
Performance evaluation in dtsPBC ⋆

Igor V. Tarasyuk1

A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia
itar@iis.nsk.su

Abstract. Algebra dtsPBC is a discrete time stochastic extension of
finite Petri box calculus (PBC) enriched with iteration. In this paper,
within dtsPBC, a method of modeling and performance evaluation based
on stationary behaviour analysis for concurrent computing systems is
outlined applied to the shared memory system.
Keywords: stochastic process algebra, Petri box calculus, iteration, dis-
crete time, stationary behaviour, performance evaluation.

1 Introduction

Algebraic process calculi is a well-known formal model for specification of com-
puting systems and analysis of their behaviour. In such process algebras (PAs),
systems and processes are specified by formulas, and verification of their prop-
erties is accomplished at a syntactic level via equivalences, axioms and inference
rules. In the last decades, stochastic extensions of PAs were proposed. Stochastic
process algebras (SPAs) do not just specify actions which can happen as usual
process algebras (qualitative features), but they associate some quantitative pa-
rameters with actions (quantitative characteristics).

Petri box calculus (PBC) [1] is a flexible and expressive process algebra de-
veloped as a tool for specification of Petri nets structure and their interrelations.
Its goal was also to propose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementary Petri nets. PBC
has a step operational semantics in terms of labeled transition systems. Its de-
notational semantics was proposed in terms of a subclass of Petri nets (PNs)
equipped with interface and considered up to isomorphism called Petri boxes.

A stochastic extension of PBC called stochastic Petri box calculus (sPBC)
was proposed in [5]. Only a finite part of PBC was used for the stochastic enrich-
ment, i.e., sPBC has neither refinement nor recursion nor iteration operations.
The calculus has an interleaving operational semantics in terms of labeled tran-
sition systems. Its denotational semantics was defined in terms of a subclass of
labeled continuous time stochastic PNs (LCTSPNs) called s-boxes. In [4], the
iteration was added to sPBC.

In [7], a discrete time stochastic extension dtsPBC of finite PBC was pre-
sented. A step operational semantics of dtsPBC was constructed via labeled

⋆ This work was supported in part by Deutsche Forschungsgemeinschaft (DFG), 436
RUS 113/1002/01, and Russian Foundation for Basic Research (RFBR), 09-01-91334

probabilistic transition systems. Its denotational semantics was defined based on
a subclass of labeled discrete time stochastic PNs (LDTSPNs) called dts-boxes.
A variety of probabilistic equivalences were proposed and their interrelations
were studied. In [6], the iteration operator was added to dtsPBC.

In this paper, we use dtsPBC with iteration as a basic model. First, we present
syntax of the calculus. Second, we describe its operational semantics in terms
of labeled transition systems and denotational semantics based on a subclass of
LDTSPNs. Stationary behaviour of infinite stochastic processes within dtsPBC
is described. For a system with two processors and common shared memory the
performance indices are calculated based on steady state probabilities.

The paper is organized as follows. The syntax of dtsPBC is presented in
Section 2. Section 3 describes its operational semantics and Section 4 presents
its denotational semantics. In Section 5, a performance evaluation of stochastic
processes is presented applied to the shared memory system. The concluding
Section 6 summarizes the results obtained and outlines research perspectives.

2 Syntax

In this section, we propose the syntax of discrete time stochastic PBC (dtsPBC).
We denote the set of all finite multisets over X by INX

f . Let Act = {a, b, . . .}

be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated

actions (conjugates) such that a 6= â and ˆ̂a = a. Let A = Act ∪ Âct be the set
of all actions, and L = INA

f be the set of all multiactions. Note that ∅ ∈ L,
this corresponds to the execution of a multiaction that contains no visible action
names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1)
is the probability of the multiaction α. The multiaction probabilities are used
to calculate probabilities of state changes (steps) at discrete time moments. Let
SL be the set of all activities. Let us note that the same multiaction α ∈ L may
have different probabilities in the same specification. The alphabet of (α, ρ) ∈ SL
is defined as A(α, ρ) = A(α). For (α, ρ) ∈ SL, we define its multiaction part as
L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ.

Activities are combined into formulas by the following operations: sequential
execution ;, choice [], parallelism ‖, relabeling [f] of actions, restriction rs over
a single action, synchronization sy on an action and its conjugate and iteration
[∗∗] with three arguments: initialization, body and termination. First, the ini-
tialization subprocess is executed, then the body one is performed zero or more
times, and, finally, the termination one is executed.

