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Abstract

In this paper a set of Petri net equivalences is proposed. A correla-
tion between all introduced equivalences is established, and a lattice of
implications is obtained.

In addition equivalences are examined on sequential nets. The process
equivalences are demonstrated to be well discerning on this net class.

1 Introduction

A wide class of semantic equivalences was introduced in the literature concerning
Petri nets. The fundamentals of these equivalences are presented on coordinate
plane in Figure 1. On the X-axis equivalences are ordered with respect to the
preserved level of detail of runs of processes. On the Y-axis equivalences are
ordered with respect to the preserved level of detail of the branching structure
of these runs.

The following points on X-axis are known.

Sequential semantics. Another name of this semantics is interleaving seman-
tics. A process run is represented by sequences of action occurrences.

Step semantics. A process run is simulated by multiset sequences of action
occurences.

Partial word semantics. An execution of partial ordered multiset (pomset)
corresponds to the run of process. One process simulates the other process
in this semantics if the relation of causal dependence between actions in
its pomset is less strict or the same as in the pomset of the second one.

Pomset semantics. It is analogous to partial word semantics with the ex-
ception of the fact that causal dependence on actions in the pomset is
preserved.

Process-net semantics. A process run is represented by the run of acyclic
net without conflicts (so-called causal or C-net). Further we will use the
term “process equivalence” for equivalence associated with this semantics.

The following points on Y -axis are presented below.
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Figure 1: Classification of equivalences

Simple equivalences. A process is determined by the set of its possible runs
and nondeterminism is not taken into account (i.e. we do not take into
consideration a place of nondeterministic choice among several process
evolutions).

Bisimulation equivalences. Nondeterminism is taken into account.

ST-bisimulation equivalences. Actions are considered to have some internal
structure (or actions do not occur instantaneously but they work for some
time).

History preserving bisimulation equivalences. (H-bisimulation
equivalences in short). These equivalences take into account the “past” of
process i.e. how extending process connects with process the run of which
has led to the present state.

Let us examine which of the mentioned in the literature equivalences are in
this coordinate plane.

• Let us consider simple equivalences.
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– The simplest equivalence in the origin of coordinate is a language (se-
quential, interleaving) one. It is marked in ≡i symbol. Two nets are
sequentially equivalent if their languages are the same. The definition
of this equivalence on event structures can be found in [12].

– Step equivalence (is marked in ≡s) associates nets having the same
sets of step traces (sequences of action multisets). The definition on
event structures is in [12].

– Pomset equivalence (is marked in ≡pom) connects nets with the same
action pomsets. This equivalence was defined in [13] on Petri nets
and in [12] on event structures.

• The following equivalences are known among bisimulation ones.

– Sequential bisimulation equivalence (is marked in↔i) was introduced
in [16] on automatons. The definition can be found also in [1, 2, 3,
4, 13] on Petri nets and in [11, 12, 18, 19] on event structures.

– Step bisimulation equivalence (is marked in ↔s) was introduced in
[15]. The definition on Petri nets is in [1, 2, 13], and on event struc-
tures it is in [11, 12, 18, 19].

– Partial word bisimulation equivalence (is marked in ↔pw) was intro-
duced in [18] on event structures. The definition on Petri nets can
be found in [2], and on event structures it is also in [19].

– Pomset equivalence (is marked in ↔pom) was introduced in [3, 13].
The definition on Perti nets is proposed in [1, 2, 4], and on event
structures it is in [11, 12, 18, 19].

– Process bisimulation equivalence (is marked in ↔pr) was proposed in
[2] on Petri nets.

• The following ST-bisimulation equivalences are known.

– Sequential ST-bisimulation equivalence (is marked in ↔iST ) was in-
troduced on Petri nets in [13]. The definition on Petri nets can be
found also in [3], and on event structures it is in [12, 18, 19]. Let
us note that sequential ST-bisimulation equivalence coincides with
corresponding step equivalence.

– Partial word ST-bisimulation equivalence (is marked in ↔pwST ) was
proposed in [18] on event structures. The definition can be found
also in [19].

– Pomset ST-bisimulation equivalence (is marked in ↔pomST ) was in-
troduced in [18] on event structures. The definition is also in [19].

• History preserving bisimulation equivalence (is marked in↔pomh) was con-
sidered in the literature. It was introduced in [17] on behaviour structures
under the name of “bisimulation equivalense of behaviour structures”. In
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[11] this equivalence was defined on event structures and called “history
preserving bisimulation equivalence”. The definition on Petri nets was in-
troduced in [4]. In this paper the equivalence was named “fully concurrent
bisimulation equivalence”. The definition on Petri nets can be found also
in [3, 10], and on event structures it is in [11, 12, 18, 19].

