
Place Bisimulation Equivalences for Design of

Concurrent Systems ∗

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems,

6, Acad. Lavrentiev ave., Novosibirsk, 630090, Russia
Fax: +7 3832 32 34 94

E-mail: itar@iis.nsk.su

Abstract

In this paper, we supplement the set of basic and back-forth be-
havioural equivalences for Petri nets considered in [11] by place bisim-
ulation ones. The relationships of all the equivalence notions are ex-
amined, and their preservation by refinements is investigated to find
out which of these relations may be used in top-down design. It is
demonstrated that the place bisimulation equivalences may be used
for the compositional and history preserving reduction of Petri nets.

1 Introduction

The notion of equivalence is central to any theory of systems. Equivalences
allow one to compare and reduce systems taking into account particular
aspects of their behaviour. Petri nets became a popular formal model for de-
sign of concurrent and distributed systems. In recent years, a wide range of
behavioural equivalences was proposed in the concurrency theory. The equiv-
alencs can be classified depending of semantics of concurrency they impose.

∗The work is supported by Volkswagen Stiftung, grant I/70 564, INTAS-RFBR, grant
95-0378 and the Foundation for Promotion to Young Scientists of Siberian Division of the
Russian Academy of Sciences

In interleaving semantics, a concurrent happening of actions is interpreted
as their occurrence in any possible order. In step semantics, a concurrency
of actions is a basic notion, but their causal dependencies are not respected.
In partial word semantics, causal dependencies of actions are respected in
part via partially ordered multisets (pomsets) of actions, and a pomset may
be modelled by a less sequential one (i.e. having less strict partial order).
In pomset semantics, causal dependencies of actions are fully respected, and
pomsets of actions should coincide to model each other. In process semantics,
a structure of a process (causal) net is respected.

The following basic notions of behavioural equivalences were proposed:

• Trace equivalences (they respect only protocols of behaviour of sys-
tems): interleaving (≡i) [8], step (≡s) [8], partial word (≡pw) [12],
pomset (≡pom) [8] and process (≡pr) [10].

• Usual bisimulation equivalences (they respect branching structure of
behaviour of systems): interleaving (↔i) [8], step (↔s) [8], partial
word (↔pw) [12], pomset (↔pom) [8] and process (↔pr) [3].

• ST-bisimulation equivalences (they respect the duration or maximality
of events in behaviour of systems): interleaving (↔iST) [7], partial word
(↔pwST) [12], pomset (↔pomST) [12] and process (↔prST) [10].

• History preserving bisimulation equivalences (they respect the “history”
of behaviour of systems): pomset (↔pomh) [12] and process (↔prh) [10].

• Conflict preserving equivalences (they completely respect conflicts of
events in systems): multi event structure (≡mes) [10] and occurrence
(≡occ) [7].

• Isomorphism (≃) (i.e. coincidence of systems up to renaming of their
components).

Another important group of equivalences are back-forth bisimulation ones
which are based on the idea that a bisimulation relation should not only re-
quire systems to simulate each other behaviour in the forward direction but
also when going back in the history. By now, the set of all possible back-
forth equivalence notions was proposed in interleaving, step, partial word and
pomset semantics. Most of them coincide with basic or with other back-forth
relations. The following new notions were obtained: step back step forth

(↔sbsf) [6], step back partial word forth (↔sbpwf) [9] and step back pom-
set forth (↔sbpomf) [9] bisimulation equivalences. In [11] we supplemented
them by several new relations in process semantics: step back process forth
(↔sbprf) and pomset back process forth (↔pombprf) bisimulation equivalences.

The third important group of equivalences are place bisimulation ones
introduced in [1]. They are relations between places (instead of markings
or processes). The relation on markings is obtained using the “lifting” of
relation on places. The main application of place bisimulation equivalences
is an effective global behaviour preserving reduction technique for Petri nets
based on them. In [1], interleaving place bisimulation equivalence (∼i) was
proposed. In this paper, strict interleaving place bisimulation equivalence
(≈i) was defined also, by imposing the additional requirement stating that
corresponding transitions of nets must be related by the bisimulation. In
[3, 4], step (∼s), partial word (∼pw), pomset (∼pom), process (∼pr) place
bisimulation equivalences and their strict analogues (≈s, ≈pw, ≈pom, ≈pr)
were proposed. The coincidence of ∼i, ∼s and ∼pw was established. It was
shown that all strict bisimulation equivalences coincide with ∼pr. Thus, only
three different equivalences remain: ∼i, ∼pom and ∼pr. In addition, in these
papers the polynomial algorithm of a net reduction modulo ∼i and ∼pr was
proposed.

