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Abstract
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Labelled nets

Let Act = {a,b,...} be a set of action names or labels. The symbol 7 & Act
denotes a special silent action which represents internal activity of system to
be modelled and invisible to external observer. We denote Act, = Act U {7}.

Definition 1 A labelled net is a quadruple N = (Px,Tn, Fn,lx), where:
e Py ={p,q,...} is a set of places;
o T'v ={t,u,...} is a set of transitions;

o iy : (Py xTyn)U (Tx x Py) — N is the flow relation with weights (N
denotes a set of natural numbers);

o [y : TN — Act: is alabelling of transitions with action names.

Given labelled nets N = <PN,TN,FN,ZN> and N = <PN/,TN/,FN/,ZN/>. A
mapping # : Py UTy — Py U Ty is an isomorphism between N and N’,
denoted by 8 : N ~ N', if:

1. 5 is a bijection S.t. B(PN) = PN/ and B(TN) = TN/;
2. \V/p € PN Vt € TN FN(p7 t) = FN’(/B(p)aﬁ(t)) and FN(tap) = FN’(B@)?B(p))?
3.VteTy ZN(t) = ZN/(/B(t))

Labelled nets N and N’ are isomorphic, denoted by N ~ N’ if 36 : N ~ N'.

Given a labelled net N and some transition ¢ € Ty, the precondition and
postcondition of t, denoted by °t and ¢* respectively, are the multisets defined in
such a way: (°t)(p) = Fn(p,t) and (t*)(p) = Fn(t,p). Analogous definitions are
introduced for places: (*p)(t) = Fy(t,p) and (p°®)(t) = Fn(p,t). Let °N = {p €
Py | *p = 0} be a set of initial (input) places of N and N° = {p € Py | p* = 0}
be a set of final (output) places of N.

A labelled net N is acyclic, if there exist no transitions tg,...,t, € Ty s.t.
t2 Nt #0 (1 <i<n)andty=t, A labellednet N is ordinaryifVp € Py *p
and p* are proper sets (not multisets).

Let N = (Py, Ty, F,lx) be acyclic ordinary labelled net and z,y € PyUT.
Let us introduce the following notions.

e <y y & xFyy, where Fy is a transitive closure of Fy (strict causal
dependence relation);

e r=yy < (x=<yvy)V(xr=y) (arelation of causal dependence);



o x#Ny & FtuecTy (tF£u, tNu#0, t Ixz, u=<yy) (arelation of
conflict);

e [nz={ye PvUTN |y <y z} (the set of strict predecessors of x).
A set T C Ty is left-closedin N, ifVt €T (Iyt)NTy CT.



Marked nets

A marking of a labelled net N is a multiset M € M(Py).

Definition 2 A marked net (net) is a tuple N = (Py, Ty, Fn, Iy, My), where
(Pn, TN, Fn,ln) is a labelled net and My € M(Py) is the initial marking.

Given nets N = <PN,TN,FN,ZN,MN> and N’ = <PN/,TN/,FN/,ZN/,MN/>. A
mapping 3 : Py UTy — Py U Ty is an isomorphism between N and N,
denoted by 8 : N ~ N', if:

1. /6 . <PN,TN7FN,ZN> ~ <PN’7TN’7FN’7ZN’>;

Nets N and N’ are isomorphic, denoted by N ~ N’ if 356 : N ~ N’.

Let M € M(Py) be a marking of a net N. A transition ¢t € Ty is fireable
in M, if *t C M. If t is fireable in M, its firing yields a new marking M =
M — *t 4 t°, denoted by M L M. A marking M of a net N is reachable, if
M = My or there exists a reachable marking M of N s.t. M 5 M for some
t € Ty. Mark(N) denotes a set of all reachable markings of a net N.



Partially ordered sets

Definition 3 A labelled partially ordered set (Iposet) is a triple p = (X, <, 1),
where:

o X ={z,y,...} is some set;
o <C X x X 1is a strict partial order (irreflezive transitive relation) over X;

o [: X — Act; is alabelling function.

Let p = (X, <,l) be Iposet and x € X, Y C X. Then |z ={y € X |y < x}
is a set of strict predecessors of x. A restriction of p to the set Y is defined as
follows: ply = (Y, <N xY),l|y).