A number of new equivalences completing known ones is introduced in this
paper. These new equivalences are also presented in Figure 1. A correlation
between all introduced equivalences is established, and a lattice of implications
is obtained.

In addition the introduced equivalences are examined on sequential nets,
one of the Petri net classes. Process equivalences are demonstrated to be well
discerning on sequential nets unlike other ones, a lot of which merge on this net
class.

Let us do a short review of the paper. In Section 2 the basic definitions are
given. Simple net equivalences are described in Section 3, Section 4 deals with
bisimulation ones. In Section 5 the theorem establishing a correlation between
all introduced equivalences is proved. Section 6 is devoted to the investigation of
equivalences on sequential nets. The concluding Section 7 contains some ideas
about development of this work.

2 Basic definitions

2.1 Multisets

Let X be some set. A multiset M over X is a mapping M : X → N , where
N is a set of natural numbers. For x ∈ X, M(x) is a multiplicity x in M . We
write x ∈ M if M(x) > 0.

When ∀x ∈ X M(x) ≤ 1, M is a proper set. M is finite if M(x) = 0 for
all x ∈ X, except maybe a finite number of them. Cardinality of multiset M is
defined in such a way: |M | = ∑

x∈X M(x). From now on we will consider only
finite multisets. M(X) denotes the set of all finite multisets over X.

Set-theotetic notions are extended to finite multisets in the standard way.
If M, M ′ ∈ M(X), we define M + M ′ by (M + M ′)(x) = M(x) + M ′(x). We
write M ⊆ M ′, if ∀x ∈ X M(x) ≤ M ′(x). When M ′ ⊆ M , we define M −M ′

by (M − M ′)(x) = M(x) − M ′(x). Notation M + x − y is used instead of
M + {x} − {y}. We write symbol ∅ for empty multiset.

2.2 Marked nets

A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {u, v, . . .} is a set of transitions;

• FN : (PN × TN ) ∪ (TN × PN ) → N is the flow relation with weights;
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• lN : TN → Act is a labelling of transitions with action names.

It is believed that PN ∩ TN = ∅.
Let N be a labelled net. A marking of N is a multiset M ∈M(PN ).
A marked net is a tuple N = 〈PN , TN , FN , lN , MN 〉 so that 〈PN , TN , FN , lN 〉

is a labelled net and MN ∈M(PN ) is an initial marking. We write “net” instead
of “marked net”. Given a net N and some transition u ∈ TN , the precondition
and postcondition u, written respectively •u and u•, are the multisets defined in
such a way: (•u)(p) = FN (p, u) and (u•)(p) = FN (u, p). Analogous definitions
are introduced for places: (•p)(u) = FN (u, p) and (p•)(u) = FN (p, u). A tran-
sition u is unstable if •u = ∅. A net is stable if it has no unstable transitions. A
net N is finite if PN ∪ TN is.

Let M ∈M(PN ) be a marking of a net N . A transition u ∈ TN is firable in M
if •u ⊆ M . If u is firable in M , firing it yields a new marking M ′ = M− •u+u•,
written M

u→ M ′ or M
a→ M ′ if lN (u) = a. We write M → M ′ if M

u→ M ′ for
some u.

2.3 Processes

A labelled C-net (causal net) is a labelled net C = 〈PC , TC , FC , lC〉, where:

1. ∀v ∈ TC
•v and v• are proper sets;

2. places are unbranched, i.e. ∀p ∈ PC |•p| ≤ 1 and |p•| ≤ 1;

3. FC is well-founded, i.e. there is no backward infinite chain
· · · (pn, vn)(vn, pn−1) · · · (p1, v1)(v1, p0) in FC .

Let us introduce the following notations. ◦C = {p ∈ PC |•p = ∅} is a set of
initial places in C and C◦ = {p ∈ PC |p• = ∅} is a set of final places in C. The
fundamental property of causal nets is known: for C-net there exists a transition
sequence ◦C = L0

v1→ · · · vn→ Ln = C◦ so that Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n
i=0Li

and TC = {v1, . . . , vn}. Such a sequence is called a full execution of C.
Given a net N and a labelled C-net C. A mapping f : PC ∪ TC → PN ∪ TN

is an embedding C into N , written f : C → N , if:

1. f(PC) ∈M(PN ) and f(TC) ∈M(TN );

2. ∀v ∈ TC lC(v) = lN (f(v));

3. ∀v ∈ TC
•f(v) = f(•v) and f(v)• = f(v•).

