
Bull. Nov. Comp. Center, Comp. Science, 7 (1997), 57–81
c© 1997 NCC Publisher

Equivalences for behavioural analysis of multilevel

systems ∗

Igor V. Tarasyuk

Abstract. The paper is devoted to the investigation of behavioural equivalences
of concurrent systems modelled by Petri nets. Back-forth and place bisimulation
equivalences known from the literature are supplemented by new ones, and their
relationship with basic behavioural equivalence relations is examined for the whole
class of Petri nets as well as for their subclass of sequential nets. In addition, the
preservation of all the equivalence notions by refinements is examined.

1. Introduction

The notion of equivalence is central in any theory of systems. It allows us to
compare systems taking into account particular aspects of their behaviour.

Petri nets [21] became a popular formal model for design of concurrent and
distributed systems. One of the main advantages of Petri nets is their ability for
structural characterization of three fundamental features of concurrent computa-
tions: causality, nondeterminism and concurrency.

In recent years, a wide range of semantic equivalences was proposed in concur-
rency theory. Some of them were either directly defined or transferred from other
formal models to Petri nets. The following basic notions of equivalences for Petri
nets are known from the literature (some of them were introduced by the author in
[26, 27, 28] to obtain the complete set of relations in interleaving/true concurrency
and linear time/branching time semantics).

• Trace equivalences (respect only protocols of nets functioning): interleaving
(≡i) [13], step (≡s) [22], partial word (≡pw) [12], pomset (≡pom) [24] and
process

(≡pr) [26].

• Usual bisimulation equivalences (respect branching structure of nets function-
ing): interleaving (↔i) [20], step (↔s) [16], partial word (↔pw) [29], pomset
(↔pom) [7] and process (↔pr) [4].

• ST-bisimulation equivalences (respect the duration of transition occurrences
in nets functioning): interleaving (↔iST) [11], partial word (↔pwST) [29],
pomset (↔pomST) [29] and process (↔prST) [26].

• History preserving bisimulation equivalences (respect the “past” or “history”
of nets functioning): pomset (↔pomh) [25] and process (↔prh) [26].

∗The work is supported by Volkswagen Fund, grant I/70 564 and INTAS-RFBR, grant
95-0378

58 I.V. Tarasyuk

• Conflict preserving equivalences (completely respect conflicts in nets): multi
event structure (≡mes) [27] and occurrence (≡occ) [15].

• Isomorphism (≃) [21] (i.e. coincidence of nets up to renaming of places and
transitions).

Recently, two important groups of equivalence relations were introduced: back-
forth and place bisimulation equivalences. Back-forth bisimulation equivalences
are based on the idea that bisimulation relation do not only require systems to
simulate each other behaviour in the forward direction (as usually) but also when
going back in history. They are closely connected with equivalences of logics with
past modalities.

These equivalence notions were initially introduced in [14] in the framework of
transition systems. It was shown that back-forth variant (↔ibif) of interleaving
bisimulation equivalence coincide with ordinary ↔i.

In [8, 9, 10] the new variants of step (↔sbsf), partial word (↔pwbpwf) and pom-
set (↔pombpomf) back-forth bisimulation equivalences were defined in the framework
of prime event structures and compared with usual, ST- and history preserving
bisimulation equivalences. It was demonstrated that among all back-forth bisimu-
lation equivalences only ↔pombpomf is preserved by refinements (it coincides with
↔pomh which has such a property).

In [23] the new idea of differentiating the kinds of back and forth simulations
appeared (following this idea, it is possible, for example, to define step back pom-
set forth bisimulation equivalence (↔sbpomf)). The set of all possible back-forth
equivalence notions was proposed in interleaving, step, partial word and pomset se-
mantics. Two new notions which do not coincide with known ones were proposed:
step back partial word forth (↔sbpwf) and step back pomset forth (↔sbpomf) bisim-
ulation equivalences. It was proved that the former is not preserved by refinements,
and the question was addressed about the latter.

Place bisimulation equivalences were initially introduced in [1] on the basis of
definition from [17, 18, 19]. Place bisimulations are relations over places instead
of markings or processes. The relation on markings is obtained using the “lifting”
of relation on places. The main application of place bisimulation equivalences is
effective behaviour preserving reduction technique for Petri nets based on them.

In [1, 2] interleaving place bisimulation equivalence (∼i) was proposed. In these
papers also strict interleaving place bisimulation equivalence (≈i) was defined, by
imposing the additional requirement stating that corresponding transitions of nets
must be related by bisimulation. The question about possibility of introducing
history preserving place bisimulation eqivalence was addressed.

In [4, 5] step (∼s), partial word (∼pw), pomset (∼pom), process (∼pr) place
bisimulation equivalences and their strict analogs (≈s, ≈pw, ≈pom, ≈pr) were
proposed. The coincidence of ∼i, ∼s and ∼pw was established. Also it was shown
that all strict bisimulation equivalences coincide with ∼pr. Therefore, we have only
three different equivalences: ∼i, ∼pom and ∼pr. In addition, in these papers the
polinomial algorithm of net reduction was proposed which preserves the behaviour
of a net (i.e. the initial and reduced nets are bisimulation equivalent).

To choose most appropriate behavioural viewpoint on systems to be modelled,
having a complete set of equivalence notions in all semantics and understanding

Equivalences for behavioural analysis 59

their interrelations is very important. This branch of research is usually called
comparative concurrency semantics. To clarify the nature of equivalences and eval-
uate how they respect a concurrency, it is actual to consider also correlation of these
notions on concurrency-free (sequential) nets. Treating equivalences for preserva-
tion by refinements allows one to decide which of them may be used for top-down
design.

The main contributions of this paper are the following.
Working in the framework of Petri nets, we extend the set of back-forth equiva-

lences from [23] by that of induced by process semantics and obtain two new notions
which cannot be reduced to the known ones: step back process forth (↔sbprf) and
pomset back process forth (↔pombprf) bisimulation equivalences.

We compare all back-forth and place equivalences with the set of basic be-
havioural notions from [26, 27, 28] giving rise to the better understanding of the
nature of new (and old) notions and complete the results of [10, 23, 4, 5]. In par-
ticular, we prove that ∼pr implies ↔prh and answer the question from [1]: ∼pr

is strict enough to preserve the “histories” of a net functioning. Hence, it is no
sence to define history preserving place bisimulation eqivalence. Moreover, since
ST- and history preserving bisimulation equivalences are consequences of ∼pr, the
algorithm of net reduction from [4, 5], based on this equivalence, preserves the timed
traces [11] of the initial net (since ST-bisimulation equivalences are real time consis-
tent [11]) and “histories” of its functionings (since history preserving bisimulation
equivalences respect the “past” of processes).

