamic expression, s, 5 € DR(G) and s —»p {5}. We write s—»p 3.

Definition 25 Let G, G' be dynamic expressions. A mapping 5 : DR(G) — DR(G") is a
stochastic isomorphism between G and G/, 5 : G G’ if

1. Bis abijection s.t. B([Glx) = [G']~;
2.Vs,5 € DR(G)VA € INE \ {0} s Bp § < B(s) Dp B(3).

(G and G’ are stochastically isomorphic, G G’ ifd6: G G’

63



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus

TS(E) TS(E)

TS(E")
C(x) (&
0.3 0,4
({a}.3).3 (fa}.3)2.5  (a}.9)1d ({a},3)2.2
C(e) C T E"
0,1 0,1
TS*(E) TS*(E7)
( E ) E//
({a}.2).1 ({a}.3)2.3 (a3 ({a}3)24
Y E//

Properties of the stochastic isomorphism based on transition systems with empty loops

64
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et F = ({a}, 1), B' = ({a}, Hul({a}, bas B = ({a}, Inl({a} D
The (one-element) multisets of activities which label the transitions of T'S* (E), T'S*(E’), T'S*(E"),
and non-empty ones of T'S(E), T'S(E’), T'S(E"), have the same {{a}}.

o I E’ E", since the probability of the only one non-empty transition in7'S*(E) is 1, the

probability of both non-empty transitions in 1’S* (E’) and T'S* (E"') is 5, and 1 = % + %

e F isnot equivalent to E’ wirt. the , since the probability
of the only one non- empty transition in TS(_ l , Whereas the probability of both non-empty

) is
s
transitions in T'S(E") is g, and = 5 7 § 5+ 3.

e [ is not equivalent to E' w.rt. the , since the probability
of both non-empty transitions in TS(E’) |s 5, Whereas the probability of both non-empty transitions
: T e 1 1 1 2 1
InTS(E”)ISZ,and§+§ — 3 # 5 — Z—I—Z

o Fis equivalent to E' w.rt. the , since the probability of

the only one non-empty transition in TS( ) Is 5, the probability of both non-empty transitions in
TS(E")is ,and 5 = 1 + +.
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Interrelations of the stochastic equivalences

A
Y

—ts

—sto

Interrelations of the stochastic equivalences
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_ 4 Letx € {/, s}. For dynamic expressions GG and G':
1. G, G = G=..G,

2. G:ts*G/ ~ G:tsG/.

- 3 Let<r, «» € {= <« = ~}and + ++ € { 15, 55 slto, s} Fordynamic expressions
G and G’

G, G = G, G

iff in the graph above there exists a directed path from <, to <, ..
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Validity of the implications

The implications — : c{ } are valid, since single activities are one-element
multisets.

The implications o , + € {1, s}, are valid by the proposition above.

The implication — is proved as follows. Let 3 : G G'. Then R : G+ .. G’, where

R =1(s,8(s)) | s € DR(G)}.

The implication — is valid, since stochastic isomorphism is that of transition systems

without empty loops up to merging of transitions with labels having identical multiaction parts.

The implication ~ — is valid, since the transition system of a dynamic formula is defined based

on its structural equivalence class.
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Absence of the additional nontrivial arrows

@) Let B = ({a}, 5)[[({b}, 5) and E" = (({a}, 3); ({0}, 5)[(({b}, 5): ({a}, 5)). Then
E<: E' butE~+.. FE sinceonlyinTS*(E’) multiactions {a} and {b} cannot be executed
concurrently.

(0) Let E = ({a}, 3); ({0}, 5)[[({c}, 3)) and E” = (({a}, 3); ({0}, 5))[(({a}, 3); ({c} 3)).
Then E—_.E’, but </, . E’, since only in T'S*(E’) a multiaction {a } can be executed so that no
multiaction {b} can occur afterwards.

© Let B = ({a}, 3); ({b}, &) and B = ({a}. 1): ({b}. )0 ({a}. 1): ({b}. 3). Then B 7.

butEl ., E’, since T'S*(E') has more states than T'S* (E).

(d) Let E = ({a}, 3)and E' = ({a}. 5)1[]({a}. 5)2. Then E—.; E’, but E-*, . E’, since only
TS(E’) has two transitions.

(e) Let E = ({a}, 2); ({a}, 5) and B = (({a}, 5); ({a}, 5)) sy a. Then E—, . E’, but E#E',
since F and E’ cannot be reached each from other by applying inaction rules.

In the figure below N = Boxgis(E) and N’ = Box:,(E') for each picture (a)—(e).
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(@) N (b) N N’

N/
R U

{a},2) ({b},1 ;f‘f {a},2) ({b},1 {a},3 {a},2) ({a}.1
é é ﬁfis
(t},1) ({a},1 (3,14) ({c},3 (3,14) ({c},3
© N N d) N N (e) N N’
oo S Q0 R O
{a},1 {a},3) (fa}.1) {{a}.1 z {a},2) {ta}. 1) ({a}.1 {a},1
ﬁss é “ \@/ —ts 0
( ES
#sto #
(b},1 (b},4) ({v}.1 {a},2 {a},3

Dts-boxes of the dynamic expressions from equivalence examples of the theorem above
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Reduction modulo equivalences

N N’
@ e e Qe e e e
({a},3) |{c}iz) ({a},7) ({c}2)
o e
RNAY-Y °
sto

@ny) [y [en e e dldan b

O O FTOTOE

Reduction of a dts-box up to < _ .
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Let B = (({a}, 3); ({0}, 3)I(({e}, 3): ({d}, 2)) and B = (({a, 2}, 3); (({B, w1}, 3)
({0, 2}, (e, 2}, 5); ({0, 32, 15}, 5)1({ds i}, ) 21, 2) ({b, v}, 2)[]
{31,013, DDI(e 23 3 ((Lds ot} DI, va, I 31} DI B33 1))

Sy T SY Y1 SY Y2 SY Yb SY Z Sy U1 SY U] SY U IS T IS Y1 IS Yo IS Y5 IS 2 IS U1 S V] IS Ua.
We have £+ _F’ but E+ ., E’, since T'S*(E’) has more states than 7'S* (E).
Thus, E is a reduction of B/ w.r.t. < _ .

For N = Boxg;s(E) and N' = Boxgss(E’), N is areduction of N’ w.r.t. the net version of <+ __.
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An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expression (G and a step stochastic autobisimulation R : GG G,
let K € DR(G)/xr and s1, s2 € K.

~

We have YK € DR(G)/r VA € INE \ {0} s Ap K & 5o 5p K.

The equality is valid for all 51, so € IC, hence, we can rewrite it as Kil»plz, where
P = PMZ(IC, IC) — PMZ(Sl, IC) = PMZ(SQ, IC)

We write K-S if IP K Sp Kand KK it JAK 5 K.

The similar arguments: we write JC—»p K, where

D — PM*(IC,/E) - PM*(sl,lE) = PM*(SQ,IE)-
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Rss(G) = J{R | R : G+>..G} is the largest step stochastic autobisimulation on G.

Definition 26 The quotient (by ) (labeled probabilistic) transition system without empty loops of a
dynamic expression G is 'S, (G) = (S ;Lo ,Te 8 ), where

—SS

° Sﬁss = DR(G)/RSS(G);
¢ Lo, C(INE,\{0}) x (0;1]
e 7o = {(K, (A, PM;(K,K)),K) | K,K € DR(G) /..., K 2 K};

—SS

® s, = HG]%]RSS(G)'

The transition (K, (A, P), K) € T will be written as K5pK.
For E € RegStatExpr,1et TSY, (E)=TS%, (E).

Definition 27 The quotient (by ) underlying DTMC without empty loops of a dynamic expression
G, DTMC?, (G), hasthe state space DR(G) /.. (), the initial state ||G]~]%. . (g) and the

transitions K —»p K, where P = PM*(K, K).
For £ € RegStatExpr,let DTMCY, (E)=DTMC}, (E).

SSs SS
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Logical characterization

Logic iPML

Definition 28 T isthe truth, « € £, P € (0; 1]. Aformula of i PM L:

G:=T|-D|PAD |V, | (a)pP

iPML is the set of all formulas of the logic 1P M L.

Definition 29 Let G be a dynamic expression and s € D R((G). The satisfaction relation
— C DR(G) x iPML:

1. s =¢ | — always;

2. s Fq P, if s g D

3. s Fq PAV,ifs Eqg Pand s =¢ V;

4. s =g Va,ifnots = DR(G);

5. 5 =g (a)p®,ifIH C DR(G) s g H, Q>PandV¥5c H5 =g P.
()@ = TFP () pP. () o P implies () p P, if Q > P.
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We write G =¢ @, if |G]~ Ea P

Definiion 30 G and G are logically equivalentin tPM L, G G’ if
Vo € iPML G ’:G d & G IZG’ P,

Let GG be a dynamic expressionand s € DR(G), a € L.

The set of states reached from s by execution of «, the image set, is
Image(s,a) ={s| H(a,p)} € Exec(s) s (@) s},
A dynamic expression G is an image-finite one, if Vs € DR(G) Va € L |Image(s,a)| < oo.

e | 4 For image-finite dynamic expressions GG and G’

G+, G & G G’

Let £ = ({a}, 3); ({0}, 5)[({c}, 3)) and B = (({a}, 3); ({0}, 3))[(({a}, 3); ({c}, 3)).

Then E/ E’, because for ® = ({a})1({b}) 2 T we have E % @, but B/ = @, since in

TS*(E'’) a multiaction {a} can be executed so that no multiaction {b} can occur afterwards.
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Logic sSPML
Definition 31 Tisthetruth, A € INf;, \ {0}, P € (0;1].
A formula of sPM L:

= T|-D|PADP |V, | (A)pD

sPML is the set of all formulas of the logic sPM L.

Definition 32 Let G be a dynamic expression and s € D R((G). The satisfaction relation
= € DR(G) x sPML:

1. s =¢ | — always;

2. s Fq P, if s g ;

3. s Fq PAV,ifs Eqg Pand s =¢ V;

4. 5 =g Va,ifnots 25 DR(G);

5. 5 = (A)p®,if IH C DR(G) s 3o H, Q> PandVscH5 ¢ .
(A)® = TP (A)p®. (A) o P implies (A)pD,if Q > P.

I
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We write G =¢ @, if [G]~ Ea .

Definition 33 G and G are logically equivalentin sPM L, G G/ if
V® € sPML G IZG ® & G ‘:G’ D,

Let GG be a dynamic expressionand s € DR(G), A € ﬂ\fﬁm \ {0}.

The set of states reached from s by execution of A, the image set, is
- L .

Image(s, A) ={s| JI' € Exec(s) L(T') = A, s —» §}.

A dynamic expression (5 is an image-finite one, if

Vs € DR(G)VA € IN%, \ {0} |[Image(s, A)| < .

e 0ic0 5 For image-finite dynamic expressions G and G

G- .G & G G’

Let B = ({a}, 1)[({b}, 1) and B = (({a}, ); (B}, IDO(({b}. 1): ({a}, 1)). Then B

but &/ E’, because for ® = ({a, bf)1 T we have E E% @, but B % @, since in

T'S*(E'") multiactions {a} and {b} cannot be executed concurrently.
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Stationary behaviour
Theoretical background

The elements P (1 <i,57 <n=|DR(G)|) of (one-step) transition probability matrix (TPM) P* for
DTMC*(G):

D _ PM*(si,85), 8i —» 8j;
1] T

0, otherwise.

The transient (k-step, k € IN) probability mass function (PMF) ¥* k] = (Y [k], ..., ¥ [k]) for
DTMC*(G) is calculated as
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where *[0] = (¥5[0], ..., 1% [0]) is the initial PMF:

0, otherwise.

We have % [k + 1] = ¢*[k]P*, k € IN.

The steady-state PMF ©* = (97, ..., %) for DT M C*(G) is a solution of

WP -1) =0
1t =1

where 1 is the identity matrix of order n, O is a vector of n values 0, 1 is that of n values 1.

