
Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 1

Equivalence Relations

for Net and Algebraic Models of Concurrency

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems

Siberian Division of the Russian Academy of Sciences

6, Acad. Lavrentiev pr., Novosibirsk 630090, Russia

itar@iis.nsk.su

itar.iis.nsk.su

1. Equivalences for Petri nets

2. Equivalences for Petri nets with silent transitions

3. Review of stochastic Petri nets

4. Equivalences for stochastic Petri nets and stochastic process algebras

5. Equivalences for process algebras: calculus AFP2

6. Discrete time stochastic Petri box calculus

7. Discrete time stochastic Petri box calculus with immediate multiactions

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 2

The results

✛
✚
✘
✙PNs

✛
✚
✘
✙PAs

Eq-s of PNs Eq-s of PAs

MLs of PNs MLs of PAs

TRSs

✛

❄

❄ ✻

❄

❄ ✻

✛
✲ ✲

Interrelations of formalisms and equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 3

Equivalences for Petri Nets

Abstract : Behavioural equivalences of concurrent systems modeled by Petri nets

are considered.

Known basic, back-forth and place bisimulation equivalences are supplemented

by new ones.

The equivalence interrelations are examined for the general Petri nets as well as

for their subclasses of sequential nets (no concurrent transitions), strictly labeled

nets (unlabeled) and T-nets (no place branching).

A logical characterization of back-forth bisimulation equivalences in terms of

logics with past modalities is proposed.

An effective net reduction method based on place bisimulation relations is

presented.

A preservation of all the equivalences by refinements is investigated to find out

their appropriateness for top-down design.

Keywords : Petri nets, sequential nets, strictly labeled nets, T-nets, basic

equivalences, back-forth bisimulations, place bisimulations, logical

characterization, net reduction, refinement.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 4

Contents

• Introduction

– Previous work

– New equivalences

• Basic definitions

– Multisets

– Labeled nets

– Marked nets

– Partially ordered sets

– Event structures

– Processes

– Branching processes

• Basic simulation

– Trace equivalences

– Usual bisimulation equivalences

– ST-bisimulation equivalences

– History preserving bisimulation equivalences

– Conflict preserving equivalences

– Comparing basic equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 5

• Back-forth simulation and logics

– Sequential runs

– Back-forth bisimulation equivalences

– Comparing back-forth bisimulation equivalences

– Comparing back-forth bisimulation equivalences with basi c ones

– Logic HML

– Logic PBFL

– Logic PrBFL

• Place simulation and net reduction

– Place bisimulation equivalences

– Comparing place bisimulation equivalences

– Comparing place bisimulation equivalences with basic and

back-forth ones

– Net reduction based on place bisimulation equivalences

• Refinements

– SM-refinements

• Net subclasses

– The equivalences on sequential nets

– The equivalences on strictly labeled nets

– The equivalences on T-nets

• Decidability

– Decidability results for the equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 6

Introduction

Previous work

The following basic equivalences are known:

• Trace equivalences (respect protocols of behaviour):

interleaving (≡i) [Hoa80], step (≡s) [Pom86], partial word (≡pw) [Gra81]

and pomset (≡pom) [Pra86].

• Usual bisimulation equivalences (respect branching structure of behaviour):

interleaving (↔i) [Par81], step (↔s) [NT84], partial word (↔pw)[Vog91a],

pomset (↔pom) [BCa87] and process (↔pr) [AS92].

• ST-bisimulation equivalences (respect the duration or maximality of events in

behaviour):

interleaving (↔iST) [GV87], partial word (↔pwST) [Vog91a] and pomset

(↔pomST) [Vog91a].

• History preserving bisimulation equivalences (respect the “history” of

behaviour):

pomset (↔pomh) [RT88].

• Conflict preserving equivalences (respect conflicts of events):

occurrence (≡occ) [NPW81].

• Isomorphism (coincidence up to renaming of components):

(≃).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 7

Back-forth bisimulation equivalences: bisimulation relation do not only require

systems to simulate each other behavior in the forward direction but also when

going back in history, backward.

They are connected with equivalences of logics with past modalities.

Interleaving back interleaving forth bisimulation equivalence (↔ibif =↔i)

[NMV90].

Step back step forth (↔sbsf), partial word back partial word forth (↔pwbpwf)

and pomset back pomset forth (↔pombpomf) bisimulation equivalences

[Che92a,Che92b,Che92c].

All possible back-forth equivalences in interleaving, step, partial word and pomset

semantics s.t. types of backward and forward simulations may differ. New

relations: step back partial word forth (↔sbpwf) and step back pomset forth

(↔sbpomf) bisimulation equivalences [Pin93].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 8

Place bisimulation equivalences [ABS91] are based on definition from

[Old89,Old91]. They are relations over places instead of markings or processes.

The relation on markings is obtained via “lifting” that on places.

The main application of the place equivalences is effective behaviour preserving

reduction of Petri nets.

Interleaving place bisimulation equivalence (∼i) and interleaving strict place

bisimulation equivalence (≈i) [ABS91].

Step (∼s), partial word (∼pw), pomset (∼pom) and process (∼pr) place

bisimulation equivalences. Their strict analogues: (≈s, ≈pw, ≈pom, ≈pr).

Merging: ∼i = ∼s = ∼pw and ≈s = ≈pw = ≈pom = ≈pr = ∼pr . Three

different relations remain: ∼i, ∼pom and ∼pr [AS92].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 9

New equivalences

• Basic equivalences:

process trace (≡pr),

process ST-bisimulation (↔prST),

process history preserving bisimulation (↔prh) and

multi event structure (≡mes).

• Back-forth bisimulation equivalences:

step back process forth (↔sbprf) and

pomset back process forth (↔pombprf).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 10

✲

✻
Y

Causality

History
preserving

bisimulation

ST-
bisimulation

Usual
bisimulation

Trace

Nondeter-
minism

Interleaving Step Partial
word

Pomset Process

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

≃
Isomorphism

Conflict
preserving

≡mes ≡occ

X

t t t t t
t t t t t
t t t t t

ttt

tt
t t t

Classification of basic equivalences

Basic equivalences are positioned on coordinate plane.

New relations are depicted in red colour.

Moving along X axis: a degree of causality grows.

Moving along Y axis: a degree of non-determinism grows.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 11

�
��✠
❅
❅❅❘

❅
❅❅❘
�

��✠❄

a b

b a

a‖b

�
��✠

❅
❅❅❘

a b

❄ ❄
b a

=

a‖b=ab+ ba

Interleaving

�
��✠
❅

❅❅❘

❅
❅❅❘
�

��✠❄

b c

c b

b‖c

�
��✠

❅
❅❅❘

❄

a c

a‖c
�

��✠ a

✩

✪✛ ab‖c

= �
��✠
❅
❅❅❘

❅
❅❅❘
�

��✠❄

b c

c b

b‖c

�
��✠

❅
❅❅❘

❄

a c

a‖c
�

��✠ a

ab‖c=a(b‖c) + (a‖c)b

Step

�
��✠
❅
❅❅❘

❅
❅❅❘
�

��✠❄

a b

b a

a‖b

�
��✠
❅
❅❅❘

❅
❅❅❘
�

��✠❄

a b

b a

a‖b
�

��✠
b

✬
❄

ab

=

Partial word

a

♠
♠
❄

❄

t
a

♠
❄

t
a

♠
♠
❄

❄

t
a

♠
❄

t
♠❄

= =

a‖b=a‖b+ ab a=a a=a

Pomset Process

Causality degrees

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 12

�
��✠

❅
❅❅❘

a a

❄ ❄
b c

=

a(b+ c)=ab+ ac

Trace Usual bisimulation

ST-bisimulation

a

♥
❄

b

♥
❄

a

♥
❄

a

♥
❄

=

=

Conflict

preserving

Isomorphism

�
��✠

❅
❅❅❘

b c
❄
a �

��✠

❅
❅❅❘

a a

❄
b

=
�

��✠

❅
❅❅❘

b b
❄
a

�
��✠

❅
❅❅❘

b b

�
��✠

❅
❅❅❘

b b

❄
c

=

�
��✠

❅
❅❅❘

c c
❄
b

�
��✠

❅
❅❅❘

c c

❄ ❄
a a �

��✠

❅
❅❅❘

a a=
❄
a

History preserving

bisimulation

ab ac ab ac a‖b ab a‖b ab ab

ab‖c a(b‖c) ab‖c a(b‖c) a(b‖c)

a a a

Nondeterminism degrees

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 13

Basic definitions

Multisets

Definition 1 A finite multiset (bag) M over a set X is a mapping

M : X → IN s.t. |{x ∈ X |M(x) > 0}| <∞.

The set of all finite multisets over X is INX
fin.

The set of all subsets (powerset) of X is 2X .

For x ∈ X, M(x) is a number of elements x in M .

When ∀x ∈ X M(x) ≤ 1, M is a proper set s.t. M ⊆ X .

The cardinality of a multiset M : |M | =
∑

x∈XM(x).

If M1,M2 ∈ INX
fin and x ∈ X then

(M1+M2)(x) = M1(x) +M2(x);

(M1−M2)(x) = max{M1(x)−M2(x), 0};

(M1∪M2)(x) = max{M1(x),M2(x)};

(M1∩M2)(x) = min{M1(x),M2(x)};

M1⊆M2 ⇔ ∀x ∈ X M1(x) ≤M2(x);

x∈M ⇔ M(x) > 0.

We write M + x− y for M + {x} − {y}.

The empty multiset: ∅.

Multisets: sets with identical elements.

M = {x, x, x, y, z, z} denotes the multiset M s.t.

M(x) = 3, M(y) = 1, M(z) = 2, and for other elements M is equal to 0.t t t t t t
x x x y z z

M

Example of multiset

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 14

Labeled nets

Let Act = {a, b, . . .} be a set of action names or labels.

τ 6∈ Act denotes silent action that represents an internal activity. Let

Actτ = Act ∪ {τ}.

Definition 2 A labeled net is a quadruple N = (PN , TN ,WN , LN):

• PN = {p, q, . . .} is a set of places;

• TN = {t, u, . . .} is a set of transitions;

• WN : (PN × TN) ∪ (TN × PN)→ IN is the flow relation with weights;

• LN : TN → Actτ is a labeling of transitions with action names.

Given labeled nets N = (PN , TN ,WN , LN) and

N ′ = (PN ′ , TN ′ ,WN ′ , LN ′).

A mapping β : PN ∪ TN → PN ′ ∪ TN ′ is an isomorphism between N and

N ′, β : N≃N ′, if:

1. β is a bijection s.t. β(PN) = PN ′ and β(TN) = TN ′ ;

2. ∀p ∈ PN ∀t ∈ TN WN (p, t) =WN ′(β(p), β(t)) and

WN (t, p) =WN ′(β(t), β(p));

3. ∀t ∈ TN LN (t) = LN ′(β(t)).

N and N ′ are isomorphic, N≃N ′, if ∃β : N≃N ′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 15

a a b

cd

♥

♥ ♥ ♥
❄❄

❄

❄

❄ ❄

♥
✡✡✢ ❏❏❫

❙❙✇ ✓✓✴

✝ ✆

✻
N

t1

t4

t2 t3

t5

p1

p3

p4

p2

p5

Example of labeled net

Let N be a labeled net and t ∈ TN , p ∈ PN , U ∈ IN
TN
fin, R ∈ IN

PN
fin .

The precondition •t and the postcondition t• of t are the multisets

(•t)(p) =WN (p, t) and (t•)(p) =WN (t, p).

The precondition •p and the postcondition p• of p are the multisets

(•p)(t) =WN (t, p) and (p•)(t) =WN (p, t).

The precondition •U and the postcondition U• of U are the multisets
•U =

∑
t∈U

•t and U• =
∑

t∈U t
•.

The precondition •R and the postcondition R• of R are the multisets
•R =

∑
p∈R

•p and R• =
∑

p∈R p
•.

•N = {p ∈ PN |
•p = ∅} is the set of initial (input) places of N .

N• = {p ∈ PN | p
• = ∅} is the set of final (output) places of N .

A labeled net N is acyclic, if there exist no transitions t0, . . . , tn ∈ TN s.t.

t•i−1 ∩
•ti 6= ∅ (1 ≤ i ≤ n) and t0 = tn.

A labeled netN is ordinary if ∀p ∈ PN •p and p• are proper sets (not multisets).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 16

Let N = (PN , TN ,WN , LN) be acyclic ordinary labeled net and

x, y ∈ PN ∪ TN . Then

• x≺Ny ⇔ W ∗
N (x, y) = 1, where W ∗

N is a transitive closure of WN

(strict causal dependence relation);

• x�Ny ⇔ (x ≺N y) ∨ (x = y) (a relation of causal dependence);

• x#Ny ⇔ ∃t, u ∈ TN (t 6= u, •t ∩ •u 6= ∅, t �N x, u �N y) (a

relation of conflict);

• ↓Nx = {y ∈ PN ∪ TN | y ≺N x} (the set of strict predecessors of x).

A set T ⊆ TN is left-closed in N , if ∀t ∈ T (↓N t) ∩ TN ⊆ T .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 17

Marked nets

A marking of a labeled net N is M ∈ INPN
fin .

Definition 3 A marked net (net) is a tuple N = (PN , TN ,WN , LN ,MN):

• (PN , TN ,WN , LN) is a labeled net;

• MN ∈ IN
PN
fin is the initial marking.

Given nets N = (PN , TN ,WN , LN ,MN) and

N ′ = (PN ′ , TN ′ ,WN ′ , LN ′ ,MN ′).

A mapping β : PN ∪ TN → PN ′ ∪ TN ′ is an isomorphism between N and

N ′, β : N≃N ′, if:

1. β : (PN , TN ,WN , LN)≃(PN ′ , TN ′ ,WN ′ , LN ′);

2. ∀p ∈ PN MN (p) =MN ′(β(p)).

N and N ′ are isomorphic, N≃N ′, if ∃β : N≃N ′.

a a b

cd

♥

♥ ♥ ♥
❄❄

❄

❄

❄ ❄

♥
✡✡✢ ❏❏❫

❙❙✇ ✓✓✴

✝ ✆

✻
N

t1

t4

t2 t3

t5

p1

p3

p4

p2

p5

t 3

Example of marked net

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 18

Let M ∈ INPN
fin be a marking of a net N .

A transition t ∈ TN is enabled (fireable) in M , if •t ⊆M .

Ena(M) is the set of all transitions enabled in marking M .

If t ∈ Ena(M), its firing yields a new marking M̃ =M − •t+ t•, M
t
→M̃ or

M
a
→M̃ , if LN (t) = a.

We write M→M̃ , if ∃t ∈ TN M
t
→ M̃ .

A marking M̃ of a net N is reachable from marking M , if M̃ =M or there

exists a reachable marking M̂ of N s.t. M̂ → M̃ .

A marking M of a net N is reachable, if it is reachable from MN .

RS(N,M) is the set of all reachable from M markings of a net N .

RS(N) is the set of all reachable markings of a net N .

RG(N) is the reachabiliy graph of a net N , an oriented graph with vertex set

RS(N) and arcs from M to M̃ iff M → M̃ .

The arcs could be labeled by transition names or labels.

☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠☛✡ ✟✠RG(N) 13000 03010

03100 11001 01011

01101 01000

❙❙✇ ❙❙✇t3 t3

t5

✲

✲

❏❏❫

✡✡✣✡✡✢

✡✡✣✡✡✢t3 ✓✓✴

t2

t2

t1 t4

t1 t4

Reachability graph of the marked net

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 19

Let σ = t1 · · · tn ∈ T ∗
N be a sequence of transitions and

M
t1→M1

t2→ . . .
tn→Mn = M̃ .

Then firing of σ in M yields a new marking M̃ , M
σ
→M̃ or M

ω
→M̃ , if

LN (σ) = LN (t1) · · ·LN (tn) = ω.

A multiset of transitions U ∈ INTN
fin is fireable in M , if •U ⊆M .

