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Abstract

We propose fluid equivalences that allow one to compare and reduce behaviour of labeled fluid stochastic
Petri nets (LFSPNs) while preserving their discrete and continuous properties. We define a linear-time
relation of fluid trace equivalence and its branching-time counterpart, fluid bisimulation equivalence. Both
fluid relations take into account the essential features of the LFSPNs behaviour, such as functional activity,
stochastic timing and fluid flow. We consider the LFSPNs whose continuous markings have no influence
to the discrete ones, i.e. every discrete marking determines completely both the set of enabled transitions,
their firing rates and the fluid flow rates of the incoming and outgoing arcs for each continuous place.
Moreover, we require that the discrete part of the LFSPNs should be continuous time stochastic Petri nets.
The underlying stochastic model for the discrete part of the LFSPNs is continuous time Markov chains
(CTMCs). The performance analysis of the continuous part of LFSPNs is accomplished via the associated
stochastic fluid models (SFMs).

We show that fluid trace equivalence preserves average potential fluid change volume for the transition
sequences of every certain length. We prove that fluid bisimulation equivalence preserves the following aggre-
gated (by such a bisimulation) probability functions: stationary probability mass for the underlying CTMC,
as well as stationary fluid buffer empty probability, fluid density and distribution for the associated SFM.
Hence, the equivalence guarantees identity of a number of discrete and continuous performance measures.
Fluid bisimulation equivalence is then used to simplify the qualitative and quantitative analysis of LFSPNs
that is accomplished by means of quotienting (by the equivalence) the discrete reachability graph and un-
derlying CTMC. To describe the quotient associated SFM, the quotients of the probability functions are
defined. We also characterize logically fluid trace and bisimulation equivalences with two novel fluid modal
logics HMLflt and HMLflb, constructed on the basis of the well-known Hennessy-Milner Logic HML. These
results can be seen as operational characterizations of the corresponding logical equivalences. The applica-
tion example of a document preparation system demonstrates the behavioural analysis via quotienting by
fluid bisimulation equivalence.

Keywords: labeled fluid stochastic Petri net, continuous time stochastic Petri net, continuous time Markov
chain, stochastic fluid model, transient and stationary behaviour, probability mass, buffer empty probability,
fluid density and distribution, performance analysis, Markovian trace and bisimulation equivalences, fluid
trace and bisimulation equivalences, quotient, fluid modal logic, logical and operational characterizations,
application example.

Contents

1 Introduction 2
1.1 Fluid stochastic Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Equivalences on the related models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Labeled fluid stochastic Petri nets and fluid equivalences . . . . . . . . . . . . . . . . . . . . . . . 5

∗The work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under grant BE 1267/14-1 and Russian Foun-
dation for Basic Research (RFBR) under grant 14-01-91334.

1



1.4 Logical characterization of the fluid equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Previous works and contributions of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Description of the model 9
2.1 Basic concepts of LFSPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Discrete part of LFSPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Continuous part of LFSPNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Fluid equivalences 18
3.1 Fluid trace equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Fluid bisimulation equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Reduction of the behaviour 29

5 Logical characterization 32
5.1 Logic HMLflt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Logic HMLflb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Stationary behaviour 38
6.1 Preservation of the quantitative behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Preservation of the functionality and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Document preparation system 47

8 Conclusion 52

1 Introduction

An important scientific problem that has been often addressed in the last decades is the design and analysis of
parallel systems, which takes into account both qualitative (functional) and quantitative (timed, probabilistic,
stochastic) features of their behaviour. The main goal of the research on this topic is the development of models
and methods respecting performance requirements for concurrent and distributed systems with time constraints
(such as deterministic, nondeterministic and stochastic time delays) to construct, validate and optimize the
performability of realistic large-scale applications: computing systems, networks and software, controllers for
industrial devices, manufacturing lines, vehicle, aircraft and transportation engines. A fruitful approach to
achieving progress in this direction appeared to be a combined application of the theories of Petri nets, stochastic
processes and fluid flow systems to the specification and analysis of such time-dependent systems with inherent
behavioural stochasticity [57].

1.1 Fluid stochastic Petri nets

In the past, many extensions of stochastic Petri nets (SPNs) [72, 70, 71, 68, 69, 14, 15] have been developed to
specify, model, simulate and analyze some particular classes of systems, such as computer systems, communica-
tion networks or manufacturing plants. These new formalisms have been constructed as a response to the needs
for more expressive power in describing real-world systems, and to the requirements for compact models and
efficient analysis techniques. One of the extensions are fluid stochastic Petri nets (FSPNs), capable of modeling
hybrid systems that combine continuous state variables, corresponding to the fluid levels, with discrete state
variables, specifying the token numbers. The continuous part of the FSPNs allows one to represent the fluid
level in continuous places and fluid flow along continuous arcs. This part can naturally describe continuous
variables in physical systems whose behaviour is commonly represented by differential equations. Continuous
variables may also be used to describe a macroscopic view of discrete items that appear in large populations,
e.g., packets in a computer network, molecules in a chemical reaction or people in a crowd. The discrete part of
an FSPN is essentially its underlying SPN, obtained from the FSPN by removing all the fluid-related continuous
elements. This part usually models the discrete control of the continuous process. The control may demonstrate
some stochastic behavior that captures uncertainty about the detailed system behavior.

FSPNs have been proposed in [86, 41, 98] to model stochastic fluid flow systems [56, 52, 63]. To analyze
FSPNs, simulation, numerical and matrix-geometric methods are widely used [61, 42, 27, 53, 54, 49, 50, 62, 55].
The major problem of FSPNs is the high complexity of computing their solution, resulting in huge memory
and time requirements while analyzing realistic models. A positive feature of the FSPN formalism is that it
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hides from a modeler the technical difficulties with solving differential equations for the underlying stochastic
processes and that it unifies in one framework the evolution equations for the discrete and continuous parts of
systems.

1.2 Equivalences on the related models

However, to the best of our knowledge, neither transition labeling nor behavioral equivalences have been pro-
posed so far for FSPNs. In [88, 89, 90], label equivalence and projected label equivalence have been introduced
for Fluid Process Algebra (FPA). FPA is a simple sub-algebra of Grouped PEPA (GPEPA) [58], which is itself
a conservative extension of Performance Evaluation Process Algebra (PEPA) [60], obtained by adding fluid
semantics with an objective to simplify solving the systems of replicated ordinary differential equations. In
[88, 90], it has been proved that projected label equivalence induces a fluid lumpable partition and that both
label equivalence and projected label equivalence imply semi-isomorphism (stochastic isomorphism), in the con-
text of a special subclass of well-posed models. Nevertheless, the mentioned label equivalences do not respect
the action names; hence, they are not behavioral relations.

In [91, 92], the models specified with large ordinary differential equation (ODE) systems have been explored
within Fluid Extended Process Algebra (FEPA). The relations of semi-isomorphism, as well as those of ordinary
and projected label equivalence have been proposed for the sequential process components, called fluid atoms,
such that they can have a multiplicity (the number of their copies in the model specification). In addition to
exact fluid lumpability (EFL) from [88, 90] that allows one to aggregate isomorphic processes with the same mul-
tiplicities, a new notion of ordinary fluid lumpability (OFL) has been proposed. OFL does not require that the
multiplicities of the isomorphic processes coincide, but it preserves the sums of the aggregated variables instead.
Moreover, the approximate versions (ǫ-variants) of semi-isomorphism, EFL and OFL have been investigated,
which abstract from small fluctuations of the parameter values in the processes with close (similar) differential
trajectories. This means that the close processes become completely symmetric (aggregative, isomorphic) after
small change (perturbation) of their parameters, resulting in the closer differential trajectories. It has been
proved that the aggregation error depends linearly in the perturbation intensity. However, as mentioned above,
the label equivalences do not respect the names of actions and therefore they are not behavioural equivalences.

In [64], differential bisimulation for FEPA has been constructed. This relation induces a partition on ODEs
corresponding to the FEPA terms. Differential bisimulation is a behavioural equivalence that is an ODE
analogue of the probabilistic and stochastic bisimulations. For each partition block, the sum of solutions of its
ODEs coincides with the solution of a single aggregate ODE for this block. In the framework of FSPNs, the
ODE systems are obtained only when there is exactly one continuous place. In the general case (more than
one continuous place), the dynamics of FSPNs is described by the systems of equations with partial derivatives
of probability distribution functions (PDFs) and probability density functions with respect to fluid levels in
the continuous places. These levels are the random variables with a parameter accounting for the work time
of an FSPN, starting from the initial moment. Just for the fluid levels, the ODEs over the time variable can
be constructed in each discrete marking. However, the sojourn time in each discrete marking is a random
variable, calculated as the minimal transition delay, among all the transitions enabled in the marking. The
FEPA processes are described by the ODE systems with derivatives of the population functions that define the
multiplicities (numbers of replicas) of fluid atoms by only one variable denoting the time. Thus, the analogues
of the FEPA fluid atoms are the (mainly, continuous) places of FSPNs. Hence, the FSPN model always has a
naturally embedded notion of population, seen as a fluid in a continuous place. The systems behaviour is treated
in FSPNs on a higher level of specification using the continuous time concept and the GSPN basic model, and
also on a higher analysis level using the theories of probability and stochastic processes for constructing the
underlying SMCs, CTMCs and stochastic fluid models (SFMs). The multiplicities of the FEPA fluid atoms
are the functions of time, such that their values can be found for every particular time moment. In contrast,
the fluid levels in continuous places of FSPNs are the continuous random variables that depend on time, so
that their exact values at a given moment of time cannot be calculated. The reason is the property of the
continuous probability distributions, stating that a continuous random variable may be equal to a concrete
fixed value with zero probability only (excepting that in FSPNs, the fluid probability mass at the boundaries
may be positive). In addition, the FEPA expressivity is rather restricted by considering only the processes,
such that each of them is a parallel composition (with embedded synchronization by the cooperation actions)
of the fluid atoms denoting a large number of copies of the simple sequential components, specified with only
three operations: prefix, choice and recursive definition with constants. Moreover, the fluid atoms in FEPA
are considered uniformly, i.e. there is no difference between “discrete” atoms with small multiplicities and
“continuous” ones with large multiplicities. However, the tokens in FSPNs are jumped from one discrete place
to another instantaneously when their input of output transitions fire, whereas the fluid flow proceeds through
continuous places during all the time period when their input or output transitions are enabled. Thus, the
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notion of differential bisimulation cannot be straightforwardly transferred from FEPA to FSPNs, since the two
models are different in many parts.

In [5], on the product form queueing networks (QNs), the ideas of equivalent flow server and flow equivalence
have been applied to the models reduction. This has been done by aggregating server stations and their states
by the latter equivalence relation. Nevertheless, flow equivalence does not respect the names of actions, hence,
it is not a behavioural equivalence.

In [32, 33, 35], backward and forward bisimulation (BB and FB) equivalences on chemical species have been
introduced for chemical reaction networks (CRNs) with the ODE-based semantics. The forward bisimulation
induces a partition where each equivalence class is a sum of concentrations of the species from this class, and this
relation guarantees the ordinary fluid lumping on the ODEs of CRNs. The backward bisimulation relates the
species with the same ODE solutions at all time points, starting from the moment for which their equal initial
conditions have been defined, and this relation characterizes the exact fluid lumping on the ODEs of CRNs. It
has been noticed that the bisimulations proposed in [32] differ from the equivalences from [88, 89, 90, 91, 92],
since the former ones relate single variables whereas the latter ones relate the sets of variables, such that
each of them represents the behaviour of some sequential process. The CRNs dynamics is described by ODEs
with derivatives with respect to one variable (time), and the CRNs behaviour is deterministic, described by
differential trajectories. In [35], an algorithm for constructing exact aggregations for a class of ODE systems
has been proposed, which computes forward and backward bisimulation equivalences of CRNs with the time
complexity O(rs log s) and space complexity O(rs), where r is the number of monomials and s is the number of
variables in the ODEs. As mentioned above, unlike CRNs, FSPNs have a stochastic behaviour which is influenced
by the interplay of time and probabilistic factors. The FSPNs dynamics is analyzed with (multidimensional, in
general) SFMs that are solved using the differential equations with partial derivatives with respect to several
variables. In [84], backward bisimulation equivalence, called there backward differential equivalence (BDE),
has been used to provide an alternative characterization of emulation for CRNs, interpreted as the systems of
ODEs. Being a stricter variant of BDE, emulation requires that the ODE solutions of a source CRN exactly
overlap those of a target one at all moments of time. A genetic algorithm is presented that uses BDE to discover
emulations between CRNs. In [94], the analogous backward and forward bisimulation equivalences have been
defined for reaction networks (RNs), the CRNs extension with negative reaction rates.

In [93], two notions of lumpability for the class of heterogenous systems models specified by nonlinear ODEs
have been investigated: exact lumpability (EL) [85] and uniform lumpability (UL), both applied for exact
aggregation of the state variables. Unlike the EL transformations through linear mappings (in particular, those
induced by a partition of the original state space), UL considers exact symmetries of the equations due to
identification of the different variables from one partition block, which have coinciding differential trajectories
(solutions) in case of the same initial conditions. This is an extension of the ODE systems reduction technique
for the formal language FPA from [88] to arbitrary vector fields. Both the lumpability relations do not take
into account the action names and do not refer to behavioural equivalences.

In [34, 94], backward differential equivalence (BDE) and forward differential equivalence (FDE) have been
explored for a basic formalism, called Intermediate Drift Oriented Language (IDOL). IDOL has a syntax to
specify drift for a class of non-linear ODEs, for which the decidability results are known. The mentioned equiv-
alence relations can be transferred from IDOL to the higher-level models, such as Petri nets, process algebras
and rule systems, interpreted as ODEs. The differential equivalences embrace such notions as minimization of
CTMCs based on the lumpability relation [45], bisimulations of CRNs [32] and behavioural relations for process
algebras with the ODE semantics [64]. At the same time, the ODE class defined by the IDOL language cannot
specify semantics of the systems with stochastic continuous time delays in the discrete states, as well as many
other behavioural aspects of FSPNs, including the ones mentioned above. In [36], an application tool ERODE
has been presented for solution and reduction of the ODE systems. The tool supports the mentioned BDE and
FDE relations over the ODE variables.

In [37], syntactic Markovian bisimulation (SMB) has been proposed on CRNs with stochastic semantics
based on CTMCs. SMB is defined on the structure of CRNs rather than on their underlying CTMCs. It is
an equivalence over species in chemical reactions that implies that two states of the underlying CTMC are
lumpable when they are invariant with respect to the total population of species within the same equivalence
class. This results in a lumpable partition of the CTMC’s set of states. A polynomial time partition refinement
algorithm for computing the largest SMB on CRNs has been presented. SMB has been also compared with
forward (forth) bisimulation (FB) [32, 33, 35] on CRNs with deterministic semantics based on ODEs. It has
been proved that SMB is stricter than FB. SMB is not a traditional behavioural equivalence, since, instead of
action names, it considers species, used to specify the states of CRNs and their CTMCs.

In [38], forward and backward equivalences on the polynomial ODE systems have been considered. Backward
equivalence relates the ODE variables with the same solution. Forward equivalence guarantees self-consistency
of the ODE system describing evolution of the sums of the variables from the same equivalence classes. If
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a linear ODE system is a motion equation for the transient probability distribution of a CTMC then forward
equivalence becomes ordinary lumpability while backward equivalence becomes exact lumpability on the CTMC.
Polynomial ODE systems have been encoded into finitary CRN-like structures, thus permitting to develop a
discrete algorithm for effective computing the largest equivalence. The algorithm is based on the iterative
partition refinements. Since forward and backward equivalences do not respect action names, they are not
standard behavioural relations.

In [29], for systems of polynomial ODEs, the questions of reasoning (detecting and proving identities among
the variables of an ODE system) and reduction (decreasing and possibly minimizing the number of variables
and equations of an ODE system while preserving all important information) have been addressed. The initial
value problem has been considered, i.e. solving the ODE systems with initial conditions. The L-bisimulation
equivalence on the polynomials in the variables has been defined, which agrees with the underlying ODEs. An
algorithm has been proposed that detects all valid identities in an ODE system. This allows one to construct
the reduced ODE system with the minimal number of variables and equations so that the system is equivalent
to the initial one. However, L-bisimulation equivalence does not take into account the names of actions (which
are not present at all in the ODE system specifications), therefore, the equivalence is not a behavioural relation.

In [87], the (maximal) aggregation techniques and algorithms have been outlined, based on ordinary and exact
lumpability for DTMCs, CTMCs and ODEs, forward and backward equivalences (FE and BE) for polynomial
dynamical systems (PDSs) and reaction networks (RNs), as well as syntactic Markovian bisimulation (SMB)
for CRNs. The ERODE software tool has been described for evaluation and reduction of ODEs and CTMCs.
Since FE, BE and SMB do not beware of actions, they are not standard behavioural equivalences.

In [39], approximate variants of BDE and FDE from [34] have been defined within polynomial initial value
problem (PIVP) over the set of ODE variables. The resulting notions of ε-BDE and ε-FDE for ODEs with
polynomial derivatives include a tolerance parameter ε ≥ 0 that corresponds to the perturbations in polynomials
coefficients, where the “exact” relations of BDE and FDE are the cases of ε = 0. A partition refinement algorithm
is presented that constructs the largest ε-BDE and ε-FDE. The number of steps done by the algorithm is O(Π(p))
for ε-BDE and O(Π(2dp)) for ε-FDE, where Π is some polynomial, d is the maximum degree of the polynomial
and p is the number of monomials in the PIVP. Since ε-BDE and ε-FDE do not respect actions, they are not
behavioural relations.

1.3 Labeled fluid stochastic Petri nets and fluid equivalences

In this paper, we propose the behavioural relations of fluid trace and bisimulation equivalences that are useful
for the comparison and reduction of the behaviour of labeled FSPNs (LFSPNs), since these relations preserve
the functionality and performability of their discrete and continuous parts.

For every FSPN, the discrete part of its marking is determined by the natural number of tokens contained
in the discrete places. The continuous places of an FSPN are associated with the non-negative real-valued
fluid levels that determine the continuous part of the FSPN marking. Thus, FSPNs have a hybrid (discrete-
continuous) state space. The discrete part of every hybrid marking of FSPNs is called discrete marking while
the continuous part is called continuous marking. The discrete part of each hybrid marking has an influence
on the continuous part. For more general FSPNs, the reverse dependence is possible as well. As a basic model
for constructing LFSPNs, we consider only those FSPNs in which the continuous parts of markings have no
influence on the discrete ones, i.e. such that every discrete part determines completely both the set of enabled
transitions and the rates of incoming and outgoing arcs for each continuous place [49, 55].

We also require that the discrete part of LFSPNs should be labeled continuous time stochastic Petri nets
(CTSPNs) [70, 68, 69, 14]. The definitions of the fluid equivalences should be given at the level of LFSPNs,
but they must use the transition rates of the extracted CTMC. These rates cannot be easily (i.e. with a simple
expression) defined at the level of more general LFSPNs, whose discrete part is labeled GSPNs. In addition, the
action labels of immediate transitions are lost and their individual probabilities are redistributed while GSPNs
are transformed into CTSPNs. The individual probabilities of immediate transitions are “dissolved” in the total
transition rates between tangible states when vanishing states are eliminated from SMCs while reducing them
to CTMCs. Therefore, to make the definitions of the fluid equivalences less intricate and complex, we have
decided to consider only LFSPNs with labeled CTSPNs as their discrete part. Then the underlying stochastic
process of the discrete part of LFSPNs will be that of CTSPNs, i.e. CTMCs.

First, we define a linear-time relation of fluid trace equivalence on LFSPNs. Linear-time equivalences, unlike
branching-time ones, do not respect the points of choice among several alternative continuations of the system’s
behavior. We require that fluid trace equivalence on discrete markings of two LFSPNs should be a standard
(strong) Markovian trace equivalence. Hence, for every sequence of discrete markings and transitions in the
discrete reachability graph of an LFSPN, starting from the initial discrete marking and ending in some last
discrete marking (such sequence is called path), we require a simulation of the path in the discrete reachability
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graph of the equivalent LFSPN, such that the action labels of the corresponding fired transitions in the both
sequences coincide. Moreover, the average sojourn times in (or the exit rates from) the respective discrete
markings should be the same. Finally, for the two equivalent LFSPNs, the cumulative execution probabilities of
all the paths corresponding to a particular sequence of actions, together with a concrete sequence of the average
sojourn times (exit rates), should be equal. Thus, when comparing the execution probabilities, we parameterize
the paths with the same extracted action sequence by all possible sequences of the extracted average sojourn
times (exit rates), i.e. we consider comparable only the paths with the same extracted action sequence and
the same value of the parameter, which is a concrete sequence of the extracted average sojourn times (exit
rates). Therefore, our definition of the trace equivalence on the discrete markings of LFSPNs is similar to that
of ordinary (that with the absolute time counter or with the countdown timer) Markovian trace equivalence [96]
on transition-labeled CTMCs. Ordinary Markovian trace equivalence and its variants from [96] have been later
investigated and enhanced on interactive Markov chains (IMCs) in [97], on sequential and concurrent Markovian
process calculi SMPC and CMPC in [16, 20, 17, 18, 21], on Uniform Labeled Transition Systems (ULTraS) in
[23, 24, 19], on continuous time Markov decision processes (CTMDPs) in [74] and on Markov automata (MAs)
in [75].

As for the continuous markings of the two LFSPNs, we further parameterize the paths with the same
extracted action sequence and the same sequence of the extracted average sojourn times (exit rates) by counting
the execution probabilities only of those paths additionally having the same sequence of extracted potential fluid
flow rates of the respective continuous places (we assume that each of the two compared LFSPNs has exactly
one continuous place) in the corresponding discrete markings. Besides the need to respect a fluid flow in the
equivalence definition, the intuition behind such a double parameterizing by the average sojourn times and by
the fluid flow rates is as follows. In each of the corresponding discrete markings of the comparable paths we
shall have the same average potential fluid change volume in the corresponding continuous places, which is a
product of the average sojourn time and the constant (possibly zero or negative) potential fluid flow rate.

We show that fluid trace equivalence preserves average potential fluid change volume in the respective
continuous places for the transition sequences of each particular length.

Second, we propose a branching-time relation of fluid bisimulation equivalence on LFSPNs. We prove that
it is strictly stronger than fluid trace equivalence, i.e. the former relation generally makes less identifications
among the compared LFSPNs than the latter. We require the fluid bisimulation on the discrete markings of
two LFSPNs to be a standard (strong) Markovian bisimulation. Hence, for each transition firing in an LFSPN,
we require a simulation of the firing in the equivalent LFSPN, such that the action labels of the both fired
transitions and their overall rates coincide. Thus, our definition of the bisimulation equivalence on the discrete
markings of LFSPNs is similar to that of the performance bisimulation equivalences [30, 31] on labeled CTSPNs
and labeled generalized SPNs (GSPNs) [68, 40, 69, 28, 14, 15], as well as the strong equivalence from [60] on
stochastic process algebra PEPA. All these relations belong to the family of Markovian bisimulation equivalences,
investigated on sequential and concurrent Markovian process calculi SMPC and CMPC in [16, 20, 17, 18, 21],
as well as on Uniform Labeled Transition Systems (ULTraS) in [23, 24, 19].

As for the continuous markings, we should fix a bijective correspondence between the sets of continuous
places of the two compared LFSPNs, hence, the number of their continuous places should coincide. Then each
continuous place in the first LFSPN should have exactly one corresponding continuous place in the second
LFSPN and vice versa. We require that, for every pair of the Markovian bisimilar discrete markings, the fluid
flow rates of the continuous places in the first LFSPN should coincide with those of the corresponding continuous
places in the second LFSPN. Note that in our formal definition of fluid bisimulation, we consider only LFSPNs
having a single continuous place, since the definition can be easily extended to the case of several continuous
places.

We prove that the resulting fluid bisimulation equivalence of LFSPNs preserves, for the equivalence classes
of their discrete markings, the stationary probability distribution of the underlying continuous time Markov
chain (CTMC), as well as the stationary fluid buffer empty probability, probability distribution and density
for the associated stochastic fluid model (SFM). As a consequence, the equivalence guarantees identity of a
number of discrete and hybrid performance measures, calculated for the stationary quantitative behaviour of
the LFSPNs. The fluid bisimulation equivalence is then used to simplify the qualitative and quantitative analysis
of LFSPNs, due to diminishing the number of discrete markings considered that are lumped into the equivalence
classes, interpreted as the (aggregate) states of the quotient discrete reachability graph and quotient underlying
CTMC. We also define the quotients of the probability functions by the equivalence, aiming at description of the
quotient associated SFM. Based on the pointed equivalence, a new quotient technique enhances and optimizes
the performance evaluation of fluid systems modeled by LFSPNs.

The running example presented in the paper explains systematically the most important definitions intro-
duced. It also demonstrates in detail the functional and performance identity of the LFSPNs, related by fluid
trace or fluid bisimulation equivalence. The application example consists in a case study of three LFSPNs,
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each of them modeling the document preparation system, and demonstrates how the LFSPNs structure and
behaviour can be reduced with respect to fluid bisimulation equivalence while preserving their functional and
performance properties.

1.4 Logical characterization of the fluid equivalences

A characterization of equivalences via modal logics is used to change the operational reasoning on systems be-
haviour by the logical one that is more appropriate for verification. Moreover, such an interpretation elucidates
the nature of the equivalences, defined in an operational manner. It is generally accepted that the natural
and nice modal characterization of a behavioural equivalence justifies its relevance. On the other hand, we get
an operational characterization of logical equivalences. The importance of modal logical characterization for
behavioural equivalences has been explained in [2], in particular, the resulting capabilities to express distinguish-
ing formulas for automatic verification of systems [65] and characteristic formulas for the equivalence classes
of processes [78, 4], to demonstrate finitariness and algebraicity of behavioural preorders [3], as well as to give
a testing interpretation of bisimulation equivalence [1, 67]. Logical characterization of bisimulation equivalence
guarantees that the validity of all logical formulas is preserved while quotienting (by the equivalence) the state
space before model checking, thereby simplifying verification of behavioural properties [11, 77, 26].

In the literature, several logical characterizations of stochastic and Markovian equivalences have been pro-
posed. In [43, 44], the characterization of strong equivalence has been presented with the logic PMLµ, which is a
stochastic extension of Probabilistic Modal Logic (PML) [67] on probabilistic transitions systems to the stochas-
tic process algebra PEPA [60]. In [51], a branching time temporal logic has been described which is an extension
of Continuous Stochastic Logic (CSL) [8] on CTMCs to a wide class of SFMs. The CSL-based logical character-
izations of various stochastic bisimulation equivalences have been reported in [10, 11, 12, 77, 13, 26] on labeled
CTMCs, in [46] on labeled continuous time Markov processes (CTMPs), in [47] on analytic spaces, in [9] on
labeled Markov reward models (MRMs) and in [76] on continuous time Markov decision processes (CTMDPs).
In [73], simulation, bisimulation and simulation distance on semi-Markov decision processes have been charac-
terized via timed Markovian logic (TML). In [20, 17], on sequential and concurrent Markovian process calculi
SMPC (MPC) and CMPC, the logical characterizations of Markovian trace and bisimulation equivalences have
been accomplished with the modal logicsHMLMTr andHMLMB, based on Hennessy-Milner Logic (HML) [59].
In [21], on (sequential) Markovian process calculus MPC, the logical characterizations of Markovian trace and
bisimulation equivalences have been constructed with the HML-based modal logics HMLNPMTr and HMLMB.

