
τ -Equivalences and Refinement
for Petri Nets Based Design

Igor V. Tarasyuk

Institute of Informatics Systems, Novosibirsk

TUD-FI00-11 - November 2000

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

τ -Equivalences and Refinement

for Petri Nets Based Design ∗

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems

Siberian Division of the Russian Academy of Sciences

6, Acad. Lavrentiev ave., 630090 Novosibirsk, Russia

itar@iis.nsk.su

Abstract

The paper is devoted to the investigation of behavioral equivalences of concurrent systems modeled by
Petri nets with silent transitions. Basic τ -equivalences and back-forth τ -bisimulation equivalences known
from the literature are supplemented by new ones, giving rise to complete set of equivalence notions in
interleaving / true concurrency and linear / branching time semantics. Their interrelations are examined
for the general class of nets as well as for their subclasses of nets without silent transitions and sequential
nets (nets without concurrent transitions). In addition, the preservation of all the equivalence notions by
refinements (allowing one to consider the systems to be modeled on a lower abstraction levels) is investigated.

Keywords: Petri nets with and without silent transitions, sequential nets, basic and back-forth τ -equiva-
lences, refinement.

1 Introduction

The notion of equivalence is central in any theory of systems. It allows to compare systems taking into account
particular aspects of their behavior.

Petri nets [16] became a popular formal model for design of concurrent and distributed systems. One of the
main advantages of Petri nets is their ability for structural characterization of three fundamental features of
concurrent computations: causality, nondeterminism and concurrency.

Silent transitions are transitions labeled by special silent action τ which represents an internal activity of
a system to be modeled and it is invisible for external observer. It is well-known that Petri nets with silent
transitions are more powerful than usual ones.

Equivalences which abstract of silent actions are called τ-equivalences (these are labeled by the symbol τ
to distinguish them of relations not abstracting of silent actions). In recent years, a wide range of semantic
equivalences was proposed in concurrency theory. Some of them were either directly defined or transferred from
other formal models to Petri nets. The following basic notions of τ -equivalences are known from the literature.

• τ-trace equivalences (they respect only protocols of behavior of systems): interleaving (≡τ
i) [17], step (≡τ

s)
[17], partial word (≡τ

pw) [25] and pomset (≡τ
pom) [18].

• Usual τ-bisimulation equivalences (they respect branching structure of behavior of systems): interleaving
(↔τ

i) [14], step (↔τ
s) [17], partial word (↔τ

pw) [24] and pomset (↔τ
pom) [18].

• ST-τ-bisimulation equivalences (they respect the duration or maximality of events in behavior of systems):
interleaving (↔τ

iST) [24], partial word (↔τ
pwST) [24] and pomset (↔τ

pomST) [24].

• History preserving τ-bisimulation equivalences (they respect the “past” or “history” of behavior of sys-
tems): pomset (↔τ

pomh) [9, 10].

∗The paper was completed during postdoctoral research of the author supported by DFG-stipend from the Postgraduate Program

“Specification of Discrete Processes and Systems of Processes by Operational Models and Logics”at TU Dresden. Current e-mail:

tarasyuk@tcs.inf.tu-dresden.de. In addition, a partial support was obtained from the Russian Foundation for Basic Research,

grant 00-01-00898.

1

• History preserving ST-τ-bisimulation equivalences (they respect the “history” and the duration or maxi-
mality of events in behavior of systems): pomset (↔τ

pomhST) [9, 10].

• Usual branching τ-bisimulation equivalences (they respect branching structure of behavior of systems
taking a special care for silent actions): interleaving (↔τ

ibr) [12, 13].

• History preserving branching τ-bisimulation equivalences (they respect “history” and branching structure
of behavior of systems taking a special care for silent actions): pomset (↔τ

pomhbr) [9].

• Isomorphism (≃) (i.e. coincidence of systems up to renaming of their components).

Another type of equivalence notions called back-forth bisimulation equivalences are based on the idea that
bisimulation relation do not only require systems to simulate each other behavior in the forward direction (as
usually) but also when going back in history. They are closely connected with equivalences of logics with past
modalities.

These equivalence notions were initially introduced in [15]. In the framework of transition systems without
silent actions interleaving back-forth bisimulation equivalence (↔ibif) was defined and proved to merge with
↔i. On transition systems with silent actions it was shown that back-forth variant (↔τ

ibif) of interleaving
τ -bisimulation equivalence coincide with ↔τ

ibr .
In [6, 7, 8], the new variants of step, partial word and pomset back-forth bisimulation equivalences were

defined in the framework of prime event structures without silent actions.
In [19], the new idea of differentiating the kinds of back and forth simulations appeared (following this idea,

it is possible, for example, to define step back pomset forth bisimulation equivalence). The set of all possible
back-forth equivalence notions was proposed in interleaving, step, partial word and pomset semantics for prime
event structures without silent actions. The new notion of τ -equivalence was proposed for event structures
with silent actions: pomset back pomset forth (↔τ

pombpomf) τ -bisimulation equivalence. It’s coincidence with
↔τ

pomhbr was proved.
To choose most appropriate behavioral viewpoint on systems to be modeled, it is very important to have a

complete set of equivalence notions in all semantics and understand their interrelations. This branch of research
is usually called comparative concurrency semantics. To clarify the nature of equivalences and evaluate how
they respect internal activity and concurrency in systems to be modeled, it is actual to consider also correlation
of these notions on nets without silent transitions and concurrency-free (sequential) ones. Treating equivalences
for preservation by refinements allows one to decide which of them may be used for top-down design.

Working in the framework of Petri nets with silent transitions, in this paper we continue the research of
[20, 21, 22] and extend the set of basic notions of τ -equivalences by interleaving ST-branching τ -bisimulation one
(↔τ

iSTbr), pomset history preserving ST-branching τ -bisimulation one (↔τ
pomhSTbr) and multi event structure

conflict preserving one (≡τ
mes). Let us note that an idea to introduce↔τ

pomhSTbr appeared initially in [19] on the
model of event structures. We complete back-forth τ -equivalences from [19] by 6 new notions: interleaving back
step forth (↔τ

ibsf), interleaving back partial word forth (↔τ
ibpwf), interleaving back pomset forth (↔τ

ibpomf),
step back step forth (↔τ

sbsf), step back partial word forth (↔τ
sbpwf) and step back pomset forth (↔τ

sbpomf) τ -
bisimulation equivalences. We compare all back-forth τ -equivalences with the set of basic behavioral relations.

We also investigate the interrelations of all the considered τ -equivalences with equivalences which do not
abstract of silent actions.

In [5], SM-refinement operator for Petri nets was proposed, which “replaces” their transitions by SM-nets,
a special subclass of state machine nets. We treat all the considered τ -equivalence notions for preservation by
SM-refinements. We show that ↔τ

iSTbr , ↔
τ
pomhSTbr and ≡τ

mes, i.e. all the new basic equivalences considered
in this paper, are preserved by SM-refinements. Thus, we have branching and conflict preserving equivalences
which may be used for multilevel design. In the literature, a stability w.r.t. SM-refinements was proved only
for ↔τ

pomhST in [5] and for ↔τ
iST in [10]. The preservation result for other ST-τ -bisimulation equivalences was

proved in [24], but it was done on event structures and an other refinement operator was used. The preservation
of trace τ -equivalences was not established before. Thus, our results for ↔τ

pwST , ↔
τ
pomST , ≡

τ
pw and ≡τ

pom are
also new.

In addition, we investigate the interrelations of all the τ -equivalence notions on nets without silent transitions
and sequential nets. We prove that on nets without silent transitions τ -equivalences coincide with equivalence
notions which do not abstract of silent actions. We demonstrate that on sequential nets interleaving and pomset
τ -equivalences are merged, and back-forth τ -equivalences coincide with forth τ -equivalence relations.

The rest of the paper is organized as follows. Basic definitions are introduced in Section 2. In Section 3,
we propose basic τ -equivalences and investigate their interrelations. In Section 4, back-forth τ -bisimulation
equivalences are defined and compared with basic τ -equivalence notions. All the considered τ -equivalences are
compared with ones which do not abstract of silent actions in Section 5. In Section 6, we establish which τ -
equivalence relations are preserved by SM-refinements. Section 7 is devoted to comparison of the τ -equivalences

2

on nets without silent transitions and sequential nets. Concluding Section 8 contains a review of the main
results obtained and some directions of further research.

2 Basic definitions

In this section, we present some basic definitions used further.

2.1 Multisets

A multiset is an extension of a set notion allowing an existence of several identical elements in the latter.

Definition 2.1 Let X be some set. A finite multiset M over X is a mapping M : X → IN s.t. |{x ∈ X |
M(x) > 0}| <∞.

M(X) denotes the set of all finite multisets over X . When ∀x ∈ X M(x) ≤ 1, M is a proper set. The
cardinality of a multiset M is defined in such a way: |M | =

∑
x∈X M(x). We write x ∈ M if M(x) > 0

and M ⊆ M ′, if ∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and (M − M ′)(x) =
max{0,M(x)−M ′(x)}.

2.2 Labeled nets

A labeled net is a Petri net s.t. its transitions may be “labeled” by action (a sort of activity) names.
Let Act = {a, b, . . .} be a set of action names or labels. The symbol τ 6∈ Act denotes a special silent

action which represents internal activity of system to be modeled and invisible to external observer. We denote
Actτ = Act ∪ {τ}.

Definition 2.2 A labeled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {t, u, . . .} is a set of transitions;

• FN : (PN × TN) ∪ (TN × PN)→ IN is the flow relation with weights;

• lN : TN → Actτ is a labeling of transitions with action names.

Given labeled nets N = 〈PN , TN , FN , lN〉 andN ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉. A mapping β : PN∪TN → PN ′∪TN ′

is an isomorphism between N and N ′, denoted by β : N ≃ N ′, if:

1. β is a bijection s.t. β(PN) = PN ′ and β(TN) = TN ′ ;

2. ∀p ∈ PN ∀t ∈ TN FN (p, t) = FN ′(β(p), β(t)) and FN (t, p) = FN ′(β(t), β(p));

3. ∀t ∈ TN lN (t) = lN ′(β(t)).

Labeled nets N and N ′ are isomorphic, denoted by N ≃ N ′, if ∃β : N ≃ N ′.
Given a labeled net N and some transition t ∈ TN , the precondition and postcondition of t, denoted by •t and

t• respectively, are the multisets defined in such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous
definitions are introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). Let ◦N = {p ∈ PN |

•p = ∅} be
a set of initial (input) places of N and N◦ = {p ∈ PN | p• = ∅} be a set of final (output) places of N .

A labeled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN s.t. t•i−1 ∩
•ti 6= ∅ (1 ≤ i ≤ n) and

t0 = tn. A labeled net N is ordinary if ∀t ∈ TN •t and t• are proper sets (not multisets).
Let N = 〈PN , TN , FN , lN〉 be acyclic ordinary labeled net and x, y ∈ PN ∪TN . Let us introduce the following

notions.

• x ≺N y ⇔ xF+
N y, where F

+
N is a transitive closure of FN (strict causal dependence relation);

• x �N y ⇔ (x ≺N y) ∨ (x = y) (a relation of causal dependence);

• x#Ny ⇔ ∃t, u ∈ TN (t 6= u, •t ∩ •u 6= ∅, t �N x, u �N y) (a relation of conflict);

• ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x).

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

3

2.3 Marked nets

A marked net is a labeled net having active elements called tokens in its places. Such the places are considered
to be “marked”. Thus, a behavior of a marked net can be considered, in accordance to the special rules of the
“token game.”

A marking of a labeled net N is a multiset M ∈ M(PN).

Definition 2.3 A (marked) net is a tuple N = 〈PN , TN , FN , lN ,MN〉, where 〈PN , TN , FN , lN 〉 is a labeled net
and MN ∈M(PN) is the initial marking.

Given nets N = 〈PN , TN , FN , lN ,MN〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉. A mapping β : PN ∪ TN →
PN ′ ∪ TN ′ is an isomorphism between N and N ′, denoted by β : N ≃ N ′, if:

1. β : 〈PN , TN , FN , lN 〉 ≃ 〈PN ′ , TN ′ , FN ′ , lN ′〉;

2. ∀p ∈ PN MN(p) =MN ′(β(p)).

Nets N and N ′ are isomorphic, denoted by N ≃ N ′, if ∃β : N ≃ N ′.
Let M ∈ M(PN) be a marking of a net N . A transition t ∈ TN is fireable in M , if •t ⊆ M . If t is fireable

in M , its firing yields a new marking M̃ = M − •t + t•, denoted by M
t
→ M̃ . A marking M of a net N is

reachable, if M = MN or there exists a reachable marking M̂ of N s.t. M̂
t
→ M for some t ∈ TN . Mark(N)

denotes a set of all reachable markings of a net N .

2.4 Partially ordered sets

A partially ordered set (poset) is a special formalism used for a semantic description of concurrent systems.
Posets allow one to specify causal dependencies of events of a modeled system. Concurrency is interpreted as
causal independence.

Definition 2.4 A labeled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉, where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X, a causal dependence relation;

• l : X → Actτ is a labeling function.

Let ρ = 〈X,≺, l〉 be lposet and x ∈ X,Y ⊆ X . Then ↓ x = {y ∈ X | y ≺ x} is a set of strict predecessors of
x. A restriction of ρ to the set Y is defined as follows: ρ|Y = 〈Y,≺ ∩(Y × Y), l|Y 〉.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′, denoted by β : ρ ≍ ρ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ ≍ ρ′, if ∃β : ρ ≍ ρ′.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted by β : ρ ⊑ ρ′, if:

1. β : ρ ≍ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ ⊑ ρ′, if ∃β : ρ ⊑ ρ′.
A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted by β : ρ ≃ ρ′, if β : ρ ⊑ ρ′ and

β−1 : ρ′ ⊑ ρ. Two lposets ρ and ρ′ are isomorphic, denoted by ρ ≃ ρ′, if ∃β : ρ ≃ ρ′.

Definition 2.5 Partially ordered multiset (pomset) is an isomorphism class of lposets.

4

2.5 Event structures

An event structure is an extension of a pomset notion which allows one to specify conflicts between events, i.e.
the situations when an occurrence of one event excludes that of another.

Definition 2.6 A labeled event structure (LES) is a quadruple ξ = 〈X,≺,#, l〉, where:

• X = {x, y, . . .} is a set of events;

• ≺⊆ X ×X is a strict partial order over X, a causal dependence relation, which satisfies to the principle
of finite causes: ∀x ∈ X | ↓ x| <∞;

• # ⊆ X × X is an irreflexive symmetrical conflict relation, which satisfies to the principle of conflict
heredity: ∀x, y, z ∈ X x#y ≺ z ⇒ x#z;

• l : X → Actτ is a labeling function.

Let ξ = 〈X,≺,#, l〉 be LES and Y ⊆ X . A restriction of ξ to the set Y is defined as follows: ξ|Y = 〈Y,≺
∩(Y × Y),# ∩ (Y × Y), l|Y 〉.

Let ξ = 〈X,≺,#, l〉 and ξ′ = 〈X ′,≺′,#′, l′〉 be LES’s. A mapping β : X → X ′ is an isomorphism between
ξ and ξ′, denoted by β : ξ ≃ ξ′, if:

1. β : 〈X,≺, l〉 ≃ 〈X ′,≺′, l′〉;

2. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

Two LES’s ξ and ξ′ are isomorphic, denoted by ξ ≃ ξ′, if ∃β : ξ ≃ ξ′.

Definition 2.7 A multi-event structure (MES) is an isomorphism class of LES’s.

2.6 Processes

A process [4] may be considered as a formalism describing a particular computation of a modeled system.
Usually, processes are deterministic, since in a computation no two events may be involved into a conflict (all
of them will occur).

Definition 2.8 A causal net is an acyclic ordinary labeled net C = 〈PC , TC , FC , lC〉, s.t.:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;

2. ∀x ∈ PC ∩ TC | ↓C x| <∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C = 〈PC , TC , FC , lC〉 one can define lposet ρC = 〈TC ,≺N

∩(TC × TC), lC〉.
The fundamental property of causal nets is [2]: if C is a causal net, then there exists a sequence of transition

firings ◦C = L0
v1→ · · ·

vn→ Ln = C◦ s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪ni=0Li and TC = {v1, . . . , vn}. Such a
sequence is called a full execution of C.

Definition 2.9 Given a net N and a causal net C. A mapping ϕ : PC ∪ TC → PN ∪ TN is an embedding of
C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈M(PN) and ϕ(TC) ∈M(TN), i.e. sorts are preserved;

2. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected;

3. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labeling is preserved.

Since embeddings respect the flow relation, if ◦C
v1→ · · ·

vn→ C◦ is a full execution of C, then M = ϕ(◦C)
ϕ(v1)
−→

· · ·
ϕ(vn)
−→ ϕ(C◦) = M̃ is a sequence of transition firings in N .