If U is fireable in M , its firing yields a new marking M̃ =M − •U + U•,

M
U
→M̃ or M

A
→M̃ , if LN (U) =

∑
t∈U LN (t) = A.

A net N is n-bounded (n ∈ IN), if ∀M ∈ RS(N) ∀p ∈ PN M(p) ≤ n.

A net N is bounded, if ∃n ∈ IN s.t. N is n-bounded.

A net N is safe, if it is 1-bounded.

An action a ∈ Act is auto-concurrent in N , if ∃M ∈ RS(N) ∃t, u ∈ TN s.t.

LN (t) = a = LN (u) and •t+ •u ⊆M .

A net N is auto-concurrency free, if no action is auto-concurrent in N .

An action a ∈ Act is self-concurrent in N , if ∃M ∈ RS(N) ∃t ∈ TN s.t.

LN (t) = a and •t+ •t ⊆M .

A net N is self-concurrency free, if no action is self-concurrent in N .

A net N is live, if ∀t ∈ TN ∃M ∈ RS(N) t ∈ Ena(M).

A net N is reversible, if ∀M ∈ RS(N)MN ∈ RS(N,M).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 20

Partially ordered sets [Pra86]

Definition 4 A partially ordered set (poset) is a pair ρ = (X,≺):

• X = {x, y, . . .} is an underlying set;

• ≺ ⊆ X ×X is a strict partial order (irreflexive transitive relation) over X .

Let ρ = (X,≺) be a poset. A restriction of ρ to the set Y ⊆ X is

ρ|Y = (Y,≺ ∩(Y × Y)). A set of strict predecessors of x ∈ X is

↓x = {y ∈ X | y ≺ x}. A set Y ⊆ X is left-closed, if ∀y ∈ Y ↓ y ⊆ Y .

Let ρ1 = (X1,≺1) and ρ2 = (X2,≺2) be posets. ρ1 is a strict prefix of ρ2,

ρ1⊳ρ2, if ρ1 = ρ2|Y s.t. Y ⊂ X is a finite left-closed set. ρ1 is a prefix of ρ2,

notation ρ1⊳ρ2, if ρ1 ⊳ ρ2 or ρ1 = ρ2.

Definition 5 A labeled partially ordered set (lposet, causal structure) is a triple

ρ = (X,≺, l):

• (X,≺) is a poset;

• l : X → Actτ is a labeling function.

The notions defined for posets are transferred to lposets.

Let ρ = (X,≺, l) and ρ′ = (X ′,≺′, l′) be lposets.

A mapping β : X → X ′ is a label-preserving bijection between ρ and

ρ′, β : ρ≍ρ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x)).

We write ρ≍ρ′, if ∃β : ρ ≍ ρ′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 21

A mapping β : X → X ′ is a homomorphism between ρ and ρ′, β : ρ⊑ρ′, if:

1. β : ρ ≍ ρ′;

2. ∀x, y ∈ X x ≺ y ⇒ β(x) ≺′ β(y).

We write ρ⊑ρ′, if ∃β : ρ ⊑ ρ′.

A mapping β : X → X ′ is an isomorphism between ρ and ρ′, β : ρ≃ρ′, if

β : ρ ⊑ ρ′ and β−1 : ρ′ ⊑ ρ. Lposets ρ and ρ′ are isomorphic, ρ≃ρ′, if

∃β : ρ ≃ ρ′.

Definition 6 Partially ordered multiset (pomset) is the equivalence class of

lposets w.r.t. isomorphism (the isomorphism class).

x1

x2

x3

x4

(a)

❄ ❄

❅
❅❅❘

x1 (a)

x2 (b)

x3 (b)

x4 (a)

(b)

❄ ❄

❅
❅❅❘

a

b

b

a

(c)

❄ ❄

❅
❅❅❘

Examples of poset, lposet and pomset

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 22

Event structures [NPW81]

Definition 7 An event structure (ES) is a triple ξ = (X,≺,#):

• X = {x, y, . . .} is a set of events;

• ≺ ⊆ X ×X is a strict partial order, a causal dependence relation, which

satisfies to the principle of finite causes: ∀x ∈ X | ↓ x| <∞;

• # ⊆ X ×X is an irreflexive symmetrical conflict relation, which satisfies to

the principle of conflict heredity: ∀x, y, z ∈ X x#y ≺ z ⇒ x#z.

Let ξ = (X,≺,#) be LES and Y ⊆ X . A restriction of ξ to the set Y is:

ξ|Y = (Y,≺ ∩(Y × Y),# ∩ (Y × Y)).

Definition 8 A labeled event structure (LES) is a quadruple ξ = (X,≺,#, l):

• (X,≺,#) is an event structure;

• l : X → Actτ is a labeling function.

The notions defined for ES’s are transferred to LES’s.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 23

Let ξ = (X,≺,#, l) and ξ′ = (X ′,≺′,#′, l′) be LES’s. A mapping

β : X → X ′ is an isomorphism between ξ and ξ′, β : ξ≃ξ′, if:

1. β is a bijection;

2. ∀x ∈ X l(x) = l′(β(x));

3. ∀x, y ∈ X x ≺ y ⇔ β(x) ≺′ β(y);

4. ∀x, y ∈ X x#y ⇔ β(x)#′β(y).

ξ and ξ′ are isomorphic, ξ≃ξ′, if ∃β : ξ ≃ ξ′.

Definition 9 A multi-event structure (MES) is an isomorphism class of LES’s.

x1

x2

x3

x4

(a)

❄ ❄

x1 (a)

x2 (b)

x3 (b)

x4 (a)

(b)

❄ ❄

a

b

b

a

(c)

❄ ❄

Examples of ES, LES and MES

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 24

Processes [BD87]

Definition 10 A causal net is an acyclic ordinary labeled net

C = (PC , TC ,WC , LC), s.t.:

1. ∀r ∈ PC |•r| ≤ 1 and |r•| ≤ 1, places are unbranched;

2. ∀x ∈ PC ∩ TC | ↓C x| <∞, a set of causes is finite.

Based on causal net C = (PC , TC ,WC , LC), one can define lposet

ρC = (TC ,≺N ∩(TC × TC), LC).

For any causal net C there is a sequence of transition firings:
•C = L0

v1→ · · ·
vn→ Ln = C• s.t. Li ⊆ PC (0 ≤ i ≤ n), PC = ∪ni=0Li

and TC = {v1, . . . , vn}. It is called a full execution of C .

Definition 11 Given a net N and a causal net C . A mapping

ϕ : PC ∪ TC → PN ∪ TN is an homomorphism of C into N, ϕ : C→N , if:

1. ϕ(PC) ∈ IN
PN
fin and ϕ(TC) ∈ IN

TN
fin, sorts are preserved;

2. ∀v ∈ TC •ϕ(v) = ϕ(•v) and ϕ(v)• = ϕ(v•), flow relation is respected;

3. ∀v ∈ TC LC(v) = LN (ϕ(v)), labeling is preserved.

Since homomorphisms respect the flow relation, if •C
v1→ · · ·

vn→ C• is a full

execution of C , then M = ϕ(•C)
ϕ(v1)
→ · · ·

ϕ(vn)
→ ϕ(C•) = M̃ is a sequence

of transition firings in N .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 25

Definition 12 An enabled (fireable) in marking M process of a net N is a pair

π = (C,ϕ), where C is a causal net and ϕ : C → N is an homomorphism s.t.

M = ϕ(•C). An enabled in MN process is a process of N .

Π(N,M) is a set of all enabled in marking M , and Π(N) is the set of all

processes of a net N .

The initial process of a net N is πN = (CN , ϕN) ∈ Π(N), s.t. TCN = ∅.

If π ∈ Π(N,M), then firing of this process transforms a marking M into

M̃ =M − ϕ(•C) + ϕ(C•) = ϕ(C•), M
π
→M̃ .

Let π = (C,ϕ), π̃ = (C̃, ϕ̃) ∈ Π(N), π̂ = (Ĉ, ϕ̂) ∈ Π(N,ϕ(C•)). A

process π is a prefix of a process π̃, if TC ⊆ TC̃ is a left-closed set in C̃. A

process π̂ is a suffix of a process π̃, if TĈ = TC̃ \ TC .

In such a case a process π̃ is an extension of π by process π̂, and π̂ is an

extending process for π, π
π̂
→π̃. We write π→π̃, if ∃π̂ π

π̂
→ π̃.

A process π̃ is an extension of a process π by one transition, π
v
→π̃ or π

a
→π̃, if

π
π̂
→ π̃, TĈ = {v} and LĈ(v) = a .

A process π̃ is an extension of a process π by sequence of transitions, π
σ
→π̃ or

π
ω
→π̃, if

∃πi ∈ Π(N) (1 ≤ i ≤ n) π
v1→ π1

v2→ . . .
vn→ πn = π̃, σ = v1 · · · vn and

LĈ(σ) = ω.

A process π̃ is an extension of a process π by multiset of transitions, π
V
→π̃ or

π
A
→π̃, if π

π̂
→ π̃, ≺Ĉ= ∅, TĈ = V and LĈ(V) = A.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 26

a b

c

♥

♥ ♥❄ ❄

♥
❄

♥ ♥
❙❙✇ ✓✓✴

C2

a b

d

♥

♥ ♥❄

❄

❄

♥
❄

♥ ♥
❙❙✇ ✓✓✴

C1

❙❙✇ ✓✓✴

a b

d

♥

♥ ♥❄

❄

❄

♥
❄

♥ ♥
❙❙✇ ✓✓✴

C3

a

c

♥❄
♥
❄

❄

❙❙✇

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎

a b

d

♥

♥ ♥❄

❄

❄

♥
❄

♥ ♥
❙❙✇ ✓✓✴

C4

a

♥❄
♥
❄

❄

d
❄

♥
❄

❄

♣♣♣
Causal nets of processes

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 27

a

d

c

♥

♥

t
❄

❄

❄

◗
◗◗s

✚
✚✚❂

b

e

♥

♥

t
❄

❄

❄

f

♥
❄

✑
✑✑✰

❩
❩⑦

N(a)

a

d

♥

♥
❄

❄

❄

b

e

♥

♥
❄

❄

❄

Cmax1

d

c

♥

♥
❄

e

♥

♥
❄

❏❏❫✡✡✢

✁✁☛ ❆❆❯

Cmax2

a

b

♥

♥

t
❄

❄

❄

N(b)

t ♥t
✑

✑✑✰

a

b

♥

♥
❄

❄

❄

Cmax1

♥
✑

✑✑✰

♥
a

♥

♥
❄

❄

Cmax2

b

♥ ♥
❏❏❫ ✡✡✢

Causal nets of maximal processes

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 28

Branching processes [Eng91]

Definition 13 An occurrence net is an acyclic ordinary labeled net

O = (PO, TO,WO, LO), s.t.:

1. ∀r ∈ PO |•r| ≤ 1, there are no backwards conflicts;

2. ∀x ∈ PO ∪ TO ¬(x#Ox), conflict relation is irreflexive;

3. ∀x ∈ PO ∪ TO | ↓O x| <∞, set of causes is finite.

Let O = (PO, TO,WO, LO) be occurrence net and

N = (PN , TN ,WN , LN ,MN) be some net. A mapping

ψ : PO ∪ TO → PN ∪ TN is an homomorphism O into N, ψ : O→N , if:

1. ψ(PO) ∈ IN
PN
fin and ψ(TO) ∈ IN

TN
fin, sorts are preserved;

2. ∀v ∈ TO LO(v) = LN (ψ(v)), labeling is preserved;

3. ∀v ∈ TO •ψ(v) = ψ(•v) and ψ(v)• = ψ(v•), flow relation is respected;

4. ∀v, w ∈ TO (•v = •w) ∧ (ψ(v) = ψ(w))⇒ v = w, there are no

“superfluous” conflicts.

Based on occurrence net O = (PO, TO,WO, LO), one can define LES

ξO = (TO,≺O ∩(TO × TO),#O ∩ (TO × TO), LO).

Definition 14 A branching process of a net N is a pair ̟ = (O,ψ), where O

is an occurrence net and ψ : O → N is an homomorphism s.t. MN = ψ(•O).

℘(N) is the set of all branching processes of a net N . The initial branching

process of a net N coincides with its initial process, ̟N = πN .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 29

Let ̟ = (O,ψ), ˜̟ = (Õ, ψ̃) ∈ ℘(N), O = (PO, TO,WO, LO),

Õ = (PÕ, TÕ,WÕ, LÕ). ̟ is a prefix of ˜̟ , if TO ⊆ TÕ is a left-closed set in

Õ.

Then ˜̟ is an extension of ̟, and ˆ̟ is an extending branching process for

̟, ̟→ ˜̟ .

A branching process ̟ = (O,ψ) of a net N is maximal, if it cannot be

extended, ∀ ˜̟ = (Õ, ψ̃) s.t. ̟ → ˜̟ : TÕ \ TO = ∅.

The set of all maximal branching processes of a net N consists of the unique (up

to isomorphism) branching process ̟max = (Omax, ψmax).

An isomorphism class of occurrence net Omax is an unfolding of a net N ,

notation U(N).

On the basis of unfolding U(N) of a net N , one can define MES

E(N) = ξU(N) which is an isomorphism class of LES ξO for O ∈ U(N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 30

a b

d

♥

♥ ♥❄

❄

❄

♥ ♥ ♥
❙❙✇ ✓✓✴

O1

♥❄

a b

d

♥

♥ ♥❄

❄

❄

♥ ♥
❙❙✇ ✓✓✴

O2

a

♥❄
♥
❄

❄

d
❄

♥
❄

❄

♣♣♣

a

♥❄
✡✡✢ ❏❏❫

c
✓✓✴❅❅❘

a

♥❄
c
✓✓✴❅❅❘

♥
✡✡✢ ❏❏❫

a

♥❄
c

◗
◗◗s

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎❄

♣ ♣ ♣

♣♣♣
♣

◗
◗◗s

♣♣

Occurrence nets of branching processes

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 31

a

d

c

♥

♥

t
❄

❄

❄

◗
◗◗s

✚
✚✚❂

b

e

♥

♥

t
❄

❄

❄

f

♥
❄

✑
✑✑✰

❩
❩⑦

N(a)

a

d

♥❄
❄

b

e

♥❄
❄

Omax

d

c

♥
❄

e

♥
❄

✁✁☛ ❆❆❯

a

b

♥

♥

t
❄

❄

❄

N(b)

t ♥t
✑

✑✑✰

a

b

♥

♥
❄

❄

❄

Omax

♥
✑

✑✑✰

♥ ♥
✚✚❂ ❅❅❘❅❅❘ ✚✚❂

b

◗
◗◗s

♥
❄

Occurrence nets of maximal branching processes

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 32

Basic simulation

Trace equivalences

Definition 15 An interleaving trace of a net N is a sequence

a1 · · · an ∈ Act∗ s.t. πN
a1→ π1

a2→ . . .
an→ πn, πi ∈ Π(N) (1 ≤ i ≤ n).

The set of all interleaving traces of N is IntTraces(N).

N and N ′ are interleaving trace equivalent, N≡iN ′, if

IntTraces(N) = IntTraces(N ′).

Definition 16 A step trace of a net N is a sequence A1 · · ·An ∈ (INAct
fin)

∗

s.t. πN
A1→ π1

A2→ . . .
An→ πn, πi ∈ Π(N) (1 ≤ i ≤ n).

The set of all step traces of N is StepTraces(N).

N and N ′ are step trace equivalent, N≡sN
′, if

StepTraces(N) = StepTraces(N ′).

Definition 17 A pomset trace of a net N is a pomset ρ, an isomorphism class

of lposet ρC for π = (C,ϕ) ∈ Π(N).

The set of all pomset traces of N is Pomsets(N).

N and N ′ are partial word trace equivalent, N≡pwN ′, if

Pomsets(N) ⊑ Pomsets(N ′) and Pomsets(N ′) ⊑ Pomsets(N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 33

Definition 18 N and N ′ are pomset trace equivalent, N≡pomN ′, if

Pomsets(N) = Pomsets(N ′).

