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Abstract : In [MVF01], a continuous time stochastic extension sPBC of finite Petri box calculus

PBC [BDH92] was proposed. In [MVCC03], iteration operator was added to sPBC .

Algebra sPBC has an interleaving semantics, but PBC has a step one.

We constructed a discrete time stochastic extension dtsPBC of finite PBC [Tar05] and

enriched it with iteration [Tar06].

The step operational semantics is defined in terms of labeled probabilistic transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs (LDTSPNs) called

discrete time stochastic Petri boxes (dts-boxes).

We propose a variety of stochastic equivalences and investigate their interrelations.

It is explained how to use the equivalences for transition systems and discrete time Markov chains

reduction.

A logical characterization of the equivalences is presented via probabilistic modal logics.

We demonstrate how to apply the equivalences to compare stationary behaviour.

A congruence relation is defined. The case studies of performance evaluation are presented.
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Introduction

Previous work

• Continuous time (subsets of IR≥0): interleaving semantics

– Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:

exponential transition firing delays,

Continuous time Markov chain (CTMC).

– Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:

exponential and zero transition firing delays,

Semi-Markov chain (SMC).
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• Discrete time (subsets of IN ): interleaving and step semantics

– Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:

geometric transition firing delays,

Discrete time Markov chain (DTMC).

– Discrete time deterministic and stochastic Petri nets (DTDSPNs) [ZFH01]:

geometric and fixed transition firing delays,

Semi-Markov chain (SMC).

– Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:

phase and fixed transition firing delays,

Semi-Markov chain (SMC).
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Stochastic process algebras

• MTIPP [HR94]

• GSPA [BKLL95]

• PEPA [Hil96]

• Sπ [Pri96]

• EMPA [BGo98]

• GSMPA [BBGo98]

• sACP [AHR00]

• TCP dst [MVi08]

More stochastic process calculi

• TIPP [GHR93]

• TPCCS [Han94]

• PM − TIPP [Ret95]

• PPA [NFL95]

• prBPA,ACP+
π [And99]

• StAFP0 [BT01]

• SM − PEPA [Brad05]

• iPEPA [HBC13]

Algebra PBC and its extensions

• Petri box calculus PBC [BDH92]

• Time Petri box calculus tPBC [Kou00]

• Timed Petri box calculus TPBC [MF00]

• Stochastic Petri box calculus sPBC [MVF01,MVCC03]

• Ambient Petri box calculusAPBC [FM03]

• Arc time Petri box calculus atPBC [Nia05]

• Generalized stochastic Petri box calculus gsPBC [MVCR08]

• Discrete time stochastic Petri box calculus dtsPBC [Tar05,Tar06]

• Discrete time stochastic and immediate Petri box calculus

dtsiPBC [TMV10,TMV13]
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Classification of stochastic process algebras

Time Interleaving semantics Non-interleaving semantics

Continuous MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ, GSMPA (GSMP)

EMPA (SMC, CTMC),

sPBC (CTMC), gsPBC (SMC)

Discrete TCP dst (DTMRC) sACP , dtsPBC (DTMC),

dtsiPBC (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.

The underlying stochastic process: in parentheses near the SPA names.
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Transition labeling

• CTSPNs [Buc95]

• GSPNs [Buc98]

• DTSPNs [BT00]

Stochastic equivalences

• Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]

• SPAs [HR94,Hil94,BGo98]

• Markov process algebras (MPAs) [Buc94,BKe01]

• CTSPNs [Buc95]

• GSPNs [Buc98]

• Stochastic automata (SAs) [Buc99]

• Stochastic event structures (SESs) [MCW03]
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Syntax

The set of all finite multisets over X is INX
fin.

The set of all subsets (powerset) of X is 2X .

Act = {a, b, . . .} is the set of elementary actions.

Âct = {â, b̂, . . .} is the set of conjugated actions (conjugates) s.t. a 6= â and ˆ̂a = a.

A = Act ∪ Âct is the set of all actions.

L = INA
fin is the set of all multiactions.

The alphabet of α ∈ L is A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where

α ∈ L and ρ ∈ (0; 1) is the probability of multiaction α.

SL is the set of all activities.

The alphabet of (α, ρ) ∈ SL is A(α, ρ) = A(α).

The alphabet of Γ ∈ INSL
fin is A(Γ) = ∪(α,ρ)∈ΓA(α).

For (α, ρ) ∈ SL, its multiaction part is L(α, ρ) = α and its probability part is Ω(α, ρ) = ρ.

The multiaction part of Γ ∈ INSL
fin is L(Γ) =

∑
(α,ρ)∈Γ α.
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The operations: sequential execution ;, choice [], parallelism ‖, relabeling [f ], restriction rs,

synchronization sy and iteration [ ∗ ∗ ].

Sequential execution and choice have the standard interpretation.

Parallelism does not include synchronization unlike that in standard process algebras.

Relabeling functions f : A → A are bijections preserving conjugates: ∀x ∈ A f(x̂) = f̂(x).

For α ∈ L, let f(α) =
∑
x∈α f(x). For Γ ∈ INSL

fin, let f(Γ) =
∑

(α,ρ)∈Γ(f(α), ρ).

Restriction over a ∈ Act: any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions s.t. for a ∈ Act we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β.

Synchronization of α and β by a is α⊕aβ = γ:

γ(x) =





α(x) + β(x)− 1, x = a or x = â;

α(x) + β(x), otherwise.

In the iteration, the initialization subprocess is executed first,

then the body one is performed zero or more times, finally, the termination one is executed.
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Static expressions specify the structure of processes.

Definition 1 Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E∗E∗E].

StatExpr is the set of all static expressions of dtsPBC .

Definition 2 Let (α, ρ) ∈ SL and a ∈ Act. A regular static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E∗D∗E],

where D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D∗D∗E].

RegStatExpr is the set of all regular static expressions of dtsPBC .
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Dynamic expressions specify the states of processes.

Dynamic expressions are obtained from static ones annotated with upper or lower bars.

The underlying static expression of a dynamic one: removing all upper and lower bars.

Definition 3 LetE ∈ StatExpr and a ∈ Act. A dynamic expression of dtsPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |

[G∗E∗E] | [E∗G∗E] | [E∗E∗G].

DynExpr is the set of all dynamic expressions of dtsPBC .

Definition 4 A dynamic expression is regular if its underlying static expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsPBC .
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Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations.

LetE,F,K ∈ RegStatExpr and a ∈ Act.

Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f ] ⇒ E[f ] E[f ] ⇒ E[f ] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K]

[E∗F∗K] ⇒ [E∗F∗K] [E∗F∗K] ⇒ [E∗F∗K]
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LetE,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃
G⇒G̃

G‖H⇒G̃‖H
H⇒H̃

G‖H⇒G‖H̃
G⇒G̃

G[f ]⇒G̃[f ]

G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a
G⇒G̃

[G∗E∗F ]⇒[G̃∗E∗F ]

G⇒G̃

[E∗G∗F ]⇒[E∗G̃∗F ]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

Definition 5 A regular dynamic expression is operative if no inaction rule can be applied to it.

OpRegDynExpr is the set of all operative regular dynamic expressions of dtsPBC .

We shall consider regular expressions only and omit the word “regular”.

Definition 6 ≈ = (⇒ ∪ ⇐)∗ is the structural equivalence of dynamic expressions in dtsPBC .

G andG′ are structurally equivalent,G≈G′, if they can be reached each from other by applying

inaction rules in a forward or backward direction.
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Action and empty loop rules

Action rules: execution of non-empty multisets of activities at a time step.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (α, ρ), (β, χ) ∈ SL, E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr,

G̃, H̃ ∈ RegDynExpr, a ∈ Act and Γ,∆ ∈ INSL
fin \ {∅}, Γ′ ∈ INSL

fin.

Action and empty loop rules

ElG
∅
→ G B (α, ρ)

{(α,ρ)}
−→ (α, ρ) SC1

G
Γ
→G̃, ◦∈{;,[]}

G◦E
Γ
→G̃◦E

SC2
G

Γ
→G̃, ◦∈{;,[]}

E◦G
Γ
→E◦G̃

P1 G
Γ
→G̃

G‖H
Γ
→G̃‖H

P2 H
Γ
→H̃

G‖H
Γ
→G‖H̃

P3 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

L G
Γ
→G̃

G[f ]
f(Γ)
−→G̃[f ]

Rs
G

Γ
→G̃, a,â 6∈A(Γ)

G rs a
Γ
→G̃ rs a

I1 G
Γ
→G̃

[G∗E∗F ]
Γ
→[G̃∗E∗F ]

I2 G
Γ
→G̃

[E∗G∗F ]
Γ
→[E∗G̃∗F ]

I3 G
Γ
→G̃

[E∗F∗G]
Γ
→[E∗F∗G̃]

Sy1 G
Γ
→G̃

G sy a
Γ
→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}

−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}

−−−−−−−−−−−→G̃ sy a
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Comparison of inaction, action and empty loop rules

Rules State change Time progress Activities execution

Inaction rules − − −

Action rules ± + +

Empty loop rule − + −
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Transition systems

Definition 7 Let n ∈ IN . The numbering of expressions is

ι ::= n | (ι)(ι).

Num is the set of all numberings of expressions.

The content of a numbering ι ∈ Num is

Cont(ι) =





{ι}, ι ∈ IN ;

Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

(a)
1

(b)

1 2

�
�

�

❅
❅
❅

(c)

1

�
�

�

❅
❅
❅

2 3

�
�

�

❅
❅
❅

✉ ✉
✉ ✉

✉
✉ ✉
✉ ✉

BTRNUM:The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))
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[G]≈ = {H | G ≈ H} is the equivalence class of G ∈ RegDynExpr w.r.t. structural equivalence.

Definition 8 The derivation set DR(G) of a dynamic expressionG is the minimal set:

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃ΓH
Γ
→ H̃ then [H̃]≈ ∈ DR(G).

LetG be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

Let Γ ∈ Exec(s) \ {∅}. The probability that the multiset of activities Γ is ready for execution in s:

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}

(1− χ).

In the case Γ = ∅ we define

PF (∅, s) =





∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, otherwise.
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Let Γ ∈ Exec(s). The probability to execute the multiset of activities Γ in s:

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability to move from s to s̃ by executing any multiset of activities:

PM(s, s̃) =
∑

{Γ|∃H∈s ∃H̃∈s̃ H
Γ
→H̃}

PT (Γ, s).

Calculation of the probability functions PF , PT , PM for s1 ∈ DR(E) andE = ({a}, ρ)[]({a}, χ)

s1\Γ ∅ {({a}, ρ)} {({a}, χ)} Σ

PF (1− ρ)(1− χ) ρ(1− χ) χ(1− ρ) 1− ρχ

PT (1−ρ)(1−χ)
1−ρχ

ρ(1−χ)
1−ρχ

χ(1−ρ)
1−ρχ 1

PM (1−ρ)(1−χ)
1−ρχ (s1)

ρ+χ−2ρχ
1−ρχ (s2) 1



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 21

Definition 9 The (labeled probabilistic) transition system of a dynamic expressionG is

TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSL
fin × (0; 1];

• the set of transitions is

TG = {(s, (Γ, PT (Γ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

• the initial state is sG = [G]≈.

A transition (s, (Γ,P), s̃) ∈ TG is written as s
Γ
→P s̃.

We write s
Γ
→s̃ if ∃P s

Γ
→P s̃ and s→s̃ if ∃Γ s

Γ
→ s̃.
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Definition 10 Let G,G′ be dynamic expressions and TS(G) = (SG, LG, TG, sG),

TS(G′) = (SG′ , LG′ , TG′ , sG′) be their transition systems. A mapping β : SG → SG′ is an

isomorphism between TS(G) and TS(G′), β : TS(G)≃TS(G′), if

1. β is a bijection s.t. β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

TS(G) and TS(G′) are isomorphic, TS(G)≃TS(G′), if ∃β : TS(G) ≃ TS(G′).

For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 11 G and G′ are equivalent w.r.t. transition systems,G=tsG
′, if TS(G)≃TS(G′).
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For a dynamic expressionG, a discrete random variable is associated with every state s ∈ DR(G).

The random variables (residence time in the states) are geometrically distributed:

the probability to stay in the state s ∈ DR(G) for k − 1 moments and leave it at the moment k ≥ 1 is

PM(s, s)k−1(1− PM(s, s)).

The mean value formula: the average sojourn time in the state s is

SJ(s) =
1

1− PM(s, s)
.

The average sojourn time vector SJ of G has the elements SJ(s), s ∈ DR(G).

Analogously: the sojourn time variance in the state s is

V AR(s) =
PM(s, s)

(1− PM(s, s))2
.

The sojourn time variance vector V AR of G has the elements V AR(s), s ∈ DR(G).
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Definition 12 The underlying discrete time Markov chain (DTMC) of a dynamic expressionG,

DTMC(G), has the state spaceDR(G), the initial state [G]≈ and transitions s→P s̃, if s→ s̃ and

P = PM(s, s̃).

For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).
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E1;E2

E1;E2

TS(E)✄✂ ✲

✄✂ ✲
∅, 1−ρ

1+ρ

∅,1−χ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✄✂ ✲

✄✂ ✲

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

({a},ρ)2,
ρ

1+ρ

1−ρ
1+ρ

1−χ

2ρ
1+ρ

❄

☛
✡
✟
✠

E1;E2

E1;E2

✄✂ ✲☛✡ ✟✠
1

χ

❄
E1;E2

✄✂ ✲☛✡ ✟✠
∅,1

({b},χ),
χ

❄
E1;E2

The transition system and the underlying DTMC of E for E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ)

LetE1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ) andE = E1;E2.

The identical activities of the composite static expression are enumerated as:

E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ).
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[E1∗E2∗E3]

[E1∗E2∗E3]

TS(E)✞✝ ✲

✞✝ ✲
∅, 1−ρ

1+ρ

∅, (1−χ)(1−θ)
1−χθ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲
({a},ρ)2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

✞✝ ✲
1

❄
[E1∗E2∗E3]

✞✝ ✲
∅,1

({c},θ),
θ(1−χ)
1−χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

EXPRIT:The transition system and the underlying DTMC ofE forE = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]

LetE1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ), E3 = ({c}, θ) and E = [E1 ∗E2 ∗E3].

The identical activities of the composite static expression are enumerated as:

E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)].