When DT M C*(G) has the single steady state, 10 = limy_, . Y™ [k].

80
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Fors € DR(G) with s = s; (1 <7 < n) we define " [k](s) = ¢7[k] (k € IN) and 1" (s)
Let GG be a dynamic expression and s, § € DR(G), S, S C DR(G).

The following are based on the steady-state PMF.

The average recurrence (return) time in the state s (the number of discrete time units or steps

required for this) is e ( 7

The fraction of residence time in the state s is 1™ ().

The fraction of residence time in the set of states S C D R(G) or the probability of the event
determined by a condition that is true for all states from .S is ZSES Y*(s).

The relative fraction of residence time in the set of states S w.r.t. thatin S'is gsef z*gg .
ses

The steady-state probability to perform a step with a multiset of activities A is
ZsEDR(G) V*(s) Z{rmgr} PT*(T, s).

The probability of the event determined by a reward function r on the states is

>_sepr(c) ¥ (8)r(s), where Vs € DR(G) 0 < r(s) < 1.

81
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1hc0i 6 Let G be a dynamic expression and £/ L be its empty loops abstraction vector. The
steady-state PMFs ¢ for DT'M C(G) and ¢* for DT M C*(() are related as: Vs € DR(G)

V*(s)EL(s)
> sepr(c) V(S EL(S)

P(s) =

82
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Steady state and equivalences

_ 5 Let G, G’ be dynamic expressions with R : GG G’ and ©* be the steady-state
PMF for DT MC*(G), v'" be the steady-state PMF for DT M C*(G"). Then
VH € (DR(G)UDR(G"))/r

Yo W= > ().

sEHNDR(G) s'€HNDR(G")

The result of the proposition above is valid if we replace probabilities with ones.

Let G be a dynamic expression. The transient PMF (LY k] (k € IN) and the steady-state PMF (LY
for DTMC?, (G) are defined Y* k] and y* for DT MC™*(G).

By the proposition above: VIC & DR(G)/RSS(G)

Vo, (K)y =) ¢*(s).

—3S S
selC

Stop = ({c}, %) rs c is the process that performs empty loops with probability 1 and never terminates.
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N

@e

({a},3)

VN

—18

B’

({b}.3)

ol

({c},z) ({d}, 3

1
2

@

N/

¢

e

({a},3)

({v},5

)

{C}’%)]

{d}a%):

O,

{c},3)
_/

84

<7, . does not guarantee a coincidence of steady-state probabilities to enter into an equivalence class
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LetE:[({a} 5) * ({8}, 3): (({e}, 5)l1({d}, 5))) * Stop] and

B’ = [({a}, 5) = ({0}, )((({c},%)1;({4},%)1)[](({d},§)2;({c},

We have EH E’

DR(FE) consists of

)2))) * Stop).

s1=[[({a}, 5) * ({0}, 3); (({c}, 5)[({d}, 5))) = Stop]]~,

sz = [[({a}, 5) = ({8}, 3): (({c}, 3)I({d}, 5))) * Stop]l,

s3 = [[({a}, 5) * ({0}, 2); (e}, 5)I({d}, 5))) = Stop]]~,

sa = [[({a}, 5) = ({8}, 3): (e}, 3)I({d}, 5))) * Stopllx,

s5 = [[({a}, 5) = ({8}, 5); ({c}, 3)[[({d}, 3))) * Stop]]~

DR(E’) consists of

s1=[[({a}, 3) = ({b}, 3)s ((({ehs )1 ({dh, 2) DI} 3)2: ({e}, 3)2))) * Stop
sy = [[({a}, 3) = ({0}, 3): (e}, )1 ({ah, 3)1)0((Hd}, 3)25 ({e}, 3)2))) * Stop
ss = [[({a}, 3) = ({0}, 2); ((({c}, 2)1: ({d}, )00}, 5)23 ({c}, 3)2))) * Stop
sy = [[({a}, 3) = ({b}, 5): (e}t 2)1: ({d} 2))0(({d}, 3)2; ({e}, 3)2))) * Stop
sy = [[({a}, 3) = ({0}, 3): (e}, )1 ({ah 3)1)0((Hd}, 2)25 ({e} 3)2))) * Stop

u o u
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The steady-state PMFs v* for DT M C*(E) and ¢)'" for DT M C*(E’) are

33 11 * 1 111
* = 0 e / — 0 —Y — . —.— 1.
w < 78787878>7¢ ( 73737676>

Consider H = {s3,s3}. We have ) 5 pr(m) ¥ (s) = ¥"(s3) = 2, whereas
D s eHNDR(E) W' (s") = ¢/ (sh) = +. Thus, does not guarantee a coincidence of
steady-state probabilities to enter into an equivalence class.

In the figure above N = Boxgis(E) and N’ = Boxgss(E').
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N N’
( ; )e ( ; )e
ﬁ’i.s

({a},1) B ({a},1)
/C< b\ﬁ ‘

({b},1) ({6}, 1)

i // \\
({d}, 1) \{j%)] fe}. 4 ({ar.5); {d},i)-/

{c},2>

T
o

The intersection of <>, . and =, does not guarantee a coincidence of steady-state probabilities to enter into an

equivalence class
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Let ' = [({a}, 3) * ({b}, 3); (({c}, 2)I({d}, 3))) * Stop] and
E' = [({a}, 5) = ({0}, 2); ((({c}, 3)all({d}, 3)1))0((({e}, 3)2: ({d}, 5)2)]]
(({d}, 3)3: ({c}, 5)3))))) * Stop].

We have Eﬁisﬁ and EESSF.

88
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DR(E) is as in the previous example

DR(E’) consists of

s1=[[({a}, 3) = ({0}, 2); ((({ehs 3)all({a}, 3)1)) (e}, 3)2: ({d} 3)2)]]
(({d}, 2)35 ({c}, 3)3))))) * StOP]]z,

sy = [[({a}, 5) * ({0}, 2); (e}, 3)all({d}, 3))) (e}, 3)2: ({d}, 5)2)]
(({d}, 3)3: ({c}, 2)3))))) * Stopll~,

s5 = [[({a}, 3) * ({0}, 3); ((({ehs 3)all({d}, 3)1) (e}, 3)2: ({d}, 3)2)]]
(({d}, 3)35 ({c}, 5)3))))) * Stop]]~,

sp = [[({a}, 5) = ({8}, 5): (e}, 3)all({al, 5))I((({e}, 5)25 ({d}, 3)2)]]
(({d}, 3)3: ({c}, 5)3))))) * Stop]]~,

s5 = [[({a}, 5) = ({8}, 5): ((({e}, 3)all({d}, 3) ) I(({e}, 5)25 ({d}, 3)2)]]
(({d}, 3)s5 ({c}, 3)3))))) * Stop]]~,

s6 = [[({a}, 5) * ({0}, 2);: (e}, 3)all({d}, 3)1) (e}, 3)2: ({d}, 5)2)]
(({d}, 3)3: ({c}, 3)3))))) * Stop]]z,

st = [[({a}, 5) = ({b}, 5): ((({e}, 3)all({d}, 5) ) I((({e}, 5)25 ({d}, 3)2)]
(({d}, 3)3: ({c}, 3)3))))) * Stop]]~
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The steady-state PMFs v* for DT M C*(E) and ¢)'" for DT M C*(E’) are

3 . 13 13 3 3 3 3
= (0,2, "= (0 .
v < 8’ )’w (’38’38’38’38’38’38)

Consider H = {s3,s3}. We have ) 5 pr(m) ¥ (s) = ¥"(s3) = 2, whereas
D s eHNDR(E) W' (s") = ¢/ (sh) = £2. Thus, plus do not guarantee a coincidence of
steady-state probabilities to enter into an equivalence class.

OOIOO
OO|P—‘
co| —

In the figure above N = Boxgis(E) and N’ = Boxgss(E').
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Definition 34 A derived step trace of a dynamic expression Gis > = Ay --- A,, € (IN%, \ {0})*,

where s € DR(G) s L S L(T;)=A4;(1<i<n).

The probability to execute the derived step trace X in s:
mn
PT*(%,s) = > [ PT(Ti, 5i-1).
(D1, T |s=s0 3813586, £(T)=A; (1<i<n)} '
oo | 7 Let G, G7 be dynamic expressions with R : G G’ and ©* be the steady-state PMF

for DT MC*(G), 1'™ be the steady-state PMF for DT M C*(G') and X be a derived step trace of G
and G'. ThenVH € (DR(G) U DR(G"))/xr

Yoo W) PTHS,s) = Y (S)PTH(E, ).

sEHNDR(G) s'"€eHNDR(G)

The result of the theorem above is valid if we replace probabilities with ones.
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By the theorem above: VK € DR(G) /.. (c)

vi, (K)PT*(S,K) =) o*(s)PT*(Z, s),
sekC
where Vs € K PT*(3,K) = PT*(X%, s).

92
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N N’

7" 7"

({a},3) ({a},3)
#fs

'
N ey © G
({v},3) {b},5)1 {b},3)2

l l l

ALY

{c}3)1]  ({c}i3)2 {cho)  [{eh3)2
(9 (9

< .. preserves steady-state behaviour in the equivalence classes
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LetE:[({&},%)*(({b} 2)i (({e}, 2)1(l({e}, 3)2)) = Stop] and
E' = [({a}, 5) = ({0}, ) ey, ))[](({b}a%)z;({c}»%)z))*Stop]-

We have E— ., F', hence, EH E’

DR(E) consists of

s1=[[({a}, 5) = ({8}, 5): (({c}, 3)1ll({c}, 5)2)) * Stop]],

sz = [[({a}, 5) * ({0}, 3); (e}, 5)1l]({c}, 5)2)) = Stop]],

s3 = [[({a}, 5) = ({8}, 5): (({e}, 3)1l1({c}, 5)2)) * Stop]]~.

DR(E’) consists of

s1=[[({a}, 3) = ((({b}, 3)1; ({e}, ) ) [(({b}, 5)25 ({c}, 5)2)) * Stop
sy = [[({a}, 3) * ({0}, 2)1s (e}, D)) ({0}, 3)23 ({c}, 5)2)) * Stop]]
s5 = [[({a}, 5) = ({8}, 5)15 ({e}, 2)1) 0(({0}, 3)2; ({c}, 5)2)) * Stop
sy = [[({a}, 3) * ({0}, 2)1: (e}, 2)1) ({0}, 3)23 ({e}, 3)2)) * Stop

O



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 95

The steady-state PMFs ¢* for DT MC*(E) and '™ for DT M C*(E") are

L1y (gL 11
YT = <O§§> 4 _<O’2’4’4>'

Consider H = {s3, s5, s} }. The steady-state probabilities for H coincide:
Zse’HmDR(E) P (s) =¢*(s3) =5 =3+ 3 =9 (s3) +9"(s)) = ZS'EHHDR(F) (s,
Let X = {{c}}. The steady-state probabilities to enter into the equivalence class H and start the

derived step trace X from it coincide:
P (s3)(PT*({({c} p)1}ss3) + PT*({({c} 3)2}.83)) = 5 (5 +5) =5 =51+
7 (s5)PT*({({c}, 3)1}, 85) + 4" (s) PT*({({c}, 3)2}, 54).

In the figure above N = Boxg;s(E) and N’ = Boxg;s(E’).

=
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Simplification of performance analysis

The method of
1. The system under investigation is specified by a static expression of dtsPBC'
2. The transition system without empty loops of the expression is constructed.

3. After examining this transition system for self-similarity and symmetry,

a step stochastic autobisimulation equivalence for the expression is determined.

4. The quotient underlying DTMC without empty loops of the expression is constructed from the

guotient transition system without empty loops.

5. The steady-state probabilities and performance indices based on this DTMC are calculated.
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B — TS*(E) — TS5, (B) — DTMCL,; (E) || Vs, | Perormance

Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying DTMCs containing one closed

communication class of states, which is ergodic, to ensure uniqgueness of the stationary distribution.