Point 3 means that embedding respects the flow relation. Consequently, if
◦C v1→ · · · vn→ C◦ is a full execution of C, then M = f(◦C)

f(v1)−→ · · · f(vn)−→
f(C◦) = M ′ is a transition sequence in N , corresponding to this full execution,

written M
C,f→ M ′. Conversely, for any transition sequence M

u1→ · · · un→ M ′ of
a net N there exists a labelled C-net C and an embedding f : C → N so that
M = f(◦C), M ′ = f(C◦), ui = f(vi) (0 ≤ i ≤ n) and ◦C v1→ · · · vn→ C◦ is a full
execution of C.

5



A firable process in marking M of a net N is a pair π = (C, f), where C is a
labelled C-net (we will write “C-net” in short in this case) and f : C → N is an
embedding so that M = f(◦C). A process firable in MN is a process of N . We
write Π(N, M) for a set of all firable in M processes of N and Π(N) for a set
of all processes of N . Further we will deal only with finite processes, i.e. with
processes having finite C-nets.

If π ∈ Π(N, M), then firing of this process transforms a marking M into
M ′ = M − f(◦C) + f(C◦) = f(C◦), written M

π→ M ′. A C-net sets an or-
dering on transitions (a precedence, causal dependence relation) ≺C , defined
in such a way: ≺C= F+

C dTC×TC
, where F+

C is a transitive closure of FC .
The initial process of a net N is πN = (CN , fN ) ∈ Π(N), where TCN

= ∅.
Let π = (C, f), π̃ = (C̃, f̃) ∈ Π(N), π̂ = (Ĉ, f̂) ∈ Π(N, f(C◦)), C =
〈PC , TC , FC , lC〉, C̃ = 〈PC̃ , TC̃ , FC̃ , lC̃〉, Ĉ = 〈PĈ , TĈ , FĈ , lĈ〉.

We write π
π̂→ π̃, if:

1. PC ∪ PĈ = PC̃ , TC ∪ TĈ = TC̃ , FC ∪ FĈ = FC̃ , lC ∪ lĈ = lC̃ ;

2. f ∪ f̂ = f̃ .

In such a case π̃ is an extension of π by process π̂, and π̂ is an extending process
for π. Note that for all π ∈ Π(N) πN

π→ π. We write π → π̃, if π
π̂→ π̃ for some

extending process π̂.
π̃ is an extension of π by one action, if π → π̃ and |TC̃ \ TC | = 1. In such a

case we write π
v→ π̃ or π

a→ π̃, if TC̃ \ TC = {v} and lC̃(v) = a.
So, we can write a full execution of C in “context” of a net N using processes

as π0
v1→ · · · vn→ πn, where πi = (Ci, fi), C◦i = Li, (0 ≤ i ≤ n) and ◦C = L0

v1→
· · · vn→ Ln = C◦ is a full execution of C.

π̃ is an extension of π by multiset of actions, or a step, if π
π̂→ π̃ and ≺Ĉ= ∅.

In such a case we write π
A→ π̃, when lĈ(TĈ) = A, A ∈M(Act).

2.4 Mappings

Given nets N = 〈PN , TN , FN , lN , MN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉. We
call β a mapping of N into N ′, written β : N → N ′, if β : PN ∪TN → PN ′ ∪TN ′ ,
β(PN ) ⊆ PN ′ and β(TN ) ⊆ TN ′ . We write β(N) = N ′, when β(PN ) = PN ′ and
β(TN ) = TN ′ .

A mapping β : N → N ′ is an isomorphism between N and N ′, written
β : N ' N ′, if:

1. β is a bijection and β(N) = N ′;

2. ∀u ∈ TN lN (u) = lN ′(β(u));

3. ∀u ∈ TN
•β(u) = β(•u) and β(u)• = β(u•).

Nets N and N ′ are isomorphic, written N ' N ′, if there exists an isomorphism
β : N ' N ′.
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Given two labelled C-nets C = 〈PC , TC , FC , lC〉 and
C ′ = 〈PC′ , TC′ , FC′ , lC′〉.

A mapping β : TC → TC′ is a label preserving bijection between C and C′ ,
written β : TC ≈ TC′ , if:

1. β is a bijection and β(TC) = TC′ ;

2. ∀v ∈ TC lC(v) = lC′(β(v)).

We write TC ≈ TC′ , if there exists a label-preserving bijection β : TC ≈ TC′ .
A mapping β : TC → TC′ is a homomorphism between TC and TC′ , written

β : TC v TC′ , if:

1. β : TC ≈ TC′ ;

2. ∀v, w ∈ TC v ≺C w ⇒ β(v) ≺C′ β(w).

We write TC v TC′ , if there exists a homomorphism β : TC v TC′ .
A mapping β : TC → TC′ is an isomorphism between TC and TC′ , written

β : TC ' TC′ , if β : TC v TC′ and β−1 : TC′ v TC . We write TC ' TC′ , if there
exists an isomorphism β : TC ' TC′ .

