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An investigation of equivalence notions on some

subclasses of Petri nets ∗

I.V. Tarasyuk

Abstract. In this paper a variety of Petri net equivalences is examined. A corre-
lation of all the considered equivalences is established, and a lattice of implications
is obtained. In addition, the equivalences are treated for some subclasses of Petri
nets: sequential nets, T-nets and nets with strict labelling.

1. Introduction

In recent years, a wide range of semantic equivalences were defined and investi-
gated in concurrency theory. In linear time semantics, where a process is fully
determined by the set of its possible (partial) runs, interleaving, step and pomset
trace equivalences [3] are known.

In branching time semantics the information is preserved where two courses
of actions diverge. Bisimulation is a fundamental behavioural equivalence in this
semantics. Interleaving [6], step [5], partial word [11], pomset [4] and process [1]
bisimulation equivalences were proposed in the literature.

(Interleaving) ST-bisimulation equivalence [4] respects the duration of transition
occurences. A definition of the equivalence was extended to partial words and
pomsets in [11].

(Pomset) history preserving bisimulation equivalence, which respects the “past”
of the processes, was first defined in [8] under the name “bisimulation equivalence
of behaviour structures”.

In this paper the above mentioned definitions are supplemented by partial word
history preserving and by process (ST- and history preserving) bisimulation equiv-
alences. The equivalences are considered in the framework of Petri nets with finite
processes. The correlation between all the equivalences is examined on usual Petri
nets and their subclasses: sequential nets, T-nets and strictly labelled nets.

In Section 2 the basic definitions are given. Trace equivalences are described
in Section 3. Bisimulation equivalences are presented in Section 4. In Section 5
the theorem establishing a correlation between all the introduced equivalences is
proved. Section 6 is devoted to the examination of the equivalences on different
net subclasses. The concluding Section 7 contains some ideas about further devel-
opment of the theme. Most of the proofs are omitted because of absence of space.
The early results can be found in [9].

∗The work is supported in part by International Association for the Promotion of
Cooperation with Scientists from the Independent States of the Former Soviet Union
(INTAS), contract N 1010-CT93-0048.
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2. Basic definitions

2.1. Multisets

Let X be some set. A multiset M over X is a mapping M : X → N, where N is
a set of natural numbers. For x ∈ X, M(x) is a multiplicity x in M . We write
x ∈ M if M(x) > 0.

When ∀x ∈ X M(x) ≤ 1, M is a proper set. M is finite if M(x) = 0 for
all x ∈ X , except maybe a finite number of them. Cardinality of multiset M is
defined in such a way: |M | =

∑
x∈X M(x). From now on we will consider only

finite multisets. M(X) denotes the set of all finite multisets over X .
Set-theotetic notions are extended to finite multisets in the standard way. If

M,M ′ ∈ M(X), we define M + M ′ by (M + M ′)(x) = M(x) + M ′(x). We
write M ⊆ M ′, if ∀x ∈ X M(x) ≤ M ′(x). When M ′ ⊆ M , we define M −M ′ by
(M−M ′)(x) = M(x)−M ′(x). Notation M+x−y is used instead ofM+{x}−{y}.
We write symbol ∅ for empty multiset.

2.2. Marked nets

A labelled net is a quadruple N = 〈PN , TN , FN , lN 〉, where:

• PN = {p, q, . . .} is a set of places;

• TN = {u, v, . . .} is a set of transitions;

• FN : (PN × TN ) ∪ (TN × PN ) → N is the flow relation with weights;

• lN : TN → Act is a labelling of transitions with action names.

It is believed that PN ∩ TN = ∅.
Given a labelled net N and some transition u ∈ TN , the precondition and

postcondition u, written respectively •u and u•, are the multisets defined in such
a way: (•u)(p) = FN (p, u) and (u•)(p) = FN (u, p). Analogous definitions are
introduced for places: (•p)(u) = FN (u, p) and (p•)(u) = FN (p, u). A transition
u is unstable if •u = ∅. A labelled net is stable if it has no unstable transitions.
Further we will deal only with stable labelled nets. A labelled net N is ordinary if
∀p ∈ PN

•p and p• are proper sets. A labelled net N is finite if PN ∪ TN is. Let
◦N = {p ∈ PN |•p = ∅} is a set of initial places of N and N◦ = {p ∈ PN |p• = ∅} is
a set of final places of N .

