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Abstract: Labeled discrete time stochastic Petri nets (LDTSPNs)

are proposed.

The visible behavior of LDTSPNs is described by transition labels.

Trace and bisimulation probabilistic equivalences are introduced.

A diagram of their interrelations is presented.

Some of the equivalences are characterized via formulas of

probabilistic modal logics.

The equivalences are used to compare stationary behavior of nets.

Keywords: stochastic Petri nets, step semantics, probabilistic

equivalences, bisimulation, modal logics, stationary behavior.
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Previous work

Transition labeling

• CTSPNs [Buc95]

• GSPNs [Buc98]

• DTSPNs [BT00]

Equivalences

• Stochastic automata (SAs) [Buc99]

• Probabilistic transition systems (PTSs)

[BM89,Chr90,LS91,BH97,KN98]

• CTMCs [HR94,Hil94]

• CTSPNs [Buc95]

• GSPNs [Buc98]

• Markov process algebras (MPAs) [Buc94]

• Stochastic event structures (SESs) [MCW03]

Probabilistic modal logics

• Logic PML [LS91]
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Formal model

Definition 1 A Labeled discrete time stochastic Petri net

(LDTSPN) is a tuple N = (PN , TN ,WN , ΩN , LN ,MN ):

• PN and TN are finite sets of places and transitions

(PN ∪ TN 6= ∅, PN ∩ TN = ∅);

• WN : (PN × TN ) ∪ (TN × PN ) → IN is the arc weight

function;

• ΩN : TN → (0; 1] is the transition probability function;

• LN : TN → Actτ is the transition labeling function

(Actτ = Act ∪ {τ});

• MN ∈ INPN

f is the initial marking.
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Let M be a marking of a LDTSPN

N = (PN , TN ,WN , ΩN , LN ,MN ).

Then t ∈ Ena(M) fires in the next time moment with probability

ΩN (t), if no other transition is enabled in M : conditional

probability.

Conditional probability to fire in a marking M for a transition set (not

a multiset) U ⊆ Ena(M) s.t. •U ⊆ M :

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

t∈Ena(M)\U
(1− ΩN (t)).

Concurrent transition firings at discrete time moments.

LDTSPNs have step semantics.
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transition diagrams. Notice the similarity with the usual graphical notation for
finite-state machines (FSMs). In fact, a DTMC can be viewed as an FSM in
which the successor function is specified in a probabilistic manner, that is, given
state i, the next state will be state j with probability pi,j .

Example 1. Graphical representation of a DTMC. In Figure 4 we show the state
transition diagram for the DTMC with state-transition probability matrix

P =
1
10
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Fig. 4. State transition diagram for the example DTMC (B.R. Haverkort, Per-
formance of Computer Communication Systems, 1998. c© John Wiley & Sons
Limited. Reproduced with Permission.)

2.2 Transient and Steady-State Probabilities

We can now proceed to calculate the 2-step probabilities of a DTMC with state-
transition probability matrix P. We have

pi,j(2) = Pr{X2 = j|X0 = i} =
∑
k∈I

Pr{X2 = j,X1 = k|X0 = i}, (3)

since in going from state i to state j in two steps, any state k ∈ I can be visited
as intermediate state. Now, due to the rule of conditional probability as well as
the Markov property, we can write

pi,j(2) =
∑
k∈I

Pr{X2 = j,X1 = k|X0 = i}

=
∑
k∈I

Pr{X1 = k|X0 = i}Pr{X2 = j|X1 = k,X0 = i}

=
∑
k∈I

Pr{X1 = k|X0 = i}Pr{X2 = j|X1 = k}

=
∑
k∈I

pi,kpk,j . (4)
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Example of LDTSPNs
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A LDTSPN and the corresponding reachability graphs

q11 = ΩN (t1) · ΩN (t2) q12 = ΩN (t1) · ΩN (t2) q13 = ΩN (t1) · ΩN (t2)

q14 = ΩN (t1) · ΩN (t2) q22 = ΩN (t2) q24 = ΩN (t2)

q33 = ΩN (t1) q34 = ΩN (t1) q41 = ΩN (t3)

q44 = ΩN (t3)

r12 = r42 =
q12

1−q11
r13 = r43 =

q13
1−q11

r14 = r44 =
q14

1−q11

r24 = 1 r34 = 1
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Properties of probabilistic relations
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PP: Properties of probabilistic equivalences

• In Figure PP(a) LDTSPNs N and N ′ could not be related by

any (even trace) probabilistic equivalence, since only in N ′

action a has probability 1
3 .

