
τ -Equivalences and Refinement ⋆

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,
Lavrentieva ave. 6, 630090, Novosibirsk, Russia

Fax: +7 3832 32 34 94
E-mail: itar@iis.nsk.su

Abstract. The paper is devoted to the investigation of behavioural
equivalences for Petri nets with silent transitions. Basic τ -equivalences
and back-forth τ -bisimulation equivalences are supplemented by new
ones, giving rise to complete set of equivalence notions in interleaving
/ true concurrency and linear / branching time semantics. Their interre-
lations are examined, and the preservation of all the equivalence notions
by refinements is investigated.
Keywords: Petri nets with silent transitions, basic τ -equivalences, back-
forth τ -bisimulation equivalences, refinement.

1 Introduction

The notion of equivalence is central in any theory of systems. It allows to compare
systems taking into account particular aspects of their behaviour.

Petri nets became a popular formal model for design of concurrent and dis-
tributed systems. One of the main advantages of Petri nets is their ability for
structural characterization of three fundamental features of concurrent compu-
tations: causality, nondeterminism and concurrency.

Silent transitions are transitions labelled by special silent action τ which
represents an internal activity of a system to be modelled and it is invisible for
an external observer.

Equivalences which abstract of silent actions are called τ-equivalences (these
are labelled by the symbol ‘τ ’ to distinguish them of relations not abstracting
of silent actions). The following basic notions of τ -equivalences are known from
the literature.

– τ-trace equivalences (they respect only protocols of behaviour of systems):
interleaving (≡τ

i) [7], step (≡τ
s) [7], partial word (≡τ

pw) [10] and pomset
(≡τ

pom) [7].
– Usual τ-bisimulation equivalences (they respect branching structure of be-

haviour of systems): interleaving (↔τ
i) [7], step (↔τ

s) [7], partial word (↔τ
pw)

[10] and pomset (↔τ
pom) [7].

⋆ The work is supported by INTAS-RFBR, grant 95-0378, Volkswagen Fund, grant
I/70 564 and the Foundation for Promotion to Young Scientists of Siberian Division
of the Russian Academy of Sciences

– ST-τ-bisimulation equivalences (they respect the duration or maximality
of events in behaviour of systems): interleaving (↔τ

iST) [10], partial word
(↔τ

pwST) [10] and pomset (↔τ
pomST) [10].

– History preserving τ-bisimulation equivalences (they respect the “past” or
“history” of behaviour of systems): pomset (↔τ

pomh) [7].
– History preserving ST-τ-bisimulation equivalences (they respect the “his-

tory” and the duration or maximality of events in behaviour of systems):
pomset (↔τ

pomhST) [7].
– Usual branching τ-bisimulation equivalences (they respect branching struc-

ture of behaviour of systems taking a special care for silent actions): inter-
leaving (↔τ

ibr) [7].
– History preserving branching τ-bisimulation equivalences (they respect “his-

tory” and branching structure of behaviour of systems taking a special care
for silent actions): pomset history preserving (↔τ

pomhbr) [7].
– Isomorphism (≃) (i.e. coincidence of systems up to renaming of their com-

ponents).

Another important group of equivalences are back-forth bisimulation ones which
are based on the idea that bisimulation relation do not only require systems to
simulate each other behaviour in the forward direction but also when going
back in history. They are closely connected with equivalences of logics with past
modalities.

These equivalence notions were initially introduced in [6]. On transition sys-
tems with silent actions it was shown that back-forth variant (↔τ

ibif) of inter-
leaving τ -bisimulation equivalence coincide with ↔τ

ibr.
In [4] the new variants of step, partial word and pomset back-forth bisim-

ulation equivalences were defined in the framework of event structures without
silent actions.

In [8] the new idea of differentiating the kinds of back and forth simulations
appeared. The set of all possible back-forth equivalence notions was proposed in
interleaving, step, partial word and pomset semantics for event structures with-
out silent actions. The new notion of τ -equivalence was proposed for event struc-
tures with silent actions: pomset back pomset forth (↔τ

pombpomf) τ -bisimulation
equivalence. Its coincidence with ↔τ

pomhbr was proved.
To choose most appropriate behavioural viewpoint on systems to be mod-

elled, it is very important to have a complete set of equivalence notions in all
semantics and understand their interrelations. This branch of research is usually
called comparative concurrency semantics. Treating equivalences for preservation
by refinements allows one to decide which of them may be used for top-down
design.

Working in the framework of Petri nets with silent transitions, in this paper
we continue research of [9] and extend the set of basic notions of τ -equivalences
by interleaving ST-branching τ -bisimulation one (↔τ

iSTbr), pomset history pre-
serving ST-branching τ -bisimulation one (↔τ

pomhSTbr) and multi-event structure
one (≡τ

mes). Let us note that an idea to introduce ↔τ
pomhSTbr appeared initially

in [8]. We complete back-forth τ -equivalences from [8] by 6 new notions in in-

terleaving – pomset semantics. We compare all the τ -equivalences and obtain a
diagram of their interelations.

In [3], SM-refinement operator for Petri nets was proposed, which “replaces”
their transitions by SM-nets, a special subclass of state machine nets. We treat
all the τ -equivalences for preservation by SM-refinements. We show that↔τ

iSTbr ,
↔τ

pomhSTbr and ≡τ
mes, i.e. all the new equivalences introduced in this paper, are

preserved by SM-refinements. Thus, we have branching and conflict preserving
equivalences which may be used for multilevel design. In the literature, a stability
w.r.t. SM-refinements was proved only for ↔τ

pomhST in [3] and for ↔τ
iST in [5].