We provide fluid trace and bisimulation equivalences with the logical characterizations, accomplished via for-
mulas of the specially constructed novel fluid modal logics HMLflt and HMLflb, respectively. The new logics
are based on Hennessy-Milner Logic (HML) [59]. The logical characterizations guarantee that two LFSPNs are
fluid (trace or bisimulation) equivalent iff they satisfy the same formulas of the respective fluid modal logic, i.e.
they are logically equivalent. Thus, instead of comparing LFSPNs operationally, one may only check the corre-
sponding satisfaction relation. This provides one with the possibility for logical reasoning on fluid equivalences
for LFSPNs. Such an approach is often more convenient for the purpose of verification. The obtained results
may also be interpreted as operational characterizations of the corresponding logical equivalences. We have also
explored how to adopt (if possible) the testing interpretations of probabilistic and Markovian equivalences (re-
lated to their logical characterizations) for fluid trace and bisimulation equivalences that are standardly defined
in the operational manner.

The fluid modal logic HMLflt is used to characterize fluid trace equivalence. Therefore, the interpretation
function of the logic has an additional argument, which is the sequence of the potential fluid flow rates for the
single continuous place of an LFSPN (remember that in the definition of fluid trace equivalence we compare
only LFSPNs, each having exactly one continuous place). In HMLflt, one can express the properties like
“the execution probability of a sequence of actions starting from a state, with given average sojourn times and
potential fluid flow rates in the initial, intermediate and final states, is equal to a particular value”.

The fluid modal logic HMLflb is intended to characterize fluid bisimulation equivalence. For this purpose,
the logic has a new modality, decorated with the potential fluid flow rate value for the single continuous place
of an LFSPN (again, remember that in the definition of fluid bisimulation equivalence consider only LFSPNs,
each having a single continuous place). The resulting formula (i.e. the new modality with the flow rate value) is
used to check whether the potential fluid flow rate in a discrete marking of an LFSPN coincides with a certain
value, the fact that corresponds to a condition from the fluid bisimulation definition. Thus, HMLflb is able to
describe the properties such as “an action can be executed with a given minimal rate in a state with a given
potential fluid flow rate”.

Example 1.1 For a production line in a food processing or a chemicals plant, we can verify in HMLflt the
probability that the first liquid substance fills (this is specified by the action f1) the fluid reservoir with the
potential flow rate r1 during the exponentially distributed time period with the average s1; then the second liquid
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Figure 1: The diagram of the production line

substance fills (the action f2) the reservoir with the potential flow rate r2 during the exponentially distributed time
period with the average s2; finally, the reservoir is emptied with the potential flow rate r3 for the exponentially
distributed time period with the average s3.

For the production line mentioned above, we can verify in HMLflb the validity that the first liquid substance
fills (the action f1) the fluid reservoir with the potential flow rate r1 during the exponentially distributed time
period with the minimal rate λ1 or the second liquid substance fills (the action f2) the reservoir with the same
potential flow rate r1 during the exponentially distributed time period with the minimal rate λ2. Note that
disjunction in HMLflb can be defined standardly, i.e. via conjunction and negation.

The diagram of the production line is depicted in Figure 1.

1.5 Previous works and contributions of the paper

The first results on this subject can be found in [83], where we have proposed a class of LFSPNs and defined
a novel behavioural relation of fluid bisimulation equivalence for them. We have also proved there that the
equivalence preserves aggregate fluid density and distribution, as well as discrete and continuous performance
measures. The present paper is an improved and extended version of that publication. The paper contains the
following new results for LFSPNs: fluid trace equivalence, interrelations of the fluid equivalences, quotienting
by fluid bisimulation equivalence, logical characterization of the fluid equivalences, quotients of the probability
functions and an application example.

Thus, the main contributions of the paper are as follows.

• LFSPNs extend FSPNs with the action labeling on their transitions, which allows for the functional
behavioural reasoning.

• Fluid trace and bisimulation equivalences permit to compare and reduce the qualitative and quantitative
behaviour of LFSPNs in the the linear-time and branching-time semantics, respectively.

• The analysis of LFSPNs is simplified by quotienting their discrete reachability graphs and underlying
CTMCs by fluid bisimulation equivalence.

• Fluid trace and bisimulation equivalences are logically characterized via two original fluid modal logics
HMLflt and HMLflb.

• The aggregate probability functions coincide as for the discrete part (labeled CTSPNs and their underlying
CTMCs), as for the continuous part (SFMs) of the fluid bisimulation equivalent LFSPNs.

• Both the discrete and hybrid performance measures for LFSPNs are preserved by fluid bisimulation
equivalence.

• Application example shows in detail the functional and performance identity of the fluid bisimulation
equivalent LFSPNs specifying the document preparation system.

1.6 Outline of the paper

The rest of the paper is organized as follows. In Section 2, we define a class of labeled FSPNs. In Section 3,
we define fluid trace and bisimulation equivalences of LFSPNs. In Section 4, we explain how to reduce discrete
reachability graphs and underlying CTMCs of LFSPNs modulo fluid bisimulation equivalence, by applying the
method of the quotienting. Section 5 is devoted to the logical characterization of fluid trace and bisimulation
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Table 1: Abbreviations used in the paper

Petri nets Markov chains
SPN stochastic Petri net CTMC continuous time
CTSPN continuous time stochastic Petri net Markov chain
GSPN generalized stochastic Petri net SMC semi-Markov chain
FSPN fluid stochastic Petri net Fluid models
LFSPN labeled fluid stochastic Petri net SFM stochastic fluid model
Probability functions Rate matrices
PMF probability mass function TRM transition rate matrix
PDF probability distribution function FRM fluid rate matrix

equivalences with the use of two novel fluid modal logics. In Section 6, we investigate preservation of the
stationary behaviour of LFSPNs by the fluid equivalences. Section 7 describes a case study of three LFSPNs
modeling the document preparation system. Finally, Section 8 summarizes the results obtained and outlines
research perspectives in this area.

To help the reader, we have presented some important abbreviations from the paper in Table 1.

2 Description of the model

In this section, we define a class of labeled FSPNs, for which we shall later introduce equivalences.

2.1 Basic concepts of LFSPNs

Let us introduce a class of labeled fluid stochastic Petri nets (LFSPNs), whose transitions are labeled with
action names, used to specify different system activities. Without labels, LFSPNs are essentially a subclass of
FSPNs [61, 49, 55], so that their discrete part describes CTSPNs [70, 68, 69, 14]. This means that LFSPNs
have no inhibitor arcs, priorities and immediate transitions, which are used in the standard FSPNs, which
are the continuous extension of GSPNs. However, in many practical applications, the performance analysis of
GSPNs is simplified by transforming them into CTSPNs or reducing their underlying semi-Markov chains into
CTMCs (which are the underlying stochastic process of CTSPNs) by eliminating vanishing states [40, 69, 14, 15].
Transition labeling in LFSPNs is similar to the labeling, proposed for CTSPNs in [30]. Moreover, we suppose
that the firing rates of transitions and flow rates of the continuous arcs do not depend on the continuous
markings (fluid levels).

Let N = {0, 1, 2, . . .} be the set of all natural numbers and N≥1 = {1, 2, . . .} be the set of all positive natural
numbers. Further, let R = (−∞;∞) be the set of all real numbers, R≥0 = [0;∞) be the set of all non-negative
real numbers and R>0 = (0;∞) be the set of all positive real numbers. The set of all row vectors of n ∈ N≥1

elements from a set X is defined as Xn = {(x1, . . . , xn) | xi ∈ X (1 ≤ i ≤ n)}. The set of all mappings from a
set X to a set Y is defined as Y X = {f | f : X → Y }. Let Act = {a, b, . . .} be the set of actions.

First, we present a formal definition of LFSPNs.

Definition 2.1 A labeled fluid stochastic Petri net (LFSPN) is a tuple
N = (PN , TN ,WN , CN , RN ,ΩN , LN ,MN ), where

• PN = PdN ⊎ PcN is a finite set of discrete and continuous places (⊎ denotes disjoint union);

• TN is a finite set of transitions, such that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PdN ×TN )∪ (TN ×PdN ) → N is a function providing the weights of discrete arcs between discrete
places and transitions;

• CN ⊆ (PcN × TN) ∪ (TN × PcN ) is the set of continuous arcs between continuous places and transitions;

• RN : CN ×N
|PdN | → R≥0 is a function providing the (fluid) flow rates of continuous arcs in given discrete

markings (the markings will be defined later);

• ΩN : TN ×N
|PdN | → R>0 is the transition (firing) rate function associating transitions with (firing) rates

in given discrete markings;

• LN : TN → Act is the transition labeling function assigning actions to transitions;
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• MN = (MN ,0), where MN ∈ N
|PdN | and 0 is a row vector of |PcN | values 0, is the initial (discrete-

continuous) marking.

Let us consider in more detail the tuple elements from the definition above. Let N be an LFSPN.
Every discrete place pi ∈ PdN may contain discrete tokens, whose number is represented by a natural

number Mi ∈ N (1 ≤ i ≤ |PdN |). Each continuous place qj ∈ PcN may contain continuous fluid, with the
level represented by a non-negative real number Xj ∈ R≥0 (1 ≤ j ≤ |PcN |). Then the complete hybrid
(discrete-continuous) marking of N is a pair (M,X), where M = (M1, . . . ,M|PdN |) is a discrete marking and
X = (X1, . . . , X|PcN |) is a continuous marking. When needed, these vectors can also be seen as the mappings
M : PdN → N with M(pi) = Mi (1 ≤ i ≤ |PdN |) and X : PcN → R≥0 with X(qj) = Xj (1 ≤ j ≤ |PcN |). The
set of all markings (reachability set) of N is denoted by RS(N). Then DRS(N) = {M | (M,X) ∈ RS(N)}
is the set of all discrete markings (discrete reachability set) of N . DRS(N) will be formally defined later.

Further, CRS(N) = {X | (M,X) ∈ RS(N)} ⊆ R
|PcN |
≥0 is the set of all continuous markings (continuous

reachability set) of N . Every marking (M,X) ∈ RS(N) evolves in time, hence, we can interpret it as a
stochastic process {(M(δ), X(δ)) | δ ≥ 0}. Then the initial marking of N is that at the zero time moment, i.e.
MN = (MN ,0) = (M(0), X(0)), where X(0) = 0 means that all the continuous places are initially empty.

Every transition t ∈ TN has an associated positive real-valued instantaneous rate ΩN (t,M) ∈ R>0, which
is a parameter of the exponential distribution governing the transition delay (being a random variable), when
the current discrete marking is M . Transitions are labeled with actions, each representing a sort of activ-
ity that they model.

Every discrete arc da = (p, t) or da = (t, p), where p ∈ PdN and t ∈ TN , connects discrete places and
transitions. It has a non-negative integer-valued weight WN (da) ∈ N assigned, representing its multiplicity.
The zero weight indicates that the corresponding discrete arc does not exist, since its multiplicity is zero in this
case. In the discrete marking M ∈ DRS(N), every continuous arc ca = (q, t) or ca = (t, q), where q ∈ PcN and
t ∈ TN , connects continuous places and transitions. It has a non-negative real-valued flow rate RN (ca,M) ∈ R≥0

of fluid through ca, when the current discrete marking is M . The zero flow rate indicates that the fluid flow
along the corresponding continuous arc is stopped in some discrete marking.

The graphical representation of LFSPNs resembles that for standard labeled Petri nets, but supplemented
with the rates or weights, written near the corresponding transitions or arcs. Discrete places are drawn with
ordinary circles while double concentric circles correspond to the continuous ones. The multiplicity of each
discrete place in a discrete marking is represented by the number of tokens, depicted as black dots within the
place. Square boxes with the action names inside depict transitions and their labels. Discrete arcs are drawn
as thin lines with arrows at the end while continuous arcs should represent pipes, so the latter are depicted by
thick arrowed lines. If the rates are not given in the picture then they are assumed to be of no importance in
the corresponding examples. The names of places and transitions are depicted near them when needed.

We now consider the behaviour of LFSPNs.
Let N be an LFSPN and M be a discrete marking of N . A transition t ∈ TN is enabled in M if ∀p ∈

PdN WN (p, t) ≤ M(p). Let Ena(M) be the set of all transitions enabled in M . Firings of transitions are
atomic operations, and only single transitions are fired at once. Note that the enabling condition depends only
on the discrete part of N and this condition is the same as for CTSPNs. Firing of a transition t ∈ Ena(M)

changes M to another discrete marking M̃ , such as ∀p ∈ PdN M̃(p) = M(p) −WN (p, t) +WN (t, p), denoted

by M
t→λ M̃ , where λ = ΩN (t,M). We write M

t→ M̃ if ∃λ M
t→λ M̃ and M → M̃ if ∃t M t→ M̃ .

Let us formally define the discrete reachability set of N .

Definition 2.2 Let N be an LFSPN. The discrete reachability set of N , denoted by DRS(N), is the minimal
set of discrete markings such that

• MN ∈ DRS(N);

• if M ∈ DRS(N) and M → M̃ then M̃ ∈ DRS(N).

Let us now define the discrete reachability graph of N .

Definition 2.3 Let N be an LFSPN. The discrete reachability graph of N is a labeled transition system
DRG(N) = (SN ,LN , TN , sN), where

• the set of states is SN = DRS(N);

• the set of labels is LN = TN × R>0;

• the set of transitions is TN = {(M, (t, λ), M̃) | M, M̃ ∈ DRS(N), M
t→λ M̃};

• the initial state is sN = MN .
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2.2 Discrete part of LFSPNs

We have restricted the class of FSPNs underlying LFSPNs to those whose discrete part is CTSPNs, since the
performance analysis of standard FSPNs with GSPNs as the discrete part is finally based on the CTMCs which
are extracted from the underlying semi-Markov chains (SMCs) of the GSPNs by removing vanishing states. Let
us now consider the behaviour of the discrete part of LFSPNs, which is labeled CTSPNs.

For an LFSPN N , a continuous random variable ξ(M) is associated with every discrete marking M ∈
DRS(N). The variable captures a residence (sojourn) time in M . We adopt the race semantics, in which
the fastest stochastic transition (i.e. that with the minimal exponentially distributed firing delay) fires first.
Hence, the probability distribution function (PDF) of the sojourn time in M is that of the minimal firing delay
of transitions from Ena(M). Since exponential distributions are closed under minimum, the sojourn time in M
is (again) exponentially distributed with a parameter that is called the exit rate from the discrete marking M ,
defined as

RE(M) =
∑

t∈Ena(M)

ΩN (t,M).

Note that we may have RE(M) = 0, meaning that there is no exit from M , if it is a terminal discrete
marking, i.e. there are no transitions from it to different discrete markings.

Hence, the PDF of the sojourn time in M (the probability of the residence time in M being less than δ)
is Fξ(M)(δ) = P(ξ(M) < δ) = 1 − e−RE(M)δ (δ ≥ 0). Then the probability density function of the residence

time in M (the limit probability of staying in M at the time δ) is fξ(M)(δ) = lim∆→0
Fξ(M)(δ+∆)−Fξ(M)(δ)

∆ =
dFξ(M)(δ)

dδ = RE(M)e−RE(M)δ (δ ≥ 0). The mean value (average, expectation) formula for the exponential

distribution allows us to calculate the average sojourn time in M as M(ξ(M)) =
∫∞
0

δfξ(M)(δ)dδ = 1
RE(M) . The

variance (dispersion) formula for the exponential distribution allows us to calculate the sojourn time variance
in M as D(ξ(M)) =

∫∞
0

(δ −M(ξ(M)))2fξ(M)(δ)dδ = 1
(RE(M))2 . We are now ready to present the following two

definitions.
The average sojourn time in the discrete marking M is

SJ(M) =
1∑

t∈Ena(M) ΩN(t,M)
=

1

RE(M)
.

The average sojourn time vector of N , denoted by SJ , has the elements SJ(M), M ∈ DRS(N).
Note that we may have SJ(M) = ∞, meaning that we stay in M forever, if it is a terminal discrete marking.
The sojourn time variance in the discrete marking M is

V AR(M) =
1

(∑
t∈Ena(M) ΩN (t,M)

)2 =
1

RE(M)2
.

The sojourn time variance vector of N , denoted by V AR, has the elements V AR(M), M ∈ DRS(N).
Note that we may have V AR(M) = ∞, meaning that the variance of the infinite sojourn time in M is

infinite too, if it is a terminal discrete marking.
To evaluate performance with the use of the discrete part of N , we should investigate the stochastic process

associated with it. The process is the underlying continuous time Markov chain, denoted by CTMC(N).

Let M, M̃ ∈ DRS(N). The rate of moving from M to M̃ by firing any transition is

RM(M, M̃) =
∑

{t|M t→M̃}

ΩN(t,M).

Definition 2.4 Let N be an LFSPN. The underlying continuous time Markov chain (CTMC) of N , denoted

by CTMC(N), has the state space DRS(N), the initial state MN and the transitions M →λ M̃ , if M → M̃ ,

where λ = RM(M, M̃).

Isomorphism is a coincidence of systems up to renaming their components or states. Let ≃ denote isomor-
phism between CTMCs that binds their initial states.

Let N be an LFSPN. The elements Qij (1 ≤ i, j ≤ n = |DRS(N)|) of the transition rate matrix (TRM),
also called infinitesimal generator, Q for CTMC(N) are defined as

Qij =

{
RM(Mi,Mj), i 6= j;
−∑{k|1≤k≤n, k 6=i} RM(Mi,Mk), i = j.
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The transient probability mass function (PMF) ϕ(δ) = (ϕ1(δ), . . . , ϕn(δ)) for CTMC(N) is calculated via
matrix exponent as

ϕ(δ) = ϕ(0)eQδ,

where ϕ(0) = (ϕ1(0), . . . , ϕn(0)) is the initial PMF, defined as

ϕi(0) =

{
1, Mi = MN ;
0, otherwise.

The steady-state PMF ϕ = (ϕ1, . . . , ϕn) for CTMC(N) is a solution of the linear equation system

{
ϕQ = 0
ϕ1T = 1

,

where 0 is a row vector of n values 0 and 1 is that of n values 1.
Note that the vector ϕ exists and is unique, if CTMC(N) is ergodic. Then CTMC(N) has a single steady

state, and we have ϕ = limδ→∞ ϕ(δ).
Let N be an LFSPN. The following steady-state discrete performance indices (measures) can be calculated

based on the steady-state PMF ϕ for CTMC(N) [70, 68, 40, 28, 69, 14, 15].

• The fraction (proportion) of time spent in the set of discrete markings S ⊆ DRS(N) is

T imeFract(S) =
∑

{i|Mi∈S}
ϕi.

• The probability that k ≥ 0 tokens are contained in a discrete place p ∈ PdN is

Tokens(p, k) =
∑

{i|Mi(p)=k, Mi∈DRS(N)}
ϕi.

Then the PMF of the number of tokens in p is Tokens(p) = (Tokens(p, 0), T okens(p, 1), . . .).

• The probability of event A defined through (a condition that holds for all discrete markings from) the set
of discrete markings DRSA(N) ⊆ DRS(N) is

Prob(A) =
∑

{i|Mi∈DRSA(N)}
ϕi.

• The average number of tokens in a discrete place p ∈ PdN is

TokensNum(p) =
∑

k≥1

Tokens(p, k) · k =
∑

{i|Mi(p)≥1, Mi∈DRS(N)}
ϕiMi(p).

• The firing frequency (throughput) of a transition t ∈ TN (average number of firings per unit of time) is

FiringFreq(t) =
∑

{i|t∈Ena(Mi), Mi∈DRS(N)}
ϕiΩN (t,Mi).

• The exit/entrance frequency of a discrete marking Mi ∈ DRS(N) (1 ≤ i ≤ n) (average number of
exits/entrances per unit of time) is

ExitFreq(Mi) = ϕiRE(Mi) =
ϕi

SJ(Mi)
.

• The probability of the event determined by a reward function r(Mi) = ri (0 ≤ ri ≤ 1, 1 ≤ i ≤ n) of the
discrete markings is

Prob(r) =
∑

{i|Mi∈DRS(N)}
ϕiri.
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• The traversal frequency of the move from a discrete marking Mi to a discrete marking Mj ∈ DRS(N) (1 ≤
i, j ≤ n) (average number of traversals per unit of time) is

TravFreq(Mi,Mj) = ϕiRM(Mi,Mj).

• Let TravTokens be the average number of tokens traversing a subnet of N and Rate be the average input
(output) token rate into (out of) the subnet. The average delay of a token traversing the subnet is

Delay =
TravTokens

Rate
.

2.3 Continuous part of LFSPNs

We now consider the impact the discrete part of LFSPNs has on their continuous part, which is stochastic fluid
models (SFMs). We investigate LFSPNs with a single continuous place, since the definitions and our subsequent
results on the fluid equivalences can be transferred straightforwardly to the case of several continuous places,
where multidimensional SFMs have to be explored.

Let N be an LFSPN such that PcN = {q} and M(δ) ∈ DRS(N) be its discrete marking at the time δ ≥ 0.
Every continuous arc ca = (q, t) or ca = (t, q), where t ∈ TN , changes the fluid level in the continuous place q
at the time δ with the flow rate RN (ca,M(δ)). This means that in the discrete marking M(δ) fluid can leave
q along the continuous arc (q, t) with the rate RN ((q, t),M(δ)) and can enter q along the continuous arc (t, q)
with the rate RN ((t, q),M(δ)) for every transition t ∈ Ena(M(δ)).

The potential rate of the fluid level change (fluid flow rate) for the continuous place q in the discrete marking
M(δ) is

RP (M(δ)) =
∑

{t∈Ena(M(δ))|(t,q)∈CN}
RN ((t, q),M(δ))−

∑

{t∈Ena(M(δ))|(q,t)∈CN}
RN ((q, t),M(δ)).

Let X(δ) be the fluid level in q at the time δ. It is clear that the fluid level in a continuous place can never
be negative. Therefore, X(δ) satisfies the following ordinary differential equation describing the actual fluid
flow rate for the continuous place q in the marking (M(δ), X(δ)):

RA(M(δ), X(δ)) =
dX(δ)

dδ
=

{
max{RP (M(δ)), 0}, X(δ) = 0;
RP (M(δ)), X(δ) > 0.

In the first case considered in the definition above, we have X(δ) = 0. In this case, if RP (M(δ)) ≥ 0 then
the fluid level is growing and the derivative is equal to the potential rate. Otherwise, if RP (M(δ)) < 0 then we
should prevent the fluid level from crossing the lower boundary (zero) by stopping the fluid flow. In the second
case, X(δ) > 0 and the derivative is assumed to be equal to the potential rate.

Note that dX(δ)
dδ is a piecewise constant function of X(δ) during the time periods when M(δ) remains

unchanged. Hence, for each different “constant” segment we have dX(δ)
dδ = RP (M(δ)) or dX(δ)

dδ = 0 and,
therefore, we can suppose that within each such segment RP (M(δ)) or 0 are the actual fluid flow rates for the
continuous place q in the marking (M(δ), X(δ)). While constructing differential equations that describe the

behaviour of SFMs associated with LFSPNs, we are interested only in the segments where dX(δ)
dδ = RP (M(δ)).

The SFMs behaviour within the remaining segments, where dX(δ)
dδ = 0, is completely described by the buffer

empty probability function that collects the probability mass at the lower boundary.
Let N be an LFSPN. The elements Rij (1 ≤ i, j ≤ n = |DRS(N)|) of the fluid rate matrix (FRM) R for

the continuous place q are defined as

Rij =

{
RP (Mi), i = j;
0, i 6= j.

According to [49, 55], the underlying SFMs of LFSPNs are the first order, infinite buffer, homogeneous
Markov fluid models. The discrete part of the SFM derived from an LFSPN N is the CTMC CTMC(N) with
the TRM Q. The evolution of the continuous part of the SFM (the fluid flow drift) is described by the FRM
R.

Let us consider the transient behaviour of the SFM associated with an LFSPN N .

Definition 2.5 Let N be an LFSPN and (M(δ), X(δ)) ∈ RS(N) be its marking at the time δ ≥ 0. We introduce
the following transient probability functions.
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• ϕi(δ) = P(M(δ) = Mi) is the discrete marking probability;

• ℓi(δ) = P(X(δ) = 0, M(δ) = Mi) is the buffer empty probability (probability mass at the lower boundary);

• Fi(δ, x) = P(X(δ) < x, M(δ) = Mi) is the fluid probability distribution function;

• fi(δ, x) = ∂Fi(δ,x)
∂x = limh→0

Fi(δ,x+h)−Fi(δ,x)
h = limh→0

P(x<X(δ)<x+h, M(δ)=Mi)
h is the fluid probability

density function.

The initial conditions are:

ℓi(0) =

{
1, Mi = MN ;
0, otherwise;

Fi(0, x) =

{
1, (Mi = MN ) ∧ (x ≥ 0);
0, otherwise;

fi(0, x) = 0 ∀(Mi, x) ∈ RS(N).

Let ϕ(δ), ℓ(δ), F (δ, x), f(δ, x) be the row vectors with the elements ϕi(δ), ℓi(δ), Fi(δ, x), fi(δ, x), respectively
(1 ≤ i ≤ n).

By the total probability law, we have

ℓ(δ) +

∫ ∞

0+

f(δ, x)dx = ϕ(δ).

The partial differential equations describing the transient behaviour are

∂F (δ, x)

∂δ
+

∂F (δ, x)

∂x
R = F (δ, x)Q, x > 0;

∂f(δ, x)

∂δ
+

∂f(δ, x)

∂x
R = f(δ, x)Q, x > 0.

Note that we have ∂F (δ,x)
∂x = f(δ, x), F (δ, 0) = ℓ(δ), F (δ,∞) = ϕ(δ).

The partial differential equation for the buffer empty probabilities (lower boundary conditions) are

dℓ(δ)

dδ
+ f(δ, 0)R = ℓ(δ)Q.

The lower boundary constraint is: if Rii = RP (Mi) > 0 then ℓi(δ) = Fi(δ, 0) = 0 (1 ≤ i ≤ n).
The normalizing condition is

ℓ(δ)1T +

∫ ∞

0+

f(δ, x)dx1T = 1,

where 1 is a row vector of n values 1.
Let us now consider the stationary behaviour of the SFM associated with an LFSPN N . We do not discuss

here in detail the conditions under which the steady state for the associated SFM exists and is unique, since
this topic has been extensively explored in [61, 49, 55]. Particularly, according to [61, 55], the steady-state PDF
exists (i.e. the transient functions approach their stationary values, as the time parameter δ tends to infinity in
the transient equations), when the associated SFM is a Markov fluid model, whose fluid flow drift (described by
the matrix R) and transition rates (described by the matrix Q) are fluid level independent, and the following
stability condition holds:

FluidF low(q) =

n∑

i=1

ϕiRP (Mi) = ϕR1T < 0,

stating that the steady-state mean potential fluid flow rate for the continuous place q is negative. Stable infinite
buffer models usually converge, hence, the existing steady-state PDF is also unique in this case.

Definition 2.6 Let N be an LFSPN and (M(δ), X(δ)) ∈ RS(N) be its marking at the time δ ≥ 0. We introduce
the following steady-state probability functions, obtained from the transient ones by taking the limit δ → ∞.

• ϕi = limδ→∞ P(M(δ) = Mi) is the steady-state discrete marking probability;
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• ℓi = limδ→∞ P(X(δ) = 0, M(δ) = Mi) is the steady-state buffer empty probability (probability mass at
the lower boundary);

• Fi(x) = limδ→∞ P(X(δ) < x, M(δ) = Mi) is the steady-state fluid probability distribution function;

• fi(x) =
dFi(x)

dx = limh→0
Fi(x+h)−Fi(x)

h = limδ→∞ limh→0
P(x<X(δ)<x+h, M(δ)=Mi)

h is the steady-state fluid
probability density function.