3 Simple net equivalences

A sequential trace of a net N is a sequence a1 · · · an ∈ Act∗ so that πN
a1→

π1
a2→ . . .

an→ πn, where πi ∈ Π(N) (1 ≤ i ≤ n) and πN is an initial process of N .
SeqTraces(N) denotes a set of all sequential traces of N . Two nets N and N ′ are
sequentially equivalent, written N ≡i N ′, if SeqTraces(N) = SeqTraces(N ′).

A step trace of a net N is a sequence A1 · · ·An ∈ (M(Act))∗ so that πN
A1→

π1
A2→ . . .

An→ πn, where πi ∈ Π(N) (0 ≤ i ≤ n), and πN is an initial process of
N . StepTraces(N) denotes a set of all step traces of N . Two nets N and N ′

are step equivalent, written N ≡s N ′, if StepTraces(N) = StepTraces(N ′).
A pomset trace of a net N is a pomset ρ, an isomorphism class of TC for

π = (C, f) ∈ Π(N), where C = 〈PC , TC , FC , lC〉. We write ρ v ρ′, if TC v
TC′ for TC ∈ ρ and TC′ ∈ ρ′. In such a case we say that pomset ρ is less
sequential or more parallel than ρ′. Let us denote a set of all pomset traces of
N by Pomsets(N). Two nets N and N ′ are partial word equivalent, written
N ≡pw N ′, if Pomsets(N) v Pomsets(N ′) and Pomsets(N ′) v Pomsets(N),
i.e. for any ρ′ ∈ Pomsets(N ′) there exists ρ ∈ Pomsets(N) so that ρ v ρ′ and
vice versa. Two nets N and N ′ are pomset equivalent, written N ≡pom N ′, if
Pomsets(N) = Pomsets(N ′).

A process trace of a net N is an isomorphism class of C for π = (C, f) ∈
Π(N). ProcessNets(N) denotes a set of all process traces of N . Two nets
N and N ′ are process equivalent, written N ≡pr N ′, if ProcessNets(N) =
ProcessNets(N ′).
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4 Bisimulation equivalences

Bisimulation is a fundamental behavioural equivalence. For two nets to be
bisimulation equivalent there must be some relation R (bisimulation) on their
states so that:

• Initial states of both nets are related by R.

• If nets are in states related by R, and one of these nets evolved into new
state, then the other net is able to simulate a behaviour of the first one,
evolving in a new state too. In addition new states of nets have to be
related by R.

States of nets may be, for example, markings or processes. There exist other
types of states (for example, ST-processes we will consider further).

A notation R : N↔αN ′ means that R is a bisimulation of α type between
nets N and N ′. Nets N and N ′ are called α-bisimulation equivalent, written
N↔αN ′, if R : N↔αN ′ for some α-bisimulation R.

4.1 Simple bisimulations

Let R ⊆ Π(N)×Π(N ′). In the following definitions π̂ = (Ĉ, f̂), π̂′ = (Ĉ ′, f̂ ′).
R is a sequential bisimulation between N and N ′, written R : N↔iN

′, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
a→ π̃, a ∈ Act ⇒ ∃π′ : π′ a→ π̃′ and (π̃, π̃′) ∈ R;

3. As previous item but N and N ′ are transposed.

R is a step bisimulation between N and N ′, written R : N↔sN
′, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
A→ π̃, a ∈M(Act) ⇒ ∃π′ : π′ A→ π̃′ and (π̃, π̃′) ∈ R;

3. As previous item but N and N ′ are transposed.

R is a partial word bisimulation between N and N ′, written R : N↔pwN ′,
if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂→ π̃, ⇒ ∃π′ : π′ π̂′→ π̃′, TĈ′ v TĈ and (π̃, π̃′) ∈ R;

3. As previous item but N and N ′ are transposed.

R is a pomset bisimulation between N and N ′, written R : N↔pomN ′, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂→ π̃, ⇒ ∃π′ : π′ π̂′→ π̃′, TĈ ' TĈ′ and (π̃, π̃′) ∈ R;
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3. As previous item but N and N ′ are transposed.

R is a process bisimulation between N and N ′, written R : N↔prN
′, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂→ π̃, ⇒ ∃π′ : π′ π̂′→ π̃′, Ĉ ' Ĉ ′ and (π̃, π̃′) ∈ R;

3. As previous item but N and N ′ are transposed.

4.2 ST-processes

ST-processes are introduced for description of the timed net states. In such
nets each transition (and action labelling it) does not occur instantaneously
but, starting work, it works for some time and then it terminates.