In [6], SM-refinement operator for Petri nets was proposed, which “replaces”
their transitions by SM-nets, a special subclass of state machine nets. We treat all
the considered equivalence notions for preservation by SM-refinements and establish
that among back-forth relations only ↔pombpomf and ↔prbprf are preserved by SM-
refinements (they coincide with corresponding history presrving ones for which this
result holds). So, we obtained the negative answer to the question from [23]: neither
↔sbpomf nor even ↔pombprf is preserved by refinements. We prove that ∼pr is the
only place bisimulation equivalence which is preserved by SM-refinements.

In addition, we investigate the interrelations of all the equivalence notions on
sequential nets (subclass of Petri nets corresponding to transition systems where
neither transitions can be fired concurrently). The merging of most of the equiva-
lence relations in interleaving – pomset semantics is demonstrated. We prove that
on sequential nets back-forth equivalences coincide with usual forth ones.

The rest of paper is organized as follows. Basic definitions are introduced in
Section 2. In Section 3 back-forth bisimulation equivalences are proposed and com-
pared with basic equivalence relations. In Section 4 place bisimulation equivalences
are defined and their interrelations with equivalence notions considered before are
investigated. In Section 5 we establish which equivalence relations are preserved by
SM-refinements. Section 6 is devoted to comparison of equivalences on sequential
nets. Concluding Section 7 contains a review of the main results obtained and some
directions of further research.

2. Basic definitions

In this section we give some basic definitions used further.

60 I.V. Tarasyuk

2.1. Multisets

Multisets are extension of sets by letting them to contain several equal elements.

Definition 1. Let X be some set. A finite multiset M over X is a mapping
M : X → N (N is a set of natural numbers) s.t |{x ∈ X | M(x) > 0}| < ∞.

M(X) denotes the set of all finite multisets over X . When ∀x ∈ X
M(x) ≤ 1, M is a proper set. Cardinality of multiset M is defined in such a
way: |M | =

∑
x∈X M(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′, if ∀x ∈

X M(x) ≤ M ′(x). We define (M +M ′)(x) = M(x) +M ′(x) and (M −M ′)(x) =
max{0,M(x)−M ′(x)}.

2.2. Labelled nets

Labelled nets are Petri nets with transitions labelled by action names.
Let Act = {a, b, . . .} be a set of action names or labels.

Definition 2. A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {t, u, . . .} is a set of transitions;

• FN : (PN × TN) ∪ (TN × PN) → N is the flow relation with weights (N
denotes a set of natural numbers);

• lN : TN → Act is a labelling of transitions with action names.

Given labelled nets N = 〈PN , TN , FN , lN〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉. A
mapping β : N → N ′ is an isomorphism betweenN andN ′, denoted by β : N ≃ N ′,
if:

1. β is a bijection such that β(PN) = PN ′ and β(TN) = TN ′ ;

2. ∀p ∈ PN ∀t ∈ TN FN (p, t) = FN ′(β(p), β(t)) and
FN (t, p) = FN ′(β(t), β(p));

3. ∀t ∈ TN lN (t) = lN ′(β(t)).

Two labelled nets N and N ′ are isomorphic, denoted by N ≃ N ′, if ∃β : N ≃ N ′.
Given a labelled net N and some transition t ∈ TN , the precondition and

postcondition t, denoted by •t and t• respectively, are the multisets defined in
such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous definitions are
introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). Let ◦N = {p ∈
PN | •p = ∅} is a set of initial (input) places of N and N◦ = {p ∈ PN | p• = ∅} is
a set of final (output) places of N .

A labelled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN such that
t•i−1 ∩

•ti 6= ∅ (1 ≤ i ≤ n) and t0 = tn. A labelled net N is ordinary if ∀p ∈ PN
•p

and p• are proper sets (not multisets).
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN ∪ TN .

Let us introduce the following notions.

Equivalences for behavioural analysis 61

• x ≺N y ⇔ xF+
N y, where F+

N is a transitive closure of FN (strict causal
dependence relation);

• ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x);

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

2.3. Marked nets

Marked nets are labelled nets having some “tokens” in their places, and these places
are considered to be “marked” ones. We can consider a behaviour of a marked net,
moving these tokens in accordance to the rools of a special “token game”.

A marking of a labelled net N is a multiset M ∈ M(PN).

Definition 3. A marked net (net) is a tuple N = 〈PN , TN , FN , lN ,MN 〉, where
〈PN , TN , FN , lN 〉 is a labelled net and MN ∈ M(PN) is the initial marking.

Given marked nets N = 〈PN , TN , FN , lN ,MN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ ,
lN ′ ,MN ′〉. A mapping β : N → N ′ is an isomorphism between N and N ′, denoted
by β : N ≃ N ′, if:

1. β : 〈PN , TN , FN , lN 〉 ≃ 〈PN ′ , TN ′ , FN ′ , lN ′〉;

2. ∀p ∈ MN MN (p) = MN ′(β(p)).

Two marked nets N and N ′ are isomorphic, denoted by N ≃ N ′, if ∃β : N ≃ N ′.
Let M ∈ M(PN) be a marking of a net N . A transition t ∈ TN is fireable in

M , if •t ⊆ M . If t is fireable in M , firing it yields a new marking M̃ = M − •t+ t•,

denoted by M
t
→ M̃ . A marking M of a net N is reachable, if M = MN or there

exists a reachable marking M̂ of N s.t. M̂
t
→ M for some t ∈ TN . Mark(N)

denotes a set of all reachable markings of a net N .

2.4. Partially ordered sets

Partially ordered sets [24] are important formalism, often used as a semantical do-
main for concurrent systems. These are clearly represent causality and concurrency
which is interpreted as a causal independence.

Definition 4. A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉,
where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X ;

• l : X → Act is a labelling function.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′, denoted

by β : ρ ≈ ρ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

62 I.V. Tarasyuk

We write ρ ≈ ρ′, if ∃β : ρ ≈ ρ′.

A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted by
β : ρ ⊑ ρ′, if:

1. β : ρ ≈ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ ⊑ ρ′, if ∃β : ρ ⊑ ρ′.

A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted by
β : ρ ≃ ρ′, if β : ρ ⊑ ρ′ and β−1 : ρ′ ⊑ ρ. Two lposets ρ and ρ′ are isomorphic,
denoted by ρ ≃ ρ′, if ∃β : ρ ≃ ρ′.