DR(E) consists of s1 = [[E1 ∗E2 ∗E3]]≈, s2 = [[E1 ∗E2 ∗E3]]≈, s3 = [[E1 ∗E2 ∗E3]]≈.
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The average sojourn time vector of E is

SJ =

(
1 + ρ

2ρ
,
1− χθ

θ(1− χ)
,∞

)
.

The sojourn time variance vector of E is

V AR =

(
1− ρ2

4ρ2
,
(1− θ)(1− χθ)

θ2(1− χ)2
,∞

)
.
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Denotational semantics

Labeled DTSPNs

Definition 13 A labeled discrete time stochastic Petri net (LDTSPN) is

N = (PN , TN ,WN ,ΩN , LN ,MN ), where

• PN and TN are finite sets of places and transitions (PN ∪ TN 6= ∅, PN ∩ TN = ∅);

• WN : (PN × TN ) ∪ (TN × PN ) → IN is the arc weight function;

• ΩN : TN → (0; 1) is the transition probability function;

• LN : TN → L is the transition labeling function;

• MN ∈ INPN

fin is the initial marking.

Concurrent transition firings at discrete time moments.

LDTSPNs have step semantics.
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A transition t ∈ TN is enabled in a markingM ∈ INPN

fin of LDTSPN N if •t ⊆M .

Ena(M) is the set of all transitions enabled in M .

A set of transitions U ⊆ Ena(M) is enabled in M if •U ⊆M .

Then t ∈ Ena(M) fires in the next time moment with probability ΩN (t), if no different transition is

enabled in M , i.e. Ena(M) = {t}.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability that the set of transitions U is ready for

firing in M :

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1− ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =





∏
u∈Ena(M)(1− ΩN (u)) Ena(M) 6= ∅;

1 otherwise.
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Let U ⊆ Ena(M) and •U ⊆M . The probability that the set of transitions U fires in M :

PT (U,M) =
PF (U,M)∑

{V⊆Ena(M)|•V⊆M} PF (V,M)
.

If U = ∅ then M = M̃ .

Firing of U changes markingM to M̃ =M − •U + U•, M
U
→PM̃ , where P = PT (U,M).

We write M
U
→M̃ if ∃P M

U
→P M̃ and M→M̃ if ∃U M

U
→ M̃ .

For U = {t} we write M
t
→PM̃ and M

t
→M̃ .
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Definition 14 Let N be an LDTSPN.

• The reachability set RS(N) is the minimal set of markings s.t.

– MN ∈ RS(N);

– if M ∈ RS(N) and M → M̃ then M̃ ∈ RS(N).

• The reachability graphRG(N) is a directed labeled graph with

– the set of nodesRS(N);

– an arc labeled by (U, P) from nodeM to M̃ if M
U
→P M̃ .

• The underlying Discrete Time Markov Chain (DTMC) DTMC(N) is a DTMC with

– the state spaceRS(N);

– a transitionM→PM̃ , where P = PM(M, M̃) is the probability to move from M to M̃ by

firing any set of transitions:

PM(M, M̃) =
∑

{U |M
U
→M̃}

PT (U,M);

– the initial state MN .
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LetN be an LDTSPN andM ∈ RS(N). The average sojourn time in the markingM is

SJ(M) =
1

1− PM(M,M)
.

The average sojourn time vector SJ of N has the elements SJ(M), M ∈ RS(N).

The sojourn time variance in the marking M is

V AR(M) =
PM(M,M)

(1− PM(M,M))2
.

The sojourn time variance vector V AR of N has the elements V AR(M), M ∈ RS(N).
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LDTSPN, its reachability graph and the underlying DTMC

The transitions: t1 (labeled by {a}), t2 (labeled by {b}) and t3 (labeled by ∅).

The transition probabilities: ρ = ΩN (t1), χ = ΩN (t2), θ = ΩN (t3).

RS(N) consists of M1 = (1, 1, 0), M2 = (0, 1, 1), M3 = (1, 0, 1), M4 = (0, 0, 2).
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The average sojourn time vector of N :

SJ =

(
1

ρ+ χ− ρχ
,
1

χ
,
1

ρ
,
1

θ

)
.

The sojourn time variance vector of N :

V AR =

(
1− ρ− χ+ ρχ

(ρ+ χ− ρχ)2
,
1− χ

χ2
,
1− ρ

ρ2
,
1− θ

θ2

)
.

The elements Pij(1 ≤ i, j ≤ 4) of (one-step) transition probability matrix (TPM) of DTMC(N):

Pij =





PM(si, sj) si → sj ;

0 otherwise.
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The (one-step) TPM:

P =




(1− ρ)(1− χ) ρ(1− χ) χ(1− ρ) ρχ

0 1− χ 0 χ

0 0 1− ρ ρ

θ 0 0 1− θ




The steady-state PMF ψ is a solution of





ψ(P− I) = 0

ψ1T = 1
,

where I is the identity matrix of size four and 0 = (0, 0, 0, 0), 1 = (1, 1, 1, 1).
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For ρ = χ = θ

ψ =

(
1

5− 3ρ
,
1− ρ

5− 3ρ
,
1− ρ

5− 3ρ
,
2− ρ

5− 3ρ

)
.

The inverse of the steady-state PMF is the mean recurrence time vector

RC =

(
5− 3ρ,

5− 3ρ

1− ρ
,
5− 3ρ

1− ρ
,
5− 3ρ

2− ρ

)
.

The average time to come back to the initial markingMN =M1 in the long-term behaviour is in (2; 5).
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Algebra of dts-boxes

Definition 15 A discrete time stochastic Petri box (dts-box) is N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, respectively, s.t. PN ∪ TN 6= ∅ and

PN ∩ TN = ∅;

• WN : (PN × TN ) ∪ (TN × PN ) → IN is a function of the weights of arcs between places and

transitions and vice versa;

• ΛN is the place and transition labeling function s.t.

– ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places);

– ΛN |TN
: TN → {̺ | ̺ ⊆ INSL

fin × SL} (it associates transitions with the relabeling relations).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN (p) = e}, and the set of exit places of N,

N◦ = {p ∈ PN | ΛN (p) = x}, it holds: ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A dts-box is plain if ∀t ∈ TN ΛN (t) = ̺(α,ρ), where ̺(α,ρ) = {(∅, (α, ρ))} is the constant

relabeling, identified with (α, ρ).

A marked plain dts-box is a pair (N,MN ), whereN is a plain dts-box and MN ∈ INPN

fin is its marking.

LetN = (N, ◦N) andN = (N,N◦).
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The plain and operator dts-boxes
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Definition 16 Let (α, ρ) ∈ SL, a ∈ Act andE,F,K ∈ RegStatExpr. The denotational

semantics of dtsPBC is a mappingBoxdts from RegStatExpr into plain dts-boxes:

1. Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2. Boxdts(E◦F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E◦a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs,sy};

5. Boxdts([E∗F∗K]) = Θ[ ∗ ∗ ](Boxdts(E), Boxdts(F ), Boxdts(K)).

For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) andBoxdts(E) = Boxdts(E).
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We denote isomorphism of transition systems by ≃,

and the same symbol denotes isomorphism of reachability graphs and DTMCs

as well as isomorphism between transition systems and reachability graphs.

Theorem 1 For any static expressionE

TS(E)≃RG(Boxdts(E)).

Proposition 1 For any static expressionE

DTMC(E)≃DTMC(Boxdts(E)).
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BOXIT:The marked dts-box N = Boxdts(E) for E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)], its

reachability graph and the underlying DTMC
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EXPR:The transition system and the underlying DTMC of E for E = (({a}, ρ)‖({â}, χ)) sy a
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BOX:The marked dts-boxN = Boxdts(E) for E = (({a}, ρ)‖({â}, χ)) sy a, its reachability graph

and the underlying DTMC
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The normalization factor N = 1
1−ρ2χ−ρχ2+ρ2χ2 .

P11 = N (1− ρ)(1− χ)(1− ρχ) P12 = Nρ(1− χ)(1− ρχ)

P13 = Nχ(1− ρ)(1− ρχ) Psy
14 = Nρχ(1− ρ)(1− χ)

P
‖
14 = Nρχ(1− ρχ) P22 = 1− χ

P24 = χ P33 = 1− ρ

P34 = ρ P44 = 1

P14 = Psy
14 + P

‖
14 = Nρχ(2− ρ− χ)

The case ρ = χ = 1
2 :

P11 = P12 = P13 = P
‖
14 =

3

13
, Psy

14 =
1

13
,

P22 = P24 = P33 = P34 =
1

2
, P44 = 1, P14 =

4

13
.
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M1 = (1, 0, 0, 0, 0, 0) is the initial marking.

M2 = (0, 1, 1, 1, 1, 0) is obtained from M1 by firing t1.

M3 = (0, 1, 1, 2, 0, 0) is obtained from M2 by firing t2 and has 2 tokens in the place p4.

M4 = (0, 1, 1, 0, 2, 0) is obtained from M2 by firing t3 and has 2 tokens in the place p5.

Concurrency in the second argument of iteration in E can lead to non-safeness of the corresponding

marked dts-boxN , but it is 2-bounded in the worst case.

The origin of the problem: N has as a self-loop with two subnets which can function independently.
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Stochastic equivalences

Empty loops in transition systems

LetG be a dynamic expression and s ∈ DR(G).

The probability to stay in s due to k (k ≥ 1) empty loops is (PT (∅, s))k.

Let Γ ∈ Exec(s) \ {∅}, i.e. PT (∅, s) < 1. The probability to execute the non-empty multiset of

activities Γ in s after possible empty loops:

PT ∗(Γ, s) = PT (Γ, s)
∞∑

k=0

(PT (∅, s))k =
PT (Γ, s)

1− PT (∅, s)
= EL(s)PT (Γ, s),

where EL(s) = 1
1−PT (∅,s) is the empty loops abstraction factor.

The empty loops abstraction vector EL of G has the elementsEL(s), s ∈ DR(G).

Definition 17 The (labeled probabilistic) transition system without empty loops TS∗(G) has the state

spaceDR(G) and the transitions s
Γ
→→P s̃, if s

Γ
→ s̃, Γ 6= ∅ and P = PT ∗(Γ, s).

We write s
Γ
→→s̃ if ∃P s

Γ
→→P s̃ and s→→s̃ if ∃Γ s

Γ
→→ s̃.

For Γ = {(α, ρ)} we write s
(α,ρ)
→→ P s̃ and s

(α,ρ)
→→ s̃.
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For E ∈ RegStatExpr, let TS∗(E) = TS∗(E).

Definition 18 G and G′ are equivalent w.r.t. transition systems without empty loops,G=ts∗G
′, if

TS∗(G)≃TS∗(G′).

Definition 19 The underlying DTMC without empty loopsDTMC∗(G) has the state spaceDR(G)

and transitions s→→P s̃, if s→→ s̃, where P = PM∗(s, s̃) is the probability to move from s to s̃ by

executing any non-empty multiset of activities after possible empty loops:

PM∗(s, s̃) =
∑

{Γ|s
Γ
→→s̃}

PT ∗(Γ, s) =





EL(s)(PM(s, s)− PT (∅, s)), s = s̃;

EL(s)PM(s, s̃), otherwise,

where PM(s, s)− PT (∅, s) is the probability to stay in s due to any non-empty loop, i.e.

by executing any non-empty multiset of activities.

For E ∈ RegStatExpr, let DTMC∗(E) = DTMC∗(E).



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 49

[E1∗E2∗E3]

[E1∗E2∗E3]

TS∗(E) DTMC∗(E)

✲ ✛

({a},ρ)1,
1
2 ({a},ρ)2,

1
2 1

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

❄
[E1∗E2∗E3]

({c},θ),
θ(1−χ)

χ+θ−2χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)

χ+θ−2χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

✛

χ(1−θ)
χ+θ−2χθ

θ(1−χ)
χ+θ−2χθ

☎✆

The transition system and the underlying DTMC without empty loops of E in Figure EXPRIT
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Empty loops in reachability graphs

LetN be an LDTSPN andM ∈ RS(N).

The probability to stay in M due to k (k ≥ 1) empty loops is (PT (∅,M))k.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M , i.e. PT (∅,M) < 1. The probability that the non-empty

set of transitions U fires in M after possible empty loops:

PT ∗(U,M) = PT (U,M)

∞∑

k=0

(PT (∅,M))k =
PT (U,M)

1− PT (∅,M)
= EL(M)PT (U,M),

where EL(M) = 1
1−PT (∅,M) is the empty loops abstraction factor.

The empty loops abstraction vector EL of N has the elementsEL(M), M ∈ RS(N).

Definition 20 The reachability graph without empty loopsRG∗(N) with the set of nodesRS(N)

and the set of arcs corresponding to the transitionsM
U
→→PM̃ , if M

U
→ M̃, U 6= ∅ and

P = PT ∗(U,M).

We write M
U
→→M̃ if ∃P M

U
→→P M̃ and M→→M̃ if ∃U M

U
→→ M̃ .

For U = {t} we write M
t
→→PM̃ and M

t
→→M̃ .
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Definition 21 The underlying DTMC without empty loopsDTMC∗(N) has the state spaceRS(N)

and transitionsM→→PM̃ , if M →→ M̃ , where P = PM∗(M, M̃) is the probability to move from M

to M̃ by firing any non-empty set of transitions after possible empty loops:

PM∗(M, M̃) =
∑

{U∈Ena(M)|M
U
→→M̃}

PT ∗(U,M) =



EL(M)(PM(M,M)− PT (∅,M)), M = M̃ ;

EL(M)PM(M, M̃), otherwise,

where PM(M,M)− PT (∅,M) is the probability to stay in M due to any non-empty loop, i.e.

by firing any non-empty multiset of transitions.
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Theorem 2 For any static expressionE

TS∗(E)≃RG∗(Boxdts(E)).

Proposition 2 For any static expressionE

DTMC∗(E)≃DTMC∗(Boxdts(E)).