The preservation result for other ST-τ -bisimulation equivalences was proved in
[10], but it was done on event structures and an other refinement operator was
used. The preservation of trace τ -equivalences was not established before. Thus,
our results for ↔τ

pwST , ↔
τ
pomST , ≡

τ
pw and ≡τ

pom are also new.

2 Basic definitions

In this section we give some basic definitions used further.

2.1 Labelled nets

Let Act = {a, b, . . .} be a set of action names or labels. The symbol τ 6∈ Act
denotes a special silent action. We denote Actτ = Act ∪ {τ}.

Definition 1. A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

– PN = {p, q, . . .} is a set of places;
– TN = {t, u, . . .} is a set of transitions;
– FN : (PN × TN) ∪ (TN × PN) → N is the flow relation with weights (N

denotes a set of natural numbers);
– lN : TN → Actτ is a labelling of transitions with action names.

Given labelled nets N = 〈PN , TN , FN , lN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉.
A mapping β : PN ∪ TN → PN ′ ∪ TN ′ is an isomorphism between N and N ′,
denoted by β : N ≃ N ′, if:

1. β is a bijection such that β(PN) = PN ′ and β(TN) = TN ′ ;
2. ∀p ∈ PN ∀t ∈ TN FN (p, t) = FN ′(β(p), β(t)) and FN (t, p) = FN ′(β(t), β(p));
3. ∀t ∈ TN lN (t) = lN ′(β(t)).

Labelled nets N and N ′ are isomorphic, denoted by N ≃ N ′, if ∃β : N ≃ N ′.
Given a labelled net N and some transition t ∈ TN , the precondition and

postcondition t, denoted by •t and t• respectively, are the multisets defined in
such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous definitions are
introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). Let ◦N = {p ∈
PN | •p = ∅} is a set of input places of N and N◦ = {p ∈ PN | p• = ∅} is a set
of output places of N .

A labelled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN such
that t•i−1 ∩ •ti 6= ∅ (1 ≤ i ≤ n) and t0 = tn. A labelled net N is ordinary if
∀p ∈ PN

•p and p• are proper sets (not multisets).
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN ∪

TN . Let us introduce the following notions.

– x ≺N y ⇔ xF+
N y, where F

+
N is a transitive closure of FN (strict causal

dependence relation);
– x �N y ⇔ (x ≺N y) ∨ (x = y) (a relation of causal dependence);
– x#Ny ⇔ ∃t, u ∈ TN (t 6= u, •t ∩ •u 6= ∅, t �N x, u �N y) (a relation of

conflict);
– ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x).

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

2.2 Marked nets

We denote the set of all finite multisets over a set X by M(X). A marking of a
labelled net N is a multiset M ∈ M(PN).

Definition 2. A marked net (net) is a tuple N = 〈PN , TN , FN , lN ,MN〉, where
〈PN , TN , FN , lN 〉 is a labelled net and MN ∈ M(PN) is the initial marking.

Given nets N = 〈PN , TN , FN , lN ,MN〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉.
A mapping β : PN ∪ TN → PN ′ ∪ TN ′ is an isomorphism between N and N ′,
denoted by β : N ≃ N ′, if β : 〈PN , TN , FN , lN 〉 ≃ 〈PN ′ , TN ′ , FN ′ , lN ′〉 and
∀p ∈ PN MN(p) = MN ′(β(p)). Nets N and N ′ are isomorphic, denoted by
N ≃ N ′, if ∃β : N ≃ N ′.

Let M ∈ M(PN) be a marking of a net N . A transition t ∈ TN is firable in

M , if •t ⊆M . If t is firable inM , firing it yields a new marking M̃ =M−•t+t•,

denoted by M
t
→ M̃ . Mark(N) denotes a set of all reachable markings of a net

N .

2.3 Partially ordered sets

Definition 3. A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉,
where:

– X = {x, y, . . .} is some set;
– ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X;
– l : X → Actτ is a labelling function.

Let ρ = 〈X,≺, l〉 be lposet and Y ⊆ X . A restriction of ρ to the set Y is
defined as follows: ρ|Y = 〈Y,≺ ∩(Y × Y), l|Y 〉.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′,

denoted by β : ρ ≍ ρ′, if β is a bijection s.t. ∀x ∈ X l(x) = l′(β(x)). We write
ρ ≍ ρ′, if ∃β : ρ ≍ ρ′.

A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted by
β : ρ ⊑ ρ′, if β : ρ ≍ ρ′ and ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y). We write ρ ⊑ ρ′,
if ∃β : ρ ⊑ ρ′.

A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted by
β : ρ ≃ ρ′, if β : ρ ⊑ ρ′ and β−1 : ρ′ ⊑ ρ. Lposets ρ and ρ′ are isomorphic,
denoted by ρ ≃ ρ′, if ∃β : ρ ≃ ρ′.

Definition 4. Partially ordered multiset (pomset) is an isomorphism class of
lposets.

2.4 Event structures

Definition 5. A labelled event structure (LES) is a quadruple ξ = 〈X,≺,#, l〉,
where:

– X = {x, y, . . .} is a set of events;
– ≺⊆ X ×X is a strict partial order, a causal dependence relation, satisfying

to the principle of finite causes: ∀x ∈ X | ↓ x| <∞;
– # ⊆ X ×X is an irreflexive symmetrical conflict relation, satisfying to the

principle of conflict heredity: ∀x, y, z ∈ X x#y ≺ z ⇒ x#z;
– l : X → Actτ is a labelling function.

Let ξ = 〈X,≺,#, l〉 be LES and Y ⊆ X . A restriction of ξ to the set Y is
defined as follows: ξ|Y = 〈Y,≺ ∩(Y × Y),# ∩ (Y × Y), l|Y 〉.