To choose appropriate behavioural viewpoint on systems to be modelled,
it is important to have a complete set of equivalence notions in all semantics
and understand their interrelations. Treating equivalences for preservation
by refinements allows one to decide which of them may be used for top-
down design. In this paper, we obtain a number of results on solution these
problems for place bisimulation equivalences.

The first result is a diagram of interrelations of place equivalences with
basic and back-forth behavioural notions from [10, 11]. We prove that ∼pr

implies ↔prh and answer the question from [1]: it is no sense to define his-
tory preserving place bisimulation equivalence. Another consequence is: the
algorithm of a net reduction from [3, 4], based on ∼pr, preserves “histories”
of the behaviour of the initial net.

The second result is concerned a notion of transition refinement. In [5],
SM-refinement operator for Petri nets was proposed, which “replaces” their
transitions by SM-nets, a subclass of state machine nets. We treat all the
considered equivalence notions for preservation by SM-refinements and estab-
lish that ∼pr is the only place bisimulation equivalence which is preserved by
SM-refinements. Thus, this equivalence may be used for the compositional

reduction of nets.

2 Basic definitions

In this section, we present some basic definitions used further.

2.1 Nets

Let Act = {a, b, . . .} be a set of action names.

Definition 2.1 A labelled net is a quadruple N = 〈PN , TN , FN , lN〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {t, u, . . .} is a set of transitions;

• FN : (PN × TN) ∪ (TN × PN) → N is the flow relation with weights (N
denotes a set of natural numbers);

• lN : TN → Act is a labelling of transitions with action names.

Given labelled nets N and N ′ A mapping β : PN ∪ TN → PN ′ ∪ TN ′ is an
isomorphism between N and N ′, denoted by β : N ≃ N ′, if β is a bijective
renaming of places and transitions of N s.t. the nets N and N ′ coincide up
to it. Two labelled nets N and N ′ are isomorphic, denoted by N ≃ N ′, if
∃β : N ≃ N ′.

Given a labelled net N and some transition t ∈ TN , the precondition and
postcondition of t, denoted by •t and t• respectively, are the multisets defined
in such a way: (•t)(p) = FN(p, t) and (t•)(p) = FN (t, p). Analogous defini-
tions are introduced for places: (•p)(t) = FN (t, p) and (p•)(t) = FN(p, t). Let
◦N = {p ∈ PN | •p = ∅} is the set of input places of N and N◦ = {p ∈ PN |
p• = ∅} is the set of output places of N .

A labelled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN

s.t. t•i−1 ∩
•ti 6= ∅ (1 ≤ i ≤ n) and t0 = tn. A labelled net N is ordinary, if

∀p ∈ PN
•p and p• are proper sets (not multisets).

Let N = 〈PN , TN , FN , lN〉 be an acyclic ordinary labelled net and x, y ∈
PN ∪ TN . Let us introduce the following notions.

• x ≺N y ⇔ xF+
N y, where F+

N is a transitive closure of FN (the strict
causal dependence relation);

• ↓N x = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x);

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .
We denote the set of all finite multisets over a setX byM(X). Amarking

of a labelled net N is a multiset M ∈ M(PN).

Definition 2.2 A (marked) net is a tuple N = 〈PN , TN , FN , lN ,MN 〉, where
〈PN , TN , FN , lN〉 is a labelled net and MN ∈ M(PN) is the initial marking.

Let M ∈ M(PN) be a marking of a net N . A transition t ∈ TN is
firable in M , if •t ⊆ M . If t is firable in M , its firing yields a new marking

M̃ = M − •t+ t•, denoted by M
t
→ M̃ .

2.2 Partially ordered sets

Definition 2.3 A labelled partially ordered set (lposet) is a triple ρ = 〈X,≺
, l〉, where:

• X = {x, y, . . .} is some set;

• ≺⊆ X ×X is a strict partial order (irreflexive transitive relation) over
X;

• l : X → Act is a labelling function.

Let ρ = 〈X,≺, l〉 and ρ′ = 〈X ′,≺′, l′〉 be lposets.
A mapping β : X → X ′ is a homomorphism between ρ and ρ′, denoted

by β : ρ ⊑ ρ′, if it is a bijection and ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y), ∀x ∈
X l(x) = l′(β(x)). We write ρ ⊑ ρ′, if ∃β : ρ ⊑ ρ′.

A mapping β : X → X ′ is an isomorphism between ρ and ρ′, denoted
by β : ρ ≃ ρ′, if β : ρ ⊑ ρ′ and β−1 : ρ′ ⊑ ρ. Two lposets ρ and ρ′ are
isomorphic, denoted by ρ ≃ ρ′, if ∃β : ρ ≃ ρ′.