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 53

100

010

RG∗(N) DTMC∗(N)

✲ ✛

t1,
1
2 t2,

1
2 1

❄

☛
✡
✟
✠

❄

t4,
θ(1−χ)

χ+θ−2χθ

❄
001

☎✆✛

t3,
χ(1−θ)

χ+θ−2χθ

θ(1−χ)
χ+θ−2χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

100

010

001

☎✆✛

χ(1−θ)
χ+θ−2χθ

The reachability graph and the underlying DTMC without empty loops of N in Figure BOXIT
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☛✡ ✟✠
(E1‖E2)sy a

(E1‖E2)sy a

TS∗(E)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

{({a},ρ),
({â},χ)},

P
‖∗
14

({a},ρ),P∗
12 ({â},χ),P∗

13

({â},χ),P∗
24 ({a},ρ),P∗

34

❄

({∅},ρχ),

Psy∗
14

DTMC∗(E)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

P∗
12 P∗

13

P∗
24 P∗

34

❄

P∗
14

(E1‖E2)sy a (E1‖E2)sy a

(E1‖E2)sy a

(E1‖E2)sy a

(E1‖E2)sy a (E1‖E2)sy a

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

The transition system and the underlying DTMC without empty loops of E in Figure EXPR



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 55

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

RG∗(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

{t1,t2},
P

‖∗
14

t1,P
∗
12 t2,P

∗
13

t2,P
∗
24 t1,P

∗
34

❄

t(1)(2),
Psy∗

14

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

DTMC∗(N)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

P∗
12 P∗

13

P∗
24 P∗

34

❄

P∗
14

The reachability graph and the underlying DTMC without empty loops of N in Figure BOX
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The normalization factor N ∗ = 1
ρ+χ−2ρ2χ−2ρχ2+2ρ2χ2 .

P∗
12 = P12

1−P11
= N ∗ρ(1− χ)(1− ρχ)

P∗
13 = P13

1−P11
= N ∗χ(1− ρ)(1− ρχ)

Psy∗
14 =

Psy
14

1−P11
= N ∗ρχ(1− ρ)(1− χ)

P
‖∗
14 =

P
‖
14

1−P11
= N ∗ρχ(1− ρχ)

P∗
24 = P24

1−P22
= 1

P∗
34 = P34

1−P33
= 1

P∗
14 = Psy∗

14 + P
‖∗
14 =

Psy
14+P

‖
14

1−P11
= N ∗ρχ(2− ρ− χ)

The case ρ = χ = 1
2 :

P∗
12 = P∗

13 = P
‖∗
14 =

3

10
, Psy∗

14 =
1

10
, P∗

24 = P∗
34 = 1, P∗

14 =
2

5
.
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Stochastic trace equivalences

LetG be a dynamic expression, s, s̃ ∈ DR(G) and s
(α,ρ)
→→ s̃. We write s

(α,ρ)
⇀⇀ P s̃, where

P = pt∗((α, ρ), s) is the probability to execute the activity (α, ρ) in s after possible empty loops when

only one-element steps are allowed:

pt∗((α, ρ), s) =
PT ∗({(α, ρ)}, s)∑

{(β,χ)}∈Exec(s) PT
∗({(β, χ)}, s)

.

For Γ ∈ INSL
fin, we consider L(Γ) ∈ INL

fin, i.e. (possibly empty) multisets of multiactions.
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Definition 22 An interleaving stochastic trace of a dynamic expressionG is a pair (σ, pt∗(σ)), where

σ = α1 · · ·αn ∈ L∗ and

pt∗(σ) =
∑

{(α1,ρ1),...,(αn,ρn)|[G]≈=s0
(α1,ρ1)
⇀⇀ s1

(α2,ρ2)
⇀⇀ ···

(αn,ρn)
⇀⇀ sn}

∏n
i=1 pt

∗((αi, ρi), si−1).

We denote a set of all interleaving stochastic traces of a dynamic expressionG by

IntStochTraces(G).

G andG′ are interleaving stochastic trace equivalent,G≡isG′, if

IntStochTraces(G) = IntStochTraces(G′).

LetE = (({a}, 12 )‖({â},
1
2 )) sy a.

IntStochTraces(E) = {(∅, 17 ), ({a},
3
7 ), ({â},

3
7 ), ({a}{â},

3
7 ), ({â}{a},

3
7 )}.



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 59

Definition 23 A step stochastic trace of a dynamic expressionG is a pair (Σ, PT ∗(Σ)), where

Σ = A1 · · ·An ∈ (INL
fin \ {∅})∗ and

PT ∗(Σ) =
∑

{Γ1,...,Γn|[G]≈=s0
Γ1→→s1

Γ2→→···
Γn→→sn, L(Γi)=Ai (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1).

We denote a set of all step stochastic traces of a dynamic expressionG by StepStochTraces(G).

G andG′ are step stochastic trace equivalent,G≡ssG′, if

StepStochTraces(G) = StepStochTraces(G′).

LetE = (({a}, 12 )‖({â},
1
2 )) sy a.

StepStochTraces(E) = {({∅}, 1
10 ), ({{a}},

3
10 ), ({{â}},

3
10 ), ({{a}}{{â}},

3
10 ),

({{â}}{{a}}, 3
10 ), ({{â}, {a}},

3
10 )}.
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Stochastic bisimulation equivalences

LetG be a dynamic expression and H ⊆ DR(G). For s ∈ DR(G) andA ∈ INL
fin \ {∅} we write

s
A
→→PH, where P = PM∗

A(s,H) is the overall probability to move from s into the set of states H via

non-empty steps with the multiaction partA after possible empty loops:

PM∗
A(s,H) =

∑

{Γ|∃s̃∈H s
Γ
→→s̃, L(Γ)=A}

PT ∗(Γ, s).

We write s
A
→→H if ∃P s

A
→→P H.

We write s→→PH if ∃A s
A
→→ H, where P = PM∗(s,H) is the overall probability to move from s into

the set of states H via any non-empty steps after possible empty loops:

PM∗(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→→s̃}

PT ∗(Γ, s).
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We write s
α
⇀⇀PH, where P = pm∗

α(s,H) is the overall probability to move from s into the set of states

H via steps with the multiaction part {α} after possible empty loops when only one-element steps are

allowed:

pm∗
α(s,H) =

∑

{(α,ρ)|∃s̃∈H s
(α,ρ)
→→ s̃}

pt∗((α, ρ), s).

We write s
α
⇀⇀H if ∃P s

α
⇀⇀P H.
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Definition 24 Let G and G′ be dynamic expressions. An equivalence relation

R ⊆ (DR(G) ∪DR(G′))2 is a ⋆-stochastic bisimulation betweenG and G′,

⋆ ∈{interleaving, step}, R : G↔⋆sG
′, ⋆ ∈ {i, s}, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R

• ∀x ∈ L and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INL
fin \ {∅} and →֒=→→, if ⋆ = s;

s1
x
→֒P H ⇔ s2

x
→֒P H.

Two dynamic expressionsG and G′ are ⋆-stochastic bisimulation equivalent, ⋆ ∈{interleaving, step},

G↔⋆sG
′, if ∃R : G↔⋆sG

′, ⋆ ∈ {i, s}.

R⋆s(G,G
′) =

⋃
{R | R : G↔⋆sG

′}, ⋆ ∈ {i, s}, is the union of all ⋆-stochastic bisimulations

betweenG and G′, ⋆ ∈{interleaving, step}.

Proposition 3 Let G and G′ be dynamic expressions andG↔⋆sG
′, ⋆ ∈ {i, s}. Then R⋆s(G,G

′)

is the largest ⋆-stochastic bisimulation betweenG and G′, ⋆ ∈{interleaving, step}.
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Stochastic isomorphism

LetG be a dynamic expression, s, s̃ ∈ DR(G) and s
A
→→P {s̃}. We write s

A
→→P s̃.

Definition 25 Let G,G′ be dynamic expressions. A mapping β : DR(G) → DR(G′) is a

stochastic isomorphism betweenG and G′, β : G=stoG
′, if

1. β is a bijection s.t. β([G]≈) = [G′]≈;

2. ∀s, s̃ ∈ DR(G) ∀A ∈ INL
fin \ {∅} s

A
→→P s̃ ⇔ β(s)

A
→→P β(s̃).

G andG′ are stochastically isomorphic,G=stoG
′, if ∃β : G=stoG

′.
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E′

E′

TS(E′)✞✝ ✲

✞✝ ✲

TS(E)

✲ ✛

✞✝ ✲

✞✝ ✲

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

∅, 12

∅,1

({a}, 12 ),
1
2

❄

☛
✡
✟
✠

E

E

∅, 13

∅,1

({a}, 12 )1,
1
3 ({a}, 12 )2,

1
3

E′

E′

TS∗(E′)TS∗(E)

✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

({a}, 12 ),1

❄

☛
✡
✟
✠

E

E

({a}, 12 )1,
1
2 ({a}, 12 )2,

1
2

E′′

E′′

TS(E′′)✞✝ ✲

✞✝ ✲✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛
✡
✟
✠

∅, 12

∅,1

({a}, 12 )1,
1
4 ({a}, 12 )2,

1
4

E′′

E′′

TS∗(E′′)

✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛
✡
✟
✠({a}, 12 )1,

1
2 ({a}, 12 )2,

1
2

Properties of the stochastic isomorphism based on transition systems with empty loops
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LetE = ({a}, 12 ), E
′ = ({a}, 12 )1[]({a},

1
2 )2, E

′′ = ({a}, 13 )1[]({a},
1
3 )2.

The (one-element) multisets of activities which label the transitions of TS∗(E), TS∗(E′), TS∗(E′′),

and non-empty ones of TS(E), TS(E′), TS(E′′), have the same multiaction part {{a}}.

• E=stoE′=stoE′′, since the probability of the only one non-empty transition in TS∗(E) is 1, the

probability of both non-empty transitions in TS∗(E′) and TS∗(E′′) is 1
2 , and 1 = 1

2 + 1
2 .

• E is not equivalent to E′ w.r.t. the stronger version of stochastic isomorphism, since the probability

of the only one non-empty transition in TS(E) is 1
2 , whereas the probability of both non-empty

transitions in TS(E′) is 1
3 , and 1

2 6= 2
3 = 1

3 + 1
3 .

• E′ is not equivalent to E′′ w.r.t. the stronger version of stochastic isomorphism, since the probability

of both non-empty transitions in TS(E′) is 1
3 , whereas the probability of both non-empty transitions

in TS(E′′) is 1
4 , and 1

3 + 1
3 = 2

3 6= 1
2 = 1

4 + 1
4 .

• E is equivalent to E′′ w.r.t. the stronger version of stochastic isomorphism, since the probability of

the only one non-empty transition in TS(E) is 1
2 , the probability of both non-empty transitions in

TS(E′′) is 1
4 , and 1

2 = 1
4 + 1

4 .
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Interrelations of the stochastic equivalences

≡is ≡ss

↔is ↔ss

❄ ❄

≈

❄

✛

✛

=sto

❄

❄

=ts

Interrelations of the stochastic equivalences
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Proposition 4 Let ⋆ ∈ {i, s}. For dynamic expressionsG andG′:

1. G↔⋆sG
′ ⇒ G≡⋆sG′;

2. G=ts∗G
′ ⇔ G=tsG

′.

Theorem 3 Let ↔,↔↔ ∈ {≡,↔,=,≈} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts}. For dynamic expressions

G andG′

G↔⋆G
′ ⇒ G↔↔⋆⋆G

′

iff in the graph above there exists a directed path from ↔⋆ to ↔↔⋆⋆.
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Validity of the implications

• The implications ↔ss → ↔is, ↔ ∈ {≡,↔} are valid, since single activities are one-element

multisets.

• The implications ↔⋆s → ≡⋆s, ⋆ ∈ {i, s}, are valid by the proposition above.

• The implication =sto → ↔ss is proved as follows. Let β : G=stoG
′. Then R : G↔ssG

′, where

R = {(s, β(s)) | s ∈ DR(G)}.

• The implication =ts → =sto is valid, since stochastic isomorphism is that of transition systems

without empty loops up to merging of transitions with labels having identical multiaction parts.

• The implication ≈ → =ts is valid, since the transition system of a dynamic formula is defined based

on its structural equivalence class.
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Absence of the additional nontrivial arrows

(a) Let E = ({a}, 12 )‖({b},
1
2 ) andE′ = (({a}, 12 ); ({b},

1
2 ))[](({b},

1
2 ); ({a},

1
2 )). Then

E↔isE
′, but E 6≡ssE′, since only in TS∗(E′) multiactions {a} and {b} cannot be executed

concurrently.

(b) Let E = ({a}, 12 ); (({b},
1
2 )[]({c},

1
2 )) and E′ = (({a}, 12 ); ({b},

1
2 ))[](({a},

1
2 ); ({c},

1
2 )).

Then E≡ssE′, butE↔/ isE′, since only in TS∗(E′) a multiaction {a} can be executed so that no

multiaction {b} can occur afterwards.

(c) Let E = ({a}, 12 ); ({b},
1
2 ) and E′ = ({a}, 12 ); ({b},

1
2 )[]({a},

1
2 ); ({b},

1
2 ). Then E↔ssE

′,

butE 6=stoE′, since TS∗(E′) has more states than TS∗(E).

(d) Let E = ({a}, 12 ) and E′ = ({a}, 12 )1[]({a},
1
2 )2. Then E=stoE′, but E 6=tsE′, since only

TS(E′) has two transitions.

(e) Let E = ({a}, 12 ); ({â},
1
2 ) and E′ = (({a}, 12 ); ({â},

1
2 )) sy a. Then E=tsE′, but E 6≈E′,

since E and E′ cannot be reached each from other by applying inaction rules.

In the figure below N = Boxdts(E) and N ′ = Boxdts(E′) for each picture (a)–(e).
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Dts-boxes of the dynamic expressions from equivalence examples of the theorem above
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Reduction modulo equivalences
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LetE = (({a}, 12 ); ({b},
1
2 ))‖(({c},

1
2 ); ({d},

1
2 )) and E′ = ((({a, x}, 12 ); (({b, y1},

1
2 )[]

({b, y2},
1
2 )))‖(({a, x̂},

1
2 ); (({b, ŷ2, y

′
2},

1
2 )[]({d, v1},

1
2 )))‖(({c, z},

1
2 ); (({b, ŷ

′
2},

1
2 )[]

({d, v̂1, v′1},
1
2 )))‖(({c, ẑ},

1
2 ); (({d, v̂

′
1},

1
2 )[]({d, v2},

1
2 )))‖(({b, ŷ1},

1
4 )[]({d, v̂2},

1
4 )))

sy x sy y1 sy y2 sy y
′
2 sy z sy v1 sy v

′
1 sy v2 rs x rs y1 rs y2 rs y

′
2 rs z rs v1 rs v

′
1 rs v2.

We have E↔ssE
′, but E 6=stoE′, since TS∗(E′) has more states than TS∗(E).

Thus,E is a reduction of E′ w.r.t. ↔ss.

