
Bull. Nov. Comp. Center, Comp. Science, 31 (2010), 155–178
c© 2010 NCC Publisher

Performance preserving equivalences for dtsPBC∗

I. V. Tarasyuk

Abstract. For a discrete time stochastic extension dtsPBC of finite Petri box cal-
culus (PBC) enriched with iteration, we define a number of stochastic equivalences.
They allow one to identify processes with similar behaviour which are differentiated
by the too discriminate semantic equivalence of the calculus. We investigate which
is the weakest equivalence that guarantees a coincidence of performance indices for
stochastic systems and can be used to simplify their performance evaluation.
Keywords: stochastic process algebra, Petri box calculus, iteration, discrete time,
stochastic equivalence, stationary behaviour, performance evaluation.

1. Introduction

Process algebras (PAs) are a widely used formal model designed to spec-
ify concurrent systems and analyze their behavioural properties. In such
calculi, processes are specified by compositional formulas constructed with
operations from symbols of actions, and verification of properties is accom-
plished syntactically by means of algebraic laws and equivalences. In the last
decades, stochastic extensions of PAs were proposed. Stochastic process al-
gebras (SPAs) do not just specify actions which can happen (qualitative
features) like standard PAs, but they associate random delays with actions
(quantitative features). The well-known SPAs are PEPA [4] and EMPA [2].

Petri box calculus (PBC) [1, 3] is an expressive process algebra intended
to provide support for compositional translation from high level concurrent
programming languages into Petri nets (PNs). In the calculus, synchro-
nization is separated from the parallelism operator, and there is a multiway
synchronization capability. PBC has a step operational semantics in terms
of labeled transition systems based on rules in the Structured Operational
Semantics (SOS) style. A denotational semantics of PBC was proposed via
a subclass of PNs equipped with an interface called Petri boxes.

A continuous time stochastic extension of a finite part of PBC called sto-
chastic Petri box calculus (sPBC) was proposed in [6]. The algebra sPBC in
its former version had neither refinement nor recursion nor iteration oper-
ations and thus specified finite processes only. An interleaving operational
semantics of the calculus was constructed in terms of labeled probabilistic
transition systems. A denotational semantics of sPBC was defined via a

∗ Partially supported by Deutsche Forschungsgemeinschaft under grant 436 RUS
113/1002/01, and Russian Foundation for Basic Research under grant 09-01-91334.



156 I. V. Tarasyuk

subclass of labeled continuous time stochastic PNs (LCTSPNs) called sto-
chastic Petri boxes (s-boxes). The iteration operation was added to sPBC
in [5] to specify infinite processes.

A discrete time stochastic extension dtsPBC of finite PBC was presented
in [7, 9]. A step operational semantics of the algebra was constructed with
the use of labeled probabilistic transition systems. dtsPBC has a deno-
tational semantics based on a subclass of labeled discrete time stochastic
PNs (LDTSPNs) called discrete time stochastic Petri boxes (dts-boxes). A
number of stochastic equivalences were proposed to identify processes with
similar behaviour which are differentiated by the semantic equivalence of
dtsPBC. The interrelations of all the introduced equivalences were studied.
In [8], the syntax of dtsPBC was supplemented by the iteration operator.

Since dtsPBC has a discrete time semantics and geometrically distrib-
uted delays in the states unlike sPBC with continuous time semantics and
exponentially distributed delays, the calculi apply two different approaches
to the stochastic extension of PBC, in spite of some similarity of their syntax
and semantics inherited from PBC. The main advantage of dtsPBC is that
concurrency is treated naturally, like in PBC, whereas in sPBC parallelism
is simulated by interleaving obliging one to collect the information on causal
independence of activities before constructing the semantics.

In this paper, a problem of performance preservation by the equivalence
notions is discussed within dtsPBC enriched with iteration. First, we present
syntax of the calculus. Second, we describe its operational semantics in
terms of labeled transition systems and the denotational semantics based
on a subclass of LDTSPNs. Further, we propose a number of stochastic
equivalences based on transition systems without empty behaviour. We
investigate which equivalences guarantee identity of stationary behaviour,
and which of them is the weakest one. The mentioned property implies
a coincidence of performance indices based on steady-state probabilities of
the modeled stochastic systems. It can be used for performance analysis
simplification due to the state space reduction modulo the equivalences.

The paper is organized as follows. The syntax of dtsPBC is presented in
Section 2. Section 3 describes the operational semantics of the calculus and
Section 4 presents its denotational semantics. Stochastic equivalences are
defined in Section 5. In Section 6 the relations are applied to the stationary
behaviour comparison. Section 7 summarizes the results obtained.

2. Syntax

In this section, we propose the syntax of the discrete time stochastic exten-
sion of finite PBC enriched with iteration and called dtsPBC.

We denote the set of all finite multisets over X by INX
f . Let Act =

{a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set



Performance preserving equivalences for dtsPBC 157

of conjugated actions (conjugates) s.t. a 6= â and ˆ̂a = a. Let A = Act ∪ Âct
be the set of all actions, and L = INA

f be the set of all multiactions. Note
that ∅ ∈ L, this corresponds to an internal activity, i.e., the execution
of a multiaction containing no visible actions. The alphabet of α ∈ L is
A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈
(0; 1) is the probability of the multiaction α. The multiaction probabilities
are used to calculate those of state changes (steps) at discrete time moments.
Let SL be the set of all activities. Let us note that the same multiaction α ∈
L may have different probabilities in the same specification. The alphabet
of (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). For (α, ρ) ∈ SL, we define its
multiaction part as L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ.

Activities are combined into formulas by the following operations: se-
quential execution ;, choice [], parallelism ‖, relabeling [f ] of actions, restric-
tion rs over an action, synchronization sy on an action and its conjugate and
iteration [∗∗] with three arguments: initialization, body and termination.

Sequential execution and choice have the standard interpretation, but
parallelism does not include synchronization. Relabeling functions f : A →

A are bijections preserving conjugates, i.e., ∀x ∈ A f(x̂) = f̂(x). Relabeling
is extended to multiactions in a usual way: for α ∈ L let f(α) =

∑
x∈α f(x).

Restriction over an action a means that for a given expression any process
behaviour containing a or its conjugate â is not allowed. In the iteration,
the initialization subprocess is executed first, then the body is performed
zero or more times, and, finally, the termination subprocess is executed.

Let α, β ∈ L be multiactions s.t. for some a ∈ Act we have a ∈ α and
â ∈ β or â ∈ α and a ∈ β. The synchronization of α and β by a is defined

as α⊕a β = γ, where γ(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Static expressions specify the structure of processes. They correspond
to unmarked LDTSPNs.

Definition 1. Let (α, ρ) ∈ SL, a ∈ Act. A static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

StatExpr denotes the set of all static expressions of dtsPBC.
To avoid inconsistency of the iteration operator, we should not allow

any concurrency in the highest level of the second argument of iteration.
This is not a severe restriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction.