Let ϕ, ℓ, F (x), f(x) be the row vectors with the elements ϕi, ℓi, Fi(x), fi(x), respectively (1 ≤ i ≤ n).

By the total probability law for the stationary behaviour, we have

ℓ+

∫ ∞

0+

f(x)dx = ϕ.

The ordinary differential equations describing the stationary behaviour are

dF (x)

dx
R = F (x)Q, x > 0;

df(x)

dx
R = f(x)Q, x > 0.

Note that we have dF (x)
dx = f(x), F (0) = ℓ, F (∞) = ϕ.

The ordinary differential equation for the steady-state buffer empty probabilities (stationary lower boundary
conditions) are

f(0)R = ℓQ.

The stationary lower boundary constraint is: if Rii = RP (Mi) > 0 then Fi(0) = ℓi = 0 (1 ≤ i ≤ n).
The stationary normalizing condition is

ℓ1T +

∫ ∞

0+

f(x)dx1T = 1,

where 1 is a row vector of n values 1.
The solutions of the equations for F (x) and f(x) in the form of matrix exponent are F (x) = ℓexQR−1

and

f(x) = ℓQR−1exQR−1

, respectively. Since the steady-state existence implies boundedness of the SFM associated
with an LFSPN and we do not have a finite upper fluid level bound, the positive eigenvalues of QR−1 must
be excluded. Moreover, R−1 does not exist if for some i (1 ≤ i ≤ n) we have Rii = 0. These difficulties are
avoided in the alternative solution method for F (x), called spectral decomposition [86, 61, 49, 55, 52], which we
outline below.

Let us define the sets of negative discrete markings of N as DRS−(N) = {M ∈ DRS(N) | RP (M) < 0},
zero discrete markings of N as DRS0(N) = {M ∈ DRS(N) | RP (M) = 0} and positive discrete markings of N
as DRS+(N) = {M ∈ DRS(N) | RP (M) > 0}. The spectral decomposition is F (x) =

∑m
j=1 aje

γjxvj , where

aj are some scalar coefficients, γj are the eigenvalues and vj = (vj1, . . . , vjn) are the eigenvectors of QR−1.
Thus, each vj is the solution of the equation vj(QR−1 − γjI) = 0, where I is the identity matrix of the order
n, hence, it holds vj(Q− γjR) = 0.

Since for each non-zero vj we must have |Q − γjR| = 0, the number of solutions γ1, . . . , γm is the number
of non-zero elements among Rii = RP (Mi) (1 ≤ i ≤ n), i.e. m = |DRS−(N)| + |DRS+(N)|. We have 1 zero
eigenvalue, |DRS+(N)| eigenvalues with a negative real part and |DRS−(N)|−1 eigenvalues with a positive real
part. Let us reorder all the eigenvalues according to the sign of their real part (first, with a zero real part; then
with a negative one; at last, with a positive one). The boundedness of F (x) requires aj = 0 if Re(γj) > 0 (1 ≤
j ≤ m). Further, for the zero eigenvalue γ1 = 0 we have a1e

γ1xv1 = a1v1, and for the corresponding eigenvector

it holds v1Q = 0. Then F (x) = a1v1 +
∑|DRS+(N)|+1

k=2 ake
γkxvk, where Re(γk) < 0 (2 ≤ k ≤ |DRS+(N)| + 1).

Remember that ϕ = F (∞) = a1v1, hence, F (x) = ϕ+
∑|DRS+(N)|+1

k=2 ake
γkxvk.

It remains to find |DRS+(N)| coefficients ak corresponding to the eigenvalues γk (2 ≤ k ≤ |DRS+(N)|+1).
Remember the stationary lower boundary constraint: if Rll = RP (Ml) > 0 then Fl(0) = ℓl = 0. Then for each

positive discrete marking Ml ∈ DRS+(N) we have Fl(0) = ϕl +
∑|DRS+(N)|+1

k=2 akvkl = 0. We obtain a system
of |DRS+(N)| independent linear equations with |DRS+(N)| unknowns, for which a unique solution exists.

Then, using F (x), we can find f(x) = dF (x)
dx and ℓ = F (0).
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LetN be an LFSPN. The following steady-state hybrid (discrete-continuous) performance indices (measures)
can be calculated based on the steady-state fluid probability density function f(x) for the SFM of N [27, 53,
54, 50, 49, 62]. Note that the hybrid performance indices that do not depend on the fluid level coincide with
the corresponding discrete performance measures.

• The fraction (proportion) of time spent in the set of discrete markings S ⊆ DRS(N) is

T imeFract(S) =
∑

{i|Mi∈S}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
=

∑

{i|Mi∈S}
ϕi.

• The probability that k ≥ 0 tokens are contained in a discrete place p ∈ PdN is

Tokens(p, k) =
∑

{i|Mi(p)=k, Mi∈DRS(N)}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
=

∑

{i|Mi(p)=k, Mi∈DRS(N)}
ϕi.

Then the PMF of the number of tokens in p is Tokens(p) = (Tokens(p, 0), T okens(p, 1), . . .).

• The probability of the event A defined through (a condition that holds for all discrete markings from) the
set of discrete markings DRSA(N) ⊆ DRS(N) is

Prob(A) =
∑

{i|Mi∈DRSA(N)}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
=

∑

{i|Mi∈DRSA(N)}
ϕi.

• The average number of tokens in a discrete place p ∈ PdN is

TokensNum(p) =
∑

k≥1 Tokens(p, k) · k =
∑

{i|Mi(p)≥1, Mi∈DRS(N)}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
Mi(p) =

∑

{i|Mi(p)≥1, Mi∈DRS(N)}
ϕiMi(p).

• The firing frequency (throughput) of a transition t ∈ TN (average number of firings per unit of time) is

FiringFreq(t) =
∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
ΩN (t,Mi) =

∑

{i|t∈Ena(Mi), Mi∈DRS(N)}
ϕiΩN (t,Mi).

• The exit/entrance frequency of a discrete marking Mi ∈ DRS(N) (1 ≤ i ≤ n) (average number of
exits/entrances per unit of time) is

ExitFreq(Mi) =

(
ℓi +

∫ ∞

0+

fi(x)dx

)
1

SJ(Mi)
=

ϕi

SJ(Mi)
.

• The mean potential fluid flow rate for the continuous place q ∈ PcN is

FluidF low(q) =
∑

{i|Mi∈DRS(N)}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
RP (Mi) =

∑

{i|Mi∈DRS(N)}
ϕiRP (Mi).

• The probability of the event determined by a reward function r(Mi) = ri (0 ≤ ri ≤ 1,
1 ≤ i ≤ n) of the discrete markings is

Prob(r) =
∑

{i|Mi∈DRS(N)}

(
ℓi +

∫ ∞

0+

fi(x)dx

)
ri =

∑

{i|Mi∈DRS(N)}
ϕiri.
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• The traversal frequency of the move from a discrete marking Mi to a discrete marking Mj ∈ DRS(N) (1 ≤
i, j ≤ n) (average number of traversals per unit of time) is

TravFreq(Mi,Mj) =

(
ℓi +

∫ ∞

0+

fi(x)dx

)
RM(Mi,Mj) = ϕiRM(Mi,Mj).

• The probability of a positive fluid level in a continuous place q ∈ PcN is

FluidLevel(q) =
∑

{i|Mi∈DRS(N)}

(
ℓi · 0 +

∫ ∞

0+

fi(x) · 1dx
)

=
∑

{i|Mi∈DRS(N)}

∫ ∞

0+

fi(x)dx =

∑

{i|Mi∈DRS(N)}
(ϕi − ℓi) = 1−

∑

{i|Mi∈DRS(N)}
ℓi.

• The probability that the fluid level in a continuous place q ∈ PcN does not lie below the value v ∈ R>0 is

FluidLevel(q, v) =
∑

{i|Mi∈DRS(N)}

(
ℓi · 0 +

∫ v

0+

fi(x) · 0dx+

∫ ∞

v

fi(x) · 1dx
)

=

∑

{i|Mi∈DRS(N)}

∫ ∞

v

fi(x)dx =
∑

{i|Mi∈DRS(N)}
(ϕi − Fi(v)) = 1−

∑

{i|Mi∈DRS(N)}
Fi(v).

• The mean proportional flow rate across a continuous arc (q, t), q ∈ PcN , t ∈ TN , is

FluidF low(q, t) =
∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓiR

∗
N ((q, t), (Mi, 0)) +

∫ ∞

0+

fi(x)R
∗
N ((q, t), (Mi, x))dx

)
,

where R∗
N ((q, t), (M,x)) is the fluid level dependent proportional flow rate function in the marking (M,x) ∈

RS(N), defined as

R∗
N ((q, t), (M,x)) =

{
RN ((q, t),M), x > 0;

RN ((q, t),M) ·
∑

u∈Ena(M) RN ((u,q),M)∑
v∈Ena(M) RN ((q,v),M) , x = 0.

Thus,

FluidF low(q, t) =
∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓi ·

∑
u∈Ena(M) RN ((u, q),M)

∑
v∈Ena(M) RN ((q, v),M)

+

∫ ∞

0+

fi(x)dx

)
RN ((q, t),M) =

∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓi

(∑
u∈Ena(M) RN ((u, q),M)

∑
v∈Ena(M) RN ((q, v),M)

− 1

)
+ ϕi

)
RN ((q, t),M).

• The mean proportional flow rate across a continuous arc (t, q), t ∈ TN , q ∈ PcN , is

FluidF low(t, q) =
∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓiR

∗
N ((t, q), (Mi, 0)) +

∫ ∞

0+

fi(x)R
∗
N ((t, q), (Mi, x))dx

)
,

where R∗
N ((t, q), (M,x)) is the fluid level dependent proportional flow rate function in the marking (M,x) ∈

RS(N), defined as

R∗
N ((t, q), (M,x)) =

{
RN ((t, q),M), x > 0;

RN ((t, q),M) ·
∑

u∈Ena(M) RN ((q,u),M)∑
v∈Ena(M) RN ((v,q),M) , x = 0.

Thus,
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FluidF low(t, q) =
∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓi ·

∑
u∈Ena(M) RN ((q, u),M)

∑
v∈Ena(M) RN ((v, q),M)

+

∫ ∞

0+

fi(x)dx

)
RN ((t, q),M) =

∑

{i|t∈Ena(Mi), Mi∈DRS(N)}

(
ℓi

(∑
u∈Ena(M) RN ((q, u),M)

∑
v∈Ena(M) RN ((v, q),M)

− 1

)
+ ϕi

)
RN ((t, q),M).

• The probability of the event determined by a hybrid reward function r(Mi, x) = ri(x) (0 ≤ ri(x) ≤ 1, 1 ≤
i ≤ n) of the markings is

Prob(r) =
∑

{i|Mi∈DRS(N)}

(
ℓiri(0) +

∫ ∞

0+

fi(x)ri(x)dx

)
.

3 Fluid equivalences

In this section, we define fluid trace and bisimulation equivalences of LFSPNs.

3.1 Fluid trace equivalence

Trace equivalences are the least discriminating ones. In the trace semantics, the behavior of a system is
associated with the set of all possible sequences of actions, i.e. the protocols of work or computations. Thus,
the points of choice of an external observer between several extensions of a particular computation are not taken
into account.

The formal definition of fluid trace equivalence resembles that of ordinary Markovian trace equivalence,
proposed on transition-labeled CTMCs in [96], on sequential and concurrent Markovian process calculi SMPC
and CMPC in [16, 20, 17, 18, 21] and on Uniform Labeled Transition Systems (ULTraS) in [23, 24, 19]. While
defining fluid trace equivalence, we additionally have to take into account the fluid flow rates in the corresponding
discrete markings of two compared LFSPNs. Hence, in order to construct fluid trace equivalence, we should
determine how to calculate the cumulative execution probabilities of all the specific (selected) paths. A path
in the discrete reachability graph of an LFSPN is a sequence of its discrete markings and transitions that is
generated by some firing sequence in the LFSPN.

First, we should multiply the transition firing probabilities for all the transitions along the paths starting in
the initial discrete marking of the LFSPN. The resulting product will be the execution probability of the path.
Second, we should sum the path execution probabilities for all the selected paths corresponding to the same
sequence of actions, moreover, to the same sequence of the average sojourn times and the same sequence of the
potential fluid flow rates in all the discrete markings participating the paths. We suppose that each LFSPN has
exactly one continuous place. The resulting sum will be the cumulative execution probability of the selected paths
corresponding to some fluid stochastic trace. A fluid stochastic trace is a pair with the first element being the
triple of the correlated sequences of actions, average sojourn times and potential fluid flow rates, and the second
element being the execution probability of the triple. Each element of the triple guarantees that fluid trace
equivalence respects the following important aspects of the LFSPNs behaviour: functional activity, stochastic
timing and fluid flow.

Fluid trace equivalence can also be defined using Markovian trace machine (MTM) from [96] (featuring the
action display, time display and reset button), enhanced with an additional display showing the potential fluid
flow rate in the current state. Such an enhanced black box tester will be called fluid stochastic trace machine
(FSTM), to be in disposal of the external observer. Remember that the action display shows the latest action
whose execution (being instantaneous after an exponentially timed delay) has led to the current state. The
time display shows either global time (absolute time counter) or an upper bound for the remaining local time
(countdown timer) before the next action occurrence. Pressing the reset button terminates the current run and
starts another one, so that the length of each run can be controlled.

In our setting, each such run corresponds to (can be extracted from) some sequence of transition firings
started in the initial discrete marking of an LFSPN. After infinitely many runs of the FSTM we shall be able
to calculate the probabilities of the correlated sequences of actions, time values and potential fluid flow rates.
Then two LFSPNs are fluid trace equivalent if the mentioned probabilities coincide for all possible triples of
that kind, called observations. As demonstrated in [96], implementing absolute or countdown timer results in
the same equivalence. Moreover, it appeared to be enough collecting the average sojourn times in the states
between which the actions occur, instead of using the timers. The latter approach gives an alternative to the
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testing with MTM. Such a viewpoint to the linear-time behaviour also substantially simplifies definitions and
proofs related to the Markovian trace equivalences, so we have decided to adopt that approach for LFSPNs, as
an alternative to the experiments with FSTM.

It is also possible to define fluid trace equivalence between LFSPNs with more than one continuous place, if
they have the same number of the corresponding continuous places. Then one should consider the sequences of
the vectors of the average sojourn times and vectors of the potential fluid flow rates. The elements of each such
a vector will be the average sojourn times or potential fluid flow rates, respectively, for all continuous places in
a particular discrete marking.

Note that CTMC(N) can be interpreted as a semi-Markov chain (SMC) [66], denoted by SMC(N), which is
analyzed by extracting from it the embedded (absorbing) discrete time Markov chain (EDTMC) corresponding
to N , denoted by EDTMC(N). The construction of the latter is analogous to that applied in the context of
GSPNs in [68, 69, 14, 15]. EDTMC(N) only describes the state changes of SMC(N) while ignoring its time
characteristics. Thus, to construct the EDTMC, we should abstract from all time aspects of behaviour of the
SMC, i.e. from the sojourn time in its states. It is well-known that every SMC is fully described by the EDTMC
and the state sojourn time distributions (the latter can be specified by the vector of PDFs of residence time in
the states) [57].

An LFSPNN is live, if ∀M ∈ DRS(N) Ena(M) 6= ∅, i.e. transitions can fire at every reachable discrete mar-
king of it. In this section, we shall consider only live FSPNs, to avoid terminating sequences of transition firings.

We first propose some helpful definitions of the probability functions for the transition firings and discrete
marking changes. Let N be an LFSPN, M, M̃ ∈ DRS(N) be its discrete markings and t ∈ Ena(M).

The (time-abstract) probability that the transition t fires in M is

PT (t,M) =
ΩN (t,M)∑

u∈Ena(M) ΩN(u,M)
=

ΩN (t,M)

RE(M)
= SJ(M)ΩN (t,M).

We have ∀M ∈ N
|PdN | ∑

t∈Ena(M) PT (t,M) =
∑

t∈Ena(M)
ΩN (t,M)∑

u∈Ena(M) ΩN (u,M) =
∑

t∈Ena(M) ΩN (t,M)∑
u∈Ena(M) ΩN (u,M) = 1,

i.e. PT (t,M) defines a probability distribution.

The probability to move from M to M̃ by firing any transition is

PM(M, M̃) =
∑

{t|M t→M̃}

PT (t,M) =

∑
{t|M t→M̃} ΩN(t)

RE(M)
= SJ(M) ·

∑

{t|M t→M̃}

ΩN (t).

We writeM →P M̃ , ifM → M̃ , where P = PM(M, M̃). We have ∀M ∈ N
|PdN | ∑

{M̃ |M→M̃} PM(M, M̃) =
∑

{M̃|M→M̃}
∑

{t|M t→M̃} PT (t,M)=
∑

t∈Ena(M) PT (t,M)=1, i.e. PM(M, M̃) defines a probability distribution.

Definition 3.1 Let N be an LFSPN. The embedded (absorbing) discrete time Markov chain (EDTMC) of N ,

denoted by EDTMC(N), has the state space DRS(N), the initial state MN and the transitions M →P M̃ , if

M → M̃ , where P = PM(M, M̃).
The underlying SMC of N , denoted by SMC(N), has the EDTMC EDTMC(N) and the sojourn time in

every M ∈ DRS(N) is exponentially distributed with the parameter RE(M).

Since the sojourn time in everyM ∈ DRS(N) is exponentially distributed, we have SMC(N) = CTMC(N).
Let N be an LFSPN. The elements Pij (1 ≤ i, j ≤ n = |DRS(N)|) of the (one-step) transition probability

matrix (TPM) P for EDTMC(N) are defined as

Pij =

{
PM(Mi,Mj), Mi → Mj;
0, otherwise.

Let X be a set, n ∈ N≥1 and xi ∈ X (1 ≤ i ≤ n). Then χ = x1 · · ·xn is a finite sequence over X of length
|χ| = n. When X is a set on numbers, we usually write χ = x1 ◦ · · · ◦ xn, to avoid confusion because of mixing
up the operations of concatenation of sequences (◦) and multiplication of numbers (·). The empty sequence ε of
length |ε| = 0 is an extra case. Let X∗ denote the set of all finite sequences (including the empty one) over X .

Let MN = M0
t1→ M1

t2→ · · · tn→ Mn (n ∈ N) be a finite sequence of transition firings starting in the initial
discrete marking MN and called firing sequence in N . The firing sequence generates the path M0t1M1t2 · · · tnMn

in the discrete reachability graph DRG(N). Since the first discrete marking MN = M0 of the path is fixed,
one can see that the (finite) transition sequence ϑ = t1 · · · tn in N uniquely determines the discrete marking
sequence M0 · · ·Mn, ending with the last discrete marking Mn of the mentioned path in DRG(N). Hence, to
refer the paths, one can simply use the transition sequences extracted from them as shown above. The empty
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transition sequence ε refers to the path M0, consisting just of one discrete marking (which is the first and last
one of the path in such a case).

Definition 3.2 Let N be an LFSPN. The set of all (finite) transition sequences in N is defined as

TranSeq(N) = {ϑ | ϑ = ε or ϑ = t1 · · · tn, MN = M0
t1→ M1

t2→ · · · tn→ Mn}.

Let ϑ = t1 · · · tn ∈ TranSeq(N) and MN = M0
t1→ M1

t2→ · · · tn→ Mn. The probability to execute the transition
sequence ϑ is

PT (ϑ) =

n∏

i=1

PT (ti,Mi−1).

For ϑ = ε we define PT (ε) = 1. Let us prove that ∀n ∈ N
∑

{ϑ∈TranSeq(N)||ϑ|=n} PT (ϑ) = 1, i.e. PT (ϑ)
defines a probability distribution.

Lemma 3.1 Let N be an LFSPN. Then ∀n ∈ N

∑

{ϑ∈TranSeq(N)||ϑ|=n}
PT (ϑ) = 1.

Proof. We prove by induction on the transition sequences length n.

• n = 0

By definition,
∑

{ϑ∈TranSeq(N)||ϑ|=0} PT (ϑ) = PT (ε) = 1.

• n → n+ 1

By distributivity law for multiplication and addition, and since ∀M ∈ N
|PdN | ∑

t∈Ena(M) PT (t,M) = 1,
∑

{ϑ∈TranSeq(N)||ϑ|=n+1} PT (ϑ) =
∑

{t1,...,tn,tn+1|MN=M0
t1→M1

t2→···tn→Mn

tn+1→ Mn+1}

∏n+1
i=1 PT (ti,Mi−1) =

∑
{t1,...,tn|MN=M0

t1→M1
t2→···tn→Mn}

∑
{tn+1|Mn

tn+1→ Mn+1}

∏n
i=1 PT (ti,Mi−1)PT (tn+1,Mn) =

∑
{t1,...,tn|MN=M0

t1→M1
t2→···tn→Mn}

(∏n
i=1 PT (ti,Mi−1)

∑
{tn+1|Mn

tn+1→ Mn+1}
PT (tn+1,Mn)

)
=

∑
{t1,...,tn|MN=M0

t1→M1
t2→···tn→Mn}

∏n
i=1 PT (ti,Mi−1) · 1 = 1. ⊓⊔

Let ϑ = t1 · · · tn ∈ TranSeq(N) be a transition sequence in N and MN = M0
t1→ M1

t2→ · · · tn→ Mn. The
action sequence of ϑ is LN(ϑ) = LN (t1) · · ·LN (tn) ∈ Act∗, i.e. it is the sequence of actions which label the
transitions of that transition sequence. For ϑ = ε we define LN (ε) = ε. Further, the average sojourn time
sequence of ϑ = t1 · · · tn is SJ(ϑ) = SJ(M0) ◦ · · · ◦ SJ(Mn) ∈ R

∗
>0, i.e. it is the sequence of average sojourn

times in the discrete markings of the path to which ϑ refers. For ϑ = ε we define SJ(ε) = SJ(M0). Similarly,
the (potential) fluid flow rate sequence of ϑ = t1 · · · tn is RP (ϑ) = RP (M0) ◦ · · · ◦ RP (Mn) ∈ R

∗, i.e. it is the
sequence of (potential) fluid flow rates in the discrete markings of the path to which ϑ refers. For ϑ = ε we
define RP (ε) = RP (M0).

Definition 3.3 Let N be an LFSPN and (σ, ς, ̺) ∈ Act∗ × R
∗
>0 × R

∗. The set of (σ, ς, ̺)-selected (finite)
transition sequences in N is defined as

TranSeq(N, σ, ς, ̺) = {ϑ ∈ TranSeq(N) | LN (ϑ) = σ, SJ(ϑ) = ς, RP (ϑ) = ̺}.

Let TranSeq(N, σ, ς, ̺) 6= ∅. Then the triple (σ, ς, ̺), together with its execution probability, which is
the cumulative execution probability of all the paths from which the triple is extracted (as described above),
constitute a fluid stochastic trace of the LFSPN N . Fluid stochastic traces are formally introduced below,
followed by the (first) definition of fluid stochastic trace equivalence.

Definition 3.4 A (finite) fluid stochastic trace of an LFSPN N is a pair ((σ, ς, ̺), PT (σ, ς, ̺)), where
TranSeq(N, σ, ς, ̺) 6= ∅ and the (cumulative) probability to execute (σ, ς, ̺)-selected transition sequences is

PT (σ, ς, ̺) =
∑

ϑ∈TranSeq(N,σ,ς,̺)

PT (ϑ).
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We denote the set of all fluid stochastic traces of an LFSPN N by FluStochT races(N). Two LFSPNs N
and N ′ are fluid trace equivalent, denoted by N ≡fl N

′, if

FluStochT races(N) = FluStochT races(N ′).

By Lemma 3.1, we have ∀n ∈ N
∑

{(σ,ς,̺)||σ|=n} PT (σ, ς, ̺) =
∑

{(σ,ς,̺)||σ|=n}
∑

ϑ∈TranSeq(N,σ,ς,̺) PT (ϑ) =∑
(σ,ς,̺)

∑
{ϑ∈TranSeq(N,σ,ς,̺)||ϑ|=n} PT (ϑ) =

∑
{ϑ∈TranSeq(N)||ϑ|=n} PT (ϑ) = 1, i.e. PT (σ, ς, ̺) defines a prob-

ability distribution.
The following (second) definition of fluid stochastic trace equivalence does not use fluid stochastic traces.

Definition 3.5 Two LFSPNs N and N ′ are fluid trace equivalent, denoted by N ≡fl N
′, if ∀(σ, ς, ̺) ∈ Act∗ ×

R
∗
>0 × R

∗ we have

∑

ϑ∈TranSeq(N,σ,ς,̺)

PT (ϑ) =
∑

ϑ′∈TranSeq(N ′,σ,ς,̺)

PT (ϑ′).

Note that in Definition 3.5, for ϑ = t1 · · · tn ∈ TranSeq(N, σ, ς, ̺) with MN = M0
t1→ M1

t2→ · · · tn→
Mn and ϑ′ = t′1 · · · t′n ∈ TranSeq(N ′, σ, ς, ̺) with MN ′ = M ′

0

t′1→ M ′
1

t′2→ · · · t′n→ M ′
n, we have PT (ϑ) =∏n

i=1 PT (ti,Mi−1) =
∏n

i=1 SJ(Mi−1)ΩN (ti,Mi−1) and PT (ϑ′) =
∏n

i=1 PT (t′i,M
′
i−1) =∏n

i=1 SJ(M
′
i−1)ΩN (t′i,M

′
i−1). Then the equality SJ(M0) ◦ · · · ◦ SJ(Mn) = SJ(ϑ) = ς = SJ(ϑ′) = SJ(M ′

0) ◦
· · · ◦SJ(M ′

n) implies that
∏n

i=1 SJ(Mi−1) =
∏n

i=1 SJ(M
′
i−1). Hence, PT (ϑ) = PT (ϑ′) iff

∏n
i=1 ΩN (ti,Mi−1) =∏n

i=1 ΩN (t′i,M
′
i−1). This alternative equality results in the following (third) definition of fluid trace equivalence.

Definition 3.6 Two LFSPNs N and N ′ are fluid trace equivalent, denoted by N ≡fl N
′, if ∀(σ, ς, ̺) ∈ Act∗ ×

R
∗
>0 × R

∗ we have

∑
{t1···tn∈TranSeq(N,σ,ς,̺)|MN=M0

t1→M1
t2→···tn→Mn}

∏n
i=1 ΩN (ti,Mi−1) =∑

{t′1···t′n∈TranSeq(N ′,σ,ς,̺)|MN′=M ′
0

t′1→M ′
1

t′2→···
t′n→M ′

n}

∏n
i=1 ΩN (t′i,M

′
i−1).

Note that in the definition of TranSeq(N, σ, ς, ̺), as well as in Definitions 3.4, 3.5 and 3.6, for ϑ ∈ T ∗
N ,

we may use the exit rate sequences RE(ϑ) = RE(M0) ◦ · · · ◦ RE(Mn) ∈ R
∗
≥0 instead of average sojourn time

sequences ς = SJ(ϑ) = SJ(M0) ◦ · · · ◦ SJ(Mn) ∈ R
∗
>0, since we have ∀M ∈ DRS(N) SJ(M) = 1

RE(M) and

∀M ∈ DRS(N) ∀M ′ ∈ DRS(N ′) SJ(M) = SJ(M ′) ⇔ RE(M) = RE(M ′).
Let N and N ′ be LFSPNs such that PcN = {q} and PcN ′ = {q′}. In this case the continuous place q′ of N

corresponds to q of N , in other words, q and q′ are the respective continuous places. Then for M ∈ DRS(N)
(or for M ′ ∈ DRS(N ′)) we denote by RP (M) (or by RP (M ′)) the fluid level change rate for the continuous
place q (or for the corresponding one q′), i.e. the argument discrete marking determines for which of the two
continuous places, q or q′, the flow rate function RP is taken.