Definition 5. Partially ordered multiset (pomset) is an isomorphism class of
lposets.

2.5. C-processes

C-processes [6] represent runs of concurrent systems and contain the information
about causal dependencies of events in such runs.

Definition 6. A causal net is an acyclic ordinary labelled net
C = 〈PC , TC , FC , lC〉, s.t:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;

2. | ↓C x| < ∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C = 〈PC , TC , FC , lC〉 one can
define lposet ρC = 〈TC ,≺N ∩(TC × TC), lC〉.

The fundamental property of causal nets is [4]: if C is a causal net, then there

exists an occurrence sequence ◦C = L0
v1→ · · ·

vn→ Ln = C◦ such that Li ⊆ PC (0 ≤
i ≤ n), PC = ∪n

i=0Li and TC = {v1, . . . , vn}. Such a sequence is called a full
execution of C.

Definition 7. Given a net N and a causal net C. A mapping ϕ : PC ∪ TC →
PN ∪ TN is an embedding C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈ M(PN) and ϕ(TC) ∈ M(TN), i.e. sorts are preserved;

2. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected;

3. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if ◦C
v1→ · · ·

vn→ C◦ is a full execution

of C, then M = ϕ(◦C)
ϕ(v1)
−→ · · ·

ϕ(vn)
−→ ϕ(C◦) = M ′ is an occurrence sequence in N .

Definition 8. A fireable in marking M C-process (process) of a net N is a pair
π = (C,ϕ), where C is a causal net and ϕ : C → N is an embedding such that
M = ϕ(◦C). A fireable in MN process is a process of N .

Equivalences for behavioural analysis 63

We write Π(N,M) for a set of all fireable in marking M processes of a net N
and Π(N) for the set of all processes of a net N . The initial process of a net N is
πN = (CN , ϕN) ∈ Π(N), such that TCN

= ∅. If π ∈ Π(N,M), then firing of this
process transforms a marking M into M ′ = M −ϕ(◦C) +ϕ(C◦) = ϕ(C◦), denoted

by M
π
→ M ′.

Let π = (C,ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N) and π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)).

A process π̃ is an extension of π by process π̂, denoted by π
π̂
→ π̃, if TC ⊆ T

C̃
is

a left-closed set in C̃ and T
Ĉ
= T

C̃
\ TC .

A process π̃ is an extension of a process π by one transition v ∈ T
C̃
, denoted

by π
v
→ π̃, if π

π̂
→ π̃ and T

Ĉ
= {v}.

A process π̃ is an extension of a process π by sequence of transitions σ =
v1 · · · vn ∈ T ∗

C̃
, denoted by π

σ
→ π̃, if ∃πi ∈ Π(N) (1 ≤ i ≤ n) π

v1→ π1
v2→ . . .

vn→
πn = π̃.

3. Back-forth bisimulation equivalences

In this section, in the framework of Petri nets, we supplement the definitions of
back-forth bisimulation equivalences [23] by the new notions induced by process
semantics and compare them with basic ones.

3.1. Definitions of back-forth bisimulation equivalences

The definitions of back-forth bisimulation equivalences are based on the following
notion of sequential run.

Definition 9. A sequential run of a net N is a pair (π, σ), where:

• a process π ∈ Π(N) contains the information about causal dependencies of
transitions which brought to this state;

• a sequence σ ∈ T ∗

C such that πN
σ
→ π, contains the information about the

order in which the transitions occur which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).

The initial sequential run of a net N is a pair (πN , ε), where ε is an empty
sequence.

Let (π, σ), (π̃, σ̃) ∈ Runs(N). We write (π, σ)
π̂
→ (π̃, σ̃), if π

π̂
→ π̃, ∃σ̂ ∈

T ∗

C̃
π

σ̂
→ π̃ and σ̃ = σσ̂.

Definition 10. Let N and N ′ be some nets. A relation R ⊆ Runs(N)×Runs(N ′)
is a ⋆-back ⋆⋆-forth bisimulation between N and N ′, ⋆, ⋆⋆ ∈ {interleaving, step,
partial word, pomset, process}, denoted by
R : N↔⋆b⋆⋆fN

′, ⋆, ⋆⋆ ∈ {i, s, pw, pom, pr}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R

64 I.V. Tarasyuk

• (back)

(π̃, σ̃)
π̂
→ (π, σ),

(a) |T
Ĉ
| = 1, if ⋆ = i;

(b) ≺
Ĉ
= ∅, if ⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′)
π̂′

→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) ρ
Ĉ′ ⊑ ρ

Ĉ
, if ⋆ = pw;

(b) ρ
Ĉ
≃ ρ

Ĉ′ , if ⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ′, if ⋆ = pr;

• (forth)

(π, σ)
π̂
→ (π̃, σ̃),

(a) |T
Ĉ
| = 1, if ⋆⋆ = i;

(b) ≺
Ĉ
= ∅, if ⋆⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′)
π̂′

→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) ρ
Ĉ′ ⊑ ρ

Ĉ
, if ⋆⋆ = pw;

(b) ρ
Ĉ
≃ ρ

Ĉ′ , if ⋆⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ′, if ⋆⋆ = pr.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ ⋆-back ⋆⋆-forth bisimulation equivalent, ⋆, ⋆⋆ ∈
{interleaving, step, partial word, pomset, process}, denoted by N↔⋆b⋆⋆fN

′, if
∃R : N↔⋆b⋆⋆fN

′, ⋆, ⋆⋆ ∈ {i, s, pw, pom, pr}.

3.2. Interrelations of back-forth bisimulation equivalences

In back-forth bisimulations, moveing back from a state is possible only along the
history which brought to the state. Such a determinism implies merging of some
equivalences.

Proposition 1. Let ⋆ ∈ {i, s, pw, pom, pr}. For nets N and N ′ the following
holds:

1. N↔pwb⋆fN
′ ⇔ N↔pomb⋆fN

′;

2. N↔⋆bifN
′ ⇔ N↔⋆b⋆fN

′.

In Figure 1 dashed lines embrace coinciding back-forth bisimulation equiva-
lences.

Hence, interrelations of the remaining back-forth equivalences may be repre-
sented by the graph in Figure 2.

3.3. Interrelations of back-forth bisimulation and basic

equivalences

Let us consider how back-forth equivalences are connected with basic ones.

