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EQUIVALENCES FOR FLUID STOCHASTIC PETRI NETS
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Abstract. We propose fluid equivalences to compare and reduce behavi-
our of labeled fluid stochastic Petri nets (LFSPNs) while preserving their
discrete and continuous properties. We define a linear-time relation of
fluid trace equivalence and its branching-time counterpart, fluid bisimula-
tion equivalence. Both fluid relations respect the essential features of the
LFSPNs behaviour, such as functional activity, stochastic timing and
fluid flow. We consider the LFSPNs whose continuous markings have
no influence to the discrete ones, i.e. every discrete marking determines
completely both the set of enabled transitions, their firing rates and the
fluid flow rates of the incoming and outgoing arcs for each continuous
place. We also require that the discrete part of the LFSPNs should be
continuous time stochastic Petri nets. The underlying stochastic model
for the discrete part of the LFSPNs is continuous time Markov chains
(CTMCs). The performance analysis of the continuous part of LFSPNs
is accomplished via the associated stochastic fluid models (SFMs). We
show that fluid trace equivalence preserves average potential fluid change
volume for the transition sequences of every certain length. We prove that
fluid bisimulation equivalence preserves the following aggregated (by such
a bisimulation) probability functions: stationary probability mass for the
underlying CTMC, as well as stationary fluid buffer empty probability,
fluid density and distribution for the associated SFM. Fluid bisimulation
equivalence is then used to simplify the qualitative and quantitative
analysis of LFSPNs that is accomplished by means of quotienting (by the
equivalence) the discrete reachability graph and underlying CTMC. The
application example of a document preparation system demonstrates the
behavioural analysis via quotienting by fluid bisimulation equivalence.
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1. Introduction

An important scientific problem that has been often addressed in the last deca-
des is the design and analysis of parallel systems, which takes into account both
qualitative (functional) and quantitative (timed, probabilistic, stochastic) features
of their behaviour. The main goal of the research on this topic is the development
of models and methods respecting performance requirements for concurrent and
distributed systems with time constraints (such as deterministic, nondeterministic
and stochastic time delays) to construct, validate and optimize the performability
of realistic large-scale applications: computing systems, networks and software,
controllers for industrial devices, manufacturing lines, vehicle, aircraft and transpor-
tation engines. A fruitful approach to achieving progress in this direction appeared
to be a combined application of the theories of Petri nets, stochastic processes and
fluid flow systems to the specification and analysis of such time-dependent systems
with inherent behavioural randomicity [35].

1.1. Fluid stochastic Petri nets. In the past, many extensions of stochastic
Petri nets (SPNs) [48, 46, 47, 44, 45, 4, 5] have been developed to specify, model,
simulate and analyze some particular classes of systems, such as computer systems,
communication networks or manufacturing plants. These new formalisms have been
constructed as a response to the needs for more expressive power in describing real-
world systems, and to the requirements for compact models and efficient analysis
techniques. One of the extensions are fluid stochastic Petri nets (FSPNs), capable
of modeling hybrid systems that combine continuous state variables, corresponding
to the fluid levels, with discrete state variables, specifying the token numbers. The
continuous part of the FSPNs allows one to represent the fluid level in continuous
places and fluid flow along continuous arcs. This part can naturally describe continu-
ous variables in physical systems whose behaviour is commonly represented by
differential equations. Continuous variables may also be used to describe a macrosco-
pic view of discrete items that appear in large populations, e.g., packets in a
computer network, molecules in a chemical reaction or people in a crowd. The
discrete part of an FSPN is essentially its underlying SPN, obtained from the FSPN
by removing all the fluid-related continuous elements. This part usually models
the discrete control of the continuous process. The control may demonstrate some
stochastic behavior that captures uncertainty about the detailed system behavior.

FSPNs have been proposed in [55, 22, 63] to model stochastic fluid flow systems
[34, 30]. To analyze FSPNs, simulation, numerical and matrix-geometric methods
are widely used [39, 23, 13, 31, 32, 28, 29, 40, 33]. The major problem of FSPNs is the
high complexity of their solution, resulting in huge memory and time requirements
while analyzing realistic models. A positive feature of the FSPN formalism is that
it hides from a modeler the technical difficulties with solving differential equations
for the underlying stochastic processes and that it unifies in one framework the
evolution equations for the discrete and continuous parts of systems.
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1.2. Equivalences on the related models. However, to the best of our know-
ledge, neither transition labeling nor behavioral equivalences have been proposed
so far for FSPNs. In [56, 57, 58], label equivalence and projected label equivalence
have been introduced for Fluid Process Algebra (FPA). FPA is a simple sub-
algebra of Grouped PEPA (GPEPA) [36], which is itself a conservative extension
of Performance Evaluation Process Algebra (PEPA) [38], obtained by adding fluid
semantics with an objective to simplify solving the systems of replicated ordinary
differential equations. In [56, 58], it has been proved that projected label equivalence
induces a fluid lumpable partition and that both label equivalence and projected
label equivalence imply semi-isomorphism (stochastic isomorphism), in the context
of a special subclass of well-posed models. Nevertheless, the mentioned label equiva-
lences do not respect the action names; hence, they are not behavioral relations.

In [59, 60], the models specified with large ordinary differential equation (ODE)
systems have been explored within Fluid Extended Process Algebra (FEPA). The
relations of semi-isomorphism, ordinary and projected label equivalence have been
proposed for the sequential process components, called fluid atoms, that can have a
multiplicity (the number of copies in the model specification). In addition to exact
fluid lumpability (EFL) from [56, 58] that aggregates isomorphic processes with
the same multiplicities, ordinary fluid lumpability (OFL) has been proposed. OFL
does not require that the multiplicities of the isomorphic processes coincide, but it
preserves the sums of the aggregated variables instead. Moreover, the approximate
versions (ǫ-variants) of semi-isomorphism, EFL and OFL have been investigated,
which abstract from small fluctuations of the parameter values in the processes
with close (similar) differential trajectories. However, the label equivalences do not
respect the names of actions and therefore they are not behavioural equivalences.

In [61], two notions of lumpability for the class of heterogenous systems models
specified by nonlinear ODEs have been investigated: exact lumpability (EL) [54]
and uniform lumpability (UL), both applied for exact aggregation of the state
variables. Unlike the EL transformations through linear mappings (in particular,
those induced by a partition of the original state space), UL considers exact symme-
tries of the equations due to identification of the different variables from one
partition block, which have coinciding differential trajectories (solutions) in case
of the same initial conditions. This is an extension of the ODE systems reduction
technique for FPA [56] to arbitrary vector fields. Both the lumpability relations do
not take into account the action names and they are not behavioural equivalences.

In [41], differential bisimulation for FEPA has been constructed. This relation
induces a partition on ODEs corresponding to the FEPA terms. Differential bisimu-
lation is a behavioural equivalence that is an ODE analogue of the probabilistic
and stochastic bisimulations. For each partition block, the sum of solutions of its
ODEs coincides with the solution of a single aggregate ODE for this block. In the
framework of FSPNs, the ODE systems are obtained only when there is exactly
one continuous place. In the general case (more than one continuous place), the
dynamics of FSPNs is described by the systems of equations with partial derivatives
of probability distribution and density functions w.r.t. fluid levels in the continuous
places. These levels are the random variables with a parameter accounting for the
work time of an FSPN, starting from the initial moment. Just for the fluid levels,
the ODEs over the time variable can be constructed in each discrete marking.
However, the sojourn time in each discrete marking is a random variable, calculated
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as the minimal transition delay, among all the transitions enabled in the marking.
The FEPA processes are described by the ODE systems with derivatives of the
population functions that define the multiplicities (numbers of replicas) of fluid
atoms by only one variable denoting the time. Thus, the analogues of the FEPA fluid
atoms are the (mainly, continuous) places of FSPNs. Hence, the FSPN model always
has a naturally embedded notion of population, seen as a fluid in a continuous place.
The systems behaviour is treated in FSPNs on a higher level of specification using
the continuous time concept and the GSPN basic model, and also on a higher
analysis level with constructing the underlying SMCs, CTMCs and stochastic fluid
models (SFMs). The multiplicities of the FEPA fluid atoms are the functions of
time, such that their values can be found for every particular time moment. In
contrast, the fluid levels in continuous places of FSPNs are the continuous random
variables that depend on time, so that their exact values at a given moment of
time cannot be calculated. The reason is the property of the continuous probability
distributions, stating that a continuous random variable may be equal to a concrete
fixed value with zero probability only (excepting that in FSPNs, the fluid probability
mass at the boundaries may be positive). In addition, the FEPA expressivity is
restricted by considering only the processes, each being a parallel composition of the
fluid atoms denoting a large number of copies of the simple sequential components,
specified with only three operations: prefix, choice and recursive definition with
constants. Moreover, the fluid atoms in FEPA are considered uniformly, i.e. there
is no difference between “discrete” atoms with small multiplicities and “continuous”
ones with large multiplicities. However, the tokens in FSPNs are jumped from one
discrete place to another instantaneously when their input of output transitions fire,
whereas the fluid flow proceeds through continuous places during all the time period
when their input or output transitions are enabled. Thus, the notion of differential
bisimulation cannot be straightforwardly transferred from FEPA to FSPNs.

In [17, 18, 20], back and forth bisimulation equivalences on chemical species
have been introduced for chemical reaction networks (CRNs) with the ODE-based
semantics. The forth bisimulation induces a partition where each equivalence class
is a sum of concentrations of the species from this class, and this relation guarantees
the ordinary fluid lumping on the ODEs of CRNs. The back bisimulation relates
the species with the same ODE solutions at all time points, starting from the
moment for which their equal initial conditions have been defined, and this relation
characterizes the exact fluid lumping on the ODEs of CRNs. The bisimulations
proposed in [17] differ from the equivalences from [56, 57, 58, 59, 60], since the former
ones relate single variables whereas the latter ones relate the sets of variables, such
that each of them represents the behaviour of some sequential process. The CRNs
dynamics is described by ODEs with derivatives w.r.t. one variable (time), and
the CRNs behaviour is deterministic, described by differential trajectories. Unlike
CRNs, FSPNs have a stochastic behaviour which is influenced by the interplay of
time and probabilistic factors. The FSPNs dynamics is analyzed with SFMs, solved
using the differential equations with partial derivatives w.r.t. several variables.

In [19], back and forth differential equivalences have been explored for a basic
formalism, called Intermediate Drift Oriented Language (IDOL). IDOL has a syntax
to specify drift for a class of non-linear ODEs, for which the decidability results
are known. The mentioned equivalence relations can be transferred from IDOL
to the higher-level models, such as Petri nets, process algebras and rule systems,
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interpreted as ODEs. The differential equivalences embrace such notions as minimi-
zation of CTMCs based on the lumpability relation [26], bisimulations of CRNs [17]
and behavioural relations for process algebras with the ODE semantics [41]. At the
same time, the ODE class defined by the IDOL language cannot specify semantics
of the systems with stochastic continuous time delays in the discrete states, as well
as many other behavioural aspects of FSPNs, including the ones mentioned above.

In [1], on the product form queueing networks, the ideas of equivalent flow server
and flow equivalence have been applied to the models reduction, by aggregating
server stations and their states by that equivalence. Nevertheless, flow equivalence
does not respect the names of actions, hence, it is not a behavioural relation.

1.3. Our contributions. In this paper, we propose the behavioural relations of
fluid trace and bisimulation equivalences that are useful for the comparison and
reduction of the behaviour of LFSPNs, since these relations preserve the functionali-
ty and performability of their discrete and continuous parts.

For every FSPN, the discrete part of its marking is determined by the natural
number of tokens contained in the discrete places. The continuous places of an
FSPN are associated with the non-negative real-valued fluid levels that determine
the continuous part of the FSPN marking. Thus, FSPNs have a hybrid (discrete-
continuous) state space. The discrete part of a hybrid marking of FSPNs is called
discrete marking while the continuous part is called continuous one. The discrete part
of each hybrid marking has an influence on the continuous part. For more general
FSPNs, the reverse dependence is possible as well. As a basic model for constructing
LFSPNs, we consider only the FSPNs in which the continuous parts of markings
have no influence on the discrete ones, i.e. every discrete part determines completely
both the set of enabled transitions and the rates of incoming and outgoing arcs for
each continuous place [28, 33]. We also require that the discrete part of LFSPNs
should be labeled continuous time stochastic Petri nets (CTSPNs) [46, 44, 45, 4].

First, we define a linear-time relation of fluid trace equivalence on LFSPNs.
Linear-time equivalences, unlike branching-time ones, do not respect the points
of choice among several alternative continuations of the system’s behavior. We
require the relation on discrete markings of two LFSPNs to be a standard (strong)
Markovian trace equivalence. Hence, for every sequence of discrete markings and
transitions in the discrete reachability graph of an LFSPN, starting from the initial
discrete marking (such sequence is called path), we require a simulation of the path
in the discrete reachability graph of the equivalent LFSPN, such that the action
labels of the corresponding fired transitions in the both sequences coincide. Next,
the average sojourn times in the respective discrete markings should be the same.
Finally, for the two equivalent LFSPNs, the cumulative execution probabilities of all
the paths corresponding to a particular sequence of actions, together with a concrete
sequence of the average sojourn times, should be equal. Thus, when comparing the
execution probabilities, we parameterize the paths with the same extracted action
sequence by all possible sequences of the extracted average sojourn times. Our
definition of the trace equivalence on the discrete markings of LFSPNs is similar
to that of ordinary (that with the absolute time counter or with the countdown
timer) Markovian trace equivalence [62] on transition-labeled CTMCs. Ordinary
Markovian trace equivalence and its variants from [62] have been later investigated
and enhanced on sequential and concurrent Markovian process calculi SMPC and
CMPC in [8, 6, 7, 9] and on Uniform Labeled Transition Systems (ULTraS) in
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[10, 11]. As for the continuous markings of the two LFSPNs, we further parameterize
the paths with the same extracted action sequence and the same sequence of the
extracted average sojourn times by counting the execution probabilities only of
those paths additionally having the same sequence of extracted fluid flow rates of
the respective continuous places in the corresponding discrete markings. We show
that fluid trace equivalence preserves average potential fluid change volume in the
respective continuous places for the transition sequences of each particular length.

Second, we propose a branching-time relation of fluid bisimulation equivalence on
LFSPNs that is strictly stronger than fluid trace equivalence. We require the fluid
bisimulation on the discrete markings of two LFSPNs to be a standard (strong)
Markovian bisimulation. Hence, for each transition firing in an LFSPN, we require
a simulation of the firing in the equivalent LFSPN, such that the action labels
of the both fired transitions and their overall rates coincide. Thus, our definition
of the bisimulation equivalence on the discrete markings of LFSPNs is similar to
that of the performance bisimulation equivalences [15, 16] on labeled CTSPNs and
labeled generalized SPNs (GSPNs) [44, 21, 45, 14, 4, 5], as well as the strong
equivalence from [38] on stochastic process algebra PEPA. All these relations belong
to the family of Markovian bisimulation equivalences, investigated on sequential and
concurrent Markovian process calculi SMPC and CMPC in [8, 6, 7, 9], as well as
on Uniform Labeled Transition Systems (ULTraS) in [10, 11]. As for the continuous
markings, we should fix a bijective correspondence between the sets of continuous
places of the two LFSPNs. We require that, for every pair of the Markovian bisimilar
discrete markings, the fluid flow rates of the continuous places in the first LFSPN
should coincide with those of the corresponding continuous places in the second
LFSPN. We prove that fluid bisimulation equivalence preserves, for the equivalence
classes, the stationary probability distribution of the underlying continuous time
Markov chain (CTMC), as well as the stationary fluid buffer empty probability,
probability distribution and density for the associated stochastic fluid model (SFM).
Hence, the equivalence guarantees identity of many performance measures, calcula-
ted for the stationary behaviour of the LFSPNs. The fluid bisimulation equivalence
is also used to simplify the analysis of LFSPNs, due to diminishing the number of
discrete markings that are lumped into the equivalence classes, interpreted as the
states of the quotient discrete reachability graph and quotient underlying CTMC.
The quotients of the probability functions describe the quotient associated SFM.

The application example of the three LFSPNs modeling the document preparati-
on system demonstrates how the LFSPNs structure and behaviour can be reduced
by fluid bisimulation equivalence while preserving their behavioural properties.

The first results on this subject can be found in [53], where we have proposed a
class of LFSPNs and defined a novel fluid bisimulation equivalence for them that
preserves aggregate fluid density and distribution, as well as discrete and continuous
performance measures. This paper extends that publication with the new results for
LFSPNs: fluid trace equivalence, interrelations of the fluid equivalences, quotienting
by fluid bisimulation, the probability functions quotients and application example.

1.4. Outline of the paper. In Section 2, we present the definition and behaviour
of LFSPNs. Section 3 explores the discrete part of LFSPNs, i.e. the derived labeled
CTSPNs and their underlying CTMCs. Section 4 investigates the continuous part
of LFSPNs, which is the associated SFMs. In Section 5, we construct a linear-time
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relation of fluid trace equivalence for LFSPNs. In Section 6, we propose a branching-
time relation of fluid bisimulation equivalence for LFSPNs and compare it with
the fluid trace one. In Section 7, we explain how to reduce discrete reachability
graphs and underlying CTMCs of LFSPNs modulo fluid bisimulation equivalence,
by applying quotienting. Section 8 contains the preservation results for the quantita-
tive behaviour of LFSPNs modulo fluid bisimulation equivalence. Section 9 describes
a case study of three LFSPNs modeling the document preparation system. Section
10 summarizes the results obtained and outlines research perspectives in this area.