Let N be an LFSPN. The average potential fluid change volume in a continuous place q ∈ PcN in the discrete
marking M ∈ DRS(N) is

FluidChange(q,M) = SJ(M)RP (M).

In order to define the probability function PT (σ, ς, ̺), the transition sequences corresponding to a particular
action sequence are also selected according to the specific average sojourn times and fluid flow rates in the
discrete markings of the paths to which those transition sequences refer. One of several intuitions behind such
an additional selection is as follows. The average potential fluid change volume in a continuous place q in
the discrete marking M is a product of the average sojourn time and the constant (possibly zero or negative)
potential fluid flow rate in M . In each of the corresponding discrete markings M and M ′ of the paths to
which the corresponding transition sequences ϑ ∈ TranSeq(N, σ, ς, ̺) and ϑ′ ∈ TranSeq(N ′, σ, ς, ̺) refer, we
shall have the same average potential fluid change volume in the respective continuous places q and q′, i.e.
FluidChange(q,M) = SJ(M)RP (M) = SJ(M ′)RP (M ′) = FluidChange(q′,M ′). Note that the average
actual and potential fluid change volumes coincide unless the lower boundary of fluid in some continuous place
is reached, setting hereupon the actual fluid flow rate in it equal to zero till the end of the sojourn time in the
current discrete marking.

Note that our notion of fluid trace equivalence is based rather on that of Markovian trace equivalence
from [96], since there the average sojourn times in the states “surrounding” the actions of the corresponding
traces of the equivalent processes should coincide while in the definition of the mentioned equivalence from
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[16, 20, 17, 18, 21], the shorter average sojourn time may simulate the longer one. If we would adopt such
a simulation then the smaller average potential fluid change volume would model the bigger one, since the
potential fluid flow rate remains constant while residing in a discrete marking. Since we observe no intuition
behind that modeling, we do not use it.

Let ϑ = t1 · · · tn ∈ TranSeq(N) and MN = M0
t1→ M1

t2→ · · · tn→ Mn. The average potential fluid change
volume for the transition sequence ϑ in a continuous place q ∈ PcN is

FluidChange(q, ϑ) =

n∑

i=0

FluidChange(q,Mi).

In [23, 24, 19], the following two types of Markovian trace equivalence have been proposed. The state-to-state
Markovian trace equivalence requires coincidence of average sojourn times in all corresponding discrete markings
of the paths. The end-to-end Markovian trace equivalence demands that only the sums of average sojourn times
for all corresponding discrete markings of the paths should be equal. As a basis for constructing fluid trace
equivalence, we have taken the state-to-state relation, since the constant potential fluid flow rate in the discrete
markings may differ with their change (moreover, the actual fluid flow rate function may become discontinuous
when the lower fluid boundary for a continuous place is reached in some discrete marking). Therefore, while
summing the potential fluid flow rates for all discrete markings of a path, an important information is lost. The
information is needed to calculate the average potential fluid change volume for a transition sequence that refers
to the path. The mentioned value is a sum of the average potential fluid change volumes for all corresponding
discrete markings of the path. It coincides for the corresponding transition sequences ϑ ∈ TranSeq(N, σ, ς, ̺)
and ϑ′ ∈ TranSeq(N ′, σ, ς, ̺), i.e. FluidChange(q, ϑ) = FluidChange(q′, ϑ′) for the respective continuous
places q and q′. Again, note that the average actual and potential fluid change volumes for a transition sequence
may differ, due to discontinuity of the actual fluid flow rate functions for some discrete markings of the path to
which the transition sequence refers.

Let TranSeq(N, σ, ς, ̺) 6= ∅. The average potential fluid change volume for the (σ, ς, ̺)-selected (finite)
transition sequences in a continuous place q ∈ PcN is

FluidChange(q, (σ, ς, ̺)) = FluidChange(q, ϑ) ∀ϑ ∈ TranSeq(N, σ, ς, ̺).

Then, as mentioned above, for the respective continuous places q and q′ of the LFSPNs N and N ′, such that
TranSeq(N, σ, ς, ̺) 6= ∅ 6= TranSeq(N, σ, ς, ̺), we have FluidChange(q, (σ, ς, ̺)) = FluidChange(q′, (σ, ς, ̺)).

Let n ∈ N. The average potential fluid change volume for the transition sequences of length n in a continuous
place q ∈ PcN is

FluidChange(q, n) =
∑

{ϑ∈TranSeq(N)||ϑ|=n}
FluidChange(q, ϑ)PT (ϑ).

Note that we have FluidChange(q, n) =
∑

{ϑ∈TranSeq(N)||ϑ|=n} FluidChange(q, ϑ)PT (ϑ) =∑
{(σ,ς,̺)|TranSeq(N,σ,ς,̺) 6=∅∧|σ|=n} FluidChange(q, (σ, ς, ̺))PT (σ, ς, ̺). For the respective continuous places q

and q′ of the LFSPNs N and N ′ with N ≡fl N
′, we have ∀n ∈ N FluidChange(q, n) = FluidChange(q′, n).

Thus, fluid trace equivalence preserves average potential fluid change volume for the transition sequences of
every certain length in the respective continuous places.

Example 3.1 In Figure 2, the LFSPNs N and N ′ are presented, such that N ≡fl N
′. We have DRS(N) =

{M1,M2}, where M1 = (1, 0), M2 = (0, 1), and DRS(N ′) = {M ′
1,M

′
2,M

′
3}, where M ′

1 = (1, 0, 0), M ′
2 =

(0, 1, 0), M ′
3 = (0, 0, 1).

In Figure 3, the discrete reachability graphs DRG(N) and DRG(N ′) are depicted. In Figure 4, the underlying
CTMCs CTMC(N) and CTMC(N ′) are drawn. In Figure 5, the EDTMCs EDTMC(N) and EDTMC(N ′)
are presented.

The sojourn time average and variance vectors of N are

SJ =

(
1

2
,
1

2

)
, V AR =

(
1

4
,
1

4

)
.

The TRM Q for CTMC(N), TPM P for EDTMC(N) and FRM R for the SFM of N are

Q =

(
−2 2
2 −2

)
, P =

(
0 1
1 0

)
, R =

(
1 0
0 −2

)
.

The sojourn time average and variance vectors of N ′ are
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Figure 2: Fluid trace equivalent LFSPNs
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Figure 3: The discrete reachability graphs of the fluid trace equivalent LFSPNs

SJ ′ =

(
1

2
,
1

2
,
1

2

)
, V AR′ =

(
1

4
,
1

4
,
1

4

)
.

The TRM Q′ for CTMC(N ′), TPM P′ for EDTMC(N ′) and FRM R′ for the SFM of N ′ are

Q′ =




−2 1 1
2 −2 0
2 0 −2


 , P′ =




0 1
2

1
2

1 0 0
1 0 0


 , R′ =




1 0 0
0 −2 0
0 0 −2


 .

We have t1t2 ∈ TranSeq
(
N, ab, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
and t1t3 ∈ TranSeq

(
N, ac, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
,

hence, FluidChange(q, t1t2) = FluidChange(q, t1t3) =
1
2 · 1 + 1

2 · (−2) + 1
2 · 1 = 0.

We have t′1t
′
3 ∈ TranSeq

(
N ′, ab, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
and t′2t

′
4 ∈ TranSeq

(
N ′, ac, 12 ◦ 1

2 ◦ 1
2 , 1 ◦ (−2) ◦ 1

)
,

hence, FluidChange(q′, t′1t
′
3) = FluidChange(q′, t′2t

′
4) =

1
2 · 1 + 1

2 · (−2) + 1
2 · 1 = 0.

It holds PT (t1t2) = PT (t1t3) = 1 · 1
2 = 1

2 and PT (t′1t
′
3) = PT (t′2t

′
4) =

1
2 · 1 = 1

2 .
We get FluStochT races(N) = {

((
ε, 12 , 1

)
, 1
)
,
((
a, 1

2 ◦ 1
2 , 1 ◦ (−2)

)
, 1
)
,
((
ab, 12 ◦ 1

2 ◦ 1
2 , 1 ◦ (−2) ◦ 1

)
, 1
2

)
,((

ac, 1
2 ◦ 1

2 ◦ 1
2 , 1 ◦ (−2) ◦ 1

)
, 1
2

)
, . . .} = FluStochT races(N ′).

It holds FluidChange
(
q,
(
a, 1

2 ◦ 1
2 , 1 ◦ (−2)

))
= FluidChange

(
q′,
(
a, 12 ◦ 1

2 , 1 ◦ (−2)
))

= 1
2 ·1+ 1

2 ·(−2) = − 1
2 .

We then get FluidChange(q, 1) = FluidChange(q, t1)PT (t1) = (− 1
2 ) · 1 = − 1

2 = (− 1
2 ) · 1

2 + (− 1
2 ) · 1

2 =
FluidChange(q′, t′1)PT (t′1) + FluidChange(q′, t′2)PT (t′2) = FluidChange(q′, 1).

In Figure 6, the ideal (since we have a stochastic process here, the actual and average sojourn times may
differ) evolution of the actual fluid level for the continuous place q of the LFSPN N is depicted. One can see that
X(0.75) = 0, i.e. at the time moment δ = 0.75, the fluid level X(δ) reaches the zero low boundary while N resides
in the discrete marking M(δ) = M2 for all δ ∈ [0.5; 1). Then the actual fluid flow rate function RA(M(δ), X(δ))
has a discontinuity at that point, where the function value is changed instantly from −2 to 0. If it would exist
no lower boundary, the average potential and actual fluid change volumes for the transition sequences of length
1 in the continuous place q would coincide and be equal to FluidChange(q, 1) = −0.5 = 0.5− 1 = X(1).

In Figure 7, possible evolution of the actual fluid level for the continuous place q of the LFSPN N is presented,
where the actual and average sojourn times in the discrete markings demonstrate substantial differences.

3.2 Fluid bisimulation equivalence

Bisimulation equivalences respect particular points of choice in the behavior of a system. To define fluid
bisimulation equivalence, we have to consider a bisimulation being an equivalence relation that partitions the
states of the union of the discrete reachability graphs DRG(N) and DRG(N ′) of the LFSPNs N and N ′. For
N and N ′ to be bisimulation equivalent the initial states MN and MN ′ of their discrete reachability graphs
should be related by a bisimulation having the following transfer property: if two states are related then in each
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of them the same actions can occur, leading with the identical overall rate from each of the two states to the
same equivalence class for every such action.

The novelty of the fluid bisimulation definition with respect to that of the Markovian bisimulations from
[30, 60, 16, 20, 17, 18, 21, 23, 24, 19] is that, for each pair of bisimilar discrete markings of N and N ′, we require
coincidence of the fluid flow rates of the corresponding (i.e. related by a correspondence bijection) continuous
places of N and N ′ in these two discrete markings. Thus, fluid bisimulation equivalence takes into account
functional activity, stochastic timing and fluid flow, like fluid trace equivalence does.

In [67, 95], it has been shown that probabilistic bisimulation equivalence coincides with probabilistic testing
one on reactive probabilistic transition systems (for each state, the probabilities of its outgoing transitions by
the same action are summed to one) under the image-finiteness or the minimal probability assumption. The
probabilistic testing there is based on collecting the probabilities of observing or not observing actions while
applying to a reactive probabilistic process each observation (execution experience) of a (possibly branching)
test process with a goal to calculate the observation probability.

For Markovian bisimulation equivalence, such a testing characterization does not yet exist. Two identical
variants of Markovian testing equivalence have been proposed in [22] on EMPAct, a sublanguage for continuous
time Markovian processes of the Markovian process algebra EMPA, and in [16] on (sequential) Markovian
process calculus MPC. The Markovian testing there is based on summing either the average sojourn times
or actual (exponentially distributed) delays in the states of each computation to calculate its duration, which
should be not greater than a given amount of time. It has been proved that Markovian testing equivalence is
strictly coarser than Markovian bisimulation one.

Fluid bisimulation equivalence on LFSPNs is a natural enhancement of Markovian bisimulation equivalence
by adding the identity condition for the fluid flow rates in the related states. The same condition may be
imposed on Markovian testing equivalence to get fluid testing equivalence on LFSPNs. Then, following [22, 16],
it will be easy to prove that fluid testing equivalence is strictly weaker than fluid bisimulation equivalence. Thus,
unlike fluid trace equivalence, fluid bisimulation equivalence cannot be tested by an external observer using the
mentioned fluid testing approach and it should be defined in an operational manner.

We first propose some helpful extensions of the rate functions for the discrete marking changes and for the
fluid flow in continuous places. Let N be an LFSPN and H ⊆ DRS(N). Then, for each M ∈ DRS(N) and

a ∈ Act, we write M
a→λ H, where λ = RMa(M,H) is the overall rate to move from M into the set of discrete

markings H by action a, defined as

RMa(M,H) =
∑

{t|∃M̃∈H M
t→M̃, LN (t)=a}

ΩN (t,M).

We write M
a→ H if ∃λ M

a→λ H. Further, we write M →λ H if ∃a M
a→ H, where λ = RM(M,H) is the

overall rate to move from M into the set of discrete markings H by any actions, defined as

RM(M,H) =
∑

{t|∃M̃∈H M
t→M̃}

ΩN (t,M).

To construct a fluid bisimulation between LFSPNs N and N ′, we should consider the “composite” set of
their discrete markingsDRS(N)∪DRS(N ′), since we have to identify the rates to come from any two equivalent
discrete markings into the same “composite” equivalence class (with respect to the fluid bisimulation). Note
that, for N 6= N ′, transitions starting from the discrete markings of DRS(N) (or DRS(N ′)) always lead to
those from the same set, since DRS(N) ∩ DRS(N ′) = ∅, and this allows us to “mix” the sets of discrete
markings in the definition of fluid bisimulation.

Let PcN = {q} and PcN ′ = {q′}. In this case the continuous place q′ of N corresponds to q of N , according
to a trivial correspondence bijection β : PcN → PcN ′ such that β(q) = q′. Then for M ∈ DRS(N) (or for
M ′ ∈ DRS(N ′)) we denote by RP (M) (or by RP (M ′)) the fluid level change rate for the continuous place q (or
for the corresponding one q′), i.e. the argument discrete marking determines for which of the two continuous
places, q or q′, the flow rate function RP is taken.

Note that if N and N ′ have more than one continuous place and there exists a correspondence bijection
β : PcN → PcN ′ then we should consider several flow rate functions RPi (1 ≤ i ≤ l = |PcN | = |PcN ′ |) in the
same manner, i.e. each RPi is used for the pair of the corresponding continuous places qi ∈ PcN and β(qi) =
q′i ∈ PcN ′ . In other words, we require that the vectors (RP1(M), . . . , RPl(M)) and (RP1(M

′), . . . , RPl(M
′))

coincide for each pair of fluid bisimilar discrete markings M and M ′ in such a case.

Definition 3.7 Let N and N ′ be LFSPNs such that PcN = {q}, P cN ′ = {q′} and q′ corresponds to q.
An equivalence relation R ⊆ (DRS(N) ∪ DRS(N ′))2 is a fluid bisimulation between N and N ′, denoted by
R : N↔flN

′, if:
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1. (MN ,MN ′) ∈ R.

2. (M1,M2) ∈ R ⇒ RP (M1) = RP (M2), ∀H ∈ (DRS(N) ∪DRS(N ′))/R, ∀a ∈ Act

M1
a→λ H ⇔ M2

a→λ H.

Two LFSPNs N and N ′ are fluid bisimulation equivalent, denoted by N↔flN
′, if ∃R : N↔flN

′.

Let Rfl(N,N ′) =
⋃{R | R : N↔flN

′} be the union of all fluid bisimulations between N and N ′. The
following proposition proves that Rfl(N,N ′) is also an equivalence and Rfl(N,N ′) : N↔flN

′.

Proposition 3.1 Let N and N ′ be LFSPNs and N↔flN
′. Then Rfl(N,N ′) is the largest fluid bisimulation

between N and N ′.

Proof. Analogous to that of Proposition 8.2.1 from [60], which establishes the result for strong equivalence. ⊓⊔
Let N,N ′ be LFSPNs with R : N↔flN

′ and H ∈ (DRS(N) ∪ DRS(N ′))/R. We now present a number
of remarks on the important equalities and helpful notations based on the rate functions RMa, RM, RP and
sojourn time characteristics SJ, V AR.
Remark 1. We have ∀M1,M2 ∈ H ∀H̃ ∈ (DRS(N) ∪DRS(N ′))/R ∀a ∈ Act M1

a→λ H̃ ⇔ M2
a→λ H̃. Since

the previous equality is valid for all M1,M2 ∈ H, we can rewrite it as H a→λ H̃, where λ = RMa(H, H̃) =

RMa(M1, H̃) = RMa(M2, H̃) = RMa(H ∩DRS(N), H̃) = RMa(H ∩DRS(N ′), H̃). Then we write H a→ H̃ if

∃λ H a→λ H̃ and H → H̃ if ∃a H a→ H̃.
Since the transitions from the discrete markings of DRS(N) always lead to those from the same set, we

have ∀M ∈ DRS(N) ∀a ∈ Act RMa(M, H̃) = RMa(M, H̃ ∩ DRS(N)). Hence, ∀M ∈ H ∩ DRS(N) ∀a ∈
Act RMa(H, H̃) = RMa(M, H̃) = RMa(M, H̃ ∩DRS(N)) = RMa(H ∩DRS(N), H̃ ∩DRS(N)). The same is

true for DRS(N ′). Thus, ∀H̃ ∈ (DRS(N) ∪DRS(N ′))/R

RMa(H ∩DRS(N), H̃ ∩DRS(N)) = RMa(H, H̃) = RMa(H ∩DRS(N ′), H̃ ∩DRS(N ′)).

Remark 2. We have ∀M1,M2 ∈ H ∀H̃ ∈ (DRS(N) ∪DRS(N ′))/R RM(M1, H̃) =∑
{t|∃M̃1∈H̃ M1

t→M̃1}
ΩN (t,M1) =

∑
a∈Act

∑
{t|∃M̃1∈H̃ M1

t→M̃1, LN (t)=a} ΩN (t,M1) =
∑

a∈Act RMa(M1, H̃) =
∑

a∈ActRMa(M2, H̃) =
∑

a∈Act

∑
{t|∃M̃2∈H̃ M2

t→M̃2, LN (t)=a}ΩN (t,M2) =
∑

{t|∃M̃2∈H̃ M2
t→M̃2}

ΩN (t,M2) =

RM(M2, H̃). Since the previous equality is valid for allM1,M2 ∈ H, we can denote RM(H, H̃) = RM(M1, H̃) =

RM(M2, H̃). Then we write H →λ H̃, where λ = RM(H, H̃) = RM(M1, H̃) = RM(M2, H̃).
Since the transitions from the discrete markings of DRS(N) always lead to those from the same set, we have

∀M ∈ DRS(N) RM(M, H̃) = RM(M, H̃∩DRS(N)). Hence, ∀M ∈ H∩DRS(N) RM(H, H̃) = RM(M, H̃) =

RM(M, H̃ ∩ DRS(N)) = RM(H ∩ DRS(N), H̃ ∩ DRS(N)). The same is true for DRS(N ′). Thus, ∀H̃ ∈
(DRS(N) ∪DRS(N ′))/R

RM(H ∩DRS(N), H̃ ∩DRS(N)) = RM(H, H̃) = RM(H ∩DRS(N ′), H̃ ∩DRS(N ′)).

Remark 3. We have ∀M1,M2 ∈ H RP (M1) = RP (M2). Since the previous equality is valid for all M1,M2 ∈ H,
we can denote RP (H) = RP (M1) = RP (M2).

Since any argument discrete marking M ∈ DRS(N)∪DRS(N ′) completely determines for which continuous
place the flow rate function RP (M) is taken (either for q if M ∈ DRS(N) or for q′ if M ∈ DRS(N ′)), we have
∀M ∈ H ∩DRS(N) RP (H) = RP (M) = RP (H ∩DRS(N)). The same is true for DRS(N ′). Thus,

RP (H ∩DRS(N)) = RP (H) = RP (H ∩DRS(N ′)).

Remark 4. We have ∀M1,M2 ∈ H SJ(M1) =
1∑

t∈Ena(M1) ΩN (t,M1)
=

1∑
H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃1∈H̃ M1

t
→M̃1}

ΩN (t,M1)
= 1∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(M1,H̃)

=

1∑
H̃∈(DRS(N)∪DRS(N′))/R

RM(H,H̃)
= 1∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(M2,H̃)

=

1∑
H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃2∈H̃ M2

t
→M̃2}

ΩN (t,M2)
= 1∑

t∈Ena(M2) ΩN (t,M2)
= SJ(M2).

Since the previous equality is valid for all M1,M2 ∈ H, we can denote SJR(H) = SJ(M1) = SJ(M2).
Since any argument discrete markingM ∈ DRS(N)∪DRS(N ′) completely determines, for which LFSPN the

average sojourn time function SJ(M) is considered (either for N if M ∈ DRS(N), or for N ′ if M ∈ DRS(N ′)),
we have ∀M ∈ H ∩DRS(N) SJ(H) = SJ(M) = SJ(H ∩DRS(N)). The same is true for DRS(N ′). Thus,
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Figure 8: Fluid bisimulation equivalent LFSPNs

SJ(H ∩DRS(N)) = SJ(H) = SJ(H ∩DRS(N ′)).

Remark 5. We have ∀M1,M2 ∈ H V AR(M1) =
1

(
∑

t∈Ena(M1) ΩN (t,M1))2
=

1
(
∑

H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃1∈H̃ M1

t
→M̃1}

ΩN (t,M1))2
= 1

(
∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(M1,H̃))2

=

1

(
∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(H,H̃))2

= 1

(
∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(M2,H̃))2

=

1
(
∑

H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃2∈H̃ M2

t
→M̃2}

ΩN (t,M2))2
= 1

(
∑

t∈Ena(M2) ΩN (t,M2))2
= V AR(M2).

Since the previous equality is valid for all M1,M2 ∈ H, we can denote V ARR(H) = V AR(M1) = V AR(M2).
Since any argument discrete marking M ∈ DRS(N) ∪DRS(N ′) completely determines, for which LFSPN

the sojourn time variance function V AR(M) is considered (either for N if M ∈ DRS(N), or for N ′ if M ∈
DRS(N ′)), we have ∀M ∈ H ∩ DRS(N) V AR(H) = V AR(M) = V AR(H ∩ DRS(N)). The same is true for
DRS(N ′). Thus,

V AR(H ∩DRS(N)) = V AR(H) = V AR(H ∩DRS(N ′)).

Example 3.2 In Figure 8, the LFSPNs N and N ′ are presented, such that N↔flN
′. The only difference

between the respective LFSPNs in Figure 2 and those in Figure 8 is that the transitions t3 and t′4 are labeled
with action c in the former, instead of action b in the latter.

Therefore, the following notions coincide for the respective LFSPNs in Figure 2 and those in Figure 8:
the discrete reachability sets DRS(N) and DRS(N ′), the discrete reachability graphs DRG(N) and DRG(N ′),
the underlying CTMCs CTMC(N) and CTMC(N ′), the average sojourn time vectors SJ and SJ ′ of N and
N ′, the sojourn time variance vectors V AR and V AR′ of N and N ′, the TRMs Q and Q′ for CTMC(N) and
CTMC(N ′), the TPMs P and P′ for EDTMC(N) and EDTMC(N ′), the FRMs R and R′ for the SFMs of N
and N ′. We have (DRS(N) ∪DRS(N ′))/Rfl(N,N ′) = {H1,H2}, where H1 = {M1,M

′
1}, H2 = {M2,M

′
2,M

′
3}.

We now intend to compare the introduced fluid equivalences to discover their interrelations. The following
proposition demonstrates that fluid bisimulation equivalence implies fluid trace one.

Proposition 3.2 For LFSPNs N and N ′ the following holds:

N↔flN
′ ⇒ N ≡fl N

′.

Proof. Let R : N↔flN
′, H ∈ (DRS(N) ∪ DRS(N ′))/R and M1,M2 ∈ H. We have RP (M1) = RP (M2)

and ∀H̃ ∈ (DRS(N) ∪ DRS(N ′))/R ∀a ∈ Act M1
a→λ H̃ ⇔ M2

a→λ H̃. Note that transitions from the

discrete markings of DRS(N) always lead to those from the same set, hence, ∀M ∈ DRS(N) RMa(M, H̃) =

RMa(M, H̃ ∩DRS(N)). The same is true for DRS(N ′).
By Remark 1 from Section 3.2, we can write H a→λ H̃ and denote λ = RMa(M1, H̃) = RMa(M2, H̃) =

RMa(H, H̃) = RMa(H ∩DRS(N), H̃ ∩DRS(N)) = RMa(H ∩DRS(N ′), H̃ ∩DRS(N ′)).
Further, by Remark 4 from Section 3.2, we can denote SJ(M1) = SJ(M2) = SJ(H) = SJ(H∩DRS(N)) =

SJ(H ∩DRS(N ′)).
At last, by Remark 3 from Section 3.2, we can denote RP (M1) = RP (M2) = RP (H) = RP (H∩DRS(N)) =

RP (H ∩DRS(N ′)).
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Figure 9: Interrelations of fluid equivalences

Let TranSeq(N, σ, ς, ̺) 6= ∅ and σ = a1 · · ·an ∈ Act∗, ς = s0 ◦ · · · ◦ sn ∈ R
∗
>0, ̺ = r0 ◦ · · · ◦ rn ∈ R

∗. Taking
into account the notes above and R : N↔flN

′, we have SJ(MN) = SJ(MN ′) = s0, RP (MN ) = RP (MN ′) = r0
and for all H1, . . . ,Hn ∈ (DRS(N) ∪DRS(N ′))/R, such that SJ(Hi) = si, RP (Hi) = ri (1 ≤ i ≤ n), it holds

MN
a1→λ1 H1

a2→λ2 · · · an→λn Hn ⇔ MN ′
a1→λ1 H1

a2→λ2 · · · an→λn Hn. Then we have TranSeq(N ′, σ, ς, ̺) 6= ∅.
Thus, TranSeq(N, σ, ς, ̺) 6= ∅ implies TranSeq(N ′, σ, ς, ̺) 6= ∅.

We now intend to prove that the sum of the transition rates products for all the paths starting in MN = M0

and going through the discrete markings from H1, . . . ,Hn is equal to the product of λ1, . . . , λn, which is
essentially the transition rates product for the “composite” path starting in H0 = [M0]R and going through the
equivalence classes H1, . . . ,Hn in DRG(N):

∑

{t1,...,tn|MN=M0
t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}

n∏

i=1

ΩN (ti,Mi−1) =

n∏

i=1

RMai(Hi−1,Hi).

We prove this equality by induction on the “composite” path length n.

• n = 1
∑

{t1|MN=M0
t1→M1, LN (t1)=a1, M1∈H1}

ΩN (t1,M0) = RMa1(M0,H1) = RMa1(H0,H1).