Equivalences for behavioural analysis 65

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

❄❄❄❄❄

↔sbif ↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

❄❄❄❄❄

↔pwbif ↔pwbsf ↔pwbpwf ↔pwbpomf ↔pwbprf

❄❄❄❄❄

↔pombif ↔pombsf ↔pombpwf ↔pombpomf ↔pombprf

❄❄❄❄❄

↔prbif ↔prbsf ↔prbpwf ↔prbpomf ↔prbprf✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

Figure 1. Merging of back-forth bisimulation equivalences

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

❄❄❄❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

❄❄

↔pombpomf ↔pombprf

❄

↔prbprf

✛

✛

✛

✛

✛

✛

✛

✛

Figure 2. Interrelations of back-forth bisimulation equivalences

66 I.V. Tarasyuk

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

❄❄❄❄❄

≡mes ≡occ

❄

❄
✛

❄ ❄ ❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

�
�✠

�
�✠

�
�✠

�
�✠

❅
❅❘

❅
❅❘✛ ✛ ✛

❄ ❄

❄

❅
❅❘❳❳❳

❳❳❳
❳②

Figure 3. Interrelations of back-forth bisimulation and basic equivalences

Proposition 2. Let ⋆ ∈ {i, s, pw, pom, pr}, ⋆⋆ ∈ {pom, pr}. For nets N and N ′

the following holds:

1. N↔ib⋆fN
′ ⇔ N↔⋆N

′;

2. N↔⋆⋆b⋆⋆fN
′ ⇔ N↔⋆⋆hN

′;

3. N↔⋆⋆STN
′ ⇒ N↔sb⋆⋆fN

′.

In the following, the symbol ‘ ’ will denote the empty altermative.

Theorem 1. Let ↔,↔↔∈ {≡,↔,≃} and ⋆, ⋆⋆ ∈ { , i, s, pw, pom, pr, iST,
pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}.
For nets N and N ′ the following holds: N ↔⋆ N ′ ⇒ N ↔↔⋆⋆ N ′ iff in graph in
Figure 3 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) By definitions of the equivalences.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 3 is

proved by the following examples.

• In Figure 4(a) N↔iN
′, but N 6≡s N

′, since only in the net N ′ actions a and
b cannot happen concurrently.

• In Figure 4(c) N↔iSTN
′, but N 6≡pw N ′, since for the pomset corresponding

to the net N there is no even less sequential pomset in N ′.

• In Figure 4(b) N↔pwhN
′, but N 6≡pom N ′, since only in the net N ′ action b

can depend on action a.

• In Figure 4(d) N ≡mes N ′, but N 6≡pr N ′, since N ′ is a causal net which is
not isomorphic to the causal net N (because of additional output place).

Equivalences for behavioural analysis 67

• In Figure 4(e) N ≡pr N
′, but N↔/ iN

′, since only in the net N ′ action a can
happen so that action b can not happen afterwards.

• In Figure 5(a) N↔prN
′, but N↔/ iSTN

′, since only in the net N ′ action a
can start so that no action b can begin working until finishing of a.

• In Figure 5(b) N↔prSTN
′, but N↔/ pomhN

′, since only in the net N ′ after
action a action b can happen so that action c must depend on a.

• In Figure 5(c) N↔prhN
′, but N 6≡mes N

′, since only the MES corresponding
to the net N ′ has two conflict actions a.

• In Figure 5(d) N ≡occ N ′, but N 6≃ N ′, since unfireable transitions of the
nets N and N ′ are labelled by different actions (a and b).

• In Figure 4(c) N↔sbsfN
′, but N 6≡pw N ′.

• In Figure 6(a) N↔sbpwfN
′, but N 6≡pom N ′, since only in the net N ′ action

c can depend on actions a and b.

• In Figure 6(b) N↔sbprfN
′, but N↔/ iSTN

′, since only in the net N ′ action
a can start so that:

1. until a finishes the sequence of actions bc cannot happen, and

2. immediately after finishing of a action c cannot happen.

• In Figure 6(c) N↔pombprfN
′, but N↔/ prSTN

′, since only in the net N ′ the
process with action a can start so that it can be extended by process with
action b in the only way (i.e. so that extended process be unique).

• In Figure 4(b) N↔pwSTN
′, but N↔/ sbsfN

′, since only in the net N ′ the
sequence of actions ab can happen so that b must depend on a.

• In Figure 5(a) N↔prN
′, but N↔/ sbsfN

′, since only in the net N ′ action a
can happen so that action b must depend on a. ⊓⊔

4. Place bisimulation equivalences

In this section place bisimulation equivalences from [4] are compared with back-
forth bisimulation and basic equivalences.

4.1. Definitions of place bisimulation equivalences

Usual bisimulations may be defined on the basis of markings (instead of processes)
by replacing in processes by corresponding markings in the definitions.

Definition 11. LetN andN ′ be some nets. A relationR ⊆ Mark(N)×Mark(N ′)
is a ⋆-bisimulation between N and N ′, ⋆ ∈ {interleaving, step, partial word, pomset,
process}, denoted by R : N↔⋆N

′, ⋆ ∈ {i, s, pw, pom,
pr}, if:

1. (MN ,MN ′) ∈ R.

2. (M,M ′) ∈ R, M
π̂
→ M̃ ,

68 I.V. Tarasyuk

a b

✍✌
✎☞

✍✌
✎☞✉ ✉
❄ ❄

(a)

N

↔i

b a

✍✌
✎☞

✍✌
✎☞

a b

✍✌
✎☞✉

❄

❄

❄

❄

✁
✁☛
❆
❆❯

N ′

(e)

N

b

✍✌
✎☞
a a

✍✌
✎☞✉
✁
✁☛
❆
❆❯

❄ ❄

❄
✍✌
✎☞

≡pr

↔/ i

b

✍✌
✎☞
a

✍✌
✎☞✉ N ′

❄

❄

❄

(b)

ba

✍✌
✎☞

✍✌
✎☞✉ ✉N

❄ ❄↔pwST

6≡pom

↔/ sbsf

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N ′

(d)