• In Figure PP(b) LDTSPNs N and N ′ are related by any (even

bisimulation) probabilistic equivalence, since in our model

probabilities of consequent actions are multiplied, and that of

alternative ones are summarized.



Igor V. Tarasyuk: Equivalences for net models of concurrent stochastic systems 9

Comparing the probabilistic τ -equivalences

≡τ
ip ≡τ

sp

↔τ
ip ↔τ

sp

↔τ
ibp ↔τ

sbp

↔τ
ibfp ↔τ

sbfp

? ?

? ?

¡¡ª ¡¡ª

¡¡ª ¡¡ª

'

?
¾

¾

¾

¾

Interrelations of the probabilistic τ -equivalences

Proposition 1 Let ? ∈ {i, s}. For LDTSPNs N and N ′

1. N↔τ
?pN ′ ⇒ N≡τ

?pN ′;

2. N↔τ
?bpN ′ ⇒ N≡τ

?pN ′;

3. N↔τ
?bfpN ′ ⇒ N↔τ

?pN ′ and N↔τ
?bpN ′.

Theorem 1 Let↔,↔↔ ∈ {≡τ ,↔τ ,'} and

?, ?? ∈ { , ip, sp, ibp, sbp, ibfp, sbfp}. For LDTSPNs N and N ′

N↔?N ′ ⇒ N↔↔??N ′

iff in the graph in figure above there exists a directed path from↔? to

↔↔??.
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Examples of the probabilistic relations
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c

l?

?
1
2

S: Examples of the probabilistic τ -equivalences
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• In Figure S(a), N↔τ
ibfpN

′, but N 6≡τ
spN

′, since only in the

LDTSPN N ′ actions a and b cannot occur concurrently.

• In Figure S(b), N≡τ
spN

′, but N↔/ τ
ipN

′ and N↔/ τ
ibpN

′,
since only in the LDTSPN N ′ an action a can occur so that no

action b can occur afterwards.

• In Figure S(c), N↔τ
spN

′, but N↔/ τ
ibpN

′, since only in N ′

there is a place with two input transitions labeled by b. Hence,

the probability for a token to go to this place is always more than

for that with only one input b-labeled transition.

• In Figure S(d), N↔τ
sbpN

′, but N↔/ τ
ipN

′, since only in the

LDTSPN N ′ an action a can occur so that a sequence of

actions bc cannot occur just after it.

• In Figure S(e), N↔τ
sbfpN

′ but N 6'N ′, since upper

transitions of LDTSPNs N and N ′ are labeled by different

actions (a and b).
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Logic IPML

Definition 2 > denotes the truth, a ∈ Act, P ∈ (0; 1].

A formula of IPML:

Φ ::= > | ¬Φ | Φ∧Φ | 〈a〉PΦ

IPML is the set of all formulas of IPML.

Definition 3 Let N be a LDTSPN and M ∈ RS∗(N). The

satisfaction relation |=N ⊆ RS∗(N)× IPML:

1. M |=N >— always;

2. M |=N ¬Φ, if M 6|=N Φ;

3. M |=N Φ∧Ψ, if M |=N Φ and M |=N Ψ;

4. M |=N 〈a〉PΦ, if ∃L ⊆ RS∗(N) M
a

⇀⇀Q L, Q ≥ P and

∀M̃ ∈ L M̃ |=N Φ.

〈a〉Φ = ∃P > 0 〈a〉PΦ.

〈a〉QΦ implies 〈a〉PΦ, ifQ ≥ P .
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We write N |=N Φ, if MN |=N Φ.