• n → n+ 1
∑

{t1,...,tn,tn+1|MN=M0
t1→···tn→Mn

tn+1→ Mn+1, LN (ti)=ai, Mi∈Hi (1≤i≤n+1)}

∏n+1
i=1 ΩN(ti,Mi−1) =

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}∑
{tn+1|Mn

tn+1→ Mn+1, LN (tn+1)=an+1, Mn∈Hn, Mn+1∈Hn+1}

∏n
i=1 ΩN (ti,Mi−1)ΩN (tn+1,Mn) =

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}[∏n
i=1 ΩN(ti,Mi−1)

∑
{tn+1|Mn

tn+1→ Mn+1, LN (tn+1)=an+1, Mn∈Hn, Mn+1∈Hn+1}
ΩN (tn+1,Mn)

]
=

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}
∏n

i=1 ΩN(ti,Mi−1)RMan+1(Mn,Hn+1) =∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}
∏n

i=1 ΩN(ti,Mi−1)RMan+1(Hn,Hn+1) =

RMan+1(Hn,Hn+1)
∑

{t1,...,tn|MN=M0
t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}

∏n
i=1 ΩN(ti,Mi−1) =

RMan+1(Hn,Hn+1)
∏n

i=1 RMai(Hi−1,Hi) =
∏n+1

i=1 RMai(Hi−1,Hi).

Note that the equality that we have just proved can also be applied to N ′.
One can see that the summation over all (σ, ς, ̺)-selected transition sequences is the same as the summation

over all accordingly selected equivalence classes:
∑

t1···tn∈TranSeq(N,σ,ς,̺)

∏n
i=1 ΩN (ti,Mi−1) =∑

{t1,...,tn|MN=M0
t1→···tn→Mn, LN (ti)=ai, SJ(Mi)=si, RP (Mj)=ri (1≤i≤n)}

∏n
i=1 ΩN (ti,Mi−1) =

∑
{H1,...,Hn|SJ(Hi)=si,RP (Hi)=ri (1≤i≤n)}

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai,Mi∈Hi (1≤i≤n)}
∏n

i=1 ΩN (ti,Mi−1) =

∑
{H1,...,Hn|SJ(Hi)=si, RP (Hi)=ri (1≤i≤n)}

∏n
i=1 RMai(Hi−1,Hi) =∑

{H1,...,Hn|SJ(Hi)=si,RP (Hi)=ri (1≤i≤n)}
∑

{t′1,...,t′n|MN′=M ′
0

t′1→···
t′n→M ′

n, LN(t′i)=ai,M ′
i∈Hi (1≤i≤n)}

∏n
i=1 ΩN ′(t′i,M

′
i−1)=

∑
{t′1,...,t′n|MN′=M ′

0

t′
1→···

t′n→M ′
n, LN′(t′i)=ai, SJ(M ′

i )=si, RP (M ′
j)=ri (1≤i≤n)}

∏n
i=1 ΩN ′(t′i,M

′
i−1) =

∑
t′1···t′n∈TranSeq(N ′,σ,ς,̺)

∏n
i=1 ΩN (t′i,M

′
i−1). By the remark before Definition 3.6, the probabilities to execute

(σ, ς, ̺)-selected transition sequences in N and N ′ coincide.
We conclude that for all triples (σ, ς, ̺) ∈ Act∗ × R

∗
>0 × R

∗, it holds that TranSeq(N, σ, ς, ̺) 6= ∅ im-
plies TranSeq(N ′, σ, ς, ̺) 6= ∅ and the execution probabilities of (σ, ς, ̺) in N and N ′ are equal. The reverse
implication is proved by symmetry of fluid bisimulation. ⊓⊔

The following theorem compares discriminating power of the introduced fluid equivalences.

Theorem 3.1 For LFSPNs N and N ′ the following strict implication holds that is also depicted in Figure 9:

N↔flN
′ ⇒ N ≡fl N

′.
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Proof. Let us check the validity of the implication.

• The implication ↔fl →≡fl is valid by Proposition 3.2.

Let us see that the implication is strict, i.e. the reverse one does not work, by the following counterexample.

• In Figure 2, N ≡fl N
′, but N↔/ flN

′, since only in the LFSPN N ′ an action a can be executed so (by
firing the transition t′2) that no action b can occur afterwards. ⊓⊔

4 Reduction of the behaviour

Fluid bisimulation equivalence can be used to reduce the discrete reachability graphs and underlying CTMCs
of LFSPNs. Reductions of graph-based models, like transition systems (whose instances are reachability graphs
and CTMCs), result in those with less states (the graph nodes). The goal of the reduction is to decrease the
number of states in the semantic representation of the modeled system while preserving its important qualitative
and quantitative properties. Thus, the reduction allows one to simplify the behavioural and performance analysis
of systems.

An autobisimulation is a bisimulation between an LFSPN and itself. Let N be an LFSPN with R : N↔flN
and K ∈ DRS(N)/R.

Then Remarks 2, 4 and 5 from Section 3.2 allow us to present the following definitions.
The average sojourn time in the equivalence class (with respect to R) of discrete markings K is

SJR(K) =
1

∑
K̃∈DRS(N)/R

RM(K, K̃)
= SJ(M) ∀M ∈ K.

The average sojourn time vector for the equivalence classes (with respect to R) of discrete markings of N ,
denoted by SJR, has the elements SJR(K), K ∈ DRS(N)/R.

The sojourn time variance in the equivalence class (with respect to R) of discrete markings K is

V ARR(K) =
1

(∑
K̃∈DRS(N)/R

RM(K, K̃)
)2 = V AR(M) ∀M ∈ K.

The sojourn time variance vector for the equivalence classes (with respect to R) of discrete markings of N ,
denoted by V ARR, has the elements V ARR(K), K ∈ DRS(N)/R.

Let Rfl(N) =
⋃{R | R : N↔flN} be the union of all fluid autobisimulations on N . By Proposition 3.1,

Rfl(N) is the largest fluid autobisimulation on N . Based on the equivalence classes with respect to Rfl(N),
the quotient (by ↔fl) discrete reachability graphs and quotient (by ↔fl) underlying CTMCs of LFSPNs can
be defined. The mentioned equivalence classes become the quotient states. The average and variance for the
sojourn time in a quotient state are those in the corresponding equivalence class, respectively. Every quotient
transition between two such composite states represents all transitions (having the same action label in case of
the discrete reachability graph quotient) from the first state to the second one.

Definition 4.1 Let N be an LFSPN. The quotient (by ↔fl) discrete reachability graph of N is a labeled
transition system DRG↔fl

(N) = (S↔fl
,L↔fl

, T↔fl
, s↔fl

), where

• S↔fl
= DRS(N)/Rfl(N);

• L↔fl
= Act× R>0;

• T↔fl
= {(K, (a,RMa(K, K̃)), K̃) | K, K̃ ∈ DRS(N)/Rfl(N), K a→ K̃};

• s↔fl
= [MN ]Rfl(N).

The transition (K, (a, λ), K̃) ∈ T↔fl
will be written as K a→λ K̃.

Let ≃ denote isomorphism between the quotient discrete reachability graphs that binds their initial states.
The quotient (by ↔fl) average sojourn time vector of N is defined as SJ↔fl

= SJRfl(N). The quotient (by

↔fl) sojourn time variance vector of N is defined as V AR↔fl
= V ARRfl(N).

Definition 4.2 Let N be an LFSPN. The quotient (by ↔fl) underlying CTMC of N , denoted by

CTMC↔fl
(N), has the state space DRS(N)/Rfl(N), the initial state [MN ]Rfl(N) and the transitions K →λ K̃

if K → K̃, where λ = RM(K, K̃).
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The steady-state PMF ϕ↔fl
for CTMC↔fl

(N) is defined like the corresponding notion ϕ for CTMC(N).
The quotients of both discrete reachability graphs and underlying CTMCs are the minimal reductions of

the mentioned objects modulo fluid bisimulation. The quotients can be used to simplify analysis of system
properties which are preserved by ↔fl, since less states should be examined for it. Such a reduction method
resembles that from [7] based on place bisimulation equivalence for Petri nets, excepting that the former method
merges states, while the latter one merges places.

Let N be an LFSPN. We shall now demonstrate how to construct the quotients (by ↔fl) of the TRM for
CTMC(N), FRM for the associated SFM of N , average sojourn time vector and sojourn time variance vector
of N , using special collector and distributor matrices. The quotient TRMs and FRMs will be later applied
to describe the quotient associated SFMs of LFSPNs. Let DRS(N) = {M1, . . . ,Mn} and DRS(N)/Rfl(N) =
{K1, . . . ,Kl}.

The elements (Q↔fl
)rs (1 ≤ r, s ≤ l) of the TRM Q↔fl

for CTMC↔fl
(N) are defined as

(Q↔fl
)rs =

{
RM(Kr,Ks), r 6= s;
−∑{k|1≤k≤l, k 6=r} RM(Kr,Kk), r = s.

Like it has been done for strong performance bisimulation on labeled CTSPNs in [30], the l× l TRM Q↔fl

for CTMC↔fl
(N) can be constructed from the n× n TRM Q for CTMC(N) using the n× l collector matrix

V for the largest fluid autobisimulation Rfl(N) on N and the l × n distributor matrix W for V. Then W
should be a non-negative matrix (i.e. all its elements must be non-negative) with the elements of each its row
summed to one, such that WV = I, where I is the identity matrix of order l, i.e. W is a left-inverse matrix for
V. It is known that for each collector matrix there is at least one distributor matrix, in particular, the matrix
obtained by transposing V and subsequent normalizing its rows, to guarantee that the elements of each row of
the transposed matrix are summed to one. We now present the formal definitions.

The elements Vir (1 ≤ i ≤ n, 1 ≤ r ≤ l) of the collector matrix V for the largest fluid autobisimulation
Rfl(N) on N are defined as

Vir =

{
1, Mi ∈ Kr;
0, otherwise.

Thus, all the elements of V are non-negative, as required. The row elements of V are summed to one, since
for each Mi (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such that Mi ∈ Kr. Hence,

V1T = 1T ,

where 1 on the left side is the row vector of l values 1 while 1 on the right side is the row vector of n values 1.
For a vector v = (v1, . . . , vl), let Diag(v) be a diagonal matrix with the elements Diagrs(v) (1 ≤ r, s ≤ l)

defined as

Diagrs(v) =

{
vr, r = s;
0, otherwise.

The distributor matrix W for the collector matrix V is defined as

W = (Diag(VT1T ))−1VT ,

where 1 is the row vector of n values 1. One can check that WV = I, where I is the identity matrix of order l.
The elements (QV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix QV are

(QV)is =
n∑

j=1

QijVjs =
∑

{j|1≤j≤n, Mj∈Ks}
RM(Mi,Mj) = RM(Mi,Ks).

As we know, for each Mi (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such that Mi ∈ Kr. By Remark
2 from Section 3.2, for all Mi ∈ Kr we have RM(Kr,Ks) = RM(Mi,Ks) (1 ≤ i ≤ n, 1 ≤ r, s ≤ l). Then the
elements (VQ↔fl

)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix VQ↔fl
are

(VQ↔fl
)is =

l∑

r=1

Vir(Q↔fl
)rs =

∑

{r|1≤r≤l, Mi∈Kr}
RM(Kr,Ks) = RM(Mi,Ks).

Therefore, we have

QV = VQ↔fl
, WQV = Q↔fl

.
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The elements (R↔fl
)rs (1 ≤ r, s ≤ l) of the FRM R↔fl

of the quotient (by↔fl) SFM ofN for the continuous
place q are defined as

(R↔fl
)rs =

{
RP (Kr), r = s;
0, r 6= s.

Let R be the FRM of the SFM of N for the continuous place q. The elements (RV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l)
of the matrix RV are

(RV)is =
n∑

j=1

RijVjs = RP (Mi)Vis =

{
RP (Mi), Mi ∈ Ks;
0, otherwise.

By Remark 2 from Section 3.2, for all Mi ∈ Ks we have RP (Ks) = RP (Mi) (1 ≤ i ≤ n, 1 ≤ s ≤ l). Then
the elements (VR↔fl

)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix VR↔fl
are

(VR↔fl
)is =

l∑

r=1

Vir(R↔fl
)rs = VisRP (Ks) =

{
RP (Ks) = RP (Mi), Mi ∈ Ks;
0, otherwise.

Therefore, we also have

RV = VR↔fl
, WRV = R↔fl

.

Let us consider the matrices Diag(SJ) and Diag(SJ↔fl
). By analogy with the proved above for R and

R↔fl
, we can deduce Diag(SJ)V = VDiag(SJ↔fl

) and WDiag(SJ)V = Diag(SJ↔fl
). Therefore, we have

1WDiag(SJ)V = 1Diag(SJ↔fl
) = SJ↔fl

,

where 1 is the row vector of l values 1. In a similar way, we obtain

1WDiag(V AR)V = 1Diag(V AR↔fl
) = V AR↔fl

,

where 1 is the row vector of l values 1.

Example 4.1 Consider the LFSPNs N and N ′ in Figure 8, for which it holds N↔flN
′.

We have DRS(N)/Rfl(N) = {K1,K2}, where K1 = {M1}, K2 = {M2}, and DRS(N ′)/Rfl(N ′) = {K′
1,K′

2},
where K′

1 = {M ′
1}, K′

2 = {M ′
2,M

′
3}.

In Figure 10, the quotient discrete reachability graphs DRG↔fl
(N) and DRG↔fl

(N ′) are depicted, for

which we have DRG↔fl
(N) ≃ DRG↔fl

(N ′). In Figure 11, the quotient underlying CTMCs CTMC↔fl
(N)

and CTMC↔fl
(N ′) are drawn, for which it holds CTMC↔fl

(N) ≃ CTMC↔fl
(N ′) ≃ CTMC(N).

We have Q↔fl
= Q′

↔fl
= Q, R↔fl

= R′
↔fl

= R and SJ↔fl
= SJ ′

↔fl
= SJ, V AR↔fl

= V AR′
↔fl

= V AR.

The collector matrix V for the largest fluid autobisimulation Rfl(N) on N and the distributor matrix W
for V are

V =




1 0
0 1
0 1


 , W =

(
1 0 0
0 1

2
1
2

)
.

Then it is easy to check that

WQ′V = Q, WR′V = R.

Hence, it holds that

1WDiag(SJ ′)V = SJ, 1WDiag(V AR′)V = V AR,

where 1 = (1, 1), Diag(SJ ′) =




1
2 0 0
0 1

2 0
0 0 1

2


 , Diag(V AR′) =




1
4 0 0
0 1

4 0
0 0 1

4


 .
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Figure 10: The quotient discrete reachability graphs of the fluid bisimulation equivalent LFSPNs
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Figure 11: The quotient underlying CTMCs of the fluid bisimulation equivalent LFSPNs

5 Logical characterization

In this section, a logical characterization of fluid trace and bisimulation equivalences is accomplished via formulas
of the novel fluid modal logics. The results obtained could be interpreted as an operational characterization of
the corresponding logical equivalences.

5.1 Logic HMLflt

The modal logic HMLNPMTr has been introduced in [20, 17, 21] (called HMLMTr in [20, 17]) on (sequential)
and concurrent Markovian process calculi SMPC (called MPC in [20, 21]) and CMPC for logical interpretation
of Markovian trace equivalence. HMLNPMTr is based on the logic HML [59], to which a new interpretation
function has been added that takes as its arguments a process state and a sum or a sequence of the average
sojourn times.

We now propose a novel fluid modal logic HMLflt for the characterization of fluid trace equivalence. For
this, we extend the interpretation function of HMLNPMTr with an additional argument, which is the sequence
of the potential fluid flow rates for the single continuous place of an LFSPN (remember that in the definition
of fluid trace equivalence we compare only LFSPNs, each having exactly one continuous place).

Note that Markovian trace equivalence and the corresponding interpretation function for HMLMTr in [20]
are defined by summing up the average sojourn times in the process states. In our definition of fluid trace
equivalence, we consider sequences of the average sojourn times in the discrete markings of LFSPNs. Hence,
our fluid extension of HMLNPMTr is based rather on the definitions from [17, 21], where the latter approach
(i.e. the sequences instead of sums) has been presented.

Definition 5.1 Let ⊤ denote the truth and a ∈ Act. A formula of HMLflt is defined as follows:

Φ ::= ⊤ | 〈a〉Φ.
HMLflt denotes the set of all formulas of the logic HMLflt.
The interpretation function measures the probability with which a formula of HMLflt is satisfied in a

discrete marking during the exponentially distributed time periods with given averages when the potential fluid
flow rates possess particular values.

Definition 5.2 Let N be an LFSPN and M ∈ DRS(N). The interpretation function [[ ]]flt : HMLflt →
(DRS(N)× R

∗
>0 × R

∗ → [0; 1]) is defined as follows:

1. [[⊤]]flt(M, ς, ̺) =

{
0, (ς 6= SJ(M)) ∨ (̺ 6= RP (M));
1, (ς = SJ(M)) ∧ (̺ = RP (M));

2. [[〈a〉Φ]]flt(M, ς, ̺) =





0, (ς = ε) ∨ (̺ = ε)∨
((ς = s ◦ ς̂) ∧ (SJ(M) 6= s))∨
((̺ = r ◦ ˆ̺) ∧ (RP (M) 6= r));∑

{t|M t→M̃, LN (t)=a} PT (t,M)[[Φ]]flt(M̃, ς̂, ˆ̺), (ς = s ◦ ς̂) ∧ (SJ(M) = s)∧
(̺ = r ◦ ˆ̺) ∧ (RP (M) = r).
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Thus, the interpretation is formally defined as a function from the formulas (essentially specifying the
sequences of actions) to the functions assigning a probability to each triple consisting of a discrete marking
(from which a given action sequence starts), together with the coordinated sequences of the average sojourn
times and potential fluid flow rates (both starting in that discrete marking). As a result, the interpretation
gives a probability to each set of (σ, ς, ̺)-selected transition sequences starting in a (possibly non-initial) discrete
marking (such sets will be formalized later).

Note that the item 1 in the definition above describes the situation when only the empty transition sequence
should start in the discrete marking M to reach the state (which is M itself), described by the identically true
formula. Since we have just a single (mentioned) true state, it remains to check that second and third arguments
of the interpretation function are the sequences of length one, as well as that they are equal to the average
sojourn time and fluid flow rate in M , respectively.

Definition 5.3 Let N be an LFSPN. Then we define [[Φ]]flt(N, ς, ̺) = [[Φ]]flt(MN , ς, ̺). Two LFSPNs N
and N ′ are logically equivalent in HMLflt, denoted by N =HMLflt

N ′, if ∀Φ ∈ HMLflt ∀ς ∈ R
∗
>0 ∀̺ ∈

R
∗ [[Φ]]flt(N, ς, ̺) = [[Φ]]flt(N

′, ς, ̺).

Let N be an LFSPN and M ∈ DRS(N), a ∈ Act. The set of discrete markings reached from M by execution

of action a, called the image set, is defined as Image(M,a) = {M̃ | M t→ M̃, LN (t) = a}. An LFSPN N is an
image-finite one, if ∀M ∈ DRS(N) ∀a ∈ Act |Image(M,a)| < ∞.

The following lemma states that all LFSPNs (whose transition sets are finite by definition) are image-finite.

Lemma 5.1 Every LFSPN is image-finite.

Proof. Let us assume the contrary, i.e. that for an LFSPN N , there exist M ∈ DRS(N) and a ∈ Act, such that

|Image(M,a)| = ∞. Then we have an infinite number of discrete markings M̃ with M
t→ M̃ and LN (t) = a,

where t ∈ Ena(M). According to the firing rule of LFSPNs, for a given discrete marking M , each t ∈ Ena(M)

uniquely determines the subsequent discrete marking M̃ , but firing different transitions at M by lead to the
same discrete marking M̃ . Hence, the set of all transitions with the same action label enabled in M has at least
the same number of elements as the set of all discrete markings resulting from firing those transitions in M . By

definition of LFSPNs, the set of transitions of N is finite. Finally, |Image(M,a)| = |{M̃ | M t→ M̃, LN (t) =
a}| ≤ |{t ∈ Ena(M) | LN(t) = a}| ≤ |Ena(M)| ≤ |TN | < ∞, which contradicts the initial assumption. ⊓⊔

In order to get the intended logical characterization, we need in some auxiliary definitions considering the
transition sequences starting not just in the initial discrete marking of an LFSPN, but in any reachable one.

Definition 5.4 Let N be an LFSPN and M ∈ DRS(N). The set of all (finite) transition sequences in N
starting in the discrete marking M is defined as

TranSeq(N,M) = {ϑ | ϑ = ε or ϑ = t1 · · · tn, M = M0
t1→ M1

t2→ · · · tn→ Mn}.

Let ϑ = t1 · · · tn ∈ TranSeq(N,M) and M = M0
t1→ M1

t2→ · · · tn→ Mn. The probability to execute the
transition sequence ϑ starting in the discrete marking M is

PT (M,ϑ) =

n∏

i=1

PT (ti,Mi−1).

For ϑ = ε we define PT (M, ε) = 1.

Let ϑ = t1 · · · tn ∈ TranSeq(N,M) and M = M0
t1→ M1

t2→ · · · tn→ Mn. The action sequence of ϑ is
LN (ϑ) = LN (t1) · · ·LN(tn) ∈ Act∗. We also define LN(ε) = ε. The average sojourn time sequence of ϑ = t1 · · · tn
is SJ(M,ϑ) = SJ(M0) ◦ · · · ◦ SJ(Mn) ∈ R

∗
>0. We also define SJ(M, ε) = SJ(M0). The (potential) fluid flow

rate sequence of ϑ = t1 · · · tn is RP (M,ϑ) = RP (M0)◦· · ·◦RP (Mn) ∈ R
∗. We also define RP (M, ε) = RP (M0).

Definition 5.5 Let N be an LFSPN, M ∈ DRS(N) and (σ, ς, ̺) ∈ Act∗×R
∗
>0×R

∗. The set of (σ, ς, ̺)-selected
(finite) transition sequences in N starting in the discrete marking M is defined as

TranSeq(N,M, σ, ς, ̺) = {ϑ ∈ TranSeq(N,M) | LN (ϑ) = σ, SJ(M,ϑ) = ς, RP (M,ϑ) = ̺}.
The (cumulative) probability to execute (σ, ς, ̺)-selected transition sequences starting in the discrete marking

M is

PT (M,σ, ς, ̺) =
∑

ϑ∈TranSeq(N,M,σ,ς,̺)

PT (M,ϑ).

The following lemma provides a recursive definition of PT (M,σ, ς, ̺) that will be used later in the proofs.
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Lemma 5.2 Let N be an LFSPN and M ∈ DRS(N). Then for all (σ, ς, ̺) ∈ Act∗ × R
∗
>0 × R

∗ such that
σ = a · σ̂, ς = s ◦ ς̂ , ̺ = r ◦ ˆ̺, where a ∈ Act, s ∈ R>0, r ∈ R, we have

PT (M,σ, ς, ̺) =
∑

{t|M t→M̃, LN (t)=a, SJ(M)=s, RP (M)=r}

PT (t,M)PT (M̃, σ̂, ς̂ , ˆ̺).

Proof. It holds that PT (M,σ, ς, ̺) =
∑

ϑ∈TranSeq(N,M,σ,ς,̺) PT (M,ϑ) =∑
{t1,...,tn|M=M0

t1→M1
t2→···tn→Mn, LN(t1···tn)=σ, SJ(M0,t1···tn)=ς, RP (M0,t1···tn)=̺}

∏n
i=1 PT (ti,Mi−1) =∑

{t1|M=M0
t1→M1, LN(t1)=a, SJ(M0)=s, RP (M0)=r}∑

{t2,...,tn|M1
t2→M2

t3→···tn→Mn, LN (t2···tn)=σ̂, SJ(M1,t2···tn)=ς̂, RP (M1,t2···tn)=ˆ̺}
PT (t1,M0)

∏n
i=2 PT (ti,Mi−1) =∑

{t1|M=M0
t1→M1, LN(t1)=a, SJ(M0)=s, RP (M0)=r}

PT (t1,M0)
(∑

{t2,...,tn|M1
t2→M2

t3→···tn→Mn, LN (t2···tn)=σ̂, SJ(M1,t2···tn)=ς̂, RP (M1,t2···tn)=ˆ̺}
∏n

i=2 PT (ti,Mi−1)
)
=

∑
{t1|M=M0

t1→M1, LN(t1)=a, SJ(M0)=s, RP (M0)=r}
PT (t1,M0)PT (M1, σ̂, ς̂ , ˆ̺). Let us now t = t1 and M̃ = M1. ⊓⊔

The following propositions demonstrate that there exists a bijective correspondence between fluid stochastic
traces of LFSPNs and formulas of HMLflt, by proving that the probabilities of the triples (σ, ς, ̺) ∈ Act∗ ×
R

∗
>0 × R

∗ coincide in the net and logical frameworks.

Proposition 5.1 Let N be an LFSPN. Then for each σ ∈ Act∗ there exists Φσ ∈ HMLflt such that ∀M ∈
DRS(N) ∀ς ∈ R

∗
>0 ∀̺ ∈ R

∗

[[Φσ]]flt(M, ς, ̺) = PT (M,σ, ς, ̺).

Proof. We prove by induction on the length n of the action sequence σ.

• n = 0

We have |σ| = 0, hence, σ = ε. In this case, we take Φσ = ⊤. Let M ∈ DRS(N), ς ∈ R
∗
>0, ̺ ∈ R

∗.

If (ς 6= SJ(M)) ∨ (̺ 6= RP (M)) then TranSeq(N,M, σ, ς, ̺) = ∅ and

[[Φσ]]flt(M, ς, ̺) = 0 = PT (M,σ, ς, ̺).

Otherwise, if (ς = SJ(M)) ∧ (̺ = RP (M)) then TranSeq(N,M, σ, ς, ̺) = {ε} and

[[Φσ]]flt(M, ς, ̺) = 1 = PT (M,σ, ς, ̺).

• n → n+ 1

We have |σ| = n + 1, hence, σ = a · σ̂, where a ∈ Act and |σ̂| = n. In this case, we take Φσ = 〈a〉Φσ̂,
where the induction hypothesis holds for σ̂ and Φσ̂. Let M ∈ DRS(N), ς ∈ R

∗
>0, ̺ ∈ R

∗.

If no transition labeled with action a is enabled in M or (ς = ε) ∨ (̺ = ε) ∨ ((ς = s ◦ ς̂) ∧ (SJ(M) 6=
s)) ∨ ((̺ = r ◦ ˆ̺) ∧ (RP (M) 6= r)) then TranSeq(N,M, σ, ς, ̺) = ∅ and

[[Φσ]]flt(M, ς, ̺) = 0 = PT (M,σ, ς, ̺).

Otherwise, if transitions labeled with action a are enabled in M and (ς = s ◦ ς̂) ∧ (SJ(M) = s) ∧ (̺ =
r ◦ ˆ̺) ∧ (RP (M) = r) then TranSeq(N,M, σ, ς, ̺) 6= ∅ and

[[Φσ]]flt(M, ς, ̺) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)[[Φσ̂]]flt(M̃, ς̂, ˆ̺),

as well as

PT (M,σ, ς, ̺) =
∑

{t|M t→M̃, LN(t)=a}

PT (t,M)PT (M̃, σ̂, ς̂ , ˆ̺).

By the induction hypothesis, for all discrete markings M̃ reachable from M by firing transitions labeled
with action a we have
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[[Φσ̂]]flt(M̃, ς̂, ˆ̺) = PT (M̃, σ̂, ς̂ , ˆ̺),

thus, we have proved the proposition. ⊓⊔

Proposition 5.2 Let N be an LFSPN. Then for each Φ ∈ HMLflt there exists σΦ ∈ Act∗ such that ∀M ∈
DRS(N) ∀ς ∈ R

∗
>0 ∀̺ ∈ R

∗

PT (M,σΦ, ς, ̺) = [[Φ]]flt(M, ς, ̺).

Proof. We prove by induction on the syntactical structure of the logical formula Φ.

• Φ = ⊤
In this case, we take σΦ = ε. Let M ∈ DRS(N), ς ∈ R

∗
>0, ̺ ∈ R

∗.