N

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

a

✍✌
✎☞✉
❄

N ′

6≡pr

(c)

b d

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞✉ ✉

❄

❄

❄

❄

❄

❄

N

↔iST

↔sbsf

6≡pw

b b d d

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉N ′

❄

❄

❄

❄

❄

❄

❩
❩⑦

✚
✚✚❂

❄ ❄
✚✚❂✚

✚❂
❩
❩⑦
❩
❩⑦

✍✌
✎☞

b

❄

❄

≡mes

✁
✁
✁
✁
✁
✁
✁☛

❆
❆
❆
❆
❆
❆
❆❯

✄
✄
✄
✄
✄
✄
✄✄✎

6≡s

Figure 4. Examples of basic equivalences

Equivalences for behavioural analysis 69

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

a ✍✌
✎☞✉

✍✌
✎☞✉
❄

❄

❄

✛

❄
✚
✚❂

✚
✚❂

(a) N

↔pr

↔/ iST

↔/ sbsf

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

a ✍✌
✎☞✉

✍✌
✎☞✉ a ✍✌

✎☞
✲ ✲

❄

❄

❄ ❄
✚✚❂ ✚
✚❂

N ′

b c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉

a

✍✌
✎☞✉(b) N

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛

↔prST

↔/ pomh

b c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉

a

✍✌
✎☞✉N ′

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛
b

❏❏❫ ✂✂✌

(c)

a a

✍✌
✎☞✉
✡✡✢ ❏❏❫

N ′↔prh

6≡mes

✻

❍❍
❍❍❨

a

✍✌
✎☞

N ✉
❄

c

a

✍✌
✎☞

✍✌
✎☞
❄

❄

❄

(d) N

c

b

✍✌
✎☞

✍✌
✎☞
❄

❄

❄

N ′

≡occ

6≃✉ ✉

Figure 5. Examples of basic equivalences (continued)

70 I.V. Tarasyuk

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a

✍✌
✎☞✉

✉

❄

❅❅❘ ✡✡✢ ❙❙✇

N

↔/ prST

b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a a

✍✌
✎☞✉

✉��✠ ❄

❅❅❘ ❄

N ′(c)

6≡mes✓✓✴

❄

❩
❩⑦

✚
✚✚❂

✑
✑✑✰❙❙✇

✓✓✴

✟✟✟✟✙

✟✟✟✙
↔pombprf

c

a a

c

b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉
✉
✉

❄

❄

❄

✚
✚✚❂

❩
❩❩⑦✛ ✲

✚
✚✚❂

✚
✚❃

c

b

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉
✉
✉❄

✚
✚✚❂

❩
❩❩⑦✛ ✲

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉

❄

✘✘✘✘✘✘✘✾
❳❳❳❳❳❳❳③

❩
❩❩⑦

❩❩⑥

PPPPPPq
✏✏✏✏✏✏✮

❅❅❘ ��✠

↔sbprf

↔/ iST

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

c

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄

b

✍✌
✎☞

✍✌
✎☞✉
❄

❄

c

b

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄
✍✌
✎☞

✍✌
✎☞✉ ✉✲ ✲

❩
❩❩⑦

✚
✚✚❂

PPPPPPq
✏✏✏✏✏✏✮

✍✌
✎☞✉ ✍✌

✎☞✉ ✍✌
✎☞✉ ✍✌

✎☞✉

a

b ✍✌
✎☞

✍✌
✎☞

✲

✲

✲

✲

c
❄

✻

❏
❏
❏
❏
❏
❏
❏❏❫

✡
✡
✡
✡
✡
✡
✡✡✢

❈
❈
❈
❈
❈
❈
❈
❈❲

✞

✝✲

☎

✆

✄
✄
✄
✄
✄
✄
✄
✄✎

✛

✞

✝✲

☎

✆✛

✄ �❄✎ ☞
✝ ✆✻✍ ✌✚ ✙

N N ′

(b)

c

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄

N(a)

✍✌
✎☞✉
✚
✚✚❂

❩
❩❩⑦

c

b

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄
c

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄

N ′

c

✍✌
✎☞✉
✚
✚✚❂

❩
❩❩⑦

c

b

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄

❩
❩❩⑦

✚
✚✚❂

↔sbpwf

↔pwST

6≡pom

✗ ✔

Figure 6. Examples of back-forth bisimulation equivalences

Equivalences for behavioural analysis 71

(a) |T
Ĉ
| = 1, if ⋆ = i;

(b) ≺
Ĉ
= ∅, if ⋆ = s;

⇒ ∃M̃ ′ : M ′ π̂′

→ M̃ ′, (M̃, M̃ ′) ∈ R and

(a) ρ
Ĉ′ ⊑ ρ

Ĉ
, if ⋆ = pw;

(b) ρ
Ĉ
≃ ρ

Ĉ′ , if ⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ′, if ⋆ = pr.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-bisimulation equivalent, ⋆ ∈ {interleaving, step, partial
word, pomset, process}, denoted by N↔⋆N

′, if ∃R : N↔⋆N
′, ⋆ ∈ {i, s, pw, pom,

pr}.

Place bisimulations are relations between places instead of markings. A relation
on markings is obtained with use of “lifting” of bisimulation relation on places.

Let us note that in the definitions of bisimulations based on markings any
markings may be used, not reachable only. As mentioned [4, 5], this does not
change bisimulation equivalences.

Definition 12. Let for nets N and N ′ R ⊆ PN ×PN ′ be a relation between their
places. A lifting of R is a relation R ⊆ M(PN)×M(PN ′), defined as follows:

(M,M ′) ∈ R ⇔

{
∃{(p1, p

′

1), . . . , (pn, p
′

n)} ∈ M(R) :
M = {p1, . . . pn}, M ′ = {p′1, . . . p

′

n}

Definition 13. Let N and N ′ be some nets. A relation R ⊆ PN × PN ′ is a ⋆-
place bisimulation between N and N ′, ⋆ ∈{interleaving, step, partial word, pomset,
process}, denoted by R : N ∼⋆ N ′, if R : N↔⋆N

′, ⋆ ∈ {i, s, pw, pom, pr}.

Two nets N and N ′ are ⋆-place bisimulation equivalent, ⋆ ∈{interleaving, step,
partial word, pomset, process}, denoted by N ∼⋆ N ′, if ∃R : N ∼⋆ N ′, ⋆ ∈
{i, s, pw, pom, pr}.

Strict place bisimulation equivalences are defined using the additional require-
ment stating that corresponding tansitions of nets must (as well as makings) be
related by R. This relation is defined on transitions as follows.