Definition 2.4 Partially ordered multiset (pomset) is an isomorphism class
of lposets.

2.3 Processes

Definition 2.5 A causal net is an acyclic ordinary labelled net
C = 〈PC , TC , FC , lC〉, s.t.:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched;

2. ∀x ∈ PC ∪ TC | ↓C x| < ∞, i.e. a set of causes is finite.

Let us note that on the basis of any causal net C one can define lposet
ρC = 〈TC ,≺N ∩(TC × TC), lC〉.

The fundamental property of causal nets is [3]: if C is a causal net,
then there exists a sequence of transition firings (a full execution of C) s.t.
◦C = L0

v1→ · · ·
vn→ Ln = C◦ s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪n

i=0Li and
TC = {v1, . . . , vn}.

Definition 2.6 Given a net N and a causal net C. A mapping ϕ : PC∪TC →
PN ∪ TN is an embedding of C into N , denoted by ϕ : C → N , if:

1. ϕ(PC) ∈ M(PN) and ϕ(TC) ∈ M(TN), i.e. sorts are preserved;

2. ∀v ∈ TC
•ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), i.e. flow relation is re-

spected;

3. ∀v ∈ TC lC(v) = lN(ϕ(v)), i.e. labelling is preserved.

Since embeddings respect the flow relation, if ◦C
v1→ · · ·

vn→ C◦ is a full

execution of C, then M = ϕ(◦C)
ϕ(v1)
−→ · · ·

ϕ(vn)
−→ ϕ(C◦) = M̃ is a sequence of

transition firings in N .

Definition 2.7 A firable in marking M process of a net N is a pair π =
(C, ϕ), where C is a causal net and ϕ : C → N is an embedding s.t. M =
ϕ(◦C). A firable in MN process is a process of N .

We write Π(N,M) for the set of all firable in marking M processes of a
net N and Π(N) for the set of all processes of a net N . The initial process
of a net N is πN = (CN , ϕN) ∈ Π(N), s.t. TCN

= ∅. If π ∈ Π(N,M), then

firing of this process transforms a marking M into M̃ = ϕ(C◦), denoted by
M

π
→ M̃ .
Let π = (C, ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C◦)). A

process π̃ is an extension of π by process π̂, denoted by π
π̂
→ π̃, if TC ⊆ T

C̃
is

a left-closed set in C̃ and T
Ĉ
= T

C̃
\ TC . We write π → π̃, if ∃π̂ π

π̂
→ π̃. A

process π̃ is an extension of π by one transition, denoted by π
v
→ π̃, if π

π̂
→ π̃

and T
Ĉ
= {v}.

3 Place bisimulation equivalences

In this section, place bisimulation equivalences are introduced. Let us recall
the definition of usual bisimulation equivalences.

Definition 3.1 Let N and N ′ be some nets. A relation R ⊆ M(N)×M(N ′)
is a ⋆-bisimulation between N and N ′, ⋆ ∈ {interleaving, step, partial word,
pomset, process}, denoted by R : N↔⋆N

′, ⋆ ∈ {i, s, pw, pom, pr}, if:

1. (MN ,MN ′) ∈ R.

2. (M,M ′) ∈ R, M
π̂
→ M̃ ,

(a) |T
Ĉ
| = 1, if ⋆ = i;

(b) ≺
Ĉ
= ∅, if ⋆ = s;

⇒ ∃M̃ ′ : M ′ π̂′

→ M̃ ′, (M̃, M̃ ′) ∈ R and

(a) ρ
Ĉ′

⊑ ρ
Ĉ
, if ⋆ = pw;

(b) ρ
Ĉ
≃ ρ

Ĉ′
, if ⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ ′, if ⋆ = pr.

3. As item 2, but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-bisimulation equivalent, ⋆ ∈ {interleaving, step,
partial word, pomset, process}, denoted by N↔⋆N

′, if ∃R : N↔⋆N
′, ⋆ ∈

{i, s, pw, pom, pr}.

Place bisimulations are relations between places instead of markings. A
relation on markings is obtained with use of the “lifting” of a bisimulation
relation on places.

Let for nets N and N ′ R ⊆ PN × PN ′ be a relation between their places.
The lifting of R is a relation R ⊆ M(PN) × M(PN ′), defined as follows:
(M,M ′) ∈ R ⇔ ∃{(p1, p

′
1), . . . , (pn, p

′
n)} ∈ M(R) : M = {p1, . . . pn}, M

′ =
{p′1, . . . p

′
n}.