2. Basic concepts of LFSPNs

Let us introduce a class of labeled fluid stochastic Petri nets (LFSPNs), whose
transitions are labeled with action names, used to specify different system activities.
Without labels, LFSPNs are essentially a subclass of FSPNs [39, 28, 33], so that
their discrete part describes CTSPNs [46, 44, 45, 4]. This means that LFSPNs
have no inhibitor arcs, priorities and immediate transitions, which are used in
the standard FSPNs, which are the continuous extension of GSPNs. However,
in many practical applications, the performance analysis of GSPNs is simplified
by transforming them into CTSPNs or reducing their underlying semi-Markov
chains into CTMCs (which are the underlying stochastic process of CTSPNs) by
eliminating vanishing states [21, 45, 4, 5]. Transition labeling in LFSPNs is similar
to the labeling, proposed for CTSPNs in [15]. Moreover, we suppose that the firing
rates of transitions and flow rates of the continuous arcs do not depend on the
continuous markings (fluid levels).

Let N = {0, 1, 2, . . .} be the set of all natural numbers and N≥1 = {1, 2, . . .} be the
set of all positive natural numbers. Further, let R = (−∞;∞) be the set of all real
numbers, R≥0 = [0;∞) be the set of all non-negative real numbers and R>0 = (0;∞)
be the set of all positive real numbers. The set of all row vectors of n ∈ N≥1 elements
from a set X is defined as Xn = {(x1, . . . , xn) | xi ∈ X (1 ≤ i ≤ n)}. The set of
all mappings from a set X to a set Y is defined as Y X = {f | f : X → Y }. Let
Act = {a, b, . . .} be the set of actions.

First, we present a formal definition of LFSPNs.

Definition 1. A labeled fluid stochastic Petri net (LFSPN) is a tuple
N = (PN , TN ,WN , CN , RN ,ΩN , LN ,MN), where

• PN = PdN⊎PcN is a finite set of discrete and continuous places (⊎ denotes
disjoint union);

• TN is a finite set of transitions, such that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;
• WN : (PdN × TN ) ∪ (TN × PdN ) → N is a function providing the weights

of discrete arcs between discrete places and transitions;
• CN ⊆ (PcN × TN ) ∪ (TN × PcN ) is the set of continuous arcs between

continuous places and transitions;
• RN : CN×N

|PdN | → R≥0 is a function providing the flow rates of continuous
arcs in a given discrete marking (the markings will be defined later);

• ΩN : TN×N
|PdN | → R>0 is the transition rate function associating transiti-

ons with rates in a given discrete marking;
• LN : TN → Act is the transition labeling function assigning actions to

transitions;
• MN = (MN ,0), where MN ∈ N

|PdN | and 0 is a row vector of |PcN | values
0, is the initial (discrete-continuous) marking.
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Let us consider in more detail the tuple elements from the definition above.
Every discrete place pi ∈ PdN may contain discrete tokens, whose number is

represented by a natural number Mi ∈ N (1 ≤ i ≤ |PdN |). Each continuous place
qj ∈ PcN may contain continuous fluid, with the level represented by a non-negative
real number Xj ∈ R≥0 (1 ≤ j ≤ |PcN |). Then the complete hybrid (discrete-
continuous) marking of N is a pair (M,X), where M = (M1, . . . ,M|PdN |) is a
discrete marking and X = (X1, . . . , X|PcN |) is a continuous marking. When needed,
these vectors can also be seen as the mappings M : PdN → N with M(pi) = Mi (1 ≤
i ≤ |PdN |) and X : PcN → R≥0 with X(qj) = Xj (1 ≤ j ≤ |PcN |). The set of
all markings (reachability set) of N is denoted by RS(N). Then DRS(N) = {M |
(M,X) ∈ RS(N)} is the set of all discrete markings (discrete reachability set) of
N . DRS(N) will be formally defined later. Further, CRS(N) = {X | (M,X) ∈
RS(N)} ⊆ R

|PcN |
≥0 is the set of all continuous markings (continuous reachability

set) of N . Every marking (M,X) ∈ RS(N) evolves in time, hence, we can interpret
it as a stochastic process {(M(δ), X(δ)) | δ ≥ 0}. Then the initial marking of N is
that at the zero time moment, i.e. MN = (MN ,0) = (M(0), X(0)), where X(0) = 0

means that all the continuous places are initially empty.
Every transition t ∈ TN has an associated positive real-valued instantaneous rate

ΩN (t,M) ∈ R>0, which is a parameter of the exponential distribution governing
the transition delay (being a random variable) in the current discrete marking M .
Transitions are labeled with actions, each representing a sort of activity they model.

Every discrete arc da = (p, t) or da = (t, p), where p ∈ PdN and t ∈ TN ,
connects discrete places and transitions. It has a non-negative integer-valued weight
WN (da) ∈ N assigned, representing its multiplicity. The zero weight indicates that
the corresponding discrete arc does not exist, since its multiplicity is zero in this
case. In the discrete marking M ∈ DRS(N), every continuous arc ca = (q, t) or
ca = (t, q), where q ∈ PcN and t ∈ TN , connects continuous places and transitions.
It has a non-negative real-valued flow rate RN (ca,M) ∈ R≥0 of fluid through ca,
when the current discrete marking is M . The zero flow rate indicates that the fluid
flow along the corresponding continuous arc is stopped in some discrete marking.

The graphical representation of LFSPNs resembles that for standard labeled
Petri nets, but supplemented with the rates or weights, written near the correspon-
ding transitions or arcs. Discrete places are drawn with ordinary circles while double
concentric circles correspond to the continuous ones. Square boxes with the action
names inside depict transitions and their labels. Discrete arcs are drawn as thin
lines with arrows at the end while continuous arcs should represent pipes, so the
latter are depicted by thick arrowed lines. If the rates are not given in the picture
then they are assumed to be of no importance in the corresponding examples. The
names of places and transitions are depicted near them when needed.

We now consider the behaviour of LFSPNs.
Let N be an LFSPN and M be a discrete marking of N . A transition t ∈ TN

is enabled in M if ∀p ∈ PdN WN (p, t) ≤ M(p). Let Ena(M) be the set of all
transitions enabled in M . Firings of transitions are atomic operations, and only
single transitions are fired at once. Note that the enabling condition depends only
on the discrete part of N and this condition is the same as for CTSPNs. Firing

of a transition t ∈ Ena(M) changes M to another discrete marking M̃ , such as

∀p ∈ PdN M̃(p) = M(p) − WN (p, t) + WN (t, p), denoted by M
t→λ M̃ , where

λ = ΩN (t,M). We write M
t→ M̃ if ∃λ M

t→λ M̃ and M → M̃ if ∃t M t→ M̃ .
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Let us formally define the discrete reachability set of N .

Definition 2. Let N be an LFSPN. The discrete reachability set of N , denoted by
DRS(N), is the minimal set of discrete markings such that

• MN ∈ DRS(N);

• if M ∈ DRS(N) and M → M̃ then M̃ ∈ DRS(N).

Let us now define the discrete reachability graph of N .

Definition 3. Let N be an LFSPN. The discrete reachability graph of N is a
labeled transition system DRG(N) = (SN ,LN , TN , sN ), where

• the set of states is SN = DRS(N);
• the set of labels is LN = TN × R>0;

• the set of transitions is TN ={(M, (t, λ), M̃) |M, M̃ ∈DRS(N), M
t→λ M̃};

• the initial state is sN = MN .

3. Discrete part of LFSPNs

We have restricted the class of FSPNs underlying LFSPNs to those whose discrete
part is CTSPNs, since the performance analysis of standard FSPNs with GSPNs
as the discrete part is finally based on the CTMCs which are extracted from the
underlying semi-Markov chains (SMCs) of the GSPNs by removing vanishing states.
Consider the behaviour of the discrete part of LFSPNs, which is labeled CTSPNs.

For an LFSPN N , a continuous random variable ξ(M) is associated with every
discrete marking M ∈ DRS(N). The variable captures a residence (sojourn) time
in M . We adopt the race semantics, in which the fastest stochastic transition (i.e.
that with the minimal exponentially distributed firing delay) fires first. Hence, the
probability distribution function (PDF) of the sojourn time in M is that of the
minimal firing delay of transitions from Ena(M). Since exponential distributions
are closed under minimum, the sojourn time in M is (again) exponentially distribu-
ted with a parameter, called the exit rate from the discrete marking M , defined as

RE(M) =
∑

t∈Ena(M)

ΩN (t,M).

Note that we may have RE(M) = 0, meaning that there is no exit from M , if it
is a terminal discrete marking, i.e. there are no transitions from it to different ones.

Hence, the PDF of the sojourn time in M (the probability of the residence time
in M being less than δ) is Fξ(M)(δ) = P(ξ(M) < δ) = 1− e−RE(M)δ (δ ≥ 0). Then
the probability density function of the residence time in M (the limit probability of

staying in M at the time δ) is fξ(M)(δ) = lim∆→0
Fξ(M)(δ+∆)−Fξ(M)(δ)

∆ =
dFξ(M)(δ)

dδ =

RE(M)e−RE(M)δ (δ ≥ 0). The mean value (average, expectation) formula for the
exponential distribution allows us to calculate the average sojourn time in M as
M(ξ(M)) =

∫∞
0 δfξ(M)(δ)dδ = 1

RE(M) . The variance (dispersion) formula for the

exponential distribution allows us to calculate the sojourn time variance in M as
D(ξ(M)) =

∫∞
0

(δ −M(ξ(M)))2fξ(M)(δ)dδ = 1
(RE(M))2 .

The average sojourn time in the discrete marking M is

SJ(M) =
1∑

t∈Ena(M) ΩN (t,M)
=

1

RE(M)
.
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The average sojourn time vector of N , denoted by SJ , has the elements SJ(M),
M ∈ DRS(N).

Note that we may have SJ(M) = ∞, meaning that we stay in M forever, if it is
a terminal discrete marking.

The sojourn time variance in the discrete marking M is

V AR(M) =
1

(∑
t∈Ena(M) ΩN (t,M)

)2 =
1

RE(M)2
.

The sojourn time variance vector of N , denoted by V AR, has the elements
V AR(M), M ∈ DRS(N).

Note that we may have V AR(M) = ∞, meaning that the variance of the infinite
sojourn time in M is infinite too, if it is a terminal discrete marking.

To evaluate performance with the use of the discrete part of N , we should
investigate the stochastic process associated with it. The process is the underlying
continuous time Markov chain, denoted by CTMC(N).

Let M, M̃ ∈ DRS(N). The rate of moving from M to M̃ by firing any transition is

RM(M, M̃) =
∑

{t|M t→M̃}

ΩN (t,M).

Definition 4. Let N be an LFSPN. The underlying continuous time Markov chain
(CTMC) of N , denoted by CTMC(N), has the state space DRS(N), the initial

state MN and the transitions M →λ M̃ , if M → M̃ , where λ = RM(M, M̃).

Isomorphism is a coincidence of systems up to renaming their components or
states. Let ≃ denote isomorphism between CTMCs that binds their initial states.

Let N be an LFSPN. The elements Qij (1 ≤ i, j ≤ n = |DRS(N)|) of the
transition rate matrix (TRM), called infinitesimal generator, Q for CTMC(N) are

Qij =

{
RM(Mi,Mj), i 6= j;
−∑

{k|1≤k≤n, k 6=i} RM(Mi,Mk), i = j.

The transient probability mass function (PMF) ϕ(δ) = (ϕ1(δ), . . . , ϕn(δ)) for
CTMC(N) is calculated via matrix exponent as

ϕ(δ) = ϕ(0)eQδ,

where ϕ(0) = (ϕ1(0), . . . , ϕn(0)) is the initial PMF, defined as

ϕi(0) =

{
1, Mi = MN ;
0, otherwise.

The steady-state PMF ϕ = (ϕ1, . . . , ϕn) for CTMC(N) is a solution of the linear
equation system

{
ϕQ = 0

ϕ1T = 1
,

where 0 is a row vector of n values 0 and 1 is that of n values 1.
Note that the vector ϕ exists and is unique, if CTMC(N) is ergodic. Then

CTMC(N) has a single steady state, and we have ϕ = limδ→∞ ϕ(δ).
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Let N be an LFSPN. In [53], we have presented a number of the steady-state
discrete performance indices (measures), which can be calculated based on the
steady-state PMF ϕ for CTMC(N) [46, 44, 21, 14, 45, 4, 5].

4. Continuous part of LFSPNs

We now consider the impact the discrete part of LFSPNs has on their continuous
part, which is stochastic fluid models (SFMs). We investigate LFSPNs with a
single continuous place, since the definitions and our subsequent results on the fluid
equivalences can be transferred straightforwardly to the case of several continuous
places, where multidimensional SFMs have to be explored.

Let N be an LFSPN such that PcN = {q} and M(δ) ∈ DRS(N) be its discrete
marking at the time δ ≥ 0. Every continuous arc ca = (q, t) or ca = (t, q), where
t ∈ TN , changes the fluid level in the continuous place q at the time δ with the flow
rate RN (ca,M(δ)). So, in the discrete marking M(δ) fluid can leave q along the con-
tinuous arc (q, t) with the rate RN ((q, t),M(δ)) and can enter q along the continuous
arc (t, q) with the rate RN ((t, q),M(δ)) for every transition t ∈ Ena(M(δ)).

The potential rate of the fluid level change (fluid flow rate) for the continuous
place q in the discrete marking M(δ) is

RP (M(δ)) =
∑

{t∈Ena(M(δ))|(t,q)∈CN}
RN ((t, q),M(δ))−

∑

{t∈Ena(M(δ))|(q,t)∈CN}
RN ((q, t),M(δ)).

Let X(δ) be the fluid level in q at the time δ. It is clear that the fluid level
in a continuous place can never be negative. Therefore, X(δ) satisfies the following
ordinary differential equation describing the actual fluid flow rate for the continuous
place q in the marking (M(δ), X(δ)):

RA(M(δ), X(δ)) =
dX(δ)

dδ
=





max{RP (M(δ)), 0}, X(δ) = 0;
RP (M(δ)), (X(δ) > 0)∧

(RP (M(δ−))RP (M(δ+)) ≥ 0);
0, (X(δ) > 0)∧

(RP (M(δ−))RP (M(δ+)) < 0).

In the first case considered in the definition above, we have X(δ) = 0. In this
case, if RP (M(δ)) ≥ 0 then the fluid level is growing and the derivative is equal to
the potential rate. Otherwise, if RP (M(δ)) < 0 then we should prevent the fluid
level from crossing the lower boundary (zero) by stopping the fluid flow. For an
explanation of the more complex second and third cases please refer to [27, 39,

28, 33]. Note that dX(δ)
dδ is a piecewise constant function of X(δ) during the time

periods when M(δ) remains unchanged. Hence, for each different “constant” segment

we have dX(δ)
dδ = RP (M(δ)) or dX(δ)

dδ = 0 and, therefore, we can suppose that within
each such segment RP (M(δ)) or 0 are the actual fluid flow rates for the continuous
place q in the marking (M(δ), X(δ)). While constructing differential equations that
describe the behaviour of SFMs associated with LFSPNs, we are interested only in

the segments where dX(δ)
dδ = RP (M(δ)). The SFMs behaviour within the remaining

segments, where dX(δ)
dδ = 0, is completely described by the buffer empty probability

function that collects the probability mass at the lower boundary.
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The elements Rij (1 ≤ i, j ≤ n = |DRS(N)|) of the fluid rate matrix (FRM) R

for the continuous place q are defined as

Rij =

{
RP (Mi), i = j;
0, i 6= j.

According to [28, 33], the underlying SFM of LFSPNs is the first order, infinite
buffer, homogeneous Markov fluid model. The discrete part of the SFM derived
from an LFSPN N is the CTMC CTMC(N) with the TRM Q. The evolution of
the continuous part of the SFM (the fluid flow drift) is described by the FRM R.

Let us consider the transient behaviour of the SFM associated with an LFSPN
N . We introduce the following transient probability functions.

• ϕi(δ) = P(M(δ) = Mi) is the discrete marking probability;
• ℓi(δ) = P(X(δ) = 0, M(δ) = Mi) is the buffer empty probability (probability

mass at the lower boundary);
• Fi(δ, x) = P(X(δ) < x, M(δ) = Mi) is the fluid probability distribution

function;

• fi(δ, x) =
∂Fi(δ,x)

∂x = limh→0
Fi(δ,x+h)−Fi(δ,x)

h =

limh→0
P(x<X(δ)<x+h, M(δ)=Mi)

h is the fluid probability density function.

The initial conditions are:

ℓi(0) =

{
1, Mi = MN ;
0, otherwise;

Fi(0, x) =

{
1, (Mi = MN) ∧ (x ≥ 0);
0, otherwise;

fi(0, x) = 0 ∀(Mi, x) ∈ RS(N).

Let ϕ(δ), ℓ(δ), F (δ, x), f(δ, x) be the row vectors with the elements ϕi(δ), ℓi(δ),
Fi(δ, x), fi(δ, x), respectively (1 ≤ i ≤ n).

By the total probability law, we have

ℓ(δ) +

∫ ∞

0+

f(δ, x)dx = ϕ(δ).

The partial differential equations describing the transient behaviour are

∂F (δ, x)

∂δ
+

∂F (δ, x)

∂x
R = F (δ, x)Q, x > 0;

∂f(δ, x)

∂δ
+

∂f(δ, x)

∂x
R = f(δ, x)Q, x > 0.

Note that we have ∂F (δ,x)
∂x = f(δ, x), F (δ, 0) = ℓ(δ), F (δ,∞) = ϕ(δ).

The partial differential equation for the buffer empty probabilities (lower boun-
dary conditions) are

dℓ(δ)

dδ
+ f(δ, 0)R = ℓ(δ)Q.