Definition 2.10 A fireable in marking M process of a net N is a pair π = (C,ϕ), where C is a causal net and
ϕ : C → N is an embedding s.t. M = ϕ(◦C). A fireable in MN process is a process of N .

5

We write Π(N,M) for a set of all fireable in marking M processes of a net N and Π(N) for the set of all
processes of a net N . The initial process of a net N is πN = (CN , ϕN) ∈ Π(N), s.t. TCN

= ∅. If π ∈ Π(N,M),

then firing of this process transforms a markingM into M̃ =M−ϕ(◦C)+ϕ(C◦) = ϕ(C◦), denoted byM
π
→ M̃ .

Let π = (C,ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)). A process π is a prefix of a process π̃, if

TC ⊆ T
C̃

is a left-closed set in C̃. A process π̂ is a suffix of a process π̃, if T
Ĉ

= T
C̃
\ TC . In such a case a

process π̃ is an extension of π by process π̂, and π̂ is an extending process for π, denoted by π
π̂
→ π̃. We write

π → π̃, if π
π̂
→ π̃ for some π̂.

A process π̃ is an extension of a process π by one transition, denoted by π
v
→ π̃ or π

a
→ π̃, if π

π̂
→ π̃, T

Ĉ
= {v}

and l
Ĉ
(v) = a .

A process π̃ is an extension of a process π by sequence of transitions, denoted by π
σ
→ π̃ or π

ω
→ π̃, if

∃πi ∈ Π(N) (1 ≤ i ≤ n) π
v1→ π1

v2→ . . .
vn→ πn = π̃, σ = v1 · · · vn and l

Ĉ
(σ) = ω.

A process π̃ is an extension of a process π by multiset of transitions, denoted by π
V
→ π̃ or π

A
→ π̃, if

π
π̂
→ π̃, ≺

Ĉ
= ∅, T

Ĉ
= V and l

Ĉ
(V) = A.

2.7 Branching processes

A branching process [11] is an extension of a notion of a (usual, deterministic) one s.t. there may exist alternative
events in it. So, it may be considered as a “compilation” of different computations in the only unit, allowing
one to observe all the interplays of events and take into account both causality and nondeterminism on equal
basis.

Definition 2.11 An occurrence net is an acyclic ordinary labeled net O = 〈PO, TO, FO, lO〉, s.t.:

1. ∀r ∈ PO |•r| ≤ 1, i.e. there are no backwards conflicts;

2. ∀x ∈ PO ∪ TO ¬(x#Ox), i.e. conflict relation is irreflexive;

3. ∀x ∈ PO ∪ TO | ↓O x| <∞, i.e. set of causes is finite.

Let us note that on the basis of any occurrence net O one can define LES ξO = 〈TO,≺O ∩(TO × TO),#O ∩
(TO × TO), lO〉.

Let O = 〈PO, TO, FO, lO〉 be occurrence net and N = 〈PN , TN , FN , lN ,MN 〉 be some net.

Definition 2.12 A mapping ψ : PO ∪ TO → PN ∪ TN is an embedding O into N , notation ψ : O→ N , if:

1. ψ(PO) ∈M(PN) and ψ(TO) ∈ M(TN), i.e. sorts are preserved;

2. ∀v ∈ TO lO(v) = lN(ψ(v)), i.e. labeling is preserved;

3. ∀v ∈ TO •ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), i.e. flow relation is respected;

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w)) ⇒ v = w, i.e. there are no “superfluous” conflicts.

Definition 2.13 A branching process of a net N is a pair ̟ = (O,ψ), where O is an occurrence net and
ψ : O → N is an embedding s.t. MN = ψ(◦O).

We write ℘(N) for a set of all branching processes of a net N . The initial branching process of a net N
coincides with it’s initial process, i.e. ̟N = πN .

Let ̟ = (O,ψ), ˜̟ = (Õ, ψ̃) ∈ ℘(N), O = 〈PO, TO, FO, lO〉 , Õ = 〈P
Õ
, T

Õ
, F

Õ
, l

Õ
〉. A branching process

̟ is a prefix of a process ˜̟ , if TO ⊆ T
Õ

is a left-closed set in Õ. In such a case branching process ˜̟ is an
extension of ̟, and ˆ̟ is an extending branching process for ̟, denoted by ̟ → ˜̟ .

A branching process ̟ of a net N is maximal, if it cannot be extended, i.e. ∀̟ = (O,ψ) s.t. ̟ → ˜̟ :
T
Õ
\ TO = ∅. A set of all maximal branching processes of a net N consists of the unique (up to isomorphism)

branching process ̟max = (Omax, ψmax). In such a case an isomorphism class of occurrence net Omax is
an unfolding of a net N , notation U(N). On the basis of unfolding U(N) of a net N one can define MES
E(N) = ξU(N) which is an isomorphism class of LES ξO for O ∈ U(N).

3 Basic τ-equivalences

In this section, we propose basic τ -equivalences: trace, bisimulation and conflict preserving. They will form a
basic “frame” of relations for our further investigation.

6

3.1 τ-trace equivalences

Trace equivalences are the simplest ones. In trace semantics, a behavior of a system is associated with the set of
all possible sequences of activities, i.e. protocols of work or computations. Thus, the points of nondeterministic
choice between several extensions of a particular computation are not taken into account.

Let us introduce formal definitions of the trace relations.
We denote the empty string by the symbol ε.
Let σ = a1 · · · an ∈ Act∗τ . We define vis(σ) as follows (in the following definition a ∈ Actτ).

1. vis(ε) = ε;

2. vis(σa) =

{
vis(σ)a, a 6= τ ;
vis(σ), a = τ.

Definition 3.1 A visible interleaving trace of a net N is a sequence vis(a1 · · · an) ∈ Act∗ s.t. πN
a1→ π1

a2→ . . .
an→

πn, πi ∈ Π(N) (1 ≤ i ≤ n). We denote a set of all visible interleaving traces of a net N by V isIntT races(N).
Two nets N and N ′ are interleaving τ -trace equivalent, denoted by N ≡τ

i N
′, if V isIntT races(N) =

V isIntT races(N ′).

Let Σ = A1 · · ·An ∈ (M(Actτ))
∗. We define vis(Σ) as follows (in the following definition A ∈M(Actτ)).

1. vis(ε) = ε;

2. vis(ΣA) =

{
vis(Σ)(A ∩ Act), A ∩ Act 6= ∅;
vis(Σ), otherwise.

Definition 3.2 A visible step trace of a net N is a sequence vis(A1 · · ·An) ∈ (M(Act))∗ s.t. πN
A1→ π1

A2→ . . .
An→

πn, πi ∈ Π(N) (1 ≤ i ≤ n). We denote a set of all visible step traces of a net N by V isStepT races(N). Two
nets N and N ′ are step τ -trace equivalent, denoted by N ≡τ

s N
′, if V isStepT races(N) = V isStepT races(N ′).

Let ρ = 〈X,≺, l〉 is lposet s.t. l : X → Actτ . We denote vis(X) = {x ∈ X | l(x) ∈ Act} and vis(ρ) = ρ|vis(X).

Definition 3.3 A visible pomset trace of a net N is a pomset vis(ρ), an isomorphism class of lposet vis(ρC)
for π = (C,ϕ) ∈ Π(N). We denote a set of all visible pomset traces of a net N by V isPomsets(N). Two nets
N and N ′ are partial word τ -trace equivalent, denoted by N ≡τ

pw N ′, if V isPomsets(N) ⊑ V isPomsets(N ′)
and V isPomsets(N ′) ⊑ V isPomsets(N).

Definition 3.4 Two nets N and N ′ are pomset τ -trace equivalent, denoted by N ≡τ
pom N ′, if V isPomsets(N)

= V isPomsets(N ′).

3.2 τ-bisimulation equivalences

Bisimulation equivalences completely respect points of nondeterministic choice in the behavior of a modeled
system, unlike trace ones.

Let C = 〈PC , TC , FC , lC〉 be causal net. We denote vis(TC) = {v ∈ TC | lC(v) ∈ Act} and vis(≺C) =≺C

∩(vis(TC)× vis(TC)).

3.2.1 Usual τ-bisimulation equivalences

Usual bisimulation equivalences are the simplest (and weakest) ones in the bisimulation semantics. They require
a mutual simulation of the parts of a “new” computations which extend the “present” ones, i.e. “extending”
parts.

Definition 3.5 Let N and N ′ be some nets. A relation R ⊆ Π(N) × Π(N ′) is a ⋆-τ -bisimulation between N
and N ′, ⋆ ∈{interleaving, step, partial word, pomset}, denoted by R : N↔τ

⋆N
′, ⋆ ∈ {i, s, pw, pom}, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
π̂
→ π̃,

(a) |vis(T
Ĉ
)| = 1, if ⋆ = i;

(b) vis(≺
Ĉ
) = ∅, if ⋆ = s;

7

⇒ ∃π̃′ : π′ π̂′

→ π̃′, (π̃, π̃′) ∈ R and

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-τ -bisimulation equivalent, ⋆ ∈{interleaving, step, partial word, pomset}, denoted by
N↔τ

⋆N
′, if ∃R : N↔τ

⋆N
′, ⋆ ∈ {i, s, pw, pom}.

3.2.2 ST-τ-bisimulation equivalences

ST-bisimulation equivalences respect (in some sense) the duration of event occurrences in a computation sup-
posing that these events happen not instantaneously, but have the beginning and the end. The relations require
a mutual simulation of extending parts of computations plus the parts consisting of events which are active now
(i.e. that which have begun but have not finished yet).

We begin with the definition of ST-process which is a special structure containing the information about as
causal dependencies of events in the present computation as the events which finished their work and are not
active at the present moment.

Definition 3.6 ST-τ -process of a net N is a pair (πE , πP) s.t. πE , πP ∈ Π(N), πP
πW→ πE and ∀v, w ∈

TCE
(v ≺CE

w) ∨ (lCE
(v) = τ) ⇒ v ∈ TCP

.

In such a case πE is a process which began working, πP corresponds to the completed part of πE , and
πW — to the still working part. Obviously, ≺CW

= ∅. We denote a set of all ST-τ-processes of a net N by
ST τ −Π(N). (πN , πN) is the initial ST-τ-process of a net N . Let (πE , πP), (π̃E , π̃P) ∈ ST τ −Π(N). We write
(πE , πP)→ (π̃E , π̃P), if πE → π̃E and πP → π̃P .

Definition 3.7 Let N and N ′ be some nets. A relation R ⊆ ST τ −Π(N)× ST τ −Π(N ′)×B, where B = {β |
β : vis(TC) → vis(TC′), π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)} is a ⋆-ST-τ -bisimulation between N and
N ′, ⋆ ∈{interleaving, partial word, pomset}, denoted by R : N↔τ

⋆STN
′, ⋆ ∈ {i, pw, pom}, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP), (π
′
E , π

′
P), β) ∈ R ⇒ β : vis(ρCE

) ≍ vis(ρC′

E
) and β(vis(TCP

)) = vis(TC′

P
).

3. ((πE , πP), (π
′
E , π

′
P), β) ∈ R, (πE , πP)→ (π̃E , π̃P) ⇒ ∃β̃, (π̃′

E , π̃
′
P) : (π′

E , π
′
P)→ (π̃′

E , π̃
′
P), β̃|vis(TCE

) =

β, ((π̃E , π̃P), (π̃
′
E , π̃

′
P), β̃) ∈ R, and if πP

π
→ π̃E , π

′
P

π′

→ π̃′
E , γ = β̃|vis(TC), then:

(a) γ−1 : vis(ρC′) ⊑ vis(ρC), if ⋆ = pw;

(b) γ : vis(ρC) ≃ vis(ρC′), if ⋆ = pom.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-ST-τ -bisimulation equivalent, ⋆ ∈{interleaving, partial word, pomset}, denoted by
N↔τ

⋆STN
′, if ∃R : N↔τ

⋆STN
′, ⋆ ∈ {i, pw, pom}.

3.2.3 History preserving τ-bisimulation equivalences

History preserving bisimulation equivalences respect “histories” of work, i.e. require a mutual modeling of the
whole computations, from the beginning to the end.

Definition 3.8 Let N and N ′ be some nets. A relation R ⊆ Π(N)×Π(N ′)×B, where B = {β | β : vis(TC)→
vis(TC′), π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving τ -bisimulation between
N and N ′, denoted by R : N↔τ

pomhN
′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ≃ vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃|vis(TC) = β, (π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving τ -bisimulation equivalent, denoted by N↔τ
pomhN

′, if ∃R :
N↔τ

pomhN
′.

8

3.2.4 History preserving ST-τ-bisimulation equivalences

History preserving ST-bisimulation equivalences may be considered as modification of history preserving ones
s.t. the beginnings and the ends of events are taken into account.

Definition 3.9 Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) × ST τ − Π(N ′) × B, where B =
{β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving
ST-τ -bisimulation between N and N ′, denoted by R : N↔τ

pomhSTN
′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP), (π
′
E , π

′
P), β) ∈ R ⇒ β : vis(ρCE

) ≃ vis(ρC′

E
) and β(vis(TCP

)) = vis(TC′

P
).

3. ((πE , πP), (π
′
E , π

′
P), β) ∈ R, (πE , πP)→ (π̃E , π̃P) ⇒ ∃β̃, (π̃′

E , π̃
′
P) : (π′

E , π
′
P)→ (π̃′

E , π̃
′
P), β̃|vis(TCE

) =

β, ((π̃E , π̃P), (π̃
′
E , π̃

′
P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving ST-τ -bisimulation equivalent, denoted by N↔τ
pomhSTN

′, if
∃R : N↔τ

pomhSTN
′.

3.2.5 Usual branching τ-bisimulation equivalences

Usual branching bisimulation equivalences are the simplest of branching bisimulation ones and may be considered
as a modification of a notion of usual bisimulation. The word “branching” is used to indicate that these
relations “really” respect all aspects of branching with special care for silent actions. Note that (non-branching)
bisimulation notions take no special care for silent actions in the points of nondeterministic choice, but such
actions may play an important role in the behavior of a modeled system.

In Figure 1, a distinguish ability of the usual and the branching bisimulation equivalences is demonstrated for
two nets N and N ′. All these equivalences require the initial processes πN and πN ′ to be related by bisimulation.
Further, if present processes π and π′ are bisimilar, and one of them is extended, then the process of another
net can be extended so that to model the behavior of the first net abstracting from invisible actions. In such a
case, the new, extended processes π̃ and π̃ should be also bisimilar.

Branching τ -bisimulation equivalences are more strict than usual ones, since they require that some inter-
mediate processes should be also bisimilar. An extension by invisible action τ , represented in Figure 1(a), is
simulated by an extension by sequence of invisible actions. In addition, the new process π̃ of the first net should
be related with the present process π of the second net. An extension by visible action a, depicted in Figure
1(b), is simulated by an extension by a sequence of actions s.t. only one of them (namely, a) is visible. In
addition, the present process π should be related with π1 which is reached immediately before the extension by
an action a. The new process π̃ should be bisimilar with π2 which is reached immediately after the extension
by an action a. These additional relations characterizing a notion of “branching” are depicted by dashed lines
in Figure 1.

For some net N and π, π̃ ∈ Π(N) we write π ⇒ π̃ when ∃π̂ = (Ĉ, ϕ̂) s.t. π
π̂
→ π̃ and vis(T

Ĉ
) = ∅.

Definition 3.10 Let N and N ′ be some nets. A relation R ⊆ Π(N) × Π(N ′) is an interleaving branching
τ -bisimulation between N and N ′, denoted by R : N↔τ

ibrN
′, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
a
→ π̃ ⇒

(a) a = τ and (π̃, π′) ∈ R or

(b) a 6= τ and ∃π̄′, π̃′ : π′ ⇒ π̄′ a
→ π̃′, (π, π̄′) ∈ R, (π̃, π̃′) ∈ R.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are interleaving branching τ -bisimulation equivalent, denoted by N↔τ
ibrN

′, if ∃R :
N↔τ

ibrN
′.

9

✲✉ ✉ ✉

✎ ☞ ✎ ☞
✲✉ ✉ ✉ ✉ ✉

Π(N)

Π(N ′)

π π̃

π′
π′
1 π′

2
π̃′

πN

πN ′

�
�

�
�

�
�❅

❅
❅

❅
❅

❅

✞ ☎a

✞ ☎

✄ � ✄ �

a(b)

✲✉ ✉ ✉

✲✉ ✉ ✉

Π(N)

Π(N ′)

π π̃

π′ π̃′

πN

πN ′

✞ ☎τ(a)

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✞ ☎✄ �

❄

❄

❄

❄❄❄

Figure 1: A distinguish ability of the usual and the branching τ -bisimulation equivalences

3.2.6 History preserving branching τ-bisimulation equivalences

History preserving branching bisimulation equivalences are modifications of history preserving bisimulation ones
in accordance to the special “branching” idea.