If a DTMC contains several closed communication classes of states that are all ergodic:

several stationary distributions may exist, depending on the initial PMF.

The general steady-state probabilities are then calculated as the sum of the stationary probabilities of all
the ergodic classes of states, weighted by the probabilities to enter these classes,

starting from the initial state and passing through transient states.

The underlying DTMC of each process expression has one initial PMF (that at the time moment 0):

the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.
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Preservation by algebraic operations

Definition 35 Let <+ be an equivalence of dynamic expressions. Static expressions E and E’ are

equivalent w.r.t. <>, E<>E' it <+ F'.

_ 6 Let « € {i5. 55}, ++ € {sto,ts}. The equivalences =, . <> ., =, are not

preserved by algebraic operations.

_ 7 The equivalence ~ is preserved by algebraic operations.
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Ny N{ N, N N’
S
({a},5) ({a},5) ({6},3) ({a}.3)  |({b}.3) ({a}.5) |[({b}.3)
SC1: The equivalences between and are not congruences

Let E = ({a}, %), E' = ({a}, %) and F' = ({b}, 5). We have E—_,,E’, since T'S*(E) and
T'S*(E'’) have the transitions with the multiaction part of labels {a} and probability 1. E[|F'~, . E'[|F,
since only in T'S*(E’[| F') the probabilities of the transitions with the multiaction parts of labels {a } and

{b} are different (% and % respectively). Thus, no equivalence between and IS a congruence.

In the figure above N1 = Boxgs(E), N| = Boxgs(E’), No = Boxgs(F') and
N = Boxgs(E[|F), N' = Boxas(E'[|F).
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Ny N{ No N N’
S U U G
({a},5) ({a},3) ({6},3) ({a},3) ({a},3)
(%) ({6}, 1) @
é() ({6}.3)
SC2: The equivalences between and are not congruences

Let B = ({a}, 1), E' = ({a}, 5); Stopand F' = ({b}, 1). We have E—,. F’, since both T'S(E) and
T'S(E") have the transitions with the multiaction part of labels {a } and probability 2. E/; F-*,. E'; I/, since only

in I"'S™ (E’; F) no other transition can fire after the transition with the multiaction part of label {a }. Thus, no

equivalence between and is a congruence. In the figure above N1 = Box s (E),
N{ = Boxgis(E’), Na = Boxgs(F)and N = Boxgs(E; F), N' = Boxgs(E'; F).
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For an analogue of to be a congruence, we have to equip transition systems with two extra

transitions skip and redo as in [MVCO02].

The equivalences between and defined on the basis of the enriched transition systems will still

be non-congruences by Example SC1.
Rules for skip and redo:

Let I/ € RegStatExpr.

Rules for skip and redo

skip

E RIEXE

Sk E =

Definition 36 Let I be a static expression and T'S(E) = (S L, 7T, s). The (labeled probabilistic)
sr-transition system of F is a quadruple T'S,(E) = (Ssr, Loy Tar, Ssr):

® Sy =5SU {[E]%},
o L. C(INSE x (0;1]) U {(skip,0), (redo, 1)}

o Tor = T\A{([E]x, (0,1), [E]x)} U{([E]~, (skip, 0), [El~), ([El~, (redo, 1), [E]~) }:

® S, = S.
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Definition 37 Let /, F’ be static expressions and 1'S,(E) = (Sgr, Lsr, Tors Ssr ),

TSe (E") = (S, L, T! s ) betheir sr-transition systems. A mapping 3 : S, — S’ is an
isomorphism between T'S,,.(E) and T'Ss,-(E’), 8 : T'Ssr(E)~TS4.(E'), if

1. Bis abijections.t. B(ss-) = 5%, and 5(|E]~) = £~
2. V5,5 € S5 VL s 5p § & B(s) L B(S).

Two sr-transition systems 1T'S,,.(E) and T'S,,.(E') are isomorphic, T'S,. (E)~T' S, (E’), if
38 : TS (E)~TS,.(E").

For E € RegStatExpr,letTS,, (E) =TS, (E).
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T'Ss(E; Stop)

1
0,1

E;Stop

>

(‘{a}?%)’% ({a}?%)7%

Y

0,1

redo, 1 skip,0

TSSR: The sr-transition systems of E and E; Stop for £ = ({a}, %)

Let E = ({a}, 5). In the figure above the transition systems 1'S,.(E) and T'S,,.(E; Stop) are

presented.

In the latter sr-transition system the final state can be reached by the transition (skip, ) only from the

initial state .
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Definition 38 E and E' are equivalent w.r.t. sr-transition systems, E E7, if

TS, (E)~TSs (E').
sr-transition systems without empty loops can be defined and the equivalence based on them.

The coincidence of and can be proved as for and



Igor V. Tarasyuk: Algebra dts P B(C': a discrete time stochastic extension of Petri box calculus 105

(a4
Y

|

—tssr
—ts

—sto

|

—” 18 *——H SS

L

Interrelations of the stochastic equivalences and the new congruence
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Theon 8 Let c{ } and e { }. For dynamic

expressions G and G’

G+.G = G G’

iff in the graph in figure above there exists a directed path from to
Validity of the implications

e The implication — Is valid, since sr-transition systems have more states and transitions

than usual ones.

e The implication ~ — Is valid, since the sr-transition system of a dynamic formula is defined

based on its structural equivalence class.



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 107

Absence of the additional nontrivial arrows

e Let £ = ({a}, 1) and E' = ({a}, 1); Stop. We have E—,.F’ (see example with Figure SC2).
On the other hand, &/ E’, since only in T'S,,.(E’) after the transition with multiaction part of

label {a} we do not reach the final state (see Figure TSSR).

e Let E = ({a},2)and E' = (({a}, 5): ({a}. 5)) sy a. Then E E’,since E—;_.E' by the
last example from the equivalence interrelations theorem, and the final states of both TSST(F) and

TSST(F) are reachable from the others with “normal” transitions (not with skip only). On the other
hand, E+#E'.
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- 9 Leta € Actand E, E', F € RegStatExpr. If E—,.. E’then
1. BoF—, . E'oF, Foll—, Fokl' oc {;,[].|}

2. [f]:tser/[f];

3. an:tserloaa ° € {rS,Sy};

4, |[ExFxK|=,...|E'xFxK|, |[FxExK|= ... |[FxE's«K]|, |[FxKxE|=,...|[FxKxE'|



Igor V. Tarasyuk: Algebra dts P B(C': a discrete time stochastic extension of Petri box calculus 109
Case studies

Shared memory system
The standard system

A model of two processors accessing a common shared memory [MBCDF95]

Processor 1 Memory Processor 2

The diagram of the shared memory system

After activation of the system (turning the computer on), two processors are active, and the common
memory is available. Each processor can request an access to the memory.

When a processor starts an acquisition of the memory, another processor waits until the former one ends
its operations, and the system returns to the state with both active processors and the available memory.
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a corresponds to the system activation.

r; (1 <1 < 2) represent the common memory request of processor i.

b; and e; correspond to the beginning and the end of the common memory access of processor 1.
The other actions are used for communication purpose only.

The static expression of the first processor is

By = [({z1}, 3) = ({1} 2): ({01, wn ks 3)s ({en, 21}, ) * Stop].
The static expression of the second processor is

By = [({z2}, 3) * (({r2}, 2): ({2, 92}, 3); ({e2, 22}, 5)) * Stop].
The static expression of the shared memory is

B3 = [({a,71,72}, 5) * ({71}, 5): ({21}, 5) ({82}, 5): ({21, 3))) * Stop].

The static expression of the shared memory system with two processors is

E = (E1||E3||E3) sy x1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS L1 IS T IS Y1 IS Yo IS 21 IS 2.
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Effect of synchronization

The synchronization of ({b;, y; }, 2) and ({; }, 2) produces ({b; }, 1) (1 < i < 2).
The synchronization of ({e;, z;}, 3) and ({Z;}, 5) produces ({e;}, ) (1 < i < 2).
The synchronization of ({a, 1,72}, 5) and ({x1}, 2) produces ({a, 75}, 1),

Synchronization of ({a, Z1, 72}, 5) and ({z2}, ) produces ({a, 71}, ).

Synchronization of ({a, T3 }, %) and ({2}, %) as well as ({a, 71}, i) and ({x1}, %)

produces ({a}, &).
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DR(FE) consists of

s1= [([({an}. ) * ({1, 1) ({0, 1}, 3)s (fen, 21, 3)) # Stop
[[(f), 1) # ({ra}, 4); ({62, 92}, 3): ({ez, 22}, 1)) # Stop)

({71, 72}, ) * ({7}, 1) (A} D)@, H): ({2}, 1)) = Stop))
Sy T1 SY T2 SY Y1 SY Y2 SY 21 SY 22 IS L1 IS Lo IS Y1 IS Yo IS 21 IS 23],

s = [([({n}. 3) = ({1, 1) ({01, 1}, 3)s (fen, 21}, 3)) # Stop
({2}, 3) * ({2} 5): ({bo. o}, 1): ({ea, 22}, 3)) # Stop]

(e, 75,72}, ) * ({01}, 2): (a0 D)7} 2): ({22} 1) * Stop])
SY I1 Sy T2 SY Y1 SY Y2 SY 21 SY Z2 IS L1 IS To IS Y1 IS Yo S 21 IS 22|,

5= [([({n}, ) * ({1}, 1) ((on, 1) 5 ({er, 21}, 3)) # Stop

({2}, ) % ({ras 2); ({02, 92}, 3): ({ez, 22}, 1)) * Stop)

({71, 72}, ) * (@) 2: (A} DG H): ({2}, 1)) * Stop))

SY X1 SY X2 SY Y1 SYYaSY 21 SY 22 ST ST SY1 ISYa2 s 2q IS Zg]z,
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sa= ([} 1)+ (i), 2 ({br. s 2): (fen, 213, 1)) # Stop
({2}, 3) % ({72}, 1); ({b2, yo}s 5); ({2, 22}, 1)) * Stop]

(e, 71,72}, ) * ({61}, 3): ({83 D)) D: ({2, 3))) * Stop))
SY I1 Sy To SY Y1 SY Yo SY 21 SY Z2 IS L1 IS To IS Y1 IS Yo S 21 IS 22|,

55 = ([} 1) = (({r1}, 3); ({br.m . 2): (fens 213, ) # Stop
({2}, 3) % ({2, 2); ({b2, 2}, 3): ({2, 22}, 1)) # Stop]

(e, 77,73}, 3) * ({71}, 2): (G DDI(RY ): ({22}, 4)) * Stop))
SY X1 SY X2 SY Y1 SYYaSY 21 SY 2 ST ST SY1 FSYa S 2q IS ZQ]%,

s = ([} 1)+ (({r1}, 3); (b1, y o 2): (fen, 213, 1)) # Stop

({2}, 3) % ({72}, 2); (b2, yo}, 5); ({2, 22}, 1)) * Stop]

(e, 75,72}, 1) * ({01}, 2): ({20 D)7 2): ({22} 1)) * Stop])

SY X1 SYToSY Y1 SYYaSY 21 SY ST IISTorSYy ISYa S 2y IS Zg]z,
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5= ([} 1)+ ((rids 2 ({br.m ), 2): (fen, 213, 1)) # Stop
({2}, 3) % ({2}, 1); ({b2, 9o}, 1) ({e2n 22}, 1)) * Stop]

(e, 71,72}, ) * (1), 3): ({83 D)7 1): (2 1) * Stop))
SY T'1 SY T2 SY Y1 SY Y2 SY 21 SY 22 IS T1 I'S T IS Y1 I'S Yo IS 21 IS 22]as,

ss = ([} 1)+ (({r1}, 3); (b1 yn . 2): (fens 211, 2)) # Stop
({2}, 3) % ({2}, 1) (b2, g2}, 5); ({2, 22}, 1)) # Stop]

