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Igor V. Tarasyuk: Equivalences for net models of concurrent stochastic systems

Abstract: Labeled discrete time stochastic Petri nets (LDTSPNSs)

are proposed.

The visible behavior of LDTSPNSs is described by iransition labels.
Trace and bisimulation probabilistic equivalences are introduced.
A diagram of their inierrelations is presented.

Some of the equivalences are characterized via formulas of

probabilistic modal logics.

The equivalences are used to compare stationary behavior of nets.

Keywords: stochastic Petri nets, step semantics, probabilistic

equivalences, bisimulation, modal logics, stationary behavior.
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Previous work

Transition labeling
e CTSPNs [Buc95]
e GSPNs [Buc98]
e DTSPNs [BT0O]
Equivalences
e Stochastic automata (SAs) [Buc99]

e Probabilistic transition systems (PTSs)
[BM89,Chr90,LS91,BH97,KN98]

e CTMCs [HR94,Hil94]

e CTSPNs [Buc95]

e GSPNs [Buc98]

e Markov process algebras (MPAs) [Buc94]

e Stochastic event structures (SESs) [MCWO03]
Probabilistic modal logics

e Logic PM L [LS91]
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Formal model

Definition 1 A Labeled discrete time stochastic Petri net
(LDTSPN) isatuple N = (PN, Tn,Wn,Qn, Ly, My):

e Pn and’l'y are finite sets of places and transitions
(Pn UTN #0, Pn NTy = 0);

o Wy :(Py XTn)U (Tn x Py) — IN is the arc weight

function;
o O : Ty — (0;1] is the transition probability function;

o Ly : Ty — Act, is the transition labeling function

(Act; = Act U{T});

o My € ININ s the initial marking.
f
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Let M be a marking of a LDTSPN
N = (PNaTN7WN7QN7LN7MN)-

Thent € Ena(M) fires in the next time moment with probability
Qn (1), if no other transition is enabled in M :
probability.

Conditional probability to fire in a marking M for a transition set (not
a multiset) U C Ena(M) st *U C M:

prw,M)=]]ov®) - ]I (@-n@).

teU teEna(M)\U

Concurrent transition firings at moments.

LDTSPNs have step semantics.



Table 3. Some Examples for Random Variables (RV)

Continuous RV Discrete RV

- Interarrival times of jobs - Number of buffered jobs

- Activity times - Idle/busy /overflow-states
-~ Waiting times - Arrivals in a fixed interval

Frt) MMWi-waitngtime  exponential

2
o

Erlang-80

°1s4ss7at°1ésdsé7s:

ig. 6. Typical Examples for Distribution Functions Fr(t) and their Related
ensity Functions fr(t) or Discrete State Probabilities pr(t): Exponential d.f.,
rlangian d.f. of low or high order, discrete time d.f. and a typical d.f. for waiting
mes (here from a M/M/1-queuing station).
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Continuous progress in time t
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Discrete or continuous time t

Fig.7. Stochastic Process Examples: Mean packet delay in the Internet (a),

duration of a telephone call (b), counting process (c), number of busy channels
in an ATM-network (d).



Ezample 1. Graphical representation of a DTMC. In Figure @l we show the state
transition diagram for the DTMC with state-transition probability matrix

L (622
P=_(181]. (2)
604

Fig. 4. State transition diagram for the example DTMC (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. (© John Wiley & Sons
Limited. Reproduced with Permission.)
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Example of LDTSPNs

-

N\

{aab}7r44

A LDTSPN and the corresponding reachability graphs

qi11 = ﬁN(tl) 'ﬁN(tQ) qi2 = QN (t1) 'ﬁN(tz) q13 = 5N(tl) - QN (t2)
qia = Qn(t1) - Qn(t2)  go2 = Qn (t2) g2a = QN (t2)

g3z = Qn (t1) q3a = QN (t1) qa1 = QN (t3)

qaa = Qn (t3)

912 _ _ 913 _ _ 914
= = T =r =
1—qq1 13 43 T—qq11 14 44 T—qq11

12 = T42 =

7“24:1 7“34:1
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Properties of probabilistic relations

@) N N’/@\ (b) N (?