Definition 19 A process trace of a net N is an isomorphism class of causal net

C for π = (C,ϕ) ∈ Π(N).

The set of all process traces of N is ProcessNets(N).

N and N ′ are process trace equivalent, N≡prN
′, if

ProcessNets(N) = ProcessNets(N ′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 34

s′in

sin

1

s′

s

2

✲

✲ s̃′

s̃
Activity

Sim(Activity)

s

s′

3

✲

✲ s̃

s̃′
Activity

Sim(Activity)
System

System′

States

States′

R R R R RR ⊆ States× States′

Bisimulation equivalence

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 35

Usual bisimulation equivalences

Definition 20 R ⊆ Π(N)×Π(N ′) is a ⋆-bisimulation between nets N and

N ′, ⋆ ∈{interleaving, step, partial word, pomset, process},

R : N↔⋆N
′, ⋆ ∈ {i, s, pw, pom, pr}, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
π̂
→ π̃,

(a) |TĈ | = 1, if ⋆ = i;

(b) ≺Ĉ= ∅, if ⋆ = s;

⇒ ∃π̃′ : π′ π̂
′

→ π̃′, (π̃, π̃′) ∈ R and

(a) ρĈ′ ⊑ ρĈ , if ⋆ = pw;

(b) ρĈ ≃ ρĈ′ , if ⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ ′, if ⋆ = pr.

3. As item 2, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-bisimulation equivalent, ⋆ ∈{interleaving, step, partial word,

pomset, process}, N↔⋆N
′, if ∃R : N↔⋆N

′, ⋆ ∈ {i, s, pw, pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 36

ST-bisimulation equivalences

Definition 21 [Vog92] An ST-marking of a net N is a pair (M,U):

• M ∈ INPN
fin is the current marking;

• U ∈ INTN
fin are the working transitions.

(MN , ∅) is the initial ST-marking of a net N .

T±
N = {t+, t− | t ∈ TN} is a set of transition parts.

t+ is the beginning, and t− is the end of t.

A transition part q ∈ T±
N is enabled in ST-marking Q = (M,U), Q

q
→, if:

1. M
t
→, if q = t+ or

2. t ∈ U , if q = t−.

If q is enabled in M , its occurrence transforms ST-marking Q into Q̃, Q
q
→Q̃, as:

1. M̃ =M − •t and Ũ = U + t, if q = t+ or

2. M̃ =M + t• and Ũ = U − t, if q = t−.

We write Q→Q̃, if ∃q Q
q
→ Q̃.

Act± = {a+, a− | a ∈ Act} is the set of action parts.

a+ is the beginning, and a− is the end of a.

For t ∈ TN , we define LN (t
+) = LN (t)+ and LN (t

−) = LN (t)
−.

For z ∈ Act±, we write Q
z
→Q̃, if ∃q Q

q
→ Q̃ and LN (q) = z.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 37

An ST-marking Q̃ of N is reachable from Q, if:

1. Q̃ = Q or

2. there is a reachable from Q ST-marking Q̂ s.t. Q̂→ Q̃.

An ST-marking Q of N is reachable, if it is reachable from MN .

ST −RS(N) is the set of all reachable ST-markings of N .

ST −RG(N) is the ST-reachabiliy graph of a net N , an oriented graph with

vertex set ST −RS(N) and arcs from Q to Q̃ iff Q→ Q̃.

The arcs could be labeled by transition part names or labels.

ST−RG(N)
✞✝ ☎✆ ✞✝ ☎✆ ✞✝ ☎✆
✞✝ ☎✆ ✞✝ ☎✆ ✞✝ ☎✆✞✝ ☎✆ ✞✝ ☎✆
✞✝ ☎✆ ✞✝ ☎✆ ✞✝ ☎✆✞✝ ☎✆ ✞✝ ☎✆ ✞✝ ☎✆
✞✝ ☎✆ ✞✝ ☎✆ ✞✝ ☎✆✞✝ ☎✆
✞✝ ☎✆✞✝ ☎✆

13000,∅ 03000,{t2} 03010,∅

03000,{t4} 03000,{t1} 11000,{t3} 01000,{t2,t3} 01010,{t3}

03100,∅ 01000,{t3,t4} 01000,{t1,t3} 11001,∅ 01001,{t2} 01011,∅

01100,{t3} 01001,{t4} 01001,{t1} 01000,{t5}

01101,∅ 01000,∅

✟✟✟✟✟✙
✻❍❍❍❍❍❥

✲ ✲

✲ ✲

✲ ✲

❩
❩❩⑦

❩
❩❩⑦

❍❍❍❍❍❥
✻◗

◗
◗◗s

✑
✑

✑✑✰ ✑
✑

✑✑✸◗
◗

◗◗s ❄

◗
◗
◗◗s

✻ ✟✟✟✟✟✙

✟✟✟✟✟✙

✟✟✟✟✟✙

◗
◗
◗◗s

◗
◗
◗◗s

❇
❇❇◆

✏✏✏✏✏✏✏✮
❇
❇❇◆✏✏✏✏✏✏✏✶ ❩

❩❩⑦�
��✒ �

��✠

t+4 t−1 t+3 t+3
t+3

t+4
t+3 t−1 t+3 t−4 t+1 t−3 t−3t−3

t+3 t+4
t−3 t−4t−3 t−1 t+1 t+5

t−3 t+4 t−1 t−5

t+2 t−2

t+2 t−2

t+2 t−2

ST-reachability graph of the marked net

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 38

Definition 22 An ST-process of a net N is a pair (πE , πP):

1. πE, πP ∈ Π(N), πP
πW→ πE ;

2. ∀v, w ∈ TCE v ≺CE w ⇒ v ∈ TCP .

• πE is the current process;

• πP is the completed part;

• πW is the still working part.

Obviously,≺CW= ∅.

ST −Π(N) is the set of all ST-processes of a net N .

(πN , πN) is the initial ST-process of a net N .

Let (πE , πP), (π̃E , π̃P) ∈ ST −Π(N).

We write (πE , πP)→(π̃E , π̃P), if πE → π̃E and πP → π̃P .

✲
☛ ✟ ☛ ✟

Π(N)
πP πE

πW π̃P π̃E
π̃WπNt t t t t

ST-processes

✲
☛ ✟ ☛ ✟

Π(N ′)
π′
P π′

E
π′
W π̃′

P π̃′
E

π̃′
WπN ′t t t t t

✲
☛ ✟ ☛ ✟

Π(N)
πP πE

πW π̃P π̃E
π̃WπNt t t t t

ST-bisimulation equivalence

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 39

Definition 23 R ⊆ ST −Π(N)× ST − Π(N ′)× B, where

B = {β | β : TC → TC′ , π = (C,ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)},

is a ⋆-ST-bisimulation between nets N and N ′, ⋆ ∈{interleaving, partial word,

pomset, process},R : N↔⋆STN
′, ⋆ ∈ {i, pw, pom, pr}, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE, πP), (π
′
E, π

′
P), β) ∈ R ⇒ β : ρCE ≍ ρC′

E
and

β(vis(TCP)) = vis(TC′
P
).

3. ((πE, πP), (π
′
E, π

′
P), β) ∈ R, (πE, πP)→ (π̃E, π̃P) ⇒

∃β̃, (π̃′
E, π̃

′
P) : (π′

E , π
′
P)→ (π̃′

E, π̃
′
P), β̃|TCE = β,

((π̃E, π̃P), (π̃
′
E, π̃

′
P), β̃) ∈ R, and if πP

π
→ π̃E , π

′
P

π′

→ π̃′
E, γ = β̃|TC ,

then:

(a) γ−1 : ρC′ ⊑ ρC , if ⋆ = pw;

(b) γ : ρC ≃ ρC′ , if ⋆ = pom;

(c) C ≃ C ′, if ⋆ = pr.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-ST-bisimulation equivalent, ⋆ ∈{interleaving, partial word,

pomset, process}, N↔⋆STN
′, if ∃R : N↔⋆STN

′, ⋆ ∈ {i, pw, pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 40

History preserving bisimulation equivalences

Definition 24 R ⊆ Π(N)×Π(N ′)× B, where

B = {β | β : TC → TC′ , π = (C,ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)},

is a ⋆-history preserving bisimulation between nets N and N ′,

⋆ ∈{pomset,process}, N↔⋆hN
′, ⋆ ∈ {pom, pr}, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒

(a) β̃ : ρC̃ ≃ ρC̃′ , if ⋆ ∈ {pom, pr};

(b) C̃ ≃ C̃ ′, if ⋆ = pr.

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃|TC = β,

(π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-history preserving bisimulation equivalent, ⋆ ∈{pomset,

process}, N↔⋆hN
′, if ∃R : N↔⋆hN

′, ⋆ ∈ {pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 41

a

b c d e

♥t

♥ ♥ ♥ ♥t t
N

❄

✟✟✟✙
❍❍❍❥

❄ ❄❩
❩⑦
✚

✚❂
❩
❩⑦
✚

✚❂
❩
❩⑦

a

b d c e

♥t

♥ ♥ ♥ ♥t t
N ′

❄

✟✟✟✙
❍❍❍❥

❄ ❄❩
❩⑦
✚

✚❂
❩
❩⑦
✚

✚❂
❩
❩⑦

↔prh

≡mes
6≡occ

✚
✚❂

✚
✚❂

Nets that are not equivalent w.r.t. strict version of↔prh

Strict version of↔prh: suppose β : C ≃ C ′ in the definition.

N and N ′ are not equivalent since any isomorphism “reverts” output places of

their transitions labeled by a. For any correspondence between the left and right

places in N and the ones in N ′ there is an extension (by a process with action b

or c) in N that cannot be imitated in N ′. The two places of N ′ should be

“revered” in any case to allow the correct extension of isomorphism to C-nets of

the resulted processes.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 42

✲
☛ ✟ ☛ ✟

✲
☛ ✟ ☛ ✟

Π(N)

Π(N ′)

πP πE π̃P π̃E

π′
P π′

E π̃′
P π̃′

E✡ ✠✟☛
Usual ✠✡ ✟☛

ST-✡ ✠✟☛
History preserving

πN

πN ′

t t t t t

t t t t t

A distinguish ability of the bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 43

Conflict preserving equivalences

Definition 25 N and N ′ are MES conflict preserving equivalent, N≡mesN ′,

if E(N) = E(N ′).

Definition 26 N and N ′ are occurrence conflict preserving equivalent,

N≡occN ′, if U(N) = U(N ′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 44

Comparing basic equivalences

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

✛

≃

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄

≡mes ≡occ

❄

❄
✛

Interrelations of basic equivalences

Theorem 1 Let↔,↔↔ ∈ {≡,↔,≃} and ⋆, ⋆⋆ ∈ { , i, s, pw, pom, pr,

iST, pwST, pomST, prST, pomh, prh,mes, occ}. For nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff there exists a directed path from↔⋆ to↔↔⋆⋆ in the graph above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 45

a b

♥♥t t
❄ ❄

(a)

N

↔i

b a

♥ ♥
a b

♥t
❄

❄

❄

❄

✁✁☛ ❆❆❯

N ′

(e)

N

b

♥
a a

♥t
✁✁☛ ❆❆❯

❄ ❄

❄

♥
≡pr

↔/ i

b

♥
a

♥t N ′

❄

❄

❄

(b)

ba

♥ ♥t tN

❄ ❄↔pwST

6≡pom

a b

♥ ♥t t
❄ ❄

N ′

(d)

N

a

♥

♥t
❄

❄

a

♥t
❄

N ′

6≡pr

(c)

b d

♥ ♥
a c

♥ ♥t t
❄

❄

❄

❄

❄

❄

N

↔iST

6≡pw

b b d d

♥ ♥ ♥ ♥
a c

♥ ♥♥t t tN ′

❄

❄

❄

❄

❄

❄

❩
❩⑦

✚
✚✚❂

❄ ❄✚✚❂✚
✚❂

❩
❩⑦

❩
❩⑦

♥
b

❄

❄

≡mes

✁
✁

✁
✁
✁

✁✁☛

❆
❆
❆
❆
❆
❆❆❯

✄
✄
✄
✄
✄
✄✄✎

6≡s

B: Examples of basic equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 46

b b

♥ ♥ ♥t t
a ♥t
♥t
❄

❄

❄

✛

❄✚
✚❂

✚
✚❂

(a) N

↔pr

↔/ iST

b b

♥ ♥ ♥t t
a ♥t
♥t a ♥✲ ✲

❄

❄

❄ ❄✚✚❂ ✚
✚❂

N ′

b c c

♥ ♥ ♥ ♥ ♥t t t
a

♥t(b) N

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛

↔prST

↔/ pomh

b c c

♥ ♥ ♥ ♥ ♥t t t
a

♥tN ′

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛
b

❏❏❫ ✂✂✌

(c)

a a

♥t
✡✡✢ ❏❏❫

N ′↔prh

6≡mes

✻

❍❍❍❍❨

a

♥N t
❄

c

a

♥

♥
❄

❄

❄

(d) N

c

b

♥

♥
❄

❄

❄

N ′

≡occ

6≃
t t

B1: Examples of basic equivalences (continued)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 47

• In Figure B(a), N↔iN
′, but N 6≡sN ′, since only in the net N ′ actions a

and b can occur concurrently.

• In Figure B(c), N↔iSTN
′, but N 6≡pwN

′, since for the pomset

corresponding to the net N there is no even less sequential pomset in N ′.

• In Figure B(b), N↔pwSTN
′, but N 6≡pomN

′, since only in the net N ′ an

action b can depend on action a.

• In Figure B(d), N≡mesN
′, but N 6≡prN

′, since N ′ is a causal net which is

not isomorphic to N (because of additional output place).

• In Figure B(e), N≡prN ′, but N↔/ iN ′, since only in net N ′ action a can

occur so that action b cannot occur afterwards.

• In Figure B1(a), N↔prN
′, but N↔/ iSTN

′, since only in net N ′ action a

can start so that no action b can begin working until a finishes.

• In Figure B1(b), N↔prSTN
′, but N↔/ pomhN

′, since only in net N ′

actions a and b can occur so that action c must depend on a.

• In Figure B1(c), N↔prhN
′, but N 6≡mesN ′, since only net N ′ has

corresponding MES with two conflict actions a.

• In Figure B1(d), N≡occN ′, but N 6≃N ′, since upper transitions of nets N

and N ′ are labeled by different actions (a and b).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 48

Back-forth simulation and logics

Sequential runs [Che92a,Tar97]

Definition 27 A sequential run of a net N is a pair (π, σ):

• a process π ∈ Π(N):

causal dependencies of transitions;

• a sequence σ ∈ T ∗
C s.t. πN

σ
→ π:

occurrence order of transitions.

The set of all sequential runs of a net N is Runs(N).

The initial sequential run of a net N is a pair (πN , ε) (ε is the empty sequence).

Let (π, σ), (π̃, σ̃) ∈ Runs(N).

We write (π, σ)
π̂
→(π̃, σ̃), if π

π̂
→ π̃, ∃σ̂ ∈ T ∗

C̃
π

σ̂
→ π̃ and σ̃ = σσ̂.

We write (π, σ)→(π̃, σ̃), if ∃π̂ (π, σ)
π̂
→ (π̃, σ̃).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 49

|σ| is the length of a sequence σ.

Let (π, σ) ∈ Runs(N), (π′, σ′) ∈ Runs(N ′) and

σ = v1 · · · vn, σ
′ = v′1 · · · v

′
n.

We define a mapping βσ
′

σ : TC → TC′ :

• βεε = ∅;

• βσ
′

σ = {(vi, v
′
i) | 1 ≤ i ≤ n}.

Let (π, σ) ∈ Runs(N) and σ = v1 · · · vn, πN
v1→ . . .

vi→ πi (1 ≤ i ≤ n).

