
Back-forth Equivalences for Design of
Concurrent Systems ?

Igor V. Tarasyuk

Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences,

Lavrentieva ave. 6, 630090, Novosibirsk, Russia
Phone: +7 3832 35 03 60
Fax: +7 3832 32 34 94

E-mail: itar@iis.nsk.su

Abstract. The paper is devoted to the investigation of behavioural
equivalences of concurrent systems modelled by Petri nets. Back-forth
bisimulation equivalences known from the literature are supplemented
by new ones, and their relationship with basic behavioural equivalences
is examined for the whole class of Petri nets as well as for their subclass
of sequential nets. In addition, the preservation of all the equivalence
notions by refinements is examined.

1 Introduction

The notion of equivalence is central in any theory of systems. It allows to compare
systems taking into account particular aspects of their behaviour.

Petri nets became a popular formal model for design of concurrent and dis-
tributed systems. One of the main advantages of Petri nets is their ability for
structural characterization of three fundamental features of concurrent compu-
tations: causality, nondeterminism and concurrency.

In recent years, a wide range of semantic equivalences was proposed in con-
currency theory. Some of them were either directly defined or transferred from
other formal models to Petri nets. The following basic notions of equivalences
for Petri nets are known from the literature (some of them were introduced by
the author in [15] to obtain the complete set of relations in interleaving/true
concurrency and linear time/branching time semantics).

– Trace equivalences (respect only protocols of nets functioning): interleaving
(≡i) [8], step (≡s) [12], pomset (≡pom) [7] and process (≡pr) [15].

– (Usual) bisimulation equivalences (respect branching structure of nets func-
tioning): interleaving (↔i) [11], step (↔s) [10], partial word (↔pw) [16],
pomset (↔pom) [3] and process (↔pr) [1].

? The work is supported by Volkswagen Fund, grant I/70 564 and Russian Fund for
Basic Research, grant 96-01-01655

– ST-bisimulation equivalences (respect the duration of transition occurrences
in nets functioning): interleaving (↔iST) [7], partial word (↔pwST) [16],
pomset (↔pomST) [16] and process (↔prST) [15].

– History preserving bisimulation equivalences (respect the “past” or “history”
of nets functioning): pomset (↔pomST) [14] and process (↔prST) [15].

– Conflict preserving equivalences (completely respect conflicts in nets): multi
event structure (≡mes) [15] and occurrence (≡occ) [7].

– Isomorphism (') (i.e. coincidence of nets up to renaming of places and tran-
sitions).

Back-forth bisimulation equivalences are based on the idea that bisimulation
relation do not only require systems to simulate each other behaviour in the
forward direction (as usually) but also when going back in history. They are
closely connected with equivalences of logics with past modalities.

These equivalence notions were initially introduced in [9] in the framework of
transition systems. It was shown that back-forth variant (↔ibif) of interleaving
bisimulation equivalence coincide with ordinary ↔i.

In [4–6] the new variants of step (↔sbsf), partial word (↔pwbpwf) and pomset
(↔pombpomf) back-forth bisimulation equivalences were defined in the framework
of prime event structures and compared with usual, ST- and history preserving
bisimulation equivalences. It was demonstrated that among all back-forth bisim-
ulation equivalences only ↔pombpomf is preserved by refinements (it coincides
with ↔pomh which has such a property).

In [13] the new idea of differentiating the kinds of back and forth simulations
appeared (following this idea, it is possible, for example, to define step back –
pomset forth bisimulation equivalence (↔sbpomf)). The set of all possible back-
forth equivalence notions was proposed in interleaving, step, partial word and
pomset semantics. Two new notions which do not coincide with known ones
were proposed: step back – partial word forth (↔sbpwf) and step back – pomset
forth (↔sbpomf) bisimulation equivalences. It was proved that the former is not
preserved by refinements, and the question was addressed about the latter.