a b

N
N |~
Wl

N

PP: Properties of probabilistic equivalences

e In Figure PP(a) LDTSPNs /N and /N’ could not be related by
any (even trace) probabilistic equivalence, since only in [N’

action a has probability %

e In Figure PP(b) LDTSPNs /N and NN’ are related by any (even
bisimulation) probabilistic equivalence, since in our model
probabilities of consequent actions are multiplied, and that of

alternative ones are summarized.
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Comparing the probabilistic 7-equivalences

2

Interrelations of the probabilistic 7-equivalences

B 1 Lot € {5} ForLDTSPNs N and N'

. Noo' N' = N= N

—%p

2 N~ , N = N= N’;

—xbp —*xp

3. N<—>Ibpr’ = Ni:pN’ and N« , N'.

—xbp

-1 Let« «» e {=" <" ~}and

w5k € { L ip, sp,ibp, sbp,ibfp, sbfp}. For LDTSPNs N and N'

N« .N = N« N’

iff in the graph in figure above there exists a directed path from <, to

E E‘k‘k-
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Examples of the probabilistic relations

2

{2ibfp1

5%;‘[) 2

(a)
N@ N§:2
aj |b

1 a b

N|—

Q¢

N|—

N|+—

2

:Sp

z
Lp

-

1bp

N+~

1

N~
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a
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S

S: Examples of the probabilistic 7-equivalences

N =

N+~
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In Figure S(a), NV N’,but N4" N’, since only in the

LDTSPN N’ actions @ and b cannot occur concurrently.

In Figure S(b), N="_ N’ but N N"and N N’,
since only in the LDTSPN N an action @ can occur so that no

action b can occur afterwards.

In Figure S(c), N N’, but N N’, since only in N’
there is a place with two input transitions labeled by b. Hence,
the probability for a token to go to this place is always more than

for that with only one input b-labeled transition.

In Figure S(d), N N, but N N’, since only in the
LDTSPN NN’ an action a can occur so that a sequence of

actions bc cannot occur just after it.

In Figure S(e), N N’ but N#N’, since upper
transitions of LDTSPNs /N and [N’ are labeled by different

actions (a and D).
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Logic / PM L

Definition 2 T denotes the truth, a € Act, P € (0;1].
Aformula of I PM L:

G:=T|-D|PAD | (a)pd

IPML is the set of all formulas of [ P M I..

Definition 3 Let N be a LDTSPN and M € RS*(N). The
satisfaction relation =x C RS*(IN) x IPML:

1. M =5 T —always;
2. M =N D, ifM l?éN d;
3. M — N (I)/\\If, if M |:N ® and M ’:N \If,'

4. M =y (a)p®,ifIL C RS*(N) M 2o L, Q > P and
VM e LM }:N D,

(a)® =3P > 0 (a)p®.
(a)o® implies (a)p P, if Q > P.
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We write /V ‘:N D, if My ‘:N D,

Definition 4 N and N’ are logical equivalent in I PM L,
N:[P]\,jLN/, ifv® € IPML N ‘:N ® & N’ |:N’ D,

Let fora LDTSPN N M € RS*(N), a € Act.

The set of nextto M markings after occurrence of visible action a
(visible image set) is VisImage(M,a) = {M | M = M}.

A LDTSPN N is a image-finite one, if
VM € RS*(N)Va € Act |VisImage(M,a)| < oco.

NS0 2 Forimage-finite LDTSPNs N and N’

N~ N & N:[P]\,jLN/.

—p
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N(%) N’Ei?
1 1
=1 a a | =
= 2L — 12
AIP]\[L
1 1 1]y c |l
2 2 2 2

Differentiating power of —=;p /1,

RG(N')

Reachability graphs of the LDTSPNs above
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RG*(N) RG*(N')

Visible reachability graphs of the LDTSPNs above

NEZI)N/, but N/ N', because for

® = (a)1(b). T, N =y @, but N [=n @, since only in N an

action a can occur so that no action b can occur afterwards.
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Logic SPM L

Definition 5 T denotes the truth, A € Wf“, P e (0;1].
Aformula of SPM L:

Q= T|-D|PAD | (A)pD

SPML is the set of all formulas of S PN L.

Definition 6 Let N be a LDTSPN and M € RS*(N). The
satisfaction relation =xn C RS*(IN) x SPML:

1. M =n T —always;
2. M =N D, ifM l?'éN d;
3. M — N (I)/\\If, if M |:N ® and M )IN \IJ,'

4. M=y (A)p®, if3L C RS*(N) M 5o £, Q > P and
VM e LM }:N D,

(A = TIP > 0 (A)pd.
(A) o® implies (A)p P, if Q > P.
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We write NV ‘:N D, if My ’:N D,

Definition 7 N and N’ are logical equivalent in SPM L,
N=gspr N, itV® € SPMLN =y ® & N' =N O.