Then:

• π(0) = πN ,

π(i) = πi (1 ≤ i ≤ n);

• σ(0) = ε,

σ(i) = v1 · · · vi (1 ≤ i ≤ n).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 50

Back-forth bisimulation equivalences

Definition 28 R ⊆ Runs(N)×Runs(N ′) is a ⋆-back ⋆⋆-forth bisimulation

between nets N and N ′, ⋆, ⋆⋆ ∈{interleaving, step, partial word, pomset,

process},R : N↔⋆b⋆⋆fN
′, ⋆, ⋆⋆ ∈ {i, s, pw, pom, pr}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R

• (back) (π̃, σ̃)
π̂
→ (π, σ),

(a) |TĈ | = 1, if ⋆ = i;

(b) ≺Ĉ= ∅, if ⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′)
π̂′

→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) ρĈ′ ⊑ ρĈ , if ⋆ = pw;

(b) ρĈ ≃ ρĈ′ , if ⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ ′, if ⋆ = pr;

• (forth) (π, σ)
π̂
→ (π̃, σ̃),

(a) |TĈ | = 1, if ⋆⋆ = i;

(b) ≺Ĉ= ∅, if ⋆⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′)
π̂′

→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) ρĈ′ ⊑ ρĈ , if ⋆⋆ = pw;

(b) ρĈ ≃ ρĈ′ , if ⋆⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ ′, if ⋆⋆ = pr.

3. As item 2, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-back ⋆⋆-forth bisimulation equivalent, ⋆, ⋆⋆ ∈{interleaving,

step, partial word, pomset, process}, N↔⋆b⋆⋆fN
′, if ∃R : N↔⋆b⋆⋆fN

′,

⋆, ⋆⋆ ∈ {i, s, pw, pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 51

Comparing back-forth bisimulation equivalences

Proposition 1 [Pin93,Tar97] Let ⋆ ∈ {i, s, pw, pom, pr}. For netsN and N ′

1. N↔pwb⋆fN
′ ⇔ N↔pomb⋆fN

′;

2. N↔⋆bifN
′ ⇔ N↔⋆b⋆fN

′.

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

❄❄❄❄❄

↔sbif ↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

❄❄❄❄❄

↔pwbif ↔pwbsf ↔pwbpwf ↔pwbpomf ↔pwbprf

❄❄❄❄❄

↔pombif ↔pombsf ↔pombpwf ↔pombpomf ↔pombprf

❄❄❄❄❄

↔prbif ↔prbsf ↔prbpwf ↔prbpomf ↔prbprf✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

Merging of back-forth bisimulation equivalences

↔ibif ↔ibsf ↔ibpwf ↔ibpomf ↔ibprf

❄❄❄❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

❄❄

↔pombpomf ↔pombprf

❄

↔prbprf

✛

✛

✛

✛

✛

✛

✛

✛

Interrelations of back-forth bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 52

Comparing back-forth bisimulation equivalences with basi c ones

Proposition 2 [Pin93,Tar97] Let ⋆ ∈ {i, s, pw, pom, pr} and

⋆⋆ ∈ {pom, pr}. For nets N and N ′

1. N↔ib⋆fN
′ ⇔ N↔⋆N

′;

2. N↔⋆⋆STN
′ ⇒ N↔sb⋆⋆fN

′.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

❄❄❄❄❄

≡mes ≡occ

❄

❄
✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

Interrelations of back-forth bisimulation equivalences with basic ones

Theorem 2 Let↔,↔↔ ∈ {≡,↔,≃} and ⋆, ⋆⋆ ∈ { , i, s, pw, pom, pr,

iST, pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf,

sbprf, pombprf}. For nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 53

b b

♥ ♥ ♥
a

♥t
t

❄

❅❅❘ ✡✡✢ ❙❙✇

N

↔/ prST

b b

♥ ♥ ♥ ♥♥
a a

♥t
t��✠ ❄

❅❅❘ ❄

N ′(c)

6≡mes
✓✓✴

❄

❩
❩⑦

✚
✚✚❂

✑
✑✑✰❙❙✇

✓✓✴

✟✟✟✟✙

✟✟✟✙
↔pombprf

c

a a

c

b

♥

♥ ♥
♥
♥

t t
t
t

❄

❄

❄

✚
✚✚❂

❩
❩❩⑦✛ ✲

✚
✚✚❂

✚
✚❃

c

b

♥

♥t
❄

❄

❄

♥
♥
♥

t
t
t❄

✚
✚✚❂

❩
❩❩⑦✛ ✲

♥

♥ ♥

t
❄

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

❩
❩❩⑦

❩❩⑥

PPPPPq
✏✏✏✏✏✮

❅❅❘ ��✠

↔sbprf

↔/ iST

a

♥

♥t
❄

❄

c

a

♥

♥t
❄

❄

❄

b

♥

♥t
❄

❄

c

b

♥

♥t
❄

❄

❄♥ ♥t t✲ ✲

PPPPPq
✏✏✏✏✏✮

♥t ♥t ♥t ♥t

a

b ♥

♥

✲

✲

✲

✲

c
❄

✻

❏
❏
❏
❏
❏
❏
❏❫

✡
✡

✡
✡

✡
✡
✡✢

✞

✝✲

☎

✆✛

✞

✝✲

☎

✆✛
✄ �❄☛ ✟
✂ ✁

✻✍ ✌✚ ✙N N ′

(b)

c

a

♥

♥t
❄

❄

❄

N(a)

♥t
✚

✚✚❂
❩

❩❩⑦
c

b

♥

♥t
❄

❄

❄
c

a

♥

♥t
❄

❄

❄

N ′

c

♥t
✚

✚✚❂
❩
❩❩⑦

c

b

♥

♥t
❄

❄

❄

❩
❩❩⑦

✚
✚✚❂

↔sbpwf

↔pwST

6≡pom

✓ ✏❇
❇
❇
❇
❇
❇❇◆

✂
✂
✂
✂
✂
✂✂✌❅❅❘ ��✠

BF: Examples of back-forth bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 54

• In Figure B(c), N↔sbsfN
′, but N 6≡pwN

′.

• In Figure BF(a), N↔sbpwfN
′, but N 6≡pomN

′, since only in the net N ′

action c can depend on actions a and b.

• In Figure BF(b), N↔sbprfN
′, but N↔/ iSTN ′, since only in the net N ′

action a can start so that:

1. until finishing of a the sequence of actions bc cannot occur, and

2. immediately after finishing of a action c cannot occur.

• In Figure BF(c), N↔pombprfN
′, but N↔/ prSTN

′, since only in the net

N ′ the process with action a can start so that it can be extended by process

with action b in the only way (so that extended process be unique).

• In Figure B(b), N↔pwSTN
′, but N↔/ sbsfN ′, since only in the net N ′ the

sequence of actions ab can occur so that b must depend on a.

• In Figure B1(a), N↔prN
′, but N↔/ sbsfN ′, since only in the net N ′ action

a can occur so that action b must depend on a.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 55

a

c

b

❄♥ ♥❄

❅❅❘ ��✠
c

a

♥

♥t
❄

❄

❄
c

b

♥

♥t
❄

❄

❄

♥tN
❩
❩❩⑦

✚
✚✚❂

✟✟✟✟✙
❍❍❍❍❥ ↔sbpomf

6≡pr
↔/ iST

c

a

♥

♥t
❄

❄

❄

N ′

b

♥t
❄

a

♥t
❄

c

b

♥

♥t
❄

❄

❄

a

c

b

❄♥ ♥❄

❅❅❘ ��✠

♥t
❄

♥t
❄

More clear, but weaker example of back-forth bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 56

Logic HML [HM85]

Definition 29 ⊤ denotes the truth, a ∈ Act.

A formula of HML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | 〈a〉Φ

HML is the set of all formulas of HML.

Definition 30 Let N be a net and π ∈ Π(N). The satisfaction relation

|=N ∈ Π(N)×HML:

1. π |=N ⊤— always;

2. π |=N ¬Φ, if π 6|=N Φ;

3. π |=N Φ∧Ψ, if π |=N Φ and π |=N Ψ;

4. π |=N 〈a〉Φ, if ∃π̃ ∈ Π(N) π
a
→ π̃ and π̃ |=N Φ.

[a]Φ = ¬〈a〉¬Φ. N |=N Φ, if πN |=N Φ.

Definition 31 N and N ′ are are logical equivalent in HML, N=HMLN
′, if

∀Φ ∈ HMLN |=N Φ ⇔ N ′ |=N ′ Φ.

Let for a net N π ∈ Π(N), a ∈ Act.

The set of extensions of a process π by action a (image set)is

Image(π, a) = {π̃ | π
a
→ π̃}.

A net N is a image-finite one, if ∀π ∈ Π(N) ∀a ∈ Act |Image(π, a)| <∞.

Theorem 3 For image-finite nets N and N ′

N↔iN
′ ⇔ N↔ibifN

′ ⇔ N=HMLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 57

Example on logical equivalence of HML

N

b

♥
a a

♥t
✁✁☛ ❆❆❯

❄ ❄

❄

♥
≡pr

6=HML

b

♥
a

♥t N ′

❄

❄

❄

Differentiating power of =HML

N≡prN ′, but N 6=HMLN
′, because for Φ = [a]〈b〉⊤, N |=N Φ, but

N ′ 6|=N ′ Φ since only in N ′ an action a can occur so that no b is possible

afterwards.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 58

Logic PBFL [CLP92]

Definition 32 ⊤ denotes the truth, a ∈ Act and ρ is a pomset with labeling

into Act.

A formula of PBFL:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | 〈← ρ〉Φ | 〈a〉Φ

PBFL is the set of all formulas of PBFL.

Definition 33 Let (π, σ) ∈ Runs(N) for a net N . The satisfaction relation

|=N ∈ Runs(N)×PBFL:

1. (π, σ) |=N ⊤— always;

2. (π, σ) |=N ¬Φ, if (π, σ) 6|=N Φ;

3. (π, σ) |=N Φ∧Ψ, if (π, σ) |=N Φ and (π, σ) |=N Ψ;

4. (π, σ) |=N 〈← ρ〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π̃, σ̃)
π̂
→ (π, σ), where

π̂ = (Ĉ, ϕ̂), ρĈ ∈ ρ and (π̃, σ̃) |=N Φ;

5. (π, σ) |=N 〈a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π, σ)
π̂
→ (π̃, σ̃), where

π̂ = (Ĉ, ϕ̂), LĈ(TĈ) = a and (π̃, σ̃) |=N Φ.

[a]Φ = ¬〈a〉¬Φ, [← ρ]Φ = ¬〈← ρ〉¬Φ. N |=N Φ, if (πN , ε) |=N Φ.

Definition 34 N and N ′ are logical equivalent in PBFL, N=PBFLN
′, if

∀Φ ∈ PBFLN |=N Φ ⇔ N ′ |=N ′ Φ.

Theorem 4 For image-finite nets N and N ′

N↔pomhN
′ ⇔ N↔pombpomfN

′ ⇔ N=PBFLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 59

Example on logical equivalence of PBFL

b c c

♥ ♥ ♥ ♥ ♥t t t
a

♥tN

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛

=HML

6=PBFL

b c c

♥ ♥ ♥ ♥ ♥t t t
a

♥tN ′

❄

✚
✚✚❂

PPPPPq

❏❏❫ ✁✁☛ ❙❙✇ ✓✓✴ ❏❏❫ ✁✁☛
b

❏❏❫ ✂✂✌

Differentiating power of =PBFL

N=HMLN
′, but N 6=PBFLN

′, because for Φ = [a][b]〈c〉〈← (a; b)‖c〉⊤,

N |=N Φ, but N ′ 6|=N ′ Φ since only in N ′ after action a an action b can occur

so that c must depend on a.

Here (a; b)‖c denotes the pomset where b depends on a, and a, b are

independent with c.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 60

Logic PrBFL [Tar97]

Definition 35 ⊤ denotes the truth, a ∈ Act and C is the isomorphism class of

a causal net C .

A formula of PrBFL:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | 〈← C〉Φ | 〈a〉Φ

PrBFL is the set of all formulas of PrBFL.

Definition 36 Let (π, σ) ∈ Runs(N) for a net N . The satisfaction relation

|=N ∈ Runs(N)×PrBFL:

1. (π, σ) |=N ⊤— always;

2. (π, σ) |=N ¬Φ, if (π, σ) 6|=N Φ;

3. (π, σ) |=N Φ∧Ψ, if (π, σ) |=N Φ and (π, σ) |=N Ψ;

4. (π, σ) |=N 〈← C〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π̃, σ̃)
π̂
→ (π, σ), where

π̂ = (Ĉ, ϕ̂), Ĉ ∈ C and (π̃, σ̃) |=N Φ;

5. (π, σ) |=N 〈a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π, σ)
π̂
→ (π̃, σ̃), where

π̂ = (Ĉ, ϕ̂), LĈ(TĈ) = a and (π̃, σ̃) |=N Φ.

[a]Φ = ¬〈a〉¬Φ, [← C]Φ = ¬〈← C〉¬Φ. N |=N Φ, if (πN , ε) |=N Φ.

Definition 37 N and N ′ are logical equivalent in PrBFL, N=PrBFLN
′, if

∀Φ ∈ PrBFLN |=N Φ ⇔ N ′ |=N ′ Φ.

Theorem 5 For image-finite nets N and N ′

N↔prhN
′ ⇔ N↔prbprfN

′ ⇔ N=PrBFLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 61

Example on logical equivalence of PrBFL

b b

♥ ♥ ♥
a

♥t
t

❄

❅❅❘ ✡✡✢ ❙❙✇

N

6=PrBFL

b b

♥ ♥ ♥ ♥♥
a a

♥t
t��✠ ❄

❅❅❘ ❄

N ′

✓✓✴

❄

❩
❩⑦

✚
✚✚❂

✑
✑✑✰❙❙✇

✓✓✴

✟✟✟✟✙

✟✟✟✙
=PBFL

Differentiating power of =PrBFL

N=PBFLN
′, but N 6=PrBFLN ′, because for Φ = [a]〈b〉〈← C〉⊤,

N |=N Φ, but N ′ 6|=N ′ Φ, since only in the net N ′ a process with action a can

start so that it can be extended by b in the only way (connecting pairwise output

and input places).

Here C is an isomorphism class of causal net where two output places of an

a-labeled transition are both the input places of b-labeled one.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 62

Place simulation and net reduction

Place bisimulation equivalences

Definition 38 R ⊆ INPN
fin × IN

PN′

fin is a ⋆-bisimulation between nets N and

N ′, ⋆ ∈ {interleaving, step, partial word, pomset, process},

R : N↔⋆N
′, ⋆ ∈ {i, s, pw, pom, pr}, if:

1. (MN ,MN ′) ∈ R.

2. (M,M ′) ∈ R, M
π̂
→ M̃ ,

(a) |TĈ | = 1, if ⋆ = i;

(b) ≺Ĉ= ∅, if ⋆ = s;

⇒ ∃M̃ ′ : M ′ π̂
′

→ M̃ ′, (M̃, M̃ ′) ∈ R and

(a) ρĈ′ ⊑ ρĈ , if ⋆ = pw;

(b) ρĈ ≃ ρĈ′ , if ⋆ ∈ {i, s, pom};

(c) Ĉ ≃ Ĉ ′, if ⋆ = pr.

3. As item 2, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-bisimulation equivalent, ⋆ ∈ {interleaving, step, partial word,

pomset, process}, N↔⋆N
′, if ∃R : N↔⋆N

′, ⋆ ∈ {i, s, pw, pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 63

Definition 39 Let for nets N and N ′ R ⊆ PN × PN ′ .

A lifting ofR isR ⊆ INPN
fin × IN

PN′

fin , defined as:

(M,M ′) ∈ R ⇔

∃{(p1, p

′
1), . . . , (pn, p

′
n)} ∈ IN

R
fin) :

M = {p1, . . . pn}, M
′ = {p′1, . . . p

′
n}

Definition 40 R ⊆ PN × PN ′ is a ⋆-place bisimulation between nets N and

N ′, ⋆ ∈{interleaving, step, partial word, pomset, process},R : N∼⋆N ′, if

R : N↔⋆N
′, ⋆ ∈ {i, s, pw, pom, pr}.