To choose most appropriate behavioural viewpoint on systems to be mod-
elled, it is very important to have a complete set of equivalence notions in all
semantics and understand their interrelations. This branch of research is usually
called comparative concurrency semantics. To clarify the nature of equivalences
and evaluate how they respect a concurrency, it is actual to consider also correla-
tion of these notions on concurrency-free (sequential) nets. Treating equivalences
for preservation by refinements allows one to decide which of them may be used
for top-down design.

Working in the framework of Petri nets, in this paper we extend the set of
back-forth equivalences from [13] by that of induced by process semantics and
obtain two new notions which cannot be reduced to the known ones: step back
– process forth (↔sbprf) and pomset back – process forth (↔pombprf) bisimula-
tion equivalences. We compare all back-forth equivalences with the set of basic
behavioural notions from [15] and complete the results of [6, 13].

In addition, we investigate the interrelations of all the equivalence notions on
sequential nets. The merging of most of the equivalence relations in interleaving
– pomset semantics is demonstrated. We prove that on sequential nets back-forth
equivalences coincide with usual forth ones.

In [2], SM-refinement operator for Petri nets was proposed, which “replaces”
transitions of nets by SM-nets, a special subclass of state machine nets. We
treat all the considered equivalence notions for preservation by SM-refinements
and establish that among back-forth relations only ↔pombpomf and ↔prbprf are
preserved by SM-refinements So, we obtained the negative answer to the ques-
tion from [13]: ↔sbpomf (and even more strict ↔pombprf) is not preserved by
refinements.

2 Basic definitions

In this section we give some basic definitions used further.

2.1 Labelled nets

Let Act = {a, b, . . .} be a set of action names or labels.

Definition 1. A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

– PN = {p, q, . . .} is a set of places;
– TN = {t, u, . . .} is a set of transitions;
– FN : (PN × TN) ∪ (TN × PN) → N is the flow relation with weights (N

denotes a set of natural numbers);
– lN : TN → Act is a labelling of transitions with action names.

Given labelled nets N = 〈PN , TN , FN , lN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′〉.
A mapping β : N → N ′ is an isomorphism between N and N ′, denoted by
β : N ' N ′, if:

1. β is a bijection such that β(PN) = PN ′ and β(TN) = TN ′ ;
2. ∀t ∈ TN lN (t) = lN ′(β(t));
3. ∀t ∈ TN

•β(t) = β(•t) and β(t)• = β(t•).

Labelled nets N and N ′ are isomorphic, denoted by N ' N ′, if there exists an
isomorphism β : N ' N ′.

Given a labelled net N and some transition t ∈ TN , the precondition and
postcondition t, denoted by •t and t• respectively, are the multisets defined in
such a way: (•t)(p) = FN (p, t) and (t•)(p) = FN (t, p). Analogous definitions are
introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN (p, t). Let ◦N = {p ∈
PN | •p = ∅} is a set of initial (input) places of N and N◦ = {p ∈ PN | p• = ∅}
is a set of final (output) places of N .

A labelled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN such
that t•i−1 ∩ •ti 6= ∅ (1 ≤ i ≤ n) and t0 = tn. A labelled net N is ordinary if
∀p ∈ PN

•p and p• are proper sets (not multisets).
Let N = 〈PN , TN , FN , lN 〉 be acyclic ordinary labelled net and x, y ∈ PN ∪

TN . Let us introduce the following notions.

– x ≺N y ⇔ xF+
N y, where F+

N is a transitive closure of FN (strict causal
dependence relation);

– ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x);

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

2.2 Marked nets

A marking of a labelled net N is a multiset M ∈M(PN).

Definition 2. A marked net (net) is a tuple N = 〈PN , TN , FN , lN ,MN 〉, where
〈PN , TN , FN , lN 〉 is a labelled net and MN ∈M(PN) is the initial marking.