Definition 4 N and N ′ are logical equivalent in IPML,

N=IPMLN ′, if ∀Φ ∈ IPML N |=N Φ ⇔ N ′ |=N ′ Φ.

Let for a LDTSPN N M ∈ RS∗(N), a ∈ Act.

The set of next to M markings after occurrence of visible action a

(visible image set) is V isImage(M,a) = {M̃ | M a→→ M̃}.

A LDTSPN N is a image-finite one, if

∀M ∈ RS∗(N) ∀a ∈ Act |V isImage(M,a)| < ∞.

Theorem 2 For image-finite LDTSPNs N and N ′

N↔τ
ipN

′ ⇔ N=IPMLN ′.
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N≡τ
spN

′, but N 6=IPMLN ′, because for

Φ = 〈a〉1〈b〉 1
2
>, N |=N Φ, but N ′ 6|=N ′ Φ, since only in N ′ an

action a can occur so that no action b can occur afterwards.
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Logic SPML

Definition 5 > denotes the truth, A ∈ INAct
f , P ∈ (0; 1].

A formula of SPML:

Φ ::= > | ¬Φ | Φ∧Φ | 〈A〉PΦ

SPML is the set of all formulas of SPML.

Definition 6 Let N be a LDTSPN and M ∈ RS∗(N). The

satisfaction relation |=N ⊆ RS∗(N)× SPML:

1. M |=N >— always;

2. M |=N ¬Φ, if M 6|=N Φ;

3. M |=N Φ∧Ψ, if M |=N Φ and M |=N Ψ;

4. M |=N 〈A〉PΦ, if ∃L ⊆ RS∗(N) M
A→→Q L, Q ≥ P and

∀M̃ ∈ L M̃ |=N Φ.

〈A〉Φ = ∃P > 0 〈A〉PΦ.

〈A〉QΦ implies 〈A〉PΦ, ifQ ≥ P .
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We write N |=N Φ, if MN |=N Φ.

Definition 7 N and N ′ are logical equivalent in SPML,

N=SPMLN ′, if ∀Φ ∈ SPML N |=N Φ ⇔ N ′ |=N ′ Φ.

Let for a LDTSPN N M ∈ RS∗(N), A ∈ INAct
f .

The set of next to M markings after occurrence of multiset of visible

actions A (visible image set) is

V isImage(M, A) = {M̃ | M A→→ M̃}.

A LDTSPN N is a image-finite one, if

∀M ∈ RS∗(N) ∀A ∈ INAct
f |V isImage(M, A)| < ∞.

Theorem 3 For image-finite LDTSPNs N and N ′

N↔τ
spN

′ ⇔ N=SPMLN ′.
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JĴ

¶
¶

¶¶/

¤£ -

¤£ -

¤£ -

¤£ -

∅, 1
4

∅, 1
2 ∅, 1

2

∅,1

{a,b},
1
4

a, 1
4 b, 1

4

b, 1
2 a, 1

2

®


©
ª

®


©
ª

®


©
ª

®


©
ª

100

010 001

000

RG(N ′)

¶
¶

¶¶/

S
S

SSw

J
J

JĴ
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Visible reachability graphs of the LDTSPNs above

N↔τ
ibfpN

′ but N 6=SPMLN ′, because for

Φ = 〈{a, b}〉 1
3
>, N |=N Φ, but N ′ 6|=N ′ Φ, since only in N ′

actions a and b cannot occur concurrently.
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from which we can derive

π0(t) =
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t,

π1(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t. (25)

Notice that π0(t) + π1(t) = 1 (for all t) and that the limit of the transient
solutions for t → ∞ indeed equals the steady-state probability vectors derived
before. In Figure 6 we show the transient and steady-state behaviour of the
2-state CTMC for 3λ = µ = 1.

0
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1

0 0.5 1 1.5 2 2.5 3 3.5 4

π.(t)

t

π0(t)
π1(t)

π1

π0

Fig. 6. Steady-state and transient behaviour of a 2-state CTMC (B.R.
Haverkort, Performance of Computer Communication Systems, 1998. c© John
Wiley & Sons Limited. Reproduced with Permission.)

