
An Investigation of Back-Forth and Place Bisimulation Equivalences ∗

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences,
6, Acad. Lavrentiev ave., Novosibirsk, 630090, Russia

Phone: +7 3832 35 03 60
Fax: +7 3832 32 34 94

E-mail: itar@iis.nsk.su

Abstract

The paper is devoted to the investigation of behavioural equivalences of concurrent systems modelled
by Petri nets. Back-forth and place bisimulation equivalences known from the literature are supplemented
by new ones, and their relationship with basic behavioural equivalences is examined for the general class
of nets as well as for their subclass of sequential nets (nets without concurrent transitions). In addition,
the preservation of all the equivalence notions by refinements is investigated to find out which of these
equivalences may be used for top-down design.

Key words & phrases: Petri nets, sequential nets, basic equivalences, back-forth bisimulations, place
bisimulations, refinement.

1 Introduction

The notion of equivalence is central in any theory of systems. It allows one to compare systems taking into
account particular aspects of their behaviour.

Petri nets [21] became a popular formal model for design of concurrent and distributed systems. One of the
main advantages of Petri nets is their ability for structural characterization of three fundamental features of
concurrent computations: causality, nondeterminism and concurrency.

In recent years, a wide range of semantic equivalences was proposed in concurrency theory. Some of them
were either directly defined or transferred from other formal models to the framework of Petri nets. The
following basic notions of behavioural equivalences in interleaving/true concurrency and linear time/branching
time semantics are known from the literature (some of them were introduced by the author in [26, 27] to obtain
the complete set of relations).

• Trace equivalences (they respect only protocols of behaviour of systems): interleaving (≡i) [13], step (≡s)
[22], partial word (≡pw) [11], pomset (≡pom) [24] and process (≡pr) [26].

• Usual bisimulation equivalences (they respect branching structure of behaviour of systems): interleaving
(↔i) [20], step (↔s) [16], partial word (↔pw) [28], pomset (↔pom) [7] and process (↔pr) [4].

• ST-bisimulation equivalences (they respect the duration or maximality of events in behaviour of systems):
interleaving (↔iST) [12], partial word (↔pwST) [28], pomset (↔pomST) [28] and process (↔prST) [26].

• History preserving bisimulation equivalences (they respect the “history” of behaviour of systems): pomset
(↔pomh) [25] and process (↔prh) [26].

• Conflict preserving equivalences (they completely respect conflicts of events in systems): multi event
structure (≡mes) [26] and occurrence (≡occ) [15].

• Isomorphism (') (i.e. coincidence of systems up to renaming of their components).

These basic equivalences may be represented as dots on coordinate plane in Figure 1. When moving along X
axis, simulation of causality grows in corresponding semantics. Moving along Y axis increases modelling of
nondeterminism.

∗The work is supported by Volkswagen Fund, grant I/70 564 and Russian Fund for Basic Research, grant 96-01-01655

1

-u u u u u

u u u u u

u u u u u

uu

Y

causality

history
preserving

bisimulation

ST-
bisimulation

usual
bisimulation

trace

nondeter-
minism

interleaving step partial
word

pomset process

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

u

u
'

uisomorphism

6

u u uconflict
preserving

≡mes ≡occ

X

Figure 1: Classification of basic equivalences

2

Recently, two important groups of equivalence relations were introduced: back-forth and place bisimulation
equivalences.

Back-forth bisimulation equivalences are based on the idea that bisimulation relation do not only require
systems to simulate each other behaviour in the forward direction (as usually) but also when going back in
history. They are closely connected with equivalences of logics with past modalities.

These equivalence notions were initially introduced in [14] in the framework of transition systems. It was
shown that back-forth variant (↔ibif) of interleaving bisimulation equivalence coincide with ordinary ↔i.

In [8, 9, 10] the new variants of step (↔sbsf), partial word (↔pwbpwf) and pomset (↔pombpomf) back-forth
bisimulation equivalences were defined in the framework of prime event structures. The equivalence notions were
compared with usual, ST- and history preserving bisimulation equivalences. It was shown that ↔pomST implies
↔sbsf . The coincidence of ↔pombpomf and ↔pomh was proved, giving rise to a new, logical characterization of
the latter. A stability of back-forth relations over refinement operator (allowing to consider concurrent systems
on lower abstraction levels) was examined. Only ↔pombpomf was demonstrated to be preserved by refinements.

In [23] the new idea of differentiating the kinds of back and forth simulations appeared (following this idea,
it is possible, for example, to define step back pomset forth bisimulation equivalence (↔sbpomf)). The set of all
possible back-forth equivalence notions was proposed in interleaving, step, partial word and pomset semantics.
Two new notions which do not coincide with known ones were obtained: step back partial word forth (↔sbpwf)
and step back pomset forth (↔sbpomf) bisimulation equivalences. It was proved that the former is not preserved
by refinements, and the question was addressed about the latter.

Place bisimulation equivalences were initially introduced in [1] on the basis of definition from [17, 18, 19].
Place bisimulations are relations over places instead of markings or processes. The relation on markings is
obtained using the “lifting” of relation on places. The main application of place bisimulation equivalences is
effective behaviour preserving reduction technique for Petri nets based on them.

In [1, 2] interleaving place bisimulation equivalence (∼i) was proposed. In these papers also strict inter-
leaving place bisimulation equivalence (≈i) was defined, by imposing the additional requirement stating that
corresponding transitions of nets must be related by bisimulation. The question about possibility to introduce
history preserving place bisimulation equivalence was addressed.

In [4, 5] step (∼s), partial word (∼pw), pomset (∼pom), process (∼pr) place bisimulation equivalences
and their strict analogues (≈s, ≈pw, ≈pom, ≈pr) were proposed. The coincidence of ∼i, ∼s and ∼pw was
established. Also it was shown that all strict bisimulation equivalences coincide with ∼pr. Therefore, we have
only three different equivalences: ∼i, ∼pom and ∼pr. In addition, in these papers the polynomial algorithm
of net reduction was proposed which preserves the behaviour of a net (i.e. the initial and reduced nets are
bisimulation equivalent).

To choose most appropriate behavioural viewpoint on systems to be modelled, it is very important to have a
complete set of equivalence notions in all semantics and understand their interrelations. This branch of research
is usually called comparative concurrency semantics. To clarify the nature of equivalences and evaluate how they
respect a concurrency, it is actual to consider also correlation of these notions on concurrency-free (sequential)
nets. Treating equivalences for preservation by refinements allows one to decide which of them may be used for
top-down design.

Working in the framework of Petri nets, in this paper we extend the set of back-forth equivalences from [23]
by process ones and obtain as a result two new notions which cannot be reduced to the known relations: step
back process forth (↔sbprf) and pomset back process forth (↔pombprf) bisimulation equivalences.

Moreother, we compare all back-forth and place equivalences with the set of basic behavioural notions from
[26, 27] giving rise to the better understanding the nature of the new (and old) notions and complete the results
of [10, 23, 4, 5]. In particular, we prove that ∼pr implies ↔prh and answer the question from [1]: ∼pr is strict
enough to preserve the “histories” of a net functioning. Hence, it is no sense to define history preserving place
bisimulation equivalence.

Since ST- and history preserving bisimulation equivalences are consequences of ∼pr, the algorithm of net
reduction from [4, 5], based on this equivalence, preserves the timed traces [12] of the initial net (since ST-
bisimulation equivalences are real time consistent [12]) and “histories” of its functionings (since history preserving
bisimulation equivalences respect the “past” of processes).

In [6], SM-refinement operator for Petri nets was proposed, which “replaces” their transitions by SM-nets,
a special subclass of state machine nets. We treat all the considered equivalence notions for preservation by
SM-refinements and establish that among back-forth relations only ↔pombpomf and ↔prbprf are preserved by
SM-refinements (they coincide with corresponding history presrving ones for which this result holds). So, we
obtained the negative answer to the question from [23]: neither ↔sbpomf nor even ↔pombprf is preserved by
refinements. We prove that ∼pr is the only place bisimulation equivalence which is preserved by SM-refinements.

In addition, we investigate the interrelations of all the equivalence notions on sequential nets (subclass
of Petri nets corresponding to transition systems where no two transitions can be fired concurrently). The

3

merging of most of the equivalence relations in interleaving – pomset semantics is demonstrated. We prove that
on sequential nets back-forth equivalences coincide with usual forth ones.

The rest of the paper is organized as follows. Basic definitions are introduced in Section 2. In Section 3
back-forth bisimulation equivalences are proposed and compared with basic equivalence relations. In Section 4
place bisimulation equivalences are defined and their interrelations with equivalence notions considered before
are investigated. In Section 5 we establish which equivalence relations are preserved by SM-refinements. Section
6 is devoted to comparison of the equivalences on sequential nets. Concluding Section 7 contains a review of
the main results obtained and some directions of further research.

2 Basic definitions

In this section we give some basic definitions used further.

2.1 Multisets

Definition 2.1 Let X be some set. A finite multiset M over X is a mapping M : X → N (N is a set of
natural numbers) s.t. |{x ∈ X | M(x) > 0}| < ∞.

M(X) denotes the set of all finite multisets over X. When ∀x ∈ X M(x) ≤ 1, M is a proper set. Cardinality
of multiset M is defined in such a way: |M | =

∑
x∈X M(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′, if

∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}.

2.2 Labelled nets

Let Act = {a, b, . . .} be a set of action names or labels.

Definition 2.2 A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {t, u, . . .} is a set of transitions;

• FN : (PN ×TN)∪ (TN ×PN) → N is the flow relation with weights (N denotes a set of natural numbers);

• lN : TN → Act is a labelling of transitions with action names.

Given labelled nets N = 〈PN , TN , FN , lN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉. A mapping β : PN ∪ TN →
PN ′ ∪ TN ′ is an isomorphism between N and N ′, denoted by β : N ' N ′, if:

1. β is a bijection s.t. β(PN) = PN ′ and β(TN) = TN ′ ;

2. ∀p ∈ PN ∀t ∈ TN FN (p, t) = FN ′(β(p), β(t)) and FN (t, p) = FN ′(β(t), β(p));

3. ∀t ∈ TN lN (t) = lN ′(β(t)).

Labelled nets N and N ′ are isomorphic, denoted by N ' N ′, if ∃β : N ' N ′.
Given a labelled net N and some transition t ∈ TN , the precondition and postcondition of t, denoted by •t and

t• respectively, are the multisets defined in such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous
definitions are introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). Let ◦N = {p ∈ PN | •p = ∅} is
a set of initial (input) places of N and N◦ = {p ∈ PN | p• = ∅} is a set of final (output) places of N .