Let M ∈M(PN) be a marking of a net N . A transition t ∈ TN is fireable in
M , if •t ⊆ M . If t is fireable in M , firing it yields a new marking M ′ = M−•t+t•,
denoted by M

t→ M ′. A marking M of a net N is reachable, if M = MN or there
exists a reachable marking M ′ of N such that M ′ t→ M for some t ∈ TN .
Mark(N) denotes a set of all reachable markings of a net N .

2.3 Partially ordered sets

Definition 3. A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺, l〉,
where:

– X = {x, y, . . .} is some set;
– ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over X;
– l : X → Act is a labelling function.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a label-preserving bijection between ρ and ρ′,

denoted by β : ρ ≈ ρ′, if:

1. β is a bijection;
2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ ≈ ρ′, if there exists a label-preserving bijection β : ρ ≈ ρ′.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted by

β : ρ v ρ′, if:

1. β : ρ ≈ ρ′;
2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ v ρ′, if there exists a homomorphism β : ρ v ρ′.
A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted by

β : ρ ' ρ′, if β : ρ v ρ′ and β−1 : ρ′ v ρ. Lposets ρ and ρ′ are isomorphic,
denoted by ρ ' ρ′, if there exists an isomorphism β : ρ ' ρ′.

Definition 4. Partially ordered multiset (pomset) is an isomorphism class of
lposets.

2.4 C-processes

Definition 5. A causal net is acyclic ordinary labelled net
C = 〈PC , TC , FC , lC〉, s.t:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;
2. | ↓C x| < ∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C = 〈PC , TC , FC , lC〉 one can
define lposet ρC = 〈TC ,≺N ∩(TC × TC), lC〉.

The fundamental property of causal nets is [1]: if C is a causal net, then
there exists an occurrence sequence ◦C = L0

v1→ · · · vn→ Ln = C◦ such that
Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n

i=0Li and TC = {v1, . . . , vn}. Such a sequence is
called a full execution of C.

Definition 6. Given a net N and a causal net C. A mapping ϕ : PC ∪ TC →
PN ∪ TN is an embedding C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈M(PN) and ϕ(TC) ∈M(TN), i.e. sorts are preserved;
2. ∀v ∈ TC lC(v) = lN (ϕ(v)), i.e. labelling is preserved;
3. ∀v ∈ TC

•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is respected.

Since embeddings respect the flow relation, if ◦C v1→ · · · vn→ C◦ is a full

execution of C, then M = ϕ(◦C)
ϕ(v1)−→ · · · ϕ(vn)−→ ϕ(C◦) = M ′ is an occurrence

sequence in N .

Definition 7. A fireable in marking M C-process (process) of a net N is a pair
π = (C, ϕ), where C is a causal net and ϕ : C → N is an embedding such that
M = ϕ(◦C). A fireable in MN process is a process of N .

We write Π(N, M) for a set of all fireable in marking M processes of a net N
and Π(N) for the set of all processes of a net N . The initial process of a net N
is πN = (CN , ϕN) ∈ Π(N), such that TCN

= ∅. If π ∈ Π(N, M), then firing of
this process transforms a marking M into M ′ = M − ϕ(◦C) + ϕ(C◦) = ϕ(C◦),
denoted by M

π→ M ′.
Let π = (C, ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N) and π̂ = (Ĉ, ϕ̂) ∈ Π(N, ϕ(C◦)).
A process π̃ is an extension of π by process π̂, denoted by π

π̂→ π̃, if TC ⊆ TC̃

is a left-closed set in C̃ and TĈ = TC̃ \ TC .
A process π̃ is an extension of a process π by one transition v ∈ TC̃ , denoted

by π
v→ π̃, if π

π̂→ π̃ and TĈ = {v}.
A process π̃ is an extension of a process π by sequence of transitions σ =

v1 · · · vn ∈ T ∗
C̃

, denoted by π
σ→ π̃, if ∃πi ∈ Π(N) (1 ≤ i ≤ n) π

v1→ π1
v2→ . . .

vn→
πn = π̃.