Let ξ = 〈X,≺,#, l〉 and ξ′ = 〈X ′,≺′,#′, l′〉 be LES’s. A mapping β : X → X ′

is an isomorphism between ξ and ξ′, denoted by β : ξ ≃ ξ′, if:

1. β is a bijection;
2. ∀x ∈ X l(x) = l′(β(x));
3. ∀x, y ∈ X x ≺ y ⇔ β(x) ≺′ β(y);
4. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

LES’s ξ and ξ′ are isomorphic, denoted by ξ ≃ ξ′, if ∃β : ξ ≃ ξ′.

Definition 6. A multi-event structure (MES) is an isomorphism class of LES’s.

2.5 C-processes

Definition 7. A causal net is an acyclic ordinary labelled net
C = 〈PC , TC , FC , lC〉, s.t.:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;
2. ∀x ∈ PC ∩ TC | ↓C x| <∞, i.e. a set of causes is finite.

On the basis of any causal net C = 〈PC , TC , FC , lC〉 one can define lposet
ρC = 〈TC ,≺N ∩(TC × TC), lC〉.

The fundamental property of causal nets is: if C is a causal net, then there
exists a sequence of transition firings ◦C = L0

v1→ · · ·
vn→ Ln = C◦ such that

Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n
i=0Li and TC = {v1, . . . , vn}. Such a sequence is

called a full execution of C.

Definition 8. Given a net N and a causal net C. A mapping ϕ : PC ∪ TC →
PN ∪ TN is an embedding C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈ M(PN) and ϕ(TC) ∈ M(TN), i.e. sorts are preserved;
2. ∀v ∈ TC

•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected;
3. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if ◦C
v1→ · · ·

vn→ C◦ is a full

execution of C, then M = ϕ(◦C)
ϕ(v1)
−→ · · ·

ϕ(vn)
−→ ϕ(C◦) = M̃ is an sequence of

transition firings in N .

Definition 9. A firable in marking M C-process (process) of a net N is a pair
π = (C,ϕ), where C is a causal net and ϕ : C → N is an embedding such that
M = ϕ(◦C). A firable in MN process is a process of N .

We write Π(N,M) for a set of all firable in marking M processes of a net N
and Π(N) for the set of all processes of a net N . The initial process of a net N
is πN = (CN , ϕN) ∈ Π(N), such that TCN

= ∅. If π ∈ Π(N,M), then firing of

this process transforms a marking M into M̃ = M − ϕ(◦C) + ϕ(C◦) = ϕ(C◦),

denoted by M
π
→ M̃ .

Let π = (C,ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)). A process

π̃ is an extension of π by process π̂, denoted by π
π̂
→ π̃, if TC ⊆ T

C̃
is a left-closed

set in C̃ and T
Ĉ
= T

C̃
\ TC . We write π → π̃, if ∃π̂ π

π̂
→ π̃.

A process π̃ is an extension of a process π by one transition, denoted by

π
v
→ π̃ or π

a
→ π̃, if π

π̂
→ π̃, T

Ĉ
= {v} and l

Ĉ
(v) = a .

A process π̃ is an extension of a process π by sequence of transitions, denoted
by π

σ
→ π̃ or π

ω
→ π̃, if ∃πi ∈ Π(N) (1 ≤ i ≤ n) π

v1→ π1
v2→ . . .

vn→ πn = π̃, σ =
v1 · · · vn and l

Ĉ
(σ) = ω.

A process π̃ is an extension of a process π by multiset of transitions, denoted

by π
V
→ π̃ or π

A
→ π̃, if π

π̂
→ π̃, ≺

Ĉ
= ∅, T

Ĉ
= V and l

Ĉ
(V) = A.

2.6 O-processes

Definition 10. An occurrence net is an acyclic ordinary labelled net
O = 〈PO, TO, FO, lO〉, s.t.:

1. ∀r ∈ PO |•r| ≤ 1, i.e. there are no backwards conflicts;
2. ∀x ∈ PO ∪ TO ¬(x#Ox), i.e. conflict relation is irreflexive;
3. ∀x ∈ PO ∪ TO | ↓O x| <∞, i.e. set of causes is finite.

Let O = 〈PO, TO, FO, lO〉 be occurrence net and N = 〈PN , TN , FN , lN ,MN〉 be
some net. A mapping ψ : PO∪TO → PN∪TN is an embedding O into N , notation
ψ : O → N , if:

1. ψ(PO) ∈ M(PN) and ψ(TO) ∈ M(TN). i.e. sorts are preserved;
2. ∀v ∈ TO lO(v) = lN (ψ(v)), i.e. labelling is preserved;

3. ∀v ∈ TO
•ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), i.e. flow relation is respected;

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w)) ⇒ v = w, i.e. there are no “super-
fluous” conflicts.

Definition 11. An O-process of a net N is a pair ̟ = (O,ψ), where O is an
occurrence net and ψ : O → N is an embedding s.t. MN = ψ(◦O).

We write ℘(N) for a set of all O-processes of a net N . The initial O-process
of a net N coincides with its initial C-process, i.e. ̟N = πN .

Let ̟ = (O,ψ), ˜̟ = (Õ, ψ̃) ∈ ℘(N), O = 〈PO, TO, FO, lO〉,

Õ = 〈P
Õ
, T

Õ
, F

Õ
, l

Õ
〉. An O-process ˜̟ is an extension of ̟, denoted by ̟ → ˜̟ ,

if TO ⊆ T
Õ
is a left-closed set in Õ.