The lower boundary constraint is: if Rii = RP (Mi) > 0 then ℓi(δ) = Fi(δ, 0) = 0
(1 ≤ i ≤ n).

The normalizing condition is
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ℓ(δ)1T +

∫ ∞

0+

f(δ, x)dx1T = 1,

where 1 is a row vector of n values 1.
Let us now consider the stationary behaviour of the SFM associated with an

LFSPN N . We do not discuss here in detail the conditions under which the steady
state for the associated SFM exists and is unique, since this topic has been extensi-
vely explored in [39, 28, 33]. Particularly, according to [39, 33], the steady-state
PDF exists (i.e. the transient functions approach their stationary values, as the
time parameter δ tends to infinity in the transient equations), when the associated
SFM is a Markov fluid model, whose fluid flow drift (described by the matrix R)
and transition rates (described by the matrix Q) are fluid level independent, and
the following stability condition holds:

FluidF low(q) =

n∑

i=1

ϕiRP (Mi) = ϕR1T < 0,

stating that the steady-state mean potential fluid flow rate for the continuous place
q is negative. Stable infinite buffer models usually converge, hence, the existing
steady-state PDF is also unique in this case.

We introduce the following steady-state probability functions, obtained from the
transient ones by taking the limit δ → ∞.

• ϕi = limδ→∞ P(M(δ) = Mi) is the steady-state discrete marking probability;
• ℓi = limδ→∞ P(X(δ) = 0, M(δ) = Mi) is the steady-state buffer empty

probability (probability mass at the lower boundary);
• Fi(x) = limδ→∞ P(X(δ) < x, M(δ) = Mi) is the steady-state fluid probabili-

ty distribution function;

• fi(x)=
dFi(x)

dx =limh→0
Fi(x+h)−Fi(x)

h =limδ→∞limh→0
P(x<X(δ)<x+h, M(δ)=Mi)

h
is the steady-state fluid probability density function.

Let ϕ, ℓ, F (x), f(x) be the row vectors with the elements ϕi, ℓi, Fi(x), fi(x),
respectively (1 ≤ i ≤ n).

By the total probability law for the stationary behaviour, we have

ℓ+

∫ ∞

0+

f(x)dx = ϕ.

The ordinary differential equations describing the stationary behaviour are

dF (x)

dx
R = F (x)Q, x > 0;

df(x)

dx
R = f(x)Q, x > 0.

Note that we have dF (x)
dx = f(x), F (0) = ℓ, F (∞) = ϕ.

The ordinary differential equation for the steady-state buffer empty probabilities
(stationary lower boundary conditions) are

f(0)R = ℓQ.

The stationary lower boundary constraint is: if Rii = RP (Mi) > 0 then Fi(0) =
ℓi = 0 (1 ≤ i ≤ n).
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The stationary normalizing condition is

ℓ1T +

∫ ∞

0+

f(x)dx1T = 1,

where 1 is a row vector of n values 1.
The solutions of the equations for F (x) and f(x) in the form of matrix exponent

are F (x) = ℓexQR−1

and f(x) = ℓQR−1exQR−1

, respectively. Since the steady-
state existence implies boundedness of the SFM associated with an LFSPN and
we do not have a finite upper fluid level bound, the positive eigenvalues of QR−1

must be excluded. Moreover, R−1 does not exist if for some i (1 ≤ i ≤ n) we have
Rii = 0. These difficulties are avoided in the alternative solution method for F (x),
called spectral decomposition [55, 39, 28, 33, 30], which we outline below.

Let us define the sets of negative discrete markings of N as DRS−(N) = {M ∈
DRS(N) | RP (M) < 0}, zero discrete markings of N as DRS0(N) = {M ∈
DRS(N) | RP (M) = 0} and positive discrete markings of N as DRS+(N) = {M ∈
DRS(N) | RP (M) > 0}. The spectral decomposition is F (x) =

∑m
j=1 aje

γjxvj ,

where aj are scalar coefficients, γj are the eigenvalues and vj = (vj1, . . . , vjn) are
the eigenvectors of QR−1. Thus, each vj is the solution of the equation vj(QR−1−
γjI) = 0, where I is the identity matrix of the order n, hence, vj(Q− γjR) = 0.

Since for each non-zero vj we must have |Q− γjR| = 0, the number of solutions
γ1, . . . , γm is that of non-zero elements among Rii = RP (Mi) (1 ≤ i ≤ n), i.e.
m = |DRS−(N)|+|DRS+(N)|. We have 1 zero eigenvalue, |DRS+(N)| eigenvalues
with a negative real part and |DRS−(N)| − 1 eigenvalues with a positive real part.
Let us reorder all the eigenvalues according to the sign of their real part (first, with
zero one; then with negative one; at last, with positive one). The boundedness of
F (x) requires aj = 0 if Re(γj) > 0 (1 ≤ j ≤ m). For the zero eigenvalue γ1 = 0 we
have a1e

γ1xv1 = a1v1, and for the corresponding eigenvector it holds v1Q = 0. Then

F (x) = a1v1 +
∑|DRS+(N)|+1

k=2 ake
γkxvk, where Re(γk) < 0 (2 ≤ k ≤ |DRS+(N)|+

1). Remember that ϕ = F (∞) = a1v1, hence, F (x) = ϕ+
∑|DRS+(N)|+1

k=2 ake
γkxvk.

It remains to find |DRS+(N)| coefficients ak corresponding to the eigenvalues
γk (2 ≤ k ≤ |DRS+(N)|+1). Remember the stationary lower boundary constraint:
if Rll = RP (Ml) > 0 then Fl(0) = ℓl = 0. Then for each Ml ∈ DRS+(N) we have

Fl(0) = ϕl+
∑|DRS+(N)|+1

k=2 akvkl = 0. We get a system of |DRS+(N)| independent
linear equations with |DRS+(N)| unknowns, for which a unique solution exists.

Then, using F (x), we can find f(x) = dF (x)
dx and ℓ = F (0).

Let N be an LFSPN. In [53], we have presented a number of steady-state hybrid
(discrete-continuous) performance indices (measures), which can be calculated ba-
sed on the steady-state fluid probability density function f(x) for the SFM of N
[13, 31, 32, 29, 28, 40]. Note that the hybrid performance indices that do not depend
on the fluid level coincide with the corresponding discrete performance measures.

5. Fluid trace equivalence

Trace equivalences are the least discriminating ones. In the trace semantics, the
behavior of a system is associated with the set of all possible sequences of actions,
i.e. the protocols of computations. Thus, the points of choice of an external observer
between several extensions of a particular computation are not taken into account.



EQUIVALENCES FOR FLUID STOCHASTIC PETRI NETS 331

The formal definition of fluid trace equivalence resembles that of ordinary Marko-
vian trace equivalence, proposed on transition-labeled CTMCs in [62], on sequential
and concurrent Markovian process calculi SMPC and CMPC in [8, 6, 7, 9] and on
Uniform Labeled Transition Systems (ULTraS) in [10, 11]. While defining fluid
trace equivalence, we additionally have to take into account the fluid flow rates in
the corresponding discrete markings of two compared LFSPNs. Hence, in order
to construct fluid trace equivalence, we should determine how to calculate the
cumulative execution probabilities of all the specific (selected) paths. A path in
the discrete reachability graph of an LFSPN is a sequence of its discrete markings
and transitions that is generated by some firing sequence in the LFSPN.

First, we should multiply the transition firing probabilities for all the transitions
along the paths starting in the initial discrete marking of the LFSPN. The resulting
product will be the execution probability of the path. Second, we must sum the path
execution probabilities for all the selected paths corresponding to the same sequence
of actions, the same sequence of the average sojourn times and the same sequence of
the fluid flow rates in all the discrete markings participating the paths. We suppose
that each LFSPN has exactly one continuous place. The resulting sum will be the
cumulative execution probability of the selected paths corresponding to some fluid
stochastic trace. A fluid stochastic trace is a pair with the first element being the
triple of the correlated sequences of actions, average sojourn times and fluid flow
rates; the second element being the execution probability of the triple. Each element
of the triple guarantees that fluid trace equivalence respects the following aspects
of the LFSPNs behaviour: functional activity, stochastic timing and fluid flow.

Note that CTMC(N) can be interpreted as a semi-Markov chain (SMC) [42],
denoted by SMC(N), which is analyzed by extracting from it the embedded (absor-
bing) discrete time Markov chain (EDTMC) corresponding to N , denoted by
EDTMC(N). The construction of the latter is analogous to that applied in the
context of GSPNs in [44, 45, 4, 5]. EDTMC(N) only describes the state changes of
SMC(N) while ignoring its time characteristics. Thus, to construct the EDTMC,
we should abstract from all time aspects of behaviour of the SMC, i.e. from the
sojourn time in its states. It is well-known that every SMC is fully described by
the EDTMC and the state sojourn time distributions (the latter can be specified
by the vector of PDFs of residence time in the states) [35].

An LFSPN N is live, if ∀M ∈ DRS(N) Ena(M) 6= ∅, i.e. transitions can fire at
every reachable discrete marking of it. In this section, we shall consider only live
FSPNs, to avoid terminating sequences of transition firings.

We first propose some helpful definitions of the probability functions for the

transition firings and discrete marking changes. Let N be an LFSPN, M, M̃ ∈
DRS(N) be its discrete markings and t ∈ Ena(M).

The (time-abstract) probability that the transition t fires in M is

PT (t,M) =
ΩN (t,M)∑

u∈Ena(M) ΩN (u,M)
=

ΩN (t,M)

RE(M)
= SJ(M)ΩN (t,M).

We have ∀M ∈ N
|PdN | ∑

t∈Ena(M) PT (t,M)=
∑

t∈Ena(M)
ΩN (t,M)∑

u∈Ena(M) ΩN (u,M) =∑
t∈Ena(M) ΩN (t,M)∑
u∈Ena(M) ΩN (u,M) = 1, i.e. PT (t,M) defines a probability distribution.

The probability to move from M to M̃ by firing any transition is
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PM(M, M̃) =
∑

{t|M t→M̃}

PT (t,M) =

∑
{t|M t→M̃} ΩN (t)

RE(M)
= SJ(M) ·

∑

{t|M t→M̃}

ΩN (t).

We write M →P M̃ , if M → M̃ , where P = PM(M, M̃). We have

∀M ∈ N
|PdN | ∑

{M̃|M→M̃} PM(M, M̃) =
∑

{M̃|M→M̃}
∑

{t|M t→M̃} PT (t,M) =
∑

t∈Ena(M) PT (t,M) = 1, i.e. PM(M, M̃) defines a probability distribution.

Definition 5. Let N be an LFSPN. The embedded (absorbing) discrete time
Markov chain (EDTMC) of N , denoted by EDTMC(N), has the state space

DRS(N), the initial state MN and the transitions M →P M̃ , if M → M̃ , where

P = PM(M, M̃).
The underlying SMC of N , denoted by SMC(N), has the EDTMC EDTMC(N)

and the sojourn time in every M ∈ DRS(N) is exponentially distributed with the
parameter RE(M).

Since the sojourn time in every M ∈ DRS(N) is exponentially distributed, we
have SMC(N) = CTMC(N).

Let N be an LFSPN. The elements Pij (1 ≤ i, j ≤ n = |DRS(N)|) of the
(one-step) transition probability matrix (TPM) P for EDTMC(N) are defined as

Pij =

{
PM(Mi,Mj), Mi → Mj;
0, otherwise.

Let X be a set, n ∈ N≥1 and xi ∈ X (1 ≤ i ≤ n). Then χ = x1 · · ·xn is a
finite sequence over X of length |χ| = n. When X is a set on numbers, we usually
write χ = x1 ◦ · · · ◦ xn, to avoid confusion because of mixing up the operations
of concatenation of sequences (◦) and multiplication of numbers (·). The empty
sequence ε of length |ε| = 0 is an extra case. Let X∗ denote the set of all finite
sequences (including the empty one) over X .

Let MN = M0
t1→ M1

t2→ · · · tn→ Mn (n ∈ N) be a finite sequence of transition
firings starting in the initial discrete marking MN and called firing sequence in N .
The firing sequence generates the path M0t1M1t2 · · · tnMn in the discrete reachabili-
ty graph DRG(N). Since the first discrete marking MN = M0 of the path is
fixed, one can see that the (finite) transition sequence ϑ = t1 · · · tn in N uniquely
determines the discrete marking sequence M0 · · ·Mn, ending with the last discrete
marking Mn of the mentioned path in DRG(N). Hence, to refer the paths, one
can simply use the transition sequences extracted from them as shown above. The
empty transition sequence ε refers to the path M0, consisting just of one discrete
marking (which is the first and last one of the path in such a case).

Let N be an LFSPN. The set of all (finite) transition sequences in N is

TranSeq(N) = {ϑ | ϑ = ε or ϑ = t1 · · · tn, MN = M0
t1→ M1

t2→ · · · tn→ Mn}.
Let ϑ = t1 · · · tn ∈ TranSeq(N) and MN = M0

t1→ M1
t2→ · · · tn→ Mn. The

probability to execute the transition sequence ϑ is

PT (ϑ) =

n∏

i=1

PT (ti,Mi−1).
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For ϑ = ε we define PT (ε) = 1. Let us prove that ∀n ∈ N∑
{ϑ∈TranSeq(N)||ϑ|=n} PT (ϑ) = 1, i.e. PT (ϑ) defines a probability distribution.

Lemma 1. Let N be an LFSPN. Then ∀n ∈ N

∑

{ϑ∈TranSeq(N)||ϑ|=n}
PT (ϑ) = 1.

Proof. We prove by induction on the transition sequences length n.

• n = 0
By definition,

∑
{ϑ∈TranSeq(N)||ϑ|=0} PT (ϑ)=PT (ε)=1.

• n → n+ 1
By distributivity law for multiplication and addition, and since

∀M∈N
|PdN | ∑

t∈Ena(M) PT (t,M)=1, we get
∑

{ϑ∈TranSeq(N)||ϑ|=n+1} PT (ϑ)=
∑

{t1,...,tn,tn+1|MN=M0
t1→M1

t2→···tn→Mn
tn+1→ Mn+1}

∏n+1
i=1 PT (ti,Mi−1)=

∑
{t1,...,tn|MN=M0

t1→M1
t2→···tn→Mn}

∑
{tn+1|Mn

tn+1→ Mn+1}

∏n
i=1 PT (ti,Mi−1)PT (tn+1,Mn)=

∑
{t1,...,tn|MN=M0

t1→M1
t2→···tn→Mn}

(
∏n

i=1PT (ti,Mi−1)
∑

{tn+1|Mn
tn+1→ Mn+1}

PT (tn+1,Mn)

)
=

∑
{t1,...,tn|MN=M0

t1→M1
t2→···tn→Mn}

∏n
i=1 PT (ti,Mi−1)·1=1. �

Let ϑ = t1 · · · tn ∈ TranSeq(N) be a transition sequence in N and MN = M0
t1→

M1
t2→ · · · tn→ Mn. The action sequence of ϑ is LN (ϑ) = a1 · · ·an ∈ Act∗, where

LN(ti) = ai (1 ≤ i ≤ n), i.e. it is the sequence of actions which label the transitions
of that transition sequence. For ϑ = ε we define LN(ε) = ε. Further, the average
sojourn time sequence of ϑ = t1 · · · tn is SJ(ϑ) = SJ(M0) ◦ · · · ◦ SJ(Mn) ∈ R

∗
>0,

i.e. it is the sequence of average sojourn times in the discrete markings of the path
to which ϑ refers. For ϑ = ε we define SJ(ε) = SJ(M0). Similarly, the (potential)
fluid flow rate sequence of ϑ = t1 · · · tn is RP (ϑ) = RP (M0) ◦ · · · ◦ RP (Mn) ∈ R

∗,
i.e. it is the sequence of (potential) fluid flow rates in the discrete markings of the
path to which ϑ refers. For ϑ = ε we define RP (ε) = RP (M0).

Let N be an LFSPN and (σ, ς, ̺) ∈ Act∗ ×R
∗
>0 ×R

∗. The set of (σ, ς, ̺)-selected
(finite) transition sequences in N is defined as

TranSeq(N, σ, ς, ̺) = {ϑ ∈ TranSeq(N) | LN(ϑ) = σ, SJ(ϑ) = ς, RP (ϑ) = ̺}.

Let TranSeq(N, σ, ς, ̺) 6= ∅. Then the triple (σ, ς, ̺), together with its execution
probability, which is the cumulative execution probability of all the paths from
which the triple is extracted (as described above), constitute a fluid stochastic trace
of the LFSPN N . Fluid stochastic traces are formally introduced below, followed
by the (first) definition of fluid stochastic trace equivalence.

Definition 6. A (finite) fluid stochastic trace of an LFSPN N is a pair ((σ, ς, ̺),
PT (σ, ς, ̺)), where TranSeq(N, σ, ς, ̺) 6= ∅ and the (cumulative) probability to
execute (σ, ς, ̺)-selected transition sequences is

PT (σ, ς, ̺) =
∑

ϑ∈TranSeq(N,σ,ς,̺)

PT (ϑ).
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We denote the set of all fluid stochastic traces of an LFSPN N by
FluStochT races(N). Two LFSPNs N and N ′ are fluid trace equivalent, denoted
by N ≡fl N

′, if

FluStochT races(N) = FluStochT races(N ′).

PT (σ, ς, ̺) defines a probability distribution, since by Lemma 1, we have
∀n ∈ N

∑
{(σ,ς,̺)||σ|=n} PT (σ, ς, ̺) =

∑
{(σ,ς,̺)||σ|=n}

∑
ϑ∈TranSeq(N,σ,ς,̺) PT (ϑ) =∑

(σ,ς,̺)

∑
{ϑ∈TranSeq(N,σ,ς,̺)||ϑ|=n} PT (ϑ) =

∑
{ϑ∈TranSeq(N)||ϑ|=n} PT (ϑ) = 1.