N and N ′ are ⋆-place bisimulation equivalent, ⋆ ∈{interleaving, step, partial

word, pomset, process}, N ∼⋆ N ′, if

∃R : N∼⋆N ′, ⋆ ∈ {i, s, pw, pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 64

Strict place bisimulations require additionally the corresponding transitions to be

related byR.

Definition 41 Let for nets N and N ′ t ∈ TN , t
′ ∈ TN ′ . Then:

(t, t′) ∈ R ⇔

(•t, •t′) ∈ R ∧

(t•, t′
•
) ∈ R ∧

LN (t) = LN ′(t′)

Definition 42 R ⊆ PN × PN ′ is a strict ⋆-place bisimulation between nets N

and N ′, ⋆ ∈{interleaving, step, partial word, pomset, process},

R : N≈⋆N
′, ⋆ ∈ {i, s, pw, pom, pr}, if:

1. R : N↔⋆N
′.

2. The new requirement is added to item 2 (and to 3) of the definition of

⋆-bisimulation:

∀v ∈ TĈ (ϕ̂(v), ϕ̂′(β(v))) ∈ R, where:

(a) β : ρĈ′ ⊑ ρĈ , if ⋆ = pw;

(b) β : ρĈ ≃ ρĈ′ , if ⋆ ∈ {i, s, pom};

(c) β : Ĉ ≃ Ĉ ′, if ⋆ = pr.

N and N ′ are strict ⋆-place bisimulation equivalent, ⋆ ∈{interleaving, step,

partial word, pomset, process}, N≈⋆N ′, if

∃R : N≈⋆N ′, ⋆ ∈ {i, s, pw, pom, pr}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 65

An important property of place bisimulations: additivity.

Let for nets N and N ′ R : N∼⋆N ′, ⋆ ∈ {i, s, pw, pom, pr}.

Then (M1,M
′
1) ∈ R and (M2,M

′
2) ∈ R implies

((M1 +M2), (M
′
1 +M ′

2)) ∈ R.

If we add n tokens in each of the places p ∈ PN and p′ ∈ PN ′ s.t.

(p, p′) ∈ R, then the resulting nets must also be place bisimulation equivalent.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 66

Comparing place bisimulation equivalences

Proposition 3 [AS92] For nets N and N ′

1. N∼iN
′ ⇔ N∼pwN

′;

2. N∼prN
′ ⇔ N≈iN

′ ⇔ N≈prN
′.

∼i ∼s ∼pw ∼pom ∼pr✛✛✛ ✛

≈i ≈s ≈pw ≈pom ≈pr✛✛✛ ✛

❄ ❄ ❄ ❄ ❄

Merging of place bisimulation equivalences

∼i ∼pom ∼pr✛✛

Interrelations of place bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 67

Comparing place bisimulation equivalences with basic and b ack-forth ones

Proposition 4 [Tar97,Tar98b] For nets N and N ′

N∼prN
′ ⇒ N↔prhN

′.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

Interrelations of place bisimulation equivalences with basic and back-forth ones

Theorem 6 Let↔,↔↔ ∈ {≡,↔,∼,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, pr,

iST, pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf,

sbprf, pombprf}. For nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 68

c

a b

♥

♥ ♥

t
✡✡✢ ❏❏❫

❄ ❄

❩❩⑦ ✚✚❂

≡occ
6∼i

a b

♥

♥ ♥

t
✡✡✢ ❏❏❫

❄ ❄

N N ′

(c)

a b

♥ ♥t t
❄ ❄

N

(a)

∼i
6≡pom
↔/ iST
↔/ sbsf

b a a

b

♥ ♥

♥

t t
✡✡✢ ❏❏❫✡✡✢ ❏❏❫

❄

❄

N ′

a b

♥ ♥t t
❄ ❄

N

(b)

∼pom

6≡pr
↔/ iST

↔/ sbsf

b a a

b

♥❄
❄

N ′ ♥ ♥t t

b

♥

♥

♥❄

❄

❄

❄ ❄
◗

◗◗s

❩
❩❩⑦ ❄

✄
✄
✄
✄
✄
✄✄✎

✑
✑✑✰

P: Examples of place bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 69

• In Figure P(a), N∼iN ′, but N 6≡pomN ′, since only in the net N ′ action b

can depend on a.

• In Figure P(b), N∼pomN
′, but N 6≡prN

′, since only in the net N ′ the

transition with label a has two input (and two output) places.

• In Figure P(c), N≡occN
′, but N 6∼iN

′, since any place bisimulation must

relate input places of the nets N and N ′. But if we add one additional token

in each of these places, then only in N ′ the action c can occur.

• In Figure P(b), N∼pomN ′, but N↔/ iSTN ′, since only in the net N ′ action

a can start so that no b can begin working until ending a.

• In Figure B1(c), N∼prN
′, but N 6≡mesN

′, since only the MES

corresponding to the net N ′ has two conflict actions a.

• In Figure P(b), N∼pomN
′, but N↔/ sbsfN

′, since only in the net N ′ action

a can occur so that b must depend on a.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 70

Net reduction based on place bisimulation equivalences

An autobisimulation is a bisimulation between a net and itself.

An equibisimulation is an autobisimulation that is an equivalence.

Proposition 5 [AS92] LetR1 andR2 be reflexive interleaving place

autobisimulations of a net N . Then (R1 ∪R2)
∗ (transitive closure of

(R1 ∪R2)) is an interleaving place autobisimulation.

Definition 43 For a net N ,Ri(N) =
⋃
{R | R : N ∼i N, R is reflexive}

is a canonical interleaving place bisimulation.

Definition 44 Let for a net N E ⊆ PN × PN be an equivalence.

For p ∈ PN , [p]E = {q | (p, q) ∈ E} is an equivalence class of p w.r.t. E .

For M ∈ INPN
fin, M/E =

∑
p∈PN

[p]E is a categorization (partitioning) of M

w.r.t. E .

N/E = (PN/E , TN ,WN/E , LN ,MN/E), where WN/E is constructed as:

1. •t =M in N ⇒ •t =M/E in N/E ;

2. t• =M in N ⇒ t• =M/E in N/E .

M
t
→ M̃ in N implies M/E

t
→ M̃/E in N/E .

Proposition 6 [AS92] IfR : N∼iN is an equivalence then

[·]R : N∼iN/E .

Definition 45 A canonical interleaving categorization of a net N is a net

N/∼i = N/Ri(N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 71

Definition 46 For a net N, R ⊆ PN × PN has a transfer property, if

∀t ∈ TN ∀p ∈
•t ∀q : (p, q) ∈ R holds:

∃u ∈ TN : LN (t) = LN (u), •t− p+ q
u
→ M̃ and (t•, M̃) ∈ R.

Theorem 7 [AS92] If for a net N, R ⊆ PN × PN is a reflexive and

symmetrical relation having transfer property thenR∗ (transitive closure ofR) is

an interleaving place bisimulation in N .

Theorem 8 [AS92] For a net N , the maximal relationR ⊆ PN × PN having

transfer property isRi(N).

An effective algorithm of computingRi(N) [AS92]:

1. The initial relation: R = PN × PN .

2. Check all pairs (p, q) ∈ R for transfer property.

(a) If the property is valid for all that pairs thenR = Ri(N).

(b) Otherwise, there exists a pair (p, q), for which transfer property is not

valid. Then we remove the pairs (p, q) and (q, p) fromR and go to item

2.

If a net is finite then a number of the pairs is finite too.

A complexity: O(|PN |
2 · |TN |

2), if ∀t ∈ TN |
•t|+ |t•| ≤ d (the constant

depends on d) [Pfi92].

An implementation: a system CAESAR on LOTOS programming language [Pfi92].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 72

The results on using ∼pom and ∼pr for net reduction

• We cannot use ∼pom for net simplification, since there is an example s.t. for

a net N : N 6∼pomN/∼pom [AS92].

• Since ∼pr = ≈i, we can modify the algorithm forRi to obtainRpr: we

shall look for bisimulation between transitions in the pairs appearing during

check of the transfer property.

A complexity of the algorithm will be the same. Thus, it is possible to reduce

net effectively modulo ∼pr.

Important results (due to interrelations of∼pr with the other equivalences).

1. Since ∼pr implies↔prh and↔prST , a reduced net has the same histories

of behavior and timed traces [GV87] as the initial one.

2. Since↔prh coincide with =PrBFL, all the properties that can be specified

in logic PrBFL are preserved in the reduced net.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 73

a

b

♥t

♥♥
❄

✓✓✴

❄

N

a

b

♥♥
❄

✓✓✴

❄
a

b

♥♥
❄

❏❏❫✓✓✴

❄

♥
a

b

♥♥
❄

❏❏❫✓✓✴

❄

♥
a

b

♥♥
❄

✓✓✴

❄

❄

❄

♥❄

♥❄
♥❄

a

b

♥♥
❄

❏❏❫✓✓✴

❄

♥❄
a

b

♥♥
❄

❏❏❫✓✓✴

❄

♥❄

❳❳❳❳❳❳❳❳③

PPPPq

PPPPq

a

♥
❄

♥❄
b
❄

tN/∼i

♣♣♣
♣♣♣ ♣♣♣
♣♣♣

♣♣♣
♣♣♣ ♣♣♣
♣♣♣

✲ ✛✓
✒✁
✔

✕✒

Reduction of the net corresponding to a PBC formula µX.(a; (X‖(b;X)))

modulo ∼i

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 74

Refinements

SM-refinements [BDKP91]

Definition 47 An SM-net is a net D = (PD, TD,WD, LD,MD) s.t.:

1. ∀t ∈ TD |•t| = |t•| = 1, each transition has exactly one input and one

output place;

2. ∃pin, pout ∈ PD s.t. pin 6= pout and •D = {pin}, D• = {pout}, net

D has a unique input and a unique output place.

3. MD = {pin}, at the beginning there is a unique token in pin.

Definition 48 Let N = (PN , TN ,WN , LN ,MN) be a net, a ∈ LN (TN)

and D = (PD, TD,WD, LD,MD) be SM-net. An SM-refinement,

ref(N, a,D), is a net N = (PN , TN ,WN , LN ,MN):

• PN = PN ∪ {(p, u) | p ∈ PD \ {pin, pout}, u ∈ L
−1
N (a)};

• TN = (TN \ L
−1
N (a)) ∪ {(t, u) | t ∈ TD, u ∈ L

−1
N (a)};

• WN (x̄, ȳ) =

WN (x̄, ȳ), x̄, ȳ ∈ PN ∪ (TN \ L
−1
N (a));

WD(x, y), x̄ = (x, u), ȳ = (y, u), u ∈ L−1
N (a);

WN (x̄, u), ȳ = (y, u), x̄ ∈ •u, u ∈ L−1
N (a), y ∈ p•in;

WN (u, ȳ), x̄ = (x, u), ȳ ∈ •u, u ∈ L−1
N (a), x ∈ •pout;

0, otherwise;

• LN (ū) =

LN (ū), ū ∈ TN \ L
−1
N (a);

LD(t), ū = (t, u), t ∈ TD, u ∈ L
−1
N (a);

• MN (p) =

MN (p), p ∈ PN ;

0, otherwise.

An equivalence is preserved by refinements, if equivalent nets remain equivalent

after applying any refinement operator to them accordingly.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 75

a a b

cd

♥

♥ ♥ ♥
❄❄

❄

❄

❄ ❄

♥
✡✡✢ ❏❏❫

❙❙✇ ✓✓✴

✝ ✆

✻

N

u1

u4

u2 u3

u5

q1

q3

q4

q2

q5

t 3

a

e f

f e

♥t

♥

♥ ♥

♥

❄

❄

✡✡✢ ❏❏❫

❄

❄

❄

❄

✁✁☛❆❆❯

D

pin

t1

p1

t3

p3

t5

pout

t2

p2

t4

b

cd

♥

♥ ♥ ♥

❄❄

❄

♥

❙❙✇

ref(N, a,D)

u4

u3

u5

q1

q3 q4

q2

q5

t 3

a

e f

f e

♥

♥ ♥

❄

✡✡✢ ❏❏❫

❄

❄

❄

❄

✁✁☛❆❆❯

(t1, u1)

(p1, u1)

(t3, u1)

(p3, u1)

(t5, u1)

(t2, u1)

(p2, u1)

(t4, u1)

✑
✑✑✰

✒✑

✻
a

e f

f e

♥

♥ ♥

❄

✡✡✢ ❏❏❫

❄

❄

❄

❄

✁✁☛❆❆❯

(t1, u2)

(p1, u2)

(t2, u2)

(p2, u2)

(t4, u2)

(t3, u2)

(p3, u2)

(t5, u2)

❄

✟✟✟✟✙

❳❳❳❳❳❳❳③

Example of SM-refinement

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 76

b c2

b c2 c1

a a c1

♥ ♥

♥♥♥

♥ ♥t t
❄ ❄
◗
◗◗s

✑
✑✑✰

✚
✚✚❂

❩
❩❩⑦
✚

✚✚❂

❄ ❄ ❄

❄ ❄

❄ ❄

b b c2 c1 c2

b c2

a a a c1 c1

♥ ♥

♥♥♥♥♥

♥ ♥ ♥ ♥t t t t

❄

❄ ❄

❄ ❄ ❄ ❄ ❄

✚
✚✚❂

❩
❩❩⑦
✚

✚✚❂❄ ❄

❄ ❄ ❄ ❄
PPPq ✏✏✏✮

❳❳❳❳❳❳❳③
✘✘✘✘✘✘✘✾

6≡i

ref(N, c,D) ref(N ′, c,D)

b b c

a a c

♥ ♥ ♥

♥ ♥t t
❄❄

◗
◗◗s

✚
✚❂

N

b b b c

♥ ♥ ♥ ♥
a a a c c

♥ ♥ ♥ ♥t t t t
❄ ❄ ❄ ❄
PPPq ✏✏✏✮

❳❳❳❳❳❳❳③
✘✘✘✘✘✘✘✾

N ′

↔s

6≡pw
↔/ iST
↔/ sbsf

c2

c1

♥

♥

♥t
❄

❄

❄

❄

D

◗
◗◗s

✑
✑✑✰

PPPPPq
✏✏✏✏✮

◗
◗◗s

✑
✑✑✰

PPPPPq
✏✏✏✏✮

♥ ♥✟✟✟✟✙
❍❍❍❍❥

❏❏❫ ✡✡✢

❙❙✇ ✓✓✴

❏❏❫

✓✓✴

❅❅❘

✟✟✟✟✙
❍❍❍❍❥

❏❏❫ ✡✡✢

❙❙✇ ✓✓✴

❏❏❫✡✡✢

♥ ♥

✧✧

◗
◗◗s

✧✧

❄

✡✡✢

❙❙✇ ❙❙✇

◗
◗◗s

RB: The equivalences between≡i and↔s are not preserved by SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 77

c

a a

c

b♠
♠ ♠
♠
♠
t t
t
t

❄

❄

❄

✚
✚❂

❩
❩⑦✛ ✲

✚
✚❂

✚✚❃

♠
♠
♠
t
t
t❄

✚
✚❂

❩
❩⑦✛ ✲

♠
♠ ♠
t

❄

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

❩
❩⑦

❩❩⑥

PPPPPq
✏✏✏✏✏✮

❅❅❘��✠

↔sbprf

↔/ iST

♠❄
c

♠❄
❄

♠❄
c

♠❄
❄♠ ♠t t✲ ✲

♠
♠

✲

✲

c
❄

✻

N N ′

c

b♠
♠t
❄

❄

❄
a2

a1♠
♠t
❄

❄

❄

D

♠❄

c

a1 a1

c

b

♠

♠ ♠
♠

♠

t t
t

t

❄

❄

❄

✚
✚❂

❩
❩⑦✛ ✲

✚
✚❂

♠
♠

♠

t
t

t

✚
✚❂

❩
❩⑦✛ ✲

♠

♠ ♠

t
❄

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

❩
❩⑦

PPPPPq
✏✏✏✏✏✮

❅❅❘��✠

≡pr
↔/ i

♠

❄

c

♠

❄

❄

♠
c

♠
❄♠ ♠t t✲ ✲

♠
♠

✲

✲

c

✻

ref(N, a,D) ref(N ′, a,D)