Definition 3.2 Let N and N ′ be some nets. A relation R ⊆ PN × PN ′

is a ⋆-place bisimulation between N and N ′, ⋆ ∈{interleaving, step, partial
word, pomset, process}, denoted by R : N ∼⋆ N ′, if R : N↔⋆N

′, ⋆ ∈
{i, s, pw, pom, pr}.

Two nets N and N ′ are ⋆-place bisimulation equivalent, ⋆ ∈{interleaving,
step, partial word, pomset, process}, denoted by N ∼⋆ N ′, if ∃R : N ∼⋆

N ′, ⋆ ∈ {i, s, pw, pom, pr}.

Strict place bisimulation equivalences are defined using the additional
requirement stating that corresponding transitions of nets must be (as well
as makings) related by R. This relation is defined on transitions as follows.

Let for some nets N and N ′ t ∈ TN , t′ ∈ TN ′ . Then (t, t′) ∈ R ⇔
((•t, •t′) ∈ R) ∧ ((t•, t′•) ∈ R) ∧ (lN(t) = lN ′(t′)).

Definition 3.3 Let N and N ′ be some nets. A relation R ⊆ PN × PN ′ is a
strict ⋆-place bisimulation between N and N ′, ⋆ ∈{interleaving, step, partial
word, pomset, process}, denoted by R : N ≈⋆ N

′, ⋆ ∈ {i, s, pw, pom, pr}, if:

1. R : N↔⋆N
′.

2. In the definition of ⋆-bisimulation in item 2 (and in item 3 symmet-
rically) the new requirement is added: ∀v ∈ T

Ĉ
(ϕ̂(v), ϕ̂′(β(v))) ∈ R,

where:

(a) β : ρ
Ĉ′

⊑ ρ
Ĉ
, if ⋆ = pw;

(b) β : ρ
Ĉ
≃ ρ

Ĉ′
, if ⋆ ∈ {i, s, pom};

(c) β : Ĉ ≃ Ĉ ′, if ⋆ = pr.

Two nets N and N ′ are strict ⋆-place bisimulation equivalent,
⋆ ∈{interleaving, step, partial word, pomset, process}, denoted by N ≈⋆ N

′,
if ∃R : N ≈⋆ N

′, ⋆ ∈ {i, s, pw, pom, pr}.

An important property of place bisimulations is additivity. Let for nets
N and N ′ R : N ∼⋆ N ′. Then (M1,M

′
1) ∈ R and (M2,M

′
2) ∈ R implies

((M1 + M2), (M
′
1 + M ′

2)) ∈ R. In particular, if we put n tokens into each
of the places p ∈ PN and p′ ∈ PN ′ s.t. (p, p′) ∈ R, then the nets obtained
as a result of such a changing of the initial markings, must be also place
bisimulation equivalent.

The following proposition establishes a coincidence of most place bisim-
ulation equivalences.

Proposition 3.1 [3, 4] For nets N and N ′:

1. N ∼i N
′ ⇔ N ∼pw N ′;

2. N ∼pr N
′ ⇔ N ≈i N

′ ⇔ N ≈pr N
′.

4 Interrelations of the equivalences

In this section, place bisimulation equivalences are compared with basic
equivalences and back-forth bisimulation equivalences. First, recall the defi-
nition of history preserving bisimulation equivalences.

Definition 4.1 Let N and N ′ be some nets. A relation R ⊆ Π(N) ×
Π(N ′) × B, where B = {β | β : TC → TC′ , π = (C, ϕ) ∈ Π(N), π′ =
(C ′, ϕ′) ∈ Π(N ′)}, is a ⋆-history preserving bisimulation between N and
N ′, ⋆ ∈{pomset, process}, denoted by N↔⋆hN

′, ⋆ ∈ {pom, pr}, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒

(a) β : ρC ≃ ρC′, if ⋆ ∈ {pom, pr};

(b) C ≃ C ′, if ⋆ = pr.

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃|TC
= β, (π̃, π̃′, β̃) ∈ R.

4. As item 3 but the roles of N and N ′ are reversed.

Two nets N and N ′ are ⋆-history preserving bisimulation equivalent, ⋆ ∈
{pomset, process}, denoted by N↔⋆hN

′, if ∃R : N↔⋆hN
′, ⋆ ∈ {pom, pr}.

Let us note that in this definition one can use extentions of processes
by one transition only. Now we are able to prove the proposition about
interrelations of place and history preserving equivalences.

Proposition 4.1 For nets N and N ′ : N ∼pr N
′ ⇒ N↔prhN

′.

Proof. See Appendix A. 2

Below, the symbol ‘ ’ will denote “nothing”, and the signs of equivalences
subscribed by it are considered as that of without any subscribtion. The
following theorem collect all the results obtained here and in [11], and clarify
interrelations of all the equivalences.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

� � � �

��� �

≃

?