An O-process̟ of a netN ismaximal, if ∀̟ = (O,ψ) s.t.̟ → ˜̟ : T
Õ
\TO =

∅. A set of all maximal O-processes of a net N consists of the unique O-process
̟max = (Omax, ψmax). In such a case an isomorphism class of occurrence net
Omax is an unfolding of a net N , notation U(N).

Let us note that on the basis of any occurrence net O one can define LES
ξO = 〈TO,≺O ∩(TO × TO),#O ∩ (TO × TO), lO〉. Then on the basis of unfolding
U(N) of a net N one can define MES E(N) = ξU(N) which is an isomorphism
class of LES ξO for O ∈ U(N).

3 Basic τ -equivalences

In this section we propose basic τ -equivalences: trace, bisimulation and conflict
preserving.

3.1 τ -trace equivalences

We denote the empty string by the symbol ε.
Let σ = a1 · · · an ∈ Act∗τ . We define vis(σ) as follows (a ∈ Actτ).

1. vis(ε) = ε;

2. vis(σa) =

{
vis(σ)a, a 6= τ ;
vis(σ), a = τ.

Definition 12. A visible interleaving trace of a net N is a sequence
vis(a1 · · · an) ∈ Act∗ s.t. πN

a1→ π1
a2→ . . .

an→ πn, where πi ∈ Π(N) (1 ≤ i ≤ n).
We denote a set of all visible interleaving traces of a net N by V isIntT races(N).
Two nets N and N ′ are interleaving τ -trace equivalent, denoted by N ≡τ

i N
′, if

V isIntT races(N) = V isIntT races(N ′).

Let Σ = A1 · · ·An ∈ (M(Actτ))
∗. We define vis(Σ) as follows

(A ∈ M(Actτ)).

1. vis(ε) = ε;

2. vis(ΣA) =

{
vis(Σ)(A ∩ Act), A ∩ Act 6= ∅;
vis(Σ), otherwise.

Definition 13. A visible step trace of a net N is a sequence vis(A1 · · ·An) ∈

(M(Act))∗ s.t. πN
A1→ π1

A2→ . . .
An→ πn, where πi ∈ Π(N) (1 ≤ i ≤ n). We denote

a set of all visible step traces of a net N by V isStepT races(N). Two nets N and
N ′ are step τ -trace equivalent, denoted by N ≡τ

s N
′, if V isStepT races(N) =

V isStepT races(N ′).

Let ρ = 〈X,≺, l〉 is lposet s.t. l : X → Actτ . We denote vis(X) = {x ∈ X |
l(x) ∈ Act} and vis(ρ) = ρ|vis(X).

Definition 14. A visible pomset trace of a net N is a pomset vis(ρ), an iso-
morphism class of lposet vis(ρC) for π = (C,ϕ) ∈ Π(N). We denote a set of
all visible pomsets of a net N by V isPomsets(N). Two nets N and N ′ are
partial word τ -trace equivalent, denoted by N ≡τ

pw N ′, if V isPomsets(N) ⊑
V isPomsets(N ′) and V isPomsets(N ′) ⊑ V isPomsets(N).

Definition 15. Two nets N and N ′ are pomset τ -trace equivalent, denoted by
N ≡τ

pom N ′, if V isPomsets(N)
= V isPomsets(N ′).

3.2 τ -bisimulation equivalences

Let C = 〈PC , TC , FC , lC〉 be C-net. We denote vis(TC) = {v ∈ TC | lC(v) ∈ Act}
and vis(≺C) =≺C ∩(vis(TC)× vis(TC)).

Usual τ -bisimulation equivalences

Definition 16. Let N and N ′ be some nets. A relation R ⊆ Π(N)×Π(N ′) is
a ⋆-τ -bisimulation between N and N ′, ⋆ ∈{interleaving, step, partial word,
pomset}, denoted by R : N↔τ

⋆N
′, ⋆ ∈ {i, s, pw, pom}, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
π̂
→ π̃,

(a) |vis(T
Ĉ
)| = 1, if ⋆ = i;

(b) vis(≺
Ĉ
) = ∅, if ⋆ = s;

⇒ ∃π̃′ : π′ π̂′

→ π̃′, (π̃, π̃′) ∈ R and

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-τ -bisimulation equivalent, ⋆ ∈{interleaving, step,
partial word, pomset}, denoted by N↔τ

⋆N
′, if ∃R : N↔τ

⋆N
′, ⋆ ∈ {i, s, pw, pom}.

ST-τ -bisimulation equivalences

Definition 17. An ST-τ -process of a net N is a pair (πE , πP) s.t. πE , πP ∈
Π(N), πP → πE and ∀v, w ∈ TCE

(v ≺CE
w) ∨ (lCE

(v) = τ) ⇒ v ∈ TCP
.

We denote a set of all ST-τ-processes of a net N by ST τ −Π(N). (πN , πN)
is the initial ST-τ-process of a net N . Let (πE , πP), (π̃E , π̃P) ∈ ST τ − Π(N).
We write (πE , πP) → (π̃E , π̃P), if πE → π̃E and πP → π̃P .

Definition 18. Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) ×
ST τ − Π(N ′) × B, where B = {β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈
Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)} is a ⋆-ST-τ -bisimulation between N and N ′,
⋆ ∈{interleaving, partial word, pomset}, denoted by R : N↔τ

⋆STN
′, ⋆ ∈ {i, pw,

pom}, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP), (π
′

E , π
′

P), β) ∈ R ⇒ β : vis(ρCE
) ≍ vis(ρC′

E
) and β(vis(TCP

)) =
vis(TC′

P
).