Definition 2. Let (α, ρ) ∈ SL, a ∈ Act. A regular static expression of
dtsPBC is



158 I. V. Tarasyuk

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

RegStatExpr denotes the set of all regular static expressions of dtsPBC.
Dynamic expressions specify the states of processes. They correspond to
(marked) LDTSPNs. E denotes the initial and E denotes the final state
of the process specified by a static expression E. The underlying static
expression is obtained by removing the upper and lower bars from a dynamic
one.

Definition 3. Let a ∈ Act, E ∈ StatExpr. A dynamic expression of
dtsPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

DynExpr denotes the set of all dynamic expressions of dtsPBC. A dy-
namic expression is regular if it is so for its underlying static expression.
RegDynExpr denotes the set of all regular dynamic expressions of dtsPBC.
We shall consider regular expressions only and we omit the word “regular”.

3. Operational semantics

In this section, we define the step operational semantics in terms of labeled
probabilistic transition systems with transitions representing steps, i.e., the
executions of multisets of activities.

3.1. Inaction rules

Inaction rules describe expression transformations due to the execution of
the empty multiset of activities. The rules will be used to define the empty
loop transitions reflecting a non-zero probability to stay in the current state
at the next moment, an essential feature of discrete time stochastic processes.

First, in Table 1, we define inaction rules for overlined and underlined
static expressions. In this table, E,F,K ∈ RegStatExpr and a ∈ Act.

Second, in Table 2, we propose inaction rules for arbitrary dynamic ex-
pressions. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr
and a ∈ Act.

A regular dynamic expression G is operative if no inaction rule can be

applied to it, with the exception of G
∅
→ G. OpRegDynExpr denotes the

set of all operative regular dynamic expressions of dtsPBC. Any dynamic
expression can be transformed into a (not always unique) operative one by
the inaction rules.



Performance preserving equivalences for dtsPBC 159

Table 1. Inaction rules for overlined and underlined static expressions

E;F
∅
→ E;F E;F

∅
→ E;F E;F

∅
→ E;F

E[]F
∅
→ E[]F E[]F

∅
→ E[]F E[]F

∅
→ E[]F

E[]F
∅
→ E[]F E‖F

∅
→ E‖F E‖F

∅
→ E‖F

E[f ]
∅
→ E[f ] E[f ]

∅
→ E[f ] E rs a

∅
→ E rs a

E rs a
∅
→ E rs a E sy a

∅
→ E sy a E sy a

∅
→ E sy a

[E ∗ F ∗K]
∅
→ [E ∗ F ∗K] [E ∗ F ∗K]

∅
→ [E ∗ F ∗K]

[E ∗ F ∗K]
∅
→ [E ∗ F ∗K] [E ∗ F ∗K]

∅
→ [E ∗ F ∗K]

[E ∗ F ∗K]
∅
→ [E ∗ F ∗K]

Table 2. Inaction rules for arbitrary dynamic expressions

G
∅
→ G G

∅
→ eG, ◦∈{;,[]}

G◦E
∅
→ eG◦E

G
∅
→ eG, ◦∈{;,[]}

E◦G
∅
→E◦ eG

G
∅
→ eG

G‖H
∅
→ eG‖H

H
∅
→ eH

G‖H
∅
→G‖ eH

G
∅
→ eG

G[f ]
∅
→ eG[f ]

G
∅
→ eG, ◦∈{rs ,sy}

G◦a
∅
→ eG◦a

G
∅
→ eG

[G∗E∗F ]
∅
→[ eG∗E∗F ]

G
∅
→ eG

[E∗G∗F ]
∅
→[E∗ eG∗F ]

G
∅
→ eG

[E∗F∗G]
∅
→[E∗F∗eG]

Definition 4. Let ≈ = (
∅
→ ∪

∅
←)∗ be structural equivalence of dynamic

expressions in dtsPBC. Thus, two dynamic expressions G and G′ are struc-
turally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in forward or backward direction.

The rule G
∅
→ G was intentionally included in the set of inaction rules to

define later the empty loop transitions for the states corresponding to the
dynamic expressions like (α, ρ) to which no different structurally equivalent
ones exist. The rule has no prototype in PBC.

3.2. Action rules

Action rules describe expression transformations due to the execution of non-
empty multisets of activities. The rules will be used to define transitions
representing the state changes when some non-empty multisets of activities
are executed. Let Γ ∈ INSL

f . Relabeling is extended to the multisets of
activities as follows: f(Γ) =

∑
(α,ρ)∈Γ(f(α), ρ). The alphabet of Γ is defined

as A(Γ) = ∪(α,ρ)∈ΓA(α).



160 I. V. Tarasyuk

In Table 3, we define the action rules. In this table, (α, ρ), (β, χ) ∈ SL,

E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and
a ∈ Act. Moreover, Γ,∆ ∈ INSL

f \ {∅}.

Table 3. Action rules

B (α, ρ)
{(α,ρ)}
−→ (α, ρ) SC1

G
Γ
→ eG, ◦∈{;,[]}

G◦E
Γ
→ eG◦E

SC2
G

Γ
→ eG, ◦∈{;,[]}

E◦G
Γ
→E◦ eG

P1 G
Γ
→ eG

G‖H
Γ
→ eG‖H

P2 H
Γ
→ eH

G‖H
Γ
→G‖ eH

P3
G

Γ
→ eG, H

∆
→ eH

G‖H
Γ+∆
−→ eG‖ eH

L G
Γ
→ eG

G[f ]
f(Γ)
−→ eG[f ]

Rs
G

Γ
→ eG, a,â 6∈A(Γ)

G rs a
Γ
→ eG rs a

I1 G
Γ
→ eG

[G∗E∗F ]
Γ
→[ eG∗E∗F ]

I2 G
Γ
→ eG

[E∗G∗F ]
Γ
→[E∗ eG∗F ]

I3 G
Γ
→ eG

[E∗F∗G]
Γ
→[E∗F∗ eG]

Sy1 G
Γ
→ eG

G sy a
Γ
→ eG sy a

Sy2
G sy a

Γ+{(α,ρ)}+{(β,χ)}
−→ eG sy a, a∈α, â∈β

G sy a
Γ+{(α⊕aβ,ρ·χ)}

−→ eG sy a

In the rule Sy2, we multiply the probabilities of synchronized multiac-
tions, since it corresponds to the probability of event intersection.

3.3. Transition systems

Now we define labeled probabilistic step transition systems associated with
dynamic expressions and used to define their operational semantics.

The expressions of dtsPBC can contain identical activities. To avoid
technical difficulties, such as calculation of the state change probabilities
for multiple transitions, we must enumerate coinciding activities, e.g., from
left to right in the syntax of expressions. The new activities resulted from
synchronization will be annotated with concatenation of the numbering of
the activities they come, hence, the numbering should have a tree structure
to reflect the effect of multiple synchronizations. We define the numbering
which encodes a binary tree with the leaves labeled by natural numbers.