Let p = (X, <,1) and p' = (X', </, l') be lposets.

A mapping 8 : X — X' is a label-preserving bijection between p and o,
denoted by B : p < o/, if:

1. (B is a bijection;

2.Vx € X l(x) =U'(B(x)).
We write p < p/, if 38 : p < /.

A mapping 5 : X — X' is a homomorphism between p and p/, denoted by
B:pCp,if:

L B:px=ph

2.Ve,ye X x <y = [B(x) < By).
We write p C p/, if 38 : p C p/.

A mapping S : X — X' is an isomorphism between p and p’, denoted by
B:ip~p,if 3:pCp and 71 : p C p. Lposets p and p’ are isomorphic,
denoted by p ~ p/, if 38 : p ~ /.

Definition 4 Partially ordered multiset (pomset) is an isomorphism class of
Iposets.



Event structures

Definition 5 A labelled event structure (LES) is a quadruple & = (X, <, #,1),
where:

o X ={x,y,...} is a set of events;

o <C X x X 1s a strict partial order, a causal dependence relation, which
satisfies to the principle of finite causes: Vo € X | | x| < oo;

o # C X x X 1is an irreflexive symmetrical conflict relation, which satisfies
to the principle of conflict heredity: Va,y,z € X x#Hy < 2 = x#z2;

o [: X — Act; is a labelling function.

Let £ = (X, <,#,l) be LES and Y C X. A restriction of £ to the set YV is
defined as follows: £y = (Y, <N xY), #nN (Y xY),l|y).

Let £ = (X, <,#,0) and & = (X', </, #',I') be LES’s. A mapping §: X —
X' is an isomorphism between £ and &', denoted by S : £ ~ ¢, if:

1. (B is a bijection;
2. Ve € X l(x) =1'(B(x));
3.Vo,ye Xz <y & B(z) < By);
4. Vo, y € X z#y & B(a)#5(y).
LES’s £ and &' are isomorphic, denoted by € ~ ¢ if 35 : £ ~ £,

Definition 6 A multi-event structure (MES) is an isomorphism class of LES'’s.



C-processes

Definition 7 A causal net is an acyclic ordinary labelled net
C = <P0,Tc, Fc, lc>, S.t.:

1.¥r € Po |°r| <1 and |r*| <1, i.e. places are unbranched;
2.¥r € PeNTe | Lo x| < o0, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C' = (P, T¢, Fe, o) one can
define lposet po = (Te, <y N(Te X Te), o).

The fundamental property of causal nets is: if C' is a causal net, then there
exists a sequence of transition firings °C = Ly = -+ =3 L, = C° st. L; C
Po (0<i<n), Po =Ul L; and T = {vy,...,v,}. Such a sequence is called
a full execution of C.

Definition 8 Given a net N and a causal net C. A mapping ¢ : Po U Te —
Py UTy s an embedding of C' into N, denoted by ¢ : C'— N, if:

1. o(Pc) € M(Px) and p(Tc) € M(Tn), i.e. sorts are preserved;
2.Yv € Te *p(v) = o(*v) and p(v)* = p(v*), i.e. flow relation is respected;
3. Vv € Te lo(v) = In(p(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if °C & ... X% (C° is a full
execution of C', then M = p(°C) AN A, ©(C°) = M is a sequence of
transition firings in N.

Definition 9 A fireable in marking M C-process (process) of a net N is a
pair T = (C, ), where C' is a causal net and ¢ : C' — N is an embedding s.t.
M = ¢(°C). A fireable in My process is a process of N.

We write II(N, M) for a set of all fireable in marking M processes of a net
N and II(N) for the set of all processes of a net N. The initial process of a
net N is 7y = (Cn, on) € II(N), s.t. T, = 0. If 7 € II(N, M), then firing of
this process transforms a marking M into M = M — ¢(°C) + ¢(C°) = ¢(C°),
denoted by M 5 M.