A labelled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN s.t. t•i−1 ∩ •ti 6= ∅ (1 ≤ i ≤ n) and
t0 = tn. A labelled net N is ordinary if ∀p ∈ PN

•p and p• are proper sets (not multisets).
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN∪TN . Let us introduce the following

notions.

• x ≺N y ⇔ xF+
N y, where F+

N is a transitive closure of FN (strict causal dependence relation);

• ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x);

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

4

2.3 Marked nets

A marking of a labelled net N is a multiset M ∈M(PN).

Definition 2.3 A marked net (net) is a tuple N = 〈PN , TN , FN , lN ,MN 〉, where 〈PN , TN , FN , lN 〉 is a labelled
net and MN ∈M(PN) is the initial marking.

Given nets N = 〈PN , TN , FN , lN , MN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ , MN ′〉. A mapping β : PN ∪ TN →
PN ′ ∪ TN ′ is an isomorphism between N and N ′, denoted by β : N ' N ′, if:

1. β : 〈PN , TN , FN , lN 〉 ' 〈PN ′ , TN ′ , FN ′ , lN ′〉;
2. ∀p ∈ PN MN (p) = MN ′(β(p)).

Nets N and N ′ are isomorphic, denoted by N ' N ′, if ∃β : N ' N ′.
Let M ∈ M(PN) be a marking of a net N . A transition t ∈ TN is fireable in M , if •t ⊆ M . If t is fireable

in M , its firing yields a new marking M̃ = M − •t + t•, denoted by M
t→ M̃ . A marking M of a net N is

reachable, if M = MN or there exists a reachable marking M̂ of N s.t. M̂
t→ M for some t ∈ TN . Mark(N)

denotes a set of all reachable markings of a net N .

2.4 Partially ordered sets

Definition 2.4 A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉, where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X;

• l : X → Act is a labelling function.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′, denoted by β : ρ ³ ρ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ ³ ρ′, if ∃β : ρ ³ ρ′.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted by β : ρ v ρ′, if:

1. β : ρ ³ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ v ρ′, if ∃β : ρ v ρ′.
A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted by β : ρ ' ρ′, if β : ρ v ρ′ and

β−1 : ρ′ v ρ. Lposets ρ and ρ′ are isomorphic, denoted by ρ ' ρ′, if ∃β : ρ ' ρ′.

Definition 2.5 Partially ordered multiset (pomset) is an isomorphism class of lposets.

2.5 Event structures

Definition 2.6 A labelled event structure (LES) is a quadruple ξ = 〈X,≺, #, l〉, where:

• X = {x, y, . . .} is a set of events;

• ≺⊆ X ×X is a strict partial order, a causal dependence relation, which satisfies to the principle of finite
causes: ∀x ∈ X | ↓ x| < ∞;

• # ⊆ X × X is an irreflexive symmetrical conflict relation, which satisfies to the principle of conflict
heredity: ∀x, y, z ∈ X x#y ≺ z ⇒ x#z;

• l : X → Act is a labelling function.

Let ξ = 〈X,≺, #, l〉 and ξ′ = 〈X ′,≺′, #′, l′〉 be LES’s. A mapping β : X → X ′ is an isomorphism between
ξ and ξ′, denoted by β : ξ ' ξ′, if:

5

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x));

3. ∀x, y ∈ X x ≺ y ⇔ β(x) ≺′ β(y);

4. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

LES’s ξ and ξ′ are isomorphic, denoted by ξ ' ξ′, if ∃β : ξ ' ξ′.

Definition 2.7 A multi-event structure (MES) is an isomorphism class of LES’s.

2.6 C-processes

Definition 2.8 A causal net is an acyclic ordinary labelled net C = 〈PC , TC , FC , lC〉, s.t.:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;

2. ∀x ∈ PC ∪ TC | ↓C x| < ∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C = 〈PC , TC , FC , lC〉 one can define lposet ρC = 〈TC ,≺N

∩(TC × TC), lC〉.
The fundamental property of causal nets is [4]: if C is a causal net, then there exists a sequence of transition

fireings ◦C = L0
v1→ · · · vn→ Ln = C◦ s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n

i=0Li and TC = {v1, . . . , vn}. Such a
sequence is called a full execution of C.

Definition 2.9 Given a net N and a causal net C. A mapping ϕ : PC ∪ TC → PN ∪ TN is an embedding of
C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈M(PN) and ϕ(TC) ∈M(TN), i.e. sorts are preserved;

2. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected;

3. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if ◦C v1→ · · · vn→ C◦ is a full execution of C, then M = ϕ(◦C)
ϕ(v1)−→

· · · ϕ(vn)−→ ϕ(C◦) = M̃ is a sequence of transition fireings in N .

Definition 2.10 A fireable in marking M C-process (process) of a net N is a pair π = (C,ϕ), where C is a
causal net and ϕ : C → N is an embedding s.t. M = ϕ(◦C). A fireable in MN process is a process of N .

We write Π(N,M) for a set of all fireable in marking M processes of a net N and Π(N) for the set of all
processes of a net N . The initial process of a net N is πN = (CN , ϕN) ∈ Π(N), s.t. TCN

= ∅. If π ∈ Π(N, M),
then firing of this process transforms a marking M into M̃ = M−ϕ(◦C)+ϕ(C◦) = ϕ(C◦), denoted by M

π→ M̃ .
Let π = (C, ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)). A process π is a prefix of a process π̃, if

TC ⊆ T
C̃

is a left-closed set in C̃. A process π̂ is a suffix of a process π̃, if T
Ĉ

= T
C̃
\ TC . In such a case a

process π̃ is an extension of π by process π̂, and π̂ is an extending process for π, denoted by π
π̂→ π̃. We write

π → π̃, if π
π̂→ π̃ for some π̂.

A process π̃ is an extension of a process π by one transition, denoted by π
v→ π̃, if π

π̂→ π̃ and T
Ĉ

= {v}.
A process π̃ is an extension of a process π by sequence of transitions, denoted by π

σ→ π̃, if ∃πi ∈ Π(N) (1 ≤
i ≤ n) π

v1→ π1
v2→ . . .

vn→ πn = π̃ and σ = v1 · · · vn.

3 Back-forth bisimulation equivalences

In this section we tranfer the definitions of back-forth bisimulation equivalences from event structures [23] into
the framework of Petri nets and supplement them by the new notions induced by process semantics. In addition,
we investigate the interrelations of all these equivalences to understand which of them are coincide, and compare
the remaining ones with basic behavioural equivalences.

6

3.1 Sequential runs

In accordance to the idea of back-forth bisimulations, it is possible to move back from a state but only “along”
the path which represents the execution of a system which brought to this state. Therefore in [14] in the
framework of transition systems back-forth bisimulation relations connected sequences of transitions, and in
[8, 9, 10, 23] in the framework of event structures they connected sequences of events called “histories” or
“runs”. Such sequences contain the information about the order in which transitions (events) happen, whose
execution brought to the present state. On event structures these sequences also define configurations containing
the information about causal dependencies of events.

In the framework of Petri nets, obviously, it is not sufficient to consider only sequences of C-net transitions
of their processes, since, depending of embedding function, different sequences may correspond to one process
and, vece versa, one sequence may correspond to different processes. Therefore, to respect the information
about both causal dependencies between the transitions and the order in which they have occured, we introduce
a notion of sequential run as a pair consisting of process and a sequence of its C-net transitions, which extended
the initial process to the present one.

Definition 3.1 A sequential run of a net N is a pair (π, σ), where:

• a process π ∈ Π(N) contains the information about causal dependencies of transitions which brought to
this state;

• a sequence σ ∈ T ∗C s.t. πN
σ→ π, contains the information about the order in which the transitions occur

which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).
The initial sequential run of a net N is a pair (πN , ε), where ε is an empty sequence. Let us denote by |σ|

a length of a sequence σ.
Let (π, σ), (π̃, σ̃) ∈ Runs(N). We write (π, σ) π̂→ (π̃, σ̃), if π

π̂→ π̃, ∃σ̂ ∈ T ∗
C̃

π
σ̂→ π̃ and σ̃ = σσ̂. We write

(π, σ) → (π̃, σ̃), if (π, σ) π̂→ (π̃, σ̃) for some π̂.
Let (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and σ = v1 · · · vn, σ′ = v′1 · · · v′n. Let us define a mapping

βσ′
σ : TC → TC′ as follows: βσ′

σ = {(vi, v
′
i) | 1 ≤ i ≤ n}. Let βε

ε = ∅.
Let (π, σ) ∈ Runs(N) and σ = v1 · · · vn, πN

v1→ . . .
vi→ πi (1 ≤ i ≤ n).

Let us introduce the following notations:

• π(0) = πN ,

π(i) = πi (1 ≤ i ≤ n);

• σ(0) = ε,

σ(i) = v1 · · · vi (1 ≤ i ≤ n).

Let (π, σ) ∈ Runs(N). An ST-process of a sequential run (π, σ) is defined as follows: ST (π, σ) = (π, π(j)),
where j = min{i | (π, π(i)) ∈ ST −Π(N)}. We denote Past(π, σ) = π(j).

3.2 Definitions of back-forth bisimulation equivalences

Now we are ready to present definitions of back-forth bisimulation equivalences.

Definition 3.2 Let N and N ′ be some nets. A relation R ⊆ Runs(N) × Runs(N ′) is a ?-back ??-forth
bisimulation between N and N ′, ?, ?? ∈{interleaving, step, partial word, pomset, process}, denoted by R :
N↔?b??fN ′, ?, ?? ∈ {i, s, pw, pom, pr}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R

• (back)

(π̃, σ̃) π̂→ (π, σ),

(a) |T
Ĉ
| = 1, if ? = i;

(b) ≺
Ĉ

= ∅, if ? = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′) π̂′→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

7

(a) ρ
Ĉ′
v ρ

Ĉ
, if ? = pw;

(b) ρ
Ĉ
' ρ

Ĉ′ , if ? ∈ {i, s, pom};
(c) Ĉ ' Ĉ ′, if ? = pr;

• (forth)

(π, σ) π̂→ (π̃, σ̃),

(a) |T
Ĉ
| = 1, if ?? = i;

(b) ≺
Ĉ

= ∅, if ?? = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′) π̂′→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) ρ
Ĉ′
v ρ

Ĉ
, if ?? = pw;

(b) ρ
Ĉ
' ρ

Ĉ′ , if ?? ∈ {i, s, pom};
(c) Ĉ ' Ĉ ′, if ?? = pr.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ?-back ??-forth bisimulation equivalent, ?, ?? ∈ {interleaving, step, partial word,
pomset, process}, denoted by N↔?b??fN ′, if ∃R : N↔?b??fN ′, ?, ?? ∈ {i, s, pw, pom, pr}.