Definition 5. Let ι ∈ IN . The numbering of expressions is defined as
ι ::= ι | (ι)(ι). Num denotes the set of all numberings of expressions.

The new activities resulting from applications of the second rule for
synchronization Sy2 in different orders should be considered up to per-
mutation of their numbering. In this way, we shall recognize different in-
stances of the same activity. If we compare the contents of different num-
berings, i.e., the sets of natural numbers in them, we shall be able to iden-
tify the mentioned instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).



Performance preserving equivalences for dtsPBC 161

We suppose that the identical activities are enumerated to avoid ambiguity.

Definition 6. Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H}
is the equivalence class ofG w.r.t. the structural equivalence. The derivation
set of a dynamic expression G, denoted by DR(G), is the minimal set s.t.

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Γ H
Γ
→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).
The set of all multisets of activities executable in s is defined as

Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

Let Γ ∈ Exec(s) \ {∅}. The probability that the multiset of activities Γ
is ready for execution in s is

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ)6∈Γ}

(1− χ).

In the case Γ = ∅ we define

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, otherwise.

Let Γ ∈ Exec(s). The probability to execute the multiset of activities
Γ ∈ Exec(s) in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Γ|∃H∈s ∃ eH∈s̃ H
Γ
→ eH}

PT (Γ, s).

Definition 7. Let G be a dynamic expression. The (labeled probabilistic
step) transition system of G is a quadruple TS(G) = (SG, LG,TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ IN
SL
f × (0; 1];

• the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s ∈ DR(G),

∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

• the initial state is sG = [G]≈.



162 I. V. Tarasyuk

The transition system TS(G) associated with a dynamic expression G
describes all steps that happen at moments of discrete time with some (one-
step) probability and consist of multisets of activities. Every step happens
instantaneously after one discrete time unit delay, and the step can change
the current state to another one. The states are the structural equivalence
classes of dynamic expressions obtained by application of action rules start-
ing from the expressions belonging to [G]≈. A transition (s, (Γ,P), s̃) ∈ TG

will be written as s
Γ
→P s̃. The interpretation is: the probability to change

the state s to s̃ in the result of executing Γ is P. Note that Γ can be the
empty multiset, and its execution does not change the current state (i.e.,

the equivalence class), since we have a loop transition s
∅
→P s from a state s

to itself in the result of executing the empty multiset. This corresponds to
application of inaction rules to the expressions from the equivalence class.
We have to keep track of such executions, called empty loops, because they
have nonzero probabilities. This follows from the definition of PF (∅, s) and
the fact that multiaction probabilities cannot be equal to 1 as they belong
to the interval (0; 1). The step probabilities belong to the interval (0; 1].
The step probability is 1 in the case when we cannot leave a state s, hence,

there exists the only transition from it, namely, the empty loop one s
∅
→1 s.

We write s
Γ
→ s̃ if ∃P s

Γ
→P s̃ and s→ s̃ if ∃Γ s

Γ
→ s̃.

Isomorphism is a coincidence of systems up to renaming of their com-
ponents or states. ≃ denotes isomorphism between transition systems that
relates their initial states.

Definition 8. Two dynamic expressions G and G′ are equivalent w.r.t.
transition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Definition 9. The underlying discrete time Markov chain (DTMC) of a
dynamic expression G, denoted by DTMC(G), has the state space DR(G)
and the transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

4. Denotational semantics

In this section, we construct the denotational semantics in terms of a sub-
class of LDTSPNs called discrete time stochastic Petri boxes (dts-boxes).

Definition 10. A discrete time stochastic Petri box (dts-box) is a tuple
N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, respectively, with
PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN ×TN )∪(TN ×PN )→ IN is a function describing the weights
of arcs between places and transitions and vice versa;



Performance preserving equivalences for dtsPBC 163

• ΛN is the place and transition labeling function s.t. ΛN |PN
: PN →

{e, i, x} (it specifies entry, internal and exit places, respectively) and
ΛN |TN : TN → {̺ | ̺ ⊆ IN

SL
f ×SL} (it associates transitions with the

relabeling relations).

Let t ∈ TN , U ∈ INTN
f . The precondition •t and the postcondition t•

of t are the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) =
WN (t, p). The precondition •U and the postcondition U• of U are the mul-
tisets of places defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. We require

that ∀t ∈ TN
•t 6= ∅ 6= t•. In addition, for the set of entry places of N

defined as ◦N = {p ∈ PN | ΛN (p) = e} and the set of exit places of N
defined as N◦ = {p ∈ PN | ΛN (p) = x}, we require that ◦N 6= ∅ 6= N◦ and
•(◦N) = ∅ = (N◦)•.

A dts-box is plain if ∀t ∈ TN ΛN (t) ∈ SL, i.e., ΛN (t) is the con-
stant relabeling that will be defined later. A marked plain dts-box is a
pair (N,MN ), where N is a plain dts-box and MN ∈ INPN

f is the ini-

tial marking. We denote N = (N, ◦N) and N = (N,N◦). A marked
plain dts-box (PN , TN ,WN ,ΛN ,MN ) can be interpreted as the LDTSPN
(PN , TN ,WN ,ΩN , LN ,MN ), where ∀t ∈ TN ΩN (t) = Ω(ΛN (t)) (transition
probability function) and LN (t) = L(ΛN (t)) (transition labeling function).

To define a semantic function that associates a plain dts-box with every
static expression of dtsPBC, we need to propose the enumeration function
Enu : TN → Num. It associates numberings with transitions of a plain
dts-box N according to those of activities. In the case of synchronization,
the function associates the concatenation of the parenthesized numberings
of the synchronized transitions with a resulting new transition. The struc-
ture of the plain dts-box corresponding to a static expression is constructed
like in PBC [3]. I.e., we use a simultaneous refinement and relabeling meta-
operator (net refinement) in addition to the operator dts-boxes corresponding
to algebraic operations of dtsPBC and featuring transformational transition
relabelings. In the definition of the denotational semantics, we apply stan-
dard constructions used for PBC. Let ̺,Θ and u denote relabeling, operator
box and transition name from PBC setting, respectively.

The relabeling relations ̺ ⊆ INSL
f × SL are defined as follows:

• ̺id = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL} is the identity relabeling keeping
the interface as it is;

• ̺(α,ρ) = {(∅, (α, ρ))} is the constant relabeling that can be identified
with (α, ρ) ∈ SL itself;

• ̺[f ] = {({(α, ρ)}, (f(α), ρ)) | (α, ρ) ∈ SL};

• ̺rs a = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL, a, â 6∈ α};



164 I. V. Tarasyuk

(α, ρ)

�
��

�
��
?

?

N(α,ρ)i

e

x

ti ̺[f ]

�
��

�
��
?

?

Θ[f ]

e

x

u[f ] ̺rs a

�
��

�
��
?

?

Θ rs a

e

x

urs a
̺sy a

�
��

�
��
?

?

Θsy a

e

x

usy a ̺id

�
��

�
��
?

?

Θ;

e

u1;

̺id

�
��
?