Let m = (C,¢), # = (C,¢) e I(N), # = (C,¢) € II(N, p(C°)). A process
T is a prefiz of a process 7, if To C T is a left-closed set in C. A process 7 is a
suffiz of a process 7, if Tz = Tz \ T In such a case a process 7 is an extension

of ™ by process 7, and 7 is an extending process for 7, denoted by ™ = 7. We
write m — 7, if 7 = 7 for some 7.



A process 7 is an extension of a process m by one transition, denoted by
TS Form SR ifT DR, T; ={v} and l5(v) = a .

A process 7 is an extension of a process w by sequence of transitions, denoted
byr S rorm S ifdm ell(N)(1<i<n)rm3m3... 37, ="7, 0=
vy -+ vy, and [5(0) = w.

A process 7 is an extension of a process m by multiset of transitions, denoted
by m 5 % or m 5 &, if 7 5 7, <=0, Tz =V and I5(V) = A.



O-processes

Definition 10 An occurrence net is an acyclic ordinary labelled net
O = <P0, TO, FO, l0>, S.t.:

1.Vr € Po |°r| <1, i.e. there are no backwards conflicts;
2.¥x € PoUTp —(x#0ox), i.e. conflict relation is irreflexive;
3.¥x e PoUTyp | Lo x| < 00, i.e. set of causes is finite.

Let O = (Pp,To, Fo,lo) be occurrence net and N = (Py, Ty, Fy, Iy, My) be
some net. A mapping ¢ : Po UTp — Py U Ty is an embedding O into N,
notation ¢ : O — N, if:

1. Y(Pp) € M(Py) and ¢¥(Tp) € M(Tx). i.e. sorts are preserved;
2. Vv € Tp lo(v) = Iy(¥(v)), i.e. labelling is preserved;
3. Vv € Tp *¢Y(v) = ¥(*v) and ¥ (v)* = P (v®), i.e. flow relation is respected;

4. Yo,w € Tp (v = *w) A (¢Y(v) = Y(w)) = v = w, i.e there are no
“superfluous” conflicts.

Let us note that on the basis of any occurrence net O one can define LES
§o = (To, <o N(To x To), #0 N (To x To), lo)-

Definition 11 An O-process of a net N is a pair w = (O, 1), where O is an
occurrence net and ¥ : O — N is an embedding s.t. My = (°0).

We write p(N) for a set of all O-processes of a net N. The initial O-process

of a net N coincides with its initial C-process, i.e. wy = 7.

NLet w = (O7w)7 w = (Oaw) = p(N)? O = <PO,T0,F0,ZO>,

O = (P35, T, Fp, lél An O-process @ is a prefiz of a process @, if Tp C Tj is
a left-closed set in O. In such a case O-process @ is an extension of w, and @
is an extending O-process for w, denoted by w — w@.

An O-process w of a net N is mazimal, if it cannot be extended, i.e. Voo =
(0,¢) s.t. w—=@: Tz\To = 0. A set of all maximal O-processes of a net N
consists of the unique (up to isomorphism) O-process @ar = (Omaz, Ymaz)- I
such a case an isomorphism class of occurrence net O,,,., is an unfolding of a net
N, notation U(N). On the basis of unfolding U(N) of a net N one can define
MES E(N) = &) which is an isomorphism class of LES o for O € U(NV).
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Figure 1: Classification of basic equivalences

10



Figure 2: An application of the mapping vis to a causal net

Figure 3: An application of the mapping vis to an occurrence net

MOROBESONO
)
®

o

Figure 4: A crash of interrelations of the process 7-bisimulation equivalences comparing with that of the process
bisimulation equivalences
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T-trace equivalences

We denote the empty string by the symbol ¢.
Let 0 = ay---a, € Act:. We define vis(o) as follows (in the following
definition a € Act,).

1. vis(e) = ¢;

2. vis(oa) = {

vis(o)a, a # T;
vis(o), a=T.

Definition 12 A visible interleaving trace of a net N is a sequence
vis(ay---a,) € Act* s.t. iy S w1 B ... B 7w, where Ty is the initial process
of a net N and m; € II(N) (1 < ¢ < n). We denote a set of all visible
interleaving traces of a net N by VisIntTraces(N). Two nets N and N' are
interleaving 7-trace equivalent, denoted by N =!I N’ if VisIntTraces(N) =
VisIntTraces(N').