Relabeling functions f : A → A are bijections preserving conjugates, i.e.,

∀x ∈ A f(x̂) = f̂(x). Let α, β ∈ L be two multiactions such that for some action
a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and a ∈ β. Then synchronization of
α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

Static expressions specify the structure of a system. They correspond to
unmarked SPNs.

Definition 1. Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC is
defined as

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

StatExpr denotes the set of all static expressions of dtsPBC.

To make the grammar above unambiguous, one can add parentheses in the
productions with binary operations: (E;E), (E[]E), (E‖E). However, here and
further we prefer the PBC approach and add them to resolve ambiguities only.

To avoid inconsistency of the iteration operator, we do not allow concurrency
in the highest level of the second argument of iteration. This is not a severe
restriction, since we can prefix parallel expressions by an activity with the empty
multiaction and an appropriate probability.

Definition 2. Let (α, ρ) ∈ SL and a ∈ Act. A regular static expression of
dtsPBC is defined as

D ::= (α, ρ) | D;E | D[]D | D[f] | D rs a | D sy a | [D ∗D ∗ E],
E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E ∗D ∗ E].

RegStatExpr denotes the set of all regular static expressions of dtsPBC.

Dynamic expressions specify the states of a system. They correspond to
marked SPNs. E denotes the initial, and E denotes the final state of the process
specified by a static expression E.

Definition 3. Let (α, ρ) ∈ SL, a ∈ Act and E ∈ RegStatExpr. A regular
dynamic expression of dtsPBC is defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |
[G ∗E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

RegDynExpr denotes the set of all regular dynamic expressions of dtsPBC.
We shall consider regular expressions only and omit the word “regular”.

3 Operational semantics

In this section, we construct the step operational semantics in terms of labeled
probabilistic transition systems.

3.1 Inaction rules

Inaction rules describe expression transformations due to execution of empty
multisets of activities, this does not change states of the corresponding processes.

First, we define inaction rules for overlined and underlined static expressions.
Let E,F,K ∈ RegStatExpr and a ∈ Act.

E;F
∅
→ E;F E;F

∅
→ E;F E;F

∅
→ E;F

E[]F
∅
→ E[]F E[]F

∅
→ E[]F E[]F

∅
→ E[]F

E[]F
∅
→ E[]F E‖F

∅
→ E‖F E‖F

∅
→ E‖F

E[f]
∅
→ E[f] E[f]

∅
→ E[f] E rs a

∅
→ E rs a

E rs a
∅
→ E rs a E sy a

∅
→ E sy a E sy a

∅
→ E sy a

[E ∗ F ∗K]
∅
→ [E ∗ F ∗K] [E ∗ F ∗K]

∅
→ [E ∗ F ∗K] [E ∗ F ∗K]

∅
→ [E ∗ F ∗K]

[E ∗ F ∗K]
∅
→ [E ∗ F ∗K] [E ∗ F ∗K]

∅
→ [E ∗ F ∗K]

Second, we propose inaction rules for dynamic expressions.
Let E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

G
∅
→ G

G
∅
→G̃, ◦∈{;,[]}

G◦E
∅
→G̃◦E

G
∅
→G̃, ◦∈{;,[]}

E◦G
∅
→E◦G̃

G
∅
→G̃

G‖H
∅
→G̃‖H

H
∅
→H̃

G‖H
∅
→G‖H̃

G
∅
→G̃

G[f]
∅
→G̃[f]

G
∅
→G̃, ◦∈{rs,sy}

G◦a
∅
→G̃◦a

G
∅
→G̃

[G∗E∗F]
∅
→[G̃∗E∗F]

G
∅
→G̃

[E∗G∗F]
∅
→[E∗G̃∗F]

G
∅
→G̃

[E∗F∗G]
∅
→[E∗F∗G̃]

The rule G
∅
→ G is intentionally included in the set of rules above. It reflects

a non-zero probability to stay in a state at the next time moment, an essential
feature of discrete time stochastic processes. The rule has no prototype in PBC.

A regular dynamic expression G is operative if no inaction rule can be ap-

plied to it, with the exception of G
∅
→ G. Note that any dynamic expression can

be always transformed into a (not necessarily unique) operative one using inac-
tion rules. Let OpRegDynExpr denote the set of all operative regular dynamic
expressions of dtsPBC.