?
x

u2;

i

̺id

�
��

�
��
?

?

Θ‖

e

u1‖

x

̺id

�
��

�
��
?

?

e

u2‖

x

̺idu1[] ̺id u2[]

Θ[]�
��

�
��
e

x

��	 @@R

S
Sw

�
�/

� �
� �

?

6

̺id

�
��

�
��
?

?

Θ[∗∗]

e

u1[∗∗]

̺id

�
��
?

?
x

u3[∗∗]

i ̺id u2[∗∗]

Figure 1. The plain and operator dts-boxes

• ̺sy a is the least relabeling relation containing in ̺id s.t. if (Γ, (α, ρ)),
(∆, (β, χ)) ∈ ̺sy a and a ∈ α, â ∈ β, then (Γ+∆, (α⊕aβ, ρ·χ)) ∈ ̺sy a.

The plain and operator dts-boxes are presented in Figure 1. The symbol
i is usually omitted.

Now we define the enumeration function Enu. Let Boxdts(E) =
(PE , TE ,WE ,ΛE) be the plain dts-box of a static expression E, and EnuE
be the enumeration function for TE. The notation for F and K is similar.

• Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖}. Since we
do not introduce new transitions, we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdts(E[f ]) = Θ[f ](Boxdts(E)). Since we only replace the labels of
some multiactions by a bijection, we preserve the initial numbering:
Enu(t) = EnuE(t), t ∈ TE .

• Boxdts(E rs a) = Θ rs a(Boxdts(E)). Since we remove all transitions
labeled with multiactions containing a or â, this does not change the
numbering of the remaining transitions:
Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ L(ΛE(t)).

• Boxdts(E sy a) = Θsy a(Boxdts(E)). Then ∀v,w ∈ TE s.t. ΛE(v) =
(α, ρ), ΛE(w) = (β, χ), a ∈ α, â ∈ β, the new transition t resulting
from synchronization of v and w has the label Λ(t) = (α⊕aβ, ρ ·χ) and
the numbering Enu(t) = (EnuE(v))(EnuE(w)). The enumeration is

Enu(t) =





EnuE(t), t ∈ TE;
(EnuE(v))(EnuE(w)), t results from synchronization

of v and w.

• Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)). Since



Performance preserving equivalences for dtsPBC 165

we do not introduce new transitions, we preserve the initial numbering:

Enu(t) =





EnuE(t), t ∈ TE;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

Definition 11. Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr.
The denotational semantics of dtsPBC is a mapping Boxdts from
RegStatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i ;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};

5. Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).

For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) =
Boxdts(E). The definition of dts-boxes is compositional in the sense that
any dynamic expression can be decomposed in some inner dynamic and
static ones for which we can apply the definition again.

Let ≃ denote isomorphism between transition systems or DTMCs and
reachability graphs. For a dts-box N , we denote its reachability graph by
RG(N) and its underlying DTMC by DTMC(N).

Theorem 1. [8] For any static expression E

TS(E) ≃ RG(Boxdts(E)).

Proposition 1. [8] For any static expression E

DTMC(E) ≃ DTMC(Boxdts(E)).

5. Stochastic equivalences

Now we propose stochastic equivalences of expressions. Since the semantic
equivalence =ts is often too discriminate, we need some weaker relations.

To identify processes with intuitively similar behaviour and to apply
standard constructions and techniques, we should abstract from infinite in-
ternal behaviour. Since dtsPBC is a stochastic extension of a finite part of
PBC with iteration, the only source of infinite silent behaviour are empty
loops, i.e., the transitions which are labeled by the empty multiset of activi-
ties and do not change states. During such an abstraction, we should collect
the probabilities of empty loops. Note that the resulting probabilities are



166 I. V. Tarasyuk

those defined for an infinite number of empty steps. In the following, we
explain how to abstract from the empty loops both in the algebraic setting
of dtsPBC and in the net one of LDTSPNs.

5.1. Empty loops

Let G be a dynamic expression. A transition system TS(G) can have loops
going from a state to itself which are labeled by the empty multiset and

have non-zero probability. Such empty loops s
∅
→P s appear when no activ-

ities occur at a time step, and this happens with some positive probability.
Obviously, in this case the current state remains unchanged.

Let G be a dynamic expression and s ∈ DR(G). The probability to stay
in s due to k (k ≥ 1) empty loops is (PT (∅, s))k. Let Γ ∈ Exec(s) \ {∅}.
The probability to execute the non-empty multiset of activities Γ in s after
possible empty loops is

PT ∗(Γ, s) = PT (Γ, s)
∞∑

k=0

(PT (∅, s))k =
PT (Γ, s)

1− PT (∅, s)
.

The value k = 0 in the summation above is for the case when no
empty loops occur. We have PT ∗(Γ, s) ≤ 1, hence, it is really a proba-
bility, since PT (∅, s) + PT (Γ, s) ≤ PT (∅, s) +

∑
∆∈Exec(s)\{∅} PT (∆, s) =∑

∆∈Exec(s) PT (∆, s) = 1. Moreover, PT ∗(Γ, s) defines a probability distri-

bution, i.e., ∀s ∈ DR(G)
∑

Γ∈Exec(s)\{∅} PT
∗(Γ, s) = 1.

Definition 12. The (labeled probabilistic) transition system without empty

loops TS∗(G) has the state space DR(G) and the transitions s
Γ
→→P s̃, if

s
Γ
→ s̃, Γ 6= ∅ and P = PT ∗(Γ, s).

We write s
Γ
→→ s̃ if ∃P s

Γ
→→P s̃ and s →→ s̃ if ∃Γ s

Γ
→→ s̃. For a one-element

multiset of activities Γ = {(α, ρ)}, we write s
(α,ρ)
→→ P s̃ and s

(α,ρ)
→→ s̃.

Definition 13. Two dynamic expressions G and G′ are equivalent w.r.t.
transition systems without empty loops, denoted by G =ts∗ G

′, if TS∗(G) ≃
TS∗(G′).

Definition 14. The underlying DTMC without empty loops DTMC∗(G)
has the state space DR(G) and the transitions s →→P s̃, if s →→ s̃, where
P = PM∗(s, s̃) is the probability to move from s to s̃ by executing any
non-empty multiset of activities after possible empty loops defined as



Performance preserving equivalences for dtsPBC 167

PM∗(s, s̃) =
∑

{Γ|s
Γ
→→s̃}

PT ∗(Γ, s).

LetN = (PN , TN ,WN ,ΩN , LN ,MN ) be an LDTSPN andM,M̃ ∈ INPN

f ,

U ⊆ TN . The probabilities PT ∗(U,M), PM∗(M,M̃ ), the transition rela-

tions M
U
→→P M̃, M

U
→→ M̃, M →→ M̃, M →→P M̃ , the reachability graph with-

out empty loops RG∗(N) and the underlying DTMC without empty loops
DTMC∗(N) are defined like those for dynamic expressions.