A ST-process of a net N is a pair (πE , πP ) so that πE , πP ∈ Π(N), πP
πW→ πE

and ∀v, w ∈ TCE v ≺CE w ⇒ v ∈ TCP In such a case πE is a process which
began to work, i.e. all actions of πE began working. A process πP corresponds
to the terminated part of πE , and πW corresponds to the still working part.
Clearly, ≺CW

= ∅. ST −Π(N) denotes a set of all ST-processes of N .
(πN , πN ) will be an initial ST-process of N . Let (πE , πP ), (π̃E , π̃P ) ∈ ST −

Π(N). We write (πE , πP ) → (π̃E , π̃P ), if πE → π̃E and πP → π̃P .

4.3 ST-bisimulations

Let R ⊆ ST − Π(N) × ST − Π(N ′) × B, where B = {β|β : TC → TC′ , π =
(C, f) ∈ Π(N), π′ = (C ′, f ′) ∈ Π(N ′)}.

In the following definitions πE = (CE , fE), πP = (CP , fP ), π′E = (C ′E , f ′E),
π′P = (C ′P , f ′P ), π = (C, f), π′ = (C ′, f ′).

R is a sequential ST-bisimulation between N and N ′, written R : N↔iST N ′,
if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : TCE
≈ TC′

E
and β(TCP

) = TC′
P
;

3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) :
(π′E , π′P ) → (π̃′E , π̃′P ), β̃dTCE

= β and ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R;

4. As previous item but N and N ′ are transposed.

R is a partial word ST-bisimulation between N and N ′, written
R : N↔pwST N ′, if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : TCE ≈ TC′
E

and β(TCP ) = TC′
P
;
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3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) :
(π′E , π′P ) → (π̃′E , π̃′P ), β̃dTCE

= β, β̃−1 : TC′ v TC , where

πP
π→ π̃E , π′P

π′→ π̃′E and ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R;

4. As previous item but N and N ′ are transposed.

R is a pomset ST-bisimulation between N and N ′, written R : N↔pomST N ′,
if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : TCE
≈ TC′

E
and β(TCP

) = TC′
P
;

3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) :

(π′E , π′P ) → (π̃′E , π̃′P ), β̃dTCE
= β, β̃ : TC ' TC′ , where πP

π→ π̃E , π′P
π′→

π̃′E and ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R;

4. As previous item but N and N ′ are transposed.

R is a process ST-bisimulation between N and N ′, written R : N↔prST N ′,
if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π′E , π′P ), β) ∈ R ⇒ β : TCE ≈ TC′
E

and β(TCP ) = TC′
P
;

3. ((πE , πP ), (π′E , π′P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′E , π̃′P ) :
(π′E , π′P ) → (π̃′E , π̃′P ), β̃dTCE

= β, β̃ : TC ' TC′ , C ' C ′, where πP
π→

π̃E , π′P
π′→ π̃′E and ((π̃E , π̃P ), (π̃′E , π̃′P ), β̃) ∈ R;

4. As previous item but N and N ′ are transposed.

4.4 History preserving bisimulations

Let R ⊆ Π(N) × Π(N ′) × B, where B = {β|β : TC → TC′ , π = (C, f) ∈
Π(N), π′ = (C ′, f ′) ∈ Π(N ′)}.

In the following definitions π = (C, f), π̃ = (C̃, f̃), π′ = (C ′, f ′), π̃′ =
(C̃ ′, f̃ ′).

R is a partial word history preserving bisimulation between N and N ′, writ-
ten N↔pwhN ′, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : TC ≈ TC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃dTC = β, β̃−1 : TC̃′ v TC̃

and (π̃, π̃′, β̃) ∈ R;

4. As previous item but N and N ′ are transposed.
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R is a pomset history preserving bisimulation between N and N ′, written
N↔pomhN ′, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : TC ' TC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃dTC = β and (π̃, π̃′, β̃) ∈ R;

4. As previous item but N and N ′ are transposed.

R is a process history preserving bisimulation between N and N ′, written
N↔prhN ′, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : TC ' TC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃dTC = β, C̃ ' C̃ ′ and
(π̃, π̃′, β̃) ∈ R;

4. As previous item but N and N ′ are transposed.

Obviously, we can simplify these definitions by dealing with one-action pro-
cess extensions. An iteration of such extensions produces an extension by pro-
cess.

5 A comparison of net equivalences

In this Section a theorem establishing correlation between all introduced equiv-
alences is proved.

Theorem 1 Let ∼∈ {≡,↔} and
α, β ∈ {i, s, pw, pom, pr, iST, pwST, pomST, prST, pwh, pomh, prh}.
For nets N and N ′ N ∼α N ′ ⇒ N ∼β N ′ iff there exists a directed path in a
graph in Figure 2 ∼α→ · · · →∼β.