3. ((πE , πP), (π
′

E , π
′

P), β) ∈ R, (πE , πP) → (π̃E , π̃P) ⇒ ∃β̃, (π̃′

E , π̃
′

P) :

(π′

E , π
′

P) → (π̃′

E , π̃
′

P), β̃|vis(TCE
) = β, ((π̃E , π̃P), (π̃

′

E , π̃
′

P), β̃) ∈ R, and if

πP
π
→ π̃E , π

′

P

π′

→ π̃′

E , γ = β̃|TC
, then:

(a) γ−1 : vis(ρC′) ⊑ vis(ρC), if ⋆ = pw;

(b) γ : vis(ρC) ≃ vis(ρC′), if ⋆ = pom.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-ST-τ -bisimulation equivalent, ⋆ ∈{interleaving, partial
word, pomset}, denoted by N↔τ

⋆STN
′, if ∃R : N↔τ

⋆STN
′, ⋆ ∈ {i, pw, pom}.

History preserving τ -bisimulation equivalences

Definition 19. Let N and N ′ be some nets. A relation R ⊆ Π(N)×Π(N ′)×B,
where B = {β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈
Π(N ′)}, is a pomset history preserving τ -bisimulation between N and N ′, de-
noted by N↔τ

pomhN
′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ≃ vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃|vis(TC) = β, (π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving τ -bisimulation equivalent,
denoted by N↔τ

pomhN
′, if ∃R : N↔τ

pomhN
′.

History preserving ST-τ -bisimulation equivalences

Definition 20. Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) ×
ST τ − Π(N ′) × B, where B = {β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈
Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving ST-τ -bisimulati-
on between N and N ′, denoted by R : N↔τ

pomhSTN
′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.
2. ((πE , πP), (π

′

E , π
′

P), β) ∈ R ⇒ β : vis(ρCE
) ≃ vis(ρC′

E
) and β(vis(TCP

)) =
vis(TC′

P
).

3. ((πE , πP), (π
′

E , π
′

P), β) ∈ R, (πE , πP) → (π̃E , π̃P) ⇒ ∃β̃, (π̃′

E , π̃
′

P) :

(π′

E , π
′

P) → (π̃′

E , π̃
′

P), β̃|vis(TCE
) = β, ((π̃E , π̃P), (π̃

′

E , π̃
′

P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving ST-τ -bisimulation equivalent,
denoted by N↔τ

pomhSTN
′, if ∃R : N↔τ

pomhSTN
′.

Usual branching τ -bisimulation equivalences For some net N and π, π̃ ∈

Π(N) we write π ⇒ π̃ when ∃π̂ = (Ĉ, ϕ̂) s.t. π
π̂
→ π̃ and vis(T

Ĉ
) = ∅.

Definition 21. Let N and N ′ be some nets. A relation R ⊆ Π(N)×Π(N ′) is an
interleaving branching τ -bisimulation between N and N ′, denoted by N↔τ

ibrN
′,

if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
a
→ π̃ ⇒

(a) a = τ and (π̃, π′) ∈ R or

(b) a 6= τ and ∃π̄′, π̃′ : π′ ⇒ π̄′ a
→ π̃′, (π, π̄′) ∈ R, (π̃, π̃′) ∈ R.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are interleaving branching τ -bisimulation equivalent, de-
noted by N↔τ

ibrN
′, if ∃R : N↔τ

ibrN
′.

History preserving branching τ -bisimulation equivalences

Definition 22. Let N and N ′ be some nets. A relation R ⊆ Π(N)×Π(N ′)×B,
where B = {β | β : TC → TC′ , π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)}, is a
pomset history preserving branching τ -bisimulation between N and N ′, denoted
by N↔τ

pomhbrN
′, if:

1. (πN , πN ′ , ∅) ∈ R.
2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ≃ vis(ρC′).
3. (π, π′, β) ∈ R, π → π̃ ⇒

(a) (π̃, π′, β) ∈ R or
(b) ∃β̃, π̄′, π̃′ : π′ ⇒ π̄′ → π̃′, β̃|vis(TC) = β, (π, π̄′, β) ∈ R, (π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving branching τ -bisimulation
equivalent, denoted by N↔τ

pomhbrN
′, if ∃R : N↔τ

pomhbrN
′.

ST-branching τ -bisimulation equivalences Let (πE , πP), (π̃E , π̃P) ∈
ST τ −Π(N). We write (πE , πP) ⇒ (π̃E , π̃P), if πE ⇒ π̃E and πP ⇒ π̃P .

Definition 23. Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) ×
ST τ − Π(N ′) × B, where B = {β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈
Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)} is an interleaving
ST-branching τ -bisimulation between N and N ′, denoted by R : N↔τ

iSTbrN
′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.
2. ((πE , πP), (π

′

E , π
′

P), β) ∈ R ⇒ β : vis(ρCE
) ≍ vis(ρC′

E
) and β(vis(TCP

)) =
vis(TC′

P
).

3. ((πE , πP), (π
′

E , π
′

P), β) ∈ R, (πE , πP) → (π̃E , π̃P) ⇒
(a) ((π̃E , π̃P), (π

′

E , π
′

P), β) ∈ R or

(b) ∃β̃, (π̄′

E , π̄
′

P), (π̃
′

E , π̃
′

P) : (π′

E , π
′

P) ⇒ (π̄′

E , π̄
′

P) → (π̃′

E , π̃
′

P), β̃|vis(TCE
) =

β,
((πE , πP), (π̄

′

E , π̄
′

P), β) ∈ R, ((π̃E , π̃P), (π̃
′

E , π̃
′

P), β̃) ∈ R.
4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are interleaving ST-branching τ -bisimulation equivalent,
denoted by N↔τ

iSTbrN
′, if ∃R : N↔τ

iSTbrN
′.