Definition 3.11 Let N and N ′ be some nets. A relation R ⊆ Π(N) × Π(N ′) × B, where B = {β | β : TC →
TC′ , π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving branching τ -bisimulation
between N and N ′, denoted by R : N↔τ

pomhbrN
′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ beta : vis(ρC) ≃ vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒

(a) (π̃, π′, β) ∈ R or

(b) ∃β̃, π̄′, π̃′ : π′ ⇒ π̄′ → π̃′, β̃|vis(TC) = β, (π, π̄′, β) ∈ R, (π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving branching τ -bisimulation equivalent, denoted by
N↔τ

pomhbrN
′, if ∃R : N↔τ

pomhbrN
′.

3.2.7 ST-branching τ-bisimulation equivalences

ST-branching bisimulation equivalences are modifications of ST-bisimulation ones in accordance to the “branch-
ing” idea.

Let (πE , πP), (π̃E , π̃P) ∈ ST τ −Π(N). We write (πE , πP)⇒ (π̃E , π̃P), if πE ⇒ π̃E and πP ⇒ π̃P .

Definition 3.12 Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) × ST τ − Π(N ′) × B, where
B = {β | β : vis(TC)→ vis(TC′), π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)} is an interleaving ST-branching
τ -bisimulation between N and N ′, denoted by R : N↔τ

iSTbrN
′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP), (π
′
E , π

′
P), β) ∈ R ⇒ β : vis(ρCE

) ≍ vis(ρC′

E
) and β(vis(TCP

)) = vis(TC′

P
).

3. ((πE , πP), (π
′
E , π

′
P), β) ∈ R, (πE , πP)→ (π̃E , π̃P) ⇒

(a) ((π̃E , π̃P), (π
′
E , π

′
P), β) ∈ R or

10

(b) ∃β̃, (π̄′
E , π̄

′
P), (π̃

′
E , π̃

′
P) : (π′

E , π
′
P)⇒ (π̄′

E , π̄
′
P)→ (π̃′

E , π̃
′
P), β̃|vis(TCE

) = β, ((πE , πP), (π̄
′
E , π̄

′
P), β) ∈

R, ((π̃E , π̃P), (π̃
′
E , π̃

′
P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are interleaving ST-branching τ -bisimulation equivalent, denoted by N↔τ
iSTbrN

′, if ∃R :
N↔τ

iSTbrN
′.

3.2.8 History preserving ST-branching τ-bisimulation equivalences

History preserving ST-branching bisimulation equivalences are modifications of history preserving ST-bisimulati-
on ones in accordance to the “branching” idea.

Definition 3.13 Let N and N ′ be some nets. A relation R ⊆ ST τ − Π(N) × ST τ − Π(N ′) × B, where
B = {β | β : vis(TC) → vis(TC′), π = (C,ϕ) ∈ Π(N), π′ = (C′, ϕ′) ∈ Π(N ′)} is a pomset history preserving
ST-branching τ -bisimulation between N and N ′, denoted by R : N↔τ

pomhSTbrN
′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE , πP), (π
′
E , π

′
P), β) ∈ R ⇒ β : vis(ρCE

) ≃ vis(ρC′

E
) and β(vis(TCP

)) = vis(TC′

P
).

3. ((πE , πP), (π
′
E , π

′
P), β) ∈ R, (πE , πP)→ (π̃E , π̃P) ⇒

(a) ((π̃E , π̃P), (π
′
E , π

′
P), β) ∈ R or

(b) ∃β̃, (π̄′
E , π̄

′
P), (π̃

′
E , π̃

′
P) : (π′

E , π
′
P)⇒ (π̄′

E , π̄
′
P)→ (π̃′

E , π̃
′
P), β̃|vis(TCE

) = β, ((πE , πP), (π̄
′
E , π̄

′
P), β) ∈

R, ((π̃E , π̃P), (π̃
′
E , π̃

′
P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

Two nets N and N ′ are pomset history preserving ST-branching τ -bisimulation equivalent, denoted by
N↔τ

pomhSTbrN
′, if ∃R : N↔τ

pomhSTbrN
′.

3.3 Conflict preserving τ-equivalences

Conflict preserving equivalences copmletely respect conflicts in the behavior of a modeled system. The behavior
is associated with the event structure.

Let ξ = 〈X,≺,#, l〉 be a LES s.t. l : X → Actτ . We denote vis(X) = {x ∈ X | l(x) ∈ Act} and
vis(ξ) = ξ|vis(X).

Definition 3.14 Two nets N and N ′ are MES conflict preserving τ -equivalent, denoted by N ≡τ
mes N

′, if
vis(E(N)) = vis(E(N ′)).

3.4 Interrelations of basic τ-equivalences

In this section, we compare basic τ -equivalences and obtain the lattice of their interrelations as a result.
In the following, the symbol ‘ ’ will denote “nothing”, and the signs of equivalences subscribed by it are

considered as that of without any subscribtion.

Theorem 3.1 Let ↔,↔↔∈ {≡τ ,↔τ ,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, iST, pwST, pomST, pomh, pomhST, ibr,
pomhbr, iST br, pomhSTbr,mes}. For nets N and N ′ N ↔⋆ N

′ ⇒ N ↔↔⋆⋆ N
′ iff in the graph in Figure 2

there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) Let us check the validity of the implications in the graph in Figure 2.

• The implications ↔τ
s→↔

τ
i , ↔∈ {≡

τ ,↔τ}, are valid since isomorphism of lposets with empty precedence
relation is isomorphism of singleton ones.

• The implications ↔τ
pw→↔

τ
s , ↔∈ {≡

τ ,↔τ}, are valid since homomorphism of lposets is isomorphism of
lposets with empty precedence relation.

• The implication↔τ
pwST →↔

τ
iST is valid since homomorphism of lposets is isomorphism of singleton ones.

• The implications ↔τ
pom→↔

τ
pw, ↔∈ {≡

τ ,↔τ}, are valid since isomorphism of lposets is homomorphism.

11

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s
↔τ

pw ↔τ
pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes

≃

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✙

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

✛ ✛

❄

✟

↔τ
pomhSTbr

↔τ
iSTbr

❄

�
�✠

❄

❄

✬

✘✘✘✘✘✘✘✾

Figure 2: Interrelations of basic τ -equivalences

• The implication ≡τ
mes→≡

τ
pom is valid since isomorphic LES’s have isomorphic sets of lposets.

• The implication ↔τ
i →≡

τ
i is proved as follows. Let R : N↔τ

iN
′. If πN

a1→ π1
a2→ . . .

an→ πn, then there

exists a sequence (πN , πN ′), . . . , (πn, π
′
m) ∈ R s.t. πN ′

a′

1→ π′
1

a′

2→ . . .
a′

m→ π′
m, vis(a1 · · · an) = vis(a′1 · · ·a

′
m),

and vice versa, due to the symmetry of bisimulation.

• The implication ↔τ
s →≡

τ
s is proved as the previous one but with use of A1, . . . , An ∈ M(Actτ) instead of

a1, . . . , an ∈ Actτ .

• The implication ↔τ
pw →≡

τ
pw is proved as follows. Let R : N↔τ

pwN
′ and π = (C,ϕ) ∈ Π(N). Since

πN
π
→ π, then ∃(π, π′) ∈ R s.t. π′ = (C′, ϕ′) and vis(ρC′) ⊑ vis(ρC). Hence, V isPomsets(N ′) ⊑

V isPomsets(N). The inclusion V isPomsets(N) ⊑ V isPomsets(N ′) is proved similarly, due to the
symmetry of bisimulation.

• The implication ↔τ
pom →≡

τ
pom is proved as the previous one but with use of isomorphism instead of

homomorphism.

• The implication↔τ
iST →↔

τ
s is proved as previous ones with use of the fact that a step π

A
→ π̃, where A =

{a1, . . . , an} ∈ M(Act), corresponds to the sequence of ST-τ -processes (π0, π0), . . . , (πn, π0), . . . , (πn, πn)

s.t. π = π0
a1→ . . .

an→ πn = π̃.

• The implications ↔τ
⋆ST → ↔

τ
⋆ , ⋆ ∈ {pw, pom} are proved with constructing on the basis of the relation

R : N↔τ
⋆STN

′ the new relation S : N↔τ
⋆N

′, defined as follows: S = {(π, π′) | ∃β ((π, π), (π′, π′), β) ∈ R}.

• The implication ↔τ
pomhST → ↔τ

pomh is proved with constructing on the basis of the relation R :
N↔τ

pomhSTN
′ the new relation S : N↔τ

pomhN
′, defined as follows: S = {(π, π′, β) | ((π, π), (π′, π′), β) ∈

R}.

• The implication ↔τ
pomh →↔

τ
pom is proved with constructing on the basis of the relation R : N↔τ

pomhN
′

the new relation S : N↔τ
pomN

′, defined as follows: S = {(π, π′) | ∃β ((π, π), (π′, π′), β) ∈ R}.

• The implication ↔τ
pomhST →↔

τ
pomST follows from the definitions.

• The implication ↔τ
ibr →↔

τ
i follows from the definitions.

• The implication ↔τ
pomhbr →↔

τ
pomh follows from the definitions.

• The implication↔τ
pomhbr →↔

τ
ibr is proved with constructing on the basis of the relationR : N↔τ

pomhbrN
′

the new relation S : N↔τ
ibrN

′, defined as follows: S = {(π, π′) | ∃β (π, π′, β) ∈ R}.

12

• The implication ↔τ
iSTbr →↔

τ
ibr is proved with constructing on the basis of the relation R : N↔τ

iSTbrN
′

the new relation S : N↔τ
ibrN

′, defined as follows: S = {(π, π′) | ∃β (π, π′, β) ∈ R}.

• The implication ↔τ
iSTbr →↔

τ
iST follows from the definitions.

• The implication ↔τ
pomhSTbr →↔

τ
iSTbr follows from the definitions.

• The implication ↔τ
pomhSTbr → ↔

τ
pomhbr is proved with constructing on the basis of the relation R :

N↔τ
pomhSTbrN

′ the new relation S : N↔τ
pomhbrN

′, defined as follows: S = {(π, π′, β) | ((π, π), (π′, π′), β)
∈ R}.

• The implication ↔τ
pomhSTbr →↔

τ
pomhST follows from the definitions.

• The implication ≃→↔τ
pomhSTbr is obvious.

• The implication ≃→≡τ
mes is obvious.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 2 is proved by the following examples.

• In Figure 3(a), N↔τ
ibrN

′, but N 6≡τ
s N

′, since only in the net N ′ actions a and b cannot happen concur-
rently.

• In Figure 3(c), N↔τ
iSTbrN

′, but N 6≡τ
pw N ′, since for the pomset corresponding to the net N there is no

even less sequential pomset in N ′.

• In Figure 3(b), N↔τ
pwSTN

′, but N 6≡τ
pom N ′, since only in the net N ′ action b can depend on action a.

• In Figure 5(a), N ≡τ
mes N

′, but N↔/ τ
iN

′, since only in the net N ′ action τ can happen so that in the
corresponding initial state of the net N action a cannot happen.

• In Figure 4(a), N↔τ
pomN

′, but N↔/ τ
iSTN

′, since only in the net N ′ action a can start so that no action
b can begin to work until finishing a.

• In Figure 4(b), N↔τ
pomSTN

′, but N↔/ τ
pomhN

′, since only in the net N ′ after action a action b can happen
so that action c must depend on a.

• In Figure 5(b), N↔τ
pomhN

′, but N↔/ τ
iSTN

′, since only in the net N ′ action a can start so that the action
b can never occur.

• In Figure 5(c), N↔τ
pomhSTN

′, but N↔/ τ
ibrN

′, since in the net N ′ an action a can happen so that it will
be simulated by sequence of actions τa in N . Then the state of the net N reached after τ must be related
with the initial state of a net N , but in such a case the occurrence of action b from the initial state of N ′

cannot be imitated from the corresponding state of N .

• In Figure 5(d), N↔τ
pomhbrN

′, but N↔/ τ
iSTN

′, since in the net N ′ an action c may start so that during
work of the corresponding action c in the net N an action a may happen in such a way that the action b
never occur.

• In Figure 4(c), N↔τ
pomhSTbrN

′, but N 6≡τ
mes N

′, since only the MES corresponding to the net N ′ has
two conflict actions a.

• In Figure 4(d), N ≡τ
mes N

′, but N 6≃ N ′, since unfireable transitions of the nets N and N ′ are labeled by
different actions (a and b). ⊓⊔

Thus, we obtained a number of interesting results.
In Petri nets with silent transitions ST- and history preserving equivalences are independent unlike the

situation with their analogues on nets without silent transitions. Moreover, we have a new dimension of
branching equivalences. So, we proposed additional notions of ↔τ

pomhST and ↔τ
ibr , ↔

τ
pomhbr.

In this paper, we obtained also two new notions ↔τ
iSTbr and ↔τ

pomhSTbr which are results of application of
ST- and branching idea to both interleaving and pomset semantics.

In addition, the equivalence ≡τ
mes imply only trace equivalences, and no more, unlike on nets without silent

transitions, where its analogue was the strongest notion in pomset semantics.

13

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

(a)

N

↔τ
ibr

6≡τ
s

b a

✍✌
✎☞

✍✌
✎☞

a b

✍✌
✎☞✉

❄

❄

❄

❄

✁
✁☛

❆
❆❯

N ′

(b)

ba

✍✌
✎☞

✍✌
✎☞✉ ✉N

❄ ❄↔τ
pwST

↔τ
iSTbr

↔τ
ibpwf

6≡τ
pom

↔/ τ
sbsf

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N ′

(c)

b d

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞✉ ✉

❄

❄

❄

❄

❄

❄

N

↔τ
iSTbr

↔τ
sbsf

6≡τ
pw

b b d d

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉N ′

❄

❄

❄

❄

❄

❄

❩
❩⑦

✚
✚✚❂

❄ ❄
✚✚❂✚

✚❂
❩
❩⑦

❩
❩⑦

✍✌
✎☞

b

❄

❄

✁
✁
✁

✁
✁

✁
✁☛

❆
❆
❆
❆
❆
❆
❆❯

✄
✄
✄
✄
✄
✄
✄✄✎

Figure 3: Examples of basic τ -equivalences

b

b

✍✌
✎☞

✍✌
✎☞✉

a

✍✌
✎☞✉
❄

❄

❄

❄

(a) N
↔τ

pom

↔τ
ibpomf

↔/ τ
iST

↔/ τ
sbsf

6≡τ
mes

b

✍✌
✎☞
a

❄

❄

N ′

b c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉

a

✍✌
✎☞✉(b) N

❄

✚
✚✚❂

↔τ
pomST

↔τ
sbpomf

↔/ τ
pomh

6≡τ
mes

b c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

a

✍✌
✎☞✉N ′

❄

b

(c)

a a

✍✌
✎☞✉
✡✡✢ ❏❏❫

N ′

↔τ
pomhSTbr

6≡τ
mesa

✍✌
✎☞

N ✉
❄

c

a

✍✌
✎☞

✍✌
✎☞

❄

❄

❄

(d) N

c

b

✍✌
✎☞

✍✌
✎☞

❄

❄

❄

N ′

↔τ
pomhSTbr

≡τ
mes

6≃✉ ✉

✂
✂
✂
✂
✂
✂
✂✌

a b

✍✌
✎☞✉✍✌

✎☞✉
✡✡✢ ❏❏❫ ❏❏❫

❄

✟✟✟✟✙

❄ ❄
◗
◗◗s❄ ❄

❍❍❍❍❥

◗
◗◗s

◗
◗◗s❄❄

◗
◗◗s

❩
❩❩⑦

✡✡✢

Figure 4: Examples of basic τ -equivalences (continued)

14

b τ

✍✌
✎☞
a

✍✌
✎☞✉
❄

❄

✡✡✢ ❏❏❫

N(b)

b τ

✍✌
✎☞
a

✍✌
✎☞✉
❄

❄

✡✡✢ ❏❏❫

a

◗
◗◗s↔τ

pomh

↔/ τ
iST

↔/ τ
ibr

6≡τ
mes

N ′

a τ

✍✌
✎☞✉
✡✡✢ ❏❏❫

N ′

≡τ
mes

↔/ τ
i

a

✍✌
✎☞✉
❄

N(a)

✍✌
✎☞

a τ b

a

✍✌
✎☞✉
❄

❄

❄

◗
◗◗s

✑
✑✑✰

N ′

↔τ
pomhST

↔/ τ
ibr

6≡τ
mes

✍✌
✎☞
τ b

a

✍✌
✎☞✉

❄

❄

✡✡✢ ❏❏❫

N(c)

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈
❈❈❲

❄

❄

❄

❄

❄

❄

❄

N(d)

↔τ
pomhbr

↔/ τ
iST

6≡τ
mes

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈
❈❈❲

❄

❄

❄

❄

❄

❄

❄

N ′ ✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c

τ

τ

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

✍✌
✎☞

✍✌
✎☞✉

b

❄

❄
✑

✑✑✰
◗
◗◗s

❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳❳③

✏✏✏✏✏✮

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾
❄✞ ✆

❩
❩
❩
❩
❩
❩
❩
❩⑦

Figure 5: Examples of basic τ -equivalences (continued 2)

15

4 Back-forth τ-bisimulation equivalences

In this section, we propose back-forth τ -bisimulation equivalences. The distinctive feature of these relations is
that they require a mutual simulation not only in forward direction (as usual) but also in backward direction.