The following (second) definition of fluid stochastic trace equivalence does not
use fluid stochastic traces.

Definition 7. Two LFSPNs N and N ′ are fluid trace equivalent, denoted by
N ≡fl N

′, if ∀(σ, ς, ̺) ∈ Act∗ × R
∗
>0 × R

∗ we have

∑

ϑ∈TranSeq(N,σ,ς,̺)

PT (ϑ) =
∑

ϑ′∈TranSeq(N ′,σ,ς,̺)

PT (ϑ′).

Note that in Definition 7, for ϑ = t1 · · · tn ∈ TranSeq(N, σ, ς, ̺) with

MN = M0
t1→ M1

t2→ · · · tn→ Mn and ϑ′ = t′1 · · · t′n ∈ TranSeq(N ′, σ, ς, ̺) with

MN ′ = M ′
0

t′1→ M ′
1

t′2→ · · · t′n→ M ′
n, we have PT (ϑ) =

∏n
i=1 PT (ti,Mi−1) =∏n

i=1 SJ(Mi−1)ΩN (ti,Mi−1) and PT (ϑ′) =
∏n

i=1 PT (t′i,M
′
i−1) =∏n

i=1 SJ(M
′
i−1)ΩN (t′i,M

′
i−1). Then the equality SJ(M0)◦ · · ·◦SJ(Mn) = SJ(ϑ) =

ς = SJ(ϑ′) = SJ(M ′
0)◦· · ·◦SJ(M ′

n) implies that
∏n

i=1 SJ(Mi−1) =
∏n

i=1 SJ(M
′
i−1).

Hence, PT (ϑ) = PT (ϑ′) iff
∏n

i=1 ΩN (ti,Mi−1) =
∏n

i=1 ΩN (t′i,M
′
i−1). This alterna-

tive equality results in the following (third) definition of fluid trace equivalence.

Definition 8. Two LFSPNs N and N ′ are fluid trace equivalent, denoted by
N ≡fl N

′, if ∀(σ, ς, ̺) ∈ Act∗ × R
∗
>0 × R

∗ we have

∑
{t1···tn∈TranSeq(N,σ,ς,̺)|MN=M0

t1→M1
t2→···tn→Mn}

∏n
i=1 ΩN (ti,Mi−1) =∑

{t′1···t′n∈TranSeq(N ′,σ,ς,̺)|MN′=M ′
0

t′
1→M ′

1

t′
2→···

t′n→M ′
n}

∏n
i=1 ΩN (t′i,M

′
i−1).

Note that in the definition of TranSeq(N, σ, ς, ̺), as well as in Definitions 6,
7 and 8, for ϑ ∈ T ∗

N , we may use the exit rate sequences RE(ϑ) = RE(M0) ◦
· · · ◦ RE(Mn) ∈ R

∗
≥0 instead of average sojourn time sequences ς = SJ(ϑ) =

SJ(M0)◦ · · · ◦SJ(Mn) ∈ R
∗
>0, since we have ∀M ∈ DRS(N) SJ(M) = 1

RE(M) and

∀M ∈ DRS(N) ∀M ′ ∈ DRS(N ′) SJ(M) = SJ(M ′) ⇔ RE(M) = RE(M ′).
Let N and N ′ be LFSPNs such that PcN = {q} and PcN ′ = {q′}. Then the

continuous place q′ of N corresponds to q of N , i.e. q and q′ are the respective
continuous places. For M ∈ DRS(N) (or for M ′ ∈ DRS(N ′)) we denote by RP (M)
(or by RP (M ′)) the fluid level change rate for the continuous place q (or for the
corresponding one q′), i.e. the argument discrete marking determines for which of
the two continuous places, q or q′, the flow rate function RP is taken.

Let N be an LFSPN. The average potential fluid change volume in a continuous
place q ∈ PcN in the discrete marking M ∈ DRS(N) is

FluidChange(q,M) = SJ(M)RP (M).
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In order to define the probability function PT (σ, ς, ̺), the transition sequences
corresponding to a particular action sequence are also selected according to the
specific average sojourn times and fluid flow rates in the discrete markings of the
paths to which those transition sequences refer. One of several intuitions behind
such an additional selection is as follows. The average potential fluid change volume
in a continuous place q in the discrete marking M is a product of the average
sojourn time and the constant (possibly zero or negative) potential fluid flow rate
in M . In each of the corresponding discrete markings M and M ′ of the paths to
which the corresponding transition sequences ϑ ∈ TranSeq(N, σ, ς, ̺) and ϑ′ ∈
TranSeq(N ′, σ, ς, ̺) refer, we shall have the same average potential fluid change
volume in the respective continuous places q and q′, i.e. FluidChange(q,M) =
SJ(M)RP (M) = SJ(M ′)RP (M ′) = FluidChange(q′,M ′). Note that the average
actual and potential fluid change volumes coincide unless the lower boundary of fluid
in some continuous place is reached, setting hereupon the actual fluid flow rate in
it equal to zero till the end of the sojourn time in the current discrete marking.

Note that our notion of fluid trace equivalence is based rather on that of Markovi-
an trace equivalence from [62], since there the average sojourn times in the states
“surrounding” the actions of the corresponding traces of the equivalent processes
should coincide while in the definition of the mentioned equivalence from [8, 6, 7, 9],
the shorter average sojourn time may simulate the longer one. If we would adopt
such a simulation then the smaller fluid change volumes would model the bigger
ones, since the potential fluid flow rate remains constant while residing in a discrete
marking. Since we observe no intuition behind that modeling, we do not use it.

Let ϑ = t1 · · · tn ∈ TranSeq(N) and MN = M0
t1→ M1

t2→ · · · tn→ Mn. The average
potential fluid change volume for the transition sequence ϑ in a continuous place
q ∈ PcN is

FluidChange(q, ϑ) =

n∑

i=0

FluidChange(q,Mi).

In [10, 11], the following two types of Markovian trace equivalence have been
proposed. The state-to-state Markovian trace equivalence requires coincidence of
average sojourn times in all corresponding discrete markings of the paths. The
end-to-end Markovian trace equivalence demands that only the sums of average
sojourn times for all corresponding discrete markings of the paths should be equal.
As a basis for constructing fluid trace equivalence, we have taken the state-to-state
relation, since the constant potential fluid flow rate in the discrete markings may
differ with their change (moreover, the actual fluid flow rate function may become
discontinuous when the lower fluid boundary for a continuous place is reached in
some discrete marking). Therefore, while summing the potential fluid flow rates for
all discrete markings of a path, an important information is lost. The information
is needed to calculate the average potential fluid change volume for a transition
sequence that refers to the path. The mentioned value is a sum of the average
potential fluid change volumes for all corresponding discrete markings of the path.
It coincides for the corresponding transition sequences ϑ ∈ TranSeq(N, σ, ς, ̺)
and ϑ′ ∈ TranSeq(N ′, σ, ς, ̺), i.e. FluidChange(q, ϑ) = FluidChange(q′, ϑ′) for
the respective continuous places q and q′. Again, note that the average actual
and potential fluid change volumes for a transition sequence may differ, due to
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discontinuity of the actual fluid flow rate functions for some discrete markings of
the path to which the transition sequence refers.

Let TranSeq(N, σ, ς, ̺) 6= ∅. The average potential fluid change volume for the
(σ, ς, ̺)-selected (finite) transition sequences in a continuous place q ∈ PcN is

FluidChange(q, (σ, ς, ̺)) = FluidChange(q, ϑ) ∀ϑ ∈ TranSeq(N, σ, ς, ̺).

Then, as mentioned above, for the respective continuous places q and q′ of the
LFSPNs N and N ′, such that TranSeq(N, σ, ς, ̺) 6= ∅ 6= TranSeq(N, σ, ς, ̺), we
have FluidChange(q, (σ, ς, ̺)) = FluidChange(q′, (σ, ς, ̺)).

Let n ∈ N. The average potential fluid change volume for the transition sequences
of length n in a continuous place q ∈ PcN is

FluidChange(q, n) =
∑

{ϑ∈TranSeq(N)||ϑ|=n}
FluidChange(q, ϑ)PT (ϑ).

We get FluidChange(q, n)=
∑

{ϑ∈TranSeq(N)||ϑ|=n} FluidChange(q, ϑ)PT (ϑ)=∑
{(σ,ς,̺)|TranSeq(N,σ,ς,̺) 6=∅∧|σ|=n} FluidChange(q, (σ, ς, ̺))PT (σ, ς, ̺). For the res-

pective continuous places q and q′ of the LFSPNs N and N ′ with N ≡fl N
′, we have

∀n ∈ N FluidChange(q, n) = FluidChange(q′, n). Thus, fluid trace equivalence
preserves average potential fluid change volume for the transition sequences of every
certain length in the respective continuous places.

Example 1. In Figure 1, the LFSPNs N and N ′ are presented, such that N ≡fl N
′.

We have DRS(N) = {M1,M2}, where M1 = (1, 0), M2 = (0, 1), and DRS(N ′) =
{M ′

1,M
′
2,M

′
3}, where M ′

1 = (1, 0, 0), M ′
2 = (0, 1, 0), M ′

3 = (0, 0, 1).
In Figure 2, the discrete reachability graphs DRG(N) and DRG(N ′) are depicted.

In Figure 3, the underlying CTMCs CTMC(N) and CTMC(N ′) are drawn. In
Figure 4, the EDTMCs EDTMC(N) and EDTMC(N ′) are presented.

The sojourn time average and variance vectors of N are

SJ =

(
1

2
,
1

2

)
, V AR =

(
1

4
,
1

4

)
.

The TRM Q for CTMC(N), TPM P for EDTMC(N) and FRM R for the
SFM of N are

Q =

(
−2 2
2 −2

)
, P =

(
0 1
1 0

)
, R =

(
1 0
0 −2

)
.

The sojourn time average and variance vectors of N ′ are

SJ ′ =

(
1

2
,
1

2
,
1

2

)
, V AR′ =

(
1

4
,
1

4
,
1

4

)
.

The TRM Q′ for CTMC(N ′), TPM P′ for EDTMC(N ′) and FRM R′ for the
SFM of N ′ are

Q′ =




−2 1 1
2 −2 0
2 0 −2


 , P′ =




0 1
2

1
2

1 0 0
1 0 0


 , R′ =




1 0 0
0 −2 0
0 0 −2


 .



EQUIVALENCES FOR FLUID STOCHASTIC PETRI NETS 337

b c

a

✍✌✎☞
✍✌✎☞✉
❄

❄

✁
✁☛
❆
❆❯

✛

✚

✲ ✔

✕

✛

✌ ✍

N

≡fl

b c

a

✍✌✎☞
✍✌✎☞✉
❄

✁
✁☛
❆
❆❯

✛

✚

✲ ✔

✕

✛

✌ ✍

N ′

✍✌✎☞❄a
❄ ❄

✍✌✎☞❥ ✍✌✎☞❥

p1

t1,2

p2

t3,1t2,1

q

p′1

t′4,2t′3,2

q′

t′2,1

p′3

t′1,1

p′2

❇❇▼ ❇❇▼ ✂✂✍

❙❙ ✓✓

❄❄

✁
✁
✁

✁
✁✁
❅
❅❅❘ �

��
❆
❆

❆
❆

❆❆❑

✂✂✍
❇
❇◆
✂
✂✌

5 4

1 2

2 3

1
3

2
3

2 2

Fig. 1. Fluid trace equivalent LFSPNs

We have t1t2 ∈ TranSeq
(
N, ab, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)

and

t1t3 ∈ TranSeq
(
N, ac, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
, hence, FluidChange(q, t1t2) =

FluidChange(q, t1t3) =
1
2 · 1 + 1

2 · (−2) + 1
2 · 1 = 0.

We have t′1t
′
3 ∈ TranSeq

(
N ′, ab, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)

and

t′2t
′
4 ∈ TranSeq

(
N ′, ac, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
, hence, FluidChange(q′, t′1t

′
3) =

FluidChange(q′, t′2t
′
4) =

1
2 · 1 + 1

2 · (−2) + 1
2 · 1 = 0.

It holds PT (t1t2) = PT (t1t3) = 1 · 1
2 = 1

2 and PT (t′1t
′
3) = PT (t′2t

′
4) =

1
2 · 1 = 1

2 .

We get FluStochT races(N) = {
((
ε, 12 , 1

)
, 1
)
,
((
a, 1

2 ◦ 1
2 , 1 ◦ (−2)

)
, 1
)
,((

ab, 12 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
, 1
2

)
,
((
ac, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
, 1
2

)
, . . .} =

FluStochT races(N ′).
It holds FluidChange

(
q,
(
a, 1

2 ◦ 1
2 , 1 ◦ (−2)

))
=

FluidChange
(
q′,

(
a, 12 ◦ 1

2 , 1 ◦ (−2)
))

= 1
2 · 1 + 1

2 · (−2) = − 1
2 .

We then get FluidChange(q, 1) = FluidChange(q, t1)PT (t1) = (− 1
2 )·1 = − 1

2 =

(− 1
2 ) · 1

2 + (− 1
2 ) · 1

2 = FluidChange(q′, t′1)PT (t′1) + FluidChange(q′, t′2)PT (t′2) =
FluidChange(q′, 1).

In Figure 5, the ideal (since we have a stochastic process here, the actual and
average sojourn times may differ) evolution of the actual fluid level for the continu-
ous place q of the LFSPN N is depicted. One can see that X(0.75) = 0, i.e. at the
time moment δ = 0.75, the fluid level X(δ) reaches the zero low boundary while
N resides in the discrete marking M(δ) = M2 for all δ ∈ [0.5; 1). Then the actual
fluid flow rate function RA(M(δ), X(δ)) has a discontinuity at that point, where
the function value is changed instantly from −2 to 0. If it would exist no lower
boundary, the average potential and actual fluid change volumes for the transition
sequences of length 1 in the continuous place q would coincide and be equal to
FluidChange(q, 1) = −0.5 = 0.5− 1 = X(1).

In Figure 6, possible evolution of the actual fluid level for the continuous place
q of the LFSPN N is presented, where the actual and average sojourn times in the
discrete markings demonstrate substantial differences.

6. Fluid bisimulation equivalence

Bisimulation equivalences respect particular points of choice in the behavior of a
system. To define fluid bisimulation equivalence, we have to consider a bisimulation
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Fig. 6. Possible evolution of the actual fluid level in the first of
two fluid trace equivalent LFSPNs

being an equivalence relation that partitions the states of the union of the discrete
reachability graphs DRG(N) and DRG(N ′) of the LFSPNs N and N ′. For N and
N ′ to be bisimulation equivalent the initial states MN and MN ′ of their discrete
reachability graphs should be related by a bisimulation having the following transfer
property: if two states are related then in each of them the same action can occur,
leading with the identical overall rate from each of the two states to the same
equivalence class for every such action.

The definition of fluid bisimulation should be given at the level of LFSPNs, but
it must use the transition rates of the extracted CTMC. These rates cannot be
easily (i.e. with a simple expression) defined at the level of more general LFSPNs,
whose discrete part is labeled GSPNs. In addition, the action labels of immediate
transitions are lost and their individual probabilities are redistributed while GSPNs
are transformed into CTSPNs. The individual probabilities of immediate transitions
are “dissolved” in the total transition rates between tangible states when vanishing
states are eliminated from SMCs while reducing them to CTMCs. Therefore, to
make the definition of fluid bisimulation less intricate, we have decided to consider
only LFSPNs with labeled CTSPNs as the discrete part. Then the underlying sto-
chastic process of the discrete part of LFSPNs will be that of CTSPNs, i.e. CTMCs.

The novelty of the fluid bisimulation definition w.r.t. that of the Markovian
bisimulations from [15, 38, 8, 6, 7, 9, 10, 11] is that, for each pair of bisimilar
discrete markings of N and N ′, we require coincidence of the fluid flow rates of the
corresponding (i.e. related by a correspondence bijection) continuous places of N
and N ′ in these two discrete markings. Thus, fluid bisimulation equivalence takes
into account functional activity, stochastic timing and fluid flow, like fluid trace
equivalence does.

We first propose some helpful extensions of the rate functions for the discrete
marking changes and for the fluid flow in continuous places. Let N be an LFSPN

and H ⊆ DRS(N). Then, for each M ∈ DRS(N) and a ∈ Act, we write M
a→λ H,
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where λ = RMa(M,H) is the overall rate to move from M into the set of discrete
markings H by action a, defined as

RMa(M,H) =
∑

{t|∃M̃∈H M
t→M̃, LN (t)=a}

ΩN (t,M).

We write M
a→ H if ∃λ M

a→λ H. Further, we write M →λ H if ∃a M
a→ H,

where λ = RM(M,H) is the overall rate to move from M into the set of discrete
markings H by any actions, defined as

RM(M,H) =
∑

{t|∃M̃∈H M
t→M̃}

ΩN (t,M).

To construct a fluid bisimulation between LFSPNs N and N ′, we should consider
the “composite” set of their discrete markings DRS(N)∪DRS(N ′), since we have to
identify the rates to come from any two equivalent discrete markings into the same
“composite” equivalence class (w.r.t. the fluid bisimulation). Note that, for N 6= N ′,
transitions starting from the discrete markings of DRS(N) (or DRS(N ′)) always
lead to those from the same set, since DRS(N)∩DRS(N ′) = ∅, and this allows us
to “mix” the sets of discrete markings in the definition of fluid bisimulation.