History preserving ST-branching τ -bisimulation equivalences

Definition 24. Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) ×
ST τ − Π(N ′) × B, where B = {β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈
Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)} is a pomset history preserving ST-branching
τ -bisimulation between N and N ′, denoted by R : N↔τ

pomhSTbrN
′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.
2. ((πE , πP), (π

′

E , π
′

P), β) ∈ R ⇒ β : vis(ρCE
) ≃ vis(ρC′

E
) and β(vis(TCP

)) =
vis(TC′

P
).

3. ((πE , πP), (π
′

E , π
′

P), β) ∈ R, (πE , πP) → (π̃E , π̃P) ⇒
(a) ((π̃E , π̃P), (π

′

E , π
′

P), β) ∈ R or

(b) ∃β̃, (π̄′

E , π̄
′

P), (π̃
′

E , π̃
′

P) : (π′

E , π
′

P) ⇒ (π̄′

E , π̄
′

P) → (π̃′

E , π̃
′

P), β̃|vis(TCE
) =

β,
((πE , πP), (π̄

′

E , π̄
′

P), β) ∈ R, ((π̃E , π̃P), (π̃
′

E , π̃
′

P), β̃) ∈ R.
4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving ST-branching τ -bisimulation
equivalent, denoted by N↔τ

pomhSTbrN
′, if ∃R : N↔τ

pomhSTbrN
′.

3.3 Conflict preserving τ -equivalences

Let ξ = 〈X,≺,#, l〉 be a LES s.t. l : X → Actτ . We denote vis(X) = {x ∈ X |
l(x) ∈ Act} and vis(ξ) = ξ|vis(X).

Definition 25. Two nets N and N ′ are MES-τ -conflict preserving equivalent,
denoted by N ≡τ

mes N
′, if vis(E(N)) = vis(E(N ′)).

4 Back-forth τ -bisimulation equivalences

In this section we propose back-forth τ -bisimulation equivalences.

Definition 26. A sequential run of a net N is a pair (π, σ), where:

– a process π ∈ Π(N) contains the information about causal dependencies of
transitions which brought to this state;

– a sequence σ ∈ T ∗

C s.t. πN
σ
→ π, contains the information about the order in

which the transitions occur which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).

The initial sequential run of a net N is a pair (πN , ε). Let (π, σ), (π̃, σ̃) ∈

Runs(N). We write (π, σ)
π̂
→ (π̃, σ̃), if π

π̂
→ π̃, ∃σ̂ ∈ T ∗

C̃
π

σ̂
→ π̃ and σ̃ = σσ̂.

Definition 27. Let N and N ′ be some nets. A relation R ⊆ Runs(N)
×Runs(N ′) is a ⋆-back ⋆⋆-forth τ -bisimulation between N and N ′, ⋆,
⋆⋆ ∈{interleaving, step, partial word, pomset}, denoted by R : N↔τ

⋆b⋆⋆fN
′, ⋆, ⋆⋆

∈ {i, s, pw, pom}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R

– (back)

(π̃, σ̃)
π̂
→ (π, σ),

(a) |vis(T
Ĉ
)| = 1, if ⋆ = i;

(b) vis(≺
Ĉ
) = ∅, if ⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′)
π̂′

→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆ ∈ {i, s, pom};

– (forth)

(π, σ)
π̂
→ (π̃, σ̃),

(a) |vis(T
Ĉ
)| = 1, if ⋆⋆ = i;

(b) vis(≺
Ĉ
) = ∅, if ⋆⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′)
π̂′

→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-back ⋆⋆-forth τ -bisimulation equivalent, ⋆, ⋆⋆ ∈
{interleaving, step, partial word, pomset}, denoted by N↔τ

⋆b⋆⋆fN
′, if

∃R : N↔τ
⋆b⋆⋆fN

′, ⋆, ⋆⋆ ∈ {i, s, pw, pom}.

5 Interrelations of the τ -equivalences

Let us consider interrelations of all the introduced τ -equivalences.

Proposition 1. Let ⋆ ∈ {i, s, pw, pom}. For nets N and N ′:

1. N↔τ
pwb⋆fN

′ ⇔ N↔τ
pomb⋆fN

′;
2. N↔τ

⋆bifN
′ ⇔ N↔τ

⋆b⋆fN
′;

3. N↔τ
ibifN

′ ⇔ N↔τ
ibrN

′ [6];
4. N↔τ

pombpomfN
′ ⇔ N↔τ

pomhbrN
′ [8];

5. N↔τ
iSTbrN

′ ⇒ N↔τ
ibsfN

′.

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s
↔τ

pw ↔τ
pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes≡τ
mes

↔τ
ibsf

↔τ
ibsf ↔τ

ibpwf
↔τ

ibpwf ↔τ
ibpomf

↔τ
ibpomf

↔τ
sbsf

↔τ
sbsf ↔τ

sbpwf
↔τ

sbpwf ↔τ
sbpomf

↔τ
sbpomf

� �

� � �

� �

? ? ?

� � � �

���

?

?

????

?

�
�	

�
�	

�
�	

�
�	

�
�	

�
�	

�
�	

�
�	

�
�	

?

C
C
C
C
C
C
C
C
C
CW

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

'

�
�

�

�
�

�

�
�

�
�

�
�

���

�
�
�

�
�

�
���

�
�

�
�

�
�

���

≃

↔τ
pomhSTbr

↔τ
pomhSTbr

↔τ
iSTbr

↔τ
iSTbr

?

?

�
�	

�
�
�
�
�
�
��

?

�
�

�

�
�

�

�
�

�

Fig. 1. Interrelations of the τ -equivalences and their preservation by SM-refinements

In the following, the symbol ‘ ’ will denote an empty alternative, and signs
that equivalences subscribed by it are considered as that of without any sub-
scription.