4.1 Sequential runs

A sequential run is a special structure containing the information about as causal dependencies of events in the
present computation as the order in which they have happened.

Definition 4.1 A sequential run of a net N is a pair (π, σ), where:

• a process π ∈ Π(N) contains the information about causal dependencies of transitions which brought to
this state;

• a sequence σ ∈ T ∗
C s.t. πN

σ
→ π, contains the information about the order in which the transitions occur

which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).
The initial sequential run of a net N is a pair (πN , ε), where ε is an empty sequence. Let us denote by |σ|

a length of a sequence σ.

Let (π, σ), (π̃, σ̃) ∈ Runs(N). We write (π, σ)
π̂
→ (π̃, σ̃), if π

π̂
→ π̃, ∃σ̂ ∈ T ∗

C̃
π

σ̂
→ π̃ and σ̃ = σσ̂. We write

(π, σ)→ (π̃, σ̃), if (π, σ)
π̂
→ (π̃, σ̃) for some π̂.

Let (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and σ = v1 · · · vn, σ′ = v′1 · · · v
′
n. Let us define a mapping

βσ′

σ : TC → TC′ as follows: βσ′

σ = {(vi, v
′
i) | 1 ≤ i ≤ n}. Let β

ε
ε = ∅.

Let (π, σ) ∈ Runs(N) and σ = v1 · · · vn, πN
v1→ . . .

vi→ πi (1 ≤ i ≤ n).
Let us introduce the following notations:

• π(0) = πN ,

π(i) = πi (1 ≤ i ≤ n);

• σ(0) = ε,

σ(i) = v1 · · · vi (1 ≤ i ≤ n).

4.2 Definitions of back-forth τ-bisimulation equivalences

Now we are ready to present definitions of back-forth τ -bisimulation equivalences.

Definition 4.2 Let N and N ′ be some nets. A relation R ⊆ Runs(N) × Runs(N ′) is a ⋆-back ⋆⋆-forth τ -
bisimulation between N and N ′,
⋆, ⋆⋆ ∈{interleaving, step, partial word, pomset}, denoted by R : N↔τ

⋆b⋆⋆fN
′, ⋆, ⋆⋆ ∈ {i, s, pw, pom}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R

• (back)

(π̃, σ̃)
π̂
→ (π, σ),

(a) |vis(T
Ĉ
)| = 1, if ⋆ = i;

(b) vis(≺
Ĉ
) = ∅, if ⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′)
π̂′

→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆ ∈ {i, s, pom};

• (forth)

(π, σ)
π̂
→ (π̃, σ̃),

(a) |vis(T
Ĉ
)| = 1, if ⋆⋆ = i;

(b) vis(≺
Ĉ
) = ∅, if ⋆⋆ = s;

16

⇒ ∃(π̃′, σ̃′) : (π′, σ′)
π̂′

→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-back ⋆⋆-forth τ -bisimulation equivalent, ⋆, ⋆⋆ ∈ {interleaving, step, partial word,
pomset}, denoted by N↔τ

⋆b⋆⋆fN
′, if ∃R : N↔τ

⋆b⋆⋆fN
′, ⋆, ⋆⋆ ∈ {i, s, pw, pom}.

Let us note that back extensions of sequential runs are deterministic, i.e. for (π, σ) ∈ Runs(N) there exists

only one (π̃, σ̃) ∈ Runs(N) s.t. (π̃, σ̃)
π̂
→ (π, σ) and |σ̃| = i (0 ≤ i ≤ |σ|). In such a case (π̃, σ̃) = (π(i), σ(i)).

4.3 Interrelations of back-forth τ-bisimulation equivalences

Let us compare back-forth τ -bisimulation equivalences.

Proposition 4.1 Let ⋆ ∈ {i, s, pw, pom}. For nets N and N ′ N↔τ
pwb⋆fN

′ ⇔ N↔τ
pomb⋆fN

′.

Proof. (⇐) Isomorphism of lposets is homomorphism.
(⇒) Let R : N↔τ

pwb⋆fN
′. Let us prove R : N↔τ

pomb⋆fN
′.

1. Obviously, ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ R.

• (back)

Let (π̃, σ̃)
π̂
→ (π, σ). Then ∃(π̃′, σ̃′) : (π̃′, σ̃′)

π̂′

→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
).

Due to the symmetry of a bisimulation, the back extension (π̃′, σ̃′)
π̂′

→ (π′, σ′) must be imitated by

some extension (˜̄π, ˜̄σ)
π̌
→ (π, σ) s.t. vis(ρČ) ⊑ vis(ρ

Ĉ′
). Due to determinism of back extensions,

vis(T
Ĉ
) = vis(TČ). Then vis(ρ

Ĉ
) = vis(ρČ), and we obtain vis(ρ

Ĉ
) ⊑ vis(ρ

Ĉ′
). Consequently,

vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
).

• (forth)

Obviously.

3. As item 2, but the roles of N and N ′ are reversed. ⊓⊔

Proposition 4.2 Let ⋆ ∈ {i, s, pw, pom}. For nets N and N ′ N↔τ
⋆bifN

′ ⇔ N↔τ
⋆b⋆fN

′.

Proof. (⇐) Isomorphism of causal nets, isomorphism and homomorphism of lposets of causal nets, isomorphism
of lposets of causal nets with empty precedence relation imply label preserving bijection of lposets of causal
nets.
(⇒) Let R : N↔τ

⋆bifN
′. Let us prove R : N↔τ

⋆b⋆fN
′.

1. Obviously, ((πN , ε), (πN ′ , ε)) ∈ R.

2. Let ((π, σ), (π′, σ′)) ∈ R.

• (back)

Obviously.

• (forth)

Let (π, σ)
π̂
→ (π̃, σ̃). The extension by π̂ corresponds to the extension by some sequence of transitions.

Then ∃(π̃′, σ̃′) : (π′, σ′)
π̂′

→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R, where the extension by π̂′ corresponds to
the extension by sequence of transitions which imitates the corresponding one in the net N .

The back extension (π, σ)
π̂
→ (π̃, σ̃) must be imitated by some extension (π̄′, σ̄′)

π̌′

→ (π̃′, σ̃′), s.t.

(a) vis(ρČ′) ⊑ vis(ρ
Ĉ
), if ⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρČ′), if ⋆ ∈ {i, s, pom}.

17

↔τ
ibif ↔τ

ibsf ↔τ
ibpwf ↔τ

ibpomf

❄❄❄❄

↔τ
sbif ↔τ

sbsf ↔τ
sbpwf ↔τ

sbpomf

❄❄❄❄

↔τ
pwbif ↔τ

pwbsf ↔τ
pwbpwf ↔τ

pwbpomf

❄❄❄❄

↔τ
pombif ↔τ

pombsf ↔τ
pombpwf ↔τ

pombpomf
✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

Figure 6: Merging of back-forth τ -bisimulation equivalences

↔τ
ibif ↔τ

ibsf ↔τ
ibpwf ↔τ

ibpomf

❄❄❄

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

❄

↔τ
pombpomf

✛

✛

✛

✛

✛

Figure 7: Interrelations of back-forth τ -bisimulation equivalences

Due to determinism of back extensions, vis(T
Ĉ′
) = vis(TČ′). Then vis(ρ

Ĉ′
) = vis(ρČ′). Conse-

quently,

(a) vis(ρ
Ĉ′
) ⊑ vis(ρ

Ĉ
), if ⋆ = pw;

(b) vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
), if ⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed. ⊓⊔

In Figure 6, dashed lines embrace coinciding back-forth τ -bisimulation equivalences.
Hence, interrelations of back-forth τ -bisimulation equivalences may be represented by graph in Figure 7.

4.4 Interrelations of back-forth τ-bisimulation equivalences with basic

τ-equivalences

Let us consider compare back-forth τ -bisimulation equivalences with basic τ -equivalences.
For some net N and (π, σ), (π̃, σ̃) ∈ Runs(N) we write (π, σ)⇒ (π̃, σ̃) when (π, σ)→ (π̃, σ̃) and π ⇒ π̃.
Let for some nets N and N ′ (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and (πE , πP) ∈ ST τ−Π(N), (π′

E , π
′
P) ∈

ST τ −Π(N ′).
We shall use the following notations.

• (π, σ)↔τ
ibif (π

′, σ′) if ∃R : N↔τ
ibifN

′ s.t. ((π, σ), (π′, σ′)) ∈ R and analogously for ↔τ
pombpomf .

• π↔ibrπ
′ if ∃R : N↔τ

ibrN
′ s.t. (π, π′) ∈ R.

• π↔τ
pomhbrπ

′ if ∃R : N↔τ
pomhbrN

′ ∃β s.t. (π, π′, β) ∈ R.

• (πE , πP)↔τ
iSTbr(π

′
E , π

′
P) if ∃R : N↔τ

iSTbrN
′ ∃β s.t. ((πE , πP), (π

′
E , π

′
P), β) ∈ R and analogously for

↔τ
pomhSTbr.

Lemma 4.1 (X-Lemma 1) Let for nets N and N ′ N↔τ
ibifN

′ and (π, σ), (π̃, σ̃) ∈ Runs(N), (π′, σ′), (π̃′, σ̃′) ∈
Runs(N ′) s.t. (π, σ) ⇒ (π̃, σ̃), (π′, σ′) ⇒ (π̃′, σ̃′). Then (π, σ)↔τ

ibif (π̃
′, σ̃′) and (π̃, σ̃)↔τ

ibif (π
′, σ′) implies

(π, σ)↔τ
ibif (π

′, σ′) and (π̃, σ̃)↔τ
ibif (π̃

′, σ̃′).

Proof. As proof of the following Lemma 4.2, but using process extensions by one action only. ⊓⊔

Lemma 4.2 (X-Lemma 2) Let for nets N and N ′ N↔τ
pombpomfN

′ and (π, σ), (π̃, σ̃) ∈ Runs(N), (π′, σ′),
(π̃′, σ̃′) ∈ Runs(N ′) s.t. (π, σ)⇒ (π̃, σ̃), (π′, σ′)⇒ (π̃′, σ̃′). Then (π, σ)↔τ

pombpomf (π̃
′, σ̃′) and (π̃, σ̃)↔τ

pombpomf

(π′, σ′) implies (π, σ)↔τ
pombpomf (π

′, σ′) and (π̃, σ̃)↔τ
pombpomf (π̃

′, σ̃′).

18

Proof. It is enough to prove (π̃, σ̃)↔τ
pombpomf (π̃

′, σ̃′), since the fact (π, σ)↔τ
pombpomf (π

′, σ′) is proved similarly.
Let (π, σ) ⇒ (π̃, σ̃), (π′, σ′) ⇒ (π̃′, σ̃′) and (π, σ)↔τ

pombpomf (π̃
′, σ̃′), (π̃, σ̃)↔τ

pombpomf (π
′, σ′). We have only to

check similation of the net N by N ′ in back and forth directions, since simulation of N ′ by N is proved by
symmetry.

• (back)

Let (π̄, σ̄)
π̂
→ (π̃, σ̃), π̂ = (Ĉ, ϕ̂). Then, since (π̃, σ̃)↔τ

pombpomf (π
′, σ′), ∃π̌′ = (Č′, ϕ̌′), (π̄′, σ̄′) s.t.

(π̄′, σ̄′)
π̌′

→ (π′, σ′), (π̄, σ̄)↔τ
pombpomf (π̄

′, σ̄′) and vis(ρ
Ĉ
) ≃ vis(ρČ′).

Let us note if (π̄′, σ̄′)
π̂′

→ (π̃′, σ̃′), π̂′ = (Ĉ′, ϕ̂′) then we have vis(ρČ′) = vis(ρ
Ĉ′
). Consequently, vis(ρ

Ĉ
) ≃

vis(ρ
Ĉ′
).

• (forth)

Let (π̃, σ̃)
π̂
→ (π̄, σ̄), π̂ = (Ĉ, ϕ̂). Let us note if (π, σ)

π̌
→ (π̄, σ̄), π̌ = (Č, ϕ̌) then we have vis(ρ

Ĉ
) = vis(ρČ).

Since (π, σ)↔τ
pombpomf (π̃

′, σ̃′), ∃π̂′ = (Ĉ′, ϕ̂′), (π̄′, σ̄′) s.t. (π̃′, σ̃′)
π̂′

→ (π̄′, σ̄′), (π̄, σ̄)↔τ
pombpomf (π̄

′, σ̄′) and
vis(ρČ) ≃ vis(ρĈ′

). Consequently, vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
). ⊓⊔

Proposition 4.3 For nets N and N ′ N↔τ
ibifN

′ ⇔ N↔τ
ibrN

′.

Proof. As proof of the following Proposition 4.4, but using process extensions by one action only and Lemma
4.1. ⊓⊔

Proposition 4.4 For nets N and N ′ N↔τ
pombpomfN

′ ⇔ N↔τ
pomhbrN

′.

Proof. See Appendix A. ⊓⊔

Proposition 4.5 For nets N and N ′ N↔τ
iSTbrN

′ ⇒ N↔τ
ibsfN

′.

Proof. For π ∈ Π(N) we denote [π] = {π̄ | π̄ ∈ Π(N), (π, π)↔τ
iSTbr(π̄, π̄)}. Let (π, σ) ∈ Runs(N) and

σ = v1 · · · , vn. A trace of (π, σ) is defined by trace(π, σ) = [πN]lC(v1)[π(1)] · · · [π(n − 1)]lC(vn)[π(n)]. A trace
modulo stuttering of (π, σ), denoted by stutt(π, σ), is obtained from trace(π, σ) by replacing all triples of a kind
RτR by R.
Let N↔τ

iSTbrN
′, (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and stutt(π, σ) = R1a1R2 · · ·Rn−1anRn, stutt(π

′, σ′)
= R′

1a
′
1R

′
2 · · ·R

′
m−1a

′
mR

′
m. We say that stutt(π, σ) and stutt(π′, σ′) are isomorphic, denoted by stutt(π, σ) ≃

stutt(π′, σ′), if:

1. n = m;

2. ∀i (1 ≤ i ≤ n) ai = a′i;

3. ∀i (1 ≤ i ≤ n) and πi ∈ Ri, π
′
i ∈ R

′
i : (πi, πi)↔τ

iSTbr(π
′
i, π

′
i).

Let us define a relation S as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′),
stutt(π, σ) ≃ stutt(π′, σ′)}. Let us prove S : N↔τ

ibsfN
′.

1. ((πN , ε), (πN ′ , ε)) ∈ S, since πN↔τ
pomhbrπN ′ .

2. Let ((π, σ), (π′, σ′)) ∈ S.

• (back)

Let (π̃, σ̃)
π̂
→ (π, σ) and |vis(T

Ĉ
)| = 1. Then ∃i (1 ≤ i ≤ n) (π̃, σ̃) ∈ Ri from trace(π, σ). Since

stutt(π, σ) ≃ stutt(π′, σ′), then ∃k (1 ≤ k ≤ n) s.t. Ri corresponds to R′
k from trace(π′, σ′).

Then π̃↔τ
iSTbrπ

′(k). Consequently, ((π̃, σ̃), (π′(k), σ′(k))) ∈ S. Let us consider the back extension

(π′(k), σ′(k))
π̂′

→ (π′, σ′). We have |vis(T
Ĉ′
)| = 1 and vis(ρ

Ĉ
) ≃ vis(ρ

Ĉ′
).

• (forth) Obviously, since ↔τ
iST implies ↔τ

s .

3. As item 2, but the roles of N and N ′ are reversed. ⊓⊔

19

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲✁

✁
✁
✁

✁
✁

✁✁☛

✁
✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁

✁
✁

✁✁☛

≃ ✟

✬ ↔τ
pomhSTbr

↔τ
iSTbr

❄

❄

�
�✠

✂
✂
✂
✂
✂
✂
✂✂✌

❄

Figure 8: Interrelations of back-forth τ -bisimulation equivalences with basic τ -equivalences

Theorem 4.1 Let ↔,↔↔∈ {≡τ ,↔τ ,≃} and ⋆, ⋆⋆ ∈ { , i, s, pw, pom, iST, pwST, pomST, pomh, pomhST, ibr,
pomhbr, iST br, pomhSTbr,mes, ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. For nets N and N ′ N ↔⋆ N

′ ⇒
N ↔↔⋆⋆ N

′ iff in the graph in Figure 8 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) A consequence of Theorem 3.1 and the following substantiations.

• The implication ↔τ
ibsf →↔

τ
ibr is valid since by Proposition 4.3 ↔τ

ibr =↔τ
ibif and isomorphism of lposets

with empty precedence relation is isomorphism of singleton ones.

• The implications↔τ
⋆bpwf →↔

τ
⋆bsf , ⋆ ∈ {i, s} is valid since homomorphism is isomorphism of lposets with

empty precedence relation.