≡mes ≡occ

? ?

�

? ? ? ?

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

�
�	

�
�	

�
�	

�
�	

@
@R

@
@R� � �

? ?

?

@
@RXXX

XXX
Xy

? ? ? ? ?

∼i ∼pom

∼pr

�

�

	���
��

�
��

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

� � �

Figure 1: Interrelations of the equivalences and their preservation by SM-
refinements

Theorem 4.1 Let ↔,↔↔∈ {≡,↔,∼,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, pr, iST,
pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf,
pombprf}. For nets N and N ′ : N ↔⋆ N ′ ⇒ N ↔↔⋆⋆ N ′ iff in the graph
in Figure 1 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) By Theorem 12 from [11] and the following substantiations.

• The implications∼⋆→ ↔⋆, ⋆ ∈ {i, pom, pr} are valid by the definitions.

• The implication ∼pr→ ↔prh is valid by Proposition 3.2.

• The implication ∼pom→∼i is valid by the definitions.

• The implication ∼pr→∼pom is valid since lposets of isomorphic nets are
also isomorphic.

• The implication ≃→∼pr is obvious.

(⇒) By Theorem 12 from [11] and the following examples (dashed lines in
Figure 2 connect bisimilar places).

• In Figure 2(a), N ∼i N ′, but N 6≡pom N ′, since only in the net N ′

action b can depend on a.

• In Figure 2(b), N ∼pom N ′, but N 6≡pr N
′, since only in the net N ′ the

transition with label a has two input (and two output) places.

• In Figure 2(c), N ≡occ N
′, but N 6∼i N

′, since any place bisimulation
must relate input places of the nets N and N ′. But after putting one
additional token into each of these places only in N ′ the action c can
happen.

• In Figure 2(b), N ∼pom N ′, but N↔/ iSTN
′, since only in the net N ′

action a can start so that no b can begin working until finishing of a.

• In Figure 2(d), N ∼pr N ′, but N 6≡mes N ′, since only the net N ′ has
two conflict actions a.

• In Figure 2(b), N ∼pom N ′, but N↔/ sbsfN
′, since only in the net N ′

action a can happen so that b must depend on a. 2

In this section, we obtained a number of important results. Before, place
bisimulation equivalences have been compared with usual bisimulation ones
only. Here, we clarified their interrelations with all the basic and back-
forth ones. We proved that ∼pom does not imply neiter ST- nor back-forth
bisimulation equivalences. The situation is quite different for ∼pr. It appears
to be strict enough to imply history preserving bisimulation equivalences.
This interesting result may be used in reduction of nets modulo ∼pr [3, 4].
Now, we can guarantee that the reduced net has the same histories of the
behaviour as the initial one.

5 Preservation of the equivalences by refine-

ments

In this section, we treat the considered equivalence notions for preservation
by transition refinements. We use SM-refinement, i.e. refinement by a special
subclass of state-machine nets introduced in [5].

Definition 5.1 An SM-net is a net D = 〈PD, TD, FD, lD,MD〉 s.t.:

c

a b

�
��

�
��

�
��

u

� JĴ

? ?

ZZ~ ��=

≡occ

6∼i

a b

�
��

�
��

�
��

u

� JĴ

? ?

N N ′

(c)

a b

�
��

�
��u u

? ?

N

(a)

∼i

6≡pom

↔/ iST

↔/ sbsf

b a a

b

�
��

�
��

�
��

u u

� JĴ

� JĴ

?

?

N ′

a b

�
��

�
��u u

? ?

N

(b)

∼pom

6≡pr

↔/ iST

↔/ sbsf

b a a

b

�
��?

?

N ′ �
��

�
��u u

b

�
��

�
��

�
��?

?

?

? ?
Q
QQs

Z
ZZ~ ?

�
�
�
�
�
�
���

�� XX
�� XX

 `̀

��

"" ((

"" XX�� `̀

��

hh

cc
cc
cc
QQ

cc
cc
cc
QQ

PP hh

�
��+

(d)

a a

�
��u

� JĴ

N ′

∼pr

6≡mes

a

�
��

N u
?

�� XX

Figure 2: Examples of place bisimulation equivalences

1. ∀t ∈ TD |•t| = |t•| = 1, i.e. each transition has exactly one input and
one output place;

2. ∃pin, pout ∈ PD s.t. pin 6= pout and
◦D = {pin}, D◦ = {pout}, i.e. it is

an unique input and an unique output place.