Definition 4. Let ≃ = (
∅
→ ∪

∅
←)∗ be isomorphism of dynamic expressions in

dtsPBC. Thus, two dynamic expressions G and G′ are isomorphic, denoted by
G ≃ G′, if they can be reached from each other by applying inaction rules.

3.2 Action rules

Action rules describe expression transformations due to execution of arbitrary
multisets of activities, this can change states of the corresponding processes.

We propose action rules describing expression transformations due to the ex-
ecution of multisets of activities. Let (α, ρ), (β, χ) ∈ SL, E, F ∈ RegStatExpr,

G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act. Moreover, let
Γ,∆ ∈ INSL

f . The alphabet of Γ ∈ INSL
f is defined as A(Γ) = ∪(α,ρ)∈ΓA(α).

B (α, ρ)
{(α,ρ)}
−→ (α, ρ) SC1

G
Γ
→G̃, ◦∈{;,[]}

G◦E
Γ
→G̃◦E

SC2
G

Γ
→G̃, ◦∈{;,[]}

E◦G
Γ
→E◦G̃

P1 G
Γ
→G̃

G‖H
Γ
→G̃‖H

P2 H
Γ
→H̃

G‖H
Γ
→G‖H̃

P3 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

L G
Γ
→G̃

G[f]
f(Γ)
−→G̃[f]

Rs
G

Γ
→G̃, a,â 6∈A(Γ)

G rs a
Γ
→G̃ rs a

I1 G
Γ
→G̃

[G∗E∗F]
Γ
→[G̃∗E∗F]

I2 G
Γ
→G̃

[E∗G∗F]
Γ
→[E∗G̃∗F]

I3 G
Γ
→G̃

[E∗F∗G]
Γ
→[E∗F∗G̃]

Sy1 G
Γ
→G̃

G sy a
Γ
→G̃ sy a

Sy2
G sy a

Γ+{(α,ρ)}+{(β,χ)}
−→ G̃ sy a, a∈A(α), â∈A(β)

G sy a
Γ+{(α⊕aβ,ρ·χ)}

−→ G̃ sy a

In the rule Sy2 we multiply the probabilities of synchronized multiactions,
it corresponds to the event intersection. The rule has no analogue in PBC.

3.3 Transition systems

Now we define labeled probabilistic transition systems associated with dynamic
expressions and used to define their operational semantics. Note that expressions
can contain identical activities. To avoid technical difficulties, we can always
enumerate coinciding activities from left to right in the syntax of expressions.

Definition 5. Let G be a dynamic expression. Then [G]≃ = {H | G ≃ H} is
the equivalence class of G w.r.t. isomorphism (the isomorphism class).

The derivation set of a dynamic expression G, denoted by DR(G), is the

minimal set such that [G]≃ ∈ DR(G) or, if [H]≃ ∈ DR(G) and ∃Γ H
Γ
→ H̃,

then [H̃]≃ ∈ DR(G).

Let G be a dynamic expression and s ∈ DR(G). The set of all multisets of

activities executable in s is defined as Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

The probability that the activities from Γ ∈ Exec(s) try to happen in s is

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}

(1− χ).

In the case Γ = ∅ we define

PF (∅, s) =

{∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, otherwise.

The probability that the activities from Γ ∈ Exec(s) happen in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability that the execution of any activities changes s to s̃ is

PM(s, s̃) =
∑

{Γ |∃H∈s ∃H̃∈s̃ H
Γ
→H̃}

PT (Γ, s).

Definition 6. Let G be a dynamic expression. The (labeled probabilistic) tran-
sition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

– the set of states is SG = DR(G);
– the set of labels is LG ⊆ INSL

f × (0; 1];
– the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s ∈ DR(G),

∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

– the initial state is sG = [G]≃.

A transition (s, (Γ,P), s̃) ∈ TG will be written as s
Γ
→P s̃. It is interpreted as

follows: the probability to change the state s to s̃ in the result of executing Γ
is P . The step probabilities belong to the interval (0; 1]. The value 1 is the case
when we cannot leave a state, and thus there exists the only transition from the

state to itself. We write s
Γ
→ s̃ if ∃P s

Γ
→P s̃ and s→ s̃ if ∃Γ s

Γ
→ s̃.

Note that Γ could be the empty set, and its execution does not change
isomorphism classes. This corresponds to the application of inaction rules to
the expressions from the isomorphism classes. We have to keep track of such
executions called empty loops, because they have nonzero probabilities. This
follows from the definition of PF (∅, s) and the fact that multiaction probabilities
cannot be equal to 1 as they belong to the interval (0; 1).