• The implications ↔τ
⋆bpomf →↔

τ
⋆bpwf , ⋆ ∈ {i, s} is valid since isomorphism of lposets is homomorphism.

• The implications ↔τ
ib⋆f → ↔

τ
⋆ , ⋆ ∈ {s, pw, pom} is proved with constructing on the basis of the relation

R : N↔τ
sb⋆fN

′ the new relation S : N↔τ
⋆N

′, defined as follows: S = {(π, π′) | ∃σ, σ′ ((π, σ), (π′, σ′)) ∈ R}.

• The implications ↔τ
sb⋆f → ↔

τ
ib⋆f , ⋆ ∈ {s, pw, pom} are valid since isomorphism of lposets with empty

precedence relation is isomorphism of singleton ones.

• The implication ↔τ
pomhbr →↔

τ
sbpomf is valid since by Proposition 4.4 ↔τ

pomhbr =↔τ
pombpomf and homo-

morphism is isomorphism of lposets with empty precedence relation.

• The implication ↔τ
iSTbr →↔

τ
ibsf is valid by Proposition 4.5.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 8 is proved by the following examples.

• In Figure 3(c), N↔τ
sbsfN

′, but N 6≡τ
pw N ′.

• In Figure 9, N↔τ
sbpwfN

′, but N 6≡τ
pom N ′.

• In Figure 4(a), N↔τ
ibpomfN

′, but N↔/ τ
sbsfN

′, since only in the net N ′ an action sequence ab can happen
s.t. b should depend on a.

• In Figure 3(b), N↔τ
iSTbrN

′, but N↔/ τ
sbsfN

′ since only in the net N ′ an action sequence ab can happen
s.t. b should depend on a. ⊓⊔

20

c

b

✍✌
✎☞

✍✌
✎☞✉

❄

❄

❄
c

a

✍✌
✎☞

✍✌
✎☞✉

❄

❄

❄

N

✍✌
✎☞✉

✚
✚✚❂

❩
❩❩⑦

c

b

✍✌
✎☞

✍✌
✎☞✉

❄

❄

❄

c

a

✍✌
✎☞

✍✌
✎☞✉

❄

❄

❄

N ′

c

✍✌
✎☞✉

✚
✚✚❂

❩
❩❩⑦

❩
❩❩⑦

✚
✚✚❂

↔τ
sbpwf

↔τ
pwST

6≡τ
pom

Figure 9: Example of back-forth τ -bisimulation equivalences

Thus, we obtained several important results concerning interrelations of back-forth and basic relations.
First, we have coincidences ↔τ

ibif =↔τ
ibr and ↔τ

pombpomf =↔τ
pomhbr providing branching characterization

of back-forth simulation.
The second interesting result is that↔τ

iST implies only↔τ
ibsf , not↔

τ
sbsf . Hence,↔

τ
iST is not strong enough

to provide step back simulation. This situation is unlike that on Petri nets without silent transitions.

4.5 Logical characterization

In this subsection, we demonstrate that several important back-forth (and branching) bisimulation equivalences
coincide with that of of temporal logics having past modalities. These results provide a logical characterization
of bisimulation equivalences (or, symmetrically, an operational characterization of logical ones).

4.5.1 Logic BFL

A back-forth logic (BFL) has been proposed in [15] in the framework of transition systems for a logical descrip-
tion of the interleaving back interleaving forth bisimulation equivalence.

Definition 4.3 Let the symbol ⊤ denotes the truth and a ∈ Act. A formula of BFL is defined as follows:

Φ ::= ⊤ | ¬Φ | Φ ∧Ψ | 〈← a〉Φ | 〈a〉Φ

We define [a]Φ = ¬〈a〉¬Φ and [← a]Φ = ¬〈← a〉¬Φ.
We write BFL for the set of all formulas of BFL.

Definition 4.4 Let N be some net and (π, σ) ∈ Runs(N). The satisfaction relation |=N∈ Runs(N)×BFL is
defined as follows:

1. (π, σ) |=N ⊤ — always;

2. (π, σ) |=N ¬Φ, if (π, σ) 6|=N Φ;

3. (π, σ) |=N Φ ∧Ψ, if (π, σ) |=N Φ and (π, σ) |=N Ψ;

4. (π, σ) |=N 〈← a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π̃, σ̃)
π̂
→ (π, σ), where π̂ = (Ĉ, ϕ̂), vis(l

Ĉ
(T

Ĉ
)) = a and

(π̃, σ̃) |=N Φ;

5. (π, σ) |=N 〈a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π, σ)
π̂
→ (π̃, σ̃), where π̂ = (Ĉ, ϕ̂), vis(l

Ĉ
(T

Ĉ
)) = a and (π̃, σ̃) |=N

Φ.

Definition 4.5 We write N |=N Φ, if (πN , ε) |=N Φ. Two nets N and N ′ are logical equivalent in BFL,
denoted by N =BFL N

′, if ∀Φ ∈ BFL N |=N Φ ⇔ N ′ |=N ′ Φ.

Let N be a net and π ∈ Π(N), a ∈ Act. The set of visible extensions of a process π by an action a (image set)

is defined as follows: V isImage(π, a) = {π̃ | π
π̂
→ π̃, π̂ = (Ĉ, ϕ̂), vis(l

Ĉ
(T

Ĉ
)) = a}. A net N is a finite-image

one, if ∀π ∈ Π(N) ∀a ∈ Act |V isImage(π, a)| <∞.

Theorem 4.2 [15] For two image-finite nets N and N ′ N↔τ
ibrN

′ ⇔ N↔τ
ibifN

′ ⇔ N =BFL N
′.

21

In Figure 5(c), N↔τ
pomhSTN

′, but N 6=BFL N ′, because for Φ = 〈a〉[← a]〈b〉⊤ N 6|=N Φ, but N ′ |=N ′ Φ,
since in the net N ′ an action a can happen so that it will be simulated by sequence of actions τa in N . Then
the state of the net N reached after τ must be related with the initial state of a net N , but in such a case the
occurrence of action b from the initial state of N ′ cannot be imitated from the corresponding state of N .

Thus, in interleaving semantics, we obtained a logical characterization of branching and back-forth relations
or, symmetrically, an operational characterization of equivalence imposed by back-forth logic.

4.5.2 Logic SPBFL

A pomset back-forth logic with invisible actions (SPBFL) has been proposed in [19] in the framework of event
structures for a logical description of the pomset back pomset forth bisimulation equivalence.

Definition 4.6 Let the symbol ⊤ denotes the truth and ρ be a pomset with labeling into Act. A formula of
SPBFL is defined as follows:

Φ ::= ⊤ | ¬Φ | Φ ∧Ψ | 〈← ρ〉Φ | 〈a〉Φ

We define [a]Φ = ¬〈a〉¬Φ and [← ρ]Φ = ¬〈← ρ〉¬Φ.
We write SPBFL for the set of all formulas of SPBFL.
Let us note that in the formula 〈a〉Φ, corresponding to the case of forth extension, we use an action a, not

a pomset ρ, since ↔pombif =↔pombpomf . Hence, it is sufficient to consider forth extensions by one action only.

Definition 4.7 Let N be some net and (π, σ) ∈ Runs(N). The satisfaction relation |=N∈ Runs(N)×SPBFL
is defined as follows:

1. (π, σ) |=N ⊤ — always;

2. (π, σ) |=N ¬Φ, if (π, σ) 6|=N Φ;

3. (π, σ) |=N Φ ∧Ψ, if (π, σ) |=N Φ and (π, σ) |=N Ψ;

4. (π, σ) |=N 〈← ρ〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π̃, σ̃)
π̂
→ (π, σ), where π̂ = (Ĉ, ϕ̂), vis(ρ

Ĉ
) ∈ ρ and (π̃, σ̃) |=N Φ;

5. (π, σ) |=N 〈a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π, σ)
π̂
→ (π̃, σ̃), where π̂ = (Ĉ, ϕ̂), vis(l

Ĉ
(T

Ĉ
)) = a and (π̃, σ̃) |=N

Φ.

Definition 4.8 We write N |=N Φ, if (πN , ε) |=N Φ. Two nets N and N ′ are logical equivalent in BFL,
denoted by N =SPBFL N

′, if ∀Φ ∈ SPBFL N |=N Φ ⇔ N ′ |=N ′ Φ.

Theorem 4.3 [19] For two image-finite nets N and N ′ N↔τ
pomhbrN

′ ⇔ N↔τ
pombpomfN

′ ⇔ N =SPBFL N
′.

In Figure 4(b), N =BFL N ′, but N 6=SPBFL N ′, because for Φ = [a][b]〈c〉〈← (a; b)‖c〉⊤ ((a; b)‖c denotes
the pomset where b depends on a, and a, b are independent with c), N |=N Φ, but N ′ 6|=N ′ Φ since only in the
net N ′ after action a action b can happen so that action c must depend on a.

Thus, in pomset semantics, we obtained a logical characterization of branching and back-forth relations or,
symmetrically, an operational characterization of equivalence imposed by back-forth logic.

5 Interrelations of equivalences with τ-equivalences

In this section, we compare equivalences which do not abstract of silent actions with all the considered τ -
equivalences.

Proposition 5.1 Let ↔∈ {≡,↔}, ⋆ ∈ {i, s, pw, pom, iST, pwST, pomST,mes, sbsf, sbpwf, sbpomf}, ⋆⋆ ∈
{s, pw, pom}. For nets N and N ′:

1. N ↔⋆ N
′ ⇒ N ↔τ

⋆ N
′;

2. N↔iN
′ ⇒ N↔τ

ibrN
′;

3. N↔iSTN
′ ⇒ N↔τ

iSTbrN
′;

4. N↔pomhN
′ ⇒ N↔τ

pomhSTbrN
′;

22

b c

✍✌
✎☞
a

✍✌
✎☞✉
❄

❄

✡✡✢ ❏❏❫

N

τ b

✍✌
✎☞
a

✍✌
✎☞✉
❄

❄

✡✡✢ ❏❏❫

N ′

↔τ
pomhSTbr

6≡τ
mes

6≡i

b c

✍✌
✎☞

✡✡✢ ❏❏❫

❄

Figure 10: Example of interrelations of equivalences and τ -equivalences

5. N↔⋆⋆N
′ ⇒ N↔τ

ib⋆⋆fN
′.

and all the implications are strict.

Proof.

1. By definitions.

2. By definitions.

3. By definitions.

4. We prove with construction one the basis of the relation R : N↔pomhN
′ the new relation

S : N↔τ
pomhSTbrN , defined as follows: S = {((πE , πP), (π′

E , π
′
P), β) | (πE , π

′
E , β) ∈ R, (πE , πP) ∈

ST τ −Π(N), (π′
E , π

′
P) ∈ ST

τ −Π(N ′), β(TCP
) = TC′

P
}.

5. We prove with construction one the basis of the relation R : N↔⋆⋆N
′ the new relation S : N↔τ

ib⋆⋆fN
′,

defined as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′), |σ| = |σ′|, lC(σ) =
lC′(σ′), ∀i (0 ≤ i ≤ |σ|) (π(i), π′(i)) ∈ R}.

The strictness of the implications is proved by the following examples.

• In Figure 10, N↔τ
pomhSTbrN

′, but N 6≡i N
′, since only in the net N ′ an action a can happen in the initial

state.

• In Figure 5(a), N ≡τ
mes N

′, but N 6≡i N
′, since only in the net N ′ an action τ can happen in the initial

state. ⊓⊔

We obtained several interesting results.
It is clear that abstraction of silent actions results weaker equivalence notions. So, implication 1 from

Proposition 5.1 is rather obvious. But the other implications are not so trivial.
Implications 2–4 show that the branching idea is applicable only if to respect silent actions.
Implication 5 shows that interleaving back simulation results new equivalences only in the case of respect of

silent actions.

6 Preservation of the τ-equivalences by refinements

In this section, we treat the considered τ -equivalences for preservation by transition refinements. We use SM-
refinement, i.e. refinement by a special subclass of state-machine nets introduced in [5].

Definition 6.1 An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

1. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and one output place;

23

2. ∃pin, pout ∈ PD s.t. pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net D has unique input and unique
output place.

3. MD = {pin}, i.e. at the beginning there is unique token in pin.

Definition 6.2 Let N = 〈PN , TN , FN , lN ,MN〉 be some net, a ∈ lN (TN) and D = 〈PD, TD, FD, lD,MD〉 be
SM-net. An SM-refinement, denoted by ref(N, a,D), is (up to isomorphism) a net N = 〈P

N
, T

N
, F

N
, l

N
,M

N
〉,

where:

• P
N

= PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l
−1
N (a)};

• T
N

= (TN \ l
−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l

−1
N (a)};

• F
N
(x̄, ȳ) =





FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l
−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

• l
N
(ū) =

{
lN (ū), ū ∈ TN \ l

−1
N (a);

lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l
−1
N (a);

• M
N
(p) =

{
MN(p), p ∈ PN ;
0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equivalent after applying any refinement
operator to them accordingly.

The following proposition demonstrates that some considered in the paper equivalence notions are not
preserved by SM-refinements.

Proposition 6.1 Let ⋆ ∈ {i, s}, ⋆⋆ ∈ {i, s, pw, pom, pomh, ibr, pomhbr, ibsf, ibpwf, ibpomf, sbsf, sbpwf,
sbpomf}. Then the τ-equivalences ≡τ

⋆ , ↔
τ
⋆⋆ are not preserved by SM-refinements.

Proof.

• In Figure 11, N↔τ
sN

′, but ref(N, c,D) 6≡τ
i ref(N ′, c,D), since only in ref(N ′, c,D) the sequence of

actions c1abc2 can happen. Consequently, the τ -equivalences between ≡τ
i and ↔τ

s are not preserved by
SM-refinements.

• In Figure 12, N↔τ
pomN

′, but ref(N, a,D)↔/ τ
i ref(N

′, a,D), since only in ref(N ′, a,D) after occurrence
of action a1 action b can not happen. Consequently, no equivalence between ↔τ

i and ↔τ
pom is preserved

by SM-refinements.

• In Figure 13, N↔τ
pomhbrN

′, but ref(N, a,D)↔/ τ
i ref(N

′, a,D), since only in ref(N ′, a,D) an action c1
may happen so that after the corresponding action c1 in the net N an action a may happen in such a
way that the action b never occur. Consequently, no equivalence between ↔τ

i and ↔τ
pomhbr is preserved

by SM-refinements. Let us note that this figure is a translation of an example on event structures from
[19] to the framework of Petri nets.

In Figure 14, lines embrace τ -equivalences which are not preserved by SM-refinements due to examples in
Figures 11–13. ⊓⊔

Let us consider which τ -equivalences are preserved by SM-refinements.

Proposition 6.2 Let ⋆ ∈ {pw, pom}. For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net D N ≡τ
⋆

N ′ ⇒ ref(N, a,D) ≡τ
⋆ ref(N

′, a,D).

Proof. See Appendix B. ⊓⊔

Proposition 6.3 Let ⋆ ∈ {i, pw, pom}. For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net
D N↔τ

⋆STN
′ ⇒ ref(N, a,D)↔τ

⋆ST ref(N
′, a,D).

Proof. See Appendix C. ⊓⊔

24

b c2

b c2 c1

a a c1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄
◗
◗◗s

✑
✑✑✰

✚
✚✚❂

❩
❩❩⑦
✚

✚✚❂

❄ ❄ ❄

❄ ❄

❄ ❄

b b c2 c1 c2

b c2

a a a c1 c1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉ ✉

❄

❄ ❄

❄ ❄ ❄ ❄ ❄

✚
✚✚❂

❩
❩❩⑦
✚

✚✚❂❄ ❄

❄ ❄ ❄ ❄
PPPq

✏✏✏✮
❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✾

6≡τ
i

ref(N, c,D) ref(N ′, c,D)

b b c

a a c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉
❄❄

◗
◗◗s

✚
✚❂

N

b b b c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a a a c c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉ ✉

❄ ❄ ❄ ❄
PPPq

✏✏✏✮
❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✾

N ′

↔τ
s

6≡τ
pw

↔/ τ
iST

↔/ τ
sbsf

c2

c1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉
❄

❄

❄

❄

D

◗
◗◗s

✑
✑✑✰

PPPPPq
✏✏✏✏✏✮

◗
◗◗s

✑
✑✑✰

PPPPPq
✏✏✏✏✏✮

✍✌
✎☞

✍✌
✎☞

✟✟✟✟✙
❍❍❍❍❥

❏❏❫ ✡✡✢

❙❙✇ ✓✓✴

❏❏❫

✓✓✴

❅❅❘

✟✟✟✟✙
❍❍❍❍❥

❏❏❫ ✡✡✢

❙❙✇ ✓✓✴

❏❏❫✡✡✢

✍✌
✎☞

✍✌
✎☞

✧✧

◗
◗◗s

✧✧

❄

✡✡✢

❙❙✇ ❙❙✇

◗
◗◗s

Figure 11: The τ -equivalences between ≡τ
i and ↔τ

s are not preserved by SM-refinements

Proposition 6.4 [5, 10] For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net D N↔τ
pomhSTN

′ ⇒
ref(N, a,D)↔τ

pomhST ref(N
′, a,D).