Proof.
⇐ Let us check that all implications in Figure 2 are valid.

• Firstly we check horizontal implications.

– The connection ≡s→≡i follows from the fact that sequential trace
a1 · · · an ∈ Act∗ is a step trace A1 · · ·An ∈ (M(Act))∗ so that A1 =
{a1}, . . . , An = {an}.

– The connection ≡pw→≡s follows from the fact that trace A1 · · ·An ∈
(M(Act))∗, where πN

A1→ π1
A2→ . . .

An→ πn, is corresponded by pomset
ρ, an isomorphism class of TCn .
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Figure 2: Correlation of equivalences

– The connection ↔s →↔i is easy to prove if to deal with one-element
multiset extensions in the step bisimulation definition.

– The connection ↔pw → ↔s becomes obvious if in the partial word
bisimulation definition we use extending processes with unordered by
precedence relation C-net transitions.

– The connection ↔pwST → ↔iST is established due to the fact that
homomorphism on process C-net transitions is a label-preserving bi-
jection.

– The implications between pomset and partial word equivalences are
sequences of the fact that an equivalence is more strict than a label-
preserving bijection on process C-net transitions.

– The implications between process and pomset equivalences are se-
quences of the fact that isomorphic C-nets of processes have isomor-
phic transition sets.

• Let us prove now the validity of vertical implications.

– The connection ↔i →≡i is established as follows. Let R : N↔iN
′.

If πN
a1→ π1

a2→ . . .
an→ πn, then there exists a sequence

(πN , πN ′), (π1, π
′
1), . . . , (πn, π′n) ∈ R so that πN ′

a1→ π′1
a2→ . . .

an→ π′n,
and vice versa due to the symmetry of a bisimulation defintion.

– The connection ↔s →≡s is proved as in the previous item but we
use A1, .., An ∈M(Act) instead of a1, . . . , an ∈ Act.

– The connection ↔pw →≡pw is proved as follows. Let R : N↔pwN ′

and ρ be an isomorphism class of TC for π = (C, f) ∈ Π(N). Since

12



for any net N , its initial process πN and a process π πN
π→ π is

valid then there exists a pair (π, π′) ∈ R so that π′ = (C ′, f ′) and
TC′ v TC . If ρ′ is an isomorphism class of TC′ then ρ′ v ρ. It means
that Pomsets(N ′) v Pomsets(N). The fact that Pomsets(N) v
Pomsets(N ′) is proved similarly, using a symmetry of the bisimula-
tion definition.

– The connection ↔pom →≡pom is proved as in the previous item but
using isomorphism instead of homomorphism on process C-net tran-
sitions.

– The connection ↔pr →≡pr is proved analogously to the previous
item using process traces instead of pomset traces and isomorphism
on C-nets of processes instead of isomorphism on their transitions.

– The implications ↔αST → ↔α, α ∈ {pw, pom, pr}, are proved by
construction of the relation S : N↔αN ′ on the base of relation R :
N↔αST N ′ defined as follows:
∃β ((π, π), (π′, π′), β) ∈ R ⇔ (π, π′) ∈ S.

– The connection ↔iST → ↔s is checked as in the previous item but
taking into account the fact that the step π

A→ π̃, where
A = {a1, . . . , an} ∈ M(Act), is corresponded by a sequence of ST-
processes (π, π), . . . , (π̃, π), . . . , (π̃, π̃) based on two equal process ex-
tensions π

a1→ . . .
an→ π̃.

– The implications ↔αh → ↔αST , α ∈ {pw, pom, pr}, are proved by
construction of the relation S : N↔αST N ′ on the base of relation
R : N↔αhN ′ as follows: (πE , π′E , β) ∈ R, (πE , πP ) ∈ ST −Π(N),
(π′E , π′P ) ∈ ST −Π(N ′), β(TCP ) = TC′

P
⇔ ((πE , πP ), (π′E , π′P ), β) ∈

S.

⇒ Let us prove that it is impossible to draw any arrow from one equivalence
to the other in Figure 2 such that there exists no directed path from the first
equivalence to the second one in a graph in this Figure. For this, it is enough
to prove the absence of the following connections: ↔i →≡s, ≡pr→↔i,
↔pwh →≡pom, ↔pomh →≡pr, ↔iST →≡pw, ↔pr →↔iST , ↔prST →↔pwh.

• In Figure 3.1 N↔iN
′ but N 6≡s N ′ since there exists a step trace {a, b}

in N which is not in N ′.

• In Figure 3.2 N ≡pr N ′ but N↔/ iN
′ since only in N it is possible to

execute an action a so that it is impossible to run b after it.