Let N be a labelled net. A marking of N is a multiset M ∈ M(PN ). A marked
net is a tuple N = 〈PN , TN , FN , lN ,MN〉 so that 〈PN , TN , FN , lN〉 is a labelled net
and MN ∈ M(PN ) is an initial marking. We write “net” instead of “marked net”.
Let M ∈ M(PN ) be a marking of a net N . A transition u ∈ TN is firable in M if
•u ⊆ M . If u is firable in M , firing it yields a new marking M ′ = M − •u + u•,
written M

u
→ M ′. We write M → M ′ if M

u
→ M ′ for some u. A marking M ′ of a

net N is reachable from marking M of the net, if:

1. M ′ = M or

2. there exists a reachable fromM markingM ′′ of a netN , such thatM ′′ → M ′.

A marking M of a net N is reachable, if it is reachable from MN .
Mark(N,M) denotes a set of all reachable from M markings of a net N , and
Mark(N) denotes a set of all reachable markings of a net N .
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An action a ∈ Act is autoconcurrent in N if ∃M ∈ Mark(N) ∃t, u ∈ TN such
that lN (u) = lN (t) = a and •u + •t ⊆ M . A net N is autoconcurrency free if no
action is autoconcurrent in N .

2.3. Processes

A causal net is a labelled net C = 〈PC , TC , FC , lC〉, where:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, i.e. places are unbranched and C is an
ordinary labelled net;

2. FC is well-founded, i.e. there is no backward infinite chain
· · · (rn, vn)(vn, rn−1) · · · (r1, v1)(v1, r0) in FC .

The fundamental property of causal nets is known: if C is a causal net, then there
exists a transition sequence ◦C = L0

v1→ · · ·
vn→ Ln = C◦ so that Li ⊆ PC (0 ≤ i ≤

n), PC = ∪n
i=0Li and TC = {v1, . . . , vn}. Such a sequence is called a full execution

of C.
Given a net N and a causal net C. A mapping f : PC ∪ TC → PN ∪ TN is an

embedding C into N , written f : C → N , if:

1. f(PC) ∈ M(PN ) and f(TC) ∈ M(TN);

2. ∀v ∈ TC lC(v) = lN (f(v));

3. ∀v ∈ TC
•f(v) = f(•v) and f(v)• = f(v•).

Point 3 means that embeddings respect the flow relation. Consequently, if ◦C
v1→

· · ·
vn→ C◦ is a full execution of C, then M = f(◦C)

f(v1)
−→ · · ·

f(vn)
−→ f(C◦) = M ′ is a

transition sequence in N , corresponding to this full execution, written M
C,f
→ M ′.

Conversely, for any transition sequence M
u1→ · · ·

un→ M ′ of a net N there exists a
causal net C and an embedding f : C → N so that M = f(◦C), M ′ = f(C◦), ui =

f(vi) (0 ≤ i ≤ n) and ◦C
v1→ · · ·

vn→ C◦ is a full execution of C.
A firable in marking M process of a net N is a pair π = (C, f), where C is a

causal net and f : C → N is an embedding so that M = f(◦C). A firable in MN

process is a process of N . We write Π(N,M) for a set of all firable in M processes
of N and Π(N) for a set of all processes of N . Processes and reachable markings of
a net N are connected in the following way: Mark(N,M) = {f(C◦)|π = (C, f) ∈
Π(N,M)}. Further we will deal only with finite processes, i.e. with processes
having finite causal nets.

If π ∈ Π(N,M), then firing of this process transforms a marking M into

M ′ = M − f(◦C) + f(C◦) = f(C◦), written M
π
→ M ′. A causal net sets

an ordering on transitions (the causal dependence relation) ≺C , defined in such
a way: ≺C= F+

C ⌈TC×TC
, where F+

C is a transitive closure of FC . The initial
process of a net N is πN = (CN , fN) ∈ Π(N), where TCN

= ∅. Let π =

(C, f), π̃ = (C̃, f̃) ∈ Π(N), π̂ = (Ĉ, f̂) ∈ Π(N, f(C◦)), C = 〈PC , TC , FC , lC〉, C̃ =
〈PC̃ , TC̃ , FC̃ , lC̃〉, Ĉ = 〈P

Ĉ
, T

Ĉ
, F

Ĉ
, l

Ĉ
〉.

We write π
π̂
→ π̃, if:

1. PC ∪ P
Ĉ
= PC̃ , TC ∪ T

Ĉ
= TC̃ , FC ∪ F

Ĉ
= FC̃ , lC ∪ l

Ĉ
= lC̃ ;
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2. f ∪ f̂ = f̃ .