For N = Boxdts(E) and N ′ = Boxdts(E′), N is a reduction of N ′ w.r.t. the net version of ↔ss.
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An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expressionG and a step stochastic autobisimulation R : G↔ssG,

let K ∈ DR(G)/R and s1, s2 ∈ K.

We have ∀K̃ ∈ DR(G)/R ∀A ∈ INL
fin \ {∅} s1

A
→→P K̃ ⇔ s2

A
→→P K̃.

The equality is valid for all s1, s2 ∈ K, hence, we can rewrite it as K
A
→→PK̃, where

P = PM∗
A(K, K̃) = PM∗

A(s1, K̃) = PM∗
A(s2, K̃).

We write K
A
→→K̃ if ∃P K

A
→→P K̃ and K→→K̃ if ∃AK

A
→→ K̃.

The similar arguments: we write K→→PK̃, where

P = PM∗(K, K̃) = PM∗(s1, K̃) = PM∗(s2, K̃).
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Rss(G) =
⋃
{R | R : G↔ssG} is the largest step stochastic autobisimulation on G.

Definition 26 The quotient (by ↔ss) (labeled probabilistic) transition system without empty loops of a

dynamic expressionG is TS∗
↔ss

(G) = (S↔ss
, L↔ss

, T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
⊆ (INL

fin \ {∅})× (0; 1];

• T↔ss
= {(K, (A,PM∗

A(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K
A
→→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→→PK̃.

For E ∈ RegStatExpr, let TS∗
↔ss

(E) = TS∗
↔ss

(E).

Definition 27 The quotient (by ↔ss) underlying DTMC without empty loops of a dynamic expression

G, DTMC∗
↔ss

(G), has the state spaceDR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the

transitions K →→P K̃, where P = PM∗(K, K̃).

For E ∈ RegStatExpr, let DTMC∗
↔ss

(E) = DTMC∗
↔ss

(E).
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Logical characterization

Logic iPML

Definition 28 ⊤ is the truth, α ∈ L, P ∈ (0; 1]. A formula of iPML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | ∇α | 〈α〉PΦ

iPML is the set of all formulas of the logic iPML.

Definition 29 Let G be a dynamic expression and s ∈ DR(G). The satisfaction relation

|=G ⊆ DR(G)× iPML:

1. s |=G ⊤ — always;

2. s |=G ¬Φ, if s 6|=G Φ;

3. s |=G Φ∧Ψ, if s |=G Φ and s |=G Ψ;

4. s |=G ∇α, if not s
α
⇀⇀ DR(G);

5. s |=G 〈α〉PΦ, if ∃H ⊆ DR(G) s
α
⇀⇀Q H, Q ≥ P and ∀s̃ ∈ H s̃ |=G Φ.

〈α〉Φ = ∃P 〈α〉PΦ. 〈α〉QΦ implies 〈α〉PΦ, if Q ≥ P .
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We write G |=G Φ, if [G]≈ |=G Φ.

Definition 30 G and G′ are logically equivalent in iPML, G=iPMLG
′, if

∀Φ ∈ iPMLG |=G Φ ⇔ G′ |=G′ Φ.

LetG be a dynamic expression and s ∈ DR(G), α ∈ L.

The set of states reached from s by execution of α, the image set, is

Image(s, α) = {s̃ | ∃{(α, ρ)} ∈ Exec(s) s
(α,ρ)
→→ s̃}.

A dynamic expressionG is an image-finite one, if ∀s ∈ DR(G) ∀α ∈ L |Image(s, α)| <∞.

Theorem 4 For image-finite dynamic expressionsG and G′

G↔isG
′ ⇔ G=iPMLG

′.

LetE = ({a}, 12 ); (({b},
1
2 )[]({c},

1
2 )) andE′ = (({a}, 12 ); ({b},

1
2 ))[](({a},

1
2 ); ({c},

1
2 )).

Then E 6=iPMLE′, because for Φ = 〈{a}〉1〈{b}〉 1
2
⊤ we have E |=E Φ, but E′ 6|=E′ Φ, since in

TS∗(E′) a multiaction {a} can be executed so that no multiaction {b} can occur afterwards.
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Logic sPML

Definition 31 ⊤ is the truth, A ∈ INL
fin \ {∅}, P ∈ (0; 1].

A formula of sPML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | ∇A | 〈A〉PΦ

sPML is the set of all formulas of the logic sPML.

Definition 32 Let G be a dynamic expression and s ∈ DR(G). The satisfaction relation

|=G ⊆ DR(G)× sPML:

1. s |=G ⊤ — always;

2. s |=G ¬Φ, if s 6|=G Φ;

3. s |=G Φ∧Ψ, if s |=G Φ and s |=G Ψ;

4. s |=G ∇A, if not s
A
→→ DR(G);

5. s |=G 〈A〉PΦ, if ∃H ⊆ DR(G) s
A
→→Q H, Q ≥ P and ∀s̃ ∈ H s̃ |=G Φ.

〈A〉Φ = ∃P 〈A〉PΦ. 〈A〉QΦ implies 〈A〉PΦ, if Q ≥ P .
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We write G |=G Φ, if [G]≈ |=G Φ.

Definition 33 G and G′ are logically equivalent in sPML,G=sPMLG
′, if

∀Φ ∈ sPMLG |=G Φ ⇔ G′ |=G′ Φ.

LetG be a dynamic expression and s ∈ DR(G), A ∈ INL
fin \ {∅}.

The set of states reached from s by execution of A, the image set, is

Image(s, A) = {s̃ | ∃Γ ∈ Exec(s) L(Γ) = A, s
Γ
→→ s̃}.

A dynamic expressionG is an image-finite one, if

∀s ∈ DR(G) ∀A ∈ INL
fin \ {∅} |Image(s, A)| <∞.

Theorem 5 For image-finite dynamic expressionsG and G′

G↔ssG
′ ⇔ G=sPMLG

′.

LetE = ({a}, 12 )‖({b},
1
2 ) andE′ = (({a}, 12 ); ({b},

1
2 ))[](({b},

1
2 ); ({a},

1
2 )). Then E↔isE

′

but E 6=sPMLE′, because for Φ = 〈{a, b}〉 1
3
⊤ we have E |=E Φ, but E′ 6|=E′ Φ, since in

TS∗(E′) multiactions {a} and {b} cannot be executed concurrently.
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Stationary behaviour

Theoretical background

The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition probability matrix (TPM) P∗ for

DTMC∗(G):

P∗
ij =





PM∗(si, sj), si →→ sj ;

0, otherwise.

The transient (k-step, k ∈ IN ) probability mass function (PMF) ψ∗[k] = (ψ∗
1 [k], . . . , ψ

∗
n[k]) for

DTMC∗(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,
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where ψ∗[0] = (ψ∗
1 [0], . . . , ψ

∗
n[0]) is the initial PMF:

ψ∗
i [0] =





1, si = [G]≈;

0, otherwise.

We have ψ∗[k + 1] = ψ∗[k]P∗, k ∈ IN .

The steady-state PMF ψ∗ = (ψ∗
1 , . . . , ψ

∗
n) for DTMC∗(G) is a solution of





ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n, 0 is a vector of n values 0, 1 is that of n values 1.

When DTMC∗(G) has the single steady state, ψ∗ = limk→∞ ψ∗[k].
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For s ∈ DR(G) with s = si (1 ≤ i ≤ n) we define ψ∗[k](s) = ψ∗
i [k] (k ∈ IN) and ψ∗(s) = ψ∗

i .

LetG be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G).

The following performance indices (measures) are based on the steady-state PMF.

• The average recurrence (return) time in the state s (the number of discrete time units or steps

required for this) is 1
ψ∗(s) .

• The fraction of residence time in the state s is ψ∗(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the probability of the event

determined by a condition that is true for all states from S is
∑

s∈S ψ
∗(s).

• The relative fraction of residence time in the set of states S w.r.t. that in S̃ is
∑

s∈S ψ
∗(s)∑

s̃∈S̃
ψ∗(s̃) .

• The steady-state probability to perform a step with a multiset of activities ∆ is∑
s∈DR(G) ψ

∗(s)
∑

{Γ|∆⊆Γ} PT
∗(Γ, s).

• The probability of the event determined by a reward function r on the states is∑
s∈DR(G) ψ

∗(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.
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Theorem 6 LetG be a dynamic expression andEL be its empty loops abstraction vector. The

steady-state PMFs ψ for DTMC(G) and ψ∗ for DTMC∗(G) are related as: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)EL(s)∑

s̃∈DR(G) ψ
∗(s̃)EL(s̃)

.
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Steady state and equivalences

Proposition 5 Let G,G′ be dynamic expressions with R : G↔ssG
′ and ψ∗ be the steady-state

PMF for DTMC∗(G), ψ′∗ be the steady-state PMF for DTMC∗(G′). Then

∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′).

The result of the proposition above is valid if we replace steady-state probabilities with transient ones.

LetG be a dynamic expression. The transient PMF ψ∗
↔ss

[k] (k ∈ IN ) and the steady-state PMF ψ∗
↔ss

for DTMC∗
↔ss

(G) are defined like the corresponding notions ψ∗[k] and ψ∗ for DTMC∗(G).

By the proposition above: ∀K ∈ DR(G)/Rss(G)

ψ∗
↔ss

(K) =
∑

s∈K

ψ∗(s).

Stop = ({c}, 12 ) rs c is the process that performs empty loops with probability 1 and never terminates.
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LetE = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop] and

E′ = [({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1; ({d},

1
2 )1)[](({d},

1
2 )2; ({c},

1
2 )2))) ∗ Stop].

We have E↔isE
′.

DR(E) consists of

s1 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s4 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s5 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈.

DR(E′) consists of

s′1 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1; ({d},

1
2 )1)[](({d},

1
2 )2; ({c},

1
2 )2))) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1; ({d},

1
2 )1)[](({d},

1
2 )2; ({c},

1
2 )2))) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1; ({d},

1
2 )1)[](({d},

1
2 )2; ({c},

1
2 )2))) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1; ({d},

1
2 )1)[](({d},

1
2 )2; ({c},

1
2 )2))) ∗ Stop]]≈,

s′5 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1; ({d},

1
2 )1)[](({d},

1
2 )2; ({c},

1
2 )2))) ∗ Stop]]≈.
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The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,
3

8
,
1

8
,
1

8

)
, ψ′∗ =

(
0,

1

3
,
1

3
,
1

6
,
1

6

)
.

Consider H = {s3, s′3}. We have
∑
s∈H∩DR(E) ψ

∗(s) = ψ∗(s3) =
3
8 , whereas∑

s′∈H∩DR(E′) ψ
′∗(s′) = ψ′∗(s′3) =

1
3 . Thus, ↔is does not guarantee a coincidence of

steady-state probabilities to enter into an equivalence class.

In the figure aboveN = Boxdts(E) and N ′ = Boxdts(E′).
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The intersection of ↔is and ≡ss does not guarantee a coincidence of steady-state probabilities to enter into an
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LetE = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop] and

E′ = [({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop].

We have E↔isE
′ and E≡ssE′.
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DR(E) is as in the previous example.

DR(E′) consists of

s′1 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈,

s′5 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈,

s′6 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈,

s′7 = [[({a}, 12 ) ∗ (({b},
1
2 ); ((({c},

1
2 )1‖({d},

1
2 )1))[]((({c},

1
2 )2; ({d},

1
2 )2)[]

(({d}, 12 )3; ({c},
1
2 )3))))) ∗ Stop]]≈.
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The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,
3

8
,
1

8
,
1

8

)
, ψ′∗ =

(
0,

13

38
,
13

38
,
3

38
,
3

38
,
3

38
,
3

38

)
.

Consider H = {s3, s′3}. We have
∑
s∈H∩DR(E) ψ

∗(s) = ψ∗(s3) =
3
8 , whereas∑

s′∈H∩DR(E′) ψ
′∗(s′) = ψ′∗(s′3) =

13
38 . Thus, ↔is plus ≡ss do not guarantee a coincidence of

steady-state probabilities to enter into an equivalence class.

In the figure aboveN = Boxdts(E) and N ′ = Boxdts(E′).
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Definition 34 A derived step trace of a dynamic expressionG is Σ = A1 · · ·An ∈ (INL
fin \ {∅})∗,

where ∃s ∈ DR(G) s
Γ1→→ s1

Γ2→→ · · ·
Γn→→ sn, L(Γi) = Ai (1 ≤ i ≤ n).

The probability to execute the derived step trace Σ in s:

PT ∗(Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→→s1

Γ2→→···
Γn→→sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1).

Theorem 7 LetG,G′ be dynamic expressions with R : G↔ssG
′ and ψ∗ be the steady-state PMF

for DTMC∗(G), ψ′∗ be the steady-state PMF for DTMC∗(G′) and Σ be a derived step trace of G

and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s)PT ∗(Σ, s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′)PT ∗(Σ, s′).

The result of the theorem above is valid if we replace steady-state probabilities with transient ones.
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By the theorem above: ∀K ∈ DR(G)/Rss(G)

ψ∗
↔ss

(K)PT ∗(Σ,K) =
∑

s∈K

ψ∗(s)PT ∗(Σ, s),

where ∀s ∈ K PT ∗(Σ,K) = PT ∗(Σ, s).
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↔ss preserves steady-state behaviour in the equivalence classes
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LetE = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop] and

E′ = [({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop].

We have E=stoE′, hence,E↔ssE
′.

DR(E) consists of

s1 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
2 )1[]({c},

1
2 )2)) ∗ Stop]]≈.

DR(E′) consists of

s′1 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ ((({b},
1
2 )1; ({c},

1
2 )1)[](({b},

1
2 )2; ({c},

1
2 )2)) ∗ Stop]]≈.
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The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

1

2
,
1

2

)
, ψ′∗ =

(
0,

1

2
,
1

4
,
1

4

)
.

Consider H = {s3, s′3, s
′
4}. The steady-state probabilities for H coincide:∑

s∈H∩DR(E) ψ
∗(s) = ψ∗(s3) =

1
2 = 1

4 + 1
4 = ψ′∗(s′3)+ψ′∗(s′4) =

∑
s′∈H∩DR(E′) ψ

′∗(s′).

Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence class H and start the

derived step trace Σ from it coincide:

ψ∗(s3)(PT
∗({({c}, 12 )1}, s3) + PT ∗({({c}, 12 )2}, s3)) =

1
2

(
1
2 + 1

2

)
= 1

2 = 1
4 · 1 + 1

4 · 1 =

ψ′∗(s′3)PT
∗({({c}, 12 )1}, s

′
3) + ψ′∗(s′4)PT

∗({({c}, 12 )2}, s
′
4).