Let us note that back extensions of sequential runs are deterministic, i.e. for (π, σ) ∈ Runs(N) there exists
only one (π̃, σ̃) ∈ Runs(N) s.t. (π̃, σ̃) π̂→ (π, σ) and |σ̃| = i (0 ≤ i ≤ |σ|). In such a case (π̃, σ̃) = (π(i), σ(i)).

3.3 Interrelations of back-forth bisimulation equivalences

Let us consider interrelations of back-forth bisimulation equivalences.

Proposition 3.1 Let ? ∈ {i, s, pw, pom, pr}. For nets N and N ′ N↔pwb?fN ′ ⇔ N↔pomb?fN ′.

Proof. (⇐) Isomorphism of lposets is homomorphism.
(⇒) Let R : N↔pwb?fN ′. Let us prove R : N↔pomb?fN ′.

1. Obviously, ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ R.

• (back)

Let (π̃, σ̃) π̂→ (π, σ). Then ∃(π̃′, σ̃′) : (π̃′, σ̃′) π̂′→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and ρ
Ĉ′
v ρ

Ĉ
.

Due to the symmetry of a bisimulation, the back extension (π̃′, σ̃′) π̂′→ (π′, σ′) must be imitated by
the extension (π̃, σ̃) π̂→ (π, σ), and not by any another one, due to determinism of back extensions.
Then ρ

Ĉ
v ρ

Ĉ′
. Consequently, ρ

Ĉ
' ρ

Ĉ′
.

• (forth)
Obviously.

3. As item 2, but the roles of N and N ′ are reversed. ut

Proposition 3.2 Let ? ∈ {i, s, pw, pom, pr}. For nets N and N ′ N↔?bifN ′ ⇔ N↔?b?fN ′.

Proof. (⇐) Isomorphism of causal nets, isomorphism and homomorphism of lposets of causal nets, isomorphism
of lposets of causal nets with empty precedence relation imply label preserving bijection of lposets of causal
nets.

(⇒) Let R : N↔?bifN ′. Let us prove R : N↔?b?fN ′.

1. Obviously, ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ R.

• (back)
Obviously.

8

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

?????

↔sbif ↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

?????

↔pwbif ↔pwbsf ↔pwbpwf ↔pwbpomf ↔pwbprf

?????

↔pombif ↔pombsf ↔pombpwf ↔pombpomf ↔pombprf

?????

↔prbif ↔prbsf ↔prbpwf ↔prbpomf ↔prbprf¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

Figure 2: Merging of back-forth bisimulation equivalences

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

????

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

??

↔pombpomf ↔pombprf

?

↔prbprf

¾

¾

¾

¾

¾

¾

¾

¾

Figure 3: Interrelations of back-forth bisimulation equivalences

• (forth)

Let (π, σ) π̂→ (π̃, σ̃). The extension by π̂ corresponds to the extension by some sequence of transitions.

Then ∃(π̃′, σ̃′) : (π′, σ′) π̂′→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R, where the extension by π̂′ corresponds to
the extension by sequence of transitions which imitates the corresponding one in the net N .

Due to the symmetry of a bisimulation, the back extension (π, σ) π̂→ (π̃, σ̃) must be imitated by the

extension (π′, σ′) π̂′→ (π̃′, σ̃′), and not by any another one, due to determinism of back extensions.
Then we have:

(a) ρ
Ĉ′ v ρ

Ĉ
, if ? = pw;

(b) ρ
Ĉ
' ρ

Ĉ′
, if ? ∈ {i, s, pom};

(c) Ĉ ' Ĉ ′, if ? = pr.

3. As item 2, but the roles of N and N ′ are reversed. ut
In Figure 2 dashed lines embrace coinciding back-forth bisimulation equivalences.
Hence, interrelations of back-forth bisimulation equivalences may be represented by graph in Figure 3.

3.4 Interrelations of back-forth bisimulation equivalences with basic equivalences

Let us consider interrelations of back-forth bisimulation equivalences with basic equivalences.

Proposition 3.3 Let ? ∈ {i, s, pw, pom, pr}. For nets N and N ′ N↔ib?fN ′ ⇔ N↔?N
′.

Proof. (⇐) Let R : N↔?N
′. Let us define a relation S as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈

Runs(N), (π′, σ′) ∈ Runs(N ′), |σ| = |σ′|, lC(σ) = lC′(σ′), ∀i (0 ≤ i ≤ |σ|) (π(i), π′(i)) ∈ R}. Obviously,
S : N↔ib?fN ′.

(⇒) Let R : N↔ib?fN ′. Let us define a relation S as follows: S = {(π, π′) | ((π, σ), (π′, σ′)) ∈ R}.
Obviously, S : N↔?N

′. ut

Proposition 3.4 Let ? ∈ {pom, pr}. For nets N and N ′ N↔?b?fN ′ ⇔ N↔?hN ′.

9

Proof. (⇐) Let R : N↔?hN ′. Let us define a relation S as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N),
(π′, σ′) ∈ Runs(N ′), |σ| = |σ′|, ∀i (0 ≤ i ≤ |σ|) (π(i), π′(i), βσ′(i)

σ(i)) ∈ R}. Let us prove S : N↔?b?fN ′.

1. ((πN , ε), (πN ′ , ε)) ∈ S, since βε
ε = ∅ and (πN , πN ′ , ∅) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ S.

• (back)

Let (π̃, σ̃) π̂→ (π, σ). By definition of S, ∃(π̃′, σ̃′) s.t. |σ̃| = |σ̃′|, (π̃′, σ̃′) π̂′→ (π′, σ′) and
((π̃, σ̃), (π̃′, σ̃′)) ∈ S.
Since by definition of S, (π, π′, βσ′

σ) ∈ R and R : N↔?hN ′, we have:

– βσ′
σ : ρC ' ρC′ , if ? = pom;

– C ' C ′, if ? = pr.

Consequently,

– ρ
Ĉ
' ρ

Ĉ′
, if ? ∈ {pom, pr};

– Ĉ ' Ĉ ′, if ? = pr.

• (forth)

Let (π, σ) π̂→ (π̃, σv1 · · · vn). Then by definition of S, (π, π′, βσ′
σ) ∈ R and ∃πi (1 ≤ i ≤ n) : π

v1→
π1

v2→ . . .
vn→ πn = π̃.

Since R : N↔?hN ′, ∃v′i, π′i : π′
v′1→ π′1

v′2→ . . .
v′n→ π′n = π̃′ s.t. (πi, π

′
i, β

σ′v′1···v′i
σv1···vi) ∈ R (1 ≤ i ≤ n).

Consequently, for some π̂′ (π′, σ′) π̂′→ (π̃′, σ′v′1 · · · v′n) and ((π̃, σv1 · · · vn), (π̃′, σ′v′1 · · · v′n)) ∈ S.

Since by definition of S, (π̃, π̃′, βσ′v′1···v′n
σv1···vn) ∈ R and R : N↔?hN ′, we have:

– β
σ′v′1···v′n
σv1···vn : ρ

C̃
' ρ

C̃′
, if ? = pom;

– C̃ ' C̃ ′, if ? = pr.

Consequently,

– ρ
Ĉ
' ρ

Ĉ′
, if ? ∈ {pom, pr};

– Ĉ ' Ĉ ′, if ? = pr.

3. As item 2, but the roles of N and N ′ are reversed.

(⇒) Let R : N↔?b?fN ′. Let us define a relation S as follows: S = {(π, π′, βσ′
σ) | ((π, σ), (π′, σ′)) ∈ R and

• βσ′
σ : ρC ' ρC′ , if ? ∈ {pom, pr};

• C ' C ′, if ? = pr.

Let us prove S : N↔?hN ′.

1. (πN , πN ′ , ∅) ∈ S since βε
ε = ∅ and ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let (π, π′, βσ′
σ) ∈ S. Then by definition of S:

• βσ′
σ : ρC ' ρC′ , if ? ∈ {pom, pr};

• C ' C ′, if ? = pr.

3. Let (π, π′, βσ′
σ) ∈ S and π

v→ π̃. Then by definition of S, ((π, σ), (π′, σ′)) ∈ R and (π, σ) → (π̃, σv). Since

R : N↔?b?fN ′, ∃v′, π̃′ : (π′, σ′) → (π̃′, σ′v′) and ((π̃, σv), (π̃′, σ′v′)) ∈ R. We have π′ v′→ π̃′.

Let us prove:

• βσ′v′
σv : ρ

C̃
' ρ

C̃′ , if ? ∈ {pom, pr};
• C̃ ' C̃ ′, if ? = pr.

10

Let βσ′v′
σv be not isomorphism. If σ = v1 · · · vn, σ′ = v′1 · · · v′n, let us define j = max{i | ((vi ≺C̃

v)∧(v′i 6≺C̃′

v′) ∨ ((vi 6≺C̃
v) ∧ (v′i ≺C̃′

v′))}. If π(i − 1) π̂i→ π̃ and π′(i − 1)
π̂′i→ π̃′ (1 ≤ i ≤ n), then ρ

Ĉj
6' ρ

Ĉ′
j

and

ρ
Ĉj+1

' ρ
Ĉ′

j+1
. Consequently, the back extension (π(j − 1), σ(j − 1))

π̂j→ (π̃, σv) cannot be imitated by

the back extension (π′(j − 1), σ′(j − 1))
π̂′j→ (π̃′, σ′v′) such that ρ

Ĉj
' ρ

Ĉ′
j

. We have contradiction with

R : N↔?b?fN ′. Therefore βσ′v′
σv : ρ

C̃
' ρ

C̃′
and (π̃, π̃′, βσ′v′

σv) ∈ S. Hence, we proved for the case ? = pom.

Let us prove for the case ? = pr. Since ((π̃, σv), (π̃′, σ′v′)) ∈ R and R : N↔?b?fN ′, then the back

extension (πN , ε) π̃→ (π̃, σv) is imitated by the back extension (πN ′ , ε) π̃′→ (π̃′, σ′v′), where C̃ ' C̃ ′.