In such a case π̃ is an extension of π by process π̂, and π̂ is an extending process for

π. We write π → π̃, if π
π̂
→ π̃ for some extending process π̂.

Let π
π̂
→ π̃. A process π̃ is an extension of π by one action, if |T

Ĉ
| = 1. In such

a case we write π
v
→ π̃ or π

a
→ π̃, if T

Ĉ
= {v} and lC̃(v) = a. A process π̃ is an

extension of π by multiset of actions, or step, if ≺
Ĉ
= ∅. In such a case we write

π
V
→ π̃ or π

A
→ π̃, if V = T

Ĉ
, l

Ĉ
(T

Ĉ
) = A, A ∈ M(Act).

2.4. Mappings

Given nets N = 〈PN , TN , FN , lN ,MN 〉 and N ′ = 〈PN ′ , TN ′ , FN ′ , lN ′ ,MN ′〉. We
call β a mapping of N into N ′, written β : N → N ′, if β : PN ∪ TN → PN ′ ∪ TN ′ ,
β(PN ) ⊆ PN ′ and β(TN ) ⊆ TN ′ . We write β(N) = N ′, when β(PN ) = PN ′ and
β(TN ) = TN ′ .

A mapping β : N → N ′ is an isomorphism between N and N ′, written β : N ≃
N ′, if:

1. β is a bijection and β(N) = N ′;

2. ∀u ∈ TN lN (u) = lN ′(β(u));

3. ∀u ∈ TN
•β(u) = β(•u) and β(u)• = β(u•).

Nets N and N ′ are isomorphic, written N ≃ N ′, if there exists an isomorphism
β : N ≃ N ′.

Given two labelled causal nets C = 〈PC , TC , FC , lC〉 and
C′ = 〈PC′ , TC′ , FC′ , lC′〉.

A mapping β : TC → TC′ is a label preserving bijection between C and C′ ,
written β : TC ≈ TC′, if:

1. β is a bijection and β(TC) = TC′;

2. ∀v ∈ TC lC(v) = lC′(β(v)).

We write TC ≈ TC′, if there exists a label-preserving bijection β : TC ≈ TC′ .
A mapping β : TC → TC′ is a homomorphism between TC and TC′, written

β : TC ⊑ TC′ , if:

1. β : TC ≈ TC′ ;

2. ∀v, w ∈ TC v ≺C w ⇒ β(v) ≺C′ β(w).

We write TC ⊑ TC′, if there exists a homomorphism β : TC ⊑ TC′ .
A mapping β : TC → TC′ is an isomorphism between TC and TC′ , written

β : TC ≃ TC′ , if β : TC ⊑ TC′ and β−1 : TC′ ⊑ TC . We write TC ≃ TC′ , if there
exists an isomorphism β : TC ≃ TC′ .

3. Trace equivalences

A sequential trace of a net N is a sequence a1 · · · an ∈ Act∗ so that πN
a1→ π1

a2→
. . .

an→ πn, where πi ∈ Π(N) (1 ≤ i ≤ n) and πN is an initial process of N .
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SeqT races(N) denotes a set of all sequential traces of N . Two nets N and N ′ are
interleaving trace equivalent, written N ≡i N

′, if SeqT races(N) = SeqT races(N ′).

A step trace of a net N is a sequence A1 · · ·An ∈ (M(Act))∗ so that πN
A1→

π1
A2→ . . .

An→ πn, where πi ∈ Π(N) (0 ≤ i ≤ n), and πN is an initial process of N .
StepT races(N) denotes a set of all step traces of N . Two nets N and N ′ are step
trace equivalent, written N ≡s N

′, if StepT races(N) = StepT races(N ′).
A pomset trace of a net N is a pomset ρ, an isomorphism class of TC for π =

(C, f) ∈ Π(N), where C = 〈PC , TC , FC , lC〉. We write ρ ⊑ ρ′, if TC ⊑ TC′ for TC ∈
ρ and TC′ ∈ ρ′. In such a case we say that pomset ρ is less sequential ormore parallel
than ρ′. Let us denote a set of all pomset traces of N by Pomsets(N). Two nets
N and N ′ are partial word trace equivalent, written N ≡pw N ′, if Pomsets(N) ⊑
Pomsets(N ′) and Pomsets(N ′) ⊑ Pomsets(N), i.e. for any ρ′ ∈ Pomsets(N ′)
there exists ρ ∈ Pomsets(N) so that ρ ⊑ ρ′ and vice versa. Two nets N and N ′

are pomset trace equivalent, written N ≡pom N ′, if Pomsets(N) = Pomsets(N ′).
A process trace of a net N is an isomorphism class of C for π = (C, f) ∈

Π(N). ProcessNets(N) denotes a set of all process traces of N . Two nets N
and N ′ are process trace equivalent, written N ≡pr N ′, if ProcessNets(N) =
ProcessNets(N ′).