c

b

♠

♠t
❄

❄

a2

♠
❄

❄
a2

♠
❄

❄

a2

♠
❄

❄
a2

♠
❄

❄

✂
✂
✂
✂
✂✂✍

❄ ❇
❇
❇
❇
❇❇▼

❄

❄ ❄

♠ a2✲
✻

✲

a1

♠t
❄

a1

♠t
❄

b

♠t
❄

b

♠t
❄

PPPPPq
✏✏✏✏✏✮

♠t ♠t ♠t ♠t
a1

b✲

✲

❏
❏
❏
❏
❏
❏❫

✡
✡

✡
✡

✡
✡✢

✞

✝✲

☎

✆✛

✞

✝✲

☎

✆✛
✄ �❄☛ ✟
✂ ✁

✻✡ ✠✖ ✕✓ ✏❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂✌❅❅❘ ��✠

a

♠t
❄

a

♠t
❄

b

♠t
❄

b

♠t
❄

PPPPPq
✏✏✏✏✏✮

♠t ♠t ♠t ♠t
a

b✲

✲

❏
❏
❏
❏
❏
❏❫

✡
✡

✡
✡

✡
✡✢

✞

✝✲

☎

✆✛

✞

✝✲

☎

✆✛
✄ �❄☛ ✟
✂ ✁

✻✡ ✠✖ ✕✓ ✏❇
❇
❇
❇
❇
❇◆

✂
✂
✂
✂
✂
✂✌❅❅❘ ��✠

RBF: The equivalences between↔i and↔sbprf are not preserved by

SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 78

b b

♥ ♥ ♥
a

♥t
t

❄

❅❅❘ ✡✡✢ ❙❙✇

N

↔/ prST

b b

♥ ♥ ♥ ♥♥
a a

♥t
t��✠ ❄

❅❅❘ ❄

N ′

6≡mes
✓✓✴

❄

❩
❩⑦

✚
✚✚❂

✑
✑✑✰❙❙✇

✓✓✴

✟✟✟✟✙

✟✟✟✙
↔pombprf ♥

a1

♥t
❄

D

❄

♥
a2

❄

❄

b b

♥ ♥ ♥

a1

♥t

t
❅❅❘ ✡✡✢ ❙❙✇

ref(N, a,D)

↔/ pr

b b

♥ ♥ ♥ ♥♥

a1 a1

♥t

t��✠ ❄

❅❅❘ ❄

ref(N ′, a,D)

6≡mes

✓✓✴

❄

❩
❩⑦

✚
✚✚❂

✑
✑✑✰❙❙✇

✓✓✴

✟✟✟✟✙

✟✟✟✙

≡pr

↔pomh♥❄
a2
❄

♥❄
a2
❄

♥❄
a2
❄

❄

RBF1: The equivalences between↔pr and↔pombprf are not preserved by

SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 79

a b

♥ ♥t t
❄ ❄

N

∼pom

6≡pr
↔/ iST

↔/ sbsf

b a a

b

♥❄
❄

N ′

♥ ♥t t

b

♥

♥

♥❄

❄

❄

❄ ❄
◗
◗◗s

❩
❩❩⑦ ❄

✄
✄
✄
✄
✄
✄✄✎

✑
✑✑✰

a1

♥
❄

a2

♥

♥

❄

❄

❄

D

a1 b

♥ ♥t t
❄ ❄

a2

♥

♥

❄

❄

❄

b

a2 a2

b

♥❄
❄

♥ ♥t t

♥

❄ ❄
◗

◗◗s

❩
❩❩⑦ ❄

✑
✑✑✰

b

♥
❄

❄

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎

ref(N, a,D) ref(N ′, a,D)

≡pom
6≡pr
↔/ i

a1 a1

♥❄
❄

♥❄
❄

RP: The equivalences between↔i and ∼pom are not preserved by

SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 80

• In Figure RB, N↔sN
′, but ref(N, c,D) 6≡iref(N ′, c,D), since only in

ref(N ′, c,D) the sequence of actions c1abc2 can occur.

• In Figure RBF, N↔sbprfN
′, but ref(N, a,D)↔/ iref(N ′, a,D), since

only in the net ref(N ′, a,D) action a1 can occur so that immediately after

it:

1. the sequence of actions bc cannot occur, and

2. the sequence of actions a2c cannot occur.

• In Figure RBF1, N↔pombprfN
′, but ref(N, a,D)↔/ prref(N ′, a,D),

since only in the net ref(N ′, a,D) action a1 can occur so that after it the

sequence of actions a2b can occur which has only one corresponding

process (the transition labeled by b connects with transition with label a2 in

the only way).

• In Figure RP, N∼pomN
′, but ref(N, a,D)↔/ iref(N

′, a,D), since only

in the net ref(N ′, a,D) after action a1 action b cannot occur.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 81

Proposition 7 [BDKP91,Tar97] Let ⋆ ∈ {i, s}, ⋆⋆ ∈ {i, s, pw, pom, pr,

sbsf, sbpwf, sbpomf, sbprf, pombprf}, ⋆ ⋆ ⋆ ∈ {i, pom}. Then the

equivalences ≡⋆, ↔⋆⋆, ∼⋆⋆⋆ are not preserved by SM-refinements.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

A

B

C

D

The equivalences which are not preserved by SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 82

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠
☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

✛ ✛ ✛

Preservation of the equivalences by SM-refinements

Theorem 9 Let↔ ∈ {≡,↔,∼,≃} and ⋆ ∈ { , i, s, pw, pom, pr, iST,

pwST, pomST, prST, pomh, prh,mes, occ, sbsf, sbpwf, sbpomf, sbprf,

pombprf}. For nets N, N ′ s.t. a ∈ LN (TN) ∩ LN ′(TN ′) and SM-net D

N↔⋆N
′ ⇒ ref(N, a,D)↔⋆ref(N

′, a,D)

iff the equivalence↔⋆ is in oval in the figure above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 83

Net subclasses

The equivalences on sequential nets

Definition 49 A net N = (PN , TN ,WN , LN ,MN) is sequential, if

∀M ∈ RS(N) ¬∃t, u ∈ TN : •t+ •u ⊆M .

Proposition 8 For sequential nets N and N ′

1. N≡iN ′ ⇔ N≡pomN ′ [Eng85];

2. N↔iN
′ ⇔ N↔pomhN

′ [BDKP91];

3. N↔prN
′ ⇔ N↔pombprfN

′ [Tar97];

4. N∼iN ′ ⇔ N∼pomN ′ [Tar97].

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

Merging of the equivalences on sequential nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 84

≡i ✛ ≡pr
❄ ❄

↔i ↔pr✛

↔prST

❄

↔prh

≃≡mes ≡occ✛

❄

∼i

∼pr
❄

❄❄��✠

✛

✛

✠✛

Interrelations of the equivalences on sequential nets

Theorem 10 Let↔,↔↔ ∈ {≡,↔,∼,≃}, ⋆, ⋆⋆ ∈ { , i, pr, prST, prh,

mes, occ}. For sequential nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 85

c c

♥ ♥
b

♥♥
a

♥t
❄

✓✓✴ ❏❏❫

❄

❄

✂✂✌ ❏❏❫

t

(a) N

↔prST

↔/ prh

c c

♥♥ ♥
bb

♥
a

♥t

t

❄

��✠ ❩❩⑦

❄ ❄

❄ ❄

❏❏❫

N ′

❈
❈
❈
❈
❈
❈❈❲

♥↔pomh

6≡mes

✚
✚✚❂

❇
❇
❇
❇
❇
❇❇◆��✠

a

♥♥t t
❄

a

♥♥t t
❄

a
❄

♥❄
N N ′(b)

↔pomh

∼pom

6≡pr
6≡mes

✚
✚❂

✚
✚❂

SN: Examples of the equivalences on sequential nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 86

• In Figure B(d), N≡mesN ′, but N 6≡prN ′.

• In Figure RB(e), N≡prN ′, but N↔/ iN ′.

• In Figure BF(c), N↔prN
′, but N↔/ prSTN ′.

• In Figure SN(a), N↔prSTN
′, but N↔/ prhN

′, since only in the net N ′

there is process with actions a and b s.t. it can be extended by process with

action c in the only way (so that connection of causal net with action c and

a-containing subnet of causal net with actions a and b be unique).

• In Figure B1(c), N↔prhN
′, but N 6≡mesN ′.

• In Figure B1(d), N≡occN ′, but N 6≃N ′.

• In Figure SN(b), N∼iN ′, but N 6≡prN ′, since only in the net N ′ the

transition with label a has two input places.

• In Figure P(c), N≡occN
′, but N 6∼iN

′.

• In Figure B1(c), N∼prN
′, but N 6≡mesN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 87

The equivalences on strictly labeled nets

Definition 50 A net N = (PN , TN ,WN , LN) is strictly labeled (unlabeled) if

∀t, u ∈ TN LN (t) 6= LN (u).

Proposition 9 Let ⋆ ∈ {i, pw, pom, pr}. For strictly labeled nets N and N ′

1. N≡⋆N ′ ⇔ N↔⋆N
′ [PRS92,Tar97];

2. N≡sN ′ ⇔ N↔iSTN
′ [Tar97].

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

Merging of the equivalences on strictly labeled nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 88

a b

♥ ♥t t
❄ ❄

N

(a) ♥ ♥ ♥t t t
a b
❄ ❄✚
✚❂

❩
❩⑦

N ′

↔i

6≡s
a b

♥ ♥t t
❄ ❄

b

♥ ♥t t
a

♥t
❄

❄

❄✚✚❂

N N ′

↔pwST

6≡pom

(b)

cb

a

♥

♥♥ t

t
❄

✡✡✢ ❏❏❫

❄❄

N

(c)

↔pomST

↔/ pomh

cb

a

♥

♥♥ t

t
❄

✡✡✢ ❏❏❫

❄❄

N ′

6≡pr

a b

♥ ♥t t
❄ ❄

a b

♥ ♥t t
❄ ❄

♥2
��✠ ❩❩⑦

♥♥t t
��✠ ❅❅❘

(d)

N N ′

↔prh

6≡mes♥t
��✠

♥t
��✠

✑
✑✑✰

✂ ✁✂✁
✻✻

UL: Examples of the equivalences on strictly labeled nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 89

• In Figure UN(a), N↔iN
′, but N 6≡sN ′, since only in the net N actions a

and b can occur concurrently.

• In Figure UN(b), N↔pwhN
′, but N 6≡pomN

′, since only in the net N ′

action b can depend on a.

• In Figure B(d), N≡mesN
′, but N 6≡prN

′.

• In Figure UN(c), N↔pomSTN
′, but N↔/ pomhN

′, since only in the net N ′

a sequence of actions ab can occur so that c must depend on a.

• In Figure UN(d), N↔prhN
′, but N 6≡mesN ′, since only in the unfolding of

the net N ′ transitions with labels a and b have common input place. A MES

with conflict actions a and b corresponds to this unfolding.

• In Figure B1(d), N≡occN
′, but N 6≃N ′.

• In Figure P(c), N≡occN
′, but N 6∼iN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 90

The equivalences on T-nets

Definition 51 A net N = (PN , TN ,WN , LN) is a T-net, if

∀p ∈ PN |
•p| ≤ 1 and |p•| ≤ 1.

Proposition 10 [Tar97] For auto-concurrency free T-nets N and N ′

N≡iN
′ ⇔ N↔iSTN

′.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

Merging of the equivalences on auto-concurrency free T-nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 91

a a

♥ ♥t t
❄ ❄

a

♥
a

♥t
❄

❄

❄

N N ′

↔i

6≡s

(a)

a

a

♥

♥t
❄

❄

❄

a

a

♥

♥t
❄

❄

❄

a

a

♥

♥t
❄

❄

❄

a

a

♥

♥t
❄

❄

❄

♥❩
❩❩⑦

❩
❩❩⑦

N ′N

(b)

≡s
6≡pw
↔i

↔/ s

a a

♥ ♥t t
❄ ❄

b

♥
a

♥
❄

❄

❄

N ′N

≡pr

↔/ i

(c)

b

♥❄
❄

♥t
❩
❩⑦

♥t
◗
◗◗s

2

♥❄

(d)

N ′ ♥ ♥ ♥♥ ♥N t t tt 2

aa
❏❏❫✡✡✢❏❏❫✡✡✢ ↔prh

6≡mes

TN: Examples of the equivalences on T-nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 92

• In Figure TN(a), N↔iN
′, but N 6≡sN

′, since only in the net N ′ an action a

cannot occur concurrently with itself (it is not auto-concurrent).

• In Figure TN(b), N≡sN ′, but N 6≡pwN ′, since the net N structurally

represents a pomset s.t. even less sequential one cannot occur in N ′.

• In Figure UN(b), N↔pwSTN
′, but N 6≡pomN ′.

• In Figure B(d), N≡mesN
′, but N 6≡prN

′.

• In Figure TN(c), N≡prN
′, but N↔/ iN

′, since only in the net N ′ an action

a can occur so that no b is possible afterwards.

• In Figure TN(d), N↔prhN
′, but N 6≡mesN

′, since only in the behaviour of

N ′ there is a MES with two conflict actions a.

• In Figure B1(d), N≡occN ′, but N 6≃N ′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 93

N ♥

♥
✡ ✑

✻

♥

✠✒

✻✻
b

e

❄

❄

❅❅❘

♥

♥
✡ ✑

✻

✠✒

✻
b

e

❄

❄

♥

♥
✡ ✑

✻

✠✒

✻
b

e

❄

❄

♥

♥
✡ ✑

✻

✠✒

✻
b

e

❄

❄

♥
✠✒

✻
b

e

❄

❄

❄

♥
b

e

❄

❄

♥
❄

ttttt N ′

✠

✓

✒

✲

↔pomh

6≡mes

6≡pr

✫ ✪

��✠ ❅❅❘ ��✠ ❅❅❘ ��✠ ❅❅❘ ��✠ ❅❅❘

☛ ✟
2

The complete and reduced PNs of the abstract dining philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 94

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

≃

❄

≡mes ≡occ

❄ ❄

✛

❄ ❄

↔sbsf ↔sbpwf ↔sbpomf ↔sbprf

↔pombprf

��✠ ��✠ ��✠ ��✠

❅❅❘ ❅❅❘✛ ✛ ✛

❄ ❄

❄

❅❅❘❳❳❳❳❳❳❳②

❄ ❄ ❄ ❄ ❄

∼i ∼pom

∼pr

✛

✛

✠✛✛��✒ ��✒

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠
☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

✛ ✛ ✛

New results for the equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 95

Decidability

Decidability results for the equivalences

• ≡i

– is decidable for:

unlabeled (strictly labeled) nets [Jan94];

finite safe nets (EXPSPACE) [JM96].

– is undecidable for:

communication free (BPP) nets [CHM93];

nets with≥ 2 unbounded places [Jan94].

• ≡s

– is decidable for:

finite safe nets (EXPSPACE) [JM96].

• ≡pom

– is decidable for:

unlabeled (strictly labeled) nets [Jan94];

finite safe nets (EXPSPACE) [JM96];

communication free (BPP) nets [CHM93].

• ↔i

– is decidable for:

unlabeled (strictly labeled) nets [Jan94];

finite safe nets (DEXPTIME) [JM96];

communication free (BPP) nets [CHM93];

nets s.t. one of them is deterministic up to bisimilarity [Jan94].

– is undecidable for:

nets with≥ 2 unbounded places [Jan94].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 96

• ↔s

– is decidable for:

finite safe nets (DEXPTIME) [JM96].

• ↔pom

– is decidable for:

finite safe nets (DEXPTIME / EXPSPACE) [JM96].