Let X = Ay--- A, € (M(Act;))*. We define vis(X) as follows (in the follow-
ing definition A € M(Act,)).

1. vis(e) = ¢

vis(X)(AN Act), AN Act # (;

2. vis(XA) = { vis(%), otherwise.

Definition 13 A visible step trace of a net N is a sequence vis(Ay---A,) €
(M(Act))* s.t. Ao B A where my is the initial process of a net
N and m; € II(N) (1 < i <n). We denote a set of all visible step traces of a
net N by VisStepTraces(N). Two nets N and N’ are step T-trace equivalent,
denoted by N =L N', if VisStepTraces(N) = VisStepTraces(N').

Let p = (X, <, 1) is Iposet s.t. [ : X — Act,. We denote vis(X) = {x € X |
[(z) € Act} and vis(p) = pluis(x)-

Definition 14 A visible pomset trace of a net N is a pomset vis(p), an iso-
morphism class of lposet vis(pc) for m = (C, ) € II(N). We denote a set of
all visible pomsets of a net N by VisPomsets(N). Two nets N and N' are
partial word 7-trace equivalent, denoted by N =], N', if VisPomsets(N) C
VisPomsets(N') and VisPomsets(N') C VisPomsets(N).

Definition 15 Two nets N and N' are pomset 7-trace equivalent, denoted by
N = N, if VisPomsets(N) = VisPomsets(N').

—pom
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Usual 7-bisimulation equivalences

Let C' = (Po,Te, Feo,lo) be C-net. We denote vis(Te) = {v € To | lo(v) €
Act} and vis(<¢) ==<¢ N(vis(Te) x vis(1e)).

Definition 16 Let N and N’ be some nets. A relation R C II(N) x II(N’)
is a *-T-bisimulation between N and N', » €{interleaving, step, partial word,
pomset}, denoted by R : N<IN', x € {i, s, pw, pom}, if:

1. (7TN,7TN/) e R.
2. (m,7)ER, 7 KNS
(a) |vis(Tg)| = 1, if x = i;
(b) vis(=g) =0, if x = s;
= I 57, (m,7") € R and
(a) vis(pa) E vis(pa), if = pw;
(b) vis(pg) ~ vis(pga), if x € {3, s, pom}.
3. As item 2, but the roles of N and N' are reversed.

Two nets N and N’ are »-T-bisimulation equivalent, » €{interleaving, step, par-
tial word, pomset}, denoted by NI N', if AR : NIN' % € {i, s, pw, pom}.
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ST-7-bisimulation equivalences

Definition 17 An ST-7-process of a net N is a pair (ng,7p) s.t. g, Tp €
I(N), 7p ™ 7 and Yo, w € T, (v <c, w)V (lc,(v) =7) = v € Tg,.

In such a case 7 is a process which began working, mp corresponds to the
completed part of 7g, and my — to the still working part. Obviously, <¢,,= 0.
We denote a set of all ST-T-processes of a net N by ST™ —II(N). (wy,7y) is
the initial ST-T-process of a net N. Let (wg,mp), (7g,7p) € ST™ —II(N). We
write (7TE,7TP) — (7~TE,7~TP), if tg — 7 and mp — Tp.

Definition 18 Let N and N’ be some nets. A relation R C ST™—II(N)xST™—
II(N") x B, where B={5| 5 :vis(Tg) — vis(Ter), m = (C,p) € II(N), «’ =
(C',¢") € TI(N")} is a x-ST-7-bisimulation between N and N', x €{interleaving,
partial word, pomset}, denoted by R : N<=LopN', x € {i, pw, pom}, if:
1. ((ﬂ'N,ﬂ'N), (7’(’]\7!,71']\7/),@) € R.
2. ((mp,mp), (g, 7p), B) E R = B :vis(pcy,) < Uis(p%) and B(vis(Te,)) =
vis(Tcy,).
3. ((np,7p), (M), B) € R, (mpywp) — (Fmdp) = 3B, (Fpih)
(7T/E77T}3> — (ﬁbaﬁ%)a B‘UiS(TCE> = 5, ((ﬁEaﬁP)a(ﬁanﬁ%)aﬁ) € R, and if
Tp O TE, ﬂ-jD - 7HJEH 7= B|m’s(T(;); then:
(a) v~ :vis(por) C vis(pe), if x = pw;
(b) v :vis(pc) =~ vis(pcr), if x = pom.
4. As item 3, but the roles of N and N’ are reversed.