Theorem 2. For any static expression E

TS∗(E) ≃ RG∗(Boxdts(E)).

Proof. For the qualitative behaviour, we have the same isomorphism as
in PBC. The quantitative behaviour is the same, since the activities of an
expression have probability parts coinciding with the probabilities of the
transitions belonging to the corresponding dts-box and, both in stochastic
processes specified by expressions and in dts-boxes, conflicts are resolved via
similar probability functions.

Proposition 2. For any static expression E

DTMC∗(E) ≃ DTMC∗(Boxdts(E)).

Proof. By Theorem 2 and definitions of underlying DTMC for dynamic
expressions and LDTSPNs, since transition probabilities of the associated
DTMCs are the sums of those from transition systems or reachability graphs.

Theorem 2 guarantees that the net versions of algebraic equivalences
could be defined. For every equivalence on the transition system without
empty loops of a dynamic expression, a similarly defined analogue exists on
the reachability graph without empty loops of the corresponding dts-box.

5.2. Stochastic bisimulation equivalences

Bisimulation equivalences respect completely the particular points of choice
in the behaviour of a modeled system. We intend to present a definition
of stochastic bisimulation equivalences parameterized for the cases of inter-
leaving and step semantics.

When concurrency aspects are not relevant, the interleaving semantics is
considered which abstracts from steps with more than one element. For this,
a special interleaving transition relation is proposed. Let G be a dynamic

expression, s, s̃ ∈ DR(G) and s
(α,ρ)
→→ s̃. We write s

(α,ρ)
⇀⇀ P s̃, where P =



168 I. V. Tarasyuk

pt∗((α, ρ), s) is the probability to execute the activity (α, ρ) in s after possible
empty loops, when only one-element steps are allowed, defined as

pt∗((α, ρ), s) =
PT ∗({(α, ρ)}, s)∑

{(β,χ)}∈Exec(s) PT
∗({(β, χ)}, s)

.

Let G be a dynamic expression and H ⊆ DR(G). Then for some s ∈

DR(G) and A ∈ INL
f \ {∅} we write s

A
→→P H, where P = PM∗

A(s,H) is the
overall probability to move from s into the set of states H via non-empty
steps with the multiaction part A after possible empty loops defined as

PM∗
A(s,H) =

∑

{Γ|∃s̃∈H s
Γ
→→s̃, L(Γ)=A}

PT ∗(Γ, s).

We propose the corresponding interleaving transition relation s
α
⇀⇀P H,

where P = pm∗
α(s,H) is the overall probability to move from s into the set

of states H via steps with the multiaction part {α} after possible empty loops
when only one-element steps are allowed defined as

pm∗
α(s,H) =

∑

{(α,ρ)|∃s̃∈H s
(α,ρ)
→→ s̃}

pt∗((α, ρ), s).

Definition 15. An equivalence relation R ⊆ (DR(G) ∪DR(G′))2 is a
⋆-stochastic bisimulation between dynamic expressions G and G′,
⋆ ∈{interleaving, step}, denoted by R : G↔⋆sG

′, ⋆ ∈ {i, s}, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R

• ∀x ∈ L and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INL
f \ {∅} and →֒=→→, if ⋆ = s;

s1
x
→֒P H ⇔ s2

x
→֒P H.

Two dynamic expressions G and G′ are ⋆-stochastic bisimulation equivalent,
⋆ ∈{interleaving, step}, denoted by G↔⋆sG

′, if ∃R : G↔⋆sG
′, ⋆ ∈ {i, s}.

5.3. Interrelations of the stochastic equivalences

Now we compare the introduced stochastic equivalences and obtain the lat-
tice of their interrelations.

Theorem 3. For any dynamic expressions G and G′ the following strict
implications and the identity hold:



Performance preserving equivalences for dtsPBC 169

G ≈ G′ ⇒ G =ts G
′ ⇔ G =ts∗ G

′ ⇒ G↔ssG
′ ⇒ G↔isG

′.

Proof. Like the analogous theorem in [9], but for infinite processes as well.

6. Stationary behaviour

Let us examine how the proposed equivalences can be used to compare be-
haviour of stochastic processes in their steady states. We shall consider only
formulas specifying stochastic processes with infinite behavior, i.e., expres-
sions with the iteration operator. We have observed that, for every such
expression, the parts of its underlined DTMC corresponding to the exe-
cution of the iteration bodies are ergodic, hence, the unique steady state
exists.

6.1. Theoretical background

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|)

of the transition probability matrix (TPM) P∗ for DTMC∗(G) are defined
as

P∗
ij =

{
PM∗(si, sj), si →→ sj;
0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF) ψ∗[k] =
(ψ∗

1 [k], . . . , ψ
∗
n[k]) for DTMC∗(G) is the solution of the equation system

ψ∗[k] = ψ∗[0](P∗)k,

s.t. ψ∗[0] = (ψ∗
1 [0], . . . , ψ

∗
n[0]) is the initial PMF: ψ∗

i [0] =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMF ψ∗ = (ψ∗

1 , . . . , ψ
∗
n) for DTMC∗(G) is the solution

of the equation system

{
ψ∗(P∗ −E) = 0

ψ∗1T = 1
,

where E is the unitary matrix of size n and 0 is a vector with n values
0, 1 is that with n values 1.

If DTMC∗(G) has the single steady state, then ψ∗ = limk→∞ ψ∗[k].
For s ∈ DR(G) with s = si (1 ≤ i ≤ n) we define ψ∗[k](s) = ψ∗

i [k]
(k ∈ IN) and ψ∗(s) = ψ∗

i .
The following standard performance indices can be calculated based on

the steady-state PMF ψ∗.

• The average recurrence (return) time in the state s is 1
ψ∗(s) .



170 I. V. Tarasyuk

• The fraction of residence time in the state s is ψ∗(s).

• The relative fraction of residence time in the state s1 w.r.t. that in the

state s2 is ψ∗(s1)
ψ∗(s2)

.

• The fraction of residence time in the set of states S ⊆ DR(G) or the
probability of the event determined by a condition that is true for all
states from S is

∑
s∈S ψ

∗(s).

• The steady-state probability to perform a step with an activity (α, ρ) is∑
s∈DR(G) ψ

∗(s)
∑

{Γ|(α,ρ)∈Γ} PT
∗(Γ, s).

• The probability of the event determined by a reward function r on the
states is

∑
s∈DR(G) ψ

∗(s)r(s).

6.2. Steady state and equivalences

The following proposition demonstrates that for two dynamic expressions
related by↔ss the steady-state probabilities to come in an equivalence class
coincide. One can also interpret the result stating that the mean recurrence
time for an equivalence class is the same for both expressions.

Proposition 3. Let G,G′ be dynamic expressions with R : G↔ssG
′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′).

Proof. See Appendix A.
The expression Stop = ({c}, 12) rs c specifies the process that is only

able to perform empty loops with probability 1 and never terminates. The
following example demonstrates that Proposition 3 does not hold for ↔is.