• In Figure 3.3 N↔pwhN ′ but N 6≡pom N ′ since b can depend on a in N .

• In Figure 3.4 N↔pomhN ′ but N 6≡pr N ′ since N is a C-net which is not
isomorphic to C-net N ′.

• In Figure 3.5 N↔iST N ′ but N 6≡pw N ′ since a net N is corresponded by
a pomset such that we can not execute even less sequential one in N ′.
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• In Figure 4.1 N↔prN
′ but N↔/ iST N ′ since an action a is able to begin

working in N ′ so that no b can start later.

• In Figure 4.2 N↔prST N ′ but N↔/ pwhN ′ since only N ′ can execute a and
b so that the next action, c, must depend on a. ut

6 Equivalences on sequential nets

A net N = 〈PN , TN , FN , lN ,MN 〉 is sequential if ∀π = (C, f) ∈ Π(N) ∀v, w ∈
TC (v ≺C w)∨(w ≺C v), i.e. ≺C is a linear (total) ordering on C-net transitions
of any process π = (C, f) of a net N .

Let π = (C, f) ∈ Π(N) for some net N and v ∈ TC . A set of predecessors of
v is defined as follows: ↓ v = {w ∈ TC |w ≺C v}.

Lemma 1 A transition v ∈ TC may occur in a full execution of a C-net C iff
all transitions from ↓ v have already been fired.

Proof.
⇒ If transition v ∈ TC may be fired then there are tokens in places from •v.

We can divide these places for two groups.

1. q ∈ •v •q = ∅. Then q ∈ ◦C and by definition of full execution of C-net
there is a token in q.

2. q ∈ •v and •q 6= ∅. Because of the unbranching of places in C-nets, a
token can appear in q only after firing of the only transition w ∈ TC ,
where •q = {w}.

So, for firing of transition v all transitions from •(•v) = 2•v have to be fired, and
for firing of these transitions from 4•v must occur and so on. Since by definition
of C-nets there are no backward infinite chains in FC then there exists n ∈ N
such that 2n•v = ∅. Consequently for firing of v the firing of all transitions from
∪n−1

i=1
2i•v =↓ v is necessary.

⇐ If all transitions from ↓ v have been fired in a full execution of C for
v ∈ TC then transitions from 2•v have been already fired too. Therefore, all
places from •v have tokens, and v can be fired. ut

Lemma 2 Let C be a C-net and v, w ∈ TC . In this case v ≺C w iff v occurs
before w in any full execution of C.

Proof.
⇒ By lemma 1 a transition w ∈ TC may be fired only then all transitions

from ↓ w occured but v ∈↓ w.
⇐ Let us prove by contradiction. Let ¬(v ≺C w). Two cases are possible.

1. w ≺C v. Then by proved upper w occurs before v in any full execution of
C. It is in contrary with our initial assumption.
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JĴ ¢¢® SSw ¶¶/ JĴ ¢¢®
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2. ¬(w ≺C v), i.e. v and w are not related by ≺C . Then there exists a
full execution of C where all transitions from ↓ w occur from the very
beginning and w does after it. Since v 6∈↓ w, w occurs before v in this full
execution.

So both cases must be rejected. Consequently, v ≺C w. ut

Proposition 1 For sequential nets N and N ′ N↔iN
′ ⇔ N↔pomhN ′.

Proof.
⇐ Sequence of theorem 1.
⇒ Let R : N↔iN

′ for sequential nets N and N ′. Let us prove that S :
N↔pomhN ′ where S is defined as follows: (π, π′) ∈ R, β : TC ' TC′ ⇔
(π, π′, β) ∈ S where π = (C, f), π′ = (C ′, f ′). Items 1 and 2 of the pomset
h-bisimulation definition are valid automatically. By force of symmetry of items
3 and 4 of this definition it is enough to prove only item 3. Also we may deal
only with one-action extensions of processes.

Let (π, π′, β) ∈ S, π
v→ π̃, π̃ = (C̃, f̃). By definition of sequential nets all

transitions in C-nets of their processes are linear ordered by precedence relation.
Therefore full executions of such nets are singletons by lemma 2. Let us consider
a full execution of C̃ in N πN = π0

v1→ . . .
vn→ πn = π

v→ π̃. By sequential

bisimulation definition there exist π̃′, v′ so that πN ′ = π′0
β(v1)→ . . .