In the figure aboveN = Boxdts(E) and N ′ = Boxdts(E′).
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Simplification of performance analysis

The method of performance analysis simplification.

1. The system under investigation is specified by a static expression of dtsPBC .

2. The transition system without empty loops of the expression is constructed.

3. After examining this transition system for self-similarity and symmetry,

a step stochastic autobisimulation equivalence for the expression is determined.

4. The quotient underlying DTMC without empty loops of the expression is constructed from the

quotient transition system without empty loops.

5. The steady-state probabilities and performance indices based on this DTMC are calculated.
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E TS∗(E) TS∗
↔∗

ss
(E) DTMC∗

↔∗
ss
(E) ψ∗

↔∗
ss

✲ ✲ ✲ ✲ Performance✲

Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying DTMCs containing one closed

communication class of states, which is ergodic, to ensure uniqueness of the stationary distribution.

If a DTMC contains several closed communication classes of states that are all ergodic:

several stationary distributions may exist, depending on the initial PMF.

The general steady-state probabilities are then calculated as the sum of the stationary probabilities of all

the ergodic classes of states, weighted by the probabilities to enter these classes,

starting from the initial state and passing through transient states.

The underlying DTMC of each process expression has one initial PMF (that at the time moment 0):

the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.
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Preservation by algebraic operations

Definition 35 Let ↔ be an equivalence of dynamic expressions. Static expressionsE and E′ are

equivalent w.r.t. ↔, E↔E′, if E↔E′.

Proposition 6 Let ⋆ ∈ {is, ss}, ⋆⋆ ∈ {sto, ts}. The equivalences ≡⋆, ↔⋆, =⋆⋆ are not

preserved by algebraic operations.

Proposition 7 The equivalence ≈ is preserved by algebraic operations.
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6≡is

SC1: The equivalences between ≡is and =sto are not congruences

LetE = ({a}, 12 ), E
′ = ({a}, 13 ) and F = ({b}, 12 ). We have E=stoE′, since TS∗(E) and

TS∗(E′) have the transitions with the multiaction part of labels {a} and probability 1. E[]F 6≡isE′[]F ,

since only in TS∗(E′[]F ) the probabilities of the transitions with the multiaction parts of labels {a} and

{b} are different ( 13 and 2
3 , respectively). Thus, no equivalence between ≡is and =sto is a congruence.

In the figure aboveN1 = Boxdts(E), N ′
1 = Boxdts(E′), N2 = Boxdts(F ) and

N = Boxdts(E[]F ), N ′ = Boxdts(E′[]F ).
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SC2: The equivalences between ≡is and =ts are not congruences

Let E = ({a}, 1
2
), E′ = ({a}, 1

2
); Stop and F = ({b}, 1

2
). We have E=tsE′, since both TS(E) and

TS(E′) have the transitions with the multiaction part of labels {a} and probability 1
2

. E;F 6≡isE′;F , since only

in TS∗(E′;F ) no other transition can fire after the transition with the multiaction part of label {a}. Thus, no

equivalence between ≡is and =ts is a congruence. In the figure above N1 = Boxdts(E),

N ′
1 = Boxdts(E′), N2 = Boxdts(F ) and N = Boxdts(E;F ), N ′ = Boxdts(E′;F ).
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For an analogue of =ts to be a congruence, we have to equip transition systems with two extra

transitions skip and redo as in [MVC02].

The equivalences between ≡is and =sto defined on the basis of the enriched transition systems will still

be non-congruences by Example SC1.

Rules for skip and redo: skipping and redoing all executions.

LetE ∈ RegStatExpr.

Rules for skip and redo

Sk E
skip
→ E Rd E

redo
→ E

Definition 36 Let E be a static expression and TS(E) = (S, L, T , s). The (labeled probabilistic)

sr-transition system of E is a quadruple TSsr(E) = (Ssr, Lsr, Tsr, ssr):

• Ssr = S ∪ {[E]≈};

• Lsr ⊆ (INSL
fin × (0; 1]) ∪ {(skip, 0), (redo, 1)};

• Tsr = T \ {([E]≈, (∅, 1), [E]≈)} ∪ {([E]≈, (skip, 0), [E]≈), ([E]≈, (redo, 1), [E]≈)};

• ssr = s.
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Definition 37 Let E,E′ be static expressions and TSsr(E) = (Ssr, Lsr, Tsr, ssr),

TSsr(E′) = (S′
sr, L

′
sr, T

′
sr, s

′
sr) be their sr-transition systems. A mapping β : Ssr → S′

sr is an

isomorphism between TSsr(E) and TSsr(E′), β : TSsr(E)≃TSsr(E′), if

1. β is a bijection s.t. β(ssr) = s′sr and β([E]≈) = [E′]≈;

2. ∀s, s̃ ∈ Ssr ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

Two sr-transition systems TSsr(E) and TSsr(E′) are isomorphic, TSsr(E)≃TSsr(E′), if

∃β : TSsr(E)≃TSsr(E′).

For E ∈ RegStatExpr, let TSsr(E) = TSsr(E).
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TSsr(E; Stop)✞✝ ✲

✞✝ ✲ ❄

E;Stop

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠
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({a}, 12 ),
1
2

❄

E

E

☛✡ ✟✠
☛✡ ✟✠ E;Stop
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∅, 12

({a}, 12 ),
1
2

∅,1

✘

✙✛

✘

✙✛

redo,1

skip,0

redo,1 skip,0

✬

✫

✲✲★

✧
6≈

TSSR: The sr-transition systems of E andE; Stop for E = ({a}, 12 )

LetE = ({a}, 12 ). In the figure above the transition systems TSsr(E) and TSsr(E; Stop) are

presented.

In the latter sr-transition system the final state can be reached by the transition (skip, 0) only from the

initial state .
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Definition 38 E and E′ are equivalent w.r.t. sr-transition systems,E=tssrE′, if

TSsr(E)≃TSsr(E′).

sr-transition systems without empty loops can be defined and the equivalence =tssr∗ based on them.

The coincidence of =tssr and =tssr∗ can be proved as for =ts and =ts∗.
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≡is ≡ss

↔is ↔ss

❄ ❄

≈

❄

✛

✛

=sto

❄

❄

=tssr

❄
=ts

Interrelations of the stochastic equivalences and the new congruence
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Theorem 8 Let ↔,↔↔ ∈ {≡,↔,=,≈} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts, tssr}. For dynamic

expressionsG and G′

G↔⋆G
′ ⇒ G↔↔⋆⋆G

′

iff in the graph in figure above there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Validity of the implications

• The implication =tssr → =ts is valid, since sr-transition systems have more states and transitions

than usual ones.

• The implication ≈ → =tssr is valid, since the sr-transition system of a dynamic formula is defined

based on its structural equivalence class.
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Absence of the additional nontrivial arrows

• Let E = ({a}, 12 ) and E′ = ({a}, 12 ); Stop. We have E=tsE′ (see example with Figure SC2).

On the other hand,E 6=tssrE′, since only in TSsr(E′) after the transition with multiaction part of

label {a} we do not reach the final state (see Figure TSSR).

• Let E = ({a}, 12 ) and E′ = (({a}, 12 ); ({â},
1
2 )) sy a. Then E=tssrE′, sinceE=tsE′ by the

last example from the equivalence interrelations theorem, and the final states of both TSsr(E′) and

TSsr(E′) are reachable from the others with “normal” transitions (not with skip only). On the other

hand,E 6≈E′.
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Theorem 9 Let a ∈ Act and E,E′, F ∈ RegStatExpr. If E=tssrE′ then

1. E◦F=tssrE′◦F , F◦E=tssrF◦E′, ◦ ∈ {; , [], ‖};

2. E[f ]=tssrE′[f ];

3. E◦a=tssrE′◦a, ◦ ∈ {rs,sy};

4. [E∗F∗K]=tssr[E′∗F∗K], [F∗E∗K]=tssr[F∗E′∗K], [F∗K∗E]=tssr[F∗K∗E′].
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Case studies

Shared memory system

The standard system

A model of two processors accessing a common shared memory [MBCDF95]

✲

✛

✛

✲

Processor 1 Processor 2Memory

The diagram of the shared memory system

After activation of the system (turning the computer on), two processors are active, and the common

memory is available. Each processor can request an access to the memory.

When a processor starts an acquisition of the memory, another processor waits until the former one ends

its operations, and the system returns to the state with both active processors and the available memory.
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a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i.

bi and ei correspond to the beginning and the end of the common memory access of processor i.

The other actions are used for communication purpose only.

The static expression of the first processor is

E1 = [({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop].

The static expression of the shared memory is

E3 = [({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop].

The static expression of the shared memory system with two processors is

E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.
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Effect of synchronization

The synchronization of ({bi, yi},
1
2 ) and ({ŷi},

1
2 ) produces ({bi},

1
4 ) (1 ≤ i ≤ 2).

The synchronization of ({ei, zi},
1
2 ) and ({ẑi},

1
2 ) produces ({ei},

1
4 ) (1 ≤ i ≤ 2).

The synchronization of ({a, x̂1, x̂2},
1
2 ) and ({x1},

1
2 ) produces ({a, x̂2},

1
4 ),

Synchronization of ({a, x̂1, x̂2},
1
2 ) and ({x2},

1
2 ) produces ({a, x̂1},

1
4 ).

Synchronization of ({a, x̂2},
1
4 ) and ({x2},

1
2 ), as well as ({a, x̂1},

1
4 ) and ({x1},

1
2 )

produces ({a}, 18 ).
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DR(E) consists of

s1 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s2 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s3 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,
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s4 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s5 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s6 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,
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s7 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s8 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s9 = [([({x1},
1
2 ) ∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 )) ∗ Stop]

‖[({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈.
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Interpretation of the states

s1: the initial state,

s2: the system is activated and the memory is not requested,

s3: the memory is requested by the first processor,

s4: the memory is requested by the second processor,

s5: the memory is allocated to the first processor,

s6: the memory is requested by two processors,

s7: the memory is allocated to the second processor,

s8: the memory is allocated to the first processor and the memory is requested by the second processor,

s9: the memory is allocated to the second processor and the memory is requested by the first processor.
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The transition system without empty loops of the shared memory system
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The underlying DTMC without empty loops of the shared memory system
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The TPM for DTMC∗(E) is

P∗ =




0 1 0 0 0 0 0 0 0

0 0 1
3

1
3 0 1

3 0 0 0

0 0 0 0 1
5

3
5 0 1

5 0

0 0 0 0 0 3
5

1
5 0 1

5

0 1
5 0 1

5 0 0 0 3
5 0

0 0 0 0 0 0 0 1
2

1
2

0 1
5

1
5 0 0 0 0 0 3

5

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0




The steady-state PMF for DTMC∗(E) is

ψ∗ =

(
0,

3

209
,
75

418
,
75

418
,
15

418
,
46

209
,
15

418
,
35

209
,
35

209

)
.
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Transient and steady-state probabilities of the shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144

ψ∗
3 [k] 0 0 0.3333 0 0.2467 0.2489 0.0592 0.2484 0.2000 0.1071 0.2368 0.1794

ψ∗
5 [k] 0 0 0 0.0667 0 0.0493 0.0498 0.0118 0.0497 0.0400 0.0214 0.0359

ψ∗
6 [k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201

ψ∗
8 [k] 0 0 0 0.2333 0.2400 0.0493 0.2318 0.1910 0.0956 0.2221 0.1662 0.1675

We depict the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the corresponding values

coincide for s3, s4 as well as for s5, s7 as well as for s8, s9.
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Transient probabilities alteration diagram of the shared memory system
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Performance indices

• The average recurrence time in the state s2, the average system run-through, is 1
ψ∗

2
= 209

3 = 69 2
3 .

• The common memory is available in the states s2, s3, s4, s6 only.

The steady-state probability that the memory is available is ψ∗
2 + ψ∗

3 + ψ∗
4 + ψ∗

6 = 124
209 .

The steady-state probability that the memory is used, the shared memory utilization, is

1− 124
209 = 85

209 .

• The common memory request of the first processor ({r1},
1
2 ) is only possible from the states

s2, s4, s7.

The request probability in each of the states is a sum of execution probabilities for all multisets of

activities containing ({r1},
1
2 ).

The steady-state probability of the shared memory request from the first processor is

ψ∗
2

∑
{Γ|({r1},

1
2 )∈Γ} PT

∗(Γ, s2) + ψ∗
4

∑
{Γ|({r1},

1
2 )∈Γ} PT

∗(Γ, s4) +

ψ∗
7

∑
{Γ|({r1},

1
2 )∈Γ} PT

∗(Γ, s7) =
3

209

(
1
3 + 1

3

)
+ 75

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
= 38

209 .
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The marked dts-boxes of two processors and shared memory



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 123

({a}, 1
8
)

♥t
❄

e

N

({e1},
1
4
) ({e2},

1
4
)

♥ ♥
({b1},

1
4
)

♥x

({b2},
1
4
)

({r1},
1
2
)

♥
❄

❄

✠ ✡

♥t e♥t e
❅❅❘ ��✠

♥

❄

({r2},
1
2
)

♥
❄

❄

♥

❄

♥x♥x

♥
♥ ♥✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❄

✚✚❂ ❩❩⑦

��✠ ❅❅❘

✠✡

✗

✖

✘

✙

✲ ✛

✑✒

✻✻

The marked dts-box of the shared memory system
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The abstract system

The static expression of the first processor is

F1 = [({x1},
1
2 ) ∗ (({r},

1
2 ); ({b, y1},

1
2 ); ({e, z1},

1
2 )) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1
2 ) ∗ (({r},

1
2 ); ({b, y2},

1
2 ); ({e, z2},

1
2 )) ∗ Stop].

The static expression of the shared memory is

F3 = [({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[](({ŷ2},

1
2 ); ({ẑ2},

1
2 ))) ∗ Stop].

The static expression of the abstract shared memory system with two processors is

F = (F1‖F2‖F3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(F ) resemblesDR(E), and TS∗(F ) is similar to TS∗(E).

DTMC∗(F )≃DTMC∗(E), thus, the TPM and the steady-state PMF for DTMC∗(F ) and

DTMC∗(E) coincide.
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Performance indices

The first and second performance indices are the same for the standard and abstract systems.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, 12 ) is only possible from the states

s2, s3, s4, s5, s7.

The request probability in each of the states is a sum of execution probabilities for all multisets of

activities containing ({r1},
1
2 ).