• ↔iST

– is decidable for:

bounded nets [Dev92];

finite safe nets (DEXPTIME) [JM96].

• ↔pomST

– is decidable for:

finite safe nets (DEXPTIME / EXPSPACE) [JM96].

• ↔pomh

– is decidable for:

safe nets (DEXPTIME) [Vog91b].

• ∼i

– is decidable for:

arbitrary nets (polynomial, O(|PN |
2 · |TN |

2), if

∀t ∈ TN |•t|+ |t•| ≤ const) [AS92].

• ∼pr

– is decidable for:

arbitrary nets (polynomial, O(|PN |
2 · |TN |

2), if

∀t ∈ TN |•t|+ |t•| ≤ const) [AS92].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 97

Equivalences for Petri Nets with Silent Transitions

Abstract : Behavioural equivalences of concurrent systems modeled by Petri nets

with silent transitions are considered.

Known basic τ -equivalences and back-forth τ -bisimulation equivalences are

supplemented by new ones.

Their interrelations are examined for the general Petri nets as well as for their

subclasses of no silent transitions and sequential nets (no concurrent transitions).

A logical characterization of back-forth τ -equivalences in terms of logics with past

modalities is proposed.

A preservation of all the equivalences by refinements is investigated to find out

their appropriateness for top-down design.

Keywords : Petri nets with silent transitions, sequential nets, basic

τ -equivalences, back-forth τ -bisimulation equivalences, logical characterization,

refinement.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 98

Contents

• Introduction

– Previous work

– New τ -equivalences

• Basic τ -simulation

– τ -trace equivalences

– Usual τ -bisimulation equivalences

– ST-τ -bisimulation equivalences

– History preserving τ -bisimulation equivalences

– History preserving ST- τ -bisimulation equivalences

– Usual branching τ -bisimulation equivalences

– History preserving branching τ -bisimulation equivalences

– ST-branching τ -bisimulation equivalences

– History preserving ST-branching τ -bisimulation equivalences

– Conflict preserving τ -equivalences

– Comparing basic τ -equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 99

• Back-forth τ -simulation and logics

– Back-forth τ -bisimulation equivalences

– Comparing back-forth τ -bisimulation equivalences

– Comparing back-forth τ -bisimulation equivalences with basic ones

– Logic BFL

– Logic SPBFL

• Simulation with and without silent actions

– Interrelations of equivalences with τ -equivalences

• Refinements

– SM-refinements

• Net subclasses

– The τ -equivalences on nets without silent transitions

– The τ -equivalences on sequential nets

• Decidability

– Decidability results for the τ -equivalences

• Open questions

– Further research

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 100

Introduction

Previous work

Equivalences which abstract of silent actions are τ -equivalences (they are

labeled by τ). The following basic τ -equivalences are known:

• τ -trace equivalences (respect protocols of behavior):

interleaving (≡τi) [Pom86], step (≡τs) [Pom86], partial word (≡τpw) [Vog91a]

and pomset (≡τpom) [PRS92].

• Usual τ -bisimulation equivalences (respect branching structure of behavior):

interleaving (↔τ
i) [Mil80], step (↔τ

s) [Pom86], partial word (↔τ
pw) [Vog91a]

and pomset (↔τ
pom) [PRS92].

• ST-τ -bisimulation equivalences (respect the duration or maximality of events

in behavior):

interleaving (↔τ
iST) [Vog91a], partial word (↔τ

pwST) [Vog91a] and pomset

(↔τ
pomST) [Vog91a].

• History preserving τ -bisimulation equivalences (respect the “history” of

behavior):

pomset (↔τ
pomh) [Dev92].

• History preserving ST-τ -bisimulation equivalences (respect the “history” and

the duration or maximality of events in behavior):

pomset (↔τ
pomhST) [Dev92].

• Usual branching τ -bisimulation equivalences (respect branching structure of

behavior with a special care for silent actions):

interleaving (↔τ
ibr) [Gla93].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 101

• History preserving branching τ -bisimulation equivalences (respect “history”

and branching structure of behavior with a special care for silent actions):

pomset (↔τ
pomhbr) [Dev92].

• Isomorphism (coincidence up to renaming of components):

(≃).

Back-forth bisimulation equivalences: bisimulation relation do not only require

simulation in the forward direction but also also when going back in history,

backward. They connected with equivalences of logics with past modalities.

Interleaving back interleaving forth τ -bisimulation equivalence (↔τ
ibif =↔τ

ibr)

[NMV90].

Pomset back pomset forth τ -bisimulation equivalence

(↔τ
pombpomf =↔τ

pomhbr) [Pin93].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 102

New τ -equivalences

• Basic τ -equivalences:

interleaving ST-branching τ -bisimulation (↔τ
iSTbr),

pomset history preserving ST-branching τ -bisimulation (↔τ
pomhSTbr) and

multi event structure (≡τmes).

• Back-forth τ -bisimulation equivalences:

interleaving back step forth (↔τ
ibsf),

interleaving back partial word forth (↔τ
ibpwf),

interleaving back pomset forth (↔τ
ibpomf),

step back step forth (↔τ
sbsf),

step back partial word forth (↔τ
sbpwf) and

step back pomset forth (↔τ
sbpomf).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 103

Y

X

≡τi ≡τs ≡τpw ≡τpom /≡τmes

↔τ
i ↔τ

s
↔τ
pw ↔τ

pom

↔τ
iST /-/- ↔τ

pwST /-/- ↔τ
pomST /↔τ

pomh /-

✻

-/-/↔τ
ibr

-/-/↔τ
iSTbr

↔τ
pomhST /↔τ

pomhbr /-

↔τ
pomhSTbr

≃

Causality

Nondeterminism

Interleaving Step Partial

word

Pomset

Isomorphism

History preserving branching

ST-τ -bisimulation

History preserving ST-τ -bisimulation /

History preserving branching τ -bisimul. /

Branching ST-τ -bisimulation

ST-τ -bisimulation /

History preserving τ -bisimulation /

Branching τ -bisimulation

τ -bisimulation

τ -trace /

Conflict preserving

τ -equivalences

✲s s s s
s s s s
s s s s
s
s
s s

s
s s

Classification of basic τ -equivalences

Basic τ -equivalences are positioned on coordinate plane.

New relations are depicted in red colour.

Moving along X axis: a degree of causality grows.

Moving along Y axis: a degree of non-determinism grows.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 104

c d

♥ ♥ ♥
τ

♥ ♥
a b

♥ ♥
❄ ❄

❄ ❄

❩❩⑦ ��✠

��✠ ❙
❙✇❄

❄
✑

✑✑✰ ❄

C

p1 p2

q1 q2 q3

♥ ♥ ♥ ♥ ♥ ♥
a b

♥ ♥

c d

❄ ❄

❄

✁
✁
✁
✁☛

❆
❆
❆
❆❯

✁
✁
✁
✁☛ ❄

❆
❆
❆
❆❯

❄

❏
❏
❏❏❫

❩
❩
❩

❩❩⑦

✑
✑

✑
✑

✑✑✰

✟✟✟✟✟✟✟✟✙

✁
✁

✁
✁☛

vis(C)

(p1, q1)

(p1, q2)

(p1, q3)

(p2, q1)

(p2, q2)

(p2, q3)

An application of the mapping vis to a causal net

c e

♥ ♥ ♥
τ

♥ ♥
a b

♥ ♥
❄ ❄

❄ ❄

❩❩⑦ ��✠

��✠ ❙
❙✇❄

❄
✑

✑✑✰ ❄

O

p1 p2

q1 q2 q3

♥ ♥ ♥ ♥ ♥ ♥
a b

♥ ♥

c f

❄ ❄

❄

✁
✁
✁
✁☛

❆
❆
❆
❆❯

✁
✁
✁
✁☛ ❄

❆
❆
❆
❆❯

❄

❏
❏
❏❏❫

✑
✑

✑
✑

✑✑✰

✟✟✟✟✟✟✟✟✙

✁
✁

✁
✁☛

vis(O)

(p1, q1)

(p1, q2)

(p1, q3)

(p2, q1)

(p2, q2)

(p2, q3)

f
❄

d

✑
✑✑✰

d e
❄

❏
❏
❏❏❫❄

✟✟✟✟✟✟✟✙

❏
❏
❏❏❫

✚
✚

✚
✚✚❂

An application of the mapping vis to an occurrence net

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 105

τ

♥♥t t
✂✂✌❏❏❫

N ′

τ

♥♥t t
✂✂✌❏❏❫

a

♥♥t t
✂✂✌❏❏❫

N

a

♥♥t t
✂✂✌❏❏❫

a

♥❄
❄

↔τ
prh

↔/ τpr

A crash of interrelations of the process τ -bisimulation equivalences comparing

with that of the process bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 106

Basic τ -simulation

τ -trace equivalences

The empty string is ε.

Let σ = a1 · · · an ∈ Act∗τ and a ∈ Actτ . We define vis(σ):

1. vis(ε) = ε;

2. vis(σa) =

vis(σ)a, a 6= τ ;

vis(σ), a = τ.

Definition 52 A visible interleaving trace of a net N is a sequence

vis(a1 · · · an) ∈ Act∗ s.t.

πN
a1→ π1

a2→ . . .
an→ πn, πi ∈ Π(N) (1 ≤ i ≤ n).

The set of all visible interleaving traces of N is V isIntTraces(N).

N and N ′ are interleaving τ -trace equivalent, N≡τiN
′, if

V isIntTraces(N) = V isIntTraces(N ′).

Let A ∈ INActτ
fin . We denote vis(A) =

∑
{a∈A|a∈Act} a.

Let Σ = A1 · · ·An ∈ (INActτ
fin)∗ and A ∈ INActτ

fin . We define vis(Σ):

1. vis(ε) = ε;

2. vis(ΣA) =

vis(Σ)vis(A), A ∩ Act 6= ∅;

vis(Σ), otherwise.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 107

Definition 53 A visible step trace of a net N is a sequence

vis(A1 · · ·An) ∈ (INAct
fin)

∗ s.t.

πN
A1→ π1

A2→ . . .
An→ πn, πi ∈ Π(N) (1 ≤ i ≤ n).

The set of all visible step traces of N is V isStepTraces(N).

N and N ′ are step τ -trace equivalent, N≡τsN
′, if

V isStepTraces(N) = V isStepTraces(N ′).

Let ρ = (X,≺, l) is lposet s.t. l : X → Actτ . We denote:

• vis(X) = {x ∈ X | l(x) ∈ Act};

• vis(ρ) = ρ|vis(X).

Definition 54 A visible pomset trace of a net N is a pomset vis(ρ), an

isomorphism class of lposet vis(ρC) for π = (C,ϕ) ∈ Π(N).

The set of all visible pomset traces of N is V isPomsets(N).

N and N ′ are partial word τ -trace equivalent, N≡τpwN
′, if

V isPomsets(N) ⊑ V isPomsets(N ′) and

V isPomsets(N ′) ⊑ V isPomsets(N).

Definition 55 N and N ′ are pomset τ -trace equivalent, N≡τpomN
′, if

V isPomsets(N) = V isPomsets(N ′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 108

Usual τ -bisimulation equivalences

Let C = (PC , TC ,WC , LC) be causal net. We denote:

• vis(TC) = {v ∈ TC | LC(v) ∈ Act};

• vis(≺C) =≺C ∩(vis(TC)× vis(TC)).

Definition 56 R ⊆ Π(N)×Π(N ′) is a ⋆-τ -bisimulation between nets N

and N ′, ⋆ ∈{interleaving, step, partial word, pomset},

R : N↔τ
⋆N

′, ⋆ ∈ {i, s, pw, pom}, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
π̂
→ π̃,

(a) |vis(TĈ)| = 1, if ⋆ = i;

(b) vis(≺Ĉ) = ∅, if ⋆ = s;

⇒ ∃π̃′ : π′ π̂
′

→ π̃′, (π̃, π̃′) ∈ R and

(a) vis(ρĈ′) ⊑ vis(ρĈ), if ⋆ = pw;

(b) vis(ρĈ) ≃ vis(ρĈ′), if ⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-τ -bisimulation equivalent, ⋆ ∈{interleaving, step, partial word,

pomset}, N↔τ
⋆N

′, if ∃R : N↔τ
⋆N

′, ⋆ ∈ {i, s, pw, pom}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 109

ST-τ -bisimulation equivalences

Definition 57 An ST-τ -process of a net N is a pair (πE , πP):

1. πE, πP ∈ Π(N), πP
πW→ πE ;

2. ∀v, w ∈ TCE (v ≺CE w) ∨ (LCE (v) = τ) ⇒ v ∈ TCP .

• πE is a current process;

• πP is the completed part;

• πW is the still working part.

Obviously,≺CW= ∅.

ST τ −Π(N) is the set of all ST-τ -processes of a net N .

(πN , πN) is the initial ST-τ -process of a net N .

Let (πE , πP), (π̃E , π̃P) ∈ ST τ −Π(N).

We write (πE , πP)→(π̃E , π̃P), if πE → π̃E and πP → π̃P .

✲
☛ ✟ ☛ ✟

Π(N)
πP πE

πW π̃P π̃E
π̃WπNt t t t t

ST-τ -processes

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 110

Definition 58 R ⊆ ST τ − Π(N)× ST τ −Π(N ′)× B, where

B = {β | β : vis(TC)→ vis(TC′), π = (C,ϕ) ∈ Π(N),

π′ = (C ′, ϕ′) ∈ Π(N ′)} is a ⋆-ST-τ -bisimulation between nets N and N ′,

⋆ ∈{interleaving, partial word, pomset},R : N↔τ
⋆STN

′, ⋆ ∈ {i, pw, pom},

if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE, πP), (π
′
E, π

′
P), β) ∈ R ⇒ β : vis(ρCE) ≍ vis(ρC′

E
) and

β(vis(TCP)) = vis(TC′
P
).

3. ((πE, πP), (π
′
E, π

′
P), β) ∈ R, (πE, πP)→ (π̃E, π̃P) ⇒

∃β̃, (π̃′
E, π̃

′
P) : (π′

E , π
′
P)→ (π̃′

E, π̃
′
P), β̃|vis(TCE) = β,

((π̃E, π̃P), (π̃
′
E, π̃

′
P), β̃) ∈ R, and if

πP
π
→ π̃E , π

′
P

π′

→ π̃′
E , γ = β̃|vis(TC), then:

(a) γ−1 : vis(ρC′) ⊑ vis(ρC), if ⋆ = pw;

(b) γ : vis(ρC) ≃ vis(ρC′), if ⋆ = pom.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-ST-τ -bisimulation equivalent, ⋆ ∈{interleaving, partial word,

pomset}, N↔τ
⋆STN

′, if ∃R : N↔τ
⋆STN

′, ⋆ ∈ {i, pw, pom}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 111

History preserving τ -bisimulation equivalences

Definition 59 R ⊆ Π(N)×Π(N ′)× B, where

B = {β | β : vis(TC)→ vis(TC′), π = (C,ϕ) ∈ Π(N),

π′ = (C ′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving τ -bisimulation

between nets N and N ′,R : N↔τ
pomhN

′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ≃ vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒ ∃β̃, π̃′ : π′ → π̃′, β̃|vis(TC) = β,

(π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are pomset history preserving τ -bisimulation equivalent,

N↔τ
pomhN

′, if ∃R : N↔τ
pomhN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 112

History preserving ST- τ -bisimulation equivalences

Definition 60 R ⊆ ST τ − Π(N)× ST τ −Π(N ′)× B, where

B = {β | β : vis(TC)→ vis(TC′), π = (C,ϕ) ∈ Π(N),

π′ = (C ′, ϕ′) ∈ Π(N ′)}, is a pomset history preserving ST-τ -bisimulation

between nets N and N ′,R : N↔τ
pomhSTN

′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE, πP), (π
′
E, π

′
P), β) ∈ R ⇒ β : vis(ρCE) ≃ vis(ρC′

E
) and

β(vis(TCP)) = vis(TC′
P
).