4. Bisimulation equivalences

In this section we consider the definitions of different bisimulations. A notation
R : N↔αN

′ means that R is a bisimulation of α type between nets N and N ′. Nets
N and N ′ are called α-bisimulation equivalent, written N↔αN

′, if R : N↔αN
′

for some α-bisimulation R.

4.1. Simple bisimulations

Let R ⊆ Π(N)×Π(N ′). In the following definition π̂ = (Ĉ, f̂), π̂′ = (Ĉ′, f̂ ′).
R is a α-bisimulation between N and N ′, α ∈{ interleaving, step, partial word,

pomset, process} , written R : N↔αN
′, α ∈ {i, s, pw, pom, pr}, if:

1. (πN , πN ′) ∈ R;

2. (π, π′) ∈ R, π
π̂
→ π̃,

(a) |T
Ĉ
| = 1, if α = i;

(b) ≺
Ĉ
= ∅, if α = s;

Then ∃π̃′ : π′ π̂′

→ π̃′, (π̃, π̃′) ∈ R and

(a) T
Ĉ′ ⊑ T

Ĉ
, if α = pw;

(b) T
Ĉ
≃ T

Ĉ′, if α ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ′, if α = pr;

3. As previous item but N and N ′ are transposed.
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4.2. ST-bisimulations

A ST-process of a net N is a pair (πE , πP ) so that πE , πP ∈ Π(N),

πP
πW→ πE and ∀v, w ∈ TCE

v ≺CE
w ⇒ v ∈ TCP

In such a case πE is a
process which began to work, i.e. all actions of πE began working. A process πP

corresponds to the terminated part of πE , and πW corresponds to the still working
part. Clearly, ≺CW

= ∅. ST−Π(N) denotes a set of all ST-processes ofN . (πN , πN )
will be an initial ST-process of N . Let (πE , πP ), (π̃E , π̃P ) ∈ ST −Π(N). We write
(πE , πP ) → (π̃E , π̃P ), if πE → π̃E and πP → π̃P .

LetR ⊆ ST−Π(N)×ST−Π(N ′)×B, where B = {β|β : TC → TC′, π = (C, f) ∈
Π(N), π′ = (C′, f ′) ∈ Π(N ′)}. In the following definitions πE = (CE , fE), πP =
(CP , fP ), π′

E = (C′

E , f
′

E), π′

P = (C′

P , f
′

P ), π = (C, f), π′ = (C′, f ′).
R is a α-ST-bisimulation between N and N ′, α ∈{ interleaving, partial word,

pomset, process} , written R : N↔αSTN
′, α ∈ {i, pw, pom, pr}, if:

1. ((πN , πN ), (πN ′ , πN ′), ∅) ∈ R;

2. ((πE , πP ), (π
′

E , π
′

P ), β) ∈ R ⇒ β : TCE
≈ TC′

E
and β(TCP

) = TC′

P
;

3. ((πE , πP ), (π
′

E , π
′

P ), β) ∈ R, (πE , πP ) → (π̃E , π̃P ) ⇒ ∃β̃, (π̃′

E , π̃
′

P ) :

(π′

E , π
′

P ) → (π̃′

E , π̃
′

P ), β̃⌈TCE
= β, ((π̃E , π̃P ), (π̃

′

E , π̃
′

P ), β̃) ∈ R, and if

πP
π
→ π̃E , π′

P

π′

→ π̃′

E then:

(a) (β̃⌈TC
)−1 : TC′ ⊑ TC , if α = pw;

(b) β̃⌈TC
: TC ≃ TC′, if α ∈ {pom, pr};

(c) C ≃ C′, if α = pr;

4. As previous item but N and N ′ are transposed.

4.3. History preserving bisimulations

Let R ⊆ Π(N)×Π(N ′)×B, where B = {β|β : TC → TC′, π = (C, f) ∈ Π(N), π′ =
(C′, f ′) ∈ Π(N ′)}. In the following definitions π = (C, f), π̃ = (C̃, f̃), π′ =
(C′, f ′), π̃′ = (C̃′, f̃ ′).