β(vn)→ π′n =

π′ v′→ π̃′, π̃′ = (C̃ ′, f̃ ′), lC̃(v) = lC̃′(v
′), (π̃, π̃′) ∈ R. It is the only full execution

of C̃ ′ in N ′.
Let us consider the mapping β̃ where β̃dTC = β and β̃(v) = v′. Obviously,

β̃ : TC̃ ≈ TC̃′ . Let us prove that β̃ : TC̃ ' TC̃′ . For this it is sufficient to prove
the following: ∀w ∈ TC w ≺C̃ v ⇔ β̃(w) ≺C̃′ β̃(v). Let w ≺C̃ v. Then w occurs
before v in any full execution of C̃. Consequently, it is in the only full execution
of this net. By definition of β̃ β̃(w) occurs before β̃(v) in the only full execution
of C̃ ′. So we can assert that β̃(w) occurs before β̃(v) in any full execution of
C̃ ′. Then by lemma 2 β̃(w) ≺C̃′ β̃(v). Preserving of precedence relation in the
opposite direction is proved analogously. ut

Proposition 2 For sequential nets N and N ′ N ≡i N ′ ⇔ N ≡pom N ′.

Proof.
⇐ Sequence of theorem 1.
⇒ Let N ≡i N ′. Let us prove that N ≡pom N ′, i.e. that Pomsets(N) =

Pomsets(N ′). Let π = (C, f) ∈ Π(N). Since N is a sequential net then there
exists the only full execution of C in N πN = π0

v1→ . . .
vn→ πn = π. Since

N ≡i N ′ then there exists π′i, v′i (1 ≤ i ≤ n) so that πN ′ = π′0
v′1→ . . .

v′n→ π′n =
π′ π′ = (C ′, f ′), lC(vi) = lC′(v′i). It is the only full execution of C ′ in N ′. Let
us define a mapping β as follows: β(vi) = v′i. Clearly, β : TC ≈ TC′ . By lemma
2 and due to the uniqueness of C and C ′ full executions the order of firing of
these net transitions determines a total ordering on these transitions.
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Figure 5: Equivalences on sequential nets

Therefore ∀v, w ∈ TC v ≺C w ⇔ β(v) ≺C′ β(w), i.e. β : TC ' TC′ . Hence
Pomsets(N) ⊆ Pomsets(N ′). The fact that Pomsets(N ′) ⊆ Pomsets(N) is
proved analogously. ut

Theorem 2 Let ∼∈ {≡,↔}, α, β ∈ {i, pr, prST, prh}. For sequential nets N
and N ′ N ∼α N ′ ⇒ N ∼β N ′ iff thete exists a directed path ∼α→ · · · →∼β

in graph in Figure 5.

Proof.
⇐ Sequence of theorem 1.
⇒ Let us prove that it is impossible to draw any arrow from one equivalence

to the other in Figure 4 such that there exists no directed path from the first
equivalence to the second one. For proving it is sufficient to show the absence
of the following connections: ↔i →≡pr, ≡pr→↔i, ↔pr →↔prST , ↔prST →
↔prh.

• In Figure 3.4 N↔iN
′ but N 6≡pr N ′.

• In Figure 3.2 N ≡pr N ′ but N↔/ iN
′.

• In Figure 6.1 N↔prN
′ but N↔/ prST N ′ since only in N ′ we can begin

running a process with action a so that it may be extended by action b in
the only way (i.e. so that extended process be only one).

• In Figure 6.2 N↔prST N ′ but N↔/ prhN ′ since only in N ′ it is possible
to run a process with sequential occuring actions a and b so that the
next action, c, may extend this process only in one way (i.e. C-net with
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Figure 6: Examples of sequential nets

action c, extending a C-net corresponding to sequence ab, connects with
its subnet containing a, in the only way). ut

7 Conclusion

A large group of the Petri net equivalences is introduced in the paper. A correla-
tion between these equivalences on nets with finite processes without λ-actions is
found out. In addition it is considered which equivalences coincide on sequential
nets.

Further development of the subject consist in exploration of introduced
equivalences on C-nets and on strict labelled nets (for C-nets without
auto-concurrency the merging of sequential equivalence and step bisimulation
equivalence was proved by author). Nets with strict labelling are interesting
by the fact that A-nets denoted by formulas of the algebra AFP0 introduced
by V.E.Kotov in [14] (the description is in [5, 7]) are a subclass of these nets.
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It is interesting to find out how formula representations of equivalent A-nets
are connected. Also it is possible to compare the introduced equivalences with
those considered in [5, 6, 8, 9] devoted to the algebras AFP1 and AFP2.

The next direction of the development of this theme may be the examina-
tion of the proposed equivalences on the wider net class, exactly, on nets with
λ-actions. Probably some equivalences would stop to be connected on such
nets. In [18, 19] the example of event structures with λ-actions was considered
which demonstrated the independence of ST-bisimulation equivalences and h-
bisimulation equivalence on such event structures.

Finally we would find out how ST- and h-equivalences are connected with
place bisimulation equivalences introduced in [1, 2].
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