Two nets N and N’ are x-ST-7-bisimulation equivalent, x €{interleaving, par-
tial word, pomset}, denoted by N<>LopN', if IR : Nl N/, * € {i, pw, pom}.
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History preserving 7-bisimulation equivalences

Definition 19 Let N and N’ be some nets. A relation R C II(N) x II(N') x B,
where B = {8 | B : vis(T¢) — vis(Ter), m = (C,p) € II(N), «" = (C',¢) €
II(N")}, is a pomset history preserving 7-bisimulation between N and N’, de-
noted by N<7 . N’  if:

pom
1. (mn, 7, D) € R.
2. (m,7’,B) € R = p:vis(pc) ~ vis(pcr).
3. (m,m,B)ER, m— 7 = 3B, 77 = 7, Bluisere) = B, (7,7,5) € R.
4. As item 3, but the roles of N and N’ are reversed.

Two nets N and N' are pomset history preserving 7-bisimulation equivalent,

denoted by N7 N’ if FR : N7 N

pom pom

16



History preserving ST-7-bisimulation equivalences

Definition 20 Let N and N’ be some nets. A relation R C ST™—II(N)xST™—
II(N") x B, where B={5| 5 :vis(Te) — vis(T¢er), m = (C,p) € II(N), «’ =
(C',¢") € TI(N")}, is a pomset history preserving ST-7-bisimulation between N
and N', denoted by R : N7 s N, if:

1. ((7y, 7N ), (nr, ), 0) € R.

2. ((mp,mp), (g, 7p), B) E R = B :vis(pc,) = Uis(p%) and B(vis(Te,)) =
vis(Tey,).

3. ((ﬂ-Eaﬂ-P)?(Tr/E?ﬂJP)?B) ~€ R? (7TE77TP) — (ﬁ-Eaﬁ_P) :N HB? (ﬁJEWﬁJP) :
(7T/E77T}3) — (ﬁJE? ﬁJP)? ﬁlvis(TcE) = 6? ((ﬁ-Ea ﬁ-P)? (ﬁJE? ﬁJP)? 6) €R.
4. As item 3, but the roles of N and N’ are reversed.

Two nets N and N’ are pomset history preserving ST-7-bisimulation equivalent,
denoted by N7, herN', if IR - Ny e N
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Usual branching 7-bisimulation equivalences

A

For some net N and 7,7 € II(N) we write 7 = 7@ when 37 = (C,¢) s.t.
m = 7 and vis(Tp) = 0.

Definition 21 Let N and N’ be some nets. A relation R C II(N)xII(N') is an
interleaving branching 7-bisimulation between N and N', denoted by N<7, N’,

iy
if:
1. (my, ) € R.
2. (ma)eER, 757 =
(a) a =71 and (7,7') € R or
(b)a#71and 37, @ :7' =7 57, (7r,7) €R, (7,7) €ER.
3. As item 2, but the roles of N and N' are reversed.

Two nets N and N’ are interleaving branching 7-bisimulation equivalent, de-
noted by N7, N, if AR : N7, N,

ibr ibr
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History preserving branching 7-bisimulation equivalences

Definition 22 Let N and N’ be some nets. A relation R C II(N) x II(N') x B,
where B={0 |8 :Tc — Ter, m=(C,p) e II(N), 7’ = (C",¢') € II(N")}, is a
pomset history preserving branching 7-bisimulation between N and N’, denoted
by Nﬁgomhberi Zf
1. (7TN,7TN/,®) eR.
2. (m,7’,B) € R = p:vis(pc) ~ vis(pcr).
3. (mn,B)eER, m > 7T =

(a) (7,7', ) € R or

(b) 3B, ®, 77 =7 =7, B|M-S(TC) =3, (r,7,8) € R, (7,7,B) € R.
4. As item 3, but the roles of N and N’ are reversed.