Definition 14. Let for nets N and N ′ t ∈ TN , t′ ∈ TN ′ . Then

(t, t′) ∈ R ⇔

(•t, •t′) ∈ R ∧
(t•, t′

•
) ∈ R ∧

lN (t) = lN ′(t′)

72 I.V. Tarasyuk

∼i ∼s ∼pw ∼pom ∼pr✛✛✛ ✛

≈i ≈s ≈pw ≈pom ≈pr✛✛✛ ✛

❄ ❄ ❄ ❄ ❄

Figure 7. Merging of place bisimulation equivalences

∼i ∼pom ∼pr✛✛

Figure 8. Interrelations of place bisimulation equivalences

Definition 15. Let N and N ′ be some nets. A relation R ⊆ PN × PN ′ is a
strict ⋆-place bisimulation between N and N ′, ⋆ ∈{interleaving, step, partial word,
pomset, process}, denoted by R : N ≈⋆ N ′, ⋆ ∈ {i, s, pw, pom, pr}, if:

1. R : N↔⋆N
′.

2. In the definition of ⋆-bisimulation in item 2 (and in item 3 symmetrically)
the new requirement is added: ∀v ∈ T

Ĉ
(ϕ̂(v), ϕ̂′(β(v))) ∈ R, where:

(a) β : ρ
Ĉ′ ⊑ ρ

Ĉ
, if ⋆ = pw;

(b) β : ρ
Ĉ
≃ ρ

Ĉ′ , if ⋆ ∈ {i, s, pom};

(c) β : Ĉ ≃ Ĉ′, if ⋆ = pr.

Two nets N and N ′ are strict ⋆-place bisimulation equivalent, ⋆ ∈
{interleaving, step, partial word, pomset, process}, denoted by N ≈⋆ N ′, if ∃R :
N ≈⋆ N ′, ⋆ ∈ {i, s, pw, pom, pr}.

An important property of place bisimulations is additivity. Let for nets N
and N ′ R : N ∼⋆ N ′. Then (M1,M

′

1) ∈ R and (M2,M
′

2) ∈ R implies ((M1 +
M2), (M

′

1 + M ′

2)) ∈ R. In particular, if we add n tokens in each of the places
p ∈ PN and p′ ∈ PN ′ s.t. (p, p′) ∈ R, then the nets obtained as a result of such a
changing of the initial markings, must be also place bisimulation equivalent.

4.2. Interrelations of place bisimulation equivalences

Let us consider interrelations of place bisimulation equivalences.

Proposition 3. [4, 5] For nets N and N ′ the following holds:

1. N ∼i N
′ ⇔ N ∼pw N ′;

2. N ∼pr N ′ ⇔ N ≈i N
′ ⇔ N ≈pr N ′.

In Figure 7 dashed lines embrace coinciding place bisimulation equivalences.
Hence, interrelations of place bisimulation equivalences may be represented by

graph in Figure 8.

Equivalences for behavioural analysis 73

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄ ❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

�
�✠

�
�✠

�
�✠

�
�✠

❅
❅❘

❅
❅❘✛ ✛ ✛

❄ ❄

❄

❅
❅❘❳❳❳

❳❳❳
❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛�
�✒

�
�✒

Figure 9. Interrelations of place bisimulation equivalences with basic equivalences
and back-forth bisimulation equivalences

4.3. Interrelations of place bisimulation equivalences with

basic equivalences and back-forth bisimulation equivalences

Let us consider interrelations of place bisimulation equivalences with basic equiva-
lences and back-forth bisimulation equivalences.

Proposition 4. For nets N and N ′ the following holds: N ∼pr N ′ ⇒ N↔prhN
′.

Theorem 2. Let ↔,↔↔∈ {≡,↔,∼,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, pr, iST,
pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}.
For nets N and N ′ the following holds: N ↔⋆ N ′ ⇒ N ↔↔⋆⋆ N ′ iff in the graph
in Figure 9 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) By definitions of the equivalences.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 9 is

proved by Theorem 1 and the following examples. Let us note that dashed lines in
Figure 10 connect places related by place bisimulation.

• In Figure 10(a) N ∼i N
′, but N 6≡pom N ′, since only in the net N ′ action b

can depend on a.

• In Figure 10(b) N ∼pom N ′, but N 6≡pr N ′, since only in the net N ′ the
transition with label a has two input (and two output) places.

• In Figure 10(c) N ≡occ N
′, but N 6∼i N

′, since any place bisimulation must
relate input places of the nets N and N ′. But if we put an additional token
in each of these places, then the action c can happen only in N ′.

74 I.V. Tarasyuk

c

a b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉
✡✡✢ ❏❏❫

❄ ❄

❩❩⑦ ✚✚❂

≡occ

6∼i

a b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉
✡✡✢ ❏❏❫

❄ ❄

N N ′

(c)

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N

(a)

∼i

6≡pom

↔/ iST

↔/ sbsf

b a a

b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉
✡✡✢ ❏❏❫✡✡✢ ❏❏❫

❄

❄

N ′

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N

(b)

∼pom

6≡pr

↔/ iST

↔/ sbsf

b a a

b

✍✌
✎☞❄
❄

N ′ ✍✌
✎☞

✍✌
✎☞✉ ✉

b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞❄

❄

❄

❄ ❄
◗
◗◗s

❩
❩❩⑦ ❄

✄
✄
✄
✄
✄
✄
✄✄✎

✘✘ ❳❳
✘✘ ❳❳

✥✥ ❵❵

✥✥
✁✁

✧✧✥✥✥✥✭✭

✧✧ ❳❳✘✘ ✥✥ ❵❵

✟✟

❤❤

❝❝
❝❝
❝❝
◗◗

❝❝
❝❝
❝❝
◗◗

PP ❤❤

✑
✑✑✰

Figure 10. Examples of place bisimulation equivalences

• In Figure 10(b) N ∼pom N ′, but N↔/ iSTN
′, since only in the net N ′ action

a can start so that no b can begin working until finishing of a.

• In Figure 5(c) N ∼pr N ′, but N 6≡mes N ′, only the MES corresponding to
the net N ′, has two conflict actions a.

• In Figure 10(b) N ∼pom N ′, but N↔/ sbsfN
′, since only in the net N ′ action

a can happen so that b must depend on a. ⊓⊔

5. Preservation of the equivalences by refinements

Let us consider which equivalences may be used for top-down design.

Definition 16. An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 such that:

1. ∃pin, pout ∈ PD such that pin 6= pout and
◦D = {pin}, D◦ = {pout}, i.e. net

D has unique input and unique output place.

2. MD = {pin} and ∀M ∈ Mark(D) (pout ∈ M ⇒ M = {pout}), i.e. at the
beginning there is unique token in pin, and at the end there is unique token
in pout;

Equivalences for behavioural analysis 75

3. p•in and •pout are proper sets (not multisets), i.e. pin (respectively pout)
represents a set of all tokens consumed (respectively produced) for any refined
transition.

4. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and one
output place.

SM-refinement operator “replaces” all transitions with particular label of a net
by SM-net.