Example 1. Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop] and

E′ = [({a}, 12)∗(({b},
1
2 ); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2; ({c},

1
2)2)))∗Stop].

We have E↔isE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s4 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈,

s5 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )‖({d},

1
2 ))) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′
1
= [[({a}, 1

2
) ∗ (({b}, 1

2
); ((({c}, 1

2
)1; ({d},

1

2
)1)[](({d},

1

2
)2; ({c},

1

2
)2))) ∗ Stop]]≈,



Performance preserving equivalences for dtsPBC 171

({a}, 1
2
)

�
��u
?

e

N

({c}, 1
2
) ({d}, 1

2
)

�
�� �
��
? ?

�
�� �
��
({b}, 1

2
)

J
Ĵ

�
��

JĴ ��/

J
Ĵ

�
��

�
��x

({a}, 1
2
)

�
��u
?

e

N ′

({d}, 1
2
)1 ({c}, 1

2
)2

�
�� �
��
? ?

({c}, 1
2
)1

�
��x

�
��?

({d}, 1
2
)2

��	
ZZ~

? ?

({b}, 1
2
)

�
��
?

?

 

!

#

"	 �

- �

	 �

↔is

6≡ss'

&

 

!

- �

Figure 2. ↔
is

does not guarantee a coincidence of steady-state probabilities to
come in an equivalence class

s′2 = [[({a}, 1
2
) ∗ (({b}, 1

2
); ((({c}, 1

2
)1; ({d},

1

2
)1)[](({d},

1

2
)2; ({c},

1

2
)2))) ∗ Stop]]≈,

s′
3
= [[({a}, 1

2
) ∗ (({b}, 1

2
); ((({c}, 1

2
)1; ({d},

1

2
)1)[](({d},

1

2
)2; ({c},

1

2
)2))) ∗ Stop]]≈,

s′
4
= [[({a}, 1

2
) ∗ (({b}, 1

2
); ((({c}, 1

2
)1; ({d},

1

2
)1)[](({d},

1

2
)2; ({c},

1

2
)2))) ∗ Stop]]≈,

s′5 = [[({a}, 1
2
) ∗ (({b}, 1

2
); ((({c}, 1

2
)1; ({d},

1

2
)1)[](({d},

1

2
)2; ({c},

1

2
)2))) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,
3

8
,
1

8
,
1

8

)
, ψ′∗ =

(
0,

1

3
,
1

3
,
1

6
,
1

6

)
.

For the equivalence class (w.r.t. ↔is) H = {s3, s
′
3} we have∑

s∈H∩DR(E) ψ
∗(s) = ψ∗(s3) =

3
8 , whereas

∑
s′∈H∩DR(E′) ψ

′∗(s′) = ψ′∗(s′3)

= 1
3 . Thus, ↔is does not guarantee a coincidence of steady-state probabili-

ties to come in an equivalence class.
In Figure 2, the marked dts-boxes of the dynamic expressions above are

presented, i.e., N = Boxdts(E) and N ′ = Boxdts(E′). In addition, we depict
the net analogues of the algebraic equivalences.

By Proposition 3, ↔ss preserves the quantitative properties of the sta-
tionary behaviour. Now we intend to demonstrate that the qualitative prop-
erties of the stationary behaviour based of the multiaction labels are pre-



172 I. V. Tarasyuk

served as well.

Definition 16. A step trace of a dynamic expression G is Σ = A1 · · ·An ∈

(INL
f \ {∅})

∗ s.t. ∃s ∈ DR(G) s
Γ1→→ s1

Γ2→→ · · ·
Γn→→ sn, L(Γi) = Ai (1 ≤ i ≤ n).

The probability to execute the step trace Σ in s is

PT ∗(Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→→s1

Γ2→→···
Γn→→ sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT ∗(Γi, si−1).

The following theorem demonstrates that for two dynamic expressions
related by↔ss the steady-state probabilities to come in an equivalence class
and start a step trace from it coincide.

Theorem 4. Let G,G′ be dynamic expressions with R : G↔ssG
′ and Σ be

a step trace. Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s)PT ∗(Σ, s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′)PT ∗(Σ, s′).

Proof. See Appendix B.

Example 2. Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
2)1[]({c},

1
2)2)) ∗ Stop] and

E′ = [({a}, 12) ∗ ((({b},
1
2)1; ({c},

1
2)1)[](({b},

1
2 )2; ({c},

1
2)2)) ∗ Stop]. We have

E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )1[]({c},

1
2)2)) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )1[]({c},

1
2)2)) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2 )1[]({c},

1
2)2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 12) ∗ ((({b},
1
2 )1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ ((({b},
1
2 )1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ ((({b},
1
2 )1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ ((({b},
1
2 )1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2)) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

1

2
,
1

2

)
, ψ′∗ =

(
0,

1

2
,
1

4
,
1

4

)
.

One can see that the steady-state probabilities for the equivalence class
(w.r.t. ↔ss) H = {s3, s

′
3, s

′
4} coincide:

∑
s∈H∩DR(E) ψ

∗(s) = ψ∗(s3) =



Performance preserving equivalences for dtsPBC 173

({a}, 1
2
)

�
��u
?

e

N

({c}, 1
2
)1 ({c}, 1

2
)2

({b}, 1
2
)

�
��x

({a}, 1
2
)

�
��u
?

e

N ′

({c}, 1
2
)1 ({c}, 1

2
)2

�
�� �
��
? ?

({b}, 1
2
)1

�
��x

?

({b}, 1
2
)2

��	
ZZ~

? ?

�
�� 

!

#

"	 � 	 �

=sto

6=ts

- ��
��?
?

��	
ZZ~
�
��?

- �  

!

#

"
Figure 3. ↔

ss
implies a coincidence of the steady-state probabilities to come in

an equivalence class and start a trace from it

1
2 = 1

4 + 1
4 = ψ′∗(s′3) + ψ′∗(s′4) =

∑
s′∈H∩DR(E′) ψ

′∗(s′). Let Σ = {{c}}.

The steady-state probabilities to come in the equivalence class H and start
the step trace Σ from it coincide as well: ψ∗(s3)(PT

∗({({c}, 12)1}, s3) +

PT ∗({({c}, 12)2}, s3)) =
1
2

(
1
2 +

1
2

)
= 1

2 = 1
4 · 1 +

1
4 · 1 =

ψ′∗(s′3)PT
∗({({c}, 12)1}, s

′
3) + ψ′∗(s′4)PT

∗({({c}, 12 )2}, s
′
4).

In Figure 3, the marked dts-boxes of the dynamic expressions above are
presented, i.e., N = Boxdts(E) and N ′ = Boxdts(E′). In addition, we depict
the net analogues of the algebraic equivalences.