Proposition 6.5 For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net D N↔τ
iSTbrN

′ ⇒
ref(N, a,D)↔τ

iSTbrref(N
′, a,D).

Proof. Like proof of the case ⋆ = i in Proposition 6.3, but with check of branching simulation. ⊓⊔

Proposition 6.6 For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net D N↔τ
pomhSTbrN

′ ⇒
ref(N, a,D)↔τ

pomhSTbrref(N
′, a,D).

Proof. Like proof of Proposition 6.4, but with check of branching simulation. ⊓⊔

Proposition 6.7 For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) ∩ Act and SM-net D N ≡τ
mes N

′ ⇒
ref(N, a,D) ≡τ

mes ref(N
′, a,D).

Proof. See Appendix D. ⊓⊔

Proposition 6.8 For nets N, N ′ s.t. a ∈ lN (TN) ∩ lN ′(TN ′) and SM-net D N ≃ N ′ ⇒ ref(N, a,D) ≃
ref(N ′, a,D).

Proof. Obviously. ⊓⊔

Theorem 6.1 Let ↔∈ {≡τ ,↔τ ,≃} and ⋆ ∈ { , i, s, pw, pom, iST, pwST, pomST, pomh, pomhST, ibr, pomhbr,
iST br, pomhSTbr,mes, ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. For nets N, N ′ s.t. a ∈ lN (TN)∩lN ′(TN ′)∩
Act and SM-net D the following holds: N ↔⋆ N

′ ⇒ ref(N, a,D)↔⋆ ref(N
′, a,D) iff the equivalence ↔⋆ is

in oval in Figure 15.

25

b b

a2

a1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉

✉

❄

❄

❄

❄

❄
✑

✑✑✰

ref(N, a,D)

b b

a2

a1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉

✉ ✉

❄

❄

❄

❄

❄ ❄
✑

✑✑✰
✑

✑✑✰

≡τ
pom

↔/ τ
i

a1 a2✍✌
✎☞

❏
❏

❏
❏

❏
❏

❏❏❪

✲ ✲ ✲

ref(N ′, a,D)

b b

a

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉

❄

❄

❄
✑

✑✑✰
b b

a

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

❄

❄

❄ ❄
✑

✑✑✰
✑

✑✑✰

✉
N N ′

↔τ
pom

↔τ
ibpomf

↔/ τ
iST

↔/ τ
sbsf

6≡τ
mes

✉

❍❍❍❍❨

a✲

a2

a1

✍✌
✎☞

✍✌
✎☞

❄

❄

❄

✉
D

✍✌
✎☞❄

❄

❄

Figure 12: The τ -equivalences between ↔τ
i and ↔τ

pom are not preserved by SM-refinements

26

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈
❈❈❲

❄

❄ ❄

❄

❄

❄

❄

N

↔τ
pomhbr

↔/ τ
iST

6≡τ
mes

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈
❈❈❲

❄

❄

❄

❄

❄

❄

❄

N ′

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c

τ

τ

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

✍✌
✎☞

✍✌
✎☞✉

b

❄

❄
✑

✑✑✰
◗
◗◗s

❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳❳③

✏✏✏✏✏✮

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾
❄✞ ✆

c1

c2

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉
❄

❄

❄

❄

D

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c1

c2

τ

✡✡✢ ❏❏❫

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

ref(N, c,D)

≡τ
pom

↔/ τ
i

6≡τ
mes

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c1

c2

τ

✡✡✢ ❏❏❫

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

ref(N ′, c,D)

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✉ ✉

✉

a

b

a c1

c2

τ

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

✍✌
✎☞

✍✌
✎☞✉

b

❄

❄
✑

✑✑✰

❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳❳③

✏✏✏✏✏✮

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾
❄✞ ✆

τ

✍✌
✎☞❄

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

τ

✍✌
✎☞❄

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

τ

✍✌
✎☞❄

❄

❈
❈
❈
❈
❈
❈
❈❈❲

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❏❫

❩
❩
❩
❩
❩
❩
❩
❩⑦

Figure 13: The τ -equivalences between ↔τ
i and ↔τ

pomhbr are not preserved by SM-refinements

27

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

11

12
13

✁
✁
✁

✁
✁
✁

✁✁☛

✁
✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁

✁
✁

✁✁☛

≃ ✟

✬ ↔τ
pomhSTbr

↔τ
iSTbr

❄

❄

�
�✠

✂
✂
✂
✂
✂
✂
✂✂✌

❄

Figure 14: The τ -equivalences which are not preserved by SM-refinements

≡τ
i ≡τ

s
≡τ

pw ≡τ
pom

↔τ
i ↔τ

s
↔τ

pw ↔τ
pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✁
✁

✁
✁

✁
✁

✁✁☛

✁
✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁

✁
✁

✁✁☛

≃ ✟

✬ ↔τ
pomhSTbr

↔τ
iSTbr

❄

❄

�
�✠

✂
✂
✂
✂
✂
✂
✂✂✌

❄

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

Figure 15: Preservation of the τ -equivalences by SM-refinements

28

Proof. By Propositions 6.1–6.8. ⊓⊔

Thus, we obtained several interesting results concerning preservation by refinements.
First, ≡τ

pw, ≡
τ
pom and ≡τ

mes are preserved by this operation.
The second result is that all the ST-equivalences withstand this operation too. Our new ST-equivalences

are proved to be helpful in top-down design. If one wants to have for multilevel design a notion of branch-
ing equivalence and needs only interleaving semantics, he takes ↔τ

iSTbr . In pomset semantics, ↔τ
pomhSTbr is

appropriate.

7 The τ-equivalences on some net subclasses

In this section, we consider the τ -equivalences on nets without silent transitions and sequential nets.

7.1 The τ-equivalences on nets without silent transitions

Let us consider the τ -equivalences on nets without silent transitions, where no transition is labeled by the action
τ .

Proposition 7.1 Let ↔∈ {≡,↔}, ⋆ ∈ {i, s, pw, pom, iST, pwST, pomST,mes, sbsf, sbpwf, sbpomf}, ⋆⋆ ∈
{s, pw, pom}. For nets without silent transitions N and N ′:

1. N ↔⋆ N
′ ⇔ N ↔τ

⋆ N
′;

2. N↔iN
′ ⇔ N↔τ

ibrN
′;

3. N↔iSTN
′ ⇔ N↔τ

iSTbrN
′;

4. N↔pomhN
′ ⇔ N↔τ

pomhSTbrN
′;

5. N↔⋆⋆N
′ ⇔ N↔τ

ib⋆⋆fN
′.

Proof. (⇐)

1. By definitions.

2. By definitions.

3. By definitions.

4. We prove with construction one the basis of the relation R : N↔τ
pomhSTbrN

′ the new relation S :
N↔pomhN , defined as follows: S = {(π, π′, β) | ((π, π), (π′, π′), β) ∈ R}.

5. We prove with construction one the basis of the relation R : N↔τ
ib⋆⋆fN

′ the new relation S : N↔⋆⋆N
′,

defined as follows: S = {(π, π′) | ∃σ, σ′

((π, σ), (π′, σ′)) ∈ R}.

(⇒) By Proposition 5.1, because nets without silent transitions are a subclass of that of with silent transitions.
⊓⊔

In Figure 16, dashed lines embrace the τ -equivalences coinciding on nets without silent transitions.

Theorem 7.1 Let ↔,↔↔∈ {≡,↔,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, iST, pwST, pomST, pomh, ibr,mes, sbsf,
sbpwf, sbpomf}. For nets without silent transitions N and N ′ N ↔⋆ N

′ ⇒ N ↔↔⋆⋆ N
′ iff in the graph in

Figure 17 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. By Proposition 7.1 and Theorem 1 from [20]. ⊓⊔

Thus, we have several interesting results.
It is clear that abstraction of silent actions plays no role in Petri nets without silent transitions. Hence, we

obtain coincidence of relations abstracting of silent actions with that of not abstracting, and equality 1 from
Proposition 7.1 is obvious. But the other equalities are not so trivial.

Equalities 2–4 show that the branching idea is applicable only if to respect silent actions.
Equality 5 shows that interleaving back simulation results new equivalences only in the case of respect of

silent actions.

29

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲✁

✁
✁

✁
✁
✁

✁✁☛

✁
✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁

✁
✁

✁✁☛

≃ ✟

✬ ↔τ
pomhSTbr

↔τ
iSTbr

❄

❄

�
�✠

✂
✂
✂
✂
✂
✂
✂✂✌

❄

Figure 16: Merging of the τ -equivalences on nets without silent transitions

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s
↔τ

pw ↔τ
pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

≡τ
mes

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

≃

✛ ✛ ✛

✛✛✛

✛✛

❄❄❄❄

❄

❄

❄ ❄ ❄�
�✠

�
�✠

�
�✠

❅
❅❘✛ ✛

❄

Figure 17: Interrelations of the τ -equivalences on nets without silent transitions

30

7.2 The τ-equivalences on sequential nets

Let us consider the τ -equivalences on sequential nets, where no two transitions can be fired concurrently.

Definition 7.1 A net N = 〈PN , TN , FN , lN ,MN〉 is sequential, if ∀M ∈Mark(N) ¬∃t, u ∈ TN : •t+•u ⊆M .

Proposition 7.2 For sequential nets N and N ′:

1. N ≡τ
i N

′ ⇔ N ≡τ
pom N ′;

2. N↔τ
iN

′ ⇔ N↔τ
pomhN

′;

3. N↔τ
iSTN

′ ⇔ N↔τ
pomhSTN

′;

4. N↔τ
ibrN

′ ⇔ N↔τ
pomhbrN

′;

5. N↔τ
iSTbrN

′ ⇔ N↔τ
pomhSTbrN

′.

Proof.

1. (⇐) By Theorem 3.1.

(⇒) Let N ≡τ
i N

′, then V isIntT races(N) = V isIntT races(N ′). To prove N ≡τ
pom N ′, it is sufficient to

establish the equality V isPomsets(N) = V isPomsets(N ′). It follows immediately, since V isPomsets(N)
and V isPomsets(N ′) are totally ordered multisets (chains), and there is on-to-one correspondence between
V isIntT races(N) and V isPomsets(N) (V isIntT races(N ′) and V isPomsets(N ′) respectively).

2. By Proposition 5.4 from [5].

3. Similar to the item 2.

4. Similar to the item 2.

5. Similar to the item 2. ⊓⊔

In Figure 18, dashed lines embrace the τ -equivalences coinciding on sequential nets.

Theorem 7.2 Let ↔,↔↔∈ {≡τ ,↔τ ,≃}, ⋆, ⋆⋆ ∈ { , i, iST, ibr, iST br,mes}. For sequential nets N and N ′

N ↔⋆ N
′ ⇒ N ↔↔⋆⋆ N

′ iff in the graph in Figure 19 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) By Proposition 7.2 and Theorem 4.1.
(⇒) An absence of additional nontrivial arrows in the graph in Figure 19 is proved by the following examples
on sequential nets.

• In Figure 5(a), N ≡τ
mes N

′, but N↔/ τ
iN

′.

• In Figure 5(c), N↔τ
iN

′, but N↔/ τ
ibrN

′.

• In Figure 5(b), N↔τ
iN

′, but N↔/ τ
iSTN

′.

• In Figure 4(c), N↔τ
iSTbrN

′, but N 6≡τ
mes N

′. ⊓⊔

Thus, we obtained several important results.
First, it is clear that on sequential nets all pomsets of processes are strictly ordered and they are simple

chains. So, all interleaving and pomset equivalences coincide, and equality 1 from Proposition 7.2 is obvious.
But the other equalities are not so trivial.

The basic is equality 2 showing coincidence of interleaving and pomset history preserving relations. Thus,
history preservation idea on sequential nets provide no special equivalence notions.

Equalities 3–5 are sequences of 2. They additionally take into account ST-, branching ideas and both ideas
together.

31

≡τ
i ≡τ

s ≡τ
pw ≡τ

pom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST

↔τ
pwST ↔τ

pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τ
mes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

�
�✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲✁

✁
✁

✁
✁
✁

✁✁☛

✁
✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁

✁
✁

✁✁☛

≃ ✟

✬ ↔τ
pomhSTbr

↔τ
iSTbr

❄

❄

�
�✠

✂
✂
✂
✂
✂
✂
✂✂✌

❄

Figure 18: Merging of the τ -equivalences on sequential nets

≡τ
i ≡τ

mes

❄

↔τ
i ↔τ

iST
✛

↔τ
ibr

✛

❄

↔τ
iSTbr ≃✛

✛

❄ ❄

Figure 19: Interrelations of the τ -equivalences on sequential nets

32

∼τ
s ∼τ

pw ∼τ
pom

✛✛∼τ
i

✛

∼τ
ibr

❄

Figure 20: Interrelations of place τ -bisimulation equivalences

8 Conclusion

In this paper, we supplemented by new ones and examined a group of basic τ -equivalences and back-forth
τ -bisimulation equivalences. We compared them with relations which do not abstract of silent actions. We also
compared them on the whole class of Petri nets as well as on their subclasses of nets without silent transitions
and sequential nets. All the considered τ -equivalences were checked for preservation by SM-refinements. So,
we can use the τ -equivalence notions that are preserved by SM-refinements, for top-down design of concurrent
systems.

Further research may consist in the investigation of τ -variants of place bisimulation equivalences [2] which are
used for effective semantically correct reduction of nets. In [23], we have already investigated place equivalences
for Petri nets without silent transitions. So, our aim is to extend these results to wider net class. In [3, 1],
a notion of interleaving place τ -bisimulation equivalence (∼τ

i) was proposed, and its usefulness for behavior
preserving simplification of Petri nets with silent transitions was demonstrated. It was mentioned that τ -
variants of place bisimulations provide much more reductions than usual ones because of merging many silent
transitions.

In interleaving semantics, it is possible to define branching place relation (∼τ
ibr) as well. It would be very

interesting to treat also non-interleaving variants of place τ -bisimulations (∼τ
s ,∼

τ
pw and ∼τ

pom) in order to respect
true concurrency aspects during reduction of nets. Thus, we obviously have the diagram of interrelations shown
in Figure 20.

A hard question here is to find whether any of three relations ∼τ
i ,∼

τ
s and ∼τ

pw coincide like it was for the
corresponding notions not abstracting of silent actions (we had coincidence of all the three analogous relations
in that case). At the present moment, we have only counterexamples showing that ∼τ

ibr and ∼τ
pom do not imply

each other and do not merge with any of three mentioned τ -equivalences. In addition, we should establish
interrelations of the place notions with all τ -equivalences we proposed in this paper.

What is about preservation by SM-refinements, the results of [23] demonstrate that no place τ -bisimulation
relation is preserved by the transformation.

Obviously, on Petri nets without silent transitions place τ -equivalences coincide with the corresponding
relations that do not abstract of silent actions. In particular, ∼τ

ibr merges with ∼i. On sequential nets, all
non-interleaving place relations coincide with interleaving ones. Hence, only ∼τ

i and ∼τ
ibr are remained.

Thus, we presented several ideas concerning place τ -bisimulations. We leave general research in this area
for the future.

References

[1] C. Autant, W. Pfister, Ph. Schnoebelen. Place bisimulations for the reduction of labeled Petri nets
with silent moves. Proceedings of International Conference on Computing and Information, 1994.

[2] C. Autant, Ph. Schnoebelen. Place bisimulations in Petri nets. Lecture Notes in Computer Science
616, pages 45–61, 1992.

[3] C. Autant. Petri nets for the semantics and the implementation of parallel processes. Ph.D. Thesis,
Institut National Polytechnique de Grenoble, May 1993 (in French).

[4] E. Best, R. Devillers. Sequential and concurrent behavior in Petri net theory. Theoretical Computer
Science 55, pages 87–136, 1987.

[5] E. Best, R. Devillers, A. Kiehn, L. Pomello. Concurrent bisimulations in Petri nets. Acta Infor-
matica 28, pages 231–264, 1991.

[6] F. Cherief. Back and forth bisimulations on prime event structures. Lecture Notes in Computer Science
605, pages 843–858, 1992.

33

[7] F. Cherief. Contributions à la sémantique du parallélisme: bisimulations pour le raffinement et le vrai
parallélisme. Ph.D. Thesis, Institut National Politechnique de Grenoble, France, October 1992 (in French).

[8] F. Cherief. Investigations of back and forth bisimulations on prime event structures. Computers and
Artificial Intelligence 11(5), pages 481–496, 1992.

[9] R. Devillers. Maximality preserving bisimulation. Technical Report LIT-214, Lab. Informatique Theo-
rique, Universite Libre de Bruxelles, March 1990.

[10] R. Devillers. Maximality preserving bisimulation. Theoretical Computer Science 102, pages 165–184,
1992.

[11] J. Engelfriet. Branching processes of Petri nets. Acta Informatica 28(6), pages 575–591, 1991.