Two nets N and N' are pomset history preserving branching 7-bisimulation

equivalent, denoted by N7, N, if IR : N2l N
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ST-branching 7-bisimulation equivalences

Let (7TE,7TP), (ﬁE,ﬁP) e ST™ — H(N) We write (7TE,7TP) = (7~TE,7~TP), if
T = Tg and mp = Tp.

Definition 23 Let N and N’ be some nets. A relation R C ST — II(N) x
ST™ — II(N') x B, where B = {p | B : vis(T¢) — vis(Ter), m = (C,p) €
II(N), ' = (C',¢") € II(N')} is an interleaving ST-branching 7-bisimulation
between N and N', denoted by R : N<Tgpm, N, if:
1. ((7TN,7TN), (7TN/,7TN/), (Z)) eR.
2. ((mp,mp), (7, 7p), B) €ER = B :vis(pc,) X vis(pey,) and B(vis(Te,)) =
vis(Ter,).
3. ((ﬂ-Eaﬂ-P)a (ﬂ-/EaﬂJP)?/B) € R? (ﬂ-Eaﬂ-P) — (ﬁEaﬁ-P) =
(a) ((ﬁE77~TP)7 (WjEﬂT}D))B) €R or
(b) 367 (ﬁ-lEaﬁ-IP)? (ﬁ-lEaﬁ-lP) : (ﬂJE?ﬂJP) = (ﬁ-/Eaﬁ-lP) — (7~i/E77}}3)7 ﬁ‘vis(TcE) =
B, ((mg,7p), (7, 7p), B) € R, ((7p, 7p), (7, 7p), B) € R.
4. As item 3, but the roles of N and N’ are reversed.

Two nets N and N’ are interleaving ST-branching 7-bisimulation equivalent,
denoted by N<Top, N, if IR : NoTom, N
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History preserving ST-branching 7-bisimulation
equivalences

Definition 24 Let N and N’ be some nets. A relation R C ST™ — II(N) X
ST™ —TI(N') x B, where B = {8 | 8 : vis(T¢) — vis(Ter), © = (C, ) €
II(N), 7" = (C",¢') € II(N')} is a pomset history preserving ST-branching
7-bisimulation between N and N', denoted by R : N2l ,nsroe N if:
1. ((ﬂ'N,ﬂ'N), (7TN/,7TN/), @) eR.
2. (g, mp), (7, 7p), B) €ER = B :vis(pc,) = vis(pc,) and B(vis(Te,)) =
vis(Ter,).
3. ((7TEa7TP)7 (7T/E77T/P)76) € Ra (7TE77TP) — (ﬁEaﬁ-P) =
(a) ((Tp, Tp), (W, 7p), B) € R or
(b) 367 (ﬁ-lEaﬁJP)? (ﬁ-lEaﬁJP) : (ﬂJE‘?ﬂJP) = (ﬁJE‘?ﬁJP) — (7~i/E7ﬁJP)7 ﬁ‘vis(TcE) -
B, ((WEJTP); (7?2?77_7}3)75) €R, ((ﬁE77~TP)7 (7~TIE77~T}3)76) €R.
4. As item 3, but the roles of N and N’ are reversed.

Two nets N and N' are pomset history preserving ST-branching 7-bisimulation
equivalent, denoted by N<=>7, s, N's if IR+ N<2Dnsru V'
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Conflict preserving T-equivalences

Let £ = (X, <,#,l) be a LES s.t. [ : X — Act.. We denote vis(X) = {x €
X | l(z) € Act} and vis(§) = &|vis(x)-

Definition 25 A visible MES-trace of a net N, denoted by vis(§), is an iso-
morphism class of LES vis(&o) for w = (O,¢) € o(N). We denote a set
of all visible MES-traces of a net N by VisMEStructs(N). Two nets N
and N’ are MES-7-conflict preserving equivalent, denoted by N =T .. N', if

VisM EStructs(N) = VisM EStructs(N'). Let us note that, due to uniqueness
of mazimal O-process, this is the same as to require vis(E(N)) = vis(E(N')).
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Figure 8: Examples of basic T-equivalences
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Figure 10: Examples of basic m-equivalences (continued 2)

26



Sequential runs

Definition 26 A sequential run of a net N is a pair (7,0), where:

e a process m € II(IN) contains the information about causal dependencies of
transitions which brought to this state;

e a sequence o € TS s.t. my > m, contains the information about the order
in which the transitions occur which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).