3. ((πE, πP), (π
′
E, π

′
P), β) ∈ R, (πE, πP)→ (π̃E, π̃P) ⇒

∃β̃, (π̃′
E, π̃

′
P) : (π′

E , π
′
P)→ (π̃′

E, π̃
′
P), β̃|vis(TCE) = β,

((π̃E, π̃P), (π̃
′
E, π̃

′
P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are pomset history preserving ST-τ -bisimulation equivalent,

N↔τ
pomhSTN

′, if ∃R : N↔τ
pomhSTN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 113

✲

☛ ✟ ☛ ✟
✲

Π(N)

Π(N ′)

π π̃

π′
π′
1 π′

2
π̃′

πN

πN ′

�
�

�
�

��❅
❅

❅
❅

❅❅

✄ �a

✄ �

✄ � ✄ �

a(b)

✲

✲

Π(N)

Π(N ′)

π π̃

π′ π̃′

πN

πN ′

✄ �τ(a)

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✄ �✄ �
❄

❄

❄

❄❄❄

t t t

t t t t t

t t t

t t t

A distinguish ability of the usual and the branching τ -bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 114

Usual branching τ -bisimulation equivalences

For a net N and π, π̃ ∈ Π(N) we write π⇒π̃ when ∃π̂ = (Ĉ, ϕ̂) s.t. π
π̂
→ π̃

and vis(TĈ) = ∅.

Definition 61 R ⊆ Π(N)×Π(N ′) is an interleaving branching

τ -bisimulation between nets N and N ′,R : N↔τ
ibrN

′, if:

1. (πN , πN ′) ∈ R.

2. (π, π′) ∈ R, π
a
→ π̃ ⇒

(a) a = τ and (π̃, π′) ∈ R or

(b) a 6= τ and ∃π̄′, π̃′ : π′ ⇒ π̄′ a
→ π̃′, (π, π̄′) ∈ R, (π̃, π̃′) ∈ R.

3. As item 2, but the roles of N and N ′ are reversed.

N and N ′ are interleaving branching τ -bisimulation equivalent, N↔τ
ibrN

′, if

∃R : N↔τ
ibrN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 115

History preserving branching τ -bisimulation equivalences

Definition 62 R ⊆ Π(N)×Π(N ′)× B, where

B = {β | β : TC → TC′ , π = (C,ϕ) ∈ Π(N), π′ = (C ′, ϕ′) ∈ Π(N ′)},

is a pomset history preserving branching τ -bisimulation between nets N and N ′,

R : N↔τ
pomhbrN

′, if:

1. (πN , πN ′ , ∅) ∈ R.

2. (π, π′, β) ∈ R ⇒ β : vis(ρC) ≃ vis(ρC′).

3. (π, π′, β) ∈ R, π → π̃ ⇒

(a) (π̃, π′, β) ∈ R or

(b) ∃β̃, π̄′, π̃′ : π′ ⇒ π̄′ → π̃′, β̃|vis(TC) = β, (π, π̄′, β) ∈ R,

(π̃, π̃′, β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are pomset history preserving branching τ -bisimulation equivalent,

N↔τ
pomhbrN

′, if ∃R : N↔τ
pomhbrN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 116

ST-branching τ -bisimulation equivalences

Let (πE , πP), (π̃E , π̃P) ∈ ST
τ −Π(N). We write (πE, πP)⇒(π̃E, π̃P), if

πE ⇒ π̃E and πP ⇒ π̃P .

Definition 63 R ⊆ ST τ − Π(N)× ST τ −Π(N ′)× B, where

B = {β | β : vis(TC)→ vis(TC′), π = (C,ϕ) ∈ Π(N),

π′ = (C ′, ϕ′) ∈ Π(N ′)} is an interleaving ST-branching τ -bisimulation

between nets N and N ′,R : N↔τ
iSTbrN

′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE, πP), (π
′
E, π

′
P), β) ∈ R ⇒ β : vis(ρCE) ≍ vis(ρC′

E
) and

β(vis(TCP)) = vis(TC′
P
).

3. ((πE, πP), (π
′
E, π

′
P), β) ∈ R, (πE, πP)→ (π̃E, π̃P) ⇒

(a) ((π̃E , π̃P), (π
′
E, π

′
P), β) ∈ R or

(b) ∃β̃, (π̄′
E , π̄

′
P), (π̃

′
E , π̃

′
P) : (π′

E, π
′
P)⇒ (π̄′

E, π̄
′
P)→ (π̃′

E , π̃
′
P),

β̃|vis(TCE) = β, ((πE, πP), (π̄
′
E, π̄

′
P), β) ∈ R,

((π̃E , π̃P), (π̃
′
E, π̃

′
P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are interleaving ST-branching τ -bisimulation equivalent,

N↔τ
iSTbrN

′, if ∃R : N↔τ
iSTbrN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 117

History preserving ST-branching τ -bisimulation equivalences

Definition 64 R ⊆ ST τ − Π(N)× ST τ −Π(N ′)× B, where

B = {β | β : vis(TC)→ vis(TC′), π = (C,ϕ) ∈ Π(N),

π′ = (C ′, ϕ′) ∈ Π(N ′)} is a pomset history preserving ST-branching

τ -bisimulation between nets N and N ′,R : N↔τ
pomhSTbrN

′, if:

1. ((πN , πN), (πN ′ , πN ′), ∅) ∈ R.

2. ((πE, πP), (π
′
E, π

′
P), β) ∈ R ⇒ β : vis(ρCE) ≃ vis(ρC′

E
) and

β(vis(TCP)) = vis(TC′
P
).

3. ((πE, πP), (π
′
E, π

′
P), β) ∈ R, (πE, πP)→ (π̃E, π̃P) ⇒

(a) ((π̃E , π̃P), (π
′
E, π

′
P), β) ∈ R or

(b) ∃β̃, (π̄′
E , π̄

′
P), (π̃

′
E , π̃

′
P) : (π′

E, π
′
P)⇒ (π̄′

E, π̄
′
P)→ (π̃′

E , π̃
′
P),

β̃|vis(TCE) = β, ((πE, πP), (π̄
′
E, π̄

′
P), β) ∈ R,

((π̃E , π̃P), (π̃
′
E, π̃

′
P), β̃) ∈ R.

4. As item 3, but the roles of N and N ′ are reversed.

N and N ′ are pomset history preserving ST-branching τ -bisimulation equivalent,

N↔τ
pomhSTbrN

′, if ∃R : N↔τ
pomhSTbrN

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 118

Conflict preserving τ -equivalences

Let ξ = (X,≺,#, l) be a LES s.t. l : X → Actτ . We denote

vis(X) = {x ∈ X | l(x) ∈ Act} and vis(ξ) = ξ|vis(X).

Definition 65 N and N ′ are MES-τ -conflict preserving equivalent,

N≡τmesN
′, if vis(E(N)) = vis(E(N ′)).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 119

Comparing basic τ -equivalences

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

≃

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

✟✟✟✟✟✟✟✟✟✟✟✟✟✙

��✠ ��✠

��✠

��✠

��✠ ��✠

✛ ✛

❄

✟
↔τ
pomhSTbr

↔τ
iSTbr

❄

��✠

❄

❄

✬

✘✘✘✘✘✘✘✾

Interrelations of basic τ -equivalences

Theorem 11 Let↔,↔↔ ∈ {≡τ ,↔τ ,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, iST,

pwST, pomST, pomh, pomhST, ibr, pomhbr, iSTbr, pomhSTbr,mes}.

For nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 120

a b

♥♥t t
❄ ❄

(a)

N

↔τ
ibr

6≡τs

b a

♥ ♥
a b

♥t
❄

❄

❄

❄

✁✁☛ ❆❆❯

N ′

(b)

ba

♥ ♥t tN

❄ ❄↔τ
pwST

↔τ
iSTbr

↔τ
ibpwf

6≡τpom
↔/ τsbsf

a b

♥ ♥t t
❄ ❄

N ′

(c)

b d

♥ ♥
a c

♥ ♥t t
❄

❄

❄

❄

❄

❄

N

↔τ
iSTbr

↔τ
sbsf

6≡τpw

b b d d

♥ ♥ ♥ ♥
a c

♥ ♥♥t t tN ′

❄

❄

❄

❄

❄

❄

❩
❩⑦

✚
✚✚❂

❄ ❄✚✚❂✚
✚❂

❩
❩⑦

❩
❩⑦

♥
b

❄

❄

✁
✁

✁
✁
✁

✁✁☛

❆
❆
❆
❆
❆
❆❆❯

✄
✄
✄
✄
✄
✄✄✎

BT: Examples of basic τ -equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 121

b

b

♥

♥t
a

♥t
❄

❄

❄

❄

(a) N
↔τ
pom

↔τ
ibpomf

↔/ τiST
↔/ τsbsf
6≡τmes

b

♥
a

❄

❄

N ′

b c c

♥ ♥ ♥t
a

♥t(b) N

❄

✚
✚✚❂

↔τ
pomST

↔τ
sbpomf

↔/ τpomh
6≡τmes

b c c

♥ ♥ ♥ ♥t t
a

♥tN ′

❄

b

(c)

a a

♥t
✡✡✢ ❏❏❫

N ′
↔τ
pomhST

↔τ
pomhbr

6≡τmes
a

♥N t
❄

c

a

♥

♥
❄

❄

❄

(d) N

c

b

♥

♥
❄

❄

❄

N ′

↔τ
pomhST

↔τ
pomhbr

≡τmes
6≃
t t

✂
✂
✂
✂
✂
✂✂✌

a b

♥t♥t
✡✡✢ ❏❏❫ ❏❏❫

❄

✟✟✟✟✙

❄ ❄
◗

◗◗s❄ ❄

❍❍❍❍❥

◗
◗◗s

◗
◗◗s❄❄

◗
◗◗s

❩
❩❩⑦

✡✡✢

BT1: Examples of basic τ -equivalences (continued)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 122

b τ

♥
a

♥t
❄

❄

✡✡✢ ❏❏❫

N(b)

b τ

♥
a

♥t
❄

❄

✡✡✢ ❏❏❫

a

◗
◗◗s↔τ

pomh

↔/ τiST
↔/ τibr
6≡τmes

N ′

a τ

♥t
✡✡✢ ❏❏❫

N ′

≡τmes
↔/ τi

a

♥t
❄

N(a)

♥
a τ b

a

♥t
❄

❄

❄

◗
◗◗s

✑
✑✑✰

N ′

↔τ
pomhST

↔/ τibr
6≡τmes♥

τ b

a

♥t
❄

❄

✡✡✢ ❏❏❫
N(c)

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈❈❲

❄

❄

❄

❄

❄

❄

❄

N(d)

↔τ
pomhbr

↔/ τiST
6≡τmes

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈❈❲

❄

❄

❄

❄

❄

❄

❄

N ′ ♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c

τ

τ

✑
✑✑✰

◗
◗◗s

✑
✑✑✰ ❅

❅
❅

❅
❅
❅
❅❘

❄

❄

❄

❄

❄

❄

❄

♥ ♥t
b

❄

❄
✑

✑✑✰
◗
◗◗s

❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

✏✏✏✏✮

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾
❄✞ ✆

BT2: Examples of basic τ -equivalences (continued 2)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 123

• In Figure BT(a), N↔τ
ibrN

′, but N 6≡τsN
′, since only in the net N ′ actions a

and b cannot occur concurrently.

• In Figure BT(c), N↔τ
iSTbrN

′, but N 6≡τpwN
′, since for the pomset

corresponding to the net N there is no even less sequential pomset in N ′.

• In Figure BT(b), N↔τ
pwSTN

′, but N 6≡τpomN
′, since only in the net N ′

action b can depend on a.

• In Figure BT2(a), N≡τmesN
′, but N↔/ τiN

′, since only in the net N ′ action

τ can occur so that in the corresponding initial state of the net N action a

cannot occur.

• In Figure BT1(a), N↔τ
pomN

′, but N↔/ τiSTN
′, since only in the net N ′

action a can start so that no action b can begin to work until finishing a.

• In Figure BT1(b), N↔τ
pomSTN

′, but N↔/ τpomhN
′, since only in the net

N ′ after action a action b can occur so that action c must depend on a.

• In Figure BT2(b), N↔τ
pomhN

′, but N↔/ τiSTN
′, since only in the net N ′

action a can start so that the action b can never occur.

• In Figure BT2(c), N↔τ
pomhSTN

′, but N↔/ τibrN
′, since in the net N ′ an

action a can occur so that it will be simulated by sequence of actions τa in

N . Then the state of the net N reached after τ must be related with the

initial state of a net N , but in such a case the occurrence of action b from the

initial state of N ′ cannot be imitated from the corresponding state of N .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 124

• In Figure BT2(d), N↔τ
pomhbrN

′, but N↔/ τiSTN
′, since in the net N ′ an

action c may start so that during work of the corresponding action c in the net

N an action a may occur in such a way that the action b never occur.

• In Figure BT1(c), N↔τ
pomhSTbrN

′, but N 6≡τmesN
′, since only the MES

corresponding to the net N ′ has two conflict actions a.

• In Figure BT1(d), N≡τmesN
′, but N 6≃N ′, since unfireable transitions of the

nets N and N ′ are labeled by different actions (a and b).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 125

↔τ
i ↔τ

pomh

↔τ
iST ↔τ

pomhST

↔τ
ibr

↔τ
pomhbr

↔τ
iSTbr

↔τ
pomhSTbr

❄ ❄

✛

✛

❄ ❄

✛

✛

��✠ ��✠

��✠ ��✠

Cube of interrelations for basic τ -bisimulation equivalences

Orthogonality of the following parameters:

ST- / history preservation / branching.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 126

Back-forth τ -simulation and logics

Back-forth τ -bisimulation equivalences

Definition 66 R ⊆ Runs(N)×Runs(N ′) is a ⋆-back ⋆⋆-forth

τ -bisimulation between nets N and N ′, ⋆, ⋆⋆ ∈{interleaving, step, partial word,

pomset},R : N↔τ
⋆b⋆⋆fN

′, ⋆, ⋆⋆ ∈ {i, s, pw, pom}, if:

1. ((πN , ε), (πN ′ , ε)) ∈ R.

2. ((π, σ), (π′, σ′)) ∈ R

• (back) (π̃, σ̃)
π̂
→ (π, σ),

(a) |vis(TĈ)| = 1, if ⋆ = i;

(b) vis(≺Ĉ) = ∅, if ⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π̃′, σ̃′)
π̂′

→ (π′, σ′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) vis(ρĈ′) ⊑ vis(ρĈ), if ⋆ = pw;

(b) vis(ρĈ) ≃ vis(ρĈ′), if ⋆ ∈ {i, s, pom};

• (forth) (π, σ)
π̂
→ (π̃, σ̃),

(a) |vis(TĈ)| = 1, if ⋆⋆ = i;

(b) vis(≺Ĉ) = ∅, if ⋆⋆ = s;

⇒ ∃(π̃′, σ̃′) : (π′, σ′)
π̂′

→ (π̃′, σ̃′), ((π̃, σ̃), (π̃′, σ̃′)) ∈ R and

(a) vis(ρĈ′) ⊑ vis(ρĈ), if ⋆⋆ = pw;

(b) vis(ρĈ) ≃ vis(ρĈ′), if ⋆⋆ ∈ {i, s, pom}.

3. As item 2, but the roles of N and N ′ are reversed.

N and N ′ are ⋆-back ⋆⋆-forth τ -bisimulation equivalent, ⋆, ⋆⋆ ∈ {interleaving,

step, partial word, pomset}, N↔τ
⋆b⋆⋆fN

′, if ∃R : N↔τ
⋆b⋆⋆fN

′,

⋆, ⋆⋆ ∈ {i, s, pw, pom}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 127

Comparing back-forth τ -bisimulation equivalences

Proposition 11 [Pin93,Tar97] Let ⋆ ∈ {i, s, pw, pom}. For nets N and N ′

1. N↔τ
pwb⋆fN

′ ⇔ N↔τ
pomb