(e, 77,73}, 3) * ({71}, 2): (G DDI(RY ): ({22}, 4)) * Stop))
SY X1 SY X2 SY Y1 SYYaSY 21 SY 2 ST ST SY1 FSYa S 2q IS Zg]z,

so.= ({1} 1) * (({r1}, 3); ({br.w . )i ({en, 213, 1)) # Stop

[[({w2}, 3) % ({2}, 2); ({b2, 9o}, 3); ({e2n 22}, 3)) * Stop]

(e, 75,72}, ) * ({1}, 3): ({83 D)) 1): (22} 1) * Stop])

SY X1 SYToSY Y1 SYYaSY 21 SY ST IISTorSYy ISYa S 2y IS 22]%.
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Interpretation of the states

S1: the initial state,

So: the system is activated and the memory is not requested,

S3: the memory is requested by the first processor,

S4:. the memory is requested by the second processor,

S5:. the memory is allocated to the first processor,

Sg. the memory is requested by two processors,

s+7. the memory is allocated to the second processor,

Sg: the memory is allocated to the first processor and the memory is requested by the second processor,

Sg: the memory is allocated to the second processor and the memory is requested by the first processor.
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T5*(E)

{({r1},3), S {({r2},3),
({e2}. D}, 2 1 ({e1}. 1.2

({a},3).1

1({ra2}. 3.3

{({r2}, 30
{1}, )} 2

{1}, 5)}
({b2}, )} %

({r2},3),2 {r1}.1).2

The transition system without empty loops of the shared memory system
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The underlying DTMC without empty loops of the shared memory system



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 118

The TPM for DT MC*(E) is

(0 1.0 0 00 0 0 0)
00 £ s 0 3 0 0 0
0000 2 0 % 0
000 00 2 £ 0 1
P*=10 L o0 L 000 2 0
000 0000 5 12
0+ £+ 00000 3
000 0 1 000 0 0
\0 0 1 000 0 0 0)

The steady-state PMF for DT M C*(E) is

o = (o 3 75 75 15 46 15 35 35
772097 4187 4187 4187209’ 4187209209 /"
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Transient and steady-state probabilities of the shared memory system

119

kool 2 3 4 5 6 7 8 9 10 0o
Wikl 1o 0 0 0 0 0 0 0 0 0 0
ikl ]| 0] 1 0 0 |0.0267| 0 |0.0197 | 0.0199 | 0.0047 | 0.0199 | 0.0160 | 0.0144
ikl || 01003333 0 | 0.2467 | 0.2489 | 0.0592 | 0.2484 | 0.2000 | 0.1071 | 0.2368 | 0.1794
pEk]{lolo] 0 ]0.0667| 0 |0.0493 | 0.0498 | 0.0118 | 0.0497 | 0.0400 | 0.0214 | 0.0359
Wi[k] || 0| 0| 0.3333 | 04000 | 0 | 0.3049 | 0.2987 | 0.0776 | 0.3047 | 0.2416 | 0.1351 | 0.2201
ikl |00 | 0 | 0.2333 | 0.2400 | 0.0493 | 0.2318 | 0.1910 | 0.0956 | 0.2221 | 0.1662 | 0.1675

We depict the probabilities for the states s1, S2, S3, S5, Sg, Sg only, since the corresponding

for s3, s4 as well as for s5, s7 as well as for sg, Sg.
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1.0¢

0.8 —— Y17[K]
k- o [K]

0.6
—m— Y3'[K]
——a—— 5" [K]

04
—eo- — Yg'[K]

0.2

Transient probabilities alteration diagram of the shared memory system
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Performance indices

e The average recurrence time in the state so, the average system run-through, is wl* = 2g9 = 69%.
2

e The common memory is available in the states so, S3, S4, Sg only.

The steady-state probability that the memory is available is 15 + 103 + ¥y + Vg = %.
The steady-state probability that the memory is used, the shared memory utilization, is
_ 124 _ 85
209 — 209°

e The common memory request of the first processor ({1}, 3) is only possible from the states
S9,84, S7.
The request probability in each of the states is a sum of execution probabilities for all multisets of
activities containing ({r1}, %).
The steady-state probability of the shared memory request from the first processor is
V3 2 iy ery PTT (L, 82) + 950 ry (g, pyery P17 84) +
7 2qri(gray, 1yery PTH(T, s7) =

205 (3 73) Ta1s (5 +5) + 215 (5 + 5) = 200
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{z1},

N[~

o

{Tl}’%

O

{b1,y1},

1
2

N3

({a,77,53},3)

(o) =

-~
8
N
—~
N[

o

{T2}7%

os

O

{vi}.3 {vz2},

1
2

{b2,y2}, %

{61 )Zl})

N

os

{z1}.3 {z2},

N[~

®C

The marked dts-boxes of two processors and shared memory

)\
&

{ea,22},2

L/
O
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{e1}, 7 {ea}, 7

\ ®L/@\J ®L/

The marked dts-box of the shared memory system
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The abstract system

The static expression of the first processor is

= [({z1}, 3) * (({r}, 3): ({6, 91}, 5)s ({e, 213, 3)) * Stop].
The static expression of the second processor is

= [({z2}, 3) * (({r}, 3); ({6, 92}, 3); ({e, 223, 7)) * Stop].
The static expression of the shared memory is

Fs = [({a, 71,72}, 3) = ({71}, 2)s ({41}, 5)) ({52} 5): ({22}, 5))) = Stop).

The static expression of the abstract shared memory system with two processors is

F = (F1||Fs||F5) sy ©1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS T1 IS To IS Y1 IS Yo IS 21 IS Zo.
DR(F) resembles DR(E), and T'S*(F) is similar to T.S*(E).

DTMC*(F)~DTMC*(E), thus, the TPM and the steady-state PMF for DT'M C*(F') and
DTMC*(E) coincide.
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Performance indices

The are the same for the standard and abstract systems.

The . non-identified viewpoint to the processors.

e The common memory request of a processor ({7}, %) is only possible from the states

S9, 83, 84, S5, S7.

The request probability in each of the states is a sum of execution probabilities for all multisets of

activities containing ({r1}, 2).

The steady-state probability of the shared memory request from a processor is

V3 2 qriqry hyery DT 82) 95 0 iry (), 1yery PTT (T 83) +

1 2y, 1yery PTH( 84) + U5 2 iry ey, 1yery P17, 85) +
V7 Z{F|({r},2)ef} PT*(L', s7) =
1
5

209( T3 +) 418(% ) 47_58(%+%)+1_15(%+%)+1T%(%+%):27T59'

oo
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The quotient of the abstract system

DR(F)/RSS@) = {IC1, [Co, [Cs, s, 5, IO }, where

IC1 = {s1} (the initial state),

Co = {32} (the system is activated and the memory is not requested),
g = {33, 34} (the memory is requested by one processor),

IC4 = {s5, 87} (the memory is allocated to a processor),

s = {36} (the memory is requested by two processors),

g = {88, 39} (the memory is allocated to a processor and the memory is requested by another

processor).
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TS, (F) @

{r},

a1 110

(r}Ar}t} 3

{r}{b}},5

( /C J? {b}.1 \ /C5 )

The quotient transition system without empty loops of the abstract shared memory system




Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 128

DTMC:, (F)

= @

The quotient underlying DTMC without empty loops of the abstract shared memory system
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The TPM for DT MC}, (F)is

—SS

(0 1.0 0 0 0)
2 1
00 2 0 %+ 0
00 0 & 2 2
Ix 5 5 5
P_Ql100§
5 5 5
00 0 0 0 1
\001000)

The steady-state PMF for DT M C?Y, (F)is

—SS

¥ =

0 3 7 15 46 70
2097 2097 2097 209 209 )
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Transient and steady-state probabilities of the quotient abstract shared memory system

0 2 3 4 5) 6 7 8 9 10 0O

110 0 0 0 0 0 0 0 0 0 0

011 0 0 0.0267 0 0.0197 | 0.0199 | 0.0047 | 0.0199 | 0.0160 | 0.0144
0| 0] 0.6667 0 0.4933 | 0.4978 | 0.1184 | 0.4967 | 0.4001 | 0.2142 | 0.4735 | 0.3589
010 0 0.1333 0 0.0987 | 0.0996 | 0.0237 | 0.0993 | 0.0800 | 0.0428 | 0.0718
0| 0] 0.3333 | 0.4000 0 0.3049 | 0.2987 | 0.0776 | 0.3047 | 0.2416 | 0.1351 | 0.2201
010 0 0.4667 | 0.4800 | 0.0987 | 0.4636 | 0.3821 | 0.1912 | 0.4443 | 0.3325 | 0.3349
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0.8
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Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 131

ey K]
—m— Yy 1K
Sl 2
—e—ys' ' [K]

Transient probabilities alteration diagram of the quotient abstract shared memory system
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Performance indices

e The average recurrence time in the state Co, where no processor requests the memory, the average

ic 1 __ 209 _ g2
system run-through, is o =3 = 693.

e The common memory is available in the states o, /3, /C5 only.

The steady-state probability that the memory is available is 15" + 153" + L~ =
3_ 4 75 46 __ 124
209 " 209 " 209 T 209°
The steady-state probability that the memory is used (i.e. not available), the shared memory

e : 124 __ 85
utilization, is 1 — 369 = 209"

e The common memory request of a processor {7“} is only possible from the states /Co, IC3, IC4.

The request probability in each of the states is a sum of execution probabilities for all multisets of

multiactions containing {7 }.

The steady-state probability of the shared memory request from a processor is
PM3 (Ko, K) +

) *

2 Z{A,ICHT}GA, Ko 3KC)

) *x

3 Z{A,ICHT}GA, Ks5K} PMj(Ks, K) +
]k

4 Z{A,ICHT}GA, Ka3KC) PM3(Ka, K) =

205 (5 T 5) T 200 (5 +5) + 205 (5 + 5) = 200
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The performance indices are the same for the complete and the quotient abstract shared memory

systems.

The coincidence of the first and second performance indices illustrates proposition about steady-state

probabilities.

The coincidence of the third performance index theorem about derived step traces from steady states:

one should apply its result to the derived step traces Hr}}, {r},{r}}, {{r}, {b}}, {{r},{e}}
of " and itself,

and sum the left and right parts of the three resulting equalities.
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The generalized system

The static expression of the first processor is

Ky = ({21} p) * ({1} p); ({01,914, p); ({€1, 21}, p)) + Stop).
The static expression of the second processor is

Ky = [({z2], p) * (({r2}, p); ({02, 92}, p); ({e2, 22}, p)) * Stop].
The static expression of the shared memory is

K3 = [({a, 71,72}, p) * ({71}, p); ({21}, p)) ({92} 0); ({22}, ))) * Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1||K2||K3) sy 1 Sy T2 Sy Y1 SY Y2 SY 21 SY 22 I'S L1 IS L IS Y1 IS Yo IS 21 IS Zo.
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Interpretation of the states

S1: the initial state,

So: the system is activated and the memory is not requested,

S3: the memory is requested by the first processor,

S4:. the memory is requested by the second processor,

S5:. the memory is allocated to the first processor,

Sg. the memory is requested by two processors,

S+7. the memory is allocated to the second processor,

Sg: the memory is allocated to the first processor and the memory is requested by the second processor,

Sg: the memory is allocated to the second processor and the memory is requested by the first processor.
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The TPM for DT M C* (K ) is

P* =

o O O O o o o o o

=
[ ]
I

-

[y
|
js)

$
(\V)]
"?‘b o O
e

S = O O

0 0 0
0 2fp 0
p(1—p) l—p 0
1+p—p?  1+4p—
0 1—p p(1—p)
14+p— 1+p—p?
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

\V)

1+p—p?