The initial sequential run of a net NV is a pair (my, ), where ¢ is an empty
sequence. Let us denote by |o| a length of a sequence o.

Let (,0), (7,5) € Runs(N). We write (m,0) = (7,5), if 7 & 7, 36 €
%= 9y 7 and 6 = 06. We write (7,0) — (7,6), if (7,0) = (7, 5) for some #.

Let (w,0) € Runs(N), (7',0’) € Runs(N') and 0 = vy -+ v, o =v]---v.
Let us define a mapping 87 : To — Ter as follows: 57 = {(v;,v) | 1 < i < n}.
Let 85 = ().

Let (m,0) € Runs(N)and 0 = vy - vy, Ty — ... =1 (1 <i < n).

Let us introduce the following notations:
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Back-forth 7-bisimulation equivalences

Definition 27 Let N and N’ be some nets. A relation R C Runs(N) X
Runs(N') is a x-back xx-forth 7-bisimulation between N and N', %, x* €
{interleaving, step, partial word, pomset}, denoted by R : Nﬁib**fN’, *, *x €
{i, s, pw, pom}, if:

1. ((7n,¢€), (mnr,€)) € R.
2. ((m,0),(n',0') € R
e (back)
(7,6) 5 (, 0),

(a) |vis(Tg)
)

B | = fx=1;
(b) vis(<g5
o) (7T’ o LN (7', 0"), ((7,6),(7",6") € R and

fx=s;
= 3(7
(a) vis(pa) E vis(pa), if x = pw;
(b) vis(pg) = vis(pa), if * € {i,s, pom};
e (forth)

(a) |vis(T; o)l =
(b) vis(<ga

= 3(7,5): (w,a')ﬂ(ﬁ',&'), ((7.6),(7,5") € R and

(a) vis(pe,) E vis(pe), if +x = pw;
(b) vis(pg) ~ vis(pga), if »x € {i, s,pom}.

3. As item 2, but the roles of N and N' are reversed.

Two nets N and N' are *-back xx-forth 7-bisimulation equivalent, x,%x €
{interleaving, step, partial word, pomset}, denoted by N« . N', if IR
Nl N, %, %% € {i, s, pw, pom}.
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SM-refinements

Definition 28 An SM-net is a net D = (Pp,Tp, Fp,lp, Mp) s.t.:

1.Vt € Tp |*t| = [t*| = 1, i.e. each transition has exactly one input and one
output place;

2. Ain, Pout € Pp $.t. Din # Pout and °D = {pin}, D° = {pout}, i.e. net D
has unique input and unique output place.

3. Mp = {pin}, i.e. at the beginning there is unique token in pj,.

Definition 29 Let N = (Py,Tn, Fn,In, My) be some net, a € In(Ty) and
D = (Pp,Tp, Fp,lp, Mp) be SM-net. An SM-refinement, denoted by
ref(N,a, D), is (up to isomorphism) a net N = ( Py, Tx, Fy, lzr, M%), where:
® Iy = PN U {(p, u> ‘ pE PD \ {pimpout}a u € l]:fl(a)};
o Ty = (Tn \ Iy () U{{t,u) | t € Tp, ucly'(a)};
z,9), &,y € PyU(Ty\Ily'(a));
y), T=(x,u), §=(y,u), ucly(a)
T,u), §={(y,u), TE€"u, ucly(a), yecp;
uag)a T = (x,u), g S .u7 uc lel(a% YIS .pout;
otherwise;

o (a) = | (@, @€ T\ Iy (a);
N Ip(t), @={(t,u), tcTp, ucly(a);
. _ | Mx(p), p€ Py;
o My(p) = { 0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equiva-
lent after applying any refinement operator to them accordingly.
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Figure 20: Preservation of the T-equivalences by SM-refinements
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Figure 21: Merging of the T-equivalences on nets without silent transitions
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