Definition 17. Let N = 〈PN , TN , FN , lN ,MN〉 be some net, a ∈ lN (TN) and
D = 〈PD, TD, FD, lD,MD〉 be SM-net. An SM-refinement, denoted by ref(N, a,D),
is (up to isomorphism) a net N = 〈PN , TN , FN , lN ,MN〉, where:

• PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

• TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

• FN (x̄, ȳ) =

FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

• lN (ū) =

{
lN (ū), ū ∈ TN \ l−1

N (a);
lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1

N (a);

• MN (p) =

{
MN(p), p ∈ PN ;
0, otherwise.

Some equivalence on nets is preserved by refinements, if equivalent nets remain
equivalent after applying any refinement operator to them accordingly.

Theorem 3. Let ↔∈ {≡,↔,∼,≃} and ⋆ ∈ { , i, s, pw, pom, pr, iST, pwST,
pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}. For
nets N = 〈PN , TN , FN , lN ,MN 〉, N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉 such that a ∈
lN (TN) ∩ lN ′(TN ′) and SM-net D = 〈PD, TD, FD, lD,MD〉 the following holds:
N ↔⋆ N ′ ⇒ ref(N, a,D) ↔⋆ ref(N ′, a,D) iff equivalence ↔⋆ is in oval in
Figure 11.

6. Investigation of the equivalences on sequential nets

Let us consider the influence of concurrency on interrelations of the equivalences.

Definition 18. A net N = 〈PN , TN , FN , lN ,MN 〉 is sequential, if ∀M ∈ Mark(N)
¬∃t, u ∈ TN : •t+ •u ⊆ M , i.e. neither transitions are conurrently enabled in any
reachable marking.

76 I.V. Tarasyuk

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄ ❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

�
�✠

�
�✠

�
�✠

�
�✠

❅
❅❘

❅
❅❘✛ ✛ ✛

❄ ❄

❄

❅
❅❘❳❳❳

❳❳❳
❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛�
�✒

�
�✒

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌✎

✍
☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✛ ✛ ✛

Figure 11. Preservation of the equivalences by SM-refinements

Proposition 5. For sequential nets N and N ′ the following holds:

1. N ≡i N
′ ⇔ N ≡pom N ′;

2. N↔iN
′ ⇔ N↔pomhN

′;

3. N↔prN
′ ⇔ N↔pombprfN

′;

4. N ∼i N
′ ⇔ N ∼pom N ′.

In Figure 12 dashed lines embrace the equivalences coinciding on sequential
nets.

Theorem 4. Let ↔,↔↔∈ {≡,↔,∼,≃}, ⋆, ⋆⋆ ∈ { , i, pr, prST, prh,mes, occ}. For
sequential nets N and N ′ the following holds: N ↔⋆ N ′ ⇒ N ↔↔⋆⋆ N ′ iff in the
graph in Figure 13 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) By Theorem 2.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 13 is

proved by the following examples on sequential nets.

• In Figure 4(d) N ≡mes N
′, but N 6≡pr N ′.

• In Figure 4(e) N ≡pr N
′, but N↔/ iN

′.

• In Figure 6(c)N↔prN
′, but N↔/ prSTN

′, since only in the net N ′ the process
with action a can start so that it can be extended by action b in the only
way (i.e. so that extended process be unique).

Equivalences for behavioural analysis 77

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄ ❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

�
�✠

�
�✠

�
�✠

�
�✠

❅
❅❘

❅
❅❘✛ ✛ ✛

❄ ❄

❄

❅
❅❘❳❳❳

❳❳❳
❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛�
�✒

�
�✒

Figure 12. Merging of the equivalences on sequential nets

≡i ✛ ≡pr

❄ ❄

↔i ↔pr✛

↔prST

❄

↔prh

≃≡mes ≡occ✛

❄

∼i

∼pr

❄

❄❄��✠

✛

✛

✠✛

Figure 13. Interrelations of the equivalences on sequential nets

78 I.V. Tarasyuk

c c

✍✌
✎☞

✍✌
✎☞

b

✍✌
✎☞

✍✌
✎☞

a

✍✌
✎☞✉
❄

✓✓✴ ❏❏❫

❄

❄

✂✂✌ ❏❏❫

✉

(a) N

↔prST

↔/ prh

c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

bb

✍✌
✎☞

a

✍✌
✎☞✉

✉

❄

��✠ ❩❩⑦

❄ ❄

❄ ❄

❏❏❫

N ′

❈
❈
❈
❈
❈
❈
❈❲

✍✌
✎☞

↔pomh

6≡mes

✚
✚✚❂

❇
❇
❇
❇
❇
❇
❇◆��✠ ✑

✑✑✰

a

✍✌
✎☞

✍✌
✎☞✉ ✉
❄

a

✍✌
✎☞

✍✌
✎☞✉ ✉

❄
a
❄

✍✌
✎☞❄

N N ′(b)

↔pomh

∼pom

6≡pr

6≡mes

✟✟✧✧ ❜❜
✭✭ ❤❤

❍❍

✑
✑✑✰

❙❙

❝❝

Figure 14. Examples of the equivalences on sequential nets

• In Figure 14(a) N↔prSTN
′, but N↔/ prhN

′, since only in the net N ′ there is
process with actions a and b s.t. it can be extended by process with action
c in the only way. (i.e. so that connection of causal net with action c and
a-containing subnet of causal net with actions a and b be unique).

• In Figure 5(c) N↔prhN
′, but N 6≡mes N

′.

• In Figure 5(d) N ≡occ N
′, but N 6≃ N ′.

• In Figure 14(b) N ∼i N
′, but N 6≡pr N ′, since the transition with label a

has two input places only in the net N ′.

• In Figure 10(c) N ≡occ N
′, but N 6∼i N

′.

• In Figure 5(c) N ∼pr N
′, but N 6≡mes N

′. ⊓⊔

7. Conclusion

In this paper, we examined and supplemented by new ones a group of back-forth and
place bisimulation equivalences. We compared them with basic ones on the whole
class of Petri nets as well as on their subclass of sequential nets. All the considered
equivalences were treated for preservation by SM-refinements to establish which of
them may be used for top-down design of concurrent systems.

Equivalences for behavioural analysis 79

Further research may consist in the investigation of analogs of the considered
equivalences on Petri nets with τ -actions (τ -equivalences). τ -actions are used to
abstract from internal, invisible to external observer behaviour of systems to be
modelled. In the framework of Petri nets with τ -actions interrelations of equiva-
lences are drastically changed.

For example, let us try to define τ -equivalences in process semantics. We
abstract from τ -labelled transitions of C-nets by removing these transitions and
multiplication of their input and output places. Then all causal dependencies of
transitions with visible labels are preserved, and process τ -equivalences will imply
corresponding pomset ones. But while such an abstraction the quantity of input
and output places of some transitions with visible labels may be changed. The
consequence is, in particular, that history preserving τ -bisimulation equivalences
do not imply usual τ -bisimulation ones.