Theorem 1. Let ↔,↔↔∈ {≡τ ,↔τ ,≃} and ⋆, ⋆⋆ ∈ { , i, s, pw, pom, iST, pwST,
pomST, pomh, pomhST, ibr, pomhbr, iST br, pomhSTbr,mes, ibsf, ibpwf,

ibpomf, sbsf, sbpwf, sbpomf}. For nets N and N ′ : N ↔⋆ N
′ ⇒ N ↔↔⋆⋆ N

′

iff there exists a directed path from ↔⋆ to ↔↔⋆⋆ in the graph in Figure 1.

Proof. (⇐) By Proposition 28 and the definitions of the equivalences.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 1 is

proved by the following examples.

– In Figure 2(a) N↔τ
ibrN

′, but N 6≡τ
s N

′, since only in the net N ′ actions a
and b cannot happen concurrently.

– In Figure 2(c) N↔τ
iSTbrN

′, but N 6≡τ
pw N ′, since for the pomset correspond-

ing to the net N there is no even less sequential pomset in N ′.
– In Figure 2(b) N↔τ

pwSTN
′, but N 6≡τ

pom N ′, since only in the net N ′ action
b can depend on action a.

– In Figure 4(a) N ≡τ
mes N

′, but N↔/ τ
iN

′, since only in the net N ′ action τ
can happen so that in the corresponding initial state of the net N action a
cannot happen.

– In Figure 3(a) N↔τ
pomN

′, but N↔/ τ
iSTN

′, since only in the net N ′ action a
can start so that no action b can begin to work until finishing a.

– In Figure 3(b) N↔τ
pomSTN

′, but N↔/ τ
pomhN

′, since only in the net N ′ after
action a action b can happen so that action c must depend on a.

– In Figure 4(b) N↔τ
pomhN

′, but N↔/ τ
iSTN

′, since only in the net N ′ action
a can start so that the action b can never occur.

– In Figure 4(c) N↔τ
pomhSTN

′, but N↔/ τ
ibrN

′, since in the net N ′ an action
a can happen so that it will be simulated by sequence of actions τa in N .
Then the state of the net N reached after τ must be related with the initial
state of a net N , but in such a case the occurrence of action b from the initial
state of N ′ cannot be imitated from the corresponding state of N .

– In Figure 4(e) N↔τ
pomhbrN

′, but N↔/ τ
iSTN

′, since in the net N ′ an action
c may start so that during work of the corresponding action c in the net N
an action a may happen in such a way that the action b never occur.

– In Figure 3(c) N↔τ
pomhSTbrN

′, but N 6≡τ
mes N

′, since only the MES corre-
sponding to the net N ′ has two conflict actions a.

– In Figure 3(d) N ≡τ
mes N

′, but N 6≃ N ′, since unfireable transitions of the
nets N and N ′ are labelled by different actions (a and b).

– In Figure 2(c) N↔τ
sbsfN

′, but N 6≡τ
pw N ′.

– In Figure 4(d) N↔τ
sbpwfN

′, but N 6≡τ
pom N ′.

– In Figure 3(a) N↔τ
ibpomfN

′, but N↔/ τ
sbsfN

′.
– In Figure 2(b) N↔τ

iSTbrN
′, but N↔/ τ

sbsfN
′. 2

In Figure 1, the new equivalence notions and new interrelations are printed
in bold font.

6 Transition refinement

In this section we treat the considered τ -equivalences for preservation by tran-
sition refinements.

a b

�

��

�

��u u

? ?

(a)

N

↔τ
ibr

6≡τ
s

b a

�

��

�

��

a b

�

��u

?

?

?

?

�
��

A
AU

N ′

(b)

ba

�

��

�

��u uN

? ?↔τ
pwST

↔τ
iSTbr

↔τ
ibpwf

6≡τ
pom

↔/ τ
sbsf

a b

�

��

�

��u u

? ?

N ′

(c)

b d

�

��

�

��

a c

�

��

�

��u u

?

?

?

?

?

?

N

↔τ
iSTbr

↔τ
sbsf

6≡τ
pw

b b d d

�

��

�

��

�

��

�

��

a c

�

��

�

��

�

��u u uN ′

?

?

?

?

?

?

Z
Z~

�
��=

? ?
��=�

�=
Z
Z~

Z
Z~

�

��

b

?

?

�
�

�
�

�
�
��

A
A
A
A
A
A
AU

�
�
�
�
�
�
���

Fig. 2. Examples of the τ -equivalences

b

b

�

��

�

��u

a

�

��u
?

?

?

?

(a) N

↔τ
pom

↔τ
ibpomf

↔/ τ
iST

↔/ τ
sbsf

6≡τ
mes

b

�

��
a

?

?

N ′

b c c

�

��

�

��

�

��u

a

�

��u(b) N

?

�
��=

↔τ
pomST

↔τ
sbpomf

↔/ τ
pomh

6≡τ
mes

b c c

�

��

�

��

�

��

�

��u u

a

�

��uN ′

?

b

(c)

a a

�

��u

� JĴ

N ′

↔τ
pomhST

↔τ
pomhbr

6≡τ
mes

a

�

��

N u
?

c

a

�

��

�

��

?

?

?

(d) N

c

b

�

��

�

��

?

?

?

N ′

↔τ
pomhST

↔τ
pomhbr

≡τ
mes

6≃
u u

�
�
�
�
�
�
�

a b

�

��u�

��u

� JĴ JĴ

?

�����

? ?
Q
QQs? ?

HHHHj

Q
QQs

Q
QQs??

Q
QQs

Z
ZZ~

�

Fig. 3. Examples of the τ -equivalences (continued)

b τ

�

��
a

�

��t
?