Definition 7. Let G,G′ be dynamic expressions, TS(G) = (SG, LG, TG, sG),
TS(G′) = (SG′ , LG′ , TG′ , sG′) be their transition systems. A mapping β : SG →
SG′ is an isomorphism between TS(G) and TS(G′), denoted by β : TS(G) ≃

TS(G′), if β is a bijection such that β(sG) = sG′ and ∀s, s̃ ∈ SG ∀Γ s
Γ
→P

s̃ ⇔ β(s)
Γ
→P β(s̃). Two transition systems TS(G) and TS(G′) are isomorphic,

denoted by TS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Definition 8. Two dynamic expressions G and G′ are isomorphic w.r.t. tran-
sition systems, denoted by G =ts G

′, if TS(G) ≃ TS(G′).

Definition 9. Let G be a dynamic expression. The underlying discrete time
Markov chain (DTMC) of G, denoted by DTMC(G), has the state space DR(G)
and the transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

4 Denotational semantics

In this section, we construct the denotational semantics in terms of a subclass
of LDTSPNs called discrete time stochastic Petri boxes (dts-boxes).

Definition 10. A plain discrete time stochastic Petri box (plain dts-box) is a
tuple N = (PN , TN ,WN , ΛN), where

– PN and TN are finite sets of places and transitions, respectively, with
PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

– WN : (PN × TN) ∪ (TN × PN)→ IN is a function describing the weights of
arcs between places and transitions and vice versa;

– ΛN is the place and transition labeling function such that ΛN : PN → {e, i, x}
(it specifies entry, internal and exit places, respectively) and ΛN : TN → SL
(it associates activities with transitions).

Let t ∈ TN , U ∈ IN
TN

f . The precondition •t and the postcondition t• of t are the
multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The
precondition •U and the postcondition U• of U are the multisets of places defined
as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. We require that ∀t ∈ TN •t 6= ∅ 6= t•. In

addition, for the set of entry places of N defined as ◦N = {p ∈ PN | ΛN(p) = e}
and the set of exit places of N defined as N◦ = {p ∈ PN | ΛN(p) = x} we require
that ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A marked plain dts-box is a pair (N,MN), where N is a plain dts-box and
MN ∈ IN

PN

f is the initial marking. We denote N = (N, ◦N) and N = (N,N◦).
A marked plain dts-box (PN , TN ,WN , ΛN ,MN) can be interpreted as the LDT-
SPN (PN , TN ,WN , ΩN , LN ,MN), where ∀t ∈ TN ΩN (t) = Ω(ΛN (t)) (transition
probability function) and LN (t) = L(ΛN (t)) (transition labeling function). The
label τ of transitions of an LDTSPN corresponds to the multiaction part ∅ of
activities that label transitions of the corresponding dts-box. The behaviour of
marked dts-boxes follows from the firing rule of LDTSPNs.

To construct semantic function that associates a plain dts-box with ev-
ery static expression of dtsPBC, we need to propose the enumeration function
Enu : TN → IN∗ that associates the numbers with transitions of a plain dts-
box N in accordance with the enumeration of activities of the underlying static
expression. The structure of the plain dts-box corresponding to a static expres-
sion is constructed like in PBC, see [2]. I.e., we use simultaneous refinement and
relabeling meta-operator (net refinement) in addition to the operator dts-boxes
corresponding to the algebraic operations of dtsPBC and featuring transforma-
tional transition relabelings. In the definition of denotational semantics, we shall
use standard constructions used for PBC. For convenience, we only use slightly
different notation: ϕ,Θ and u stand for ρ (relabeling), Ω (operator box) and v
(transition name) from PBC setting, respectively.

The relabeling relations ϕ ⊆ INSL
f × SL are defined as follows:

– ϕid = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL} is the identity relabeling;
– ϕ[f] = {({(α, ρ)}, (f(α), ρ) | (α, ρ) ∈ SL};
– ϕrs a = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL, a, â 6∈ A(α)};
– ϕsy a is the least relabeling relation in ϕid such that if (Γ, {(α + {a}, ρ)} ∈
ϕsy a and (∆, {(β + {â}, χ)} ∈ ϕsy a then (Γ +∆, {(α+ β, ρ · χ)} ∈ ϕsy a.

Now we define the enumeration function Enu. Let Boxdts(E) =
(PE , TE,WE , ΩE , LE) be the plain dts-box of a static expression E, and EnuE
be the enumeration function for TE.