4. As item 3, but the roles of N and N ′ are reversed. ut

Proposition 3.5 Let ? ∈ {pom, pr}. For nets N and N ′ N↔?ST N ′ ⇒ N↔sb?fN ′.

Proof. Let R : N↔?ST N ′. Let us define a relation S as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N),
(π′, σ′) ∈ Runs(N ′), |σ| = |σ′|, ∀i (0 ≤ i ≤ |σ|) (ST (π(i), σ(i)), ST (π′(i), σ′(i)), βσ′(i)

σ(i)) ∈ R}. Let us prove
S : N↔sb?fN ′.

1. ((πN , ε), (πN ′ , ε)) ∈ S, since ST (πN , ε) = (πN , πN), ST (πN ′ , ε) = (πN ′ , πN ′), βε
ε = ∅ and ((πN , πN),

(πN ′ , πN ′), ∅) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ S.

• (back)

Let (π̃, σ̃) π̂→ (π, σ) and ≺
Ĉ

= ∅. By definition of S, ∃(π̃′, σ̃′) such that |σ̃| = |σ̃′|, (π̃′, σ̃′) π̂′→ (π′, σ′)
and ((π̃, σ̃), (π̃′, σ̃′)) ∈ S.

Let ST (π, σ) = (π, π̄), ST (π′, σ′) = (π′, π̄′). Then ((π, π̄), (π′, π̄′), βσ′
σ) ∈ R. If π̄

πW→ π and π̄′
π′W→ π′,

then ≺CW
= ∅ and βσ′

σ |TCW
: ρCW

' ρC′
W

. Since π̄ → π̃
π̂→ π, π̄′ → π̃′ π̂′→ π′, then ≺

Ĉ′
= ∅ and

ρ
Ĉ
' ρ

Ĉ′
.

• (forth)

Let (π, σ) π̂→ (π̃, σv1 · · · vn). Then ∃πi (1 ≤ i ≤ n) : (π, σ) → (π1, σv1) → . . . → (πn, σv1 · · · vn) =
(π̃, σv1 · · · vn). Let ST (πi, σv1 · · · vi) = (πi, π̄i) (1 ≤ i ≤ n), ST (π, σ) = (π, π̄), ST (π′, σ′) = (π′, π̄′).
Then ((π, π̄), (π′, π̄′), βσ′

σ) ∈ R. Since R : N↔?ST N ′, ∃v′i, (π′i, π̄′i) : (π′, π̄′) → (π′1, π̄
′
1) → . . . →

(π′n, π̄′n) = (π̃′, ˜̄π′n), where (π′, σ′) → (π′1, σ
′v′1) → . . . → (π′n, σ′v′1 · · · v′n) = (π̃′, σ′v′1 · · · v′n) and

((πi, π̄i), (π′i, π̄
′
i), β

σ′v′1···v′i
σv1···vi) ∈ R (1 ≤ i ≤ n). Consequently, for some π̂′ (π′, σ′) π̂′→ (π̃′, σ′v′1 · · · v′n).

Let us prove π̄′i = Past(π′i, σ
′v′1 · · · v′i) (1 ≤ i ≤ n). Let π̄i−1

π̌i→ πi, π̄′i−1

π̌′i→ π′i (1 ≤ i ≤ n). Since

R : N↔?ST N ′, we have β
σ′v′1···v′n
σv1···vn |TČi

: ρČi
' ρČ′

i
and β

σ′v′1···v′n
σv1···vn (TCi

) = T
C
′
i

(1 ≤ i ≤ n). Then the
required equality follows easily.
Let us note that we also have ((π̃, σv1 · · · vn), (π̃′, σ′v′1 · · · v′n)) ∈ S.

Let π̄
π̌→ π̃, π̄′ π̌′→ π̃′. Since R : N↔?ST N ′, we have:

– β
σ′v′1···v′n
σv1···vn |TČ

: ρČ ' ρČ′ , if ? ∈ {pom, pr};
– Č ' Č ′, if ? = pr.

Since π̄ → π
π̂→ π̃, π̄′ → π′ π̂′→ π̃′, then

– ρ
Ĉ
' ρ

Ĉ′
, if ? = pom;

– Ĉ ' Ĉ ′, if ? = pr.

3. As item 2, but the roles of N and N ′ are reversed. ut

Theorem 3.1 Let ↔,↔↔∈ {≡,↔,'} and ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pomh, prh, mes,
occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}. For nets N and N ′ N ↔? N ′ ⇒ N ↔↔?? N ′ iff in the graph in
Figure 4 there exists a directed path from ↔? to ↔↔??.

Proof. (⇐) A consequence of Theorem 1 from [26, 27] and the following substantiations.

11

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

'

?

?????

≡mes ≡occ

?

?
¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

Figure 4: Interrelations of back-forth bisimulation equivalences with basic equivalences

• The implication ↔sbpwf → ↔sbsf is a consequence of the fact that homomorphism is isomorphism of
lposets with empty precedence relation.

• The implication ↔sbpomf →↔sbpwf is a consequence of the fact that isomorphism of lposets is homomor-
phism.

• The implication ↔sbprf →↔sbpomf is a consequence of the fact that lposets of isomorphic causal nets are
also isomorphic.

• The implications↔sb?f →↔?, ? ∈ {s, pw, pom, pr} is proved with constructing on the basis of the relation
R : N↔τ

sb?fN ′ the new relation S : N↔τ
?N ′, defined as follows: S = {(π, π′) | ∃σ, σ′ ((π, σ), (π′, σ′))

∈ R.

• The implications ↔?ST →↔sb?f , ? ∈ {pom, pr} are consequences of Proposition 3.5.

• The implication ↔pombprf →↔sbprf follows from the definition of isomorphism of lposets.

• The implication ↔prh →↔pombprf is a consequence of the facts that by Proposition 3.4 ↔prh = ↔prbprf

and lposets of isomorphic causal nets are also isomorphic.

• The implication ↔pombprf → ↔pomh is a consequence of the facts that by Proposition 3.4 ↔pomh =
↔pombpomf and lposets of isomorphic causal nets are also isomorphic.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 4 is proved by the following examples.

• In Figure 5(a) N↔iN
′, but N 6≡s N ′, since only in the net N ′ actions a and b cannot happen concurrently.

• In Figure 5(c) N↔iST N ′, but N 6≡pw N ′, since for the pomset corresponding to the net N there is no
even less sequential pomset in N ′.

• In Figure 5(b) N↔pwhN ′, but N 6≡pom N ′, since only in the net N ′ action b can depend on action a.

• In Figure 5(d) N ≡mes N ′, but N 6≡pr N ′, since N ′ is a causal net which is not isomorphic to the causal
net N (because of additional output place).

• In Figure 5(e) N ≡pr N ′, but N↔/ iN
′, since only in the net N ′ action a can happen so that action b can

not happen afterwards.

• In Figure 6(a) N↔prN
′, but N↔/ iST N ′, since only in the net N ′ action a can start so that no action b

can begin working until finishing of a.

• In Figure 6(b) N↔prST N ′, but N↔/ pomhN ′, since only in the net N ′ after action a action b can happen
so that action c must depend on a.

12

• In Figure 6(c) N↔prhN ′, but N 6≡mes N ′, since only the MES corresponding to the net N ′ has two
conflict actions a.

• In Figure 6(d) N ≡occ N ′, but N 6' N ′, since unfireable transitions of the nets N and N ′ are labelled by
different actions (a and b).

• In Figure 5(c) N↔sbsfN ′, but N 6≡pw N ′.

• In Figure 7(a) N↔sbpwfN ′, but N 6≡pom N ′, since only in the net N ′ action c can depend on actions a
and b.

• In Figure 7(b) N↔sbprfN ′, but N↔/ iST N ′, since only in the net N ′ action a can start so that:

1. until finishing of a the sequence of actions bc cannot happen, and

2. immediately after finishing of a action c cannot happen.

• In Figure 7(c) N↔pombprfN ′, but N↔/ prST N ′, since only in the net N ′ the process with action a can
start so that it can be extended by process with action b in the only way (i.e. so that extended process
be unique).

• In Figure 5(b) N↔pwST N ′, but N↔/ sbsfN ′, since only in the net N ′ the sequence of actions ab can
happen so that b must depend on a.

• In Figure 6(a) N↔prN
′, but N↔/ sbsfN ′, since only in the net N ′ action a can happen so that action b

must depend on a. ut

13

a b

±°
²¯

±°
²¯u u

? ?

(a)

N

↔i

b a

±°
²¯

±°
²¯

a b

±°
²¯u

?

?

?

?

¢
¢®

A
AU

N ′

(e)

N

b

±°
²¯

a a

±°
²¯u
¢

¢®
A
AU

? ?

?
±°
²¯

≡pr

↔/ i

b

±°
²¯

a

±°
²¯u N ′

?

?

?

(b)

ba

±°
²¯

±°
²¯u uN

? ?↔pwST

6≡pom

↔/ sbsf

a b

±°
²¯

±°
²¯u u

? ?

N ′

(d)

N

a

±°
²¯

±°
²¯u

?

?

a

±°
²¯u

?

N ′

6≡pr

(c)

b d

±°
²¯

±°
²¯

a c

±°
²¯

±°
²¯u u

?

?

?

?

?

?

N

↔iST

↔sbsf

6≡pw

b b d d

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a c

±°
²¯

±°
²¯

±°
²¯u u uN ′

?

?

?

?

?

?

Z
Z~

½
½½=

? ?
½½=½

½=
Z

Z~
Z

Z~

±°
²¯

b

?

?

≡mes

¢
¢

¢
¢

¢
¢

¢®

A
A
A
A
A
A
AU

¤
¤
¤
¤
¤
¤
¤¤²

6≡s

Figure 5: Examples of basic equivalences

14

b b

±°
²¯

±°
²¯

±°
²¯u u

a ±°
²¯u

±°
²¯u

?

?

?

¾

?
½

½=
½

½=

(a) N

↔pr

↔/ iST

↔/ sbsf

b b

±°
²¯

±°
²¯

±°
²¯u u

a ±°
²¯u

±°
²¯u a ±°

²¯
- -

?

?

? ?
½½= ½

½=

N ′

b c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u

a

±°
²¯u(b) N

?

½
½½=

PPPPPq

JĴ ¢¢® SSw ¶¶/ JĴ ¢¢®

↔prST

↔/ pomh

b c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u

a

±°
²¯uN ′

?