Let PcN = {q} and PcN ′ = {q′}. In this case the continuous place q′ of N cor-
responds to q of N , according to a trivial correspondence bijection β : PcN → PcN ′

such that β(q) = q′. Then for M ∈ DRS(N) (or for M ′ ∈ DRS(N ′)) we denote
by RP (M) (or by RP (M ′)) the fluid level change rate for the continuous place q
(or for the corresponding one q′), i.e. the argument discrete marking determines for
which of the two continuous places, q or q′, the flow rate function RP is taken.

Note that if N and N ′ have more than one continuous place and there exists a
correspondence bijection β : PcN → PcN ′ then we should consider several flow rate
functions RPi (1 ≤ i ≤ l = |PcN | = |PcN ′ |) in the same manner, i.e. each RPi

is used for the pair of the corresponding continuous places qi ∈ PcN and β(qi) =
q′i ∈ PcN ′ . In other words, we require that the vectors (RP1(M), . . . , RPl(M)) and
(RP1(M

′), . . . , RPl(M
′)) coincide for each pair of fluid bisimilar discrete markings

M and M ′ in such a case.

Definition 9. Let N and N ′ be LFSPNs such that PcN = {q}, P cN ′ = {q′} and
q′ corresponds to q. An equivalence relation R ⊆ (DRS(N)∪DRS(N ′))2 is a fluid
bisimulation between N and N ′, denoted by R : N↔flN

′, if:

(1) (MN ,MN ′) ∈ R.
(2) (M1,M2)∈R⇒RP (M1)=RP (M2), ∀H∈(DRS(N)∪DRS(N ′))/R, ∀a∈Act

M1
a→λ H ⇔ M2

a→λ H.

Two LFSPNs N and N ′ are fluid bisimulation equivalent, denoted by N↔flN
′, if

∃R : N↔flN
′.

Let Rfl(N,N ′) =
⋃{R | R : N↔flN

′} be the union of all fluid bisimulations
between N and N ′. The following proposition proves that Rfl(N,N ′) is also an
equivalence and Rfl(N,N ′) : N↔flN

′.

Proposition 1. Let N and N ′ be LFSPNs and N↔flN
′. Then Rfl(N,N ′) is the

largest fluid bisimulation between N and N ′.
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Proof. Analogous to that of Proposition 8.2.1 from [38], which establishes the
result for strong equivalence. �

Let N,N ′ be LFSPNs with R : N↔flN
′ and H ∈ (DRS(N)∪DRS(N ′))/R. We

now present several remarks on the important equalities and helpful notations based
on the rate functions RMa, RM, RP and sojourn time characteristics SJ, V AR.

Remark 1. We have ∀M1,M2 ∈ H ∀H̃ ∈ (DRS(N)∪DRS(N ′))/R ∀a ∈ Act M1
a→λ

H̃ ⇔ M2
a→λ H̃. Since the previous equality is valid for all M1,M2 ∈ H, we can

rewrite it as H a→λ H̃, where λ = RMa(H, H̃) = RMa(M1, H̃) = RMa(M2, H̃) =

RMa(H ∩ DRS(N), H̃) = RMa(H ∩ DRS(N ′), H̃). Then we write H a→ H̃ if

∃λ H a→λ H̃ and H → H̃ if ∃a H a→ H̃.
Since the transitions from the discrete markings of DRS(N) always lead to those

from the same set, we have ∀M ∈ DRS(N) ∀a ∈ Act RMa(M, H̃) = RMa(M, H̃ ∩
DRS(N)). Hence, ∀M ∈ H ∩ DRS(N) ∀a ∈ Act RMa(H, H̃) = RMa(M, H̃) =

RMa(M, H̃ ∩DRS(N)) = RMa(H∩DRS(N), H̃ ∩DRS(N)). The same is true for

DRS(N ′). Thus, ∀H̃ ∈ (DRS(N) ∪DRS(N ′))/R

RMa(H∩DRS(N), H̃∩DRS(N))=RMa(H, H̃)=RMa(H∩DRS(N ′), H̃∩DRS(N ′)).

Remark 2. We have ∀M1,M2 ∈ H ∀H̃ ∈ (DRS(N) ∪DRS(N ′))/R RM(M1, H̃) =∑
{t|∃M̃1∈H̃ M1

t→M̃1}
ΩN (t,M1)=

∑
a∈Act

∑
{t|∃M̃1∈H̃ M1

t→M̃1, LN(t)=a} ΩN (t,M1)=
∑

a∈Act RMa(M1, H̃) =
∑

a∈ActRMa(M2, H̃) =∑
a∈Act

∑
{t|∃M̃2∈H̃ M2

t→M̃2, LN (t)=a} ΩN(t,M2)=
∑

{t|∃M̃2∈H̃ M2
t→M̃2}

ΩN (t,M2)=

RM(M2, H̃). Since the previous equality is valid for all M1,M2 ∈ H, we can denote

RM(H, H̃) = RM(M1, H̃) = RM(M2, H̃). Then we write H →λ H̃, where λ =

RM(H, H̃) = RM(M1, H̃) = RM(M2, H̃).
Since the transitions from the discrete markings of DRS(N) always lead to those

from the same set, we have ∀M ∈ DRS(N) RM(M, H̃) = RM(M, H̃ ∩DRS(N)).

Hence, ∀M ∈ H ∩DRS(N) RM(H, H̃) = RM(M, H̃) = RM(M, H̃ ∩DRS(N)) =

RM(H ∩ DRS(N), H̃ ∩ DRS(N)). The same is true for DRS(N ′). Thus, ∀H̃ ∈
(DRS(N) ∪DRS(N ′))/R

RM(H∩DRS(N), H̃∩DRS(N)) = RM(H, H̃) = RM(H∩DRS(N ′), H̃∩DRS(N ′)).

Remark 3. We have ∀M1,M2 ∈ H RP (M1) = RP (M2). Since the previous equality
is valid for all M1,M2 ∈ H, we can denote RP (H) = RP (M1) = RP (M2).

Since any argument discrete marking M ∈ DRS(N) ∪ DRS(N ′) completely
determines for which continuous place the flow rate function RP (M) is taken
(either for q if M ∈ DRS(N) or for q′ if M ∈ DRS(N ′)), we have ∀M ∈
H ∩ DRS(N) RP (H) = RP (M) = RP (H ∩ DRS(N)). The same is true for
DRS(N ′). Thus,

RP (H ∩DRS(N)) = RP (H) = RP (H ∩DRS(N ′)).

Remark 4. We have ∀M1,M2 ∈ H SJ(M1) =
1∑

t∈Ena(M1) ΩN (t,M1)
=

1∑
H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃1∈H̃ M1

t→M̃1}
ΩN (t,M1)

=

1∑
H̃∈(DRS(N)∪DRS(N′))/R

RM(M1,H̃)
= 1∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(H,H̃)

=
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1∑
H̃∈(DRS(N)∪DRS(N′))/R

RM(M2,H̃)
=

1∑
H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃2∈H̃ M2

t→M̃2}
ΩN (t,M2)

= 1∑
t∈Ena(M2) ΩN (t,M2)

=SJ(M2).

Since the previous equality is valid for all M1,M2 ∈ H, we can denote SJR(H) =
SJ(M1) = SJ(M2).

Since any argument discrete marking M ∈ DRS(N) ∪DRS(N ′) completely de-
termines, for which LFSPN the average sojourn time function SJ(M) is considered
(for N if M ∈ DRS(N), or for N ′ if M ∈ DRS(N ′)), we have ∀M ∈ H∩DRS(N)
SJ(H) = SJ(M) = SJ(H ∩DRS(N)). The same is true for DRS(N ′). Thus,

SJ(H ∩DRS(N)) = SJ(H) = SJ(H ∩DRS(N ′)).

Remark 5. We have ∀M1,M2 ∈ H V AR(M1) =
1

(
∑

t∈Ena(M1) ΩN (t,M1))2
=

1
(
∑

H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃1∈H̃ M1

t→M̃1}
ΩN (t,M1))2

=

1

(
∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(M1,H̃))2

= 1

(
∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(H,H̃))2

=

1

(
∑

H̃∈(DRS(N)∪DRS(N′))/R
RM(M2,H̃))2

=

1
(
∑

H̃∈(DRS(N)∪DRS(N′))/R

∑
{t|∃M̃2∈H̃ M2

t→M̃2}
ΩN (t,M2))2

=

1
(
∑

t∈Ena(M2) ΩN (t,M2))2
= V AR(M2). Since the previous equality is valid for all

M1,M2 ∈ H, we can denote V ARR(H) = V AR(M1) = V AR(M2).
Since any argument discrete marking M ∈ DRS(N) ∪ DRS(N ′) completely

determines, for which LFSPN the sojourn time variance function V AR(M) is
considered (for N if M ∈ DRS(N), or for N ′ if M ∈ DRS(N ′)), we have ∀M ∈
H ∩ DRS(N) V AR(H) = V AR(M) = V AR(H ∩DRS(N)). The same is true for
DRS(N ′). Thus,

V AR(H ∩DRS(N)) = V AR(H) = V AR(H ∩DRS(N ′)).

Example 2. In Figure 7, the LFSPNs N and N ′ are presented, such that N↔flN
′.

The only difference between the respective LFSPNs in Figure 1 and those in Figure
7 is that the transitions t3 and t′4 are labeled with action c in the former, instead of
action b in the latter.

Therefore, the following notions coincide for the respective LFSPNs in Figure
1 and those in Figure 7: the discrete reachability sets DRS(N) and DRS(N ′),
the discrete reachability graphs DRG(N) and DRG(N ′), the underlying CTMCs
CTMC(N) and CTMC(N ′), the average sojourn time vectors SJ and SJ ′ of N
and N ′, the sojourn time variance vectors V AR and V AR′ of N and N ′, the TRMs
Q and Q′ for CTMC(N) and CTMC(N ′), the TPMs P and P′ for EDTMC(N)
and EDTMC(N ′), the FRMs R and R′ for the SFMs of N and N ′.

We have (DRS(N) ∪DRS(N ′))/Rfl(N,N ′) = {H1,H2}, where H1 = {M1,M
′
1},

H2 = {M2,M
′
2,M

′
3}.

We now compare the fluid equivalences to discover their interrelations. The fol-
lowing proposition states that fluid bisimulation equivalence implies fluid trace one.

Proposition 2. For LFSPNs N and N ′ the following holds:

N↔flN
′ ⇒ N ≡fl N

′.
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Fig. 7. Fluid bisimulation equivalent LFSPNs

Proof. Let R : N↔flN
′, H ∈ (DRS(N) ∪ DRS(N ′))/R and M1,M2 ∈ H. We

have RP (M1) = RP (M2) and ∀H̃ ∈ (DRS(N) ∪ DRS(N ′))/R ∀a ∈ Act M1
a→λ

H̃ ⇔ M2
a→λ H̃. Note that transitions from the discrete markings of DRS(N)

always lead to those from the same set, hence, ∀M ∈ DRS(N) RMa(M, H̃) =

RMa(M, H̃ ∩DRS(N)). The same is true for DRS(N ′).
By Remark 1 from Section 6, we can write H a→λ H̃ and denote λ=RMa(M1, H̃)=

RMa(M2, H̃) = RMa(H, H̃) = RMa(H ∩ DRS(N), H̃ ∩ DRS(N)) = RMa(H ∩
DRS(N ′), H̃ ∩DRS(N ′)).

Further, by Remark 4 from Section 6, we can denote SJ(M1) = SJ(M2) =
SJ(H) = SJ(H ∩DRS(N)) = SJ(H ∩DRS(N ′)).

At last, by Remark 3 from Section 6, we can denote RP (M1) = RP (M2) =
RP (H) = RP (H ∩DRS(N)) = RP (H ∩DRS(N ′)).

Let TranSeq(N, σ, ς, ̺) 6= ∅ and σ = a1 · · · an ∈ Act∗, ς = s0 ◦ · · · ◦ sn ∈ R
∗
>0,

̺ = r0◦· · ·◦rn ∈ R
∗. Taking into account the notes above and R : N↔flN

′, we have
SJ(MN) = SJ(MN ′) = s0, RP (MN) = RP (MN ′) = r0 and for all H1, . . . ,Hn ∈
(DRS(N) ∪ DRS(N ′))/R, such that SJ(Hi) = si, RP (Hi) = ri (1 ≤ i ≤ n),

it holds MN
a1→λ1 H1

a2→λ2 · · · an→λn Hn ⇔ MN ′
a1→λ1 H1

a2→λ2 · · · an→λn Hn.
Then we have TranSeq(N ′, σ, ς, ̺) 6= ∅. Thus, TranSeq(N, σ, ς, ̺) 6= ∅ implies
TranSeq(N ′, σ, ς, ̺) 6= ∅.

We now intend to prove that the sum of the transition rates products for all
the paths starting in MN = M0 and going through the discrete markings from
H1, . . . ,Hn is equal to the product of λ1, . . . , λn, which is essentially the transition
rates product for the “composite” path starting in H0 = [M0]R and going through
the equivalence classes H1, . . . ,Hn in DRG(N):

∑

{t1,...,tn|MN=M0
t1→···tn→Mn,LN(ti)=ai,Mi∈Hi(1≤i≤n)}

n∏

i=1

ΩN (ti,Mi−1)=
n∏

i=1

RMai(Hi−1,Hi).

We prove this equality by induction on the “composite” path length n.

• n = 1
∑

{t1|MN=M0
t1→M1, LN (t1)=a1, M1∈H1}

ΩN (t1,M0)=RMa1 (M0,H1)=RMa1 (H0,H1).

• n → n+ 1
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≡fl ↔fl✛

Fig. 8. Interrelations of fluid equivalences

∑
{t1,...,tn,tn+1|MN=M0

t1→···tn→Mn
tn+1→ Mn+1, LN (ti)=ai, Mi∈Hi (1≤i≤n+1)}

∏n+1
i=1 ΩN (ti,Mi−1)=

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}∑
{tn+1|Mn

tn+1→ Mn+1, LN (tn+1)=an+1, Mn∈Hn, Mn+1∈Hn+1}

∏n
i=1 ΩN (ti,Mi−1)ΩN (tn+1,Mn)=

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}[
∏n

i=1ΩN (ti,Mi−1)
∑

{tn+1|Mn
tn+1→ Mn+1, LN (tn+1)=an+1, Mn∈Hn, Mn+1∈Hn+1}

ΩN (tn+1,Mn)

]
=

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}

∏n
i=1 ΩN (ti,Mi−1)RMan+1

(Mn,Hn+1)=

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}

∏n
i=1 ΩN (ti,Mi−1)RMan+1

(Hn,Hn+1)=

RMan+1
(Hn,Hn+1)

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, Mi∈Hi (1≤i≤n)}

∏n
i=1 ΩN (ti,Mi−1)=

RMan+1
(Hn,Hn+1)

∏n
i=1 RMai

(Hi−1,Hi)=
∏n+1

i=1 RMai
(Hi−1,Hi).

Note that the equality that we have just proved can also be applied to N ′.
One can see that the summation over all (σ, ς, ̺)-selected transition sequences

is the same as the summation over all accordingly selected equivalence classes:
∑

t1···tn∈TranSeq(N,σ,ς,̺)

∏n
i=1 ΩN (ti,Mi−1)=

∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai, SJ(Mi)=si, RP(Mj )=ri (1≤i≤n)}

∏n
i=1 ΩN (ti,Mi−1)=

∑
{H1,...,Hn|SJ(Hi)=si,RP(Hi)=ri (1≤i≤n)}∑
{t1,...,tn|MN=M0

t1→···tn→Mn, LN (ti)=ai,Mi∈Hi (1≤i≤n)}

∏n
i=1 ΩN (ti,Mi−1)=

∑
{H1,...,Hn|SJ(Hi)=si, RP (Hi)=ri (1≤i≤n)}

∏n
i=1 RMai

(Hi−1,Hi)=
∑

{H1,...,Hn|SJ(Hi)=si,RP(Hi)=ri (1≤i≤n)}∑
{t′

1
,...,t′n|M

N′=M′
0

t′1→···
t′n→M′

n, LN (t′
i
)=ai,M

′
i
∈Hi (1≤i≤n)}

∏n
i=1 ΩN′(t′i,M

′
i−1)=

∑
{t′

1
,...,t′n|M

N′=M′
0

t′1→···
t′n→M′

n, L
N′(t′i)=ai, SJ(M′

i
)=si, RP (M′

j
)=ri (1≤i≤n)}

∏n
i=1 ΩN′ (t′i,M

′
i−1)=

∑
t′
1
···t′n∈TranSeq(N′,σ,ς,̺)

∏n
i=1 ΩN (t′i,M

′
i−1). By the remark before Definition 8, the proba-

bilities to execute (σ, ς, ̺)-selected transition sequences in N and N ′ coincide.
We conclude that for all triples (σ, ς, ̺) ∈ Act∗ × R

∗
>0 × R

∗, it holds that
TranSeq(N, σ, ς, ̺) 6= ∅ implies TranSeq(N ′, σ, ς, ̺) 6= ∅ and the execution probabi-
lities of (σ, ς, ̺) in N and N ′ are equal. The reverse implication is proved by
symmetry of fluid bisimulation. �

The following theorem compares discrimination power of the fluid equivalences.

Theorem 1. For LFSPNs N and N ′ the following strict implication holds that is
also depicted in Figure 8:

N↔flN
′ ⇒ N ≡fl N

′.

Proof. Let us check the validity of the implication.

• The implication ↔fl →≡fl is valid by Proposition 2.