[12] R.J. van Glabbeek. Comparative concurrency semantics and refinement of actions. Ph.D. Thesis, Free
University, Amsterdam, 1990.

[13] R.J. van Glabbeek. The linear time – branching time spectrum II: the semantics of sequential systems
with silent moves. Extended abstract. Lecture Notes in Computer Science 715, pages 66–81, 1993.

[14] R.A.J. Milner. A calculus of communicating systems. Lecture Notes in Computer Science 92, pages
172–180, 1980.

[15] R. De Nicola, U. Montanari, F.W. Vaandrager. Back and forth bisimulations. Lecture Notes in
Computer Science 458, pages 152–165, 1990.

[16] C.A. Petri. Kommunikation mit Automaten. Ph.D. Thesis, Universität Bonn, Schriften des Instituts für
Instrumentelle Mathematik, 1962 (in German).

[17] L. Pomello. Some equivalence notions for concurrent systems. An overview. Lecture Notes in Computer
Science 222, pages 381–400, 1986.

[18] L. Pomello, G. Rozenberg, C. Simone. A survey of equivalence notions for net based systems. Lecture
Notes in Computer Science 609, pages 410–472, 1992.

[19] S. Pinchinat. Bisimulations for the semantics of reactive systems. Ph.D. Thesis, Institut National Po-
litechnique de Grenoble, January 1993 (in French).

[20] I.V. Tarasyuk. Equivalence notions for design of concurrent systems using Petri nets. Hildesheimer
Informatik-Berichte 4/96, part 1, 19 pages, Institut für Informatik, Universität Hildesheim, Hildesheim,
Germany, January 1996.

[21] I.V. Tarasyuk. An investigation of τ-equivalences. Hildesheimer Informatik-Berichte 9/97, 28 pages,
Institut für Informatik, Universität Hildesheim, Hildesheim, Germany, April 1997.

[22] I.V. Tarasyuk. τ-equivalences and refinement. Jim Grundy, Martin Schwenke and Trevor Vickers, eds.,
Proceedings of International Refinement Workshop and Formal Methods Pacific - 98 (IRW/FMP’98), Work-
in-Progress Papers (Canberra, Australia, September 29 – October 2, 1998), Joint Computer Science Tech-
nical Report Series TR-CS-98-09, The Australian National University, , pages 110–128, 1998.

[23] I.V. Tarasyuk. Place bisimulation equivalences for design of concurrent and sequential systems. Proceed-
ings of MFCS’98 Workshop on Concurrency (Brno, Czech Republic, August 27–29, 1998) Electronic Notes
in Theoretical Computer Science 18, 16 pages, 1998.

[24] W. Vogler. Bisimulation and action refinement. Lecture Notes in Computer Science 480, pages 309–321,
1991.

[25] W. Vogler. Failures semantics based on interval semiwords is a congruence for refinement. Distributed
Computing 4, pages 139–162, 1991.

34

A Proof of Proposition 4.4

Let us note that the following proof is a translation of that for event structures from [19] to the framework of
Petri nets.

For π ∈ Π(N) we denote [π] = {π̄ | π̄ ∈ Π(N), π↔τ
pomhbrπ̄}. Let (π, σ) ∈ Runs(N) and σ = v1 · · · , vn. A

trace of (π, σ) is defined by trace(π, σ) = [πN]lC(v1)[π(1)] · · · [π(n − 1)]lC(vn)[π(n)]. A trace modulo stuttering
of (π, σ), denoted by stutt(π, σ), is obtained from trace(π, σ) by replacing all triples of a kind RτR by R.

(⇐) Let N↔τ
pomhbrN

′, (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and stutt(π, σ) = R1a1R2 · · ·Rn−1anRn,
stutt(π′, σ′) = R′

1a
′
1R

′
2 · · ·R

′
m−1a

′
mR

′
m. We say that stutt(π, σ) and stutt(π′, σ′) are isomorphic, denoted by

stutt(π, σ) ≃ stutt(π′, σ′), if:

1. n = m;

2. ∀i (1 ≤ i ≤ n) ai = a′i;

3. ∀i (1 ≤ i ≤ n) and πi ∈ Ri, π
′
i ∈ R

′
i : πi↔

τ
pomhbrπ

′
i.

Let us define a relation S as follows: S = {((π, σ), (π′, σ′)) | (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′), stutt(π, σ)
≃ stutt(π′, σ′)}. Let us prove S : N↔τ

pombpomfN
′.

1. ((πN , ε), (πN ′ , ε)) ∈ S, since πN↔τ
pomhbrπN ′ .

2. Let ((π, σ), (π′, σ′)) ∈ S.

• (back)

We have ∃β : vis(ρC) ≃ vis(ρC′). Let (π̃, σ̃)
π̂
→ (π, σ). Then ∃i (1 ≤ i ≤ n) (π̃, σ̃) ∈ Ri from

trace(π, σ). Since stutt(π, σ) ≃ stutt(π′, σ′), then ∃k (1 ≤ k ≤ n) s.t. Ri corresponds to R′
k from

trace(π′, σ′). Then π̃↔τ
pomhbrπ

′(k). Consequently,

((π̃, σ̃), (π′(k), σ′(k))) ∈ S and ∃β : vis(ρ
C̃
) ≃ vis(ρC′(k)). Let us consider the back extension

(π′(k), σ′(k))
π̂′

→ (π′, σ′). Since β and β̃ are isomorphisms, we have vis(ρ
Ĉ
) ≃ vis(ρ

Ĉ′
).

• (forth) Obviously.

3. As item 2, but the roles of N and N ′ are reversed.

(⇒) Let N↔τ
pombpomfN

′. Let us define a relation S as follows: S = {(π, π′, βσ′

σ) | (π, σ)↔τ
pombpomf (π

′, σ′)}.
Let us prove S : N↔τ

pomhbrN
′.

1. (πN , πN ′ , ∅) ∈ S since βε
ε = ∅ and (πN , ε)↔τ

pombpomf (πN ′ , ε).

2. Let (π, π′, βσ′

σ) ∈ S. Then by definition of S, (π, σ)↔τ
pombpomf (π

′, σ′) and back extension (πN , ε)
π
→ (π, σ)

is imitated by (π̄′, ε)
π̄′

→ (π′, σ′) for some π̄′ s.t. πN ′ ⇒ π̄′ . If π = (C,ϕ) and π̄′ = (C, ϕ̄), we have
βσ′

σ : vis(ρC) ≃ vis(ρC′). Since vis(T ′
C) = vis(T

C
′), where π′ = (C′, ϕ′), we have βσ′

σ : vis(ρC) ≃ vis(ρC′).

3. Let (π, π′, βσ′

σ) ∈ S and π
v
→ π̃. Then by definition of S, (π, σ)↔τ

pombpomf (π
′, σ′) and (π, σ) → (π̃, σv).

The following two cases are possible.

(a) l
C̃
(v) 6= τ .

Since N↔τ
pombpomfN

′, we have ∃v′i, w
′
j (1 ≤ i ≤ n, 1 ≤ j ≤ m), v′, π′

1, π
′
2 s.t. (π′, σ′)

v′

1→ · · ·
v′

n→

(π′
1, σ

′v′1 · · · v
′
n)

v′

→ (π′
2, σ

′v′1 · · · v
′
nv

′)
w′

1→ · · ·
w′

m→ (π̃′, σ′v′1 · · · v
′
nv

′w′
1 · · ·w

′
m), (π̃, σv)↔τ

pombpomf

(π̃′, σ′v′1 · · · v
′
nv

′w′
1 · · ·w

′
m) and l

C̃
(v) = l

C̃′
(v′), ∀i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m) l

C̃′
(v′i) = l

C̃′
(w′

j) = τ .

Consequently, π′
v′

1→ · · ·
v′

n→ π′
1

v′

→ π′
2

w′

1→ · · ·
w′

m→ π̃′.

The back extension (π′
2, σ

′v′1 · · · v
′
nv

′)→ (π̃′, σ′v′1 · · · v
′
nv

′w′
1 · · ·w

′
m) is imitated by empty back exten-

sion of (π̃, σv). Hence, (π̃, σv)↔τ
pombpomf (π

′
2, σ

′v′1 · · · v
′
nv

′). Therefore (π̃, π′
2, β

σ′v′

1
···v′

n
v′

σv) ∈ S.

Let us consider the back extension (π′
1, σ

′v′1 · · · v
′
n) → (π′

2, σ
′v′1 · · · v

′
nv

′). It is imitated by some
back extension (π̄, σ̄) ⇒ (π, σ) → (π̃, σv) s.t. (π̄, σ̄)↔τ

pombpomf (π
′
1, σ

′v′1 · · · v
′
n). Since (π′, σ′) ⇒

(π′
1, σ

′v′1 · · · v
′
n) and (π, σ)↔τ

pombpomf (π
′, σ′), by Lemma 4.2 we have (π, σ)↔τ

pombpomf (π
′
1, σ

′v′1 · · · v
′
n).

So, we obtain (π, π′
1, β

σ′v′

1
···v′

n

σ) ∈ S.

Hence, we have simulation, since π′ ⇒ π′
1

a
→ π̃′

2 and (π, π′
1, β

σ′v′

1
···v′

n

σ) ∈ S, (π̃, π′
2, β

σ′v′

1
···v′

n
v′

σv) ∈ S.

35

(b) l
C̃
(v) = τ .

Since N↔τ
pombpomfN

′, we have ∃π′
i (1 ≤ i ≤ n) s.t. (π′, σ′)⇒ (π′

1, σ
′v1)⇒ · · · ⇒ (π′

n, σ
′v′1 · · · v

′
n) =

(π̃′, σ′v′1 · · · v
′
n) and (π̃, σv)↔τ

pombpomf (π̃
′, σ′v′1 · · · v

′
n).

i. If n = 0, we have proved.

ii. If n ≥ 1, and the back extension (π′
n−1, σ

′v′1 · · · v
′
n−1) ⇒ (π′

n, σ
′v′1 · · · v

′
n) is simulated by the

empty back extension of (π̃, σv) we have proved for n = 1, and for n ≥ 2 we shall continue such
a reasoning. Two cases are possible.
In the first case, we shall obtain (π̃, σv)↔τ

pombpomf (π
′, σ′) and (π̃, π′, βσ′

σv) ∈ S.
In the second case, we shall obtain ∃m (1 ≤ m ≤ n− 1) s.t. (π̃, σv)↔τ

pombpomf (π
′
m, σ

′v′1 . . . v
′
m)

and (π̃, π′
m, β

σ′v′

1
...v′

m

σv) ∈ S.
The back extension (π′

m−1, σ
′v′1 · · · v

′
m−1) ⇒ (π′

m, σ
′v′1 · · · v

′
m) is imitated by some back ex-

tension (π̄, σ̄) ⇒ (π, σ) s.t. (π̄, σ̄)↔τ
pombpomf (π

′
m−1, σ

′v′1 · · · v
′
m−1). By Lemma 4.2, we have

(π, σ)↔τ
pombpomf (π

′
m−1, σ

′v′1 · · · v
′
m−1). So, we obtain (π, π′

m−1, β
σ′v′

1
···v′

m−1

σ) ∈ S.

Hence, we have simulation, since π′ ⇒ π′
m−1

τ
→ π̃′

m and (π, π′
m−1, β

σ′v′

1
···v′

m−1

σ) ∈ S,

(π̃, π′
m, β

σ′v′

1
...v′

m

σv) ∈ S.

4. As item 3, but the roles of N and N ′ are reversed. ⊓⊔

B Proof of Proposition 6.2

Let N = ref(N, a,D), N
′
= ref(N ′, a,D). Let us note that causal nets of processes of SM-nets are simple

chains, i.e. nets s.t. each element has exactly one predecessor (except for the unique input place) and one
successor (except for the unique output place).

Construction (*)

1. Let π̄ = (C, ϕ̄) ∈ Π(N). Then any element of C, which is not embedded into PN ∪ TN , has the following
properties:

• has a form 〈e, f〉 (e ∈ PCD
∪ TCD

, πD = (CD, ϕD) ∈ Π(D) and f ∈ TC , π = (C,ϕ) ∈ Π(N)) and is
embedded into 〈x, u〉, x ∈ TD ∪ (PD \ {pin, pout}), u ∈ l

−1
N (a);

• has a unique predecessor 〈emin, f〉 which is embedded into 〈tmin, u〉, tmin ∈ p•in;

• belongs to the unique maximal chain ϑ (corresponding to the net CD) originating from 〈emin, f〉
where all the elements are embedded into that of type 〈y, u〉, y ∈ TD ∪ (PD \ {pin, pout}), and the
only connections of ϑ with the rest of the process are:

– through the input places of 〈emin, f〉 (always);

– (a) through the output places of the maximal transition of the chain 〈emax, f〉 which is embedded
in 〈tmax, u〉, tmax ∈

•pout;

(b) unless the chain stops on a maximal place before.

Consequently, each such chain ϑ containing in the net C, may be replaced:

(a) by transition f which is embedded into u, since they have the same inputs and outputs;

(b) by transition f which is embedded into u, with new output places corresponding to u, since they
have the same outputs, and there is nothing after f (in this case, f is a maximal transition).

The resulting object will be process π = (C,ϕ) ∈ Π(N).

2. Since N ≡τ
⋆ N

′, ⋆ ∈ {pw, pom}, we can always find π′ = (C′, ϕ′) ∈ Π(N ′) and β s.t.:

• β−1 : vis(ρC′) ⊑ vis(ρC), if ⋆ = pw;

• β : vis(ρC) ≃ vis(ρC′), if ⋆ = pom.

We can suppose that all maximal transitions of C′ are visible. Otherwise, ∃π′
1 = (C′

1, ϕ
′
1) ∈ Π(N ′) with

this property s.t. π′
1 ⇒ π′. Let us note that in this case vis(ρC′) ≃ vis(ρC′

1
). Then take π′

1 instead of π′.

3. For any ϑ, constructed previously, let us replace in C′ the transition β(f) which is embedded into u′, by
copy ϑ′ of the chain ϑ, where names of elements 〈e, f〉 are replaced by 〈e, β(f)〉. Two cases are possible:

36

(a) if the chain is complete, β(f) and ϑ′ have the same outputs (from u′);

(b) if the chain is incomplete, i.e. it terminates by place, we drop all output places of β(f).

It is possible, since in this case f is maximal, β does not disregard maximal visible transitions in
both the cases ⋆ ∈ {pw, pom}, hence β(f) is also maximal among visible transitions.

In addition, all the maximal transitions of C′ are visible, hence no invisible transition can be after
β(f), and it is maximal among all transitions.

In both cases β(f) and ϑ′ have the same inputs (in u′).

It is clear that the constructed object is a process π̄′ = (C
′
, ϕ̄′) ∈ Π(N

′
).

4. Let g ∈ vis(T
C
). Let us define a mapping β̄ as follows.

β̄(g) =

{
β(g), g does not belong to any chain;
〈e, β(f)〉, g = 〈e, f〉 belongs to some chain ϑ.

⊓⊔

(End of Construction (*))

Let π̄ = (C, ϕ̄) ∈ Π(N). Then ∃π̄′ = (C
′
, ϕ̄′) ∈ Π(N

′
) obtained from π̄ by Construction (*).

We have to prove the following statements.

• β̄−1 : vis(ρ
C

′) ⊑ vis(ρ
C
), if ⋆ = pw;

• β̄ : vis(ρ
C
) ≃ vis(ρ

C
′), if ⋆ = pom.

First, let us consider the case ⋆ = pw.
Let g, h ∈ vis(T

C
). Five cases are possible:

1. g and h do not belong to any chains;

2. g belongs to the chain ϑ, h does not belong to any chain;

3. g does not belong to any chain, h belongs to the chain ϑ;

4. g and h belong to the same chain ϑ;

5. g belongs to the chain ϑ1, h belongs to the chain ϑ2 and ϑ1 6= ϑ2.

Let us consider the case 5, since the cases 1–4 are simpler. Then g = 〈e1, f1〉, h = 〈e2, f2〉, where e1 ∈
vis(TCD1

), e2 ∈ vis(TCD2
) for πD1 = (CD1, ϕD1), πD2 = (CD2, ϕD2) ∈ Π(D), f1, f2 ∈ vis(TC), f1 and f2 are

refined in C into ϑ1 and ϑ2 respectively. We have: β̄(g) ≺
C

′ β̄(h) ⇒ β̄(〈e1, f1〉)) ≺C
′ β̄(〈e2, f2〉) ⇒ (by

definition of β̄) 〈e1, β(f1)〉 ≺C
′ 〈e2, β(f2)〉 ⇒ (since the only connections of chains with the rest of the process

are through their minimal and maximal transitions) 〈emax1, β(f1)〉 ≺C
′ 〈emin2, β(f2)〉 ⇒ (by Construction

(*)) β(f1) ≺C′ β(f2) ⇒ (since β−1 : vis(ρC′) ⊑ vis(ρC)) f1 ≺C f2 ⇒ (by Construction (*)) 〈emax1, f1〉 ≺C

〈emin2, f2〉 ⇒ 〈e1, f1〉 ≺C
〈e2, f2〉 ⇒ g ≺

C
h.