1—p

—
_|_
o O O wwA?
e
[\)
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The steady-state PMF for DT M C*(K) is

~

P = 2(6+9p—14p2—110p3+14p4—3p5) (0, 2:02(2 —p)(1 - P)2> 2-p)(1-p +p2)2,
2—p)(1—=p+p°)p(2—p—4p° +4p> —p?),2(2+ p—5p> + p’ + p*),
p(2—p—4p* +4p° — p*),243p — 6p* + p* + p*, 2+ 3p — 6p% + p° + p?).

Performance indices

e The average recurrence time in the state s, where no processor requests the memory, the average
1 _ 6+4+9p—14p2—10p>+14p* —3p°

system run-through, is e 22 (2=p)(1=p)2

e The common memory is available only in the states so, 53, 54, Sg.

The steady-state probability that the memory is available is 1}5 + zL;; + QLZ + ng =

p?(2—p)(1—p)? I (2=p)(1+p—p*)* 1
6+9p—14p2—10p3+14p*—3p° 2(6+9p—14p2—10p3+14p*—3p°)

(2—p)(A+p—p*)? 1 2+p—5p°+p°+p* _ _A+4p—Tp*—T7p°4+9p*—2p°
2(6+9p—14p2—10p3+14p*—3p°) 6+9p—14p2—10p3+14p*—3p° 6+9p—14p2—10p3+14p*—3p° "

The steady-state probability that the memory is used (i.e. not available), the shared memory

A4-4p—Tp2 —Tp>+9p*—2p°  245p—T7p°—3p>+5p* —p°
64+9p—14p2—10p34+14p*—3p> = 64+9p—14p2—10p3+14p*—3p° "

utilization, is 1 —
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e The common memory request of the first processor ({1}, p) is only possible from the states
§27 §47 §7-
The request probability in each of the states is the sum of the execution probabilities for all multisets

of activities containing ({71}, p).
The steady-state probability of the shared memory request from the first processor is
V2 2 qri(qrypery P17, 52) +
Vi 2 iy pery DT, 54) +
¥7 2riry pery PT7T 87) =

P (2 p)(1— p) 1_P_|_ p +
6+9p—14p2—10p3+14p*—3p° \ 2—p 2—p

(2—p)(1+p—p?)? l—p® | _p” 4
2(6+9p—14p2—10p3+14p*—3p°) \ 14+p—p? 1+p—p2

p(2—p—4p°+4p°—p*) l—p®  _p’ _ 2+3p—4p®—2p°+2p*

2(6+9p—14p2—10p3+14p*—3p°) \ 14+p—p? 14+p—p2 ) = 2(649p—14p%2—10p3+14p*—3p°)"
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The abstract generalized system and its reduction

The static expression of the first processor is

Ly = [({z1}, p) * (({r}, p); ({0,911 p); ({e, 21}, p)) * Stop].
The static expression of the second processor is

Ly = [({z2}, p) * (({r}, p); ({0,921, p); ({e, 22}, p)) * Stop].
The static expression of the shared memory is

Lz = [({a, 71,22}, p) x ({71}, p); ({21}, 0) I ({22}, p); ({22}, p))) * Stop].

The static expression of the abstract shared memory generalized system with two processors is

L = (L1||L2||L3) sy x1 sy T2 Sy Y1 SY Y2 SY 21 SY 22 IS T1 IS To IS Y1 IS Yo IS 21 IS Zo.
DR(L) resembles DR(K), and T'S* (L) is similar to T'S*(K).

DTMC*(L)~DTMC*(K), thus, the TPM and the steady-state PMF for DT'M C* (L) and
DTMC*(K) coincide.
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Performance indices

The are the same for the generalized system and its abstraction.

The : non-identified viewpoint to the processors.

e The common memory request of a processor ({7}, p) is only possible from the states
S92, 83, S4, S5, S7.
The request probability in each of the states is the sum of the execution probabilities for all multisets
of activities containing ({7}, p).
The steady-state probability of the shared memory request from a processor is
U3 3 iy ppery PT(T:52) + 05 X ry(ry pyery PTH(T, 83) +
Vi Y (ry pyery PTH (T, 54) + 03 2r|((rhppery PT7(T 85)

)
, 2 (2 p)(1—p)’ 1p 1
U Y ri(grppery PTH (T, 57) = 495 e s (32 + 122+ 555 ) +

(2—p)(1+p—p*)? l—p® o _p° 4
2(6+9p—14p2—10p3+14p*—3p°) 1—|—p P2 1+p—p2
(2—p)(1+p—p>)? 1— p’ 4
2(6+9p—14p2 —1Op3—|—14p4—3p ) 1—|—p 1—|—p—,02
p(2—p—4p*+4p° — 1— p’ 4
2(6+9p—14p2 —1Op3—|—14p4—3p ) 1—|—p 1—|—p—p2
p(2—p—4p®+4p° — 1—p* | _p’ _ (2—p)(1+p—p?)?
2(6+9p—14p2 —1Op3—|—14p4 3p°) \ 14+p—p2 1+p—p2 6+9p—14p2—10p3+14p*—3p° "
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The quotient of the abstract system

DR(L)/ .. @) = {K1. Ko, K5, Ka, 5, K}, where

K1 = {51} (the initial state),

/Eg = {52} (the system is activated and the memory is not requested),
163 = {53, §4} (the memory is requested by one processor),

164 = {55, §7} (the memory is allocated to a processor),

ICs = {86} (the memory is requested by two processors),

Kg = {58, §9} (the memory is allocated to a processor and the memory is requested by another

processor).
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The TPM for DT MC}, (L) is

—SS

[0 1 0 0 0
0 0 e 0 S
O R T
0 £57% gm0 0
0 0 0 0 0
\ 0 0 1 0 0

The steady-state PMF for DT M C?Y, (L) is

—SS

142

P = 6—|—9p—14p2—1%)p3—|—14p4—3p5 (0,p%(2—p)(1 = p)*, (2= p)(1+ p — p?)?,
p(2—p—4p* +4p° — p*), 24 p—5p* + p* + p*, 24+ 3p — 6p° + p* + p*).
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Performance indices

e The average recurrence time in the state Co, where no processor requests the memory, the average
1 64+9p—14p%—10p>+14p*—3p°
L p?(2—p)(1—p)? '

system run-through, is

e The common memory is available only in the states /Co, IC3, ICs.

The steady-state probability that the memory is available is 15" + 15 + * =
p°(2—p)(1—p)* 4 (2—p)(1+p—p*)? X 2+p—5p°+p°+p* _
6+9p—14p2—10p3+14p*—3p° 6+9p—14p2—10p3+14p*—3p° 64+9p—14p2—10p3+14p%—3p>
4—|—4p—7p2—7p3—|—9p4—2p5
6+9p—14p2—10p3+14p*—3p° "

The steady-state probability that the memory is used (i.e. not available), the shared memory

4—|—4p—7p2—7p3—|—9p4—2p5 _ 2—|—5p—7p2—3p3—{—5p4—p5
64+9p—14p2—10p34+14p*—3p> = 64+9p—14p2—10p3+14p*—3p° "

utilization, is 1 —
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e The common memory request of a processor {7“} is only possible from the states /Co, IC3, IC4.

The request probability in each of the states is the sum of the execution probabilities for all multisets
of multiactions containing {7 }.

The steady-state probability of the shared memory request from a processor is

1% * (1 - T - ~
2 Z{Aﬁ|{r}€A, KoK} PMA(’S%IS) + s Z{A,EHT}GA, Ks5K} PM3(Ks, ) +
PM3} (K4, K) =

7%

4 Z{Aﬁ|{r}€A, K. 3K}

p°(2—p)(1—p)” 20=p) | p ) 4
6+9p—14p2—10p3+14p*—3p° 2—p 2—p

(2—p)(14+p—p*)* l—p® | _ p” 4
6+9p—14p2—10p3+14p%*—3p°> \ 14+p—p2 1+p—p2
p(2—p—4p°+4p°—p*) l—p®  _p’ _ (2—p)(1+p—p°)°

6+9p—14p2—10p3+14p%—3p> \ 14+p—p? 14+p—p2 ] = 649p—14p2—10p3+14p*—3p> "
The are the same for the complete and the quotient abstract generalized shared
memory systems.
The coincidence of the illustrates proposition about steady-state
probabilities.
The coincidence of the theorem about derived step traces from steady states:

one should apply its result to the derived step traces {{7}}, {{r},{r}}, {{r}, {0}}, {{r}, {e}}

of L and itself, and sum the left and right parts of the three resulting equalities.
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Dining philosophers system

The standard system

A model of five dining philosophers [P81]

The diagram of the dining philosophers system
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Arbitrary number of philosophers

The most interesting: the maximal sets of philosophers which can dine together.

The system with 1 philosopher: the only maximal set is ().

The system with 2 philosophers: the maximal sets are {1}, {2}.

The system with 3 philosophers: the maximal sets are {1}, {2}, {3}.

The system with 4 philosophers: the maximal sets are {1,3}, {2,4}.

The system with 5 philosophers: the maximal sets are {1,3}, {1,4}, {2,4}, {2,5}, {3,5}.

The system with 6 philosophers: the maximal sets are {1,4}, {2,5}, {3,6}, {1,3,5}, {2,4,6}.

The system with 7 philosophers: the maximal sets are
{1,3,5}, {1,3,6}, {1,4,6}, {2,4,6}, {2,4,7}, {2,5,7}, {3,5,7).

A nontrivial behaviour: at least 5 philosophers occupy the table.
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The neighbors cannot dine together: the

philosophers will be | 7 |.

If the philosopher 7 belongs to

e 1 is an even number: 2 maximal sets of % persons,

l.e. the philosophers numbered with all

and those numbered with all < n.
® 1 is an odd number: n maximal sets of "T_l persons,
since from a maximal set one can n—1

next maximal set will coincide with the initial one.

147

for the system with n

then the philosopher ¢(mod ) + 1 belongs to the

n until the
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After activation of the system (the philosophers come in the dining room), five forks appear on the table.
If the left and right forks available for a philosopher, he takes them simultaneously and begins eating.
At the end of eating, the philosopher places both his forks simultaneously back on the table.

a corresponds to the system activation.

b; and e; correspond to the beginning and the end of eating of philosopheri (1 <7 < 5).

The other actions are used for communication purpose only.

The expression of each philosopher includes two alternative subexpressions:

the second one specifies a resource (fork) sharing with the right neighbor.
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The static expression of the philosopher 7 (1
E; = [({zi}, 5) * (({bi, 7i}, 3): (e, &

The static expression of the philosopher 5 is

E5 S~ T S /Y~

= [({a, 71,22, 72,71}, 5) * ({05, 45}, 5); ({es, Z5}, 3)) [ (({w1}, 3); ({21}, 3))) = Stop].

The static expression of the dining philosophers system is

<
i

E = (E1||E2||E3||E4||E5) sy o1 Sy @2 Sy €3 Sy 4 SY Y1 SY Y2 SY Y3 SY Y4 SY Ys Sy 21 SY 22
SY Z3SY 24SY Z5 ST ST FST3 STy rSYy ISYo rSY3 rSY4 rsYs rS 21 1S9 rsS 23 s zy s zs.



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus 150

Effect of synchronization

Synchronization of ({b;, y; }, 2) and ({#;}, 2) produces ({b; }, 1) (1 < i < 5).
Synchronization of ({e;, z; }, 2) and ({Z; }, 3) produces ({e; }, +) (1 <7 <5).
Synchronization of ({a, Z1, T2, 73,74}, 5) and ({1}, 5 ) produces ({a, T2, T3, T4}, 1 ).
Synchronization of ({a, 73, T3, 74}, 1) and ({z2}, 5 ) produces ({a, T3, 71}, = ).
Synchronization of ({a, 73, T4}, 5) and ({3}, 5) produces ({a, T}, 1= ).