If (ς 6= SJ(M)) ∨ (̺ 6= RP (M)) then TranSeq(N,M, σ, ς, ̺) = ∅ and

PT (M,σ, ς, ̺) = 0 = [[Φσ]]flt(M, ς, ̺).

Otherwise, if (ς = SJ(M)) ∧ (̺ = RP (M)) then TranSeq(N,M, σ, ς, ̺) = {ε} and

PT (M,σ, ς, ̺) = 1 = [[Φσ]]flt(M, ς, ̺).

• Φ = 〈a〉Φ
In this case, we take σΦ = a · σΦ̂, where the induction hypothesis holds for Φ̂ and σΦ̂. Let M ∈
DRS(N), ς ∈ R

∗
>0, ̺ ∈ R

∗.

If no transition labeled with action a is enabled in M or (ς = ε) ∨ (̺ = ε) ∨ ((ς = s ◦ ς̂) ∧ (SJ(M) 6=
s)) ∨ ((̺ = r ◦ ˆ̺) ∧ (RP (M) 6= r)) then TranSeq(N,M, σ, ς, ̺) = ∅ and

PT (M,σ, ς, ̺) = 0 = [[Φσ]]flt(M, ς, ̺).

Otherwise, if transitions labeled with action a are enabled in M and (ς = s ◦ ς̂) ∧ (SJ(M) = s) ∧ (̺ =
r ◦ ˆ̺) ∧ (RP (M) = r) then TranSeq(N,M, σ, ς, ̺) 6= ∅ and

PT (M,σΦ, ς, ̺) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)PT (M̃, σΦ̂, ς̂ , ˆ̺),

as well as

[[Φ]]flt(M, ς, ̺) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)[[Φ̂]]flt(M̃, ς̂, ˆ̺).

By the induction hypothesis, for all discrete markings M̃ reachable from M by firing transitions labeled
with action a we have

PT (M̃, σΦ̂, ς̂, ˆ̺) = [[Φ̂]]flt(M̃, ς̂, ˆ̺),

thus, we have proved the proposition. ⊓⊔
The following theorem provides fluid trace equivalence with the logical characterization within HMLflt.

Theorem 5.1 For LFSPNs N and N ′

N ≡fl N
′ ⇔ N =HMLflt

N ′.

Proof. The result follows from Proposition 5.1 and Proposition 5.2, which establish a bijective correspondence
between fluid stochastic traces of LFSPNs and formulas of HMLflt. ⊓⊔

Thus, in the trace semantics, we obtained a logical characterization of the fluid behavioural equivalence or,
symmetrically, an operational characterization of the fluid modal logic equivalence.
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Example 5.1 Consider the LFSPNs N and N ′ in Figure 2, for which it holds N ≡fl N
′, hence, N =HMLflt

N ′.
In particular, for Φ = 〈{a}〉〈{b}〉⊤ we have σΦ = a ·b and [[Φ]]flt(MN , 1

2 ◦ 1
2 ◦ 1

2 , 1◦ (−2)◦1) = PT (t1t2) = 1 · 12 =
1
2 = 1 · 1

2 = PT (t′1t
′
3) = [[Φ]]flt(MN ′ , 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1). Thus, N and N ′ have the same probability 1
2 of

the following evolution from their initial discrete markings: while the action a is ready for execution, the single
continuous place of each LFSPN is filled with the potential flow rate 1 during the exponentially distributed time
period with the average 1

2 ; then, while the action b is ready for execution, the continuous place of each LFSPN is
filled with the potential flow rate −2 (i.e. the place is actually emptied with the potential flow rate 2) during the
exponentially distributed time period with the average 1

2 ; finally, the continuous place of each LFSPN is filled
with the potential flow rate 1 for the exponentially distributed time period with the average 1

2 .

5.2 Logic HMLflb

The modal logic HMLMB has been introduced in [17, 21] on sequential and concurrent Markovian process
calculi SMPC (called MPC in [21]) and CPMC for logical interpretation of Markovian bisimulation equivalence.
HMLMB is based on the logic HML [59], in which the diamond operator was decorated with the rate lower
bound. Hence, HMLMB can also be seen as a modification of the logic PML [67], where the probability lower
bound that decorates the diamond operator was replaced with the rate lower bound.

We now propose a novel fluid modal logic HMLflb for the characterization of fluid bisimulation equivalence.
For this, we add to HMLMB a new modality ≀r, where r ∈ R is the potential fluid flow rate value for the single
continuous place of an LFSPN (remember that in the definition of fluid bisimulation equivalence we compare
only LFSPNs, each having exactly one continuous place). The formula ≀r is used to check whether the potential
fluid flow rate in a discrete marking of an LFSPN equals r. Finding this fact refers to a particular condition
from the fluid bisimulation definition. Thus, ≀r can be seen as a supplement to the PML and HMLMB formula
∇a, where a ∈ Act, since ∇a is used to check whether the transitions labeled with the action a cannot be fired
in a state (discrete marking). Finding this fact violates the bisimulation transfer property.

Definition 5.6 Let ⊤ denote the truth and a ∈ Act, r ∈ R, λ ∈ R>0. A formula of HMLflb is defined as
follows:

Φ ::= ⊤ | ¬Φ | Φ ∧ Φ | ∇a | ≀r | 〈a〉λΦ.

We define 〈a〉Φ = ∃λ 〈a〉λΦ and Φ ∨Ψ = ¬(¬Φ ∧ ¬Ψ).
HMLflb denotes the set of all formulas of the logic HMLflb.
The satisfaction relation is used to verify the validity of a formula of HMLflb in a discrete marking.

Definition 5.7 Let N be a LFSPN and M ∈ DRS(N). The satisfaction relation |=flb⊆ DRS(N)×HMLflb

is defined as follows:

1. M |=flb ⊤ — always;

2. M |=flb ¬Φ, if M 6|=N Φ;

3. M |=flb Φ ∧Ψ, if M |=N Φ and M |=N Ψ;

4. M |=flb ∇a, if it does not hold that M
a→ DRS(N);

5. M |=flb ≀r, if RP (M) = r;

6. M |=flb 〈a〉λΦ, if ∃H ⊆ DRS(N) M
a→µ H, µ ≥ λ and ∀M̃ ∈ H M̃ |=flb Φ.

Note that 〈a〉µΦ implies 〈a〉λΦ, if µ ≥ λ.

Definition 5.8 Let N be an LFSPN. Then we write N |=flb Φ, if MN |=flb Φ. LFSPNs N and N ′ are logically
equivalent in HMLflb, denoted by N =HMLflb

N ′, if ∀Φ ∈ HMLflb N |=flb Φ ⇔ N ′ |=flb Φ.

The following theorem provides fluid bisimulation equivalence with the logical characterization within
HMLflt.

Theorem 5.2 For LFSPNs N and N ′

N↔flN
′ ⇔ N =HMLflb

N ′.
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Proof. Our reasoning is based on the proofs of Theorem 6.4 from [67] about characterization of probabilistic
bisimulation equivalence for probabilistic transition systems and Theorem 1 from [43] about characterization of
strong equivalence for PEPA. The differences are the LFSPNs context, and that we also respect the fluid flow
rates in the discrete markings with the satisfaction check for the formulas ≀r, r ∈ R, as presented below.

(⇐) Let us define the equivalence relation R = {(M1,M2) ∈ (DRS(N) ∪DRS(N ′))2 | ∀Φ ∈ HMLflb

M1 |=flb Φ ⇔ M2 |=flb Φ}. We have (MN ,MN ′) ∈ R. Let us prove that R is a fluid bisimulation.

Assume that MN
a→λ H ∈ (DRS(N) ∪ DRS(N ′))/R. Let MN ′

a→λ′
1
M ′

1, . . . ,MN ′
a→λ′

i
M ′

i ,MN ′
a→λ′

i+1

M ′
i+1, . . . ,MN ′

a→λ′
n
M ′

n be the changes of the discrete marking MN ′ as a result of executing the action a. Since
the LFSPN N ′ is image-finite one by Lemma 5.1, the number of such changes is finite. The discrete marking
changes are ordered so that M ′

1, . . . ,M
′
i ∈ H and M ′

i+1, . . . ,M
′
n 6∈ H.

Then ∃Φi+1, . . . ,Φn ∈ HMLflb such that ∀j (i + 1 ≤ j ≤ n) ∀M ∈ H M |=flb Φj , but M ′
j 6|=flb Φj . We

have MN |=flb 〈a〉λ(∧n
j=i+1Φj) and MN ′ |=flb 〈a〉λ′(∧n

j=i+1Φj), where λ′ =
∑i

j=1 λ
′
j .

Assume that λ > λ′. Then MN ′ 6|=flb 〈a〉λ(∧n
j=i+1Φj), which contradicts to (MN ,MN ′) ∈ R. Hence, λ ≤ λ′.

Consequently, MN ′
a→λ′ H, where λ ≤ λ′. By symmetry of R, we have λ ≥ λ′. Thus, λ = λ′, and R is a fluid

bisimulation.
(⇒) Let for LFSPNs N and N ′ we have N↔flN

′. Then ∃R : N↔flN
′ and (MN ,MN ′) ∈ R. It is sufficient

to consider only the cases ∇a, ≀r and 〈a〉λΦ, since the remaining cases are trivial.
The case ∇a.
Assume that MN |=flb ∇a. Then it does not hold that MN

a→ DRS(N). Hence, there exist no t and M̃

such that MN
t→ M̃ and LN (t) = a. Since summing by the empty index set produces zero, the transitions from

each discrete marking always lead to the discrete markings of the discrete reachability set to which that discrete
marking belongs and (MN ,MN ′) ∈ R, we get 0 =

∑
{t|∃M̃∈DRS(N) MN

t→M̃, LN (t)=a} ΩN (t,MN ) =

RMa(MN , DRS(N)) = RMa(MN , DRS(N) ∪DRS(N ′)) =
∑

H∈(DRS(N)∪DRS(N ′))/R
RMa(MN ,H) =∑

H∈(DRS(N)∪DRS(N ′))/R
RMa(MN ′ ,H) = RMa(MN ′ , DRS(N) ∪DRS(N ′)) = RMa(MN ′ , DRS(N ′)) =

∑
{t′|∃M̃ ′∈DRS(N ′) MN′

t′→M̃ ′, LN′(t′)=a}
ΩN ′(t′,MN ′). Hence, there exist no t′ and M̃ ′ such that MN ′

t′→ M̃ ′ and

LN ′(t′) = a. Thus, it does not hold that MN ′
a→ DRS(N ′) and we have MN ′ |=flb ∇a.

The case ≀r.
Assume that MN |=flb ≀r. Then, respecting that (MN ,MN ′) ∈ R, we get r = RP (MN ) = RP (MN ′), hence,

MN ′ |=flb ≀r.
The case 〈a〉λΦ.
Assume that MN |=flb 〈a〉λΦ. Then ∃H ⊆ DRS(N) such that MN

a→µ H, µ ≥ λ and ∀M ∈ H M |=flb Φ.

Let us define H̃ =
⋃{H ∈ (DRS(N)∪DRS(N ′))/R | H∩H 6= ∅}. Then ∀M̃ ∈ H̃ ∃M ∈ H (M, M̃) ∈ R. Since

∀M ∈ H M |=flb Φ, we have ∀M̃ ∈ H̃ M̃ |=flb Φ by the induction hypothesis.

Since H ⊆ H̃, we get MN
a→µ̃ H̃, µ̃ ≥ µ. Since H̃ is the union of the equivalence classes with respect to R,

we have (MN ,MN ′) ∈ R implies MN ′
a→µ̃ H̃. Since µ̃ ≥ µ ≥ λ, we get MN ′ |=flb 〈a〉λΦ. Therefore, N ′ satisfies

all the formulas which N does. By symmetry of R, N satisfies all the formulas which N ′ does. Thus, the sets
of satisfiable formulas for N and N ′ coincide. ⊓⊔

Thus, in the bisimulation semantics, we obtained a logical characterization of the fluid behavioural equiva-
lence or, symmetrically, an operational characterization of the fluid modal logic equivalence.

Example 5.2 Consider the LFSPNs N and N ′ in Figure 2, for which it holds N↔/ flN
′, hence, N 6=HMLflb

N ′.
Indeed, for Φ = 〈a〉2〈b〉1⊤ we have N |=flb Φ, but N

′ 6|=flb Φ, since only in the LFSPN N ′ action a can occur
so that action b cannot occur afterwards.

Let us now take the LFSPNs N and N ′ in Figure 8, for which it holds N↔flN
′, hence, N =HMLflb

N ′.
In particular, for Ψ = ≀1 ∧ 〈a〉2(≀−2 ∧ 〈b〉2⊤) we have N |=flb Ψ and N ′ |=flb Ψ. Thus, for N and N ′ the
following evolution from their initial discrete markings is valid: while the action a is ready for execution, the
single continuous place of each LFSPN is filled with the potential flow rate 1 during the exponentially distributed
time period with the minimal rate 2; then, while the action b is ready for execution, the continuous place of each
LFSPN is filled with the potential flow rate −2 (i.e. the place is actually emptied with the potential flow rate 2)
during the exponentially distributed time period with the minimal rate 2.

Table 2 demonstrates how the modalities and interpretation functions of the logics HMLflt and HMLflb

respect the following behavioural aspects of LFSPNs: semantics type (linear or branching time), functional
activity (consisting in the action occurrences), stochastic timing (specified by the transition rates) and fluid flow
(defined by the fluid rates). In case of the composite constructions, the variables describing particular aspects
of behaviour are printed in bold font.
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Table 2: Behavioural aspects of LFSPNs in the logical modalities and interpretations

Fluid Semantics type Functional activity Stochastic timing Fluid flow
modal logic (linear/branching time) (action occurrences) (transition rates) (fluid rates)

HMLflt ⊤ 〈a〉 [[·]]flt(M, ς, ̺) [[·]]flt(M, ς,̺)
HMLflb ⊤, ¬, ∧ ∇a, 〈a〉λ 〈a〉λ ≀r

6 Stationary behaviour

In this section, we investigate preservation of the stationary behaviour of LFSPNs by the fluid equivalences.

6.1 Preservation of the quantitative behaviour

It is clear that the proposed fluid bisimulation equivalence of LFSPNs preserves their qualitative (functional)
behaviour which is based on the actions assigned to the fired transitions. Let us examine if fluid bisimulation
equivalence also preserves the quantitative (performance) behaviour of LFSPNs, taken for the steady states of
their underlying CTMCs and associated SFMs. The quantitative behaviour takes into account the values of
the rates and probabilities, as well as those of the related probability mass, distribution, density and mass at
lower boundary functions. Then we shall define the quotients of the mentioned probability functions by fluid
bisimulation equivalence with a goal to describe the quotient (by ↔fl) associated SFMs.

The following proposition demonstrates that for two LFSPNs related by ↔fl their aggregate steady-state
probabilities coincide for each equivalence class of discrete markings.

Proposition 6.1 Let N,N ′ be LFSPNs with R : N↔flN
′ and ϕ = (ϕ1, . . . , ϕn), n = |DRS(N)|, be the steady-

state PMF for CTMC(N), ϕ′ = (ϕ′
1, . . . , ϕ

′
m), m = |DRS(N ′)|, be the steady-state PMF for CTMC(N ′).

Then for all H ∈ (DRS(N) ∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
ϕi =

∑

{j|M ′
j∈H∩DRS(N ′)}

ϕ′
j .

Proof. The steady-state PMF ϕ = (ϕ1, . . . , ϕn) for CTMC(N) is a solution of the linear equation system

{
ϕQ = 0
ϕ1T = 1

.

Then for all i (1 ≤ i ≤ n) we have

{ ∑n
j=1 Qjiϕj = 0∑n
j=1 ϕj = 1

.

By definition of Qij (1 ≤ i, j ≤ n) we have

{ ∑n
j=1 RM(Mj,Mi)ϕj = 0∑n
j=1 ϕj = 1

.

Let H ∈ (DRS(N) ∪ DRS(N ′))/R. We sum the left and right sides of the first equation from the system
above for all i such that Mi ∈ H ∩DRS(N). The resulting equation is

∑

{i|Mi∈H∩DRS(N)}

n∑

j=1

RM(Mj,Mi)ϕj = 0.

Let us denote the aggregate steady-state PMF for CTMC(N) by ϕH∩DRS(N) =
∑

{i|Mi∈H∩DRS(N)} ϕi.
Then, by Remark 2 from Section 3.2, for the left-hand side of the equation above, we get∑

{i|Mi∈H∩DRS(N)}
∑n

j=1 RM(Mj,Mi)ϕj =
∑n

j=1 ϕj

∑
{i|Mi∈H∩DRS(N)} RM(Mj,Mi) =∑n

j=1 RM(Mj,H)ϕj =
∑

H̃∈(DRS(N)∪DRS(N ′))/R

∑
{j|Mj∈H̃∩DRS(N)} RM(Mj,H)ϕj =∑

H̃∈(DRS(N)∪DRS(N ′))/R

∑
{j|Mj∈H̃∩DRS(N)}RM(H̃,H)ϕj =∑

H̃∈(DRS(N)∪DRS(N ′))/R
RM(H̃,H)

∑
{j|Mj∈H̃∩DRS(N)} ϕj=

∑
H̃∈(DRS(N)∪DRS(N ′))/R

RM(H̃,H)ϕH̃∩DRS(N).

For the left-hand side of the second equation from the system above, we have∑n
j=1 ϕj =

∑
H̃∈(DRS(N)∪DRS(N ′))/R

∑
{j|Mj∈H̃∩DRS(N)} ϕj =

∑
H̃∈(DRS(N)∪DRS(N ′))/R

ϕH̃∩DRS(N).
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Thus, the aggregate linear equation system for CTMC(N) is

{ ∑
H̃∈(DRS(N)∪DRS(N ′))/R

RM(H̃,H)ϕH̃∩DRS(N) = 0∑
H̃∈(DRS(N)∪DRS(N ′))/R

ϕH̃∩DRS(N) = 1
.

Let us denote the aggregate steady-state PMF for CTMC(N ′) by ϕ′
H∩DRS(N ′) =

∑
{j|M ′

j∈H∩DRS(N ′)} ϕ
′
j .

Then, in a similar way, the aggregate linear equation system for CTMC(N ′) is

{ ∑
H̃∈(DRS(N)∪DRS(N ′))/R

RM(H̃,H)ϕ′
H̃∩DRS(N ′)

= 0∑
H̃∈(DRS(N)∪DRS(N ′))/R

ϕ′
H̃∩DRS(N ′)

= 1
.

Let (DRS(N) ∪ DRS(N ′))/R = {H1, . . . ,Hl}. Then the aggregate steady-state PMFs ϕHk∩DRS(N) and
ϕ′
Hk∩DRS(N ′) (1 ≤ k ≤ l) satisfy the same aggregate system of l + 1 linear equations with l independent

equations and l unknowns. The aggregate linear equation system has a unique solution when a single aggregate
steady-state PMF exists, which is the case here. Hence, ϕHk∩DRS(N) = ϕ′

Hk∩DRS(N ′) (1 ≤ k ≤ l). ⊓⊔
Let N be an LFSPN and ϕ be the steady-state PMF for CTMC(N). Let ϕK, K ∈ DRS(N)/Rfl(N), be the

elements of the steady-state PMF for CTMC↔fl
(N), denoted by ϕ↔fl

. By (the proof of) Proposition 6.1, for

all K ∈ DRS(N)/Rfl(N) we have

ϕK =
∑

{i|Mi∈K}
ϕi.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on N . One can see that

ϕV = ϕ↔fl
.

We have

{
ϕQ = 0
ϕ1T = 1

. After right-multiplying both sides of the first equation by V and since V1T = 1T ,

we get

{
ϕQV = 0
ϕV1T = 1

. Since QV = VQ↔fl
, we obtain

{
ϕVQ↔fl

= 0

ϕV1T = 1
. Since ϕV = ϕ↔fl

, we conclude that

ϕ↔fl
is a solution of the linear equation system

{
ϕ↔fl

Q↔fl
= 0

ϕ↔fl
1T = 1

.

Thus, the treatment of CTMC↔fl
(N) instead of CTMC(N) simplifies the analytical solution, since we

may have less states, but constructing the TRM Q↔fl
for CTMC↔fl

(N) also requires some efforts, including

determining Rfl(N) and calculating the rates to move from one equivalence class to another. The behaviour of
CTMC↔fl

(N) may stabilize quicker than that of CTMC(N) (if each of them has a single steady state), since

Q↔fl
is generally denser matrix than Q (the TRM for CTMC(N)) due to the fact that the former matrix is

usually smaller and the transitions between the equivalence classes “include” all the transitions between the
discrete markings belonging to these equivalence classes.

Let N,N ′ be LFSPNs with R : N↔flN
′ and ϕ = (ϕ1, . . . , ϕn), n = |DRS(N)|, be the steady-state PMF for

CTMC(N), ϕ′ = (ϕ′
1, . . . , ϕ

′
m), m = |DRS(N ′)|, be the steady-state PMF for CTMC(N ′). Then, by Remark

3 from Section 3.2 and by Proposition 6.1, the stability conditions for N and N ′ are coordinated:
0 >

∑n
i=1 ϕiRP (Mi) =

∑
H∈(DRS(N)∪DRS(N ′))/R

∑
{k|Mk∈H∩DRS(N)} ϕkRP (Mk) =∑

H∈(DRS(N)∪DRS(N ′))/R

∑
{k|Mk∈H∩DRS(N)} ϕkRP (H) =∑

H∈(DRS(N)∪DRS(N ′))/R
RP (H)

∑
{k|Mk∈H∩DRS(N)} ϕk =∑

H∈(DRS(N)∪DRS(N ′))/R
RP (H)

∑
{l|M ′

l∈H∩DRS(N ′)} ϕ
′
l =∑

H∈(DRS(N)∪DRS(N ′))/R

∑
{l|M ′

l∈H∩DRS(N ′)} ϕ
′
lRP (H) =∑

H∈(DRS(N)∪DRS(N ′))/R

∑
{l|M ′

l∈H∩DRS(N ′)} ϕ
′
lRP (M ′

l ) =
∑m

j=1 ϕ
′
jRP (M ′

j) < 0.

Further, since V1T = 1T , RV = VR↔fl
and ϕV = ϕ↔fl

, we get 0 >
∑n

i=1 ϕiRP (Mi) = ϕR1T =

ϕRV1T = ϕVR↔fl
1T = ϕ↔fl

R↔fl
1T =

∑
{K|K∈DRS(N)/Rfl(N)} ϕKRP (K) < 0.

The following proposition demonstrates that for two LFSPNs related by ↔fl their aggregate steady-state
fluid PDFs coincide for each equivalence class of discrete markings.

Proposition 6.2 Let N,N ′ be LFSPNs with R : N↔flN
′ and F (x) = (F1(x), . . . , Fn(x)), n = |DRS(N)|, be

the steady-state fluid PDF for the SFM of N, F ′(x) = (F ′
1(x), . . . , F

′
m(x)), m = |DRS(N ′)|, be the steady-state

fluid PDF for the SFM of N ′. Then for all H ∈ (DRS(N) ∪DRS(N ′))/R we have
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∑

{i|Mi∈H∩DRS(N)}
Fi(x) =

∑

{j|M ′
j∈H∩DRS(N ′)}

F ′
j(x), x > 0.

Proof. The ordinary differential equation characterizing the steady-state PDF for the SFM of N is

dF (x)

dx
R = F (x)Q, x > 0.

The upper boundary constraint is F (∞) = ϕ, where ϕ is the steady-state PMF for CTMC(N).
Then for all i (1 ≤ i ≤ n) we have

Rii
dFi(x)

dx
=

n∑

j=1

QjiFj(x), x > 0.

The upper boundary constraints are ∀i (1 ≤ i ≤ n) Fi(∞) = ϕi, where ϕ = (ϕ1, . . . , ϕn) is the steady-state
PMF for CTMC(N).

By definition of Rij and Qij (1 ≤ i, j ≤ n) we have

RP (Mi)
dFi(x)

dx
=

n∑

j=1

RM(Mj,Mi)Fj(x), x > 0.

Let H ∈ (DRS(N)∪DRS(N ′))/R. We sum the left and right sides of the equation above for all i such that
Mi ∈ H ∩DRS(N). The resulting equation is

∑

{i|Mi∈H∩DRS(N)}
RP (Mi)

dFi(x)

dx
=

∑

{i|Mi∈H∩DRS(N)}

n∑

j=1

RM(Mj,Mi)Fj(x), x > 0.

Let us denote the aggregate fluid flow PDF for the SFM of N by FH∩DRS(N)(x) =
∑

{i|Mi∈H∩DRS(N)} Fi(x).
Then, by Remark 3 from Section 3.2, for the left-hand side of the equation above, we get∑

{i|Mi∈H∩DRS(N)}RP (Mi)
dFi(x)

dx =
∑

{i|Mi∈H∩DRS(N)}RP (H)dFi(x)
dx = RP (H)

∑
{i|Mi∈H∩DRS(N)}

dFi(x)
dx =

RP (H) d
dx

(∑
{i|Mi∈H∩DRS(N)} Fi(x)

)
= RP (H)

dFH∩DRS(N)(x)

dx .

Analogously, for the right-hand side of the equation above, we get∑
{i|Mi∈H∩DRS(N)}

∑n
j=1 RM(Mj,Mi)Fj(x) =

∑n
j=1 Fj(x)

∑
{i|Mi∈H∩DRS(N)} RM(Mj,Mi) =∑n

j=1 RM(Mj,H)Fj(x) =
∑

H̃∈(DRS(N)∪DRS(N ′))/R

∑
{j|Mj∈H̃∩DRS(N)} RM(Mj,H)Fj(x) =∑

H̃∈(DRS(N)∪DRS(N ′))/R

∑
{j|Mj∈H̃∩DRS(N)}RM(H̃,H)Fj(x) =∑

H̃∈(DRS(N)∪DRS(N ′))/R
RM(H̃,H)

∑
{j|Mj∈H̃∩DRS(N)} Fj(x) =∑

H̃∈(DRS(N)∪DRS(N ′))/R
RM(H̃,H)FH̃∩DRS(N)(x).

By combining both the resulting sides of the differential equation, we get the aggregate differential equation
system for the SFM of N :

RP (H)
dFH∩DRS(N)(x)

dx
=

∑

H̃∈(DRS(N)∪DRS(N ′))/R

RM(H̃,H)FH̃∩DRS(N)(x), x > 0.

Let us denote the aggregate fluid flow PDF for the SFM of N ′ by F ′
H∩DRS(N ′)(x) =

∑
{j|M ′

j∈H∩DRS(N ′)} F
′
j(x).

Then, in a similar way, we get the aggregate differential equation system for the SFM of N ′:

RP (H)
dF ′

H∩DRS(N ′)(x)

dx
=

∑

H̃∈(DRS(N)∪DRS(N ′))/R

RM(H̃,H)F ′
H̃∩DRS(N ′)

(x), x > 0.

By Proposition 6.1, the upper boundary constraints associated with the aggregate differential equation
systems for the SFMs of N and N ′ coincide: FH∩DRS(N)(∞) =

∑
{i|Mi∈H∩DRS(N)} Fi(∞) =∑

{i|Mi∈H∩DRS(N)} ϕi =
∑

{j|M ′
j∈H∩DRS(N ′)} ϕ

′
i =

∑
{j|M ′

j∈H∩DRS(N ′)} F
′
j(∞) = F ′

H∩DRS(N ′)(∞).

Let (DRS(N) ∪ DRS(N ′))/R = {H1, . . . ,Hl}. By analogy with the above results for H ∈ (DRS(N) ∪
DRS(N ′))/R, we can demonstrate that for each Hk (1 ≤ k ≤ l) the aggregate differential equation systems for
the SFMs of N and N ′ and the associated upper boundary constraints coincide.