Let us see that the implication is strict, i.e. the reverse one does not work, by
the following counterexample.
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• In Figure 1, N ≡fl N
′, but N↔/ flN

′, since only in the LFSPN N ′ an action
a can be executed so (by firing t′2) that no action b can occur afterwards. �

7. Reduction of the behaviour

Fluid bisimulation equivalence can be used to reduce the discrete reachability
graphs and underlying CTMCs of LFSPNs. Reductions of graph-based models,
like transition systems (whose instances are reachability graphs and CTMCs),
result in those with less states (the graph nodes). The goal of the reduction is to
decrease the number of states in the semantic representation of the modeled system
while preserving its important qualitative and quantitative properties. Thus, the
reduction allows one to simplify the behavioural and performance analysis.

An autobisimulation is a bisimulation between an LFSPN and itself. Let N be
an LFSPN with R : N↔flN and K ∈ DRS(N)/R.

Remarks 2, 4 and 5 from Section 6 allow us to present the following definitions.
The average sojourn time in the equivalence class (w.r.t. R) of discrete markings K is

SJR(K) =
1

∑
K̃∈DRS(N)/R

RM(K, K̃)
= SJ(M) ∀M ∈ K.

The average sojourn time vector for the equivalence classes (w.r.t. R) of discrete
markings of N , denoted by SJR, has the elements SJR(K), K ∈ DRS(N)/R.
The sojourn time variance in the equivalence class (w.r.t. R) of discrete markings K is

V ARR(K) =
1

(∑
K̃∈DRS(N)/R

RM(K, K̃)
)2 = V AR(M) ∀M ∈ K.

The sojourn time variance vector for the equivalence classes (w.r.t. R) of discrete
markings of N , denoted by V ARR, has the elements V ARR(K), K ∈ DRS(N)/R.

Let Rfl(N) =
⋃{R | R : N↔flN} be the union of all fluid autobisimulations on

N . By Proposition 1, Rfl(N) is the largest fluid autobisimulation on N . Based on
the equivalence classes w.r.t. Rfl(N), the quotient (by ↔fl) discrete reachability
graphs and quotient (by ↔fl) underlying CTMCs of LFSPNs can be defined. The
mentioned equivalence classes become the quotient states. The average and variance
for the sojourn time in a quotient state are those in the corresponding equivalence
class, respectively. Every quotient transition between two such composite states
represents all transitions (having the same action label in case of the discrete
reachability graph quotient) from the first state to the second one.

Definition 10. Let N be an LFSPN. The quotient (by ↔fl) discrete reachability
graph of N is a labeled transition system DRG↔fl

(N)=(S↔fl
,L↔fl

, T↔fl
, s↔fl

) with

• S↔fl
= DRS(N)/Rfl(N);

• L↔fl
= Act× R>0;

• T↔fl
= {(K, (a,RMa(K, K̃)), K̃) | K, K̃ ∈ DRS(N)/Rfl(N), K a→ K̃};

• s↔fl
= [MN ]Rfl(N).

The transition (K, (a, λ), K̃) ∈ T↔fl
will be written as K a→λ K̃.

Let ≃ denote isomorphism between the quotient discrete reachability graphs that
binds their initial states.
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The quotient (by ↔fl) average sojourn time vector of N is SJ↔fl
= SJRfl(N).

The quotient (by ↔fl) sojourn time variance vector of N is V AR↔fl
= V ARRfl(N).

Definition 11. Let N be an LFSPN. The quotient (by ↔fl) underlying CTMC
of N , denoted by CTMC↔fl

(N), has the state space DRS(N)/Rfl(N), the initial

state [MN ]Rfl(N) and the transitions K →λ K̃ if K → K̃, where λ = RM(K, K̃).

The steady-state PMF ϕ↔fl
for CTMC↔fl

(N) is defined like the corresponding

notion ϕ for CTMC(N).
The quotients of both discrete reachability graphs and underlying CTMCs are

the minimal reductions of the mentioned objects modulo fluid bisimulation. The
quotients can be used to simplify analysis of system properties which are preserved
by ↔fl, since less states should be examined for it. Such a reduction method
resembles that from [3] based on place bisimulation equivalence for Petri nets,
excepting that the former method merges states, while the latter one merges places.

Let N be an LFSPN. We shall now construct the quotients (by ↔fl) of the TRM
for CTMC(N), FRM for the associated SFM of N , average sojourn time vector and
sojourn time variance vector of N , using special collector and distributor matrices.
The quotient TRMs and FRMs are applied to describe the quotient associated SFMs
of LFSPNs. Let DRS(N) = {M1, . . . ,Mn} and DRS(N)/Rfl(N) = {K1, . . . ,Kl}.

The elements (Q↔fl
)rs (1 ≤ r, s ≤ l) of the TRM Q↔fl

for CTMC↔fl
(N) are

(Q↔fl
)rs =

{
RM(Kr,Ks), r 6= s;
−∑

{k|1≤k≤l, k 6=r} RM(Kr,Kk), r = s.

Like it has been done for strong performance bisimulation on labeled CTSPNs
in [15], the l× l TRM Q↔fl

for CTMC↔fl
(N) can be constructed from the n× n

TRM Q for CTMC(N) using the n × l collector matrix V for the largest fluid
autobisimulation Rfl(N) on N and the l×n distributor matrix W for V. Then W

should be a non-negative matrix (i.e. all its elements must be non-negative) with the
elements of each its row summed to one, such that WV = I, where I is the identity
matrix of order l, i.e. W is a left-inverse matrix for V. It is known that for each
collector matrix there is at least one distributor matrix, in particular, the matrix
obtained by transposing V and subsequent normalizing its rows, to guarantee that
the elements of each row of the transposed matrix are summed to one.

The elements Vir (1 ≤ i ≤ n, 1 ≤ r ≤ l) of the collector matrix V for the largest
fluid autobisimulation Rfl(N) on N are defined as

Vir =

{
1, Mi ∈ Kr;
0, otherwise.

Thus, all the elements of V are non-negative, as required. The row elements
of V are summed to one, since for each Mi (1 ≤ i ≤ n) there exists exactly one
Kr (1 ≤ r ≤ l) such that Mi ∈ Kr. Hence,

V1T = 1T ,

where 1 on the left side is the row vector of l values 1 while 1 on the right side is
the row vector of n values 1.

For a vector v = (v1, . . . , vl), let Diag(v) be a diagonal matrix with the elements
Diagrs(v) (1 ≤ r, s ≤ l) defined as
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Diagrs(v) =

{
vr, r = s;
0, otherwise.

The distributor matrix W for the collector matrix V is defined as

W = (Diag(VT1T ))−1VT ,

where 1 is the row vector of n values 1. One can check that WV = I, where I is
the identity matrix of order l.

The elements (QV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix QV are

(QV)is =
n∑

j=1

QijVjs =
∑

{j|1≤j≤n, Mj∈Ks}
RM(Mi,Mj) = RM(Mi,Ks).

As we know, for each Mi (1 ≤ i ≤ n) there exists exactly one Kr (1 ≤ r ≤ l) such
that Mi ∈ Kr. By Remark 2 from Section 6, for all Mi ∈ Kr we have RM(Kr,Ks) =
RM(Mi,Ks) (1 ≤ i ≤ n, 1 ≤ r, s ≤ l). Then the elements (VQ↔fl

)is (1 ≤ i ≤
n, 1 ≤ s ≤ l) of the matrix VQ↔fl

are

(VQ↔fl
)is =

l∑

r=1

Vir(Q↔fl
)rs =

∑

{r|1≤r≤l, Mi∈Kr}
RM(Kr,Ks) = RM(Mi,Ks).

Therefore, we have

QV = VQ↔fl
, WQV = Q↔fl

.

The elements (R↔fl
)rs (1 ≤ r, s ≤ l) of the FRM R↔fl

of the quotient (by ↔fl)

SFM of N for the continuous place q are defined as

(R↔fl
)rs =

{
RP (Kr), r = s;
0, r 6= s.

Let R be the FRM of the SFM of N for the continuous place q. The elements
(RV)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the matrix RV are

(RV)is =

n∑

j=1

RijVjs = RP (Mi)Vis =

{
RP (Mi), Mi ∈ Ks;
0, otherwise.

By Remark 2 from Section 6, for all Mi ∈ Ks we have RP (Ks) = RP (Mi) (1 ≤
i ≤ n, 1 ≤ s ≤ l). Then the elements (VR↔fl

)is (1 ≤ i ≤ n, 1 ≤ s ≤ l) of the

matrix VR↔fl
are

(VR↔fl
)is =

l∑

r=1

Vir(R↔fl
)rs = VisRP (Ks) =

{
RP (Ks) = RP (Mi), Mi ∈ Ks;
0, otherwise.

Therefore, we also have

RV = VR↔fl
, WRV = R↔fl

.
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(N ′)

☛
✡

✟
✠
✛

a,2 b,2

✲

Fig. 9. The quotient discrete reachability graphs of the fluid
bisimulation equivalent LFSPNs

Let us consider the matrices Diag(SJ) and Diag(SJ↔fl
). By analogy with the

proved above for R and R↔fl
, we can deduce Diag(SJ)V = VDiag(SJ↔fl

) and

WDiag(SJ)V = Diag(SJ↔fl
). Therefore, we have

1WDiag(SJ)V = 1Diag(SJ↔fl
) = SJ↔fl

,

where 1 is the row vector of l values 1. In a similar way, we obtain

1WDiag(V AR)V = 1Diag(V AR↔fl
) = V AR↔fl

,

where 1 is the row vector of l values 1.

Example 3. Consider the LFSPNs N and N ′ in Figure 7, for which it holds
N↔flN

′. We have DRS(N)/Rfl(N) = {K1,K2}, where K1 = {M1}, K2 = {M2},
and DRS(N ′)/Rfl(N ′) = {K′

1,K′
2}, where K′

1 = {M ′
1}, K′

2 = {M ′
2,M

′
3}. In Figure

9, the quotient discrete reachability graphs DRG↔fl
(N) and DRG↔fl

(N ′) are

depicted, for which we have DRG↔fl
(N) ≃ DRG↔fl

(N ′). In Figure 10, the quotient

underlying CTMCs CTMC↔fl
(N) and CTMC↔fl

(N ′) are drawn, for which it

holds CTMC↔fl
(N) ≃ CTMC↔fl

(N ′) ≃ CTMC(N). We have Q↔fl
= Q′

↔fl
=

Q, R↔fl
= R′

↔fl
= R and SJ↔fl

= SJ ′
↔fl

= SJ, V AR↔fl
= V AR′

↔fl
= V AR.

The collector matrix V for the largest fluid autobisimulation Rfl(N) on N and
the distributor matrix W for V are

V =




1 0
0 1
0 1


 , W =

(
1 0 0
0 1

2
1
2

)
.

Then it is easy to check that

WQ′V = Q, WR′V = R.

Hence, it holds that

1WDiag(SJ ′)V = SJ, 1WDiag(V AR′)V = V AR,

where 1=(1, 1), Diag(SJ ′)=




1
2 0 0
0 1

2 0
0 0 1

2


 , Diag(V AR′)=




1
4 0 0
0 1

4 0
0 0 1

4


 .
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Fig. 10. The quotient underlying CTMCs of the fluid bisimulation
equivalent LFSPNs

8. Preservation of the quantitative behaviour

It is clear that the proposed fluid bisimulation equivalence of LFSPNs preserves
their qualitative (functional) behaviour which is based on the actions assigned to
the fired transitions. Let us examine if fluid bisimulation equivalence also preserves
the quantitative (performance) behaviour of LFSPNs, taken for the steady states of
their underlying CTMCs and associated SFMs. The quantitative behaviour takes
into account the values of the rates and probabilities, as well as those of the related
probability mass, distribution, density and mass at lower boundary functions. Then
the quotients of the functions will describe the quotient (by ↔fl) associated SFMs.

The next proposition shows that for two LFSPNs related by ↔fl their aggregate
steady-state probabilities coincide for each equivalence class of discrete markings.

Proposition 3. Let N,N ′ be LFSPNs with R : N↔flN
′ and ϕ = (ϕ1, . . . , ϕn),

n = |DRS(N)|, be the steady-state PMF for CTMC(N) and ϕ′ = (ϕ′
1, . . . , ϕ

′
m),

m = |DRS(N ′)|, be the steady-state PMF for CTMC(N ′). Then for all
H ∈ (DRS(N) ∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
ϕi =

∑

{j|M ′
j∈H∩DRS(N ′)}

ϕ′
j .

Proof. See [53]. �

Let N be an LFSPN and ϕ be the steady-state PMF for CTMC(N). Let ϕK,
K ∈ DRS(N)/Rfl(N), be the elements of the steady-state PMF for CTMC↔fl

(N),

denoted by ϕ↔fl
. By (the proof of) Proposition 3, for all K ∈ DRS(N)/Rfl(N) we

have

ϕK =
∑

{i|Mi∈K}
ϕi.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on
N . One can see that

ϕV = ϕ↔fl
.
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We have

{
ϕQ = 0

ϕ1T = 1
. After right-multiplying both sides of the first equation

by V and since V1T = 1T , we get

{
ϕQV = 0

ϕV1T = 1
. Since QV = VQ↔fl

, we obtain
{

ϕVQ↔fl
= 0

ϕV1T = 1
. Since ϕV = ϕ↔fl

, ϕ↔fl
is a solution of the linear equation system

{
ϕ↔fl

Q↔fl
= 0

ϕ↔fl
1T = 1

.

Thus, the treatment of CTMC↔fl
(N) instead of CTMC(N) simplifies the analy-

tical solution, since we have less states, but constructing the TRM Q↔fl
for

CTMC↔fl
(N) also requires some efforts, including determining Rfl(N) and calcu-

lating the rates to move from one equivalence class to another. The behaviour of
CTMC↔fl

(N) stabilizes quicker than that of CTMC(N) (if each of them has a

single steady state), since Q↔fl
is denser matrix than Q (the TRM for CTMC(N))

due to the fact that the former matrix is smaller and the transitions between
the equivalence classes “include” all the transitions between the discrete markings
belonging to these equivalence classes.

The following proposition shows that for two LFSPNs related by ↔fl their aggre-
gate steady-state fluid PDFs coincide for each equivalence class of discrete markings.

Proposition 4. Let N,N ′ be LFSPNs with R : N↔flN
′ and

F (x) = (F1(x), . . . , Fn(x)), n = |DRS(N)|, be the steady-state fluid PDF for the
SFM of N and F ′(x) = (F ′

1(x), . . . , F
′
m(x)), m = |DRS(N ′)|, be the steady-state

fluid PDF for the SFM of N ′. Then for all H ∈ (DRS(N)∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
Fi(x) =

∑

{j|M ′
j∈H∩DRS(N ′)}

F ′
j(x), x > 0.

Proof. See [53]. �

Let N be an LFSPN and F (x) be the steady-state fluid PDF for the SFM of
N . Let FK(x), K ∈ DRS(N)/Rfl(N), be the elements of the steady-state fluid
PDF for the quotient (by ↔fl) SFM of N , denoted by F↔fl

(x). By (the proof of)

Proposition 4, for all K ∈ DRS(N)/Rfl(N) we have

FK(x) =
∑

{i|Mi∈K}
Fi(x), x > 0.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on
N . One can see that

F (x)V = F↔fl
(x), x > 0.

We have dF (x)
dx R = F (x)Q, x > 0. After right-multiplying both sides of the

above equation by V, we get dF (x)
dx RV = F (x)QV, x > 0. Since RV = VR↔fl

and QV = VQ↔fl
, we obtain dF (x)

dx VR↔fl
= F (x)VQ↔fl

, x > 0. By linearity

of differentiation operator, we have d
dx(F (x)V)R↔fl

= F (x)VQ↔fl
, x > 0. Since

F (x)V = F↔fl
(x), we conclude that F↔fl

(x) is a solution of the system of ordinary

differential equations
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dF↔fl
(x)

dx
R↔fl

= F↔fl
(x)Q↔fl

, x > 0.

Thus, the treatment of the quotient (by ↔fl) SFM of N instead of SFM of N
simplifies the analytical solution.

The following proposition demonstrates that for two LFSPNs related by ↔fl

their aggregate steady-state fluid probability density functions coincide for each
equivalence class of discrete markings.

Proposition 5. Let N,N ′ be LFSPNs with R : N↔flN
′ and

f(x) = (f1(x), . . . , fn(x)), n = |DRS(N)|, be the steady-state fluid probability
density function for the SFM of N and f ′(x) = (f ′

1(x), . . . , f
′
m(x)), m = |DRS(N ′)|,

be the steady-state fluid probability density function for the SFM of N ′. Then for
all H ∈ (DRS(N) ∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
fi(x) =

∑

{j|M ′
j∈H∩DRS(N ′)}

f ′
j(x), x > 0.

Proof. See [53]. �

Let N be an LFSPN and f(x) be the steady-state fluid probability density
function for the SFM of N . Let fK(x), K ∈ DRS(N)/Rfl(N), be the elements of the
steady-state fluid probability density function for the quotient (by ↔fl) SFM of N ,
denoted by f↔fl

(x). By (the proof of) Proposition 5, for all K ∈ DRS(N)/Rfl(N)

we have

fK(x) =
∑

{i|Mi∈K}
fi(x), x > 0.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on
N . One can see that

f(x)V = f↔fl
(x), x > 0.

We have df(x)
dx R = f(x)Q, x > 0. Like it has been done after Proposition 4, we

can prove that f↔fl
(x) is a solution of the system of ordinary differential equations

df↔fl
(x)

dx
R↔fl

= f↔fl
(x)Q↔fl

, x > 0.

The following proposition demonstrates that for two LFSPNs related by ↔fl

their aggregate steady-state buffer empty probabilities coincide for each equivalence
class of discrete markings.