(
(
(0.5 5577
(
(

Synchronization of ({a, T4 }, 16) and ({x4}, 2) produces ({a}, 32)
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D R(F) consists of

s1 = [([({z1}, 3) * ((({br, 71}, 3); (fen, 21}, 52}, 5);: ({22}, 5))) * Stop]
({z2}, 1) # (({b2, 32}, 3)s ({eas &%, 3N0(({ws ), 2); ({23}, 3))) * Stop)
({73}, 5) * ({63, 93}, 5); ({ess 23}, 3))1(({va}s 5); ({24}, 3))) * Stop]
({za}, 3) * (({bas 7}, 2)s (e, 22}, 2N 0(({ws}, 2): ({25}, 3))) = Stop]
({070, 7, 72, 711 5) * ({05, 35} ): (es 51 I} 1): ({2}, 1)) # Stop)
Sy X1 SY X2 Sy X3 SY X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 Sy 22 Sy 23 SY 24 SY 25 S L1 IS X2
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25| x,

s2 = [([({z1}, 5) « ({01, 91}, 5); e, 1}, ) 0({y2} 5); ({22}, 5))) * Stop)
({z2}, 5) * (({b2, 12}, 5); ez, 22}, 5)(({ws}s 5); ({23}, 5))) * Stop]
({3}, 5) * ({63, 93}, 5); ({es, 23}, 5))[1(({ya}, 5); ({24}, 3))) * Stop]
({wa}, 3) * ((({bas 92}, 5); ({eas Za}, 5))1(({ys ), 5): ({25}, 3))) * Stop]
({a, 71,72, T2, Ta}, 5) * ((({bs, 75}, 5); ({es, 25}, ) (({m1}, 5); ({21}, 3))) * Stop])
Sy 1 Sy T Sy T3 SY T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 SY 24 SY 25 IS T1 IS T
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 22 IS 23 IS 24 IS 25,
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s3 = [([({z1}, 5) * ({01, 71}, 3); ({en, 21}, s )D0(({w2}, 3); ({22}, 5))) * Stop)
({22}, 5) * ({02, 92}, 3): ({e2, 22}, 5)) [ (({ws}, 3): ({23}, 3))) * Stop]
({3}, 3) * ({03, U3}, 3): ({es, 23}, 5)) 0 (({a}, 5); ({24}, 3))) * Stop]
({zad, 1) (({ba, 3}, 3)s Leas 22t 3N0({ws ) 2); ({251, 2))) * Stop)
({a, 75,33, 73 71k 1) + (({bs. 55}, 2): ({ess 253 D0({ua, 2); (Tt 1) * Stop)
Sy X1 SY X2 Sy X3 SY X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 Sy 22 Sy 23 SY 24 SY 25 IS L1 IS X2
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25| x,

sa = [([({z1}, 5) = ({01, 71}, 5); ({er, 21}, 5)0(({y2}, 5); ({22}, 5))) * Stop)
({z2}, 5) * (({b2, 72}, 5); ({eas 22}, 5))[1(({y}, 5); ({23}, 3))) * Stop]
({zs}, 5) * ({63, 73}, 5): ({ess 23}, 5 ) (({wa}s 5); ({24}, 5))) * Stop
({4}, 5) * (({ba, a}, 5); ({eas 22}, 5))1(({ws}, 5); ({25}, 3))) * Stop
({a, 71,72, 72,75}, 5) * ({65, 75}, 5); ({es, 251, 5D (({w1}, 5); ({21}, 5))) * Stop])
Sy ' Sy T Sy T3 SY T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 SY 24 SY 25 IS T1 IS T
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25,
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ss = [([({x1}, 5) * ({01, 71}, 3); ({en, 21}, s DI(({w2}, 3); ({22}, 5))) * Stop)
({22}, 5) * ({02, 92}, 3): ({e2, 22}, 5)) [ (({ws}, 3): ({23}, 3))) * Stop]
({3}, 5) * ({03, U3}, 3): ({es, 23}, 5)) 0(({a}, 5); ({24}, 3))) * Stop]
({za, 1)+ (({ba, 31}, 3)s Leas 21t 3N0({ws ) 2);: ({251, 2))) * Stop)
({a, 75,33, 73 71k 1) + (({bs. 55}, 2): ({ess 253 D0({ua, 2); (Tt 1) * Stop)
Sy X1 SY X2 Sy X3 SY X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 Sy 22 Sy 23 SY 24 SY 25 IS L1 IS X2
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25| x,

se = [([({z1}, 5) = ({01, 71}, 5); ({er, 21}, 5)(({y2}, 5); ({22}, 5))) * Stop)
({72}, 5) * (({b2, 2}, 5); ({eas 22}, 5))[1(({ya}, 5); ({23}, 3))) * Stop]
({zs}, 5) * ({63, 73}, 5): ({ess 23}, 5 ) (({wa}s 5); ({24}, 5))) * Stop
({4}, 5) * (({ba, a}, 5); ({eas 22}, 5))1(({ws}, 5); ({25}, 3))) * Stop
({a, 71,72, 72,75}, 5) * ({65, 75}, 5); ({es, 25}, 5D (({w1}, 5); ({21}, 5))) * Stop])
Sy ' Sy T Sy T3 SY T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 SY 24 SY 25 IS T1 IS T
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25,
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st = [([({z1}, 5) * ({01, 71}, 3); ({er, 21}, s )D0(({y2}, 3); ({22}, 5))) * Stop)
({22}, 5) * ({02, 92}, 3): ({e2, 22}, 5)) [ (({ws}, 3): ({23}, 3))) * Stop]
({3}, 5) * ({03, U3}, 3): ({es, 23}, 5)) 0(({a}, 5); ({24}, 3))) * Stop]
({zad, 1) (({ba, 3}, 3)s Leas 22t 3N0({ws ) 2); ({251, 2))) * Stop)
({a, 75,33, 73 71k 1) + (b5 351> 3): ({e5: 251 Dok 2 ({1} 1) * Stop])
Sy X1 SY X2 Sy X3 SY X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 Sy 22 Sy 23 SY 24 SY 25 IS L1 IS X2
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25| x,

ss = [([({z1}, 5) = (({b1, 71}, 5); ({er, 21}, 5)(({y2}, 5); ({22}, 5))) * Stop)
({w2}, 5) * (({b2, 2}, 5); ({eas 22}, 5))[1(({ya}, 5); ({23}, 3))) * Stop]
({zs}, 5) * ({63, 73}, 5): ({ess 23}, 5 ) (({wa}s 5); ({24}, 5))) * Stop
({4}, 5) * (({ba, a}, 5); ({eas 22}, 5))1(({ws}, 5); ({25}, 3))) * Stop
({a, 71,72, 72,75}, 5) * ({65, 75}, 5); ({es, 251, 5D (({w1}, 5); ({21}, 5))) * Stop])
Sy ' Sy T Sy T3 SY T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 SY 24 SY 25 IS T1 IS T
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25,
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so = [([({z1}, 3) = ({br. 71}, 5): ({en, Ay s)I(({y2}, 5): ({22}, 5))) * Stop)

{z2}, 3) * (({b2, 72}, 3); ({ea, 2}, )]

(
({zs}, 5) = ({63, 95}, 3)s ({es, 23}, 9))
({24}, 5) * ({bs, 91}, 5); (e, 22}, 5))]

(({ys}, %); (123},
(({ya}; 3); ({24},

5))) * Stop)
5))) * Stop

(({ys %); (125},

5))) * Stop)

({a, 71, %2, 72,74}, 3) * ({05, 95}, 3); ({es 251, (v} 2): ({21} 3))) = Stop))

Sy X1 SY X2 Sy X3 SY X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 Sy 22 Sy 23 SY 24 SY 25 IS L1 IS X2
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25| x,

s10 = [([({z1}, 5) * ((({br, 71}, 3); (en, A} s)HI(({yz}, 5): ({22}, 3))) * Stop]

({w2}, 5) = (({b2, 52},
({ws}, 3) = ({bs, g3},

({627 2\2}7 %))
({es, 73}, 5))1]

(({ys}, %); ({23},
(({ya}, %); (124},

5))) * Stop
) * Stop

({wa}, 5) = ((({ba, 72},

5);
5);
5);

({ea, 21}, 3))]]

(({ys %); ({25},

N—— | ~—r

1
5)
%) ) * Stop

({a, 27,72, 72,74}, 3) * ({05, 55}, 5); ({es. 55} syt 5): ({21}, 5))) * Stop])

SY T1 SY T2 Sy T3 Sy T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 SY 24 SY 25 IS T1 IS T2
IST3rST4rSYy rISYa rSYs rSY4 rsSYs s 297 rS 2o rSz3 s 24 rs 25]3,
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sit = [([({z1}, 5) * ({1, 51}, 5); ({en, Ay s)I(({y2}, 5): ({22}, 5))) * Stop]

({w2}, 3) = ({b2, 2},

({ws}, 5) = (({bs, B3},
({wa}, 3) = (({ba, g}

5);
5);
5);

({62755}7%))“
({es, 23}, 5))[
({es, Z1}, 5))]]

(({ys}, %); (123},
(({ya}; 3); ({24},

5))) * Stop)
5))) * Stop

(({ys %); (125},

5))) * Stop)

({a, 71, %2, 72,74}, 3) * ({05, 95}, 3); ({es 251, (v} 2): ({21} 3))) = Stop))

Sy X1 SY X2 Sy X3 SY X4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 Sy 21 Sy 22 Sy 23 SY 24 SY 25 IS L1 IS X2
IS T3 IS Ty rSYL IS Yo IS Y3 IS Yy IS Ys IS 21 IS 29 IS 23 IS 24 IS 25| x,

s12 = [([({z1}, 5) * ({1, 71}, 3); (en, A} s)HI(({yz}, 5): ({22}, 3))) * Stop]

({x2}, 5) = (({b2, 52}

({62725}7%))“

(({ys}, %); ({23},

5))) * Stop

({ws}, 3) = ({03, g3},
({wa}, 5) = ((({ba, 72},

5);
5);
5);

({e3, 23}, 3))]
({ea; 21}, 5))1]

(({ya}, %); (124},

) * Stop

(({ys %); ({25},

N—

1
5)
%) ) * Stop

({a, 27,72, 72,74}, 3) * ({05, 55}, 5); ({es. 75} syt 5): ({21}, 5))) * Stop])

SY T1 SY T2 Sy T3 Sy T4 SY Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22 SY 23 SY 24 SY 25 IS T1 IS T2
IST3rST4rSYy rISYa rSYs rSY4 rsSYs s 297 rS 2o rSz3 s 24 rs 25]3.
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Interpretation of the states

S1
S92
53

S4

. the initial state,

. the system is activated and no philosophers dine,
: philosopher 1 dines,

: philosophers 1 and 4 dine,

: philosophers 1 and 3 dine,

: philosopher 4 dines,

s7: philosopher 3 dines,

sg: philosophers 2 and 4 dine,
Sg9: philosophers 3 and 5 dine,
S10: philosopher 2 dines,

s11: philosopher 5 dine,

S12: philosophers 2 and 5 dine.
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TS‘*(F)
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The transition system without empty loops of the dining philosophers system
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DTMC*(E)
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The underlying DTMC without empty loops of the dining philosophers system
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The TPM for DT MC*(FE) is
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Transient and steady-state probabilities of the dining philosophers system

161

k 01 2 3 4 5 6 7 3 9 10 00
YEk] || 1]0 0 0 0 0 0 0 0 0 0 0
P3[k] || 0|1 0 0.2403 | 0.1541 | 0.1981 | 0.1716 | 0.1884 | 0.1776 | 0.1846 | 0.1800 | 0.1818
V3 k] || 0] 0| 0.1500 | 0.0701 | 0.1189 | 0.0878 | 0.1079 | 0.0949 | 0.1033 | 0.0979 | 0.1014 | 0.1000
Yy[k] || 0| 0| 0.0500 | 0.0818 | 0.0503 | 0.0726 | 0.0578 | 0.0674 | 0.0612 | 0.0652 | 0.0626 | 0.0636

We depict the probabilities for the states s1, ..., sS4 only, since the corresponding for the

states s3, Sg, S7, S10, S11 as well as for s4, S5, Sg, Sg, S12.
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The steady-state PMF for DT M C*(E) is

=

2 1 v 7 1 1 7 7 1 1 7
117107 110" 1107107101107 1107 10" 10" 110

Performance indices

® The average recurrence time in the state so, where all the forks are available, the average system

run-through, is @DLZ = 12—1 = 5%.
e Nobody eats in the state s5. The fraction of time when no philosophers dine is 15 = %

Only one philosopher eats in the states s3, Sg, S7, S109, S11- Ihe fraction of time when only one
philosopher dines is ¥3 4 1§ 4+ 7 4+ ]y + Y7 = 1—10 + % -+ 1—10 + % 1—10 = %

Two philosophers eat together in the states s4, S5, Sg, Sg, S12. The fraction of time when two
philosophers dine is ¥} + ¥ + ¥ + ¥s + i = 106 + o5 + o5 + o6 T Tog = 35-

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
702 _ 7

22 "1 — 11°
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e The beginning of eating of first philosopher ({b1 }, i) is only possible from the states so, Sg, S7.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({1}, ).