3 Back-forth bisimulation equivalences

In this section, in the framework of Petri nets, we supplement the definitions of
back-forth bisimulation equivalences [13] by the new notions induced by process
semantics and compare them with basic ones.

3.1 Definitions of back-forth bisimulation equivalences

The definitions of back-forth bisimulation equivalences are based on the following
notion of sequential run.

Definition 8. A sequential run of a net N is a pair (π, σ), where:

– a process π ∈ Π(N) contains the information about causal dependencies of
transitions which brought to this state;

– a sequence σ ∈ T ∗C such that πN
σ→ π, contains the information about the

order in which the transitions occur which brought to this state.

Let us denote the set of all sequential runs of a net N by Runs(N).
The initial sequential run of a net N is a pair (πN , ε), where ε is an empty

sequence.
Let (π, σ), (π̃, σ̃) ∈ Runs(N). We write (π, σ) π̂→ (π̃, σ̃), if π

π̂→ π̃, ∃σ̂ ∈
T ∗

C̃
π

σ̂→ π̃ and σ̃ = σσ̂.

Definition 9. Let N and N ′ be some nets. A relation R ⊆ Runs(N)×
Runs(N ′) is a ?-back ??-forth bisimulation between N and N ′, ?, ?? ∈
{interleaving, step, partial word, pomset, process}, denoted by R : N↔?b??fN ′,
?, ?? ∈ {i, s, pw, pom, pr}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.
2. ((π, σ), (π′, σ′)) ∈ R

– (back)
(π̃, σ̃) π̂→ (π, σ),
(a) |TĈ | = 1, if ? = i;
(b) ≺Ĉ= ∅, if ? = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′) π̂′→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and
(a) ρĈ′ v ρĈ , if ? = pw;
(b) ρĈ ' ρĈ′ , if ? ∈ {i, s, pom};
(c) Ĉ ' Ĉ ′, if ? = pr;

– (forth)
(π, σ) π̂→ (π̃, σ̃),
(a) |TĈ | = 1, if ?? = i;
(b) ≺Ĉ= ∅, if ?? = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′) π̂′→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and
(a) ρĈ′ v ρĈ , if ?? = pw;
(b) ρĈ ' ρĈ′ , if ?? ∈ {i, s, pom};
(c) Ĉ ' Ĉ ′, if ?? = pr.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ ?-back ??-forth bisimulation equivalent, ?, ?? ∈
{interleaving, step, partial word, pomset, process}, denoted by N↔?b??fN ′, if
∃R : N↔?b??fN ′, ?, ?? ∈ {i, s, pw, pom, pr}.

3.2 Interrelations of back-forth bisimulation equivalences

In back-forth bisimulations, it is possible to move back from a state only along
the history which brought to the state. Such a determinism implies merging of
some equivalences.

Proposition 1. Let ? ∈ {i, s, pw, pom, pr}. For nets N and N ′ the following
holds:

1. N↔pwb?fN ′ ⇔ N↔pomb?fN ′;
2. N↔?bifN ′ ⇔ N↔?b?fN ′.

Hence, interrelations of the remaining back-forth equivalences may be repre-
sented by the graph in Figure 1.

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

????

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

??

↔pombpomf ↔pombprf

?

↔prbprf

¾

¾

¾

¾

¾

¾

¾

¾

Fig. 1. Interrelations of back-forth bisimulation equivalences

3.3 Interrelations of back-forth bisimulation and basic equivalences

Let us consider how back-forth equivalences are connected with basic ones.