?

� JĴ

N(b)

b τ

�

��
a

�

��t
?

?

� JĴ

a

Q
QQs↔τ

pomh

↔/ τ
iST

↔/ τ
ibr

6≡τ
mes

N ′

a τ

�

��t

� JĴ

N ′

↔/ τ
i

≡τ
mes

a

�

��t
?

N(a)

�

��

a τ b

a

�

��t
?

?

?

Q
QQs

�
��+

N ′

↔τ
pomhST

↔/ τ
ibr

6≡τ
mes

�

��
τ b

a

�

��t

?

?

� JĴ

N(c)

�

��

�

��

�

��

�

��

�

��

�

��

t t

t

a

b

a c

τ

τ

� JĴ

�
��+ C

C
C
C
C
CCW

?

?

?

?

?

?

?

N(e)

↔τ
pomhbr

↔/ τ
iST

6≡τ
mes

�

��

�

��

�

��

�

��

�

��

�

��

t t

t

a

b

a c

τ

τ

� JĴ

�
��+ C

C
C
C
C
CCW

?

?

?

?

?

?

?

N ′

�

��

�

��

�

��

�

��

�

��

�

��

t t

t

a

b

a c

τ

τ

�
��+

Q
QQs

�
��+ @

@
@
@
@
@
@R

?

?

?

?

?

?

?

�

��

�

��t

b

?

?
�

��+
Q
QQs

XXXXXXz

XXXXXXXXXXXz

XXXXXXXXXXXXz

����)

���������������9
?� �

c

b

�

��

�

��t

?

?

?
c

a

�

��

�

��t

?

?

?

N

�

��t

�
��=

Z
ZZ~

c

b

�

��

�

��t

?

?

?

c

a

�

��

�

��t

?

?

?

N ′

c

�

��t

�
��=

Z
ZZ~

Z
ZZ~

�
��=

↔τ
sbpwf

↔τ
pwST

6≡τ
pom

(d)

Fig. 4. Examples of the τ -equivalences (continued 2)

Definition 28. An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

1. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and one
output place;

2. ∃pin, pout ∈ PD s.t. pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net D
has unique input and unique output place.

3. MD = {pin}, i.e. at the beginning there is unique token in pin.

Definition 29. Let N = 〈PN , TN , FN , lN ,MN〉 be some net, a ∈ lN (TN) and
D = 〈PD, TD, FD, lD,MD〉 be SM-net. An SM-refinement, denoted by
ref(N, a,D), is a net N = 〈P

N
, T

N
, F

N
, l

N
,M

N
〉, where:

– P
N

= PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

– T
N

= (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

– F
N
(x̄, ȳ) =





FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

– l
N
(ū) =

{
lN(ū), ū ∈ TN \ l−1

N (a);
lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1

N (a);

– M
N
(p) =

{
MN(p), p ∈ PN ;
0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equiv-
alent after applying any refinement operator to them.

Theorem 2. Let ↔∈ {≡τ ,↔τ ,≃} and ⋆ ∈ { , i, s, pw, pom, iST, pwST,
pomST, pomh, pomhST, ibr, iST br, pomhSTbr, pomhbr,mes, ibsf, ibpwf,
ibpomf, sbsf, sbpwf, sbpomf}. For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) and
SM-net D : N ↔⋆ N

′ ⇒ ref(N, a,D) ↔⋆ ref(N
′, a,D) iff the equivalence

↔⋆ is in oval in Figure 1.

7 Conclusion

In this paper, we supplemented by new ones and examined a group of basic τ -
equivalences and back-forth τ -bisimulation equivalences. We also compared them
on the whole class of Petri nets as well as on subclass of sequential nets. All the
considered τ -equivalences were checked for preservation by SM-refinements.

Further research may consist in the investigation of τ -variants of place bisim-
ulation equivalences [2] which are used for effective semantically correct reduc-
tion of nets. In [1] a notion of interleaving place τ -bisimulation equivalence was
proposed, and its usefulness for simplification of concurrent systems was demon-
strated.

References

1. Autant C., Pfister W., Schnoebelen Ph. Place bisimulations for the reduction

of labelled Petri nets with silent moves. Proceedings of International Conference

on Computing and Information, 1994.
2. Autant C., Schnoebelen Ph. Place bisimulations in Petri nets. LNCS 616, p.

45–61, June 1992.
3. Best E., Devillers R., Kiehn A., Pomello L. Concurrent bisimulations in

Petri nets. Acta Informatica 28, p. 231–264, 1991.
4. Cherief F. Investigations of back and forth bisimulations on prime event struc-

tures. Computers and Artificial Intelligence 11(5), p. 481–496, 1992.
5. Devillers R. Maximality preservation and the ST-idea for action refinements.

LNCS 609, p. 108–151, 1992.
6. De Nicola R., Montanari U., Vaandrager F.W. Back and forth bisimulations.

LNCS 458, p. 152–165, 1990.
7. Pomello L., Rozenberg G., Simone C. A survey of equivalence notions for net

based systems. LNCS 609, p. 410–472, 1992.
8. Pinchinat S. Bisimulations for the semantics of reactive systems. Ph.D. thesis,

Institut National Politechnique de Grenoble, January 1993 (in French).
9. Tarasyuk I.V. Back-forth equivalences for design of concurrent systems. S. Adian,

A. Nerode, eds., Proceedings of 4th International Symposium on Logical Founda-
tions of Computer Science - 97 (LFCS’97), LNCS 1234, p. 374–384, Yaroslavl,
1997.

10. Vogler W. Modular construction and partial order semantics of Petri nets. LNCS

625, 252 p., 1992.