6.3. Performance preservation and simplification of its analysis

Many performance indices are based on the steady-state probabilities to
come in a set of similar states or, after coming in, to start a step trace
from this set. The similarity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence classes. For example,
the average system run-through, the common memory utilization for the
shared memory system and the time fractions when nobody, one or two
persons eat for the dining philosophers system are based on the steady-state
probabilities to come in an equivalence class. On the other hand, the steady-
state probability of the common memory request from a processor for the
shared memory system and that of the beginning of eating for the dining
philosophers system are based on steady-state probabilities to come in an
equivalence class and to start a step trace from it. Performance indices of
the shared memory system were calculated in [10].



174 I. V. Tarasyuk

Proposition 3 and Theorem 4 guarantee a coincidence of the mentioned
indices for the expressions related by↔ss. Thus,↔ss preserves performance
of stochastic systems modeled by expressions of dtsPBC. Moreover, Example
1 demonstrates that it is the weakest relation we considered that has the
performance preservation property. The equivalence ↔ss can be used to
reduce transition systems and, hence, DTMCs of expressions. It allows one
to simplify the performance analysis, since the reduced DTMCs have less
states, the dimension of the transition probability matrix is smaller, and we
solve less equations to calculate steady-state probabilities.

7. Conclusion

In this paper, within dtsPBC with iteration, we have considered the stochas-
tic algebraic equivalences having natural net analogues on LDTSPNs. The
equivalences abstract from empty loops in transition systems of dynamic
expressions. We have investigated which of the equivalences we proposed
guarantee identity of the stationary behaviour and can be used for simpli-
fication of performance analysis. We have proved that the weakest of the
relations having this property is the step stochastic bisimulation equiva-
lence. The advantage of our framework is twofold. First, one can specify
concurrent composition and synchronization of (multi)actions unlike Markov
chains. Second, algebraic formulas represent processes in a more compact
way than Petri nets.

In the future, we plan to apply the equivalence notions to reduction of
expressions and boxes with the intention to propose a method of performance
analysis simplification.

References

[1] Best E., Devillers R., Hall J.G. The box calculus: a new causal algebra with
multi-label communication // Lect. Notes Comput. Sci. – 1992. – Vol. 609. –
P. 21–69.

[2] BernardoM., Gorrieri R. A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time // Theor. Comput. Sci.
– 1998. – Vol. 202. – P. 1–54.

[3] Best E., Koutny M. A refined view of the box algebra // Lect. Notes Comp.
Sci. – 1995. – Vol. 935. – P. 1–20.

[4] Hillston J. A Compositional Approach to PerformanceModelling. – Cambridge
University Press, Great Britain, 1996.

[5] Macià H., Valero V., Cazorla D., Cuartero F. Introducing the iteration in
sPBC // Lect. Notes Comp. Sci. – 2004. – Vol. 3235. – P. 292–308. –
http://www.info-ab.uclm.es/retics/publications/2004/forte04.pdf



Performance preserving equivalences for dtsPBC 175

[6] Macià H., Valero V., de Frutos D. sPBC: a Markovian extension of finite
Petri box calculus // Proc. of 9th IEEE Internat. Workshop on Petri Nets and
Performance Models - 01 (PNPM’01). – Aachen, Germany: IEEE Computer
Society Press, 2001. – P. 207–216. – http://www.info-ab.uclm.es/retics/

publications/2001/pnpm01.ps

[7] Tarasyuk I.V. Discrete Time Stochastic Petri Box Calculus. –
Carl von Ossietzky Universität Oldenburg, Germany, 2005. – 25
p. – (Berichte aus dem Department für Informatik; Vol. 3/05). –
http://db.iis.nsk.su/persons/itar/dtspbcib_cov.pdf

[8] Tarasyuk I.V. Iteration in discrete time stochastic Petri box calculus // Bull.
Novosibirsk Comp. Center. Ser. Computer Science. – Novosibirsk, 2006. – Iss.
24. – P. 129–148. – http://db.iis.nsk.su/persons/itar/dtsitncc.pdf

[9] Tarasyuk I.V. Stochastic Petri box calculus with discrete time // Fundamenta
Informaticae. – IOS Press, Amsterdam, The Netherlands, 2007. – Vol. 76, No.
1–2. – P. 189–218. – http://db.iis.nsk.su/persons/itar/dtspbcfi.pdf

[10] Tarasyuk I.V. Performance evaluation in dtsPBC // Proc. of 18th Workshop on
Concurrency, Specification and Programming - 09 (CS&P’09). – Warsaw Uni-
versity, Poland, 2009. – P. 602–615. – http://db.iis.nsk.su/persons/itar/
dtsshmcsp.pdf

A. Proof of Proposition 3

It is sifficient to prove the statement of the proposition for transient PMFs
only, since ψ∗ = limk→∞ ψ∗[k] and ψ′∗ = limk→∞ ψ′∗[k]. We proceed by
induction on k.

• k = 0

The only nonzero values of the initial PMFs of DTMC∗(G) and
DTMC∗(G′) are ψ∗[0]([G]≈) and ψ∗[0]([G′]≈). The only equivalence
class containing [G]≈ or [G′]≈ is H0 = {[G]≈, [G

′]≈}. Thus,∑
s∈H0∩DR(G) ψ

∗[0](s) = ψ∗[0]([G]≈) = 1 = ψ′∗[0]([G′]≈) =∑
s′∈H0∩DR(G′) ψ

′∗[0](s′).

As for other equivalence classes, ∀H ∈ ((DR(G) ∪ DR(G′))/R) \ H0

we have
∑

s∈H∩DR(G) ψ
∗[0](s) = 0 =

∑
s′∈H∩DR(G′) ψ

′∗[0](s′).

• k → k + 1

Let H ∈ (DR(G) ∪ DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈

(DR(G) ∪ DR(G′))/R ∀A ∈ INL
f \ {∅} s1

A
→→P H̃ ⇔ s2

A
→→P H̃.

Therefore, PM∗(s1, H̃) =
∑

{Γ|∃s̃1∈ eH s1
Γ
→→s̃1}

PT ∗(Γ, s1) =∑
A∈INL

f
\{∅}

∑
{Γ|∃s̃1∈ eH s1

Γ
→→s̃1, L(Γ)=A}

PT ∗(Γ, s1) =
∑

A∈INL
f
\{∅} PM

∗
A(s1, H̃) =

∑
A∈INL

f
\{∅} PM

∗
A(s2, H̃) =



176 I. V. Tarasyuk

∑
A∈INL

f
\{∅}

∑
{Γ|∃s̃2∈ eH s2

Γ
→→s̃2, L(Γ)=A}

PT ∗(Γ, s2) =
∑

{Γ|∃s̃2∈ eH s2
Γ
→→s̃2}

PT ∗(Γ, s2) = PM∗(s2, H̃). Since we have the previ-

ous equality for all s1, s2 ∈ H, we can denote PM∗(H, H̃) =

PM∗(s1, H̃) = PM∗(s2, H̃). Note that transitions from the states of
DR(G) always lead to those from the same set, hence, ∀s ∈ DR(G)

PM∗(s, H̃) = PM∗(s, H̃ ∩DR(G)). The same is true for DR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ
∗[k](s) =∑

s′∈H∩DR(G′) ψ
′∗[k](s′). Further,

∑
s̃∈ eH∩DR(G) ψ

∗[k + 1](s̃) =∑
s̃∈ eH∩DR(G)