The steady-state probability of the shared memory request from a processor is

ψ∗
2

∑
{Γ|({r}, 12 )∈Γ} PT

∗(Γ, s2) + ψ∗
3

∑
{Γ|({r}, 12 )∈Γ} PT

∗(Γ, s3) +

ψ∗
4

∑
{Γ|({r}, 12 )∈Γ} PT

∗(Γ, s4) + ψ∗
5

∑
{Γ|({r}, 12 )∈Γ} PT

∗(Γ, s5) +

ψ∗
7

∑
{Γ|({r}, 12 )∈Γ} PT

∗(Γ, s7) =
3

209

(
1
3 + 1

3 + 1
3

)
+ 75

418

(
3
5 + 1

5

)
+ 75

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
= 75

209 .
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The quotient of the abstract system

DR(F )/Rss(F ) = {K1,K2,K3,K4,K5,K6}, where

K1 = {s1} (the initial state),

K2 = {s2} (the system is activated and the memory is not requested),

K3 = {s3, s4} (the memory is requested by one processor),

K4 = {s5, s7} (the memory is allocated to a processor),

K5 = {s6} (the memory is requested by two processors),

K6 = {s8, s9} (the memory is allocated to a processor and the memory is requested by another

processor).
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TS∗
↔ss

(F )
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The quotient transition system without empty loops of the abstract shared memory system
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DTMC∗
↔ss

(F )
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The quotient underlying DTMC without empty loops of the abstract shared memory system
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The TPM for DTMC∗
↔ss

(F ) is

P′∗ =




0 1 0 0 0 0

0 0 2
3 0 1

3 0

0 0 0 1
5

3
5

1
5

0 1
5

1
5 0 0 3

5

0 0 0 0 0 1

0 0 1 0 0 0




.

The steady-state PMF for DTMC∗
↔ss

(F ) is

ψ′∗ =

(
0,

3

209
,
75

209
,
15

209
,
46

209
,
70

209

)
.
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Transient and steady-state probabilities of the quotient abstract shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′
1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗[k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144

ψ′
3
∗[k] 0 0 0.6667 0 0.4933 0.4978 0.1184 0.4967 0.4001 0.2142 0.4735 0.3589

ψ′
4
∗[k] 0 0 0 0.1333 0 0.0987 0.0996 0.0237 0.0993 0.0800 0.0428 0.0718

ψ′
5
∗[k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201

ψ′
6
∗[k] 0 0 0 0.4667 0.4800 0.0987 0.4636 0.3821 0.1912 0.4443 0.3325 0.3349
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Transient probabilities alteration diagram of the quotient abstract shared memory system
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Performance indices

• The average recurrence time in the state K2, where no processor requests the memory, the average

system run-through, is 1
ψ′

2
∗ = 209

3 = 69 2
3 .

• The common memory is available in the states K2,K3,K5 only.

The steady-state probability that the memory is available is ψ′
2
∗
+ ψ′

3
∗
+ ψ′

5
∗
=

3
209 + 75

209 + 46
209 = 124

209 .

The steady-state probability that the memory is used (i.e. not available), the shared memory

utilization, is 1− 124
209 = 85

209 .

• The common memory request of a processor {r} is only possible from the states K2,K3,K4.

The request probability in each of the states is a sum of execution probabilities for all multisets of

multiactions containing {r}.

The steady-state probability of the shared memory request from a processor is

ψ′
2
∗∑

{A,K|{r}∈A, K2
A
→→K}

PM∗
A(K2,K) +

ψ′
3
∗∑

{A,K|{r}∈A, K3
A
→→K}

PM∗
A(K3,K) +

ψ′
4
∗∑

{A,K|{r}∈A, K4
A
→→K}

PM∗
A(K4,K) =

3
209

(
2
3 + 1

3

)
+ 75

209

(
3
5 + 1

5

)
+ 15

209

(
3
5 + 1

5

)
= 75

209 .
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The performance indices are the same for the complete and the quotient abstract shared memory

systems.

The coincidence of the first and second performance indices illustrates proposition about steady-state

probabilities.

The coincidence of the third performance index theorem about derived step traces from steady states:

one should apply its result to the derived step traces {{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}}

of F and itself,

and sum the left and right parts of the three resulting equalities.
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The generalized system

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({b1, y1}, ρ); ({e1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({b2, y2}, ρ); ({e2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1‖K2‖K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.
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Interpretation of the states

s̃1: the initial state,

s̃2: the system is activated and the memory is not requested,

s̃3: the memory is requested by the first processor,

s̃4: the memory is requested by the second processor,

s̃5: the memory is allocated to the first processor,

s̃6: the memory is requested by two processors,

s̃7: the memory is allocated to the second processor,

s̃8: the memory is allocated to the first processor and the memory is requested by the second processor,

s̃9: the memory is allocated to the second processor and the memory is requested by the first processor.
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The TPM for DTMC∗(K) is

P̃∗ =




0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 ρ(1−ρ)
1+ρ−ρ2

1−ρ2

1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0

0 0 0 0 0 1−ρ2

1+ρ−ρ2
ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0




.
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The steady-state PMF for DTMC∗(K) is

ψ̃∗ = 1
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) (0, 2ρ

2(2− ρ)(1− ρ)2, (2− p)(1− p+ p2)2,

(2− p)(1− p+ p2)2, ρ(2− ρ− 4ρ2 + 4ρ3 − ρ4), 2(2 + ρ− 5ρ2 + ρ3 + ρ4),

ρ(2− ρ− 4ρ2 + 4ρ3 − ρ4), 2 + 3ρ− 6ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).

Performance indices

• The average recurrence time in the state s̃2, where no processor requests the memory, the average

system run-through, is 1
ψ̃∗

2

= 6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

ρ2(2−ρ)(1−ρ)2 .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6.

The steady-state probability that the memory is available is ψ̃∗
2 + ψ̃∗

3 + ψ̃∗
4 + ψ̃∗

6 =
ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + (2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) +

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) +
2+ρ−5ρ2+ρ3+ρ4

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

The steady-state probability that the memory is used (i.e. not available), the shared memory

utilization, is 1− 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 2+5ρ−7ρ2−3ρ3+5ρ4−ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .
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• The common memory request of the first processor ({r1}, ρ) is only possible from the states

s̃2, s̃4, s̃7.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of activities containing ({r1}, ρ).

The steady-state probability of the shared memory request from the first processor is

ψ̃∗
2

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃2) +

ψ̃∗
4

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃4) +

ψ̃∗
7

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃7) =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ
2−ρ +

ρ
2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
= 2+3ρ−4ρ2−2ρ3+2ρ4

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) .
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The abstract generalized system and its reduction

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({b, y1}, ρ); ({e, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({b, y2}, ρ); ({e, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract shared memory generalized system with two processors is

L = (L1‖L2‖L3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(L) resemblesDR(K), and TS∗(L) is similar to TS∗(K).

DTMC∗(L)≃DTMC∗(K), thus, the TPM and the steady-state PMF for DTMC∗(L) and

DTMC∗(K) coincide.
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Performance indices

The first and second performance indices are the same for the generalized system and its abstraction.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, ρ) is only possible from the states

s̃2, s̃3, s̃4, s̃5, s̃7.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of activities containing ({r}, ρ).

The steady-state probability of the shared memory request from a processor is

ψ̃∗
2

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
3

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃3) +

ψ̃∗
4

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃4) + ψ̃∗
5

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃5) +

ψ̃∗
7

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃7) =
ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ
2−ρ +

1−ρ
2−ρ +

ρ
2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
= (2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .
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The quotient of the abstract system

DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where

K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and the memory is not requested),

K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor),

K̃5 = {s̃6} (the memory is requested by two processors),

K̃6 = {s̃8, s̃9} (the memory is allocated to a processor and the memory is requested by another

processor).
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The TPM for DTMC∗
↔ss

(L) is

P̃′∗ =




0 1 0 0 0 0

0 0 2(1−ρ)
2−ρ 0 ρ

2−ρ 0

0 0 0 ρ(1−ρ)
1+ρ−ρ2

1−ρ2

1+ρ−ρ2
ρ2

1+ρ−ρ2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1

0 0 1 0 0 0




.

The steady-state PMF for DTMC∗
↔ss

(L) is

ψ̃′∗ = 1
6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 (0, ρ

2(2− ρ)(1− ρ)2, (2− ρ)(1 + ρ− ρ2)2,

ρ(2− ρ− 4ρ2 + 4ρ3 − ρ4), 2 + ρ− 5ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).
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Performance indices

• The average recurrence time in the state K̃2, where no processor requests the memory, the average

system run-through, is 1
ψ̃′∗

2

= 6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

ρ2(2−ρ)(1−ρ)2 .

• The common memory is available only in the states K̃2, K̃3, K̃5.

The steady-state probability that the memory is available is ψ̃′∗
2 + ψ̃′∗

3 + ψ̃′∗
5 =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + (2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + 2+ρ−5ρ2+ρ3+ρ4

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 =

4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

The steady-state probability that the memory is used (i.e. not available), the shared memory

utilization, is 1− 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 2+5ρ−7ρ2−3ρ3+5ρ4−ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .
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• The common memory request of a processor {r} is only possible from the states K̃2, K̃3, K̃4.

The request probability in each of the states is the sum of the execution probabilities for all multisets

of multiactions containing {r}.

The steady-state probability of the shared memory request from a processor is

ψ̃′∗
2

∑
{A,K̃|{r}∈A, K̃2

A
→→K̃}

PM∗
A(K̃2, K̃) + ψ̃′∗

3

∑
{A,K̃|{r}∈A, K̃3

A
→→K̃}

PM∗
A(K̃3, K̃) +

ψ̃′∗
4

∑
{A,K̃|{r}∈A, K̃4

A
→→K̃}

PM∗
A(K̃4, K̃) =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
2(1−ρ)
2−ρ + ρ

2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
= (2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

The performance indices are the same for the complete and the quotient abstract generalized shared

memory systems.

The coincidence of the first and second performance indices illustrates proposition about steady-state

probabilities.

The coincidence of the third performance index theorem about derived step traces from steady states:

one should apply its result to the derived step traces {{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}}

of L and itself, and sum the left and right parts of the three resulting equalities.
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Dining philosophers system

The standard system

A model of five dining philosophers [P81]

The diagram of the dining philosophers system
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Arbitrary number of philosophers

The most interesting: the maximal sets of philosophers which can dine together.

The system with 1 philosopher: the only maximal set is ∅.

The system with 2 philosophers: the maximal sets are {1}, {2}.

The system with 3 philosophers: the maximal sets are {1}, {2}, {3}.

The system with 4 philosophers: the maximal sets are {1, 3}, {2, 4}.

The system with 5 philosophers: the maximal sets are {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}.

The system with 6 philosophers: the maximal sets are {1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}.

The system with 7 philosophers: the maximal sets are

{1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}, {2, 4, 7}, {2, 5, 7}, {3, 5, 7}.

A nontrivial behaviour: at least 5 philosophers occupy the table.
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The neighbors cannot dine together: the maximal number of the dining persons for the system with n

philosophers will be ⌊n2 ⌋.

If the philosopher i belongs to some maximal set then the philosopher i(mod n) + 1 belongs to the next

one.

• n is an even number: 2 maximal sets of n2 persons,

i.e. the philosophers numbered with all odd natural numbers ≤ n

and those numbered with all even natural numbers ≤ n.

• n is an odd number: n maximal sets of n−1
2 persons,

since from a maximal set one can “shift” clockwise n− 1 times by one element modulo n until the

next maximal set will coincide with the initial one.
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After activation of the system (the philosophers come in the dining room), five forks appear on the table.

If the left and right forks available for a philosopher, he takes them simultaneously and begins eating.

At the end of eating, the philosopher places both his forks simultaneously back on the table.

a corresponds to the system activation.

bi and ei correspond to the beginning and the end of eating of philosopher i (1 ≤ i ≤ 5).

The other actions are used for communication purpose only.

The expression of each philosopher includes two alternative subexpressions:

the second one specifies a resource (fork) sharing with the right neighbor.
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The static expression of the philosopher i (1 ≤ i ≤ 4) is

Ei = [({xi},
1
2 ) ∗ ((({bi, ŷi},

1
2 ); ({ei, ẑi},

1
2 ))[](({yi+1},

1
2 ); ({zi+1},

1
2 ))) ∗ Stop].

The static expression of the philosopher 5 is

E5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop].

The static expression of the dining philosophers system is

E = (E1‖E2‖E3‖E4‖E5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2

sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.
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Effect of synchronization

Synchronization of ({bi, yi},
1
2 ) and ({ŷi},

1
2 ) produces ({bi},

1
4 ) (1 ≤ i ≤ 5).

Synchronization of ({ei, zi},
1
2 ) and ({ẑi},

1
2 ) produces ({ei},

1
4 ) (1 ≤ i ≤ 5).

Synchronization of ({a, x̂1, x̂2, x̂3, x̂4},
1
2 ) and ({x1},

1
2 ) produces ({a, x̂2, x̂3, x̂4},

1
4 ).

Synchronization of ({a, x̂2, x̂3, x̂4},
1
4 ) and ({x2},

1
2 ) produces ({a, x̂3, x̂4},

1
8 ).

Synchronization of ({a, x̂3, x̂4},
1
8 ) and ({x3},

1
2 ) produces ({a, x̂4},

1
16 ).