The steady-state probability of the beginning of eating of first philosopher is
3 2oy, hyery DT, 82) + 96 2 iry(gvyy,21)ery PT (T 56) +
V7 2 qriqeny yery PTH(L, 57) =

i1 (36 + 30 T 30) + 10 (31 + 11) + 10 (37 + 11) = 7o
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The abstract system

The static expression of the philosopher i (1 <17 < 4)is

Fi = [({zi}, 5) = ({0, %}, 5)s (e, 22 ) I (({mi1}, 3); ({zis1}, 3))) + Stop).

The static expression of the philosopher 5 is

Fs = [({a,21,%2,72, 71}, 3) * ({6, 45}, 3)s (e, 25}, )11}, 2)s ({1}, 3))) * Stop].
The static expression of the abstract dining philosophers system is

F = (Fy|| || F3||Fyu||Fs) sy 21 Sy T2 Sy T3 Sy T4 SY Y1 SY Y2 SY Y3 SY Ya SY Ys SY 21 SY 22 SY 23
SY 24 SY 25 ISXT1 ST IST3 STy rSY| ISY2 S Y3 ISYLISYs IS 21 IS 2o rS23IS24L1S25.
DR(F) resembles DR(E), and T'S*(F) is similar to T'S*(E).

DTMC*(F)~DTMC*(E), thus, TPM and the steady-state PMF for DT’ M C* (F') and
DTMC*(E) coincide.
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Performance indices

The and the are the same for the standard and
abstract systems.

The : non-personalized viewpoint to the philosophers.

e The beginning of eating of a philosopher ({b}, 1) is only possible from the states
$2, 53,56, 57,510, S11-

The beginning of eating probability in each of the states is a sum of execution probabilities for all
multisets of activities containing ({0}, %).

The steady-state probability of the beginning of eating of a philosopher is
V3 2 iy, ery DT 52) 95 2 ryqoy, 1yery PT(L, 83) +
Y6 2 iy, hery DT s6) +97 2 iryqoy, 1yery P17, 57) +

io 2o qriey, hyery P17 (L, 510) + 911 2 qryqoy,2yery P17 (T 511) =

N S S T S e S ST T Y R A S
itatata)ta(a+tatato)ti(Gtatata)t
ittt =i
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The reduction of the abstract system

The static expression of the philosopher 1is F} = [({z}, 5) = ({0}, 2); ({e}., 1)) = Stop].
The static expression of the philosopher 2 is Fj = [({a, 2}, &) * (({b}, 2); ({e}. §)) * Stop].
The static expression of the reduced abstract dining philosophers systemis F' = (F||F}) sy x rs x.
DR(F") consists of

1 = [([({=}, 3) = ({0}, $)1; ({e}, 3)1) * Stop]|
(({a, 2}, 15) * ({b}, 2)2; ({e}, 3)2) * Stop]) sy @ rs 2]~

sy = [([({z}, 3) = ({8}, )1: ({e}, 7)1) * Stop]|
(({a, 2}, 15) * ({0}, 2)2; ({e}, 3)2) * Stop]) sy @ rs 7]

s3 = [([({z}, 3) = ({8}, £)1: ({e}, 7)1) * Stop]|
(({a, @}, 75) = ({6}, $)2; ({e}, 7)2) * Stop]) sy z rs 2],

sy = [([({z}, 3) * ({0}, £)1; ({e}, 7)1) * Stop]|
(({a, 2}, 15) * ({b}, 2)2; ({e}, 3)2) * Stop]) sy @ rs 7]

s5 = [([({z}, 3) * ({0}, 2)1; ({e}, 7)1) * Stop]|
(({a, 2}, 15) * ({0}, 2)2; ({e}, 7)2) * Stop]) sy @ rs 2]~
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Interpretation of the states

s7: the initial state,

3’2: the system is activated and no philosophers dine,
%, Sy one philosopher dines,

3’5: two philosophers dine.

Consider R : F'<»__F’ suchthat (DR(F) U DR(F"))/r = {H 1, Ho, Hz, H4}, where
H1 = {s1, s} (the initial state),

Ho = {92, 55} (the system is activated and no philosophers dine),

Hs = {s3, S6, S7, S10, S11, S, Sy } (one philosopher dines),

Hy = {84, S5, Ss, S9, S12, S5 } (two philosophers dine).

F'is areduction of F'w.rt. <> __.
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The transition system without empty loops of the reduced abstract dining philosophers system
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DTMC*(F")

(851

The underlying DTMC without empty loops of the reduced abstract dining philosophers system
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The TPM for DT M C*(F") is

[0 1 0 0 0 )
00 § § 1
PP=10 ¢ 0 7 g
0 5% 11 0 13
\0 3 3 % 0

The steady-state PMF for DT M C*(F") is
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Transient and steady-state probabilities of the reduced abstract dining philosophers system

k 011 2 3 4 5 6 7 8 9 10 00
o] o 0 0 0 0 0 0 0 0 0
é* (k] 011 0 0.2403 | 0.1541 | 0.1981 | 0.1716 | 0.1884 | 0.1776 | 0.1846 | 0.1800 | 0.1818
é* (k] [ 0| 0| 0.3750 | 0.1753 | 0.2973 | 0.2195 | 0.2697 | 0.2372 | 0.2583 | 0.2446 | 0.2535 | 0.2500

wg* (k] || 0| O | 0.2500 | 0.4091 | 0.2513 | 0.3628 | 0.2890 | 0.3371 | 0.3059 | 0.3261 | 0.3130 | 0.3182
We depict the probabilities for the states s/, s5, s5, s only, since the corresponding for

/ /
S3, Sy.
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rrrrr *o 0y K]
gk
—— A g K]

Transient probabilities alteration diagram of the reduced abstract dining philosophers system
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Performance indices

e The average recurrence time in the state 3’2 where all the forks are available, the average system

run-through, is — = 171 = 5%.
2

e Nobody eats in the state 5’2 The fraction of time when no philosophers dine is wé* = 12—1

Only one philosopher eats in the states sg, Sﬁl. The fraction of time when only one philosopher dines
. / * rx 1 1 1
syt =3t = 5

Two philosophers eat together in the state sg The fraction of time when two philosophers dine is

Pk 7
5 T 22°

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
702 _ 7

22 1 — 11°
e The beginning of eating of a philosopher ({b}, %) is only possible from the states s5, s%, s/.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({0}, 2).

The steady-state probability of the beginning of eating of a philosopher is
2 2oqri(goy,2yery DT (L 52) + ¢2§ ?{rg{b}?)er}ff(r’ 3'3) PP
) * * / -
e ery PTPT sy =G (s +s+3) +1(a+0) +1(a+4) =1
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The performance indices are the same for the complete and the reduced abstract dining philosophers

systems.

The coincidence of the first performance index as well as the second group of indices illustrates

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived step traces from steady

states:
one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b},{e}} of F and F",

and sum the left and right parts of the three resulting equalities.
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The marked dts-box of the reduced abstract dining philosophers system
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The quotient of the abstract system

DR(F)/RSS@) = {IC1, [Co, [C5., [y }, where

IC1 = {s1} (the initial state),

JCo = {s2} (the system is activated and no philosophers dine),
Cg = {83, S6,S7,510, 811} (one philosopher dines),

JCy = {54, S5, S8, S9, S12} (two philosophers dine).

180
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TSy, (F)

(K1)

{e}sq
{b},{b}},

N

==

{{er.{er}:57

The quotient transition system without empty loops of the abstract dining philosophers system
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DTMCY, (F)

(K1)

The quotient underlying DTMC without empty loops of the abstract dining philosophers system
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The TPM for DT MC?7, (F)is

—SS

[0 1 0 0 )
3 1
P/* — 00 4 4
0 3 2 ©
11 11 11

~
o
=
o
o
N—

The steady-state PMF for DT MC?7, (F)is

—SS
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Transient and steady-state probabilities of the quotient abstract dining philosophers system

@)
—

2 3 4 5 6 7 3 9 10 00

0 0 0 0 0 0 0 0 0 0

0 0.2403 | 0.1541 | 0.1981 | 0.1716 | 0.1884 | 0.1776 | 0.1846 | 0.1800 | 0.1818

0.7500 | 0.3506 | 0.5946 | 0.4391 | 0.5394 | 0.4745 | 0.5165 | 0.4893 | 0.5069 | 0.5000

o1 O | O
o | O |~ | O

0.2500 | 0.4091 | 0.2513 | 0.3628 | 0.2890 | 0.3371 | 0.3059 | 0.3261 | 0.3130 | 0.3182
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Transient probabilities alteration diagram of the quotient abstract dining philosophers system
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Performance indices

e The average recurrence time in the state /Co, where all the forks are available, the average system
run-through, is —+ = % = 5%.
2

e Nobody eats in the state 5. The fraction of time when no philosophers dine is ¢y~ = 1—21

Only one philosopher eats in the state C3. The fraction of time when only one philosopher dines is

nx 1
3 — 2
Two philosophers eat together in the state 4. The fraction of time when two philosophers dine is
nx __ 7
4 T 22
The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
7.2 _ 7
22 1~ 11°

e The beginning of eating of a philosopher {b} is only possible from the states K5, 3.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of multiactions containing {b}.

The steady-state probability of the beginning of eating of a philosopher is

/1% * /1%
2 Z{A,K|{b}€A’K2$K}PMA(IC27IC)+¢3 Z

(s + 1)+ (i +a1) =1

{A,K|{b}eA, K3 B K} PM3 (K3, K) =
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The performance indices are the same for the complete and quotient abstract dining philosophers

systems.

The coincidence of the first performance index as well as the second group of indices illustrates

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived step traces from steady

states:
one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b}, {e}} of F and itself,

and sum the left and right parts of the three resulting equalities.
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The generalized system

The static expression of the philosopheri (1 <7 < 4)is

Ki = [({zi}, p) = ({06, i}, p); ({ea, zi} p)) I (({wiva }s p); ({Zig1}, p))) * Stop.
The static expression of the philosopher 5 is

Ky = [({a, 21,72, 72, T4}, p) % ({05, U5}, p); ({es, 25}, ) [[({wn }s p); ({21}, p))) * Stop].
The static expression of the generalized dining philosophers system is

K = (K| K2 || K3||K4||K5) sy x1 Sy T2 Sy T3 Sy T4 Sy Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22
SY Z3SY 24SY Z5 ST ST rST3rST4rSYy ISYo rSYz rSY4 rsYs rS 21 1S 29 rS 23 s z4 rs Zs.
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Interpretation of the states

S1: the initial state, s7: philosopher 3 dines,

So: the system is activated and no philosophers dine,  Sg: philosophers 2 and 4 dine,

S3: philosopher 1 dines, Sg: philosophers 3 and 5 dine,
S4: philosophers 1 and 4 dine, S10: philosopher 2 dines,
Ss: philosophers 1 and 3 dine, S11: philosopher 5 dine,

Se: philosopher 4 dines, S19: philosophers 2 and 5 dine.
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The TPM for DT MC*(K) is
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The steady-state PMF for DT'MC* (F) is QL* =

. 1 1 2—p? 2—-p> 1 1 2—p? 2—-p> 1 1 2—)p?
2(3 —p2)" 107 10(3 — p2) " 10(3 — p2)" 107 107 10(3 — p2) " 10(3 — p2) " 10’ 10" 10(3 — p?)