Proposition 6. Let N,N ′ be LFSPNs with R : N↔flN
′ and ℓ = (ℓ1, . . . , ℓn),

n = |DRS(N)|, be the steady-state buffer empty probability for the SFM of N and
ℓ′(x) = (ℓ′1, . . . , ℓ

′
m), m = |DRS(N ′)|, be the steady-state buffer empty probability

for the SFM of N ′. Then for all H ∈ (DRS(N) ∪DRS(N ′))/R we have

∑

{i|Mi∈H∩DRS(N)}
ℓi =

∑

{j|M ′
j∈H∩DRS(N ′)}

ℓ′j .

Proof. See [53]. �
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Let N be an LFSPN and ℓ be the steady-state buffer empty probability for the
SFM of N . Let ℓK, K ∈ DRS(N)/Rfl(N), be the elements of the steady-state buffer
empty probability for the quotient (by ↔fl) SFM of N , denoted by ℓ↔fl

. By (the

proof of) Proposition 6, for all K ∈ DRS(N)/Rfl(N) we have

ℓK =
∑

{i|Mi∈K}
ℓi.

Let V be the collector matrix for the largest fluid autobisimulation Rfl(N) on
N . One can see that

ℓV = ℓ↔fl
.

We have ℓ = ϕ−
∫∞
0+ f(x)dx. After right-multiplying both sides of the equation

by V, we get ℓV = ϕV −
(∫∞

0+ f(x)dx
)
V. Since ℓV = ℓ↔fl

and ϕV = ϕ↔fl
,

by linearity of integration operator, we obtain ℓ↔fl
= ϕ↔fl

−
∫∞
0+ f(x)Vdx. Since

f(x)V = f↔fl
(x), x > 0, then ℓ↔fl

is a solution of the linear equation system

ℓ↔fl
= ϕ↔fl

−
∫ ∞

0+

f↔fl
(x)dx.

Thus, the proposed quotients of the probability functions describe the behaviour
of the quotient (by ↔fl) associated SFMs of LFSPNs.

Example 4. Consider the LFSPNs N and N ′ in Figure 7, for which it holds
N↔flN

′. We have DRS−(N) = {M2}, DRS0(N) = ∅ and DRS+(N) = {M1}.
The steady-state PMF for CTMC(N) is

ϕ =

(
1

2
,
1

2

)
.

Then the stability condition for the SFM of N is fulfilled: FluidF low(q) =∑2
i=1 ϕiRP (Mi) =

1
2 · 1 + 1

2 (−2) = − 1
2 < 0.

For each eigenvalue γ we must have |γR−Q| =
∣∣∣∣
γ + 2 −2
−2 −2γ + 2

∣∣∣∣ =
− 2γ(1 + γ) = 0; hence, γ1 = 0 and γ2 = −1.

The corresponding eigenvectors are the solutions of

v1

(
2 −2
−2 2

)
= 0, v2

(
1 −2
−2 4

)
= 0.

Then the eigenvectors are v1 =
(
1
2 ,

1
2

)
and v2 =

(
2
3 ,

1
3

)
.

Since ϕ = F (∞) = a1v1, we have F (x) = ϕ + a2e
γ2xv2 and a1 = 1. Since

∀Ml ∈ DRS+(N) Fl(0) = ϕl + a2v2l = 0 and DRS+(N) = {M1}, we have
ϕ1 + a2v21 = 1

2 + a2
2
3 = 0; hence, a2 = − 3

4 .
Then the steady-state fluid PDF for the SFM of N is

F (x) =

(
1

2
− 1

2
e−x,

1

2
− 1

4
e−x

)
.

The steady-state fluid probability density function for the SFM of N is

f(x) =
dF (x)

dx
=

(
1

2
e−x,

1

4
e−x

)
.
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The steady-state buffer empty probability for the SFM of N is

ℓ = F (0) =

(
0,

1

4

)
.

We have DRS−(N ′) = {M ′
2,M

′
3}, DRS0(N ′) = ∅ and DRS+(N ′) = {M ′

1}.
The steady-state PMF for CTMC(N ′) is

ϕ′ =

(
1

2
,
1

4
,
1

4

)
.

Then the stability condition for the SFM of N ′ is fulfilled: FluidF low(q′) =∑3
j=1 ϕ

′
jRP (M ′

j) =
1
2 · 1 + 1

4 (−2) + 1
4 (−2) = − 1

2 < 0.

For each eigenvalue γ′ we must have |γ′R′−Q′|=

∣∣∣∣∣∣

γ′ + 2 −1 −1
−2 −2γ′ + 2 0
−2 0 −2γ′ + 2

∣∣∣∣∣∣
=

− 2γ′(1 + γ′)(1 − γ′) = 0; hence, γ′
1 = 0, γ′

2 = −1 and γ′
3 = 1.

By the boundedness condition, the positive eigenvalue γ′
3 and the corresponding

eigenvector v′3 should be excluded from the solution.
The remaining corresponding eigenvectors are the solutions of

v′1




2 −1 −1
−2 2 0
−2 0 2


 = 0, v′2




1 −1 −1
−2 4 0
−2 0 4


 = 0.

Then the remaining eigenvectors are v′1 =
(
1
2 ,

1
4 ,

1
4

)
and v′2 =

(
2
3 ,

1
6 ,

1
6

)
.

Since ϕ′ = F ′(∞) = a′1v
′
1, we have F ′(x) = ϕ′ + a′2e

γ′
2xv′2 and a′1 = 1. Since

∀M ′
l ∈ DRS+(N ′) F ′

l (0) = ϕ′
l + a′2v

′
2l = 0 and DRS+(N ′) = {M ′

1}, we have
ϕ′
1 + a′2v

′
21 = 1

2 + a′2
2
3 = 0; hence, a2 = − 3

4 .
Then the steady-state fluid PDF for the SFM of N ′ is

F ′(x) =

(
1

2
− 1

2
e−x,

1

4
− 1

8
e−x,

1

4
− 1

8
e−x

)
.

The steady-state fluid probability density function for the SFM of N ′ is

f ′(x) =
dF ′(x)

dx
=

(
1

2
e−x,

1

8
e−x,

1

8
e−x

)
.

The steady-state buffer empty probability for the SFM of N ′ is

ℓ′ = F ′(0) =

(
0,

1

8
,
1

8

)
.

In Figure 11, the plots of the elements F1, F2, F
′
2 of the steady-state fluid PDFs

F = (F1, F2) and F ′ = (F ′
1, F

′
2, F

′
3) for the SFMs of N and N ′ as functions of x

are depicted. It is sufficient to consider the functions F1(x) =
1
2 − 1

2e
−x,

F2(x) =
1
2 − 1

4e
−x, F ′

2(x) =
1
4 − 1

8e
−x only, since F1 = F ′

1 and F ′
2 = F ′

3.
We have (DRS(N) ∪ DRS(N ′))/Rfl(N,N ′) = {H1,H2}, where H1 = {M1,M

′
1}

and H2 = {M2,M
′
2,M

′
3}.

First, consider the equivalence class H1.
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Fig. 11. The elements of the steady-state fluid PDFs for the SFMs
of N and N ′ as functions of x

• The aggregate steady-state probabilities for H1 coincide: ϕH1∩DRS(N) =∑
{i|Mi∈H1∩DRS(N)} ϕi = ϕ1 = 1

2 = ϕ′
1 =

∑
{j|M ′

j∈H1∩DRS(N ′)} ϕ
′
j =

ϕ′
H1∩DRS(N ′).

• The aggregate steady-state buffer empty probabilities for H1 coincide:
ℓH1∩DRS(N) =

∑
{i|Mi∈H1∩DRS(N)} ℓi = ℓ1 = 0 = ℓ′1 =∑

{j|M ′
j∈H1∩DRS(N ′)} ℓ

′
j = ℓ′H1∩DRS(N ′).

• The aggregate steady-state fluid PDFs for H1 coincide: FH1∩DRS(N)(x) =∑
{i|Mi∈H1∩DRS(N)} Fi(x) = F1(x) =

1
2 − 1

2e
−x = F ′

1(x) =∑
{j|M ′

j∈H1∩DRS(N ′)} F
′
j(x) = F ′

H1∩DRS(N ′)(x), where x > 0.

• The aggregate steady-state fluid probability density functions for H1

coincide: fH1∩DRS(N)(x) =
∑

{i|Mi∈H1∩DRS(N)} fi(x) = f1(x) =
1
2e

−x =

f ′
1(x) =

∑
{j|M ′

j∈H1∩DRS(N ′)} f
′
j(x) = f ′

H1∩DRS(N ′)(x), where x > 0.

Second, consider the equivalence class H2.

• The aggregate steady-state probabilities for H2 coincide: ϕH2∩DRS(N) =∑
{i|Mi∈H2∩DRS(N)} ϕi = ϕ2 = 1

2 = 1
4 + 1

4 = ϕ′
2 + ϕ′

3 =∑
{j|M ′

j∈H2∩DRS(N ′)} ϕ
′
j = ϕ′

H2∩DRS(N ′).

• The aggregate steady-state buffer empty probabilities for H2 coincide:
ℓH2∩DRS(N) =

∑
{i|Mi∈H2∩DRS(N)} ℓi = ℓ2 = 1

4 = 1
8 + 1

8 = ℓ′2 + ℓ′3 =∑
{j|M ′

j∈H2∩DRS(N ′)} ℓ
′
j = ℓ′H2∩DRS(N ′).

• The aggregate steady-state fluid PDFs for H2 coincide: FH2∩DRS(N)(x) =∑
{i|Mi∈H2∩DRS(N)} Fi(x) = F2(x) =

1
2 − 1

4e
−x = 1

4 − 1
8e

−x + 1
4 − 1

8e
−x =

F ′
2(x)+F ′

3(x)=
∑

{j|M ′
j∈H2∩DRS(N ′)} F

′
j(x)=F ′

H2∩DRS(N ′)(x), where x>0.

• The aggregate steady-state fluid probability density functions for H2 coincide:
fH2∩DRS(N)(x)=

∑
{i|Mi∈H2∩DRS(N)} fi(x)=f2(x)=

1
4e

−x= 1
8e

−x+ 1
8e

−x=

f ′
2(x) + f ′

3(x)=
∑

{j|M ′
j∈H2∩DRS(N ′)} f

′
j(x)=f ′

H2∩DRS(N ′)(x), where x > 0.

One can also see that ϕ↔fl
= ϕ′

↔fl
= ϕ, ℓ↔fl

= ℓ′↔fl
= ℓ, F↔fl

(x) = F ′
↔fl

(x) =

F (x), x > 0, and f↔fl
(x) = f ′

↔fl
(x) = f(x), x > 0.
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Fig. 12. The diagram of the document preparation system

9. Document preparation system

Let us consider an application example describing three different models of a
document preparation system. The system receives (in an arbitrary order or in
parallel) the collections of the text and graphics files as its inputs and writes them
into the operative memory of a computer. The system then reads the (mixed) data
from there and produces properly formatted output documents consisting of text
and images. In general, it is supposed that the text file collections are transferred
into the operative memory slower, but for longer time than the graphics ones. In
detail, the low resolution graphics is transferred into the operative memory with the
same speed as the high resolution one, but it takes less time than for the latter. The
data from the operative memory is consumed for processing quicker, but for shorter
time than the input file collections of any type. The operative memory capacity is
supposed to be unlimited (for example, there exist some special mechanisms to
ensure that the memory upper boundary can always be increased, such as using
the page file, stored on a hard drive of the computer). The lower boundary of the
operative memory is zero. The diagram of the system is depicted in Figure 12.

The meaning of the actions that label the transitions of the LFSPNs which will
specify the three models of the document preparation system is as follows. The
action tx represents writing the text files into the operative memory. The action
gr represents putting the graphics files into the operative memory. Particularly,
the action gl corresponds to writing the low resolution graphics while gh specifies
writing the high resolution graphics. The action dt represents reading the data
(consisting of the portions of the input text and images) from the operative memory.
In each LFSPN, a single continuous place containing fluid will represent the opera-
tive memory with a data volume stored.

In Figure 13, the LFSPNs N and N ′ specifying the standard document preparati-
on system, as well as the LFSPN N ′′ representing the enhanced one that differentia-
tes between the low and high resolution graphics, are presented. The rate of all
transitions labeled with the action tx is 1, the rate of those labeled with gr is 2 and
the rate of those labeled with dt is 3. Further, the rate of the transition with the
label gl is 3

2 and the rate of that with the label gh is 1
2 . The rate of the fluid flow
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Fig. 13. The LFSPNs of the standard and enhanced document
preparation systems

along the continuous arcs from the transitions labeled with the action tx is 1 while
that from the transitions labeled with gr is 2. Next, the fluid flow rate from the
transitions with the label gl or gh is the same and equals 1. The rate of the fluid
flow along the continuous arcs to the transitions labeled with the action dt is 7.

We have N↔flN
′. Since LFSPNs have an interleaving semantics due to the

continuous time approach and the race condition applied to transition firings,
the parallel execution of actions (here in N) is modeled by the sequential non-
determinism (in N ′). Fluid bisimulation equivalence is an interleaving relation
constructed in conformance with the LFSPNs semantics. In our application exam-
ple, one can see that the “sequential” LFSPN N ′ may be replaced with the fluid
bisimulation equivalent and structurally simpler “concurrent” LFSPN N , the latter
having less transitions and arcs. Thus, the mentioned equivalence can be used not
just to reduce behaviour of LFSPNs, but also to simplify their structure.

We have DRS(N)={M1,M2,M3,M4}, where M1 = (1, 1, 0, 0), M2 = (0, 1, 1, 0),
M3 = (1, 0, 0, 1), M4 = (0, 0, 1, 1); DRS(N ′) = {M ′

1,M
′
2,M

′
3,M

′
4}, where M ′

1 =
(1, 0, 0, 0), M ′

2 = (0, 1, 0, 0), M ′
3 = (0, 0, 1, 0), M ′

4 = (0, 0, 0, 1); and DRS(N ′′) =
{M ′′

1 ,M
′′
2 ,M

′′
3 ,M

′′
4 ,M

′′
5 ,M

′′
6 }, where M ′′

1 = (1, 1, 0, 0, 0), M ′′
2 = (1, 0, 1, 0, 0), M ′′

3 =
(0, 1, 0, 0, 1), M ′′

4 = (1, 0, 0, 1, 0), M ′′
5 = (0, 0, 1, 0, 1), M ′′

6 = (0, 0, 0, 1, 1).
In Figure 14, the discrete reachability graphs DRG(N), DRG(N ′), DRG(N ′′)

are depicted. The discrete parts of the LFSPNs N and N ′ have the same behaviour.
Let N ′′′ is an abstraction of N ′′ by assuming that the actions gl and gh coincide

with the action gr. Then it holds N↔flN
′↔flN

′′′. In such a case, DRS(N ′′′) =
{M ′′′

1 ,M ′′′
2 ,M ′′′

3 ,M ′′′
4 ,M ′′′

5 ,M ′′′
6 } coincides with DRS(N ′′) up to the trivial rena-

ming bijection on the places. Further, DRG(N ′′′) coincides with DRG(N ′′) up to
the analogous renaming the transitions.

Let K1 = {M1}, K2 = {M2}, K3 = {M3}, K4 = {M4} and K′
1 = {M ′

1}, K′
2 =

{M ′
2}, K′

3 = {M ′
3}, K′

4 = {M ′
4}, as well as K′′′

1 = {M ′′′
1 }, K′′′

2 = {M ′′′
2 ,M ′′′

4 }, K′′′
3 =

{M ′′′
3 }, K′′′

4 = {M ′′′
5 ,M ′′′

6 }. In Figure 15, the quotient (by ↔fl) discrete reachability
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Fig. 14. The discrete reachability graphs of the LFSPNs of the
standard and enhanced document preparation systems
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graphs DRG↔fl
(N), DRG↔fl

(N ′), DRG↔fl
(N ′′′) are depicted. Obviously,

DRG↔fl
(N) ≃ DRG↔fl

(N ′) ≃ DRG↔fl
(N ′′′). Then it is clear that the discrete

parts of the LFSPNs N, N ′ and N ′′′ have the same quotient behaviour. Thus,
quotienting by fluid bisimulation equivalence can be used to substantially reduce
behaviour of LFSPNs. It is also clear that the discrete parts of the LFSPNs N and
N ′ have the same complete and quotient behaviour.

The sojourn time average and variance vectors of N ′′′ are

SJ ′′′ =

(
1

3
, 1,

1

2
, 1,

1

3
,
1

3

)
, V AR′′′ =

(
1

9
, 1,

1

4
, 1,

1

9
,
1

9

)
.

The complete and quotient sojourn time average and variance vectors of N and
N ′, as well as the quotient corresponding vectors of N ′′′, are

SJ = SJ↔fl
= SJ ′ = SJ ′

↔fl
= SJ ′′′

↔fl
=

(
1

3
,
1

2
, 1,

1

3

)
,

V AR = V AR↔fl
= V AR′ = V AR′

↔fl
= V AR′′′

↔fl
=

(
1

9
,
1

4
, 1,

1

9

)
.

The TRM Q′′′ for CTMC(N ′′′) and FRM R′′′ for the SFM of N ′′′ are
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Q′′′ =

















−3
3

2
1

1

2
0 0

0 −1 0 0 1 0

0 0 −2 0
3

2

1

2

0 0 0 −1 0 1

3 0 0 0 −3 0

3 0 0 0 0 −3

















, R′′′ =

















3 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 −7 0

0 0 0 0 0 −7

















.