½
½½=

PPPPPq

JĴ ¢¢® SSw ¶¶/ JĴ ¢¢®
b

JĴ ££°

(c)

a a

±°
²¯u

À JĴ

N ′↔prh

6≡mes

6

HHHHY

a

±°
²¯

N u
?

c

a

±°
²¯

±°
²¯

?

?

?

(d) N

c

b

±°
²¯

±°
²¯

?

?

?

N ′

≡occ

6'u u

Figure 6: Examples of basic equivalences (continued)

15

b b

±°
²¯

±°
²¯

±°
²¯

a

±°
²¯u

u

?

@@R À SSw

N

↔/ prST

b b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a a

±°
²¯u

u
¡¡ª ?

@@R ?

N ′(c)

6≡mes
¶¶/

?

Z
Z~

½
½½=

´
´́+SSw

¶¶/

©©©©¼

©©©¼
↔pombprf

c

a a

c

b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u u

u

u

?

?

?

½
½½=

Z
ZZ~¾ -

½
½½=

½
½>

c

b

±°
²¯

±°
²¯u

?

?

?

±°
²¯

±°
²¯

±°
²¯

u

u

u
?

½
½½=

Z
ZZ~¾ -

±°
²¯

±°
²¯

±°
²¯

u

?

»»»»»»»9
XXXXXXXz

Z
ZZ~

ZZ}

PPPPPPq
³³³³³³)

@@R ¡¡ª

↔sbprf

↔/ iST

a

±°
²¯

±°
²¯u

?

?

c

a

±°
²¯

±°
²¯u

?

?

?

b

±°
²¯

±°
²¯u

?

?

c

b

±°
²¯

±°
²¯u

?

?

?
±°
²¯

±°
²¯u u- -

PPPPPPq
³³³³³³)

±°
²¯u ±°

²¯u ±°
²¯u ±°

²¯u

a

b ±°
²¯

±°
²¯

-

-

-

-

c
?

6

J
J

J
J

J
J

JĴ

À

¨

§-

¥

¦¾

¨

§-

¥

¦¾

¤ ¡?
² ¯

§ ¦6± °½ ¼
N N ′

(b)

c

a

±°
²¯

±°
²¯u

?

?

?

N(a)

±°
²¯u

½
½½=

Z
ZZ~

c

b

±°
²¯

±°
²¯u

?

?

?
c

a

±°
²¯

±°
²¯u

?

?

?

N ′

c

±°
²¯u

½
½½=

Z
ZZ~

c

b

±°
²¯

±°
²¯u

?

?

?

Z
ZZ~

½
½½=

↔sbpwf

↔pwST

6≡pom

º ·
B
B
B
B
B
B
BBN

£
£

£
£

£
£

££°
@

@R
¡

¡ª

Figure 7: Examples of back-forth bisimulation equivalences

Let us note that example in Figure 7(b) is a modification of a weaker example in Figure 8, where
N↔sbpomfN ′, but N↔/ iST N ′. The operation of a net sumation “+” is defined, for example, in [12]. It
“multiplies” the input places of nets with preservation of all their outgoing arrows and unates remaining parts
of the initial nets.

4 Place bisimulation equivalences

In this section place bisimulation equivalences from [4] are compared with back-forth bisimulation and basic
equivalences.

4.1 Definitions of place bisimulation equivalences

Usual bisimulations may be defined on the basis of markings (instead of processes) by replacing in processes by
corresponding markings in the definitions.

Definition 4.1 Let N and N ′ be some nets. A relation R ⊆ M(N) ×M(N ′) is a ?-bisimulation between N
and N ′, ? ∈ {interleaving, step, partial word, pomset, process}, denoted by R : N↔?N

′, ? ∈ {i, s, pw, pom, pr},
if:

16

a

c

b

?

±°
²¯

±°
²¯?

@@R ¡¡ª
c

a

±°
²¯

±°
²¯u

?

?

?
c

b

±°
²¯

±°
²¯u

?

?

?

±°
²¯uN

Z
ZZ~

½
½½=

©©©©¼
HHHHj ↔sbpomf

6≡pr

↔/ iST

c

a

±°
²¯

±°
²¯u

?

?

?

N ′

b

±°
²¯u

?
a

±°
²¯u

?

c

b

±°
²¯

±°
²¯u

?

?

?

a

c

b

?

±°
²¯

±°
²¯?

@@R ¡¡ª

±°
²¯u

?
±°
²¯u

?

Figure 8: More clear, but weaker example of back-forth bisimulation equivalences

1. (MN , MN ′) ∈ R.

2. (M,M ′) ∈ R, M
π̂→ M̃ ,

(a) |T
Ĉ
| = 1, if ? = i;

(b) ≺
Ĉ

= ∅, if ? = s;

⇒ ∃M̃ ′ : M ′ π̂′→ M̃ ′, (M̃, M̃ ′) ∈ R and

(a) ρ
Ĉ′
v ρ

Ĉ
, if ? = pw;

(b) ρ
Ĉ
' ρ

Ĉ′
, if ? ∈ {i, s, pom};

(c) Ĉ ' Ĉ ′, if ? = pr.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ?-bisimulation equivalent, ? ∈ {interleaving, step, partial word, pomset, process},
denoted by N↔?N

′, if ∃R : N↔?N
′, ? ∈ {i, s, pw, pom, pr}.

Place bisimulations are relations between places instead of markings. A relation on markings is obtained
with use of “lifting” of bisimulation relation on places.

Let us note that in the definitions of bisimulations based on markings any markings may be used, not
reachable only. As mentioned [4, 5], this does not change bisimulation equivalences.

Definition 4.2 Let for nets N and N ′ R ⊆ PN × PN ′ be a relation between their places. A lifting of R is a
relation R ⊆M(PN)×M(PN ′), defined as follows:

(M, M ′) ∈ R ⇔
{ ∃{(p1, p

′
1), . . . , (pn, p′n)} ∈ M(R) :

M = {p1, . . . pn}, M ′ = {p′1, . . . p′n}
Definition 4.3 Let N and N ′ be some nets. A relation R ⊆ PN × PN ′ is a ?-place bisimulation between N
and N ′, ? ∈{interleaving, step, partial word, pomset, process}, denoted by R : N ∼? N ′, if R : N↔?N

′, ? ∈
{i, s, pw, pom, pr}.

Two nets N and N ′ are ?-place bisimulation equivalent, ? ∈{interleaving, step, partial word, pomset,
process}, denoted by N ∼? N ′, if ∃R : N ∼? N ′, ? ∈ {i, s, pw, pom, pr}.

Strict place bisimulation equivalences are defined using the additional requirement stating that corresponding
transitions of nets must be (as well as makings) related by R. This relation is defined on transitions as follows.

Definition 4.4 Let for nets N and N ′ t ∈ TN , t′ ∈ TN ′ . Then

(t, t′) ∈ R ⇔

(•t, •t′) ∈ R ∧
(t•, t′•) ∈ R ∧
lN (t) = lN ′(t′)

Definition 4.5 Let N and N ′ be some nets. A relation R ⊆ PN×PN ′ is a strict ?-place bisimulation between N
and N ′, ? ∈{interleaving, step, partial word, pomset, process}, denoted by R : N ≈? N ′, ? ∈ {i, s, pw, pom, pr},
if:

17

∼i ∼s ∼pw ∼pom ∼pr¾¾¾ ¾

≈i ≈s ≈pw ≈pom ≈pr¾¾¾ ¾

? ? ? ? ?

Figure 9: Merging of place bisimulation equivalences
∼i ∼pom ∼pr¾¾

Figure 10: Interrelations of place bisimulation equivalences

1. R : N↔?N
′.

2. In the definition of ?-bisimulation in item 2 (and in item 3 symmetrically) the new requirement is added:
∀v ∈ T

Ĉ
(ϕ̂(v), ϕ̂′(β(v))) ∈ R, where:

(a) β : ρ
Ĉ′ v ρ

Ĉ
, if ? = pw;

(b) β : ρ
Ĉ
' ρ

Ĉ′
, if ? ∈ {i, s, pom};

(c) β : Ĉ ' Ĉ ′, if ? = pr.

Two nets N and N ′ are strict ?-place bisimulation equivalent, ? ∈{interleaving, step, partial word, pomset,
process}, denoted by N ≈? N ′, if ∃R : N ≈? N ′, ? ∈ {i, s, pw, pom, pr}.

An important property of place bisimulations is additivity. Let for nets N and N ′ R : N ∼? N ′. Then
(M1,M

′
1) ∈ R and (M2,M

′
2) ∈ R implies ((M1 + M2), (M ′

1 + M ′
2)) ∈ R. In particular, if we add n tokens in

each of the places p ∈ PN and p′ ∈ PN ′ s.t. (p, p′) ∈ R, then the nets obtained as a result of such a changing
of the initial markings, must be also place bisimulation equivalent.

4.2 Interrelations of place bisimulation equivalences

Let us consider interrelations of place bisimulation equivalences.

Proposition 4.1 [4, 5] For nets N and N ′:

1. N ∼i N ′ ⇔ N ∼pw N ′;

2. N ∼pr N ′ ⇔ N ≈i N ′ ⇔ N ≈pr N ′.

In Figure 9 dashed lines embrace coinciding place bisimulation equivalences.
Hence, interrelations of place bisimulation equivalences may be represented by graph in Figure 10.

4.3 Interrelations of place bisimulation equivalences with basic equivalences and
back-forth bisimulation equivalences

Let us consider interrelations of place bisimulation equivalences with basic equivalences and back-forth bisimu-
lation equivalences.

Proposition 4.2 For nets N and N ′ N ∼pr N ′ ⇒ N↔prhN ′.

Proof. By Proposition 4.1, ∃R : N ≈pr N ′. Then R : N↔prN
′ and transitions of N and N ′ are related by

R. Let us define a relation S as follows: S = {(π, π′, β) | π = (C, ϕ) ∈ Π(N), π′ = (C,ϕ′) ∈ Π(N ′), β =
idTC

, ∀r ∈ PC (ϕ(r), ϕ′(r)) ∈ R, ∀v ∈ TC (ϕ(v), ϕ′(v)) ∈ R}. Let us prove S : N↔prhN ′.

1. Obviously, (πN , πN ′ , ∅) ∈ S.

2. By definition of S, (π, π′, β) ∈ S ⇒ β : ρC ' ρC′ and C ' C ′;

18

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

'
?

≡mes ≡occ

? ?

¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

? ? ? ? ?

∼i ∼pom

∼pr

¾

¾

ª¾¾¡
¡µ

¡
¡µ

Figure 11: Interrelations of place bisimulation equivalences with basic equivalences and back-forth bisimulation
equivalences

3. Let (π, π′, β) ∈ S, π = (C, ϕ), π′ = (C, ϕ′) and π
v→ π̃, π̃ = (C̃, ϕ̃).

Let us consider the occurrence sequence ϕ̃(•v)
ϕ̃(v)→ ϕ̃(v•) in N . By definition of S, (ϕ(•v), ϕ′(•v)) ∈ R.

Since ϕ(•v) = ϕ̃(•v), we have (ϕ̃(•v), ϕ′(•v)) ∈ R.

Since R : N ≈pr N ′, we have ∃u′, M̃ ′ : ϕ′(•v) u′→ M̃ ′, (ϕ̃(v), u′) ∈ R and (ϕ̃(v•), M̃ ′) ∈ R.

Let v• = {r1, . . . , rn}, M̃ ′ = {p′1, . . . , p′n}, ∀i (1 ≤ i ≤ n) (ϕ̃(ri), p′i) ∈ R. Let us define mapping ϕ̃′ as
follows:

(a) ϕ̃′|(PC∪TC) = ϕ′;

(b) ϕ̃′(v) = u′;

(c) ∀i (1 ≤ i ≤ n) ϕ̃′(ri) = p′i.

Since by definition of ϕ̃′ we have u′ = ϕ̃′(v), M̃ ′ = ϕ̃′(v•), ϕ′(•v) = ϕ̃′(•v), then ϕ̃′(•v)
ϕ̃′(v)→ ϕ̃′(v•) is an

occurrence sequence in N ′ and (ϕ̃(v), ϕ̃′(v)) ∈ R, (ϕ̃(v•), ϕ̃′(v•)) ∈ R.

Consequently, ϕ̃(•v)− •ϕ̃(v) = ϕ̃(v•)− ϕ̃(v)• and ϕ̃′(•v)− •ϕ̃′(v) = ϕ̃′(v•)− ϕ̃′(v)•. Because of additivity
of place bisimulations and since ϕ̃ is an embedding, we have (∅, ϕ̃′(•v) − •ϕ̃′(v)) ∈ R and (∅, ϕ̃′(v•) −
ϕ̃′(v)•) ∈ R. Consequently, ϕ̃′(•v) = •ϕ̃′(v) and ϕ̃′(v•) = ϕ̃′(v)•. Therefore ϕ̃′ is an embedding and
π̃′ = (C̃, ϕ̃′) ∈ Π(N ′).

In addition, we have π′ v→ π̃′. Let us define β̃ = idT
C̃

. Then β̃|TC
= β. It is also easy to check that

(π̃, π̃′, β̃) ∈ S.

4. As item 3, but the roles of N and N ′ are reversed. ut

Theorem 4.1 Let ↔,↔↔∈ {≡,↔,∼,'}, ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pomh, prh,mes,
occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}. For nets N and N ′ N ↔? N ′ ⇒ N ↔↔?? N ′ iff in the graph in
Figure 11 there exists a directed path from ↔? to ↔↔??.

Proof. (⇐) A consequence of Theorem 3.1 and the following substantiations.

• The implications ∼?→↔?, ? ∈ {i, pom, pr} are valid by the definitions.

• The implication ∼pr→↔prh is valid by Proposition 4.2.

• The implication ∼pom→∼i is valid by the definitions.

19

c

a b

±°
²¯

±°
²¯

±°
²¯

u
À JĴ

? ?

ZZ~ ½½=

≡occ

6∼i

a b

±°
²¯

±°
²¯

±°
²¯

u
À JĴ

? ?

N N ′

(c)

a b

±°
²¯

±°
²¯u u

? ?

N

(a)

∼i

6≡pom

↔/ iST

↔/ sbsf

b a a

b

±°
²¯

±°
²¯

±°
²¯

u u
À JĴÀ JĴ

?

?

N ′

a b

±°
²¯

±°
²¯u u

? ?

N

(b)

∼pom

6≡pr

↔/ iST

↔/ sbsf

b a a

b

±°
²?̄

?

N ′ ±°
²¯

±°
²¯u u

b

±°
²¯

±°
²¯

±°
²¯?

?

?

? ?
Q

QQs

Z
ZZ~ ?

¤
¤
¤
¤
¤
¤
¤¤²

»» XX
»» XX

ÃÃ `̀

ÃÃ
¢¢

""ÃÃÃÃ((

"" XX»» ÃÃ `̀

©©

hh

cc
cc

cc
QQ

cc
cc

cc
QQ

PP hh

´
´́+

Figure 12: Examples of place bisimulation equivalences

• The implication ∼pr→∼pom is valid since lposets of isomorphic nets are also isomorphic.

• The implication '→∼pr is obvious.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 11 is proved by Theorem 3.1 and the
following examples. Let us note that dashed lines in Figure 12 connect places related by place bisimulation.

• In Figure 12(a) N ∼i N ′, but N 6≡pom N ′, since only in the net N ′ action b can depend on a.

• In Figure 12(b) N ∼pom N ′, but N 6≡pr N ′, since only in the net N ′ the transition with label a has two
input (and two output) places.

• In Figure 12(c) N ≡occ N ′, but N 6∼i N ′, since any place bisimulation must relate input places of the nets
N and N ′. But if we add one additional token in each of these places, then only in N ′ the action c can
happen.

• In Figure 12(b) N ∼pom N ′, but N↔/ iST N ′, since only in the net N ′ action a can start so that no b can
begin working until finishing of a.

• In Figure 6(c) N ∼pr N ′, but N 6≡mes N ′, since only the MES corresponding to the net N ′ has two
conflict actions a.

• In Figure 12(b) N ∼pom N ′, but N↔/ sbsfN ′, since only in the net N ′ action a can happen so that b must
depend on a. ut

5 Preservation of equivalence notions by refinements

In this section we treat the considered equivalence notions for preservation by transition refinements. We use
SM-refinement, i.e. refinement by a special subclass of state-machine nets introduced in [6].

Definition 5.1 An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

1. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and one output place;

20

2. ∃pin, pout ∈ PD s.t. pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net D has an unique input and an
unique output place.

3. MD = {pin}, i.e. at the beginning there is an unique token in pin.

Definition 5.2 Let N = 〈PN , TN , FN , lN ,MN 〉 be some net, a ∈ lN (TN) and D = 〈PD, TD, FD, lD,MD〉 be
SM-net. An SM-refinement, denoted by ref(N, a, D), is (up to isomorphism) a net N = 〈PN , TN , FN , lN ,MN 〉,
where:

• PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

• TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

• FN (x̄, ȳ) =

FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

• lN (ū) =
{

lN (ū), ū ∈ TN \ l−1
N (a);

lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1
N (a);

• MN (p) =
{

MN (p), p ∈ PN ;
0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equivalent after applying any refinement
operator to them accordingly.

The following proposition demonstrates that some considered in the paper equivalence notions are not
preserved by SM-refinements.

Proposition 5.1 Let ? ∈ {i, s}, ?? ∈ {i, s, pw, pom, pr, sbsf, sbpwf, sbpomf, sbprf, pombprf}, ? ? ? ∈ {i, pom}
Then the equivalences ≡?, ↔??, ∼??? are not preserved by SM-refinements.

Proof.

• In Figure 13 N↔sN
′, but ref(N, c, D) 6≡i ref(N ′, c,D), since only in ref(N ′, c, D) the sequence of

actions c1abc2 can happen. Consequently, the equivalences between ≡i and ↔s are not preserved by
SM-refinements.

• In Figure 14 N↔sbprfN ′, but ref(N, a, D)↔/ iref(N ′, a, D), since only in the net ref(N ′, a,D) action a1

can happen so that immediately after it the following holds:

1. the sequence of actions bc cannot happen, and

2. the sequence of actions a2c cannot happen.

Consequently, the equivalences between ↔i and ↔sbprf are not preserved by SM-refinements.

• In Figure 15 N↔pombprfN ′, but ref(N, a, D)↔/ prref(N ′, a, D), since only in the net ref(N ′, a, D) action
a1 can happen so that after it the sequence of actions a2b can happen which has only one corresponding
process (the transition labelled by b connects with transition with label a2 in the only way). Consequently,
equivalences between ↔pr and ↔pombprf are not preserved by SM-refinements.

• In Figure 16 N ∼pom N ′, but ref(N, a,D)↔/ iref(N ′, a, D), since only in the net ref(N ′, a, D) after
action a1 action b cannot happen. Consequently, equivalences between ↔i and ∼pom are not preserved
by SM-refinements.

In Figure 17 lines embrace equivalences which are not preserved by SM-refinements due to examples in
Figures 13–16. ut

21

b c2

b c2 c1

a a c1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u

? ?
Q

QQs
´

´́+

½
½½=

Z
ZZ~

½
½½=

? ? ?

? ?

? ?

b b c2 c1 c2

b c2

a a a c1 c1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u u

?

? ?

? ? ? ? ?

½
½½=

Z
ZZ~

½
½½=? ?

? ? ? ?
PPPq

³³³)
XXXXXXXXz

»»»»»»»»9

6≡i

ref(N, c, D) ref(N ′, c, D)

b b c

a a c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u

??
Q

QQs
½

½=

N

b b b c

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a a a c c

±°
²¯

±°
²¯

±°
²¯

±°
²¯u u u u

? ? ? ?
PPPq

³³³)
XXXXXXXXz

»»»»»»»»9

N ′

↔s

6≡pw

↔/ iST

↔/ sbsf

c2

c1

±°
²¯

±°
²¯

±°
²¯u

?

?

?

?

D

Q
QQs

´
´́+

PPPPPq
³³³³³)

Q
QQs

´
´́+

PPPPPq
³³³³³)

±°
²¯

±°
²¯

©©©©¼
HHHHj

JĴ À

SSw ¶¶/

JĴ

¶¶/

@@R

©©©©¼
HHHHj

JĴ À

SSw ¶¶/

JĴÀ

±°
²¯

±°
²¯

""

Q
QQs

""

?

À

SSw SSw

Q
QQs

Figure 13: The equivalences between ≡i and ↔s are not preserved by SM-refinements

22

c

a a

c

b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u u

u

u

?

?

?

½
½½=

Z
ZZ~¾ -

½
½½=

½
½>

±°
²¯

±°
²¯

±°
²¯

u

u

u
?