3. MD = {pin}, i.e. at the beginning there is an unique token in pin.

Definition 5.2 Let N = 〈PN , TN , FN , lN ,MN〉 be some net, a ∈ lN(TN) and
D = 〈PD, TD, FD, lD,MD〉 be SM-net. An SM-refinement, denoted by
ref(N, a,D), is a net N = 〈PN , TN , FN , lN ,MN 〉, where:

• PN = PN ∪ {〈p, u〉 | p ∈ PD \ {pin, pout}, u ∈ l−1
N (a)};

• TN = (TN \ l−1
N (a)) ∪ {〈t, u〉 | t ∈ TD, u ∈ l−1

N (a)};

• FN(x̄, ȳ) =

FN(x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ l−1
N (a));

FD(x, y), x̄ = 〈x, u〉, ȳ = 〈y, u〉, u ∈ l−1
N (a);

FN(x̄, u), ȳ = 〈y, u〉, x̄ ∈ •u, u ∈ l−1
N (a), y ∈ p•in;

FN(u, ȳ), x̄ = 〈x, u〉, ȳ ∈ •u, u ∈ l−1
N (a), x ∈ •pout;

0, otherwise;

• lN(ū) =

{
lN(ū), ū ∈ TN \ l−1

N (a);
lD(t), ū = 〈t, u〉, t ∈ TD, u ∈ l−1

N (a);

• MN(p) =

{
MN(p), p ∈ PN ;
0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain
equivalent after applying any refinement operator to them accordingly. The
following proposition demonstrates that some place equivalences are not pre-
served by SM-refinements.

Proposition 5.1 The equivalences ∼i and ∼pom are not preserved by SM-
refinements.

Proof. In Figure 3, N ∼pom N ′, but ref(N, a,D)↔/ iref(N
′, a,D), since only

in the net ref(N ′, a,D) after action a1 action b cannot happen. Consequently,
equivalences between ↔i and ∼pom are not preserved by SM-refinements. 2

The following proposition proves that ∼pr is preserved by refinements.

a b

n nt t
? ?

N

∼pom

6≡pr

↔/ iST

↔/ sbsf

b a a

b

�
��?

?

N ′

�
�� nt t

b

�
��

n

n?

?

?

? ?
Q
QQs

Z
ZZ~ ?

�
�
�
�
�
���

�� XX
 `̀

��

"" ((

 `̀

��

cc
cc
cc
QQ

PP hh

�
��+

a1

n
?

a2

�
��

n

?

?

?

D

a1 b

n nt t
? ?

a2

�
��

n

?

?

?

b

a2 a2

b

�
��?

?

�
�� nt t

n

? ?
Q
QQs

Z
ZZ~ ?

�
��+

b

n

?

?

�
�
�
�
�
�
�
�
�
�
�
��

ref(N, a,D) ref(N ′, a,D)

≡pom

6≡pr

↔/ i

a1 a1

�
��?

?
�
��?

?

Figure 3: The equivalences between ↔i and ∼pom are not preserved by SM-
refinements

Proposition 5.2 For nets N and N ′ s.t. a ∈ lN (TN)∩ lN ′(TN ′) and SM-net
D : N ∼pr N

′ ⇒ ref(N, a,D) ∼pr ref(N
′, a,D).

Proof. See Appendix B. 2

Now we can add the results obtained to that of from [11] and present the
following theorem.

Theorem 5.1 Let ↔∈ {≡,↔,∼,≃} and ⋆ ∈ { , i, s, pw, pom, pr, iST,
pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf,
pombprf}. For nets N and N ′ s.t. a ∈ lN(TN) ∩ lN ′(TN ′) and SM-net
D : N ↔⋆ N ′ ⇒ ref(N, a,D) ↔⋆ ref(N ′, a,D) iff the equivalence ↔⋆ is
in oval in Figure 1.

Proof. By Theorem 18 from [11] and Propositions 5.1 and 5.2. 2

In this section, an important result has been established. From all the
place bisimulation equivalences, only ∼pr is preserved by refinements. Thus,
it can be used for the compositional refinement of Petri nets.

For example, let us consider a net modelling a concurrent system and
the reduced (modulo some equivalence) version of this net. The initial and
the reduced nets have similar behaviour. Thus, we can use the reduced net
instead of the initial one as a model for the concurrent system. If we want to
consider the system at lower abstraction level, we use a refinement operation
which “replaces” several transitions of the nets to the subnets corresponding
to some internal structure of the system’s components. If the equivalence
used for the reduction is not preserved by refinements, we cannot use the
refined reduced net as a model anymore, since its behaviour can be different
with that of the refined initial net.