– Boxdts(E ◦ F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖}. Since we do not
introduce new transitions, we preserve the initial enumeration:

Enu(t) =

{
EnuE(t), t ∈ TE;
EnuF (t), t ∈ TF .

– Boxdts(E[f]) = Θ[f](Boxdts(E)). Since we only change the labels of some
multiactions by a bijection, we preserve the initial enumeration:
Enu(t) = EnuE(t), t ∈ TE .

– Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions labeled
with multiactions containing a or â, this does not change the enumeration
of the remaining transitions: Enu(t) = EnuE(t), t ∈ TE, a, â 6∈ LE(t).

– Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that ∀v, w ∈ TE with LE(v) =
α+{a}, LE(w) = β+{â}, the new transition t resulting from synchronization
of v and w has the label L(t) = α+β, probability Ω(t) = ΩE(v) ·ΩE(w) and
enumeration Enu(t) = EnuE(v) · EnuE(w). The enumeration is defined as

Enu(t) =

{
EnuE(t), t ∈ TE;
EnuE(v) ·EnuE(w), t results from synchronization of v, w.

– Boxdts([E ∗F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F), Boxdts(K)). Since we do
not introduce new transitions, we preserve the initial enumeration:

Enu(t) =




EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

Definition 11. Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr. The
denotational semantics of dtsPBC is a mapping Boxdts from RegStatExpr into
the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i ;
2. Boxdts(E ◦ F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖};
3. Boxdts(E[f]) = Θ[f](Boxdts(E));
4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};
5. Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F), Boxdts(K)).

For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) =
Boxdts(E). Note that any dynamic expression can be decomposed into overlined
or underlined static expressions or those without overlines and underlines, and
the definition of dts-boxes is compositional.

Isomorphism is a coincidence of systems up to renaming of their components
or states. Let ≃ denote isomorphism between transition systems or DTMCs and
reachability graphs. Note that in this case, the names of transitions of the dts-
box corresponding to a static expression could be identified with the enumerated
activities of the latter. For a dts-box N , we denote its reachability graph by
RG(N) and its underlying DTMC by DTMC(N).

Theorem 1. [6] For any static expression E

TS(E) ≃ RG(Boxdts(E)).

Proposition 1. [6] For any static expression E

DTMC(E) ≃ DTMC(Boxdts(E)).

5 Performance evaluation

Usually, stationary distribution is used for performance evaluation. Performance
indices are then calculated based on the steady state probabilities.

5.1 Empty loops

To identify processes with intuitively similar behavior and to apply standard con-
structions and techniques, we should abstract from infinite internal behaviour.

Let G be a dynamic expression. A transition system TS(G) can have loops
going from a state to itself which are labeled by the empty set and have non-zero

probability. Such empty loop s
∅
→P s appears when no activities occur at a time

step, and this happens with some positive probability. Obviously, in this case
the current state remains unchanged.

Let G be a dynamic expression and s ∈ DR(G). The probability to stay in
s due to k (k ≥ 1) empty loops is (PT (∅, s))k. The probability to execute in s a
non-empty multiset of activities Γ ∈ Exec(s) \ {∅} after possible empty loops is

PT ∗(Γ, s) = PT (Γ, s) ·
∞∑

k=0

(PT (∅, s))k =
PT (Γ, s)

1− PT (∅, s)
.

The value k = 0 in the summation above corresponds to the case when
no empty loops occur. Note that PT ∗(Γ, s) ≤ 1, hence, it is really a prob-
ability, since PT (∅, s) + PT (Γ, s) ≤ PT (∅, s) +

∑
∆∈Exec(s)\{∅} PT (∆, s) =∑

∆∈Exec(s) PT (∆, s) = 1. Moreover, PT ∗(Γ, s) defines a probability distribu-

tion, i.e., ∀s ∈ DR(G)
∑

Γ∈Exec(s)\{∅} PT
∗(Γ, s) = 1.

Definition 12. The (labeled probabilistic) transition system without empty

loops TS∗(G) has the state space DR(G) and the transitions s
Γ
→→P s̃, if s

Γ
→

s̃, Γ 6= ∅ and P = PT ∗(Γ, s).

We write s
Γ
→→ s̃ if ∃P s

Γ
→→P s̃ and s→→ s̃ if ∃Γ s

Γ
→→ s̃.