Performance indices

e The average recurrence time in the state so, where all the forks are available, the average system
= 2(3 —
75 = 230"

1
2(3—p?)"
Only one philosopher eats in the states s3, Sg, S7, S10, S11. The fraction of time when only one
philosopher dines is 15 + ¥g + ¥ + Pl + ¥ = S+ s+ 5t 5+ 5 = 5.

Two philosophers eat together in the states s4, S5, Sg, Sg, S12. The fraction of time when two
phllosophers dlne |s2 ¢4 + ¢5 + ¢8 + wg + ¢12 = p 2
) + L T e e t T = 2

The relatlve fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
2—p? 2 2—p?

2G3—p%) 1 3-p%

e Nobody eats in the state so. The fraction of time when no philosophers dine is @; —
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e The beginning of eating of first philosopher ({b1 }, p?) is only possible from the states s3, sg, S7.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({b1 }, p?).

The steady-state probability of the beginning of eating of first philosopher is
U3 D1 (tbyy.p2yery PT (L, 52) + 06 32 (gvyy.p2)ermy PL7 (T, 86) +
7 2o r oy p2yery PT (L, s7) =

1 1—p2 ﬁ ﬁ 1 1—p2 P2 1 1—p2 P2 _ 34p2
2(3—p2) ( 5 T 5 T5 )T 10 3—p2 + 3—p2 10 \ 3—p2 + 3—p2 ) — 10(3—p2)"
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The abstract generalized system

The static expression of the philosopher i (1 <17 < 4)is

Li = [({zi}, p) * (D, 93}, p); (e, 2z}, p)) [(({wiva }s p); {Zig1}, p))) * Stop].

The static expression of the philosopher 5 is

Ls = [({a, 71,72, 72,74}, p) * ({0, 95}, p); ({€, Z5}, ) [[(({y1 }, p); ({21}, p))) * Stop].
The static expression of the abstract generalized dining philosophers system is

L = (L1 La||L3|| L4 Ls) sy w1 Sy T2 Sy T3 Sy T4 Sy Y1 SY Y2 SY Y3 SY Y4 SY Y5 SY 21 SY 22

Sy 23 SY 24 SY 25 ST ST rSXT3 STy rSY1 ISY2 rSY3 rSY4 ISYs IS 21 IS 29 IS 23 IS 24 IS 25.
DR(L) resembles DR(K), and T'S* (L) is similar to T'S* (K).

DTMC*(L)~DTMC*(K), thus, TPM and the steady-state PMF for DT’ M C* (L) and
DTMC*(K) coincide.
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Performance indices

The and the are the same for the generalized system
and its abstract modification.
The : non-personalized viewpoint to the philosophers.

e The beginning of eating of a philosopher ({b}, p?) is only possible from the states
S2, 53, 86, S7, 5105 S11-
The beginning of eating probability in each of the states is the sum of the execution probabilities for
all multisets of activities containing ({b}, p?).

The steady-state probability of the beginning of eating of a philosopher is
V3 2qri(penery P17 82) 952 oy, p2yery P17 83) +
Y6 2 qri(oypmrery PTH(T 86) + 97 2 ry oy p2yery DT 87) +
Vio 2oty p2yery T (I S10) + 971 D2y qvy p2yery P, 511) =

1 1— 2 2 1— 2 2 1— 2 2 1— 2 1— 2
e (s e e e R e R )y
1 1—p2 2 1—p2 2 1
10 (3—22 + 3ﬁp2 + 3—22 3fp2) T 10
1 1— 2 2 1— 2 2 1
10 ( p2 + 3fp2 + 3_22 35/02) + 10

1 (1=p? p’ 1—p° PP\ _ 3
1 (3_p2 _|_ 3_p2 _|_ 3_p2 3_p2 — 2(3—,02)'
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The reduction of the abstract generalized system

The static expression of the philosopher 1is L} = [({x}, p) * (({b}, %); ({e}, p?)) * Stop].

The static expression of the philosopher 2 is L, = [({a, 2}, p*) * (({b}, 12+p;2 ); ({e}, p?)) = Stop].

The static expression of the reduced abstract generalized dining philosophers system is
L' = (L}||LY) sy = rs .
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Consider R : L<»__ I’ such that (DR(L) U DR(L')) /g = {H 1, Ho., Hs. Hi}, where
Hi = {51,8,} (the initial state),

ﬁg = {52, 85} (the system is activated and no philosophers dine),

Hy = {83, S¢, S7, S10, S11, S5, Sy } (one philosopher dines),

H,y = {84, 85, Sg, S9, §12, 8t } (two philosophers dine).

L' is areduction of L w.rt. <> .

The TPM for DT MC*(L') is

(0 1 0 0 0 )
1—p?  1—p? 2
0 0 p p
2 2
P/* — 1—p? 20 2(1=p°)
- 0 3—p? 0 3—p? 3—p
0 Ll=p? 29 0 2(1—p?)
3—p2  3—p2 3—p2
2 2 2
p 1—p 1—p
\ 0 2—p?  2—p* 2—p? 0 )
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The steady-state PMF for DT M C*(L') is

i — (o 1 11 2—p?
S \T2B3—p2)7474723—p2) )"

Performance indices

e The average recurrence time in the state §’2 where all the forks are available, average system

run-through, is — = 2(3 — p?).

/%
2

e Nobody eats in the state §’2 The fraction of time when no philosophers dine is @Zé* — m.

Only one philosopher eats in the states §§, §ﬁl. The fraction of time when only one philosopher dines
SN Iy, 1 1 1
s+ =3+ 7= 3
Two philosophers eat together in the state §’5 The fraction of time when two philosophers dine is
v _ 2—p°
5 7 2(3—p%)"
The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is

2-p® 2 _ 2-p°
23—p%) 1= 3
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2 - AT
) T2 ) is only possible from the states S5, 55, 5.

The beginning of eating probability in each of the states is the sum of the execution probabilities for

e The beginning of eating of a philosopher ({b}

all multisets of activities containing ({b}, - i +p )

The steady-state probability of the beginning of eating of a philosopher is
/>I< * * ~/
2 2qry(oy, 2e)ery DT (T 52) + U5 X iy 2ty yery P17 (0, 35) +
PT*(T',8)) =

1-|-2

Z{FI({b},Hg) €ry
1 1—p2 | 1—p2 2(1— 2 1 (2(1—p? 2p° 3
ot (1 2) HE (AR ) 11 (B ) =

The are the same for the complete and the reduced abstract generalized dining

philosophers systems.

The coincidence of the as well as the of indices illustrates

proposition about steady-state probabilities.

The coincidence of the is by the theorem about derived step traces from steady

states:
one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b},{e}} of L and L/,

and sum the left and right parts of the three resulting equalities.
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The quotient of the abstract generalized system

DR(Z)/RSS(Z) = {/61, /62, /Eg, /%4}, where

K, = {51} (the initial state),

Ko = {52} (the system is activated and no philosophers dine),
/63 = {S3, S¢, S7, S10, 511} (0ne philosopher dines),

Ky = {54, 85, S8, 89, S12} (two philosophers dine).

The TPM for DT'MC?, (L)is

[0 1 0 0
P/ 0 0 1 - p2 IO2
| 0 =2 2p° 2(1—p?)
3—p2 3—p2 3—p2
2
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The steady-state PMF for DT MC¥, (L) s

SS

?75//*: 0 1 1 2_p2
2(3—-p%)7272(3-p%) )

Performance indices

e The average recurrence time in the state /Co, where all the forks are available, the average system

run-through, is —— = 2(3 — p?).

T %
2

e Nobody eats in the state KCo. The fraction of time when no philosophers dine is zﬁé’* — m.

Only one philosopher eats in the state 163. The fraction of time when only one philosopher dines is

Tx 1

3 — 2
Two philosophers eat together in the state 4. The fraction of time when two philosophers dine is
Tix . 2—p°

47 2(3=p?)"

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
2-p* 2 _ 2-p°
2(3=p%) 1 3—=p*°
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e The beginning of eating of a philosopher {b} is only possible from the states IEQ, 163.

The beginning of eating probability in each of the states is the sum of the execution probabilities for

all multisets of multiactions containing {b}.

The steady-state probability of the beginning of eating of a philosopher is

e * (1 /1% (1 1\
2 Z{A K|{b}eA, Ks 5K} PMA(K2, K) + + % Z{A,/’a{b}eA, Ks5K) PM(Ks, K) =
1 2(1— p 2 _ 3

2(3—p?2) ((1 P ) + P ) + 5 ( ( ) _|_ p ) T 2(3—p?)-
The are the same for the complete and quotient abstract generalized dining
philosophers systems.
The coincidence of the as well as the of indices illustrates
proposition about steady-state probabilities.
The coincidence of the is by the theorem about derived step traces from steady

states:

one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b},{e}} of L and itself,

and sum the left and right parts of the three resulting equalities.
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Effect of quantitative changes of p to performance of the quotient abstract generalized dining

philosophers system in its steady state

p E (O; 1) is the probability of every multiaction of the system.

~’1’* — () and ¢”* = = are constants, and they do not depend on p.
~ 1 2
é/* — 2(3 p _ and ,l,b//* o 2(3—p) depend on p

2
”* + 1?”* ~ 23— pz) -+ 2(3 pQ) — % hence, the sum of these steady-state probabilities

does not depend on p.

Interpretation: the fraction of time when no or two philosophers dine coincides with

that when only one philosopher dines, and both fractions are equal to %

202



Igor V. Tarasyuk: Algebra dts P BC': a discrete time stochastic extension of Petri box calculus

1—p

2
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Steady-state probabilities 105 * and )} * as functions of the parameter p
The diagrams in figure above are w.r.t. the probability i.
~ ~ 2
The Is value of P, the Is the difference will* — é/* — % — m — m

The difference tends to % when p approaches 0.

The difference tends to O when p approaches 1.
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Interpretation: the difference between the fractions of time when two and when no philosophers dine.

//* _ p> 1 _ 2-p°

More mterestlng value: Tp//* + Tp//* —|— 2(3 p2) W = W

N

The value tends to 5 when p approaches 0.

1

The value tends to 5 when p approaches 1.

Interpretation: the difference between the fractions of time when some (one or two) and

when no philosophers dine.
When p is closer to 0, more time is spent for eating and less time remains for thinking: dining is preferred.
When p is closer to 1, the situation is symmetric: thinking is preferred.

The influence of p to the performance indices presented before: similarly.
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Overview and open questions

The results obtained

IPML/SPML

Stochastic formalisms and equivalences

e A discrete time stochastic extension dts P BC' of finite PBC enriched with iteration.

e The step operational semantics based on labeled probabilistic transition systems,

iPML/sPML

e The denotational semantics in terms of a subclass of LDTSPNSs.
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The stochastic algebraic equivalences which have natural net analogues on LDTSPNSs.

The transition systems and DTMCs reduction modulo stochastic equivalences.

A logical characterization of stochastic bisimulation equivalences via probabilistic modal logics.
An application of the equivalences to comparison of stationary behaviour.

A preservation w.r.t. algebraic operations and the congruence relation.

The case studies of performance analysis.
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Further research
e Abstracting from silent activities in definitions of the equivalences.
e Introducing the immediate multiactions with zero delay.

e Extending the syntax with recursion operator.
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The slides can be downloaded from Internet:

http://itar.iis.nsk.su/files/itar/pages/dtspbcsem.pdf

Thank you for your attention!