The case ⋆ = pom is considered analogously with the exception that all the implications are replaced by
symbols “if and only if”.

Thus, ∀π̄ ∈ Π(N) ∃π̄′ ∈ Π(N
′
) s.t. it has desirable properties.

In another direction the proof is symmetrical. ⊓⊔

C Proof of Proposition 6.3

Let N = ref(N, a,D), N
′
= ref(N ′, a,D) and R : N↔τ

⋆STN
′, ⋆ ∈ {i, pw, pom}.

Construction (**)

1. Let (π̄E , π̄P) ∈ ST −Π(N) and πE , πP ∈ Π(N) are constructed from π̄E and π̄P respectively by part 1 of
Construction (*) from Proposition 6.2.

Claim C.1 (πE , πP) ∈ ST −Π(N).

Proof. Let g, h ∈ vis(TCE
) and g ≺CE

h. Four cases are possible:

37

(a) lCE
(g) 6= a 6= lCE

(h);

(b) lCE
(g) = a 6= lCE

(h);

(c) lCE
(g) 6= a = lCE

(h);

(d) lCE
(g) = a = lCE

(h).

Let us consider the case (d), since the cases (a)–(c) are simpler. Then g and h are refined in CE into differ-
ent chains ϑ1 and ϑ2 with elements of the form 〈e1, g〉 and 〈e2, h〉 respectively, where e1 ∈ vis(TCD1

), e2 ∈
vis(TCD2

) for πD1 = (CD1, ϕD1), πD2 = (CD2, ϕD2) ∈ Π(D). We have: g ≺CE
h ⇒ (by Construction (*))

〈emax1, g〉 ≺CE
〈emin2, h〉 ⇒ (since (π̄E , π̄P) ∈ ST − Π(N) and 〈emin2, h〉 ∈ TCE

) 〈emax1, g〉 ∈ TCP
⇒

(by Construction (*)) g ∈ TCP
.

Let g ∈ TCE
and lCE

(g) = τ ⇒ (since g is not refined in CE) lCE
(g) = τ ⇒ (since (π̄E , π̄P) ∈ ST−Π(N))

g ∈ T
CP
⇒ (since g is not refined in CE) g ∈ TCP

. ⊓⊔

2. Let us find (π′
E , π

′
P) ∈ ST −Π(N ′) and β s.t. ((πE , πP), (π

′
E , π

′
P), β) ∈ R.

3. We obtain π̄′
E , π̄

′
P ∈ Π(N) from π′

E and π′
P respectively by part 3 of Construction (*) from Proposition

6.2.

It is possible to apply this construction, since β does not disregard maximal visible transitions in all the
cases ⋆ ∈ {i, pw, pom}, and all the maximal transitions of ST-processes are visible.

Claim C.2 (π̄′
E , π̄

′
P) ∈ ST −Π(N

′
).

Proof. Let g′, h′ ∈ vis(T
C

′

E

) and g′ ≺
C

′

E

h′. Five cases are possible:

(a) g′ and h′ do not belong to any chains;

(b) g′ belongs to the chain ϑ′, h′ does not belong to any chain;

(c) g′ does not belong to any chain, h′ belongs to the chain ϑ′;

(d) g′ and h′ belong to the same chain ϑ′;

(e) g′ belongs to the chain ϑ′1, h
′ belongs to the chain ϑ2 and ϑ1 6= ϑ′2.

Let us consider the case (e), since the cases (a)–(d) are simpler. Then g′ = 〈e1, f ′
1〉, h

′ = 〈e2, f ′
2〉, where

e1 ∈ vis(TCD1
), e2 ∈ vis(TCD2

) for πD1 = (CD1, ϕD1), πD2 = (CD2, ϕD2) ∈ Π(D), f ′
1, f

′
2 ∈ vis(TC′

E
), f ′

1

and f ′
2 are refined in C

′

E into different chains ϑ′1 and ϑ′2 respectively. We have: g′ ≺
C

′

E

h′ ⇒ 〈e1, f
′
1〉 ≺C

′

E

〈e2, f ′
2〉 ⇒ (since the only connections of chains with the rest of the process are through their minimal

and maximal transitions) 〈emax1, f
′
1〉 ≺C

′

E

〈emin2, f
′
2〉 ⇒ (by Construction (*)) f ′

1 ≺C′

E
f ′
2 ⇒ (since

(π′
E , π

′
P) ∈ ST −Π(N ′)) f ′

1 ∈ TC′

P
⇒ (by Construction (*)) g′ = 〈e1, f ′

1〉 ∈ TC′

P

.

Let g′ ∈ TC′

E
and l

C
′

E

(g′) = τ ⇒ (since g′ is not refined in C
′

E) lC′

E
(g′) = τ ⇒ (since (π′

E , π
′
P) ∈

ST −Π(N ′)) g′ ∈ TC′

P
⇒ (since g′ is not refined in C

′

E) g
′ ∈ T

C
′

P

. ⊓⊔

4. Let g ∈ vis(T
CE

). Let us define a mapping β̄ as follows.

β̄(g) =

{
β(g), g does not belong to any chain;
〈e, β(f)〉, g = 〈e, f〉 belongs to some chain ϑ.

⊓⊔

(End of Construction (**))

Let S consists of elements of the form ((π̄E , π̄P), (π̄
′
E , π̄

′
P), β̄) which are obtained by Construction (**) from

elements ((πE , πP), (π
′
E , π

′
P), β) ∈ R. Let us prove S : N↔⋆STN

′
.

1. Obviously, ((π
N
, π

N
), (π

N
′ , π

N
′), ∅) ∈ S.

2. Let ((π̄E , π̄P), (π̄
′
E , π̄

′
P), β̄) ∈ S. Obviously, by Construction (**) we have β̄ : vis(ρ

CE
) ≍ vis(ρ

C
′

E

) and

β̄(vis(T
CP

)) = vis(T
C

′

P

), since β(vis(TCP
)) = vis(TC′

P
).

38

3. Let ((π̄E , π̄P), (π̄
′
E , π̄

′
P), β̄) ∈ S and (π̄E , π̄P)→ (˜̄πE , ˜̄πP).

The element ((π̄E , π̄P), (π̄
′
E , π̄

′
P), β̄) is obtained from some element ((πE , πP), (π

′
E , π

′
P), β) ∈ R by Con-

struction (**).

By part 1 of Construction (**) we obtain (π̃E , π̃P) ∈ ST − Π(N) from (˜̄πE , ˜̄πP).

Obviously, (πE , πP)→ (π̃E , π̃P).

Since R : N↔τ
⋆STN

′, ⋆ ∈ {i, pw, pom}, we have: ∃ β̃, (π̃′
E , π̃

′
P) s.t.: (π

′
E , π

′
P)→ (π̃′

E , π̃
′
P), β̃|vis(TCE

) = β

and ((π̃E , π̃P), (π̃
′
E , π̃

′
P), β̃) ∈ R.

By part 3 of Construction (**) we obtain (˜̄π
′

E , ˜̄π
′

P) ∈ ST −Π(N) from (π̃′
E , π̃

′
P).

It is possible to apply this construction, since β̃ does not disregard maximal visible transitions in all the
cases ⋆ ∈ {i, pw, pom}, and all the maximal transitions of ST-processes are visible.

By part 4 of Construction (**) we obtain ˜̄β from β̃.

Claim C.3 (π̄′
E , π̄

′
P)→ (˜̄π

′

E , ˜̄π
′

P).

Proof. It is enough to prove that T
C

′

E

⊆ T˜
C

′

E

, since the proof of the fact T
C

′

P

⊆ T˜
C

′

P

is analogous.

Let g′ ∈ T
C

′

E

. Two cases are possible:

(a) g′ does not belong to any chain;

(b) g′ belongs to some chain ϑ′.

Let us consider the case (b), since the case (a) is trivial. Then g′ = 〈e, f ′〉, where e ∈ TCD
for πD =

(CD, ϕD) ∈ Π(D), f ′ ∈ TC′

E
, f ′ is refined in C

′

E into ϑ′. We have: g′ = 〈e, f ′〉 = (∃f ∈ TCE
, β(f) = f ′)

〈e, β(f)〉 = (since (πE , πP)→ (π̃E , π̃P) implies f ∈ TC̃E
) 〈e, β̃(f)〉 ∈ (by definition of ˜̄π

′

E) T˜
C

′

E

. ⊓⊔

Claim C.4 ˜̄β|vis(T
CE

) = β̄.

Proof. Let g ∈ vis(T
CE

). Two cases are possible:

(a) g does not belong to any chain;

(b) g belongs to some chain ϑ.

Let us consider the case (b), since the case (a) is trivial. Then g = 〈e, f〉, where e ∈ vis(TCD
) for

πD = (CD, ϕD) ∈ Π(D), f ∈ vis(TCE
), f is refined in CE into ϑ. We have: ˜̄β(〈e, f〉) = 〈e, β̃(f)〉 = (since

f ∈ vis(TCE
) and β̃|vis(TCE

) = β) 〈e, β(f)〉 = (by definition of β̄) β̄(〈e, f〉). ⊓⊔

Claim C.5 ((˜̄πE , ˜̄πP), (˜̄π
′

E , ˜̄π
′

P),
˜̄β) ∈ S.

Proof. Obviously, by Construction (**). ⊓⊔

Let π̄P
π̄
→ ˜̄πE , π̄

′
P

π̄′

→ ˜̄π
′

E , where π̄ = (C, ϕ̄), π̄′ = (C
′
, ϕ̄′) and γ = ˜̄β|vis(T

C
).

We have to prove the following statements.

• γ−1 : vis(ρ
C

′) ⊑ vis(ρ
C
), if ⋆ = pw;

• γ : vis(ρ
C
) ≃ vis(ρ

C
′), if ⋆ ∈ {i, pom}.

The following two claims are helpful.

Remark C.1 Since by Claim C.4 ˜̄β|vis(T
CE

) = β̄ and from (π̄E , π̄P) ∈ ST −Π(N) follows β̄(vis(T
CP

)) =

vis(T
C

′

P

), we have ˜̄β(vis(T˜
CE

\ T
CP

)) = vis(T˜
C

′

E

\ T
C

′

P

).

Hence, ˜̄β(vis(T
C
)) = vis(T

C
′).

39

Remark C.2 Since f ∈ vis(TCP
) implies 〈e, f〉 ∈ vis(T

CP
), then 〈e, f〉 6∈ vis(T

CP
) implies f 6∈ vis(TCP

).

Hence, 〈e, f〉 ∈ vis(T˜
CE

\ T
CP

= T
C
) implies f ∈ vis(T

C̃E

\ TCP
) = vis(TC).

The rest of the proof is analogous to that of from Proposition 6.2.

4. As item 3, but the roles of N and N
′
are reversed. ⊓⊔

D Proof of Proposition 6.7

Let N = ref(N, a,D), N
′
= ref(N ′, a,D). Let us note that occurrence nets of branching processes of SM-net

are trees, i.e. nets with exactly one predecessor of each element (with exception of the unique input place).
Construction (***)

1. Let ¯̟ = (O, ψ̄) ∈ ℘max(N). Then each element of O which is not embedded into PN ∪ TN , has the
following properties:

• has a form 〈e, f〉 (e ∈ POD
∪TOD

, ̟D = (OD, ψD) ∈ ℘max(D) and f ∈ TO, ̟ = (O,ψ) ∈ ℘max(N))
and is embedded into 〈x, u〉, x ∈ TD ∪ (PD \ {pin, pout}), u ∈ l

−1
N (a);

• has a unique predecessor 〈eimin, f〉 (1 ≤ i ≤ n) which is embedded into 〈timin, u〉, t
i
min ∈ p

•
in;

• belongs to the unique maximal tree ϑi (belonging to the set of trees ϑ = ∪ni=1ϑ
i, which corresponds

to the net OD), originating from 〈eimin, f〉, where all elements are embedded into elements of the
form 〈y, u〉, y ∈ TD ∪ (PD \ {pin, pout}) and the only connections of ϑi with the rest of the process
are:

– through the input places of 〈eimin, f〉 (always);

– through the output places of maximal elements of tree 〈eijmax, f〉 (1 ≤ j ≤ m), which are transi-
tions embedded into 〈tijmax, u〉, t

ij
max ∈

•pout.

Let us note that all eimin (1 ≤ i ≤ n) have the same connections with the rest of the process (as well as all
eijmax (1 ≤ i ≤ n, 1 ≤ j ≤ m)). Consequently, each such set of trees ϑ containing in O, may be replaced
by transition f which is embedded into u, since they have the same inputs and outputs. The resulting
object will be branching process ̟ = (O,ψ) ∈ ℘max(N).

2. Since N ≡τ
mes N

′, we can always find ̟′ = (O′, ψ′) ∈ ℘max(N
′) and β s.t. β : vis(ξO) ≃ vis(ξO′).

3. For ϑ, constructed previously, let us replace in O′ the transition β(f), which is embedded into u′, by a
copy ϑ′ of ϑ, where all names of elements 〈e, f〉 are replaced by 〈e, β(f)〉. Then β(f) and ϑ′ have the same
outputs (from u′) and the same inputs (in u′).

It is clear that the constructed object is branching process ¯̟ ′ = (O
′
, ψ̄′) ∈ ℘max(N

′
).

4. Let g ∈ vis(T
O
). Let us define a mapping β̄ as follows.

β̄(g) =

{
β(g), g does not belong to any set of trees;
〈e, β(f)〉, g = 〈e, f〉 belongs to some set of trees ϑ.

⊓⊔

(End of Construction (***))

Let ¯̟ = (O, ψ̄) ∈ ℘(N). Then ∃ ¯̟ ′ = (O
′
, ψ̄′) ∈ ℘(N

′
) obtained from ¯̟ by Construction (***).

We have to prove the following statement: β̄ : vis(ξ
O
) ≃ vis(ξ

O
′).

Let g, h ∈ vis(T
O
). Five cases are possible:

1. g and h do not belong to any sets of trees;

2. g belongs to the set of trees ϑ, h does not belong to any set of trees;

3. g does not belong to any set of trees, h belongs to the set of trees ϑ;

4. g and h belong to the same set f trees ϑ;

5. g belongs to the set of trees ϑ1, h belongs to the set of trees ϑ2 and ϑ1 6= ϑ2.

40

Let us consider the case 5, since the cases 1–4 are simpler. Then g = 〈e1, f1〉, h = 〈e2, f2〉, where e1 ∈
vis(TOD1

), e2 ∈ vis(TOD2
) for ̟D1 = (OD1, ψD1), ̟D2 = (OD2, ψD2) ∈ ℘(D), f1, f2 ∈ vis(TO), f1 and f2 are

refined in O in different sets of trees ϑ1 and ϑ2 respectively. Let us prove the preservation of precedence and
conflict relations.

• g ≺
O
h ⇔ 〈e1, f1〉 ≺O

〈e2, f2〉 ⇔ (since the only connections of ϑ1 and ϑ2 with rest of the process
are through their minimal and maximal transitions and all minimal (maximal) transitions have the same
connections with the rest) ∀i, j, k 〈eijmax1, f1〉 ≺O

〈ekmin2, f2〉 ⇔ (by Construction (***)) f1 ≺O f2 ⇔

(since β : vis(ξO) ≃ vis(ξO′)) β(f1) ≺O′ β(f2) ⇔ (by Construction (***)) ∀i, j, k 〈eijmax1, β(f1)〉 ≺O
′

〈ekmin2, β(f2)〉 ⇔ 〈e1, β(f1)〉 ≺O
′ 〈e2, β(f2)〉 ⇔ (by definition of β̄) β̄(〈e1, f1〉) ≺O

′ β̄(〈e2, f2〉) ⇔
β̄(g) ≺

O
′ β̄(h).

• g#
O
h ⇔ 〈e1, f1〉#O

〈e2, f2〉 ⇔ (since the only connections of ϑ1 and ϑ2 with rest of the process
are through their minimal and maximal transitions and all minimal (maximal) transitions have the same
connections with the rest) ∀i, k 〈eimin1, f1〉#O

〈ekmin2, f2〉 ⇔ (by Construction (***)) f1#Of2 ⇔ (since β :
vis(ξO) ≃ vis(ξO′)) β(f1)#O′β(f2) ⇔ (by Construction (***)) ∀i, k 〈eimin1, β(f1)〉#O

′〈ekmin2, β(f2)〉 ⇔
〈e1, β(f1)〉#O

′〈e2, β(f2)〉 ⇔ (by definition of β̄) β̄(〈e1, f1〉)#O
′ β̄(〈e2, f2〉) ⇔ β̄(g)#

O
′ β̄(h).

Thus, ∀ ¯̟ ∈ ℘max(N) ∃ ¯̟ ′ ∈ ℘max(N
′
) s.t. it has desirable properties.

In another direction the proof is symmetrical. ⊓⊔

41