Definition 13. Two dynamic expressions G and G′ are isomorphic w.r.t. transi-
tion systems without empty loops, denoted by G =ts∗ G

′, if TS∗(G) ≃ TS∗(G′).

Definition 14. The underlying DTMC without empty loops DTMC∗(G) has
the state space DR(G) and the transitions s→→P s̃, if s→→ s̃, where P = PM∗(s, s̃)
and

PM∗(s, s̃) =
∑

{Γ |s
Γ
→→s̃}

PT ∗(Γ, s).

Let N = (PN , TN ,WN , ΩN , LN ,MN) be a LDTSPN and M, M̃ ∈ INPN

f ,

t ∈ TN , U ⊆ TN . Then the transition relations M
U
→→P M̃, M

U
→→ M̃, M →→ M̃,

M →→P M̃ , the reachability graph without empty loops RG∗(N) and the underly-
ing DTMC without empty loops DTMC∗(N) are defined like the corresponding
notions for dynamic expressions.

Theorem 2. For any static expression E

TS∗(E) ≃ RG∗(Boxdts(E)).

Proof. For the qualitative behaviour, we have the same isomorphism as in PBC.
The quantitative behaviour is the same, since the activities of an expression have
probability parts coinciding with the probabilities of the transitions belonging to
the corresponding dts-box and, both in stochastic processes specified by expres-
sions and dts-boxes conflicts are resolved via the same probability functions. ⊓⊔

Proposition 2. For any static expression E

DTMC∗(E) ≃ DTMC∗(Boxdts(E)).

Proof. By Theorem 2 and definitions of underlying DTMC for dynamic expres-
sions and LDTSPNs, since transition probabilities of the associated DTMCs are
the sums of those belonging to transition systems or reachability graphs. ⊓⊔

Theorem 2 guarantees that the net versions of algebraic equivalences could
be easily defined. For every equivalence on the transition system without empty
loops of a dynamic expression, a similarly defined analogue exists on the reach-
ability graph without empty loops of the corresponding dts-box.

5.2 Stationary behaviour

Let us describe stationary behaviour of infinite stochastic processes specified by
expressions of dtsPBC. We shall consider only formulas specifying stochastic
processes with an infinite behaviour, thus, the expressions with iteration op-
erator. We suppose that the underlined DTMC of each such an expression is
irreducible or contains at least only one irreducible subset of states to guarantee
an existence of the steady state.

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|)

of transition probability matrix (TPM) P∗ for DTMC∗(G) are defined as

P∗
ij =

{
PM∗(si, sj), si → sj ;
0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF)
ψ∗[k] = (ψ∗

1 [k], . . . , ψ
∗
n[k]) for DTMC∗(G) is the solution of the equation system

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗
1 [0], . . . , ψ

∗
n[0]) is the initial PMF defined as

ψ∗
i [0] =

{
1, si = [G]≃;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).

The steady state PMF ψ∗ = (ψ∗
1 , . . . , ψ

∗
n) for DTMC∗(G) is the solution of

the equation system

{
ψ∗(P∗ −E) = 0

ψ∗1T = 1
,

where E is the unitary matrix of size n and 0 is a vector with n values 0, 1
is that with n values 1.

When DTMC∗(G) has the steady state, we have ψ∗ = limk→∞ ψ∗[k].

5.3 Shared memory system

Consider a model of two processors accessing a common shared memory de-
scribed in [3] in the continuous time setting on GSPNs. We analyze this shared
memory system in the discrete time setting within dtsPBC where concurrent ex-
ecution of activities is possible. The model performs as follows. After activation
of the system (turning the computer on), two processors are active, and the com-
mon memory is available. Each processor can request an access to the memory.
When a processor starts an acquisition of the memory, another processor should
wait until the former one ends its memory operations, and the system returns
to the state with both active processors and the available common memory.

The meaning of actions from expressions specifying the system modules is as
follows. The action a corresponds to the system activation. The actions ri (1 ≤
i ≤ 2) represent the common memory request of processor i. The actions bi and ei
correspond to the beginning and the end, respectively, of the common memory
access of processor i. The other actions are used for communication purpose
only via synchronization, and we abstract from them later using restriction. The
expression Stop = ({c}, 12) rs c specifies the process that is only able to perform
empty loops with probability 1 and never terminates.