R is a α-history preserving bisimulation between N and N ′, α ∈{ partial word,
pomset, process} , written N↔αhN

′, α ∈ {pw, pom, pr}, if:

1. (πN , πN ′ , ∅) ∈ R;

2. (π, π′, β) ∈ R ⇒ β : TC ≈ TC′ ;

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃⌈TC
= β, (π̃, π̃′, β̃) ∈ R and

(a) β̃−1 : TC̃′ ⊑ TC̃ , if α = pw;

(b) β̃ : TC̃ ≃ TC̃′ , if α ∈ {pom, pr};

(c) C̃ ≃ C̃′, if α = pr;

4. As previous item but N and N ′ are transposed.
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≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pwh ↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

✛✛

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄

Figure 1. Correlation of the equivalences

5. A comparison of the equivalences

In this section a theorem establishing correlation between all introduced equiva-
lences is proved.

Theorem 1. Let ∼∈ {≡,↔} and α, β ∈ {i, s, pw, pom, pr, iST ,
pwST, pomST, prST, pwh, pomh, prh}. For nets N and N ′ N ∼α N ′ ⇒ N ∼β

N ′ iff there exists a directed path in a graph in Figure 1 ∼α→ · · · →∼β.

Proof. ⇐ By definitions of the equivalences.
⇒ It is sufficient to consider the following examples.

• In Figure 2.1 N↔iN
′ but N 6≡s N ′ since there exists a step trace {a, b} in

N which is not in N ′.

• In Figure 2.2 N ≡pr N
′ but N↔/ iN

′ since only in N an action a can happen
so that it is impossible to run b after it.

• In Figure 2.3 N↔pwhN
′ but N 6≡pom N ′ since b can depend on a in N .

• In Figure 2.4 N↔pomhN
′ but N 6≡pr N ′ since N is a causal net which is not

isomorphic to causal net N ′.

• In Figure 2.5 N↔iSTN
′ but N 6≡pw N ′ since a net N is corresponded by a

pomset such that there is not even less sequential pomset in N ′.

• In Figure 3.1 N↔prN
′ but N↔/ iSTN

′ since an action a is able to begin
working in N ′ so that no b can start later.

• In Figure 3.2 N↔prSTN
′ but N↔/ pwhN

′ since only in N ′ an actions a and
b can happen so that the next action, c, must depend on a.

6. Equivalences on different net subclasses

In the literature a several subclasses of nets were proposed by introduction some re-
strictions on the initial definition of nets, and merging of equivalences was obtained
on these types of nets. See for example [2, 7]. We will consider the introduced
equivalences on sequential nets, on T-nets and on nets with strict labelling.

A net N = 〈PN , TN , FN , lN ,MN〉 is sequential if ∀π = (C, f) ∈ Π(N),
∀v, w ∈ TC (v ≺C w) ∨ (w ≺C v), i.e. ≺C is a strict (total) ordering on causal net
transitions of any process π = (C, f) of a net N .
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a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

1

N

↔i

6≡s

b a

✍✌
✎☞

✍✌
✎☞

a b

✍✌
✎☞✉

❄

❄

❄

❄

✁
✁☛

❆
❆❯

N ′

2

N

b

✍✌
✎☞
a a

✍✌
✎☞✉
✁
✁☛

❆
❆❯

❄ ❄

❄
✍✌
✎☞

≡pr

↔/ i

b

✍✌
✎☞
a

✍✌
✎☞✉N ′

❄

❄

❄

3

ba

✍✌
✎☞

✍✌
✎☞✉ ✉N

❄ ❄ ↔pwh

6≡pom

a b

✍✌
✎☞

✍✌
✎☞✉ ✉

❄ ❄

N ′

4

N

a

✍✌
✎☞

✍✌
✎☞✉
❄

❄

a

✍✌
✎☞✉
❄

N ′

↔pomh

6≡pr

5

b d

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞✉ ✉

❄

❄

❄

❄

❄

❄

N

↔iST

6≡pw

b b d d

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

a c

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉ ✉N ′

❄

❄

❄

❄

❄

❄

❩
❩⑦

✚
✚✚❂

❄ ❄
✚✚❂✚

✚❂

✭✭✭✭✭✭

◗◗s ✑✑✰

❵❵❵❵❵❵

❩
❩⑦

❩
❩⑦

✍✌
✎☞

b

❄

❄

✡
✡

✡
✡

✡
✡

✡✡✢

Figure 2. Examples of nets
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b b