The TRMs Q, Q↔fl
, Q′, Q′

↔fl
, Q′′′

↔fl
for CTMC(N), CTMC↔fl

(N),

CTMC(N ′), CTMC↔fl
(N ′), CTMC↔fl

(N ′′′), and FRMs R, R↔fl
, R′, R′

↔fl
,

R′′′
↔fl

for the complete and quotient SFMs of N, N ′ and quotient SFM of N ′′′ are

Q = Q↔fl
= Q′ = Q′

↔fl
= Q′′′

↔fl
=




−3 1 2 0
0 −2 0 2
0 0 −1 1
3 0 0 −3


 ,

R = R↔fl
= R′ = R′

↔fl
= R′′′

↔fl
=




3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 −7


 .

Thus, the respective discrete and continuous parts of the LFSPNs N and N ′

have the same complete and quotient behaviour while N ′′′ has the same quotient
one. Therefore, it is enough to consider only LFSPN N from now on.

The discrete markings of LFSPN N are interpreted as follows: M1: both the text
and graphics file collections are written to the memory, M2: the text file collection
is resided in the memory and the graphics one is written to the memory, M3: the
graphics file collection is resided in the memory and the text one is written to the
memory, M4: the text and graphics file collections are resided in the memory and
the data is read from there (if it is not empty).

We have DRS−(N) = {M4}, DRS0(N) = ∅ and DRS+(N) = {M1,M2,M3}.
The steady-state PMF for CTMC(N) is

ϕ =

(
2

9
,
1

9
,
4

9
,
2

9

)
.

Then the stability condition for the SFM of N is fulfilled: FluidF low(q) =∑4
i=1 ϕiRP (Mi) =

2
9 · 3 + 1

9 · 2 + 4
9 · 1 + 2

9 (−7) = − 2
9 < 0.

For each eigenvalue γ we must have |γR−Q| =∣∣∣∣∣∣∣∣

3(γ + 1) −1 −2 0
0 2(γ + 1) 0 −2
0 0 γ + 1 −1
−3 0 0 −7γ + 3

∣∣∣∣∣∣∣∣
= −42γ4 − 108γ3 − 72γ2− 6γ = 0; hence,

γ1 = 0, γ2 = −1, γ3 = − 1
14 (11 +

√
93), γ4 = − 1

14 (11−
√
93).

The corresponding eigenvectors are the solutions of
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v1




3 −1 −2 0
0 2 0 −2
0 0 1 −1
−3 0 0 3


 = 0, v2




0 −1 −2 0
0 0 0 −2
0 0 0 −1
−3 0 0 10


 = 0,

v3




3
14 (3−

√
93) −1 −2 0

0 1
7 (3−

√
93) 0 −2

0 0 1
14 (3−

√
93) −1

−3 0 0 1
2 (17 +

√
93)


 = 0,

v4




3
14 (3 +

√
93) −1 −2 0

0 1
7 (3 +

√
93) 0 −2

0 0 1
14 (3 +

√
93) −1

−3 0 0 1
2 (17−

√
93)


 = 0.

Then the eigenvectors are v1 =
(
2
9 ,

1
9 ,

4
9 ,

2
9

)
, v2 = (0,−1, 2, 0),

v3 =
(

14
3−

√
93
, 98
(3−

√
93)2

, 392
(3−

√
93)2

, 1
)
, v4 =

(
14

3+
√
93
, 98
(3+

√
93)2

, 392
(3+

√
93)2

, 1
)
.

Since ϕ = F (∞) = a1v1, we have F (x) = ϕ + a2e
γ2xv2 + a3e

γ3xv3 + a4e
γ4xv4

and a1 = 1. Since ∀Ml ∈ DRS+(N) Fl(0) = ϕl + a2v2l + a3v3l + a4v4l = 0
and DRS+(N) = {M1,M2,M3}, we have the following linear equation system:



ϕ1 + a2v21 + a3v31 + a4v41 = 2
9 + 14

3−
√
93
a3 +

14
3+

√
93
a4 = 0

ϕ2 + a2v22 + a3v32 + a4v42 = 1
9 − a2 +

98
(3−

√
93)2

a3 +
98

(3+
√
93)2

a4 = 0

ϕ3 + a2v23 + a3v33 + a4v43 = 4
9 + 2a2 +

392
(3−

√
93)2

a3 +
392

(3+
√
93)2

a4 = 0

.

By solving the system, we get a2 = 0, a3 = 2(31−3
√
93)

93(3+
√
93)

, a4 = − 2(10+
√
93)

21
√
93

. Thus,

F (x) =
(
2
9 ,

1
9 ,

4
9 ,

2
9

)
+ 2(31−3

√
93)

93(3+
√
93)

e−
1
14

(11+
√
93)x

(
14

3−
√
93
, 98
(3−

√
93)2

, 392
(3−

√
93)2

, 1
)
−

2(10+
√
93)

21
√
93

e−
1
14 (11−

√
93)x

(
14

3+
√
93
, 98
(3+

√
93)2

, 392
(3+

√
93)2

, 1
)
.

Then the steady-state fluid PDF for the SFM of N is

F (x) =
(

2
9 − (31−3

√
93)

279 e−
1
14 (11+

√
93)x − 4(10+

√
93)

3
√
93(3+

√
93)

e−
1
14 (11−

√
93)x,

1
9 − 7(31−3

√
93)

279(3−
√
93)

e−
1
14 (11+

√
93)x − 28(10+

√
93)

3
√
93(3+

√
93)2

e−
1
14 (11−

√
93)x,

4
9 − 28(31−3

√
93)

279(3−
√
93)

e−
1
14 (11+

√
93)x − 112(10+

√
93)

3
√
93(3+

√
93)2

e−
1
14 (11−

√
93)x,

2
9 + 2(31−3

√
93)

93(3+
√
93)

e−
1
14 (11+

√
93)x − 2(10+

√
93)

21
√
93

e−
1
14 (11−

√
93)x

)
.

The steady-state fluid probability density function for the SFM of N is

f(x) = dF (x)
dx =

(
e−

1
14

(11+
√

93)x(31−
√
93+(31+

√
93)e

√
93x
7 )

1953 , e
− 1

14
(11+

√
93)x(−1+e

√
93x
7 )

9
√
93

,

4e−
1
14

(11+
√

93)x(−1+e

√
93x
7 )

9
√
93

, e−
1
14

(11+
√

93)x(14(−31+
√
93)+(620+48

√
93)e

√
93x
7 )

4557(3+
√
93)

)
.

The steady-state buffer empty probability for the SFM of N is

ℓ = F (0) =

(
0, 0, 0,

2

63

)
.

In Figure 16, the plots of the elements F1, F2, F3, F4 of the steady-state fluid
PDF F = (F1, F2, F3, F4) for the SFM of N , as functions of x, are depicted.

We can now calculate for the document preparation system some steady-state
performance indices, based on the discrete and continuous measures from [53].
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Fig. 16. The elements of the steady-state fluid PDF for the SFM
of the concurrent LFSPN of the document preparation system

• The fraction of time when both the text and graphics file collections are
written to the memory, calculated as the fraction (proportion) of time spent
in the set of discrete markings {M1} ⊆ DRS(N), is

T imeFract({M1}) =
∑

{i|Mi∈{M1}}
ϕi = ϕ1 =

2

9
.

• The average number of the text file collections received per unit of time,
calculated as the firing frequency (throughput) of the transition t1 ∈ TN

(average number of firings per unit of time), is

FiringFreq(t1) =
∑

{i|t1∈Ena(Mi), Mi∈DRS(N)}
ϕiΩN (t1,Mi) =

ϕ1ΩN (t1,M1) =
2
9 · 1 = 2

9 .

• The throughput of the system, calculated as the firing frequency (throughput)
of the transition t3 ∈ TN (average number of firings per unit of time), is

FiringFreq(t3) =
∑

{i|t3∈Ena(Mi), Mi∈DRS(N)}
ϕiΩN (t3,Mi) =

ϕ4ΩN (t3,M4) =
2
9 · 3 = 2

3 .

• The probability that the memory is not empty, calculated as the probability
of a positive fluid level in a continuous place q ∈ PcN , is

FluidLevel(q) =
∑

{i|Mi∈DRS(N)}

(
ℓi · 0 +

∫ ∞

0+

fi(x) · 1dx
)

=

∑

{i|Mi∈DRS(N)}

∫ ∞

0+

fi(x)dx =
∑

{i|Mi∈DRS(N)}
(ϕi − ℓi) =

1−
∑

{i|Mi∈DRS(N)}
ℓi = 1− (ℓ1 + ℓ2 + ℓ3 + ℓ4) = 1− 2

63
=

61

63
.
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• The probability that the operative memory contains at least 5 Mb data,
calculated as the probability that the fluid level in a continuous place
q ∈ PcN does not lie below the value 5 ∈ R>0, is

FluidLevel(q, 5) =
∑

{i|Mi∈DRS(N)}

(
ℓi · 0 +

∫ 5

0+

fi(x) · 0dx+

∫ ∞

5

fi(x) · 1dx
)

=

∑

{i|Mi∈DRS(N)}

∫ ∞

5

fi(x)dx =
∑

{i|Mi∈DRS(N)}
(ϕi − Fi(5)) =

1−
∑

{i|Mi∈DRS(N)}
Fi(5) = 1− (F1(5) + F2(5) + F3(5) + F4(5)) =

e−
5
14

(11+
√

93)(5673−631
√
93+e

5
√

93
7 (5673+631

√
93))

11718 ≈ 0.6181.

10. Conclusion

In this paper, we have defined two behavioural equivalences that preserve the
qualitative and quantitative behavior of LFSPNs, related to both their discrete part
(labeled CTSPNs and the underlying CTMCs) and continuous part (the associated
SFMs). We have proposed on LFSPNs a linear-time relation of fluid trace equivalence
and a branching-time relation of fluid bisimulation equivalence. Both equivalences
respect functional activity, stochastic timing and fluid flow. We have demonstrated
that fluid trace equivalence preserves average potential fluid change volume for the
transition sequences of each given length. We have proved that fluid bisimulation
equivalence strictly implies fluid trace one. We have explained how to reduce the
discrete reachability graphs and underlying CTMCs of LFSPNs via quotienting
the respective labeled transition systems by the largest fluid bisimulation. We have
proved that fluid bisimulation equivalence preserves the qualitative and stationary
quantitative behaviour, hence, the functionality and performance measures of the
equivalent systems coincide. We have presented a case study of the three LFSPNs,
all modeling the document preparation system, with a goal to show how fluid bisi-
mulation equivalence can be used to simplify the LFSPNs structure and behaviour.

We plan to define a fluid place bisimulation relation that connects “similar”
continuous places of LFSPNs, like place bisimulations [3, 2, 50, 51, 52] relate discrete
places of (standard) Petri nets. The lifting of the relation to the discrete-continuous
LFSPN markings (with discrete markings treated as the multisets of places) will
respect both the fluid distribution among the related continuous places and the
rates of fluid flow through them. For this purpose, we should introduce a novel
notion of the multiset analogue with non-negative real-valued multiplicities of the
elements. While multiset is a mapping from a countable set to all natural numbers,
we need a more sophisticated mapping from the set of continuous places to all
non-negative real numbers, corresponding to the associated fluid levels. Such an
extension of the multiset notion may use the results of [12, 49], concerning hybrid
sets (the multiplicities of the elements are arbitrary integers) and fuzzy multisets
(the multiplicities belong to the interval [0;1]). In this way, both the initial amount
of fluid and its transit flow rate in each discrete marking may be distributed among
several continuous places of an LFSPN, such that all of them are bisimilar to a
particular continuous place of the equivalent LFSPN. The interesting point here is
that fluid distributed among several bisimilar continuous places should be taken as
the fluid contained in a single continuous place, resulting from aggregating those
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“constituent” continuous places with the use of fluid place bisimulation. Then the
fluid level in the “aggregate” continuous place will be a sum of the fluid levels in
the “constituent” continuous places. The probability density function for the sum of
random variables representing the fluid levels in the “constituent” continuous places
is defined via convolution. In this approach, we should avoid or treat correctly the
situations when the fluid flow in the “aggregate” continuous place becomes suddenly
non-continuous. This happens when some of the “constituent” continuous places are
emptied while the others still contain a positive amount of fluid. Such a discontinuity
is a result of applying the aggregation since it is not caused by either reaching the
lower fluid boundary (zero fluid level) or change of the current discrete marking.

The summation of the fluid levels in the continuous places may be implemented
with the constructions from [28] for extended FSPNs (EFSPNs). EFSPNs have
special deterministic fluid jump arcs, used to transfer a deterministic amount of fluid
between two continuous places via intermediate stochastic transitions connecting
both places (deterministic fluid transfer). Analogously, random fluid jump arcs in
EFSPNs are used to transfer a random amount of fluid from one continuous place
to another (random fluid transfer). We can also use fluid transitions, mentioned in
[28] as a direction for future development of FSPNs. Fluid transitions that transfer
fluid from their input to their output continuous places are used to implement fluid
volume conservation. If one of the input continuous places of a fluid transition
becomes empty (i.e. the lower fluid boundary is reached) then the rate of the
transition should change in a certain way. The continuous arcs between continuous
places and fluid transitions may have multiplicities that change the fluid flow along
the arcs according to a factor. Fluid transitions may be controlled by a discrete
marking, using the guard functions associated with them or applying the inhibitor
and test arcs, i.e. by the constructions that do not affect discrete markings.

Further, we intend to apply to LFSPNs an analogue of the effective reduction
technique based on the place bisimulations of Petri nets [3, 2]. In this way, we
shall merge several equivalent continuous places and, in some cases, the transitions
between them. This should result in the significant reductions of LFSPNs. The
number of continuous places in an LFSPN impacts drastically the complexity of
its solution. The analytical solution is normally possible for just a few continuous
places (or even only for one). In all other cases, when modeling realistic large
and complex systems, we have to apply numerical techniques to solve systems of
partial differential equations, or the method of simulation. Hence, the reduction of
the number of continuous places accomplished with the place bisimulation merging
appears to be even more important for LFSPNs than for Petri nets.

Moreover, we intend to provide fluid bisimulation equivalence with logical charac-
terization via a fluid extension of Probabilistic Modal Logic (PML) [43] for probabili-
stic transitions systems. For this, we can apply the characterization of strong equi-
valence by the logic PMLµ [24, 25], a stochastic extension of PML to the stochastic
process algebra PEPA [38]. In addition, the logical characterizations of fluid trace
and bisimulation equivalences can be constructed using the modal logics HMLMTr

and HMLMB [8, 6], based on the well-known logic HML [37]. The pointed modal
logics characterize, respectively, Markovian trace and bisimulation equivalences on
sequential and concurrent Markovian process calculi SMPC and CMPC. We can
apply the results of [9], where on (sequential) Markovian process calculus MPC,
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the logical characterizations of Markovian trace and bisimulation equivalences are
given with the HML-based modal logics HMLNPMTr and HMLMB, respectively.
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[1] Angius A., Horváth A., Halawani S.M., Barukab O., Ahmad A.R., Balbo G. Use of

flow equivalent servers in the transient analysis of product form queueing networks. Lecture
Notes in Computer Science 9081, p. 15–29, Springer, 2015.

[2] Autant C., Pfister W., Schnoebelen Ph. Place bisimulations for the reduction of labeled

Petri nets with silent moves. Proceedings of 6th International Conference on Computing and
Information - 94 (ICCI’94), p. 230–246, Trent University, Canada, 1994,
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/APS-icci94.ps.

[3] Autant C., Schnoebelen Ph. Place bisimulations in Petri nets. Lecture Notes in Computer
Science 616, p. 45–61, Springer, 1992.

[4] Balbo G. Introduction to stochastic Petri nets. Lecture Notes in Computer Science 2090,
p. 84–155, Springer, 2001.

[5] Balbo G. Introduction to generalized stochastic Petri nets. Lecture Notes in Computer
Science 4486, p. 83–131, Springer, 2007.

[6] Bernardo M. A survey of Markovian behavioral equivalences. Lecture Notes in Computer
Science 4486, p. 180–219, Springer, 2007, http://www.sti.uniurb.it/bernardo/documents/
sfm07pe.tuto.pdf.

[7] Bernardo M. Non-bisimulation-based Markovian behavioral equivalences. Journal of Logic
and Algebraic Programming 72, p. 3–49, Elsevier, 2007, http://www.sti.uniurb.it/
bernardo/documents/jlap72.pdf.

[8] Bernardo M., Botta S. Modal logic characterization of Markovian testing and trace

equivalences. Proceedings of 1
st International Workshop on Logic, Models and Computer

Science - 06 (LMCS’06) (F. Corradini, C. Toffalori, eds.), Camerino, Italy, April 2006,
Electronic Notes in Theoretical Computer Science 169, p. 7–18, Elsevier, 2006,
http://www.sti.uniurb.it/bernardo/documents/lmcs2006.pdf.

[9] Bernardo M., Botta S. A survey of modal logics characterizing behavioural equivalences

for non-deterministic and stochastic systems. Mathematical Structures in Computer Science
18, p. 29–55, Cambridge University Press, 2008, http://www.sti.uniurb.it/bernardo/
documents/mscs18.pdf.

[10] Bernardo M., De Nicola R., Loreti M. A uniform framework for modeling nonde-

terministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences.

Information and Computation 225, p. 29–82, Elsevier, 2013, http://www.sti.uniurb.it/
bernardo/documents/ic225.pdf.

[11] Bernardo M., Tesei L. Encoding timed models as uniform labeled transition systems.

Lecture Notes in Computer Science 8168, p. 104–118, Springer, 2013.
[12] Blizard W.D. The development of multiset theory. The Review of Modern Logic 1(4), p.

319–352, 1991, http://projecteuclid.org/download/pdf_1/euclid.rml/1204834739.
[13] Bobbio A., Garg S., Gribaudo M., Horváth A., Sereno M., Telek M. Modeling
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