The static expression of the first processor is E1 = [({x1},
1
2) ∗ (({r1},

1
2);

({b1, y1},
1
2); ({e1, z1},

1
2)) ∗ Stop]. The static expression of the second processor

is E2 = [({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]. The static ex-

pression of the shared memory is E3 = [({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[]

(({ŷ2},
1
2); ({ẑ2},

1
2)))∗Stop]. The static expression of the shared memory system

with two processors is E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1
rs x2 rs y1 rs y2 rs z1 rs z2. DR(E) consists of 9 isomorphism classes which are
not presented here to avoid long and complex notation.

In Figure 1 the transition system without empty loops TS∗(E) is presented.

The TPM for DTMC∗(E) is P∗ =




0 1 0 0 0 0 0 0 0
0 0 1

3
1
3 0 1

3 0 0 0
0 0 0 0 1

5
3
5 0 1

5 0
0 0 0 0 0 3

5
1
5 0 1

5
0 1

5 0 1
5 0 0 0 3

5 0
0 0 0 0 0 0 0 1

2
1
2

0 1
5

1
5 0 0 0 0 0 3

5
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0



.

In Table 1 the values are presented, and in Figure 2 an alteration diagram
is depicted for the transient state probabilities ψ∗

i [k] (i ∈ {1, 2, 3, 5, 6, 8}) of the
shared memory system at the time moments k (0 ≤ k ≤ 10). It is sufficient to
consider the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the corre-
sponding values coincide for s3, s4 as well as for s5, s7 as well as for s8, s9.

�
�

�
�s1

�
�

�
�s2

�
�

�
�s6

�
�

�
�s3

�
�

�
�s5

�
�

�
�s8

�
�

�
�s4

�
�

�
�s7

�
�

�
�s9

?

?

?

?

?

?

TS∗(E)

������������������1

�
�
�
�
�
���

- �

� -

'

&

$

%- �

({a}, 1
8
),1

({r1}, 1
2
), 1

3
({r2}, 1

2
), 1

3

{({r1}, 1
2
),({r2}, 1

2
)}, 1

3

({b1}, 1
4
), 1

5
({b2}, 1

4
), 1

5

({r2}, 1
2
), 3

5
({r1}, 1

2
), 3

5
({r2}, 1

2
), 3

5
({r1}, 1

2
), 3

5

{({r1},
1
2
),

({e2}, 1
4
)}, 1

5

{({r2},
1
2
),

({e1}, 1
4
)}, 1

5

({e1}, 1
4
), 1

5
({e2}, 1

4
), 1

5

({b1}, 1
4
), 1

2
({b2}, 1

4
), 1

2

{({r2}, 1
2
),

({b1}, 1
4
)}, 1

5

{({r1}, 1
2
),

({b2}, 1
4
)}, 1

5

�
�

�
�

�
�

�
�

�
�

�
�

�
��

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU

!!!!!!!!!!!!!

�

aaaaaaaaaaaaa
J

J
J

J
J

J
J

JJ]

({e1}, 1
4
),1 ({e2}, 1

4
),1

@
@

@
@

@
@@I

PPPPPPPPPPPPPPPPPPi

Fig. 1. The transition system without empty loops of the shared memory system

Table 1. Transient state probabilities of the shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144

ψ∗
3 [k] 0 0 0.3333 0 0.2467 0.2489 0.0592 0.2484 0.2000 0.1071 0.2368 0.1794

ψ∗
5 [k] 0 0 0 0.0667 0 0.0493 0.0498 0.0118 0.0497 0.0400 0.0214 0.0359

ψ∗
6 [k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201

ψ∗
8 [k] 0 0 0 0.2333 0.2400 0.0493 0.2318 0.1910 0.0956 0.2221 0.1662 0.1675

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ8
*@kD

Ψ6
*@kD

Ψ5
*@kD

Ψ3
*@kD

Ψ2
*@kD

Ψ1
*@kD

Fig. 2. Transient state probabilities alteration diagram of the shared memory system

The steady state PMF ψ∗ for DTMC∗(E) is

ψ∗ =

(
0,

3

209
,
75

418
,
75

418
,
15

418
,
46

209
,
15

418
,
35

209
,
35

209

)
.

We can now calculate performance indices.

– The average recurrence time in the state s2, where no processor requests the
memory, called the average system run-through, is 1

ψ∗
2
= 209

3 = 69 2
3 .

– The common memory is available in the states s2, s3, s4, s6. The steady state
probability that the memory is available is ψ∗

2 +ψ∗
3 +ψ∗

4 +ψ∗
6 = 3

209 +
75
418 +

75
418 +

46
209 = 124

209 . Then the steady state probability that the memory is used
(i.e., not available) called the shared memory utilization is 1− 124

209 = 85
209 .