Letfora LDTSPN N M € RS*(N), A € INj".

The set of nextto M markings after occurrence of multiset of visible
actions A (visible image set) is

: —~ A T
VisImage(M,A) ={M | M — M}.

A LDTSPN N is a image-finite one, if
VM € RS*(N)VA € ]N}L‘Ct \VisImage(M, A)| < oc.

W0 3 For image-finite LDTSPNs N and N’

N« N & N:SP]\,,,jLN/.

—-Sp
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1 1 1 1
ila 1 1l a 1
2 b 2 2 b
T
ivfp
?ASPML

1] 1

= a | =

2 b 2

Differentiating power of =g p /7,

RG(N")

Reachability graphs of the LDTSPNs above
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RG*(N) RG*(N')

Visible reachability graphs of the LDTSPNs above

Nizbpr’ but N </, N/, because for
® = ({a,0}). T, N =n @, but N [z ®, since only in N’

actions a and b cannot occur concurrently.



mo(t) —

08 - m(t) —
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Fig.6. Steady-state and transient behaviour of a 2-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. (©) John
Wiley & Sons Limited. Reproduced with Permission.)
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Stationary behavior

The embedded steady state distribution after the observation of a

visible event is the unique solution of the equation system

—~—

Gens- ) 5~ (M) - PM*(M, M) = ps*(M)

ZMERS*(N) ps*(M) =1

A visible step probabilistic trace starting in M € RS* (N ) is
(X,P),where ¥ = Ay --- A,, € Act™* and

n

P = > 17

Aq Ao A 1 =1
{M1>°'°5MR|M—»731 Ml—»'P2"'—?;>L'PnMn}

VisStepProbTraces(IN, M) is the set of all visible step
probabilistic traces starting in M € RS* (N ).
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Definition 8 A visible step probabilistic trace in steady state is a
triple (M, %, ps*(M) - P) st M € RS*(N) and
(3, P) € VisStepProbTraces(N, M).

The set of all visible step probabilistic traces in steady state is
VisStepProbTracesSS(N).

NS0 4 Letfor LDTSPNs N and N' N7 N’ or

Ni;'pr’. Then

VisStepProbTracesSS(N) = VisStepProbTracesSS(N').
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04

bl |c
N ) U

SB: LDTSPNSs with different visible step probabilistic traces in

steady state

e In Figure SB, N=—" N’, but
VisStepProbTracesSS(N) #
VisStepProbTracesSS(N').

For IV, the probability of being in one of both possible markings
IS % Thus, a trace starts with a with probability %

For [N/, the probability of being in one of the three possible
markings is % Thus, a trace starts with a with probability %
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Solution methods for Markov chains [Hav01]

e Transient state probabilities
— Runge-Kutta methods

— Uniformisation
(randomisation, Jensen's method): O(AtN) or O(N?)

e Stationary state probabilities

— Direct

* Gaussian elimination: O(N?)
* LU decomposition: O(N?)

— lterative
* The power method: O(IN?)
+ The Jakobi method: O (N ?)
* The Gauss-Seidel method: O(N?)
+ The successive over-relaxation (SOR): O(N?)

23
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The results obtained

o A with labeled transitions and
a step semantics for transition firing ( ).
° which preserve interesting aspects

of behavior and thus can be used

to compare systems and to compute for a given one a minimal

equivalent representation [Buc95].
e A diagram of for the equivalences.

° of the equivalences via probabilistic

modal logics.

e An application of the equivalences for comparing
of LDTSPNSs.



Igor V. Tarasyuk: Equivalences for net models of concurrent stochastic systems 25

Further research

e Other equivalences in interleaving and step semantics:
interleaving branching bisimulation [PRS92]
(respecting conflicts with invisible transitions),
back-forth bisimulations [NMV90,Pin93]

(moving backward along history of computation).

e True concurrent equivalences:
partial word and pomset relations [PRS92,Vog92, MCWO03]

(partial order models of computation).

° of back and back-forth equivalences:
probabilistic extension of back-forth logic (/3 /' L) [CLP92]

(probabilistic eventuality operator for back moves).
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