Therefore, it is no sence to introduce process τ -equivalences. By similar reasons,
it is no sence to define strict place τ -bisimulation equivalences. In addition, multi
event structure τ -equivalence does not imply even usual τ -bisimulation relations,
but only τ -trace ones.

In the literature, a number of τ -equivalences were defined.

Some basic τ -equivalences were considered on Petri nets and event structures
in [6, 22, 29]. It was shown the independence of ST- and history preserving τ -
bisimulation equivalences.

In [14] interleaving back – interleaving forth τ -bisimuation equivalence was de-
fined on transition systems. Its coincidence with interleaving branching
τ -bisimuation equivalence was proved. Similar result was obtained in [23], where
pomset back – pomset forth history preserving τ -bisimulation equivalence was in-
troduced, and its merging with new notion of branching pomset history preserving
τ -bisimulation equivalence was established.

In [5, 3] interleaving place τ -bisimulation and τp-bisimulation equivalences were
introduced.

In future, we plan to define τ -analogs of all the equivalence relations considered
in this paper and exam them following the same pattern.

Acknowledgements. I would like to thank Dr. Irina B. Virbitskaite for many helpful
discussions. I am also grateful to Prof. Dr. Eike Best, head of the Institute of
Informatics, University of Hildesheim, where this paper was written.

References

[1] C. Autant, Z. Belmesk, Ph. Schnoebelen: Strong bisimularity on nets revisited.
Research Report 847-I, LIFIA-IMAG, Grenoble, France, 28 p., March 1991.

[2] C. Autant, Z. Belmesk, Ph. Schnoebelen: Strong bisimularity on nets revisited.
Extended abstract. LNCS 506, p. 295–312, June 1991.

[3] C. Autant, W. Pfister, Ph. Schnoebelen: Place bisimulations for the reduction
of labelled Petri nets with silent moves. Proceedings of International Confer-
ence on Computing and Information, 1994.

80 I.V. Tarasyuk

[4] C. Autant, Ph. Schnoebelen: Place bisimulations in Petri nets. LNCS 616, p.
45–61, June 1992.

[5] C. Autant: Petri nets for the semantics and the implementation of parallel
processes. Ph.D. thesis, Institut National Polytechnique de Grenoble, May
1993 (in French).

[6] E. Best, R. Devillers, A. Kiehn, L. Pomello: Concurrent bisimulations in Petri
nets. Acta Informatica 28, p. 231–264, 1991.

[7] G. Boudol, I. Castellani: On the semantics of concurrency: partial orders and
transition systems. LNCS 249, p. 123–137, 1987.

[8] F. Cherief: Back and forth bisimulations on prime event structures. LNCS 605,
p.843–858, June 1992.

[9] F. Cherief: Contributions à la sémantique du parallélisme: bisimulations pour
le raffinement et le vrai parallélisme. Ph.D. thesis, Institut National Politech-
nique de Grenoble, France, October 1992 (in French).

[10] F. Cherief: Investigations of back and forth bisimulations on prime event struc-
tures. Computers and Artificial Intelligence 11(5), p. 481–496, 1992.

[11] R.J. van Glabbeek, F.W. Vaandrager: Petri net models for algebraic theories
of concurrency. LNCS 259, p. 224–242, 1987.

[12] J. Grabowski: On partial languages. Fundamenta Informaticae IV(2), p. 428–
498, 1981.

[13] C.A.R. Hoare: Communicating sequential processes, on the construction of
programs. (McKeag R.M., Macnaghten A.M., eds.) Cambridge University
Press, p. 229–254, 1980.

[14] R. De Nicola, U. Montanari, F.W. Vaandrager: Back and forth bisimulations.
LNCS 458, p. 152–165, 1990.

[15] M. Nielsen, G. Plotkin, G. Winskel: Petri nets, event structures and domains.
TCS 13, p. 85–108, 1981.

[16] M. Nielsen, P.S. Thiagarajan: Degrees of non-determinizm and concurrency:
A Petri net view. LNCS 181, p. 89–117, December 1984.

[17] E.-R. Olderog: Nets, terms and formulas, three views of concurrent processes
and their relationship. Habilitationsschrift, Christian-Albrechts Universität,
Kiel, July 1989.

[18] E.-R. Olderog: Strong bisimularity on nets: a new concept for comparsing net
semantics. LNCS 354, p. 549–573, 1989.

[19] E.-R. Olderog: Nets, terms and formulas. Cambridge Tracts in Theoretical
Computer Science 23, Cambridge University Press, 1991.

Equivalences for behavioural analysis 81

[20] D.M.R. Park: Concurrency and automata on infinite sequences. LNCS 104, p.
167–183, March 1981.

[21] C.A. Petri: Kommunikation mit Automaten. Ph.D. thesis, Universität Bonn,
Schriften des Instituts für Instrumentelle Mathematik, 1962 (in German).

[22] L. Pomello: Some equivalence notions for concurrent systems. An overview.
LNCS 222, p. 381–400, 1986.

[23] S. Pinchinat: Bisimulations for the semantics of reactive systems. Ph.D. thesis,
Institut National Politechnique de Grenoble, January 1993 (in French).

[24] V.R. Pratt: On the composition of processes. Proceedings of 9th POPL, p.
213–223, 1982.

[25] A. Rabinovitch, B.A. Trakhtenbrot: Behaviour structures and nets. Funda-
menta Informaticae XI, p. 357–404, 1988.

[26] I.V. Tarasyuk: An investigation of equivalence notions on some subclasses of
Petri nets. Bulletin of the Novosibirsk Computing Center (Series Computer
Science) 3, p. 89–101, Computing Center, Novosibirsk, 1995.

[27] I.V. Tarasyuk: Equivalence notions for design of concurrent systems using
Petri nets. Hildesheimer Informatik-Bericht 4/96, part 1, 19 p., Institut für
Informatik, Universität Hildesheim, Hildesheim, Germany, January 1996.

[28] I.V. Tarasyuk: Petri net equivalences for design of concurrent systems.
Proceedings of Workshop “Concurrency, Specification and Programming -
96”, Informatik-Bericht 69, p. 190–204, Institut für Informatik, Humboldt-
Universität zu Berlin, Berlin, Germany, 1996.

[29] W. Vogler: Bisimulation and action refinement. LNCS 480, p. 309–321, 1991.

82