– The common memory request of the first processor ({r1},
1
2) is possible from

the states s2, s4, s7. The request probability in each of the states is a sum
of execution probabilities for all multisets of activities containing ({r1},

1
2).

Thus, the steady state probability of the shared memory request from the first
processor is ψ∗

2

∑
{Γ |({r1},

1
2)∈Γ} PT

∗(Γ, s2)+ψ
∗
4

∑
{Γ |({r1},

1
2)∈Γ} PT

∗(Γ, s4)+

ψ∗
7

∑
{Γ |({r1},

1
2)∈Γ} PT

∗(Γ, s7) = 3
209 ·(

1
3+

1
3)+

75
418 ·(

3
5+

1
5)+

15
418 ·(

3
5+

1
5)=

38
209 .

In Figure 3 the marked dts-boxes corresponding to the dynamic expressions
of two processors and shared memory are depicted, i.e., Ni = Boxdts(Ei) (1 ≤
i ≤ 3). In Figure 4 the marked dts-box corresponding to the dynamic expression
of the shared memory system is presented, i.e., N = Boxdts(E).

({e2,z2},
1
2
)

({b2,y2},
1
2
)

nt e

({r2},
1
2
)

n
?

?

n

?

nx

n

�

�

�

({e1,z1},
1
2
)

n
({b1,y1},

1
2
)

nx

({r1},
1
2
)

n
?

?

	

nt e

n

?

�

�

-

({x1},
1
2
)

?

?

?

?

?

?

({x2},
1
2
)

?

?

N1 N2

({a,x̂1,x̂2},
1
2
)

({ẑ1},
1
2
) ({ẑ2},

1
2
)

({ŷ1},
1
2
) ({ŷ2},

1
2
)

n?
��	 @@R

	
 ��

66

N3

nx

nt
?

e

n?
?

n?
?

Fig. 3. The marked dts-boxes of two processors and shared memory

({a},1
8
)

nt
?

e

N

({e1},
1
4
) ({e2},

1
4
)

n n
({b1},

1
4
)

nx

({b2},
1
4
)

({r1},
1
2
)

n
?

?

	

nt ent e

@@R ��	

n

?

({r2},
1
2
)

n
?

?

n

?

nxnx

n

n n��
 BBN

AAU ���

��
 BBN

AAU ���

?

�
�=

Z
Z~

��	 @@R

	

�

�

�

�

- �

��

66

Fig. 4. The marked dts-box of the shared memory system

6 Conclusion

In this paper, within dtsPBC with iteration, a method of performance evaluation
of concurrent stochastic systems was proposed based on steady state probabilities
analysis and applied to the shared memory system.

We plan to define and investigate stochastic equivalences of dtsPBC which
allow one to identify stochastic processes with similar behaviour that are differ-
entiated by too strict notion of the semantic equivalence. Moreover, we would like
to extend dtsPBC with recursion to enhance specification power of the calculus.

References

1. Best E., Devillers R., Hall J.G. The box calculus: a new causal algebra with

multi-label communication. Lect. Notes Comp. Sci. 609, p. 21–69, 1992.
2. Best E., Koutny M. A refined view of the box algebra. Lect. Notes Comp. Sci.

935, p. 1–20, 1995.
3. Marsan M.A., Balbo G., Conte G., Donatelli S., Franceschinis G. Mod-

elling with generalized stochastic Petri nets. John Wiley and Sons, 316 p., 1995.
4. Macià H.S., Valero V.R., Cazorla D.L., Cuartero F.G. Introducing the iter-

ation in sPBC. Lect. Notes Comp. Sci. 3235, p. 292–308, 2004.
5. Macià H.S., Valero V.R., de Frutos D.E. sPBC: a Markovian extension of finite

Petri box calculus. Proceedings of 9th IEEE International Workshop PNPM’01, p.
207–216, Aachen, Germany, IEEE Computer Society Press, 2001.

6. Tarasyuk I.V. Iteration in discrete time stochastic Petri box calculus. Bulletin of

the NCC, Comp. Sci., IIS Issue 24, p. 129–148, NCC Publisher, Novosibirsk, 2006.
7. Tarasyuk I.V. Stochastic Petri box calculus with discrete time. Fundamenta Infor-

maticae 76(1–2), p. 189–218, IOS Press, Amsterdam, The Netherlands, 2007.