Proposition 2. Let ? ∈ {i, s, pw, pom, pr}, ?? ∈ {pom, pr}. For nets N and N ′

the following holds:

1. N↔ib?fN ′ ⇔ N↔?N
′;

2. N↔??b??fN ′ ⇔ N↔??hN ′;
3. N↔??ST N ′ ⇒ N↔sb??fN ′.

Theorem 1. Let ↔∈ {≡,↔,'} and ?, ?? ∈ {i, s, pw, pom, pr, iST, pwST,
pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}. For
nets N and N ′thefollowingholds : N ↔? N ′ ⇒ N ↔?? N ′ iff in graph in
Figure 2 there exists a directed path from ↔? to ↔??.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s
↔pw ↔pom ↔pr

↔iST
↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

¾¾¾

'

?

?????

≡mes ≡occ

?

?
¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

Fig. 2. Interrelations of back-forth bisimulation and basic equivalences

4 Investigation of the equivalences on sequential nets

Let us consider the influence of concurrency on interrelations of the equivalences.

Definition 10. A net N = 〈PN , TN , FN , lN ,MN 〉 is sequential, if ∀M ∈
Mark(N) ¬∃t, u ∈ TN : •t + •u ⊆ M .

Proposition 3. For sequential nets N and N ′ the following holds:

1. N ≡i N ′ ⇔ N ≡pom N ′;
2. N↔iN

′ ⇔ N↔pomhN ′;
3. N↔prN

′ ⇔ N↔pombprfN ′.

Theorem 2. Let ↔∈ {≡,↔,'}, ?, ?? ∈ {i, pr, prST, prh,mes, occ}. For se-
quential nets N and N ′ the following holds: N ↔? N ′ ⇒ N ↔?? N ′ iff in
graph in Figure 3 there exists a directed path from ↔? to ↔??.

5 Preservation of the equivalences by refinements

Let us consider which equivalences may be used for top-down design.

Definition 11. An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 such that:

1. ∃pin, pout ∈ PD such that pin 6= pout and ◦D = {pin}, D◦ = {pout}, i.e. net
D has unique input and unique output place.

≡i ¾ ≡pr

? ?

↔i
↔pr¾

?

↔prST

?

↔prh

'
?

≡mes ≡occ¾

?

?

Fig. 3. The equivalences on sequential nets

2. MD = {pin} and ∀M ∈ Mark(D) (pout ∈ M ⇒ M = {pout}), i.e. at the
beginning there is unique token in pin, and at the end there is unique token
in pout;

3. p•in and •pout are proper sets (not multisets), i.e. pin (respectively pout) rep-
resents a set of all tokens consumed (respectively produced) for any refined
transition.

4. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and one
output place.

SM-refinement operator “replaces” all transitions with particular label of a
net by SM-net.

Definition 12. Let N = 〈PN , TN , FN , lN ,MN 〉 be some net, a ∈ lN (TN) and
D = 〈PD, TD, FD, lD,MD〉 be SM-net. An SM-refinement, denoted by
ref(N, a, D), is (up to isomorphism) a net N = 〈PN , TN , FN , lN ,MN 〉, where:

– PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

– TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

– FN (x̄, ȳ) =

FN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN (x̄, u), ȳ = 〈y, u〉, x ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN (u, ȳ), x̄ = 〈x, u〉, y ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

– lN (ū) =
{

lN (ū), ū ∈ TN \ l−1
N (a);

lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1
N (a);

– MN (p) =
{

MN (p), p ∈ PN ;
0, otherwise.

Some equivalence on nets is preserved by refinements, if equivalent nets re-
main equivalent after applying any refinement operator to them accordingly.

Theorem 3. Let ↔∈ {≡,↔,'} and ? ∈ {i, s, pw, pom, pr, iST, pwST, pomST,
prST, pomh, prh, mes, occ, sbsf, sbpwf, sbpomf, sbprf, pombprf}. For nets N =
〈PN , TN , FN , lN ,MN 〉, N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉 such that a ∈ lN (TN) ∩
lN ′(TN ′) and SM-net D = 〈PD, TD, FD, lD,MD〉 the following holds: N ↔?