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✉ ✉

a ✍✌
✎☞✉

✍✌
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❄

❄
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Figure 3. Examples of nets (continued)

≡i ✛ ≡pr

↔i ↔pr✛ ↔prST ↔prh

❄❄

✛✛

Figure 4. Equivalences on sequential nets

Proposition 1. For sequential nets N and N ′,

1. [2] N↔iN
′ ⇔ N↔pomhN

′;

2. N ≡i N
′ ⇔ N ≡pom N ′.

Theorem 2. Let ∼∈ {≡,↔}, α, β ∈ {i, pr, prST, prh}. For sequential nets N
and N ′ N ∼α N ′ ⇒ N ∼β N ′ iff there exists a directed path ∼α→ · · · →∼β in
graph in Figure 4.

Proof. ⇐ By Theorem 1.
⇒ It is sufficient to consider the following examples on sequential nets.

• In Figure 2.4 N↔iN
′ but N 6≡pr N ′.

• In Figure 2.2 N ≡pr N
′ but N↔/ iN

′.

• In Figure 5.1 N↔prN
′ but N↔/ prSTN

′ since only in N ′ we can begin running
a process with action a so that it may be extended by action b in the only
way (i.e. so that extended process be only one).
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Figure 5. Examples of sequential nets

• In Figure 5.2 N↔prSTN
′ but N↔/ prhN

′ since only in N ′ it is possible to run
a process with sequential occuring actions a and b so that the next action,
c, may extend this process only in one way (i.e. causal net with action c,
extending a causal net corresponding to sequence ab, connects with its subnet
containing a, in the only way).

A T-net is a net N = 〈PN , TN , FN , lN ,MN〉 so that ∀p ∈ PN |•p| ≤ 1 and
|p•| ≤ 1.

Proposition 2. For autoconcurrency free T-nets N and N ′,
N ≡i N

′ ⇔ N↔iSTN
′.

No pomset equivalence is a consequence of partial word one, and no process
equivalence is a consequence of pomset one on T-nets without autoconcurrency. It
is demonstrated correspondently by Figure 6.2 where N↔pwhN

′ but N 6≡pom N ′

since only in N ′ an action b can depend on a and by Figure 2.4 where N↔pomhN
′

and N 6≡pr N ′. Let us note that for safe autoconcurrency free T-nets we can use
the results of [10] and establish the coincidence of interleaving and pomset trace
equivalences.

A net N = 〈PN , TN , FN , lN ,MN〉 is a strictly labelled, if its labelling function
is lN bijective, i.e. ∀u, ū ∈ TN u 6= ū ⇒ lN (u) 6= lN (ū).
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Figure 6. Examples of strictly labelled nets

Proposition 3. For strictly labelled nets N and N ′, N ≡α N ′ ⇔
N↔αN

′, α ∈ {i, s, pw, pom, pr}.
For strictly labelled nets we can not draw any arrow in a graph in Figure 1

from interleaving to step, from partial word to pomset and from pomset to pro-
cess equivalences. In addition, in all semanticses from interleaving to pomset the
h-bisimulation equivalences are strictly stronger than ST-bisimulation ones. It is
proved by the following examples.

• In Figure 6.1 N↔iN
′ but N 6≡s N ′, since only in N actions a and b can

work concurrently.

• In Figure 6.2 N↔pwhN
′ but N 6≡pom N ′.

• In Figure 2.4 N↔pomhN
′ but N 6≡pr N ′.

• In Figure 6.3 N↔pomSTN
′ but N↔/ pwhN

′, since in N ′ the sequence ab can
happen so that the next action, c, must depend on a.

7. Conclusion

A group of the Petri net equivalences is introduced in the paper. A correlation
between these equivalences on nets with finite processes without λ-actions is found.
In addition, it is considered which equivalences coincide on different subclasses of
nets.

The development of the subject consists in further exploration of the introduced
equivalences on T-nets and strictly labelled nets.
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The next direction of the development of this theme may be an examination of
the proposed equivalences on the wider net class, exactly, on nets with λ-actions.
Probably some equivalences will not be connected on such nets. In [11] the example
of event structures with λ-actions was considered. It is demonstrated the indepen-
dence of ST-bisimulation equivalences and h-bisimulation equivalence on such event
structures.

Finally it would be interesting to find out how ST- and h-equivalences are con-
nected with place bisimulation equivalences introduced in [1].
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supervision in research work and for many helpful discussions which improved the
style and contents of the paper.
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