Synchronization of ({a, x̂4},
1
16 ) and ({x4},

1
2 ) produces ({a}, 1

32 ).
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DR(E) consists of

s1 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s2 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,
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s3 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s4 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,
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s5 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s6 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,
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s7 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s8 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,
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s9 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s10 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,
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s11 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s12 = [([({x1},
1
2 ) ∗ ((({b1, ŷ1},

1
2 ); ({e1, ẑ1},

1
2 ))[](({y2},

1
2 ); ({z2},

1
2 ))) ∗ Stop]

‖[({x2},
1
2 ) ∗ ((({b2, ŷ2},

1
2 ); ({e2, ẑ2},

1
2 ))[](({y3},

1
2 ); ({z3},

1
2 ))) ∗ Stop]

‖[({x3},
1
2 ) ∗ ((({b3, ŷ3},

1
2 ); ({e3, ẑ3},

1
2 ))[](({y4},

1
2 ); ({z4},

1
2 ))) ∗ Stop]

‖[({x4},
1
2 ) ∗ ((({b4, ŷ4},

1
2 ); ({e4, ẑ4},

1
2 ))[](({y5},

1
2 ); ({z5},

1
2 ))) ∗ Stop]

‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b5, ŷ5},

1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2

rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈.
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Interpretation of the states

s1: the initial state, s7: philosopher 3 dines,

s2: the system is activated and no philosophers dine, s8: philosophers 2 and 4 dine,

s3: philosopher 1 dines, s9: philosophers 3 and 5 dine,

s4: philosophers 1 and 4 dine, s10: philosopher 2 dines,

s5: philosophers 1 and 3 dine, s11: philosopher 5 dine,

s6: philosopher 4 dines, s12: philosophers 2 and 5 dine.
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The transition system without empty loops of the dining philosophers system
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The underlying DTMC without empty loops of the dining philosophers system
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The TPM for DTMC∗(E) is

P∗ =
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Transient and steady-state probabilities of the dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ∗
3 [k] 0 0 0.1500 0.0701 0.1189 0.0878 0.1079 0.0949 0.1033 0.0979 0.1014 0.1000

ψ∗
4 [k] 0 0 0.0500 0.0818 0.0503 0.0726 0.0578 0.0674 0.0612 0.0652 0.0626 0.0636

We depict the probabilities for the states s1, . . . , s4 only, since the corresponding values coincide for the

states s3, s6, s7, s10, s11 as well as for s4, s5, s8, s9, s12.
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Transient probabilities alteration diagram of the dining philosophers system
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The steady-state PMF for DTMC∗(E) is

ψ∗ =

(
0,

2

11
,
1

10
,

7

110
,

7

110
,
1

10
,
1

10
,

7

110
,

7

110
,
1

10
,
1

10
,

7

110

)
.

Performance indices

• The average recurrence time in the state s2, where all the forks are available, the average system

run-through, is 1
ψ∗

2
= 11

2 = 5 1
2 .

• Nobody eats in the state s2. The fraction of time when no philosophers dine is ψ∗
2 = 2

11 .

Only one philosopher eats in the states s3, s6, s7, s10, s11. The fraction of time when only one

philosopher dines is ψ∗
3 + ψ∗

6 + ψ∗
7 + ψ∗

10 + ψ∗
11 = 1

10 + 1
10 + 1

10 + 1
10 + 1

10 = 1
2 .

Two philosophers eat together in the states s4, s5, s8, s9, s12. The fraction of time when two

philosophers dine is ψ∗
4 + ψ∗

5 + ψ∗
8 + ψ∗

9 + ψ∗
12 = 7

110 + 7
110 + 7

110 + 7
110 + 7

110 = 7
22 .

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
7
22 · 2

1 = 7
11 .
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• The beginning of eating of first philosopher ({b1},
1
4 ) is only possible from the states s2, s6, s7.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({b1},
1
4 ).

The steady-state probability of the beginning of eating of first philosopher is

ψ∗
2

∑
{Γ|({b1},

1
4 )∈Γ} PT

∗(Γ, s2) + ψ∗
6

∑
{Γ|({b1},

1
4 )∈Γ} PT

∗(Γ, s6) +

ψ∗
7

∑
{Γ|({b1},

1
4 )∈Γ} PT

∗(Γ, s7) =
2
11

(
3
20 + 1

20 + 1
20

)
+ 1

10

(
3
11 + 1

11

)
+ 1

10

(
3
11 + 1

11

)
= 13

110 .
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({e4,ẑ4}, 1
2
) ({z5}, 1

2
)

({b4,ŷ4}, 1
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The marked dts-boxes of the dining philosophers
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The marked dts-box of the dining philosophers system
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The abstract system

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Fi = [({xi},
1
2 ) ∗ ((({b, ŷi},

1
2 ); ({e, ẑi},

1
2 ))[](({yi+1},

1
2 ); ({zi+1},

1
2 ))) ∗ Stop].

The static expression of the philosopher 5 is

F5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2 ) ∗ ((({b, ŷ5},

1
2 ); ({e, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 ))) ∗ Stop].

The static expression of the abstract dining philosophers system is

F = (F1‖F2‖F3‖F4‖F5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3

sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(F ) resemblesDR(E), and TS∗(F ) is similar to TS∗(E).

DTMC∗(F )≃DTMC∗(E), thus, TPM and the steady-state PMF for DTMC∗(F ) and

DTMC∗(E) coincide.
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Performance indices

The first performance index and the second group of the indices are the same for the standard and

abstract systems.

The following performance index: non-personalized viewpoint to the philosophers.

• The beginning of eating of a philosopher ({b}, 14 ) is only possible from the states

s2, s3, s6, s7, s10, s11.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({b}, 14 ).

The steady-state probability of the beginning of eating of a philosopher is

ψ∗
2

∑
{Γ|({b}, 14 )∈Γ} PT

∗(Γ, s2) + ψ∗
3

∑
{Γ|({b}, 14 )∈Γ} PT

∗(Γ, s3) +

ψ∗
6

∑
{Γ|({b}, 14 )∈Γ} PT

∗(Γ, s6) + ψ∗
7

∑
{Γ|({b}, 14 )∈Γ} PT

∗(Γ, s7) +

ψ∗
10

∑
{Γ|({b}, 14 )∈Γ} PT

∗(Γ, s10) + ψ∗
11

∑
{Γ|({b}, 14 )∈Γ} PT

∗(Γ, s11) =
2
11

(
3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+

1
4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+

1
4

(
3
11 + 1

11 + 3
11 + 1

11

)
= 6

11 .
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The reduction of the abstract system

The static expression of the philosopher 1 is F ′
1 = [({x}, 12 ) ∗ (({b},

2
5 ); ({e},

1
4 )) ∗ Stop].

The static expression of the philosopher 2 is F ′
2 = [({a, x̂}, 1

16 ) ∗ (({b},
2
5 ); ({e},

1
4 )) ∗ Stop].

The static expression of the reduced abstract dining philosophers system is F ′ = (F ′
1‖F

′
2) sy x rs x.

DR(F ′) consists of

s′1 = [([({x}, 12 ) ∗ (({b},
2
5 )1; ({e},

1
4 )1) ∗ Stop]‖

[({a, x̂}, 1
16 ) ∗ (({b},

2
5 )2; ({e},

1
4 )2) ∗ Stop]) sy x rs x]≈,

s′2 = [([({x}, 12 ) ∗ (({b},
2
5 )1; ({e},

1
4 )1) ∗ Stop]‖

[({a, x̂}, 1
16 ) ∗ (({b},

2
5 )2; ({e},

1
4 )2) ∗ Stop]) sy x rs x]≈,

s′3 = [([({x}, 12 ) ∗ (({b},
2
5 )1; ({e},

1
4 )1) ∗ Stop]‖

[({a, x̂}, 1
16 ) ∗ (({b},

2
5 )2; ({e},

1
4 )2) ∗ Stop]) sy x rs x]≈,

s′4 = [([({x}, 12 ) ∗ (({b},
2
5 )1; ({e},

1
4 )1) ∗ Stop]‖

[({a, x̂}, 1
16 ) ∗ (({b},

2
5 )2; ({e},

1
4 )2) ∗ Stop]) sy x rs x]≈,

s′5 = [([({x}, 12 ) ∗ (({b},
2
5 )1; ({e},

1
4 )1) ∗ Stop]‖

[({a, x̂}, 1
16 ) ∗ (({b},

2
5 )2; ({e},

1
4 )2) ∗ Stop]) sy x rs x]≈.



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 170

Interpretation of the states

s′1: the initial state,

s′2: the system is activated and no philosophers dine,

s′3, s
′
4: one philosopher dines,

s′5: two philosophers dine.

Consider R : F↔ssF
′ such that (DR(F ) ∪DR(F ′))/R = {H1,H2,H3,H4}, where

H1 = {s1, s
′
1} (the initial state),

H2 = {s2, s′2} (the system is activated and no philosophers dine),

H3 = {s3, s6, s7, s10, s11, s′3, s
′
4} (one philosopher dines),

H4 = {s4, s5, s8, s9, s12, s
′
5} (two philosophers dine).

F ′ is a reduction of F w.r.t. ↔ss.
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The transition system without empty loops of the reduced abstract dining philosophers system
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✓
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✏
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s
′
1

✓
✒
✏
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✏
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The underlying DTMC without empty loops of the reduced abstract dining philosophers system
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The TPM for DTMC∗(F ′) is

P′∗ =




0 1 0 0 0

0 0 3
8

3
8

1
4

0 3
11 0 2

11
6
11

0 3
11

2
11 0 6

11

0 1
7

3
7

3
7 0




.

The steady-state PMF for DTMC∗(F ′) is

ψ′∗ =

(
0,

2

11
,
1

4
,
1

4
,
7

22

)
.
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Transient and steady-state probabilities of the reduced abstract dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′
1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗[k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ′
3
∗[k] 0 0 0.3750 0.1753 0.2973 0.2195 0.2697 0.2372 0.2583 0.2446 0.2535 0.2500

ψ′
5
∗[k] 0 0 0.2500 0.4091 0.2513 0.3628 0.2890 0.3371 0.3059 0.3261 0.3130 0.3182

We depict the probabilities for the states s′1, s
′
2, s

′
3, s

′
5 only, since the corresponding values coincide for

s′3, s
′
4.
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Transient probabilities alteration diagram of the reduced abstract dining philosophers system
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Performance indices

• The average recurrence time in the state s′2, where all the forks are available, the average system

run-through, is 1
ψ′

2
∗ = 11

2 = 5 1
2 .

• Nobody eats in the state s′2. The fraction of time when no philosophers dine is ψ′
2
∗ = 2

11 .

Only one philosopher eats in the states s′3, s
′
4. The fraction of time when only one philosopher dines

is ψ′
3
∗ + ψ′

4
∗ = 1

4 + 1
4 = 1

2 .

Two philosophers eat together in the state s′5. The fraction of time when two philosophers dine is

ψ′
5
∗
= 7

22 .

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
7
22 · 2

1 = 7
11 .

• The beginning of eating of a philosopher ({b}, 25 ) is only possible from the states s′2, s
′
3, s

′
4.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({b}, 25 ).

The steady-state probability of the beginning of eating of a philosopher is

ψ′
2
∗∑

{Γ|({b}, 25 )∈Γ} PT
∗(Γ, s′2) + ψ′

3
∗∑

{Γ|({b}, 25 )∈Γ} PT
∗(Γ, s′3) +

ψ′
4
∗∑

{Γ|({b}, 25 )∈Γ} PT
∗(Γ, s′4) =

2
11

(
3
8 + 3

8 + 1
4

)
+ 1

4

(
6
11 + 2

11

)
+ 1

4

(
6
11 + 2

11

)
= 6

11 .
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The performance indices are the same for the complete and the reduced abstract dining philosophers

systems.

The coincidence of the first performance index as well as the second group of indices illustrates

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived step traces from steady

states:

one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b}, {e}} of F and F ′,

and sum the left and right parts of the three resulting equalities.
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The marked dts-boxes of the reduced abstract dining philosophers
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The marked dts-box of the reduced abstract dining philosophers system
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The quotient of the abstract system

DR(F )/Rss(F ) = {K1,K2,K3,K4}, where

K1 = {s1} (the initial state),

K2 = {s2} (the system is activated and no philosophers dine),

K3 = {s3, s6, s7, s10, s11} (one philosopher dines),

K4 = {s4, s5, s8, s9, s12} (two philosophers dine).
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The quotient transition system without empty loops of the abstract dining philosophers system
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The TPM for DTMC∗
↔ss

(F ) is

P′′∗ =




0 1 0 0

0 0 3
4

1
4

0 3
11

2
11

6
11

0 1
7

6
7 0



.

The steady-state PMF for DTMC∗
↔ss

(F ) is

ψ′′∗ =

(
0,

2

11
,
1

2
,
7

22

)
.
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Transient and steady-state probabilities of the quotient abstract dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′′
1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′′
2
∗[k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ′′
3
∗[k] 0 0 0.7500 0.3506 0.5946 0.4391 0.5394 0.4745 0.5165 0.4893 0.5069 0.5000

ψ′′
4
∗[k] 0 0 0.2500 0.4091 0.2513 0.3628 0.2890 0.3371 0.3059 0.3261 0.3130 0.3182
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Performance indices

• The average recurrence time in the state K2, where all the forks are available, the average system

run-through, is 1
ψ′′

2
∗ = 11

2 = 5 1
2 .

• Nobody eats in the state K2. The fraction of time when no philosophers dine is ψ′′
2
∗
= 2

11 .

Only one philosopher eats in the state K3. The fraction of time when only one philosopher dines is

ψ′′
3
∗
= 1

2 .

Two philosophers eat together in the state K4. The fraction of time when two philosophers dine is

ψ′′
4
∗
= 7

22 .

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
7
22 · 2

1 = 7
11 .

• The beginning of eating of a philosopher {b} is only possible from the states K2,K3.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of multiactions containing {b}.

The steady-state probability of the beginning of eating of a philosopher is

ψ′′
2
∗ ∑

{A,K|{b}∈A, K2
A
→→K}

PM∗
A(K2,K) + ψ′′

3
∗ ∑

{A,K|{b}∈A, K3
A
→→K}

PM∗
A(K3,K) =

2
11

(
3
4 + 1

4

)
+ 1

2

(
6
11 + 2

11

)
= 6

11 .
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The performance indices are the same for the complete and quotient abstract dining philosophers

systems.

The coincidence of the first performance index as well as the second group of indices illustrates

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived step traces from steady

states:

one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b}, {e}} of F and itself,

and sum the left and right parts of the three resulting equalities.
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The generalized system

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Ki = [({xi}, ρ) ∗ ((({bi, ŷi}, ρ); ({ei, ẑi}, ρ))[](({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop].

The static expression of the philosopher 5 is

K5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗ ((({b5, ŷ5}, ρ); ({e5, ẑ5}, ρ))[](({y1}, ρ); ({z1}, ρ))) ∗ Stop].