∑
s∈DR(G) ψ

∗[k](s)PM∗(s, s̃) =∑
s∈DR(G)

∑
s̃∈ eH∩DR(G) ψ

∗[k](s)PM∗(s, s̃) =∑
s∈DR(G) ψ

∗[k](s)
∑

s̃∈ eH∩DR(G)
PM∗(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)
∑

s̃∈ eH∩DR(G) PM
∗(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)
∑

s̃∈ eH∩DR(G)

∑
{Γ|s

Γ
→→s̃}

PT ∗(Γ, s) =
∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)
∑

{Γ|∃s̃∈ eH∩DR(G) s
Γ
→→s̃}

PT ∗(Γ, s) =
∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)PM∗(s, H̃) =
∑

H

∑
s∈H∩DR(G) ψ

∗[k](s)PM∗(H, H̃) =
∑

H PM
∗(H, H̃)

∑
s∈H∩DR(G) ψ

∗[k](s) =
∑

H PM
∗(H, H̃)

∑
s′∈H∩DR(G′) ψ

′∗[k](s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)PM∗(H, H̃) =
∑

H

∑
s′∈H′∩DR(G′) ψ

′∗[k](s′)PM∗(s′, H̃) =∑
H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)
∑

{Γ|∃s̃′∈ eH∩DR(G′) s′
Γ
→→s̃′}

PT ∗(Γ, s′) =
∑

H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)
∑

s̃′∈ eH∩DR(G′)

∑
{Γ|∃s̃′ s′

Γ
→→s̃′}

PT ∗(Γ, s′) =

∑
H

∑
s′∈H∩DR(G′) ψ

′∗[k](s′)
∑

s̃′∈ eH∩DR(G′) PM
∗(s′, s̃′) =∑

s′∈DR(G′) ψ
′∗[k](s′)

∑
s̃′∈ eH∩DR(G′)

PM∗(s′, s̃′) =∑
s′∈DR(G′)

∑
s̃′∈ eH∩DR(G′)

ψ′∗[k](s′)PM∗(s′, s̃′) =∑
s̃′∈ eH∩DR(G′)

∑
s′∈DR(G′) ψ

′∗[k](s′)PM∗(s′, s̃′) =∑
s̃′∈ eH∩DR(G′) ψ

′∗[k + 1](s̃′).

B. Proof of Theorem 4

Let H ∈ (DR(G) ∪ DR(G′))/R and s, s̄ ∈ H. We have ∀H̃ ∈ (DR(G) ∪

DR(G′))/R ∀A ∈ INL
f \ {∅} s

A
→→P H̃ ⇔ s̄

A
→→P H̃. The previous equal-

ity is valid for all s, s̄ ∈ H, hence, we can rewrite it as H
A
→→P H̃ and

denote PM∗
A(H, H̃) = PM∗

A(s, H̃) = PM∗
A(s̄, H̃). The transitions from

the states of DR(G) always lead to those from the same set, hence, ∀s ∈



Performance preserving equivalences for dtsPBC 177

DR(G) PM∗
A(s, H̃) = PM∗

A(s, H̃ ∩DR(G)). The same is true for DR(G′).
Let Σ = A1 · · ·An be a step trace of G and G′. We have ∃H0, . . . ,∃Hn ∈

(DR(G) ∪DR(G′))/R H0
A1→→P1 H1

A2→→P2 · · ·
An→→Pn Hn. Let us prove that the

sum of probabilities of all the paths starting in every s0 ∈ H0 and going
through the states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn:

∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =
∏n
i=1 PM

∗
Ai
(Hi−1,Hi).

We prove this equality by induction on the step trace length n.

• n = 1
∑

{Γ1|s0
Γ1→→s1, L(Γ1)=A1, s1∈H1}

PT ∗(Γ1, s0) = PM∗
A1

(s0,H1) =

PM∗
A1

(H0,H1).

• n→ n+ 1
∑

{Γ1,...,Γn,Γn+1|s0
Γ1→→···

Γn→→ sn
Γn+1
→→ sn+1, L(Γi)=Ai, si∈Hi (1≤i≤n+1)}∏n+1

i=1 PT
∗(Γi, si−1) =∑

{Γn+1|sn
Γn+1
→→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n
i=1 PT

∗(Γi, si−1)PT
∗(Γn+1, sn) =∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

[
∏n
i=1 PT

∗(Γi, si−1)
∑

{Γn+1|sn
Γn+1
→→ sn+1, L(Γn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT ∗(Γn+1, sn)

]
=

∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n

i=1 PT
∗(Γi, si−1)PM

∗
An+1

(sn,Hn+1) =∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n

i=1 PT
∗(Γi, si−1)PM

∗
An+1

(Hn,Hn+1) =

PM∗
An+1

(Hn,Hn+1)
∑

{Γ1,...,Γn|s0
Γ1→→···

Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}∏n
i=1 PT

∗(Γi, si−1) =

PM∗
An+1

(Hn,Hn+1)
∏n
i=1 PM

∗
Ai
(Hi−1,Hi) =

∏n+1
i=1 PM

∗
Ai
(Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have PT ∗(A1 · · ·An, s0) =∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→ sn, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =
∑

H1,...,Hn

∑
{Γ1,...,Γn|s0

Γ1→→···
Γn→→ sn, L(Γi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1) =

∑
H1,...,Hn

∏n
i=1 PM

∗
Ai
(Hi−1,Hi) =



178 I. V. Tarasyuk

∑
H1,...,Hn

∑
{Γ1,...,Γn|s̄0

Γ1→→···
Γn→→ s̄n, L(Γi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT

∗(Γi, s̄i−1) =

∑
{Γ1,...,Γn|s̄0

Γ1→→···
Γn→→ s̄n, L(Γi)=Ai, (1≤i≤n)}

∏n
i=1 PT

∗(Γi, s̄i−1) =

PT ∗(A1 · · ·An, s̄0).
Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote
PT ∗(A1 · · ·An,H0) = PT ∗(A1 · · ·An, s0) = PT ∗(A1 · · ·An, s̄0).

By Proposition 3,
∑

s∈H∩DR(G) ψ
∗(s) =

∑
s′∈H∩DR(G′) ψ

′∗(s′). Now we

can complete the proof:
∑

s∈H∩DR(G) ψ
∗(s)PT ∗(Σ, s) =∑

s∈H∩DR(G) ψ
∗(s)PT ∗(Σ,H) = PT ∗(Σ,H)

∑
s∈H∩DR(G) ψ

∗(s) =

PT ∗(Σ,H)
∑

s′∈H∩DR(G′) ψ
′∗(s′) =

∑
s′∈H∩DR(G′) ψ

′∗(s′)PT ∗(Σ,H) =∑
s′∈H∩DR(G′) ψ

′∗(s′)PT ∗(Σ, s′).