For each Hk (1 ≤ k ≤ l), the lower boundary constraints are ∃Mi ∈ Hk ∩ DRS(N) RP (Mi) > 0 ⇒
Fi(0) = 0 and ∃M ′

j ∈ Hk ∩ DRS(N ′) RP (M ′
j) > 0 ⇒ F ′

j(0) = 0. Since ∀Mi ∈ Hk ∩ DRS(N) ∀M ′
j ∈
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Hk ∩ DRS(N ′) RP (Mi) = RP (Hk ∩ DRS(N)) = RP (Hk) = RP (Hk ∩ DRS(N ′)) = RP (M ′
j), we have

FHk∩DRS(N)(0) = 0 ⇐ RP (Hk) > 0 ⇒ F ′
Hk∩DRS(N ′)(0) = 0 (1 ≤ k ≤ l).

Then the aggregate fluid flow PDFs FHk∩DRS(N)(x) and F ′
Hk∩DRS(N ′)(x) (1 ≤ k ≤ l) satisfy the same

aggregate system of l differential equations with l unknowns and the same upper and lower boundary constraints.
The spectral decomposition method, described in Section 2.3, provides such an aggregate differential equation
system with a unique solution. Hence, FHk∩DRS(N)(x) = F ′

Hk∩DRS(N ′)(x) (1 ≤ k ≤ l). ⊓⊔
Let N be an LFSPN and F (x) be the steady-state fluid PDF for the SFM of N . Let FK(x), K ∈

DRS(N)/Rfl(N), be the elements of the steady-state fluid PDF for the quotient (by ↔fl) SFM of N , denoted
by F↔fl

(x). By (the proof of) Proposition 6.2, for all K ∈ DRS(N)/Rfl(N) we have

FK(x) =
∑

{i|Mi∈K}
Fi(x), x > 0.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on N . One can see that

F (x)V = F↔fl
(x), x > 0.

We have dF (x)
dx R = F (x)Q, x > 0. After right-multiplying both sides of the above equation by V, we get

dF (x)
dx RV = F (x)QV, x > 0. Since RV = VR↔fl

and QV = VQ↔fl
, we obtain dF (x)

dx VR↔fl
= F (x)VQ↔fl

,

x > 0. By linearity of differentiation operator, we have d
dx(F (x)V)R↔fl

= F (x)VQ↔fl
, x > 0. Since

F (x)V = F↔fl
(x), we conclude that F↔fl

(x) is a solution of the system of ordinary differential equations

dF↔fl
(x)

dx
R↔fl

= F↔fl
(x)Q↔fl

, x > 0.

Thus, the treatment of the quotient (by ↔fl) SFM of N instead of SFM of N simplifies the analytical
solution.

The following proposition demonstrates that for two LFSPNs related by ↔fl their aggregate steady-state
fluid probability density functions coincide for each equivalence class of discrete markings.

Proposition 6.3 Let N,N ′ be LFSPNs with R : N↔flN
′ and f(x) = (f1(x), . . . , fn(x)), n = |DRS(N)|,

be the steady-state fluid probability density function for the SFM of N, f ′(x) = (f ′
1(x), . . . , f

′
m(x)), m =

|DRS(N ′)|, be the steady-state fluid probability density function for the SFM of N ′. Then for all H ∈
(DRS(N) ∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
fi(x) =

∑

{j|M ′
j∈H∩DRS(N ′)}

f ′
j(x), x > 0.

Proof. Remember that fi(x) = dFi(x)
dx (1 ≤ i ≤ n) and f ′

j(x) =
dF ′

j(x)

dx (1 ≤ j ≤ m). Let H ∈ (DRS(N) ∪
DRS(N ′))/R. By Proposition 6.2, we have

∑

{i|Mi∈H∩DRS(N)}
Fi(x) =

∑

{j|M ′
j∈H∩DRS(N ′)}

F ′
j(x), x > 0.

By differentiating both sides of this equation by x and applying the property for differentiating a sum, we
get

∑

{i|Mi∈H∩DRS(N)}
fi(x) =

∑

{i|Mi∈H∩DRS(N)}

dFi(x)

dx
=

∑

{j|M ′
j∈H∩DRS(N ′)}

dF ′
j(x)

dx
=

∑

{j|M ′
j∈H∩DRS(N ′)}

f ′
j(x), x > 0.

⊓⊔
Let N be an LFSPN and f(x) be the steady-state fluid probability density function for the SFM of N .

Let fK(x), K ∈ DRS(N)/Rfl(N), be the elements of the steady-state fluid probability density function for the
quotient (by↔fl) SFM ofN , denoted by f↔fl

(x). By (the proof of) Proposition 6.3, for all K ∈ DRS(N)/Rfl(N)

we have

fK(x) =
∑

{i|Mi∈K}
fi(x), x > 0.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on N . One can see that
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f(x)V = f↔fl
(x), x > 0.

We have df(x)
dx R = f(x)Q, x > 0. Like it has been done after Proposition 6.2, we can prove that f↔fl

(x) is
a solution of the system of ordinary differential equations

df↔fl
(x)

dx
R↔fl

= f↔fl
(x)Q↔fl

, x > 0.

Alternatively, we can use the fact f(x) = dF (x)
dx . Since f(x)V = f↔fl

(x), x > 0, and F (x)V = F↔fl
(x),

x > 0, by linearity of differentiation operator, we have f↔fl
(x) = f(x)V = dF (x)

dx V = d
dx(F (x)V) =

dF↔fl
(x)

dx .

We also have
dF↔fl

(x)

dx R↔fl
= F↔fl

(x)Q↔fl
, x > 0. Since f↔fl

(x) =
dF↔fl

(x)

dx , by differentiating both

sides of the previous equation, we get d
dx

(
f↔fl

(x)R↔fl

)
= d

dx

(
F↔fl

(x)Q↔fl

)
, x > 0. By linearity of

differentiation operator and since f↔fl
(x) =

dF↔fl
(x)

dx , we conclude that f↔fl
(x) is a solution of the system of

ordinary differential equations

df↔fl
(x)

dx
R↔fl

= f↔fl
(x)Q↔fl

, x > 0.

The following proposition demonstrates that for two LFSPNs related by ↔fl their aggregate steady-state
buffer empty probabilities coincide for each equivalence class of discrete markings.

Proposition 6.4 Let N,N ′ be LFSPNs with R : N↔flN
′ and ℓ = (ℓ1, . . . , ℓn), n = |DRS(N)|, be the steady-

state buffer empty probability for the SFM of N, ℓ′(x) = (ℓ′1, . . . , ℓ
′
m), m = |DRS(N ′)|, be the steady-state

buffer empty probability for the SFM of N ′. Then for all H ∈ (DRS(N) ∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
ℓi =

∑

{j|M ′
j∈H∩DRS(N ′)}

ℓ′j.

Proof. Remember that by the total probability law for the stationary behaviour for the SFM of N , we have

ℓ = ϕ−
∫ ∞

0+

f(x)dx.

Then for all i (1 ≤ i ≤ n) we have

ℓi = ϕi −
∫ ∞

0+

fi(x)dx.

Let H ∈ (DRS(N)∪DRS(N ′))/R. We sum the left and right sides of the equation above for all i such that
Mi ∈ H ∩DRS(N). The resulting equation is

∑

{i|Mi∈H∩DRS(N)}
ℓi =

∑

{i|Mi∈H∩DRS(N)}
ϕi −

∑

{i|Mi∈H∩DRS(N)}

∫ ∞

0+

fi(x)dx.

Consider the right-hand side of the equation above. We apply to it the property for integrating a sum, then
Proposition 6.1 and Proposition 6.3, finally, the total probability law for the stationary behaviour for the SFM
of N . Then we get

∑
{i|Mi∈H∩DRS(N)} ℓi =

∑
{i|Mi∈H∩DRS(N)} ϕi −

∑
{i|Mi∈H∩DRS(N)}

∫∞
0+

fi(x)dx =∑
{i|Mi∈H∩DRS(N)} ϕi −

∫∞
0+

∑
{i|Mi∈H∩DRS(N)} fi(x)dx =

∑
{j|M ′

j∈H∩DRS(N ′)} ϕ
′
i −∫∞

0+

∑
{j|M ′

j∈H∩DRS(N ′)} f
′
i(x)dx =

∑
{j|M ′

j∈H∩DRS(N ′)} ϕ
′
i −
∑

{j|M ′
j∈H∩DRS(N ′)}

∫∞
0+ f ′

i(x)dx =∑
{j|M ′

j∈H∩DRS(N ′)} ℓ
′
j. ⊓⊔

Let N be an LFSPN and ℓ be the steady-state buffer empty probability for the SFM of N . Let ℓK, K ∈
DRS(N)/Rfl(N), be the elements of the steady-state buffer empty probability for the quotient (by ↔fl) SFM
of N , denoted by ℓ↔fl

. By (the proof of) Proposition 6.4, for all K ∈ DRS(N)/Rfl(N) we have

ℓK =
∑

{i|Mi∈K}
ℓi.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on N . One can see that
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ℓV = ℓ↔fl
.

We have ℓ = ϕ −
∫∞
0+

f(x)dx. After right-multiplying both sides of the equation by V, we get ℓV =

ϕV −
(∫∞

0+ f(x)dx
)
V. Since ℓV = ℓ↔fl

and ϕV = ϕ↔fl
, by linearity of integration operator, we obtain

ℓ↔fl
= ϕ↔fl

−
∫∞
0+

f(x)Vdx. Since f(x)V = f↔fl
(x), x > 0, we conclude that ℓ↔fl

is a solution of the linear
equation system

ℓ↔fl
= ϕ↔fl

−
∫ ∞

0+

f↔fl
(x)dx.

Thus, the proposed quotients of the probability functions describe the behaviour of the quotient (by ↔fl)
associated SFMs of LFSPNs.

Example 6.1 Consider the LFSPNs N and N ′ in Figure 8, for which it holds N↔flN
′.

We have DRS−(N) = {M2}, DRS0(N) = ∅ and DRS+(N) = {M1}.
The steady-state PMF for CTMC(N) is

ϕ =

(
1

2
,
1

2

)
.

Then the stability condition for the SFM of N is fulfilled: FluidF low(q) =
∑2

i=1 ϕiRP (Mi) =
1
2 ·1+ 1

2 (−2) =
− 1

2 < 0.

For each eigenvalue γ we must have |γR−Q| =
∣∣∣∣
γ + 2 −2
−2 −2γ + 2

∣∣∣∣ = −2γ(1 + γ) = 0; hence, γ1 = 0 and

γ2 = −1.
The corresponding eigenvectors are the solutions of

v1

(
2 −2
−2 2

)
= 0, v2

(
1 −2
−2 4

)
= 0.

Then the (normalized) eigenvectors are v1 =
(
1
2 ,

1
2

)
and v2 =

(
2
3 ,

1
3

)
.

Since ϕ = F (∞) = a1v1, we have F (x) = ϕ+ a2e
γ2xv2 and a1 = 1. Since ∀Ml ∈ DRS+(N)

Fl(0) = ϕl + a2v2l = 0 and DRS+(N) = {M1}, we have ϕ1 + a2v21 = 1
2 + a2

2
3 = 0; hence, a2 = − 3

4 .
Then the steady-state fluid PDF for the SFM of N is

F (x) =

(
1

2
− 1

2
e−x,

1

2
− 1

4
e−x

)
.

The steady-state fluid probability density function for the SFM of N is

f(x) =
dF (x)

dx
=

(
1

2
e−x,

1

4
e−x

)
.

The steady-state buffer empty probability for the SFM of N is

ℓ = F (0) =

(
0,

1

4

)
.

One can see that F (∞) =
(
1
2 ,

1
2

)
= ϕ. Note also that f(0) =

(
1
2 ,

1
4

)
and it holds f(0)R =

(
1
2 ,− 1

2

)
= ℓQ.

We have DRS−(N ′) = {M ′
2,M

′
3}, DRS0(N ′) = ∅ and DRS+(N ′) = {M ′

1}.
The steady-state PMF for CTMC(N ′) is

ϕ′ =

(
1

2
,
1

4
,
1

4

)
.

Then the stability condition for the SFM of N ′ is fulfilled: FluidF low(q′) =
∑3

j=1 ϕ
′
jRP (M ′

j) = 1
2 · 1 +

1
4 (−2) + 1

4 (−2) = − 1
2 < 0.

For each eigenvalue γ′ we must have |γ′R′−Q′| =

∣∣∣∣∣∣

γ′ + 2 −1 −1
−2 −2γ′ + 2 0
−2 0 −2γ′ + 2

∣∣∣∣∣∣
= −2γ′(1+γ′)(1−γ′) = 0;

hence, γ′
1 = 0, γ′

2 = −1 and γ′
3 = 1.

By the boundedness condition, the positive eigenvalue γ′
3 and the corresponding eigenvector v′3 should be

excluded from the solution.
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Figure 12: The elements of the steady-state fluid PDFs for the SFMs of N and N ′ as functions of x

The remaining corresponding eigenvectors are the solutions of

v′1




2 −1 −1
−2 2 0
−2 0 2


 = 0, v′2




1 −1 −1
−2 4 0
−2 0 4


 = 0.

Then the remaining (normalized) eigenvectors are v′1 =
(
1
2 ,

1
4 ,

1
4

)
and v′2 =

(
2
3 ,

1
6 ,

1
6

)
.

Since ϕ′ = F ′(∞) = a′1v
′
1, we have F ′(x) = ϕ′ + a′2e

γ′
2xv′2 and a′1 = 1. Since ∀M ′

l ∈ DRS+(N ′)
F ′
l (0) = ϕ′

l + a′2v
′
2l = 0 and DRS+(N ′) = {M ′

1}, we have ϕ′
1 + a′2v

′
21 = 1

2 + a′2
2
3 = 0; hence, a2 = − 3

4 .
Then the steady-state fluid PDF for the SFM of N ′ is

F ′(x) =

(
1

2
− 1

2
e−x,

1

4
− 1

8
e−x,

1

4
− 1

8
e−x

)
.

The steady-state fluid probability density function for the SFM of N ′ is

f ′(x) =
dF ′(x)

dx
=

(
1

2
e−x,

1

8
e−x,

1

8
e−x

)
.

The steady-state buffer empty probability for the SFM of N ′ is

ℓ′ = F ′(0) =

(
0,

1

8
,
1

8

)
.

One can see that F ′(∞) =
(
1
2 ,

1
4 ,

1
4

)
= ϕ′. Note also that f ′(0) =

(
1
2 ,

1
8 ,

1
8

)
and it holds f ′(0)R′ =(

1
2 ,− 1

4 ,− 1
4

)
= ℓ′Q′.

In Figure 12, the plots of the elements F1, F2, F
′
2 of the steady-state fluid PDFs F = (F1, F2) and F ′ =

(F ′
1, F

′
2, F

′
3) for the SFMs of N and N ′ as functions of x are depicted. It is sufficient to consider the functions

F1(x) =
1
2 − 1

2e
−x, F2(x) =

1
2 − 1

4e
−x, F ′

2(x) =
1
4 − 1

8e
−x only, since F1 = F ′

1 and F ′
2 = F ′

3.
In Figure 13, the plots of the elements f1, f2, f

′
2 of the steady-state fluid probability density functions f =

(f1, f2) and f ′ = (f ′
1, f

′
2, f

′
3) for the SFMs of N and N ′ as functions of x are depicted. It is sufficient to consider

the functions f1(x) =
1
2e

−x, f2(x) =
1
4e

−x, f ′
2(x) =

1
8e

−x only, since f1 = f ′
1 and f ′

2 = f ′
3.

We have (DRS(N) ∪DRS(N ′))/Rfl(N,N ′) = {H1,H2}, where H1 = {M1,M
′
1} and H2 = {M2,M

′
2,M

′
3}.

First, consider the equivalence class H1.

• The aggregate steady-state probabilities for H1 coincide: ϕH1∩DRS(N) =
∑

{i|Mi∈H1∩DRS(N)} ϕi = ϕ1 =
1
2 = ϕ′

1 =
∑

{j|M ′
j∈H1∩DRS(N ′)} ϕ

′
j = ϕ′

H1∩DRS(N ′).

• The aggregate steady-state buffer empty probabilities for H1 coincide: ℓH1∩DRS(N) =∑
{i|Mi∈H1∩DRS(N)} ℓi = ℓ1 = 0 = ℓ′1 =

∑
{j|M ′

j∈H1∩DRS(N ′)} ℓ
′
j = ℓ′H1∩DRS(N ′).
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Figure 13: The elements of the steady-state fluid probability density functions for the SFMs of N and N ′ as
functions of x

• The aggregate steady-state fluid PDFs for H1 coincide: FH1∩DRS(N)(x) =
∑

{i|Mi∈H1∩DRS(N)} Fi(x) =

F1(x) =
1
2 − 1

2e
−x = F ′

1(x) =
∑

{j|M ′
j∈H1∩DRS(N ′)} F

′
j(x) = F ′

H1∩DRS(N ′)(x), where x > 0.

• The aggregate steady-state fluid probability density functions for H1 coincide: fH1∩DRS(N)(x) =∑
{i|Mi∈H1∩DRS(N)} fi(x) = f1(x) = 1

2e
−x = f ′

1(x) =
∑

{j|M ′
j∈H1∩DRS(N ′)} f

′
j(x) = f ′

H1∩DRS(N ′)(x),

where x > 0.

Second, consider the equivalence class H2.

• The aggregate steady-state probabilities for H2 coincide: ϕH2∩DRS(N) =
∑

{i|Mi∈H2∩DRS(N)} ϕi = ϕ2 =
1
2 = 1

4 + 1
4 = ϕ′

2 + ϕ′
3 =

∑
{j|M ′

j∈H2∩DRS(N ′)} ϕ
′
j = ϕ′

H2∩DRS(N ′).

• The aggregate steady-state buffer empty probabilities for H2 coincide: ℓH2∩DRS(N) =∑
{i|Mi∈H2∩DRS(N)} ℓi = ℓ2 = 1

4 = 1
8 + 1

8 = ℓ′2 + ℓ′3 =
∑

{j|M ′
j∈H2∩DRS(N ′)} ℓ

′
j = ℓ′H2∩DRS(N ′).

• The aggregate steady-state fluid PDFs for H2 coincide: FH2∩DRS(N)(x) =
∑

{i|Mi∈H2∩DRS(N)} Fi(x) =

F2(x) =
1
2− 1

4e
−x = 1

4− 1
8e

−x+ 1
4− 1

8e
−x = F ′

2(x)+F ′
3(x) =

∑
{j|M ′

j∈H2∩DRS(N ′)} F
′
j(x) = F ′

H2∩DRS(N ′)(x),

where x > 0.

• The aggregate steady-state fluid probability density functions for H2 coincide: fH2∩DRS(N)(x) =∑
{i|Mi∈H2∩DRS(N)} fi(x) = f2(x) =

1
4e

−x = 1
8e

−x+ 1
8e

−x = f ′
2(x)+f ′

3(x) =
∑

{j|M ′
j∈H2∩DRS(N ′)} f

′
j(x) =

f ′
H2∩DRS(N ′)(x), where x > 0.

One can also see that ϕ↔fl
= ϕ′

↔fl
= ϕ, ℓ↔fl

= ℓ′↔fl
= ℓ, F↔fl

(x) = F ′
↔fl

(x) = F (x), x > 0, and

f↔fl
(x) = f ′

↔fl
(x) = f(x), x > 0.

6.2 Preservation of the functionality and performance

In this section we demonstrate how fluid bisimulation equivalence preserves the functionality and performance
of the equivalent LFSPNs.

Consider the LFSPNs N and N ′ in Figure 8, for which it holds N↔flN
′.

Many steady-state hybrid performance indices may be aggregated to make them consistent with fluid bisim-
ulation, as well as with the quotienting of the discrete reachability graphs and underlying CTMCs, and with
the induced lumping of the discrete markings into the equivalence classes. Thus, the aggregate (up to ↔fl)
steady-state performance measures of N based on the probability functions ϕ, ℓ, F (x) and f(x) should coincide
with those of N ′ based on ϕ′, ℓ′, F ′(x) and f ′(x), respectively. Let us check this for the equivalence class H2.
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• The aggregate fraction (proportion) of time spent in the set of discrete markings H2 ∩DRS(N) is
T imeFract(H2 ∩DRS(N)) =

∑
{i|Mi∈H2∩DRS(N)} ϕi = ϕ2 = 1

2 .

The aggregate fraction (proportion) of time spent in the set of discrete markings H2 ∩DRS(N ′) is
T imeFract(H2 ∩DRS(N ′)) =

∑
{j|M ′

j∈H2∩DRS(N ′)} ϕ
′
i = ϕ′

2 + ϕ′
3 = 1

4 + 1
4 = 1

2 .

• The aggregate firing frequency (throughput) of the transitions enabled in the discrete markings from
H2 ∩DRS(N) is FiringFreqH2∩DRS(N) =

∑
t∈TN

FiringFreqH2∩DRS(N)(t) =∑
t∈TN

∑
{i|t∈Ena(Mi), Mi∈H2∩DRS(N)} ϕiΩN (t,Mi) = ϕ2ΩN (t2,M2) + ϕ2ΩN (t3,M2) = 1

2 · 1 + 1
2 · 1 =

1
2 + 1

2 = 1.

The aggregate firing frequency (throughput) of the transitions enabled in the discrete markings from
H2 ∩DRS(N ′) is FiringFreqH2∩DRS(N ′) =

∑
t′∈TN′

FiringFreqH2∩DRS(N ′)(t
′) =∑

t′∈TN′

∑
{j|t′∈Ena(M ′

j), M ′
j∈H2∩DRS(N ′)} ϕ

′
jΩN ′(t′,M ′

j) = ϕ′
2ΩN ′(t′3,M

′
2)+ϕ′

3ΩN ′(t′4,M
′
3) =

1
4 ·2+ 1

4 ·2 =
1
2 + 1

2 = 1.

• The aggregate exit frequency of the discrete markings from H2 ∩DRS(N) is ExitFreq(H2 ∩DRS(N)) =∑
{i|Mi∈H2∩DRS(N)} ϕi

SJ(H2∩DRS(N)) = ϕ2

SJ(M2)
= 1

2 · 2
1 = 1.

The aggregate exit frequency of the discrete markings from H2∩DRS(N ′) is ExitFreq(H2∩DRS(N ′)) =∑
{j|M′

j
∈H2∩DRS(N′)} ϕ′

j

SJ(H2∩DRS(N ′)) =
ϕ′

2+ϕ′
3

SJ(M ′
2)

=
ϕ′

2+ϕ′
3

SJ(M ′
3)

=
(
1
4 + 1

4

)
2
1 = 1.

• The aggregate mean potential fluid flow rate for the continuous place q in the discrete markings from
H2 ∩DRS(N) is FluidF lowH2∩DRS(N)(q) =

∑
{i|Mi∈H2∩DRS(N)} ϕiRP (H2 ∩DRS(N)) = ϕ2RP (M2) =

1
2 (−2) = −1.

The aggregate mean potential fluid flow rate for the continuous place q in the discrete markings from
H2 ∩ DRS(N ′) is FluidF lowH2∩DRS(N ′)(q) =

∑
{j|M ′

j∈H2∩DRS(N ′)} ϕ
′
jRP (H2 ∩ DRS(N ′)) = (ϕ′

2 +

ϕ′
3)RP (M ′

2) = (ϕ′
2 + ϕ′

3)RP (M ′
3) =

(
1
4 + 1

4

)
(−2) = −1.

• The aggregate traversal frequency of the move from the discrete markings from H2 ∩ DRS(N) to the
discrete markings from H1 ∩DRS(N) is TravFreq(H2 ∩DRS(N),H1 ∩DRS(N)) =∑

{i|Mi∈H2∩DRS(N)} ϕiRM(H2 ∩DRS(N),H1 ∩DRS(N)) = ϕ2RM(M2,M1) =
1
2 · 2 = 1.

The aggregate traversal frequency of the move from the discrete markings from H2 ∩ DRS(N ′) to the
discrete markings from H1 ∩DRS(N ′) is TravFreq(H2 ∩DRS(N ′),H1 ∩DRS(N ′)) =∑

{j|M ′
j∈H2∩DRS(N ′)} ϕ

′
jRM(H2 ∩DRS(N ′),H1 ∩DRS(N ′)) = (ϕ′

2 + ϕ′
3)RM(M ′

2,M
′
1) =

(ϕ′
2 + ϕ′

3)RM(M ′
3,M

′
1) =

(
1
4 + 1

4

)
2 = 1.

• The aggregate probability of the positive fluid level in the continuous place q in the discrete markings from
H2 ∩DRS(N) is FluidLevelH2∩DRS(N)(q) =

∑
{i|Mi∈H2∩DRS(N)}(ϕi − ℓi) = ϕ2 − ℓ2 = 1

2 − 1
4 = 1

4 .

The aggregate probability of the positive fluid level in the continuous place q′ in the discrete markings from
H2 ∩DRS(N ′) is FluidLevelH2∩DRS(N ′)(q

′) =
∑

{j|M ′
j∈H2∩DRS(N ′)}(ϕ

′
j − ℓ′j) = (ϕ′

2 − ℓ′2) + (ϕ′
3 − ℓ′3) =(

1
4 − 1

8

)
+
(
1
4 − 1

8

)
= 1

8 + 1
8 = 1

4 .

The following aggregate steady-state performance measures of N do not coincide with those of N ′ for the
equivalence class H2, since this index is based on the flow rates of continuous arcs from or to a continuous
place. However, fluid bisimulation equivalence respects only the total difference between the flow rates of all the
continuous arcs from a continuous place and the flow rates of all continuous arcs to the continuous place, and
this difference is calculated only for a single discrete marking among several bisimilar ones. Nevertheless, we
present these performance indices below with a goal to illustrate their calculation.

• The aggregate mean proportional flow rate across the continuous arcs from the continuous place q to the
transitions enabled in the discrete markings from H2 ∩DRS(N) is
FluidF lowOutH2∩DRS(N)(q) =

∑
t∈TN

FluidF lowH2∩DRS(N)(q, t) =
∑

t∈TN

∑
{i|t∈Ena(Mi), Mi∈H2∩DRS(N)}

(
ℓi

(∑
u∈Ena(M) RN ((u,q),M)∑
v∈Ena(M) RN ((q,v),M) − 1

)
+ ϕi

)
RN ((q, t),M) =

(
ℓ2

(∑
u∈Ena(M2) RN ((u,q),M2)∑
v∈Ena(M2) RN ((q,v),M2)

− 1
)
+ ϕ2

)
RN ((q, t2),M2) +

(
ℓ2

(∑
u∈Ena(M2) RN ((u,q),M2)∑
v∈Ena(M2) RN ((q,v),M2)

− 1
)
+ ϕ2

)
RN ((q, t3),M2).

We have
∑

u∈Ena(M2) RN ((u,q),M2)∑
v∈Ena(M2) RN ((q,v),M2)

− 1 = RN ((t2,q),M2)+RN ((t3,q),M2)
RN ((q,t2),M2)+RN ((q,t3),M2)

− 1 = 1+2
2+3 − 1 = − 2

5 .
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Figure 14: The diagram of the document preparation system

Thus,
(
ℓ2

(∑
u∈Ena(M2) RN ((u,q),M2)∑
v∈Ena(M2) RN ((q,v),M2)

− 1
)
+ ϕ2

)
RN ((q, t2),M2) +

(
ℓ2

(∑
u∈Ena(M2) RN ((u,q),M2)∑
v∈Ena(M2) RN ((q,v),M2)

− 1
)
+ ϕ2

)
RN ((q, t3),M2) =

(
1
4

(
− 2

5

)
+ 1

2

)
2+

(
1
4

(
− 2

5

)
+ 1

2

)
3 = 4

5 +
6
5 = 2.