N ′ ⇒ ref(N, a, D) ↔? ref(N ′, a, D) iff equivalence ↔? is in oval in Figure 4.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s
↔pw ↔pom ↔pr

↔iST
↔pwST ↔pomST ↔prST

↔pomh ↔prh

¾ ¾ ¾ ¾

¾¾¾ ¾

'

?

≡mes ≡occ

?

?
¾

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

¡
¡ª

¡
¡ª

¡
¡ª

¡
¡ª

@
@R

@
@R¾ ¾ ¾

? ?

?

@
@RXXXXXXXy

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

²
±

¯
°

¾ ¾ ¾

?? ?? ?

Fig. 4. Preservation of the equivalences by SM-refinements

6 Conclusion

In this paper, we examined and supplemented by new ones a group of back-forth
bisimulation equivalences. We compared them with basic ones on the whole class
of Petri nets as well as on their subclass of sequential nets. All the considered
equivalences were treated for preservation by SM-refinements.

Further research may consist in the investigation of place bisimulation equiv-
alences from [1] which are used for effective semantically correct reduction of
nets. We intend to compare these equivalences with the ones we examined (for
example, the relationship is unknown between place bisimulation equivalences
and ST-, history preserving, conflict preserving and back-forth ones) and check
them for preservation by refinements to establish whether they may be used for
construction of multilevel concurrent systems.

Acknowledgements I would like to thank Dr. Irina B. Virbitskaite for many
helpful discussions.

References

1. Autant C., Schnoebelen Ph. Place bisimulations in Petri nets. LNCS 616, p.
45–61, June 1992.

2. Best E., Devillers R., Kiehn A., Pomello L. Concurrent bisimulations in
Petri nets. Acta Informatica 28, p. 231–264, 1991.

3. Boudol G., Castellani I. On the semantics of concurrency: partial orders and
transition systems. LNCS 249, p. 123–137, 1987.

4. Cherief F. Back and forth bisimulations on prime event structures. LNCS 605,
p.843–858, June 1992.

5. Cherief F. Contributions à la sémantique du parallélisme: bisimulations pour le
raffinement et le vrai parallélisme. Ph.D. thesis, Institut National Politechnique de
Grenoble, France, October 1992 (in French).

6. Cherief F. Investigations of back and forth bisimulations on prime event struc-
tures. Computers and Artificial Intelligence 11(5), p. 481–496, 1992.

7. van Glabbeek R.J., Vaandrager F.W. Petri net models for algebraic theories
of concurrency. LNCS 259, p. 224–242, 1987.

8. Hoare C.A.R. Communicating sequential processes, on the construction of pro-
grams. (McKeag R.M., Macnaghten A.M., eds.) Cambridge University Press, p.
229–254, 1980.

9. De Nicola R., Montanari U., Vaandrager F.W. Back and forth bisimulations.
LNCS 458, p. 152–165, 1990.

10. Nielsen M., Thiagarajan P.S. Degrees of non-determinizm and concurrency: A
Petri net view. LNCS 181, p. 89–117, December 1984.

11. Park D.M.R. Concurrency and automata on infinite sequences. LNCS 104, p.
167–183, March 1981.

12. Pomello L. Some equivalence notions for concurrent systems. An overview. LNCS
222, p. 381–400, 1986.

13. Pinchinat S. Bisimulations for the semantics of reactive systems. Ph.D. thesis,
Institut National Politechnique de Grenoble, January 1993 (in French).

14. Rabinovitch A., Trakhtenbrot B.A. Behaviour structures and nets. Funda-
menta Informaticae XI, p. 357–404, 1988.

15. Tarasyuk I.V. Equivalence notions for design of concurrent systems using Petri
nets. Hildesheimer Informatik-Bericht 4/96, part 1, 19 p., Institut für Informatik,
Universität Hildesheim, Hildesheim, Germany, January 1996.

16. Vogler W. Bisimulation and action refinement. LNCS 480, p. 309–321, 1991.