½
½½=

Z
ZZ~¾ -

±°
²¯

±°
²¯

±°
²¯

u

?

»»»»»»»9
XXXXXXXz

Z
ZZ~

ZZ}

PPPPPPq
³³³³³³)

@@R ¡¡ª

↔sbprf

↔/ iST

±°
²?̄

c

±°
²?̄

?
±°
²?̄

c

±°
²?̄

?
±°
²¯

±°
²¯u u- -

±°
²¯

±°
²¯

-

-

c
?

6

N N ′

c

b

±°
²¯

±°
²¯u

?

?

?
a2

a1

±°
²¯

±°
²¯u

?

?

?

D

±°
²?̄

c

a1 a1

c

b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

u u

u

u

?

?

?

½
½½=

Z
ZZ~¾ -

½
½½=

±°
²¯

±°
²¯

±°
²¯

u

u

u

½
½½=

Z
ZZ~¾ -

±°
²¯

±°
²¯

±°
²¯

u

?

»»»»»»»9
XXXXXXXz

Z
ZZ~

PPPPPPq
³³³³³³)

@@R ¡¡ª

≡pr

↔/ i

±°
²¯

?

c

±°
²¯

?

?
±°
²¯

c

±°
²¯

?
±°
²¯

±°
²¯u u- -

±°
²¯

±°
²¯

-

-

c

6

ref(N, a, D) ref(N ′, a,D)

c

b

±°
²¯

±°
²¯u

?

?

a2

±°
²¯

?

?

a2

±°
²¯

?

?

a2

±°
²¯

?

?

a2

±°
²¯

?

?

£
£
£
£
£
£
£±

? B
B

B
B

B
B
BM

?

? ?

±°
²¯

a2
-

6

-

a1

±°
²¯u

?
a1

±°
²¯u

?
b

±°
²¯u

?
b

±°
²¯u

?
PPPPPPq

³³³³³³)

±°
²¯u ±°

²¯u ±°
²¯u ±°

²¯u

a1

b-

-

J
J

J
J

J
J

JĴ

À

¨

§-

¥

¦¾

¨

§-

¥

¦¾

¤ ¡?
² ¯

§ ¦6± °½ ¼
º ·
B
B
B
B
B
B
BBN

£
£

£
£

£
£

££°
@

@R
¡

¡ª

a

±°
²¯u

?
a

±°
²¯u

?
b

±°
²¯u

?
b

±°
²¯u

?
PPPPPPq

³³³³³³)

±°
²¯u ±°

²¯u ±°
²¯u ±°

²¯u

a

b-

-

J
J

J
J

J
J

JĴ

À

¨

§-

¥

¦¾

¨

§-

¥

¦¾

¤ ¡?
² ¯

§ ¦6± °½ ¼
º ·
B
B
B
B
B
B
BBN

£
£

£
£

£
£

££°
@

@R
¡

¡ª

Figure 14: The equivalences between ↔i and ↔sbprf are not preserved by SM-refinements

23

b b

±°
²¯

±°
²¯

±°
²¯

a

±°
²¯u

u

?

@@R À SSw

N

↔/ prST

b b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a a

±°
²¯u

u
¡¡ª ?

@@R ?

N ′

6≡mes
¶¶/

?

Z
Z~

½
½½=

´
´́+SSw

¶¶/

©©©©¼

©©©¼
↔pombprf

±°
²¯
a1

±°
²¯u

?

D

?

±°
²¯
a2

?

?

b b

±°
²¯

±°
²¯

±°
²¯

a1

±°
²¯u

u
@@R À SSw

ref(N, a, D)

↔/ pr

b b

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

a1 a1

±°
²¯u

u
¡¡ª ?

@@R ?

ref(N ′, a, D)

6≡mes

¶¶/

?

Z
Z~

½
½½=

´
´́+SSw

¶¶/

©©©©¼

©©©¼

≡pr

↔pomh

±°
²?̄

a2

?
±°
²?̄

a2

?
±°
²?̄

a2

?

?

Figure 15: The equivalences between ↔pr and ↔pombprf are not preserved by SM-refinements

Let us consider which equivalences are preserved by SM-refinements.

Proposition 5.2 [26, 27] Let ? ∈ {pw, pom, pr,mes, occ} and ?? ∈ {iST, pwST, pomST, prST, pomh, prh}.
For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩Act and SM-net D the following holds:

1. N ≡? N ′ ⇒ ref(N, a, D) ≡? ref(N ′, a, D);

2. N↔??N
′ ⇒ ref(N, a, D)↔??ref(N ′, a,D);

3. N ' N ′ ⇒ ref(N, a, D) ' ref(N ′, a,D).

Proposition 5.3 For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩Act and SM-net D the following holds: N ∼pr

N ′ ⇒ ref(N, a, D) ∼pr ref(N ′, a,D).

Proof. Let N = ref(N, a,D), N
′

= ref(N ′, a, D) and R : N ∼pr N ′. By Proposition 4.1, R : N ≈i N ′.
It is enough to prove N ≈i N

′
. Let us define a relation S as follows: S = R ∪ {(〈p, u〉, 〈p, u′〉) | p ∈ PD \

{pin, pout}, (u, u′) ∈ R}. Let us prove S : N ≈i N
′
.

1. (MN , M
N
′) ∈ S, since (MN , MN ′) ∈ R.

2. Let (M, M ′) ∈ S and M
ū→ M̃ . Two cases are possible:

(a) ū = u ∈ TN ;

(b) ū = 〈t, u〉, t ∈ TD, u ∈ TN , lN (u) = a.

Let us consider the case (b), since the case (a) is obvious. Let •t = {p}, t• = {q}. Then we have:

•〈t, u〉 =
{ •u, t ∈ p•in;
〈p, u〉, otherwise.

24

a b

±°
²¯

±°
²¯u u

? ?

N

∼pom

6≡pr

↔/ iST

↔/ sbsf

b a a

b

±°
²?̄

?

N ′

±°
²¯

±°
²¯u u

b

±°
²¯

±°
²¯

±°
²¯?

?

?

? ?
Q

QQs

Z
ZZ~ ?

¤
¤
¤
¤
¤
¤
¤¤²

»» XX
ÃÃ `̀

ÃÃ
¢¢

""ÃÃÃÃ((

ÃÃ `̀

©©

cc
cc

cc
QQ

PP hh

´
´́+

a1

±°
²¯

?

a2

±°
²¯

±°
²¯

?

?

?

D

a1 b

±°
²¯

±°
²¯u u

? ?

a2

±°
²¯

±°
²¯

?

?

?

b

a2 a2

b

±°
²?̄

?

±°
²¯

±°
²¯u u

±°
²¯

? ?
Q

QQs

Z
ZZ~ ?

´
´́+

b

±°
²¯

?

?

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤²

ref(N, a, D) ref(N ′, a,D)

≡pom

6≡pr

↔/ i

a1 a1

±°
²?̄

?
±°
²?̄

?

Figure 16: The equivalences between ↔i and ∼pom are not preserved by SM-refinements

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

'
?

≡mes ≡occ

? ?

¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

? ? ? ? ?

∼i ∼pom

∼pr

¾

¾

ª¾¾¡
¡µ

¡
¡µ

13

14

15

16

Figure 17: The equivalences which are not preserved by SM-refinements

25

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

'
?

≡mes ≡occ

? ?

¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

? ? ? ? ?

∼i ∼pom

∼pr

¾

¾

ª¾¾¡
¡µ

¡
¡µ

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

¾ ¾ ¾

Figure 18: Preservation of the equivalences by SM-refinements

〈t, u〉• =
{

u•, t ∈ •pout;
〈q, u〉, otherwise.

Four cases are possible:

(a) t ∈ p•in ∩ •pout;

(b) t ∈ p•in \ •pout;

(c) t ∈ •pout \ p•in;

(d) t 6∈ p•in ∪ •pout.

Let us consider the case (d), since the cases (a)–(c) are simpler. We have •〈t, u〉 = 〈p, u〉 ∈ M . Since
(M,M ′) ∈ S, by definition of S we have: ∃u′ ∈ TN : (u, u′) ∈ R and (〈p, u〉, 〈p, u′〉) ∈ S, 〈p, u′〉 ∈ M ′.
Since •〈t, u′〉 = 〈p, u′〉, then (•〈t, u〉, •〈t, u′〉) ∈ S, •〈t, u′〉 ∈ M ′.

Then ∃M̃ ′ : M ′ 〈t,u′〉→ M̃ ′. We have: lN (〈t, u〉) = lD(t) = l
N
′(〈t, u′〉). Since 〈t, u〉• = 〈q, u〉, by definition

of S we have (〈q, u〉, 〈q, u′〉) ∈ S. Since 〈t, u′〉• = 〈q, u′〉, then (〈t, u〉•, 〈t, u′〉•) ∈ S.

Hence, (〈t, u〉, 〈t, u′〉) ∈ S and (M̃, M̃ ′) ∈ S.

3. As item 2, but the roles of N and N
′
are reversed. ut

Theorem 5.1 Let ↔∈ {≡,↔,∼,'} and ? ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pomh, prh, mes, occ,
sbsf, sbpwf, sbpomf, sbprf, pombprf}. For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net D the
following holds: N ↔? N ′ ⇒ ref(N, a, D) ↔? ref(N ′, a,D) iff the equivalence ↔? is in oval in Figure 18.

Proof. By Propositions 5.1–5.3. ut

6 The equivalences on sequential nets

Let us consider the equivalences on sequential nets, where no two transitions can be fired concurrently.

Definition 6.1 A net N = 〈PN , TN , FN , lN ,MN 〉 is sequential, if ∀M ∈ Mark(N) ¬∃t, u ∈ TN : •t+•u ⊆ M .

Proposition 6.1 [26, 27] For sequential nets N and N ′:

26

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

'
?

≡mes ≡occ

? ?

¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

? ? ? ? ?

∼i ∼pom

∼pr

¾

¾

ª¾¾¡
¡µ

¡
¡µ

Figure 19: Merging of the equivalences on sequential nets

≡i ¾ ≡pr

? ?

↔i ↔pr¾

↔prST

?

↔prh

'≡mes ≡occ¾

?

∼i

∼pr

?

?? ¡¡ª

¾

¾

ª¾

Figure 20: Interrelations of the equivalences on sequential nets

1. N ≡i N ′ ⇔ N ≡pom N ′;

2. N↔iN
′ ⇔ N↔pomhN ′.

Proposition 6.2 For sequential nets N and N ′ N↔prN
′ ⇔ N↔pombprfN ′.