The static expression of the generalized dining philosophers system is

K = (K1‖K2‖K3‖K4‖K5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2

sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.
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Interpretation of the states

s̃1: the initial state, s̃7: philosopher 3 dines,

s̃2: the system is activated and no philosophers dine, s̃8: philosophers 2 and 4 dine,

s̃3: philosopher 1 dines, s̃9: philosophers 3 and 5 dine,

s̃4: philosophers 1 and 4 dine, s̃10: philosopher 2 dines,

s̃5: philosophers 1 and 3 dine, s̃11: philosopher 5 dine,

s̃6: philosopher 4 dines, s̃12: philosophers 2 and 5 dine.
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The TPM for DTMC∗(K) is

P̃∗ =




0 1 0 0 0 0 0 0 0 0 0 0

0 0 1−ρ2

5
ρ2

5
ρ2

5
1−ρ2

5
1−ρ2

5
ρ2

5
ρ2

5
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5
1−ρ2

5
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5
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3−ρ2
ρ2

3−ρ2 0 0 0 0 0
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2−ρ2 0 0 1−ρ2

2−ρ2 0 0 0 0 0 0

0 ρ2

2−ρ2
1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0 0 0 0

0 1−ρ2

3−ρ2
ρ2

3−ρ2
1−ρ2

3−ρ2 0 0 0 1−ρ2

3−ρ2 0 ρ2

3−ρ2 0 0

0 1−ρ2

3−ρ2
ρ2

3−ρ2 0 1−ρ2

3−ρ2 0 0 0 1−ρ2

3−ρ2 0 ρ2

3−ρ2 0

0 ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0

0 ρ2

2−ρ2 0 0 0 0 1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0

0 1−ρ2

3−ρ2 0 0 0 ρ2

3−ρ2 0 1−ρ2

3−ρ2 0 0 ρ2

3−ρ2
1−ρ2

3−ρ2

0 1−ρ2

3−ρ2 0 0 0 0 ρ2

3−ρ2 0 1−ρ2

3−ρ2
ρ2

3−ρ2 0 1−ρ2

3−ρ2

0 ρ2

2−ρ2 0 0 0 0 0 0 0 1−ρ2

2−ρ2
1−ρ2

2−ρ2 0
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The steady-state PMF for DTMC∗(K) is ψ̃∗ =

(
0,

1

2(3− ρ2)
,
1

10
,

2− ρ2

10(3− ρ2)
,

2− ρ2

10(3− ρ2)
,
1

10
,
1

10
,

2− ρ2

10(3− ρ2)
,

2− ρ2

10(3− ρ2)
,
1

10
,
1

10
,

2− ρ2

10(3− ρ2)

)

Performance indices

• The average recurrence time in the state s2, where all the forks are available, the average system

run-through, is 1
ψ̃∗

2

= 2(3− ρ2).

• Nobody eats in the state s2. The fraction of time when no philosophers dine is ψ̃∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the states s3, s6, s7, s10, s11. The fraction of time when only one

philosopher dines is ψ̃∗
3 + ψ̃∗

6 + ψ̃∗
7 + ψ̃∗

10 + ψ̃∗
11 = 1

10 + 1
10 + 1

10 + 1
10 + 1

10 = 1
2 .

Two philosophers eat together in the states s4, s5, s8, s9, s12. The fraction of time when two

philosophers dine is ψ̃∗
4 + ψ̃∗

5 + ψ̃∗
8 + ψ̃∗

9 + ψ̃∗
12 =

2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) =
2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .
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• The beginning of eating of first philosopher ({b1}, ρ2) is only possible from the states s2, s6, s7.

The beginning of eating probability in each of the states is a sum of execution probabilities for all

multisets of activities containing ({b1}, ρ
2).

The steady-state probability of the beginning of eating of first philosopher is

ψ̃∗
2

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s2) + ψ̃∗
6

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s6) +

ψ̃∗
7

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s7) =

1
2(3−ρ2)

(
1−ρ2

5 + ρ2

5 + ρ2

5

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2

)
= 3+ρ2

10(3−ρ2) .



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 193

The abstract generalized system

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Li = [({xi}, ρ) ∗ ((({b, ŷi}, ρ); ({e, ẑi}, ρ))[](({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop].

The static expression of the philosopher 5 is

L5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗ ((({b, ŷ5}, ρ); ({e, ẑ5}, ρ))[](({y1}, ρ); ({z1}, ρ))) ∗ Stop].

The static expression of the abstract generalized dining philosophers system is

L = (L1‖L2‖L3‖L4‖L5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2

sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(L) resemblesDR(K), and TS∗(L) is similar to TS∗(K).

DTMC∗(L)≃DTMC∗(K), thus, TPM and the steady-state PMF for DTMC∗(L) and

DTMC∗(K) coincide.
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Performance indices

The first performance index and the second group of the indices are the same for the generalized system

and its abstract modification.

The following performance index: non-personalized viewpoint to the philosophers.

• The beginning of eating of a philosopher ({b}, ρ2) is only possible from the states

s̃2, s̃3, s̃6, s̃7, s̃10, s̃11.

The beginning of eating probability in each of the states is the sum of the execution probabilities for

all multisets of activities containing ({b}, ρ2).

The steady-state probability of the beginning of eating of a philosopher is

ψ̃∗
2

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
3

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃3) +

ψ̃∗
6

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃6) + ψ̃∗
7

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃7) +

ψ̃∗
10

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃10) + ψ̃∗
11

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃11) =

1
2(3−ρ2)

(
1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
= 3

2(3−ρ2) .
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The reduction of the abstract generalized system

The static expression of the philosopher 1 is L′
1 = [({x}, ρ) ∗ (({b}, 2ρ2

1+ρ2 ); ({e}, ρ
2)) ∗ Stop].

The static expression of the philosopher 2 is L′
2 = [({a, x̂}, ρ4) ∗ (({b}, 2ρ2

1+ρ2 ); ({e}, ρ
2)) ∗ Stop].

The static expression of the reduced abstract generalized dining philosophers system is

L′ = (L′
1‖L

′
2) sy x rs x.
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Consider R : L↔ssL
′ such that (DR(L) ∪DR(L′))/R = {H̃1, H̃2, H̃3, H̃4}, where

H̃1 = {s̃1, s̃
′
1} (the initial state),

H̃2 = {s̃2, s̃′2} (the system is activated and no philosophers dine),

H̃3 = {s̃3, s̃6, s̃7, s̃10, s̃11, s̃′3, s̃
′
4} (one philosopher dines),

H̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12, s̃
′
5} (two philosophers dine).

L′ is a reduction of L w.r.t. ↔ss.

The TPM for DTMC∗(L′) is

P̃′∗ =




0 1 0 0 0

0 0 1−ρ2

2
1−ρ2

2 ρ2

0 1−ρ2

3−ρ2 0 2ρ2

3−ρ2
2(1−ρ2)
3−ρ2

0 1−ρ2

3−ρ2
2ρ2

3−ρ2 0 2(1−ρ2)
3−ρ2

0 ρ2

2−ρ2
1−ρ2

2−ρ2
1−ρ2

2−ρ2 0




.
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The steady-state PMF for DTMC∗(L′) is

ψ̃′∗ =

(
0,

1

2(3− ρ2)
,
1

4
,
1

4
,

2− ρ2

2(3− ρ2)

)
.

Performance indices

• The average recurrence time in the state s̃′2, where all the forks are available, average system

run-through, is 1
ψ̃′∗

2

= 2(3− ρ2).

• Nobody eats in the state s̃′2. The fraction of time when no philosophers dine is ψ̃′∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the states s̃′3, s̃
′
4. The fraction of time when only one philosopher dines

is ψ̃′∗
3 + ψ̃′∗

4 = 1
4 + 1

4 = 1
2 .

Two philosophers eat together in the state s̃′5. The fraction of time when two philosophers dine is

ψ̃′∗
5 = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .
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• The beginning of eating of a philosopher ({b}, 2ρ2

1+ρ2 ) is only possible from the states s̃′2, s̃
′
3, s̃

′
4.

The beginning of eating probability in each of the states is the sum of the execution probabilities for

all multisets of activities containing ({b}, 2ρ2

1+ρ2 ).

The steady-state probability of the beginning of eating of a philosopher is

ψ̃′∗
2

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′2) + ψ̃′∗
3

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′3) +

ψ̃′∗
4

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′4) =

1
2(3−ρ2)

(
1−ρ2

2 + 1−ρ2

2 + ρ2
)
+ 1

4

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
+ 1

4

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
= 3

2(3−ρ2) .

The performance indices are the same for the complete and the reduced abstract generalized dining

philosophers systems.

The coincidence of the first performance index as well as the second group of indices illustrates

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived step traces from steady

states:

one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b}, {e}} of L and L′,

and sum the left and right parts of the three resulting equalities.
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The quotient of the abstract generalized system

DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4}, where

K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and no philosophers dine),

K̃3 = {s̃3, s̃6, s̃7, s̃10, s̃11} (one philosopher dines),

K̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12} (two philosophers dine).

The TPM for DTMC∗
↔ss

(L) is

P̃′′∗ =




0 1 0 0

0 0 1− ρ2 ρ2

0 1−ρ2

3−ρ2
2ρ2

3−ρ2
2(1−ρ2)
3−ρ2

0 ρ2

2−ρ2
2(1−ρ2)
2−ρ2 0



.
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The steady-state PMF for DTMC∗
↔ss

(L) is

ψ̃′′∗ =

(
0,

1

2(3− ρ2)
,
1

2
,

2− ρ2

2(3− ρ2)

)
.

Performance indices

• The average recurrence time in the state K̃2, where all the forks are available, the average system

run-through, is 1
ψ̃′′∗

2

= 2(3− ρ2).

• Nobody eats in the state K̃2. The fraction of time when no philosophers dine is ψ̃′′∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the state K̃3. The fraction of time when only one philosopher dines is

ψ̃′′∗
3 = 1

2 .

Two philosophers eat together in the state K̃4. The fraction of time when two philosophers dine is

ψ̃′′∗
4 = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine w.r.t. when only one philosopher dines is
2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .
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• The beginning of eating of a philosopher {b} is only possible from the states K̃2, K̃3.

The beginning of eating probability in each of the states is the sum of the execution probabilities for

all multisets of multiactions containing {b}.

The steady-state probability of the beginning of eating of a philosopher is

ψ̃′′∗
2

∑
{A,K̃|{b}∈A, K̃2

A
→→K̃}

PM∗
A(K̃2, K̃) + ψ̃′′∗

3

∑
{A,K̃|{b}∈A, K̃3

A
→→K̃}

PM∗
A(K̃3, K̃) =

1
2(3−ρ2) ((1− ρ2) + ρ2) + 1

2

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
= 3

2(3−ρ2) .

The performance indices are the same for the complete and quotient abstract generalized dining

philosophers systems.

The coincidence of the first performance index as well as the second group of indices illustrates

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived step traces from steady

states:

one should apply its result to the derived step traces {{b}}, {{b}, {b}}, {{b}, {e}} of L and itself,

and sum the left and right parts of the three resulting equalities.
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Effect of quantitative changes of ρ to performance of the quotient abstract generalized dining

philosophers system in its steady state

ρ ∈ (0; 1) is the probability of every multiaction of the system.

ψ̃′′∗
1 = 0 and ψ̃′′∗

3 = 1
2 are constants, and they do not depend on ρ.

ψ̃′′∗
2 = 1

2(3−ρ2) and ψ̃′′∗
4 = 2−ρ2

2(3−ρ2) depend on ρ.

ψ̃′′∗
2 + ψ̃′′∗

4 = 1
2(3−ρ2) +

2−ρ2

2(3−ρ2) =
1
2 , hence, the sum of these steady-state probabilities

does not depend on ρ.

Interpretation: the fraction of time when no or two philosophers dine coincides with

that when only one philosopher dines, and both fractions are equal to 1
2 .
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0.2 0.4 0.6 0.8 1.0
Ρ

0.05

0.10
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0.20

0.25

0.30

Ψ
�

4
²*

Ψ
�

2
²*

Steady-state probabilities ψ̃′′∗
2 and ψ̃′′∗

4 as functions of the parameter ρ

The diagrams in figure above are symmetric w.r.t. the probability 1
4 .

The more is value of ρ, the less is the difference ψ̃′′∗
4 − ψ̃′′∗

2 = 2−ρ2

2(3−ρ2) −
1

2(3−ρ2) =
1−ρ2

2(3−ρ2) .

The difference tends to 1
6 when ρ approaches 0.

The difference tends to 0 when ρ approaches 1.
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Interpretation: the difference between the fractions of time when two and when no philosophers dine.

More interesting value: ψ̃′′∗
3 + ψ̃′′∗

4 − ψ̃′′∗
2 = 1

2 + 2−ρ2

2(3−ρ2) −
1

2(3−ρ2) =
2−ρ2

3−ρ2 .

The value tends to 2
3 when ρ approaches 0.

The value tends to 1
2 when ρ approaches 1.

Interpretation: the difference between the fractions of time when some (one or two) and

when no philosophers dine.

When ρ is closer to 0, more time is spent for eating and less time remains for thinking: dining is preferred.

When ρ is closer to 1, the situation is symmetric: thinking is preferred.

The influence of ρ to the performance indices presented before: similarly.
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Overview and open questions

The results obtained ✛
✚
✘
✙LDTSPNs

✛
✚
✘
✙dtsPBC

Probabilistic eq-s Stochastic eq-s

IPML/SPML iPML/sPML

✛

❄

❄ ✻

❄

❄ ✻

✛
✲

Stochastic formalisms and equivalences

• A discrete time stochastic extension dtsPBC of finite PBC enriched with iteration.

• The step operational semantics based on labeled probabilistic transition systems.

• The denotational semantics in terms of a subclass of LDTSPNs.
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• The stochastic algebraic equivalences which have natural net analogues on LDTSPNs.

• The transition systems and DTMCs reduction modulo stochastic equivalences.

• A logical characterization of stochastic bisimulation equivalences via probabilistic modal logics.

• An application of the equivalences to comparison of stationary behaviour.

• A preservation w.r.t. algebraic operations and the congruence relation.

• The case studies of performance analysis.
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Further research

• Abstracting from silent activities in definitions of the equivalences.

• Introducing the immediate multiactions with zero delay.

• Extending the syntax with recursion operator.
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[MVCC03] MACIÀ S.H., VALERO R.V., CAZORLA L.D., CUARTERO G.F. Introducing the iteration in

sPBC. Technical Report DIAB-03-01-37 , 20 p., Department of Computer Science, University of

Castilla - La Mancha, Albacete, Spain, September 2003, http://www.info-ab.uclm.es/

descargas/tecnicalreports/DIAB-03-01-37/diab030137.zip.



Igor V. Tarasyuk: Algebra dtsPBC : a discrete time stochastic extension of Petri box calculus 214
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The slides can be downloaded from Internet:

http://itar.iis.nsk.su/files/itar/pages/dtspbcsem.pdf

Thank you for your attention!