Hence, the preservation of ∼pr by refinements is a powerful property,
especially if to remember that this equivalence implies the history preserving
one. Consequently, the histories of behaviour of the initial net coincide with
that of the reduced net, and this property is valid at different abstraction
levels.

6 Conclusion

In this paper, we examined a group of place bisimulation equivalences. We
compared them with basic and back-forth ones. All the considered equiva-
lences were treated for preservation by SM-refinements to establish which of

them may be used for top-down design of concurrent systems. We proved
that ∼pr implies ↔prh and it is preserved by refinements. Hence, it may
be used for the compositional and history-preserving reduction of concurrent
systems modelled by Petri nets.

Further research may consist in the investigation of analogues of the con-
sidered equivalences on Petri nets with τ -actions (τ -equivalences). τ -actions
are used to abstract of internal, invisible to external observer behaviour of
systems to be modelled. Let us note that a number of interleaving place
τ -bisimulation equivalences was proposed in [4, 2]. For other semantics, the
corresponding relations have not been defined, and it would be interesting to
propose them and exam their interrelations. In future, we plan to define τ -
analogues of all the equivalence relations considered in this paper and exam
them following the same pattern.

References

[1] Autant C., Belmesk Z., Schnoebelen Ph. Strong bisimularity on
nets revisited. Extended abstract. LNCS 506, p. 295–312, June 1991.

[2] Autant C., Pfister W., Schnoebelen Ph. Place bisimulations for
the reduction of labelled Petri nets with silent moves. Proceedings of

International Conference on Computing and Information, 1994.

[3] Autant C., Schnoebelen Ph. Place bisimulations in Petri nets.
LNCS 616, p. 45–61, June 1992.

[4] Autant C. Petri nets for the semantics and the implementation of par-
allel processes. Ph.D. thesis, Institut National Polytechnique de Greno-
ble, May 1993 (in French).

[5] Best E., Devillers R., Kiehn A., Pomello L. Concurrent bisim-
ulations in Petri nets. Acta Informatica 28, p. 231–264, 1991.

[6] Cherief F. Back and forth bisimulations on prime event structures.
LNCS 605, p. 843–858, June 1992.

[7] van Glabbeek R.J., Vaandrager F.W. Petri net models for alge-
braic theories of concurrency. LNCS 259, p. 224–242, 1987.

[8] Pomello L., Rozenberg G., Simone C. A survey of equivalence
notions for net based systems. LNCS 609, p. 410–472, 1992.

[9] Pinchinat S. Bisimulations for the semantics of reactive systems.
Ph.D. thesis, Institut National Politechnique de Grenoble, January 1993
(in French).

[10] Tarasyuk I.V. Petri net equivalences for design of concurrent sys-
tems. Proceedings of 5th Workshop on Concurrency, Specification and
Programming - 96 (CSP’96), September 25–27, 1996, Informatik-Bericht

69, p. 190–204, Institut für Informatik, Humboldt-Universität zu Berlin,
Berlin, Germany, 1996.

[11] Tarasyuk I.V. Back-forth equivalences for design of concurrent sys-
tems. S. Adian, A. Nerode, eds., Proceedings of 4th International Sym-
posium on Logical Foundations of Computer Science - 97 (LFCS’97),
LNCS 1234, p. 374–384, Yaroslavl, 1997.

[12] Vogler W. Modular construction and partial order semantics of Petri
nets. LNCS 625, 252 p., 1992.

A Proof of Proposition 4.1.

By Proposition 3.1, ∃R : N ≈pr N ′. Then R : N↔prN
′ and transi-

tions of N and N ′ are related by R. Let us define a relation S as fol-
lows: S = {(π, π′, β) | π = (C, ϕ) ∈ Π(N), π′ = (C, ϕ′) ∈ Π(N ′), β =
idTC

, ∀r ∈ PC (ϕ(r), ϕ′(r)) ∈ R, ∀v ∈ TC (ϕ(v), ϕ′(v)) ∈ R}. Let us prove
S : N↔prhN

′.

1. Obviously, (πN , πN ′, ∅) ∈ S.

2. By definition of S, (π, π′, β) ∈ S ⇒ β : ρC ≃ ρC′ and C ≃ C ′;

3. Let (π, π′, β) ∈ S, π = (C, ϕ), π′ = (C, ϕ′) and π
v
→ π̃, π̃ = (C̃, ϕ̃).

Let us consider a transition firing ϕ̃(•v)
ϕ̃(v)
→ ϕ̃(v•) in N . By definition

of S,
(ϕ(•v), ϕ′(•v)) ∈ R. Since ϕ(•v) = ϕ̃(•v), we have (ϕ̃(•v), ϕ′(•v)) ∈ R.