• The aggregate mean proportional flow rate across the continuous arcs to the continuous place q from the
transitions enabled in the discrete markings from H2 ∩DRS(N) is
FluidF lowInH2∩DRS(N)(q) =

∑
t∈TN

FluidF lowH2∩DRS(N)(t, q) =∑
t∈TN

∑
{i|t∈Ena(Mi), Mi∈H2∩DRS(N)}

(
ℓi

(∑
v∈Ena(M) RN ((q,v),M)∑
u∈Ena(M) RN ((u,q),M) − 1

)
+ ϕi

)
RN (((t, q),M) =

(
ℓ2

(∑
v∈Ena(M2) RN ((q,v),M2)∑
u∈Ena(M2) RN ((u,q),M2)

− 1
)
+ ϕ2

)
RN ((t2, q),M2) +

(
ℓ2

(∑
v∈Ena(M2) RN ((q,v),M2)∑
u∈Ena(M2) RN ((u,q),M2)

− 1
)
+ ϕ2

)
RN ((t3, q),M2).

We have
∑

v∈Ena(M2) RN ((q,v),M2)∑
u∈Ena(M2) RN ((u,q),M2)

− 1 = RN ((q,t2),M2)+RN ((q,t3),M2)
RN ((t2,q),M2)+RN ((t3,q),M2)

− 1 = 2+3
1+2 − 1 = 2

3 .

Thus,
(
ℓ2

(∑
v∈Ena(M2) RN ((q,v),M2)∑
u∈Ena(M2) RN ((u,q),M2)

− 1
)
+ ϕ2

)
RN ((t2, q),M2) +

(
ℓ2

(∑
v∈Ena(M2) RN ((q,v),M2)∑
u∈Ena(M2) RN ((u,q),M2)

− 1
)
+ ϕ2

)
RN ((t3, q),M2) =

(
1
4 · 2

3 + 1
2

)
1 +

(
1
4 · 2

3 + 1
2

)
2 = 2

3 + 4
3 = 2.

7 Document preparation system

Let us consider an application example describing three different models of a document preparation system.
The system receives (in an arbitrary order or in parallel) the collections of the text and graphics files as its
inputs and writes them into the operative memory of a computer. The system then reads the (mixed) data
from there and produces properly formatted output documents consisting of text and images. In general, it
is supposed that the text file collections are transferred into the operative memory slower, but for longer time
than the graphics ones. In detail, the low resolution graphics is transferred into the operative memory with the
same speed as the high resolution one, but it takes less time than for the latter. The data from the operative
memory is consumed for processing quicker, but for shorter time than the input file collections of any type.
The operative memory capacity is supposed to be unlimited (for example, there exist some special mechanisms
to ensure that the memory upper boundary can always be increased, such as using the page file, stored on a
hard drive of the computer). Clearly, the lower boundary of the operative memory is zero. The diagram of the
system is depicted in Figure 14.

The meaning of the actions that label the transitions of the LFSPNs which will specify the three models of
the document preparation system is as follows. The action tx represents writing the text files into the operative
memory. The action gr represents putting the graphics files into the operative memory. Particularly, the action
gl corresponds to writing the low resolution graphics while gh specifies writing the high resolution graphics. The
action dt represents reading the data (consisting of the portions of the input text and images) from the operative
memory. In each LFSPN, a single continuous place containing fluid will represent the operative memory with
a data volume stored.

In Figure 15, the LFSPNs N and N ′ specifying the standard document preparation system, as well as the
LFSPN N ′′ representing the enhanced one that differentiates between the low and high resolution graphics, are
presented. The rate of all transitions labeled with the action tx is 1, the rate of those labeled with gr is 2 and
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Figure 15: The LFSPNs of the standard and enhanced document preparation systems
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Figure 16: The discrete reachability graphs of the LFSPNs of the standard and enhanced document preparation
systems

the rate of those labeled with dt is 3. Further, the rate of the transition with the label gl is 3
2 and the rate of

that with the label gh is 1
2 . The rate of the fluid flow along the continuous arcs from the transitions labeled

with the action tx is 1 while that from the transitions labeled with gr is 2. Next, the fluid flow rate from the
transitions with the label gl or gh is the same and equals 1. The rate of the fluid flow along the continuous arcs
to the transitions labeled with the action dt is 7.

We have N↔flN
′. Since LFSPNs have an interleaving semantics due to the continuous time approach and

the race condition applied to transition firings, the parallel execution of actions (here in N) is modeled by the
sequential non-determinism (in N ′). Fluid bisimulation equivalence is an interleaving relation constructed in
conformance with the LFSPNs semantics. In our application example, one can see that the “sequential” LFSPN
N ′ may be replaced with the fluid bisimulation equivalent and structurally simpler “concurrent” LFSPN N ,
the latter having less transitions and arcs. Thus, the mentioned equivalence can be used not just to reduce
behaviour of LFSPNs (as we have seen in the previous examples), but also to simplify their structure.

We have DRS(N) = {M1,M2,M3,M4}, where M1 = (1, 1, 0, 0), M2 = (0, 1, 1, 0), M3 = (1, 0, 0, 1), M4 =
(0, 0, 1, 1); DRS(N ′) = {M ′

1,M
′
2,M

′
3,M

′
4}, where M ′

1 = (1, 0, 0, 0), M ′
2 = (0, 1, 0, 0), M ′

3 = (0, 0, 1, 0), M ′
4 =

(0, 0, 0, 1); andDRS(N ′′) = {M ′′
1 ,M

′′
2 ,M

′′
3 ,M

′′
4 ,M

′′
5 ,M

′′
6 }, whereM ′′

1 = (1, 1, 0, 0, 0), M ′′
2 = (1, 0, 1, 0, 0), M ′′

3 =
(0, 1, 0, 0, 1), M ′′

4 = (1, 0, 0, 1, 0), M ′′
5 = (0, 0, 1, 0, 1), M ′′

6 = (0, 0, 0, 1, 1).
In Figure 16, the discrete reachability graphs DRG(N), DRG(N ′) and DRG(N ′′) are depicted. Then it is

clear that the discrete parts of the LFSPNs N and N ′ have the same behaviour.
Let N ′′′ is an abstraction of N ′′ by assuming that the actions gl and gh coincide with the action gr. Then it

holds N↔flN
′↔flN

′′′. In such a case, DRS(N ′′′) = {M ′′′
1 ,M ′′′

2 ,M ′′′
3 ,M ′′′

4 ,M ′′′
5 ,M ′′′

6 } coincides with DRS(N ′′)
up to the trivial renaming bijection on the places. Further, DRG(N ′′′) coincides with DRG(N ′′) up to the
analogous renaming the transitions.

Let K1 = {M1}, K2 = {M2}, K3 = {M3}, K4 = {M4} and K′
1 = {M ′

1}, K′
2 = {M ′

2}, K′
3 = {M ′

3}, K′
4 =

{M ′
4}, as well as K′′′

1 = {M ′′′
1 }, K′′′

2 = {M ′′′
2 ,M ′′′

4 }, K′′′
3 = {M ′′′

3 }, K′′′
4 = {M ′′′

5 ,M ′′′
6 }. In Figure 17, the quotient

(by ↔fl) discrete reachability graphs DRG↔fl
(N), DRG↔fl

(N ′) and DRG↔fl
(N ′′′) are depicted. Obviously,
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Figure 17: The quotient discrete reachability graphs of the LFSPNs of the standard document preparation
system and that of the abstract LFSPN of the enhanced document preparation system

DRG↔fl
(N) ≃ DRG↔fl

(N ′) ≃ DRG↔fl
(N ′′′). Then it is clear that the discrete parts of the LFSPNs N, N ′

and N ′′′ have the same quotient behaviour. Thus, quotienting by fluid bisimulation equivalence can be used to
substantially reduce behaviour of LFSPNs. It is also clear that the discrete parts of the LFSPNs N and N ′

have the same complete and quotient behaviour.
The sojourn time average and variance vectors of N ′′′ are

SJ ′′′ =

(
1

3
, 1,

1

2
, 1,

1

3
,
1

3

)
, V AR′′′ =

(
1

9
, 1,

1

4
, 1,

1

9
,
1

9

)
.

The complete and quotient sojourn time average and variance vectors of N and N ′, as well as the quotient
corresponding vectors of N ′′′, are

SJ = SJ↔fl
= SJ ′ = SJ ′

↔fl
= SJ ′′′

↔fl
=

(
1

3
,
1

2
, 1,

1

3

)
,

V AR = V AR↔fl
= V AR′ = V AR′

↔fl
= V AR′′′

↔fl
=

(
1

9
,
1

4
, 1,

1

9

)
.

The TRM Q′′′ for CTMC(N ′′′), TPM P′′′ for EDTMC(N ′′′) and FRM R′′′ for the SFM of N ′′′ are

Q′′′ =

















−3 3

2
1 1

2
0 0

0 −1 0 0 1 0
0 0 −2 0 3

2

1

2

0 0 0 −1 0 1
3 0 0 0 −3 0
3 0 0 0 0 −3

















, P′′′ =

















0 1

2

1

3

1

6
0 0

0 0 0 0 1 0
0 0 0 0 3

4

1

4

0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0

















, R′′′ =















3 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 −7 0
0 0 0 0 0 −7















.

The TRMs Q, Q↔fl
, Q′, Q′

↔fl
and Q′′′

↔fl
for CTMC(N), CTMC↔fl

(N), CTMC(N ′), CTMC↔fl
(N ′)

and CTMC↔fl
(N ′′′); TPMs P, P↔fl

, P′, P′
↔fl

and P′′′
↔fl

for EDTMC(N), EDTMC↔fl
(N),

EDTMC(N ′), EDTMC↔fl
(N ′) and EDTMC↔fl

(N ′′′); as well as FRMs R, R↔fl
, R′, R′

↔fl
and R′′′

↔fl
for

the complete and quotient SFMs of N, N ′ and for the quotient SFM of N ′′′ are

Q = Q↔fl
= Q′ = Q′

↔fl
= Q′′′

↔fl
=




−3 1 2 0
0 −2 0 2
0 0 −1 1
3 0 0 −3


 ,

P = P↔fl
= P′ = P′

↔fl
= P′′′

↔fl
=




0 1
3

2
3 0

0 0 0 1
0 0 0 1
1 0 0 0


 ,

R = R↔fl
= R′ = R′

↔fl
= R′′′

↔fl
=




3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 −7


 .

Thus, the respective discrete and continuous parts of the LFSPNs N andN ′ have the same complete and quo-
tient behaviour while N ′′′ has the same quotient one. Then it is enough to consider only LFSPN N from now on.
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The discrete markings of LFSPN N are interpreted as follows: M1: both the text and graphics file collections
are written to the memory, M2: the text file collection is resided in the memory and the graphics one is written
to the memory, M3: the graphics file collection is resided in the memory and the text one is written to the
memory, M4: the text and graphics file collections are resided in the memory and the data is read from there
(if it is not empty).

We have DRS−(N) = {M4}, DRS0(N) = ∅ and DRS+(N) = {M1,M2,M3}.
The steady-state PMF for CTMC(N) is

ϕ =

(
2

9
,
1

9
,
4

9
,
2

9

)
.

Then the stability condition for the SFM of N is fulfilled: FluidF low(q) =
∑4

i=1 ϕiRP (Mi) =
2
9 · 3+ 1

9 · 2+
4
9 · 1 + 2

9 (−7) = − 2
9 < 0.

For each eigenvalue γ we must have |γR−Q| =

∣∣∣∣∣∣∣∣

3(γ + 1) −1 −2 0
0 2(γ + 1) 0 −2
0 0 γ + 1 −1
−3 0 0 −7γ + 3

∣∣∣∣∣∣∣∣
= −42γ4−108γ3−

72γ2 − 6γ = 0; hence, γ1 = 0, γ2 = −1, γ3 = − 1
14 (11 +

√
93), γ4 = − 1

14 (11−
√
93).

The corresponding eigenvectors are the solutions of

v1




3 −1 −2 0
0 2 0 −2
0 0 1 −1
−3 0 0 3


 = 0, v2




0 −1 −2 0
0 0 0 −2
0 0 0 −1
−3 0 0 10


 = 0,

v3




3
14 (3 −

√
93) −1 −2 0

0 1
7 (3−

√
93) 0 −2

0 0 1
14 (3−

√
93) −1

−3 0 0 1
2 (17 +

√
93)


 = 0,

v4




3
14 (3 +

√
93) −1 −2 0

0 1
7 (3 +

√
93) 0 −2

0 0 1
14 (3 +

√
93) −1

−3 0 0 1
2 (17−

√
93)


 = 0.

Then the eigenvectors are v1 =
(
2
9 ,

1
9 ,

4
9 ,

2
9

)
, v2 = (0,−1, 2, 0), v3 =

(
− 3+

√
93

6 , 17+
√
93

12 , 17+
√
93

3 , 1
)
,

v4 =
(
− 3−

√
93

6 , 17−
√
93

12 , 17−
√
93

3 , 1
)
.

Since ϕ = F (∞) = a1v1, we have F (x) = ϕ + a2e
γ2xv2 + a3e

γ3xv3 + a4e
γ4xv4 and a1 = 1. Since ∀Ml ∈

DRS+(N) Fl(0) = ϕl + a2v2l + a3v3l + a4v4l = 0 and DRS+(N) = {M1,M2,M3}, we have the following linear

equation system:





ϕ1 + a2v21 + a3v31 + a4v41 = 2
9 − 3+

√
93

6 a3 − 3−
√
93

6 a4 = 0

ϕ2 + a2v22 + a3v32 + a4v42 = 1
9 − a2 +

17+
√
93

12 a3 +
17−

√
93

12 a4 = 0

ϕ3 + a2v23 + a3v33 + a4v43 = 4
9 + 2a2 +

17+
√
93

3 a3 +
17−

√
93

3 a4 = 0

.

By solving the system, we get a2 = 0, a3 = − 186−20
√
93

1953 , a4 = − 186+20
√
93

1953 . Thus, F (x) =
(
2
9 ,

1
9 ,

4
9 ,

2
9

)
−

186−20
√
93

1953 e−
1
14 (11+

√
93)x

(
− 3+

√
93

6 , 17+
√
93

12 , 17+
√
93

3 , 1
)
− 186+20

√
93

1953 e−
1
14 (11−

√
93)x

(
− 3−

√
93

6 , 17−
√
93

12 , 17−
√
93

3 , 1
)
.

Then the steady-state fluid PDF for the SFM of N is

F (x) =
(

2
9 − (31−3

√
93)

279 e−
1
14 (11+

√
93)x − (31+3

√
93)

279 e−
1
14 (11−

√
93)x,

1
9 − (93−11

√
93)

1674 e−
1
14 (11+

√
93)x − (93+11

√
93)

1674 e−
1
14 (11−

√
93)x,

4
9 − 2(93−11

√
93)

837 e−
1
14 (11+

√
93)x − 2(93+11

√
93)

837 e−
1
14 (11−

√
93)x,

2
9 − 186−20

√
93

1953 e−
1
14 (11+

√
93)x − 186+20

√
93

1953 e−
1
14 (11−

√
93)x

)
.

The steady-state fluid probability density function for the SFM of N is

f(x) = dF (x)
dx =

(
31−

√
93

1953 e−
1
14 (11+

√
93)x + 31+

√
93

1953 e−
1
14 (11−

√
93)x,−

√
93

837 e
− 1

14 (11+
√
93)x +

√
93

837 e
− 1

14 (11−
√
93)x,

− 4
√
93

837 e−
1
14 (11+

√
93)x + 4

√
93

837 e−
1
14 (11−

√
93)x, 93−17

√
93

13671 e−
1
14 (11+

√
93)x + 93+17

√
93

13671 e−
1
14 (11−

√
93)x

)
.

The steady-state buffer empty probability for the SFM of N is
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Figure 18: The elements of the steady-state fluid PDF for the SFM of the concurrent LFSPN of the document
preparation system

ℓ = F (0) =

(
0, 0, 0,

2

63

)
.

One can see that F (∞) =
(
2
9 ,

1
9 ,

4
9 ,

2
9

)
= ϕ. Note also that f(0) =

(
2
63 , 0, 0,

2
147

)
and it holds f(0)R =(

2
21 , 0, 0,− 2

21

)
= ℓQ.

In Figure 18, the plots of the elements F1, F2, F3, F4 of the steady-state fluid PDF F = (F1, F2, F3, F4) for
the SFM of N , as functions of x, are depicted.

In Figure 19, the plots of the elements f1, f2, f3, f4 of the steady-state fluid probability density function
f = (f1, f2, f3, f4) for the SFM of N , as functions of x, are depicted.

We can now calculate some steady-state performance measures for the document preparation system.

• The fraction of time when both the text and graphics file collections are written to the memory is

T imeFract({M1}) = ϕ1 =
2

9
.

• The average number of the text file collections received per unit of time is

FiringFreq(t1) =
∑

{i|t1∈Ena(Mi), Mi∈DRS(N)}
ϕiΩN (t1,Mi) = ϕ1ΩN (t1,M1) =

2

9
· 1 =

2

9
.

• The throughput of the system is

FiringFreq(t3) =
∑

{i|t3∈Ena(Mi), Mi∈DRS(N)}
ϕiΩN (t3,Mi) = ϕ4ΩN (t3,M4) =

2

9
· 3 =

2

3
.

• The probability that the memory is not empty is

FluidLevel(q) = 1−
∑

{i|Mi∈DRS(N)}
ℓi = 1− (ℓ1 + ℓ2 + ℓ3 + ℓ4) = 1− 2

63
=

61

63
.

• The probability that the operative memory contains at least 5 Mb data is

FluidLevel(q, 5) = 1−
∑

{i|Mi∈DRS(N)}
Fi(5) = 1− (F1(5) + F2(5) + F3(5) + F4(5)) =

5673−631
√
93

11718 e−
5
14 (11+

√
93) + 5673+631

√
93

11718 e−
5
14 (11−

√
93) ≈ 0.6181.
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Figure 19: The elements of the steady-state fluid probability density function for the SFM of the concurrent
LFSPN of the document preparation system

Since N↔flN
′↔flN

′′′, the LFSPNs N, N ′ and N ′′′ satisfy the same formulas of HMLflt (with the identical
interpretation values) and HMLflb. For instance, consider the following formulas for LFSPN N .

We have [[〈tx〉〈gr〉⊤]]flt(MN , 1
3 ◦ 1

2 ◦ 1
3 , 3 ◦ 2 ◦ (−7)) = PT (t1t2) =

1
3 · 1 = 1

3 , i.e. the value 1
3 is the probability

that the text files are written into the operative memory with the potential flow rate 3 during the exponentially
distributed time period with the average 1

3 ; then the graphics files are written into the memory with the potential
flow rate 2 during the exponentially distributed time period with the average 1

2 ; finally, the data is read from
the memory with the potential flow rate −7 for the exponentially distributed time period with the average 1

3 .
Further, it holds MN |=flb ≀3 ∧ (〈tx〉1⊤ ∨ 〈gr〉2⊤), i.e. it is valid that the text files are written into the

operative memory with the potential flow rate 3 during the exponentially distributed time period with the
minimal rate 1 or the graphics files are written into the memory with the same potential flow rate 3 during the
exponentially distributed time period with the minimal rate 2.

8 Conclusion

In this paper, we have defined two behavioural equivalences that preserve the qualitative and quantitative
behavior of LFSPNs, related to both their discrete part (labeled CTSPNs and the underlying CTMCs) and
continuous part (the associated SFMs). We have proposed on LFSPNs a linear-time relation of fluid trace
equivalence and a branching-time relation of fluid bisimulation equivalence. Both equivalences respect functional
activity, stochastic timing and fluid flow in the behaviour of LFSPNs. We have demonstrated that fluid trace
equivalence preserves average potential fluid change volume for the transition sequences of each given length. We
have proved that fluid bisimulation equivalence implies fluid trace equivalence and the reverse implication does
not hold in general. We have explained how to reduce the discrete reachability graphs and underlying CTMCs
of LFSPNs with respect to fluid bisimulation equivalence by applying the technique that builds the quotients
of the respective labeled transition systems by the largest fluid bisimulation. We have defined the quotients of
the probability functions by fluid bisimulation equivalence to describe the quotient associated SFMs.

We have characterized logically fluid trace and bisimulation equivalences with two novel fluid modal logics
HMLflt and HMLflb. The characterizations give rise to better understanding of basic features of the equiv-
alences. In [20, 21], the local and global approaches to the temporal aspects of computations were explained.
The local approach considers such aspects at the level of the individual actions in the computations while the
global approach does it at the level of global computations. In the local case, the temporal parameters should
be in the modal operators and the interpretation of the formulas should be qualitative, i.e. it should return the
truth value if a formula is satisfied. In the global case, the temporal parameters should not be present in the
syntax and the interpretation of the formulas should be quantitative, i.e. it should give a value that measures
how much (in which degree) a formula is satisfied. We have used the global approach in HMLflt and the local
approach in HMLflb. According to [2], we have demonstrated that the fluid equivalences are reasonable no-
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tions, by constructing their natural and mathematically elegant modal characterizations. In addition, they offer
a possibility for the logical reasoning on resemblance of the fluid behaviour, while before it was only possible in
the operational manner, as the following example shows.

Example 8.1 Let N be one of the fluid (trace of bisimulation) equivalent LFSPNs that model the production
line from Example 1.1. In the initial discrete marking MN , we now can specify and verify formally the properties
described there: the probability given by the interpretation [[〈f1〉〈f2〉⊤]]flt(MN , s1s2s3, r1r2(−r3)) in HMLflt

and the validity of the satisfaction MN |=flb ≀r1 ∧ (〈f1〉λ1⊤ ∨ 〈f2〉λ2⊤) in HMLflb.

We have proved that fluid bisimulation equivalence preserves the qualitative and stationary quantitative
behaviour, hence, it guarantees that the functionality and performance measures of the equivalent systems
coincide. We have presented a case study of the three LFSPNs, all modeling the document preparation system,
with intention to show how fluid bisimulation equivalence can be used to simplify the LFSPNs structure and
behaviour. A possible continuation of the presented work may be characterization of the fluid equivalences via
more expressive logics, such as the CSL fluid extensions resembling the temporal logic for SFMs [51]. Moreover,
by applying the theory from [56, 63], we can consider fluid equivalences of the LFSPNs with the level-dependent
functions specifying transition firing rates and (piecewise-constant) fluid flow rates of continuous arcs. The
associated SFM of each such extended LFSPN will be described by the TRM Q(x) (variable x denotes a fluid
level value) with the non-diagonal elements RM(Mi,Mj, x) (1 ≤ i, j ≤ n, x ∈ [0; +∞)), and also by the FRM
R(x) with the diagonal elements RP (Mi, x) (1 ≤ i ≤ n, x ∈ [0; +∞)), the latter being fluid level-independent
functions within intervals between the boundaries, where fluid probability mass may be created. For the model
stability, the fluid flow rate must be negative in the last interval that is also the only infinite range. The matrices
Q(x) and R(x) are used to build the ODE systems in those intervals for the probability density functions, so
that the lumping approach may be applied. Then our results on the interrelations and quotienting will be
also valid for the “level-sensitive” versions of the fluid equivalences. The corresponding fluid modal logics may
be constructed for their characterization, by imposing fluid level dependence to the interpretation function of
HMLflt and those modalities of HMLflb, which respect the transition and flow rates.

In the future, we also plan to define a fluid place bisimulation relation that connects “similar” continuous
places of LFSPNs, like place bisimulations [7, 6, 80, 81, 82] relate discrete places of (standard) Petri nets.
The lifting of the relation to the discrete-continuous LFSPN markings (with discrete markings treated as the
multisets of places) will respect both the fluid distribution among the related continuous places and the rates
of fluid flow through them. For this purpose, we should introduce a novel notion of the multiset analogue with
non-negative real-valued multiplicities of the elements. While multiset is a mapping from a countable set to all
natural numbers, we need a more sophisticated mapping from the set of continuous places to all non-negative
real numbers, corresponding to the associated fluid levels. Such an extension of the multiset notion may use the
results of [25, 79], concerning hybrid sets (the multiplicities of the elements are arbitrary integers) and fuzzy
multisets (the multiplicities belong to the interval [0;1]). In this way, both the initial amount of fluid and its
transit flow rate in each discrete marking may be distributed among several continuous places of an LFSPN, such
that all of them are bisimilar to a particular continuous place of the equivalent LFSPN. The interesting point
here is that fluid distributed among several bisimilar continuous places should be taken as the fluid contained
in a single continuous place, resulting from aggregating those “constituent” continuous places with the use of
fluid place bisimulation. Then the fluid level in the “aggregate” continuous place will be a sum of the fluid
levels in the “constituent” continuous places. The probability density function for the sum of random variables
representing the fluid levels in the “constituent” continuous places is defined via convolution operation. In this
approach, we should avoid or treat correctly the situations when the fluid flow in the “aggregate” continuous
place becomes suddenly non-continuous. This happens when some of the “constituent” continuous places are
emptied while the others still contain a positive amount of fluid. Obviously, such a discontinuity is a result of
applying the aggregation since it is not caused by either reaching the lower fluid boundary (zero fluid level) or
change of the current discrete marking.

We assume that summation of the fluid levels in the continuous places may be implemented with the
constructions proposed in [49] for extended FSPNs (EFSPNs). EFSPNs have special deterministic fluid jump arcs
that are used to transfer a deterministic amount of fluid from one continuous place to another via intermediate
stochastic transitions connecting both places (deterministic fluid transfer). Analogously, random fluid jump
arcs in EFSPNs are used to transfer a random amount of fluid from one continuous place to another (random
fluid transfer). We can also use fluid transitions, mentioned in [49] as a direction for future development of
the FSPNs formalism. Fluid transitions that transfer fluid from their input to their output continuous places
are used to implement fluid volume conservation. If one of the input continuous places of a fluid transition
becomes empty (i.e. the lower fluid boundary is reached) then the rate of the transition should change in a
certain way. The continuous arcs between continuous places and fluid transitions may have multiplicities that
multiply (change according to a factor) the fluid flow along the arcs. Fluid transitions may be controlled by a

53



discrete marking, using the guard functions associated with them or applying the inhibitor and test arcs, i.e.
by the constructions that do not affect discrete markings.

Further, we intend to apply to LFSPNs an analogue of the effective reduction technique based on the place
bisimulations of Petri nets [7, 6]. In this way, we shall merge several equivalent continuous places and, in some
cases, the transitions between them. This should result in the significant reductions of LFSPNs. The number
of continuous places in an LFSPN impacts drastically the complexity of its solution. The analytical solution
is normally possible for just a few continuous places (or even only for one). In all other cases, when modeling
realistic large and complex systems, we have to apply numerical techniques to solve systems of partial differential
equations, or the method of simulation. Hence, the reduction of the number of continuous places accomplished
with the place bisimulation merging appears to be even more important for LFSPNs than for Petri nets.

After doing this, it would be rather interesting to provide fluid place bisimulation equivalences with logical
characterizations by constructing new fluid “place” logics, whose modalities are capable to specify “aggregate”
fluid flow rates, i.e. the sums of the rates for the equivalent continuous places.
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[62] Horváth A., Gribaudo M. Matrix geometric solution of fluid stochastic Petri nets. Proceedings of 4th

International Conference on Matrix-Analytic Methods in Stochastic Models - 02 (MAM’02), Adelaide,
Australia, July 2002, p. 163–182, World Scientific, 2002, http://www.di.unito.it/~horvath/
publications/papers/HoGr02.ps, http://www.di.unito.it/~marcog/Downloads/HoGr02.pdf.
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