Proof. (⇐) By Theorem 3.1.
(⇒) We have N↔prN

′. By Proposition 3.3, N↔ibprfN ′. Since for sequential nets lposets of causal nets of
their processes are totally ordered, these are isomrphic to the sequences of actions corresponding to the order
in which the actions occur. Hence, N↔pombprfN ′. ut
Proposition 6.3 For sequential nets N and N ′ N ∼i N ′ ⇔ N ∼pom N ′.

Proof. (⇐) By Theorem 4.1.
(⇒) We have: ∃R : N ∼i N ′. By definition of place bisimulations, R : N↔iN

′. Since by Proposition 6.1
all the equivalences between ↔i and ↔pomh coincide on sequential nets, we have R : N↔pomN ′. Again by
definition of place bisimulations, R : N ∼pom N ′. ut

In Figure 19 dashed lines embrace the equivalences coinciding on sequential nets.

Theorem 6.1 Let ↔,↔↔∈ {≡,↔,∼,'}, ?, ?? ∈ {i, pr, prST, prh, mes, occ}. For sequential nets N and N ′

N ↔? N ′ ⇒ N ↔↔?? N ′ iff in the graph in Figure 20 there exists a directed path from ↔? to ↔↔??.

27

c c

±°
²¯

±°
²¯

b

±°
²¯

±°
²¯

a

±°
²¯u

?

¶¶/ JĴ

?

?

££° JĴ

u

(a) N

↔prST

↔/ prh

c c

±°
²¯

±°
²¯

±°
²¯

bb

±°
²¯

a

±°
²¯u

u

?

¡¡ª ZZ~

? ?

? ?

JĴ

N ′

C
C
C
C
C
C
CW

±°
²¯

↔pomh

6≡mes

½
½½=

B
B
B
B
B
B
BN¡¡ª

a

±°
²¯

±°
²¯u u

?
a

±°
²¯

±°
²¯u u

?
a
?

±°
²?̄

N N ′(b)
↔pomh

∼pom

6≡pr

6≡mes

©©"" bb
((hh

HH

SS

cc
cc

½
½=

½
½=

Figure 21: Examples of the equivalences on sequential nets

Proof. (⇐) By Theorem 4.1.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 20 is proved by the following examples

on sequential nets.

• In Figure 5(d) N ≡mes N ′, but N 6≡pr N ′.

• In Figure 5(e) N ≡pr N ′, but N↔/ iN
′.

• In Figure 7(c) N↔prN
′, but N↔/ prST N ′, since only in the net N ′ the process with action a can start so

that it can be extended by action b in the only way (i.e. so that extended process to be unique).

• In Figure 21(a) N↔prST N ′, but N↔/ prhN ′, since only in the net N ′ there is process with actions a and
b s.t. it can be extended by process with action c in the only way. (i.e. so that connection of causal net
with action c and a-containing subnet of causal net with actions a and b be unique).

• In Figure 6(c) N↔prhN ′, but N 6≡mes N ′.

• In Figure 6(d) N ≡occ N ′, but N 6' N ′.

• In Figure 21(b) N ∼i N ′, but N 6≡pr N ′, since only in the net N ′ the transition with label a has two
input places.

• In Figure 12(c) N ≡occ N ′, but N 6∼i N ′.

• In Figure 6(c) N ∼pr N ′, but N 6≡mes N ′. ut

7 Conclusion

In this paper, we supplemented by new ones and examined a group of back-forth and place bisimulation equiv-
alences. We compared them with basic ones on the whole class of Petri nets as well as on their subclass of
sequential nets. All the considered equivalences were treated for preservation by SM-refinements to establish
which of them may be used for top-down design of concurrent systems.

28

Further research may consist in the investigation of analogues of the considered equivalences on Petri nets
with τ -actions (τ -equivalences). τ -actions are used to abstract of internal, invisible to external observer be-
haviour of systems to be modelled. In the framework of Petri nets with τ -actions interrelations of equivalences
are drastically changed.

For example, let us try to define τ -equivalences in process semantics. We abstract of τ -labelled transitions
of C-nets by removing these transitions and multiplication of their input and output places. Then all causal
dependencies of transitions with visible labels are preserved, and process τ -equivalences will imply corresponding
pomset ones. But while such an abstraction the quantity of input and output places of some transitions
with visible labels may be changed. The consequence is, in particular, that history preserving τ -bisimulation
equivalences do not imply usual τ -bisimulation ones.

Therefore, it is no sense to introduce process τ -equivalences. By similar reasons, it is no sense to define
strict place τ -bisimulation equivalences. In addition, multi event structure τ -equivalence does not imply even
usual τ -bisimulation relations, but only τ -trace ones.

In the literature, a number of τ -equivalences were defined.
Some basic τ -equivalences were considered on Petri nets and event structures in [6, 22, 28]. It was shown

the independence of ST- and history preserving τ -bisimulation equivalences.
In [14] interleaving back interleaving forth τ -bisimulation equivalence was defined on transition systems. Its

coincidence with interleaving branching τ -bisimulation equivalence was proved. Similar result was obtained in
[23], where pomset back pomset forth history preserving τ -bisimulation equivalence was introduced, and its
merging with new notion of branching pomset history preserving τ -bisimulation equivalence was established.

In [5, 3] interleaving place τ -bisimulation and interleaving place τp-bisimulation equivalences were intro-
duced.

In future, we plan to define τ -analogues of all the equivalence relations considered in this paper and exam
them following the same pattern.

Acknowledgements I would like to thank Dr. Irina B. Virbitskaite for advices and many helpful
discussions. I am grateful to Dr. Eike Best, head of the Institute of Informatics, University of Hildesheim,
where this paper was written. I am also indebted to Bernd Grahlmann, Sabine Karmrodt and others
from staff of the Institute for their assistance in solving some technical and organizational problems.

References

[1] Autant C., Belmesk Z., Schnoebelen Ph. Strong bisimularity on nets revisited. Research Report
847-I, LIFIA-IMAG, Grenoble, France, 28 p., March 1991.

[2] Autant C., Belmesk Z., Schnoebelen Ph. Strong bisimularity on nets revisited. Extended abstract.
LNCS 506, p. 295–312, June 1991.

[3] Autant C., Pfister W., Schnoebelen Ph. Place bisimulations for the reduction of labelled Petri nets
with silent moves. Proceedings of International Conference on Computing and Information, 1994.

[4] Autant C., Schnoebelen Ph. Place bisimulations in Petri nets. LNCS 616, p. 45–61, June 1992.

[5] Autant C. Petri nets for the semantics and the implementation of parallel processes. Ph.D. thesis, Institut
National Polytechnique de Grenoble, May 1993 (in French).

[6] Best E., Devillers R., Kiehn A., Pomello L. Concurrent bisimulations in Petri nets. Acta Infor-
matica 28, p. 231–264, 1991.

[7] Boudol G., Castellani I. On the semantics of concurrency: partial orders and transition systems.
LNCS 249, p. 123–137, 1987.

[8] Cherief F. Back and forth bisimulations on prime event structures. LNCS 605, p. 843–858, June 1992.

[9] Cherief F. Contributions à la sémantique du parallélisme: bisimulations pour le raffinement et le vrai
parallélisme. Ph.D. thesis, Institut National Politechnique de Grenoble, France, October 1992 (in French).

[10] Cherief F. Investigations of back and forth bisimulations on prime event structures. Computers and
Artificial Intelligence 11(5), p. 481–496, 1992.

[11] Grabowski J. On partial languages. Fundamenta Informaticae IV(2), p. 428–498, 1981.

29

[12] van Glabbeek R.J., Vaandrager F.W. Petri net models for algebraic theories of concurrency. LNCS
259, p. 224–242, 1987.

[13] Hoare C.A.R. Communicating sequential processes, on the construction of programs. (McKeag R.M.,
Macnaghten A.M., eds.) Cambridge University Press, p. 229–254, 1980.

[14] De Nicola R., Montanari U., Vaandrager F.W. Back and forth bisimulations. LNCS 458, p. 152–
165, 1990.

[15] Nielsen M., Plotkin G., Winskel G. Petri nets, event structures and domains. TCS 13, p. 85–108,
1981.

[16] Nielsen M., Thiagarajan P.S. Degrees of non-determinizm and concurrency: A Petri net view. LNCS
181, p. 89–117, December 1984.

[17] Olderog E.-R. Nets, terms and formulas, three views of concurrent processes and their relationship.
Habilitationsschrift, Christian-Albrechts Univ., Kiel, July 1989.

[18] Olderog E.-R. Strong bisimularity on nets: a new concept for comparsing net semantics. LNCS 354, p.
549–573, 1989.

[19] Olderog E.-R. Nets, terms and formulas. Cambridge Tracts in Theoretical Computer Science 23, Cam-
bridge University Press, 1991.

[20] Park D.M.R. Concurrency and automata on infinite sequences. LNCS 104, p. 167–183, March 1981.

[21] Petri C.A. Kommunikation mit Automaten. Ph.D. thesis, Universität Bonn, Schriften des Instituts für
Instrumentelle Mathematik, 1962 (in German).

[22] Pomello L. Some equivalence notions for concurrent systems. An overview. LNCS 222, p. 381–400, 1986.

[23] Pinchinat S. Bisimulations for the semantics of reactive systems. Ph.D. thesis, Institut National Politech-
nique de Grenoble, January 1993 (in French).

[24] Pratt V.R. On the composition of processes. Proceedings of 9th POPL, p. 213–223, 1982.

[25] Rabinovitch A., Trakhtenbrot B.A. Behaviour structures and nets. Fundamenta Informaticae XI,
p. 357–404, 1988.

[26] Tarasyuk I.V. Equivalence notions for design of concurrent systems using Petri nets. Hildesheimer
Informatik-Bericht 4/96, part 1, 19 p., Institut für Informatik, Universität Hildesheim, Hildesheim, Ger-
many, January 1996.

[27] Tarasyuk I.V. Petri net equivalences for design of concurrent systems. Proceedings of Workshop “Con-
currency, Specification and Programming - 96”, Informatik-Bericht 69, p. 190–204, Institut für Informatik,
Humboldt-Universität zu Berlin, Berlin, Germany, 1996.

[28] Vogler W. Bisimulation and action refinement. LNCS 480, p. 309–321, 1991.

30