Since R : N ≈pr N ′, we have ∃u′, M̃ ′ : ϕ′(•v)
u′

→ M̃ ′, (ϕ̃(v), u′) ∈ R

and (ϕ̃(v•), M̃ ′)
∈ R.

Let v• = {r1, . . . , rn}, M̃ ′ = {p′1, . . . , p
′
n}, ∀i (1 ≤ i ≤ n) (ϕ̃(ri), p

′
i) ∈

R. Let us define a mapping ϕ̃′ as follows: ϕ̃′|(PC∪TC) = ϕ′, ϕ̃′(v) =
u′, ∀i (1 ≤ i ≤ n) ϕ̃′(ri) = p′i.

Since by definition of ϕ̃′ we have u′ = ϕ̃′(v), M̃ ′ = ϕ̃′(v•), ϕ′(•v) =

ϕ̃′(•v), then ϕ̃′(•v)
ϕ̃′(v)
→ ϕ̃′(v•) is a transition firing in N ′ and

(ϕ̃(v), ϕ̃′(v)) ∈ R, (ϕ̃(v•), ϕ̃′(v•)) ∈ R.

Consequently, ϕ̃(•v) − •ϕ̃(v) = ϕ̃(v•) − ϕ̃(v)• and ϕ̃′(•v) − •ϕ̃′(v) =
ϕ̃′(v•)− ϕ̃′(v)•. Because of additivity of place bisimulations and since
ϕ̃ is an embedding, we have (∅, ϕ̃′(•v) − •ϕ̃′(v)) ∈ R and (∅, ϕ̃′(v•) −
ϕ̃′(v)•) ∈ R. Consequently, ϕ̃′(•v) = •ϕ̃′(v) and ϕ̃′(v•) = ϕ̃′(v)•.
Therefore ϕ̃′ is an embedding and π̃′ = (C̃, ϕ̃′) ∈ Π(N ′). We have
π′ v

→ π̃′. Let us define β̃ = idT
C̃

. Then (π̃, π̃′, β̃) ∈ S.

4. As item 3, but the roles of N and N ′ are reversed. 2

B Proof of Proposition 5.2.

Let N = ref(N, a,D), N
′
= ref(N ′, a,D) and R : N ∼pr N

′. By Proposi-

tion 3.1, R : N ≈i N
′. It is enough to prove N ≈i N

′
. Let us define a relation

S as follows: S = R ∪ {(〈p, u〉, 〈p, u′〉) | p ∈ PD \ {pin, pout}, (u, u′) ∈ R}.
Let us prove S : N ≈i N

′
.

1. (MN ,MN
′) ∈ S, since (MN ,MN ′) ∈ R.

2. Let (M,M ′) ∈ S and M
ū
→ M̃ . Two cases are possible:

(a) ū = u ∈ TN ;

(b) ū = 〈t, u〉, t ∈ TD, u ∈ TN , lN (u) = a.

Let us consider the case (b), since the case (a) is obvious. Let •t =
{p}, t• = {q}. Then we have:

•〈t, u〉 =

{
•u, t ∈ p•in;
〈p, u〉, otherwise.

〈t, u〉• =

{
u•, t ∈ •pout;
〈q, u〉, otherwise.

Four cases are possible:

(a) t ∈ p•in ∩
•pout;

(b) t ∈ p•in \
•pout;

(c) t ∈ •pout \ p
•
in;

(d) t 6∈ p•in ∪
•pout.

Let us consider the case (d), since the cases (a)–(c) are simpler. We
have •〈t, u〉 = 〈p, u〉 ∈ M . Since (M,M ′) ∈ S, by definition of S we
have: ∃u′ ∈ TN : (u, u′) ∈ R and (〈p, u〉, 〈p, u′〉) ∈ S, 〈p, u′〉 ∈ M ′.
Since •〈t, u′〉 = 〈p, u′〉, then (•〈t, u〉, •〈t, u′〉) ∈ S, •〈t, u′〉 ∈ M ′.

Then ∃M̃ ′ : M ′ 〈t,u′〉
→ M̃ ′. We have: lN(〈t, u〉) = lD(t) = l

N
′(〈t, u′〉).

Since 〈t, u〉• = 〈q, u〉, by definition of S we have (〈q, u〉, 〈q, u′〉) ∈ S.
Since 〈t, u′〉• = 〈q, u′〉, then (〈t, u〉•, 〈t, u′〉•) ∈ S.

Hence, (〈t, u〉, 〈t, u′〉) ∈ S and (M̃, M̃ ′) ∈ S.

3. As item 2, but the roles of N and N
′
are reversed. 2