Example 5. Availability evaluation of a fault-tolerant system. Consider a fault-
tolerant computer system consisting of three computing nodes and a single voting
node. The three computing nodes generate results after which the voter decides
upon the correct value (by selecting the answer that is given by at least two
computing nodes). Such a fault-tolerant computing system is also known as a
triple-modular redundant system (TMR). The failure rate of a computing node
is λ and of the voter ν failures per hour (fph). The expected repair time of a
computing node is 1/µ and of the voter is 1/δ hours. If the voter fails, the whole
system is supposed to have failed and after a repair (with rate δ) the system is
assumed to start “as new”. The system is assumed to be operational when at
least two computing nodes and the voter are functioning correctly.

To model the availability of this system as a CTMC, we first have to define the
state space: I = {(3, 1), (2, 1), (1, 1), (0, 1), (0, 0)}, where state (i, j) specifies that
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Stationary behavior

The embedded steady state distribution after the observation of a

visible event is the unique solution of the equation system





∑
M̃∈RS∗(N)

ps∗(M̃) · PM∗(M̃,M) = ps∗(M)
∑

M∈RS∗(N) ps∗(M) = 1
.

A visible step probabilistic trace starting in M ∈ RS∗(N) is

(Σ,P), where Σ = A1 · · ·An ∈ Act∗ and

P =
∑

{M1,...,Mn|M
A1→→P1M1

A2→→P2 ···
An→→Pn Mn}

n∏

i=1

Pi.

V isStepProbTraces(N, M) is the set of all visible step

probabilistic traces starting in M ∈ RS∗(N).
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Definition 8 A visible step probabilistic trace in steady state is a

triple (M, Σ, ps∗(M) · P) s.t M ∈ RS∗(N) and

(Σ,P) ∈ V isStepProbTraces(N, M).

The set of all visible step probabilistic traces in steady state is

V isStepProbTracesSS(N).

Theorem 4 Let for LDTSPNs N and N ′ N↔τ
spN

′ or

N↔τ
sbpN

′. Then

V isStepProbTracesSS(N) = V isStepProbTracesSS(N ′).
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SB: LDTSPNs with different visible step probabilistic traces in

steady state

• In Figure SB, N≡τ
spN

′, but

V isStepProbTracesSS(N) 6=
V isStepProbTracesSS(N ′).

For N , the probability of being in one of both possible markings

is 1
2 . Thus, a trace starts with a with probability 1

2 .

For N ′, the probability of being in one of the three possible

markings is 1
3 . Thus, a trace starts with a with probability 1

3 .
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Solution methods for Markov chains [Hav01]

• Transient state probabilities

– Runge-Kutta methods

– Uniformisation

(randomisation, Jensen’s method): O(λtN) or O(N2)

• Stationary state probabilities

– Direct

∗ Gaussian elimination: O(N3)
∗ LU decomposition: O(N3)

– Iterative

∗ The power method: O(N2)
∗ The Jakobi method: O(N2)
∗ The Gauss-Seidel method: O(N2)
∗ The successive over-relaxation (SOR): O(N2)
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The results obtained

• A new class of stochastic Petri nets with labeled transitions and

a step semantics for transition firing (LDTSPNs).

• Equivalences for LDTSPNs which preserve interesting aspects

of behavior and thus can be used

to compare systems and to compute for a given one a minimal

equivalent representation [Buc95].

• A diagram of interrelations for the equivalences.

• Logical characterization of the equivalences via probabilistic

modal logics.

• An application of the equivalences for comparing stationary

behavior of LDTSPNs.



Igor V. Tarasyuk: Equivalences for net models of concurrent stochastic systems 25

Further research

• Other equivalences in interleaving and step semantics:

interleaving branching bisimulation [PRS92]

(respecting conflicts with invisible transitions),

back-forth bisimulations [NMV90,Pin93]

(moving backward along history of computation).

• True concurrent equivalences:

partial word and pomset relations [PRS92,Vog92,MCW03]

(partial order models of computation).

• Logical characterization of back and back-forth equivalences:

probabilistic extension of back-forth logic (BFL) [CLP92]

(probabilistic eventuality operator for back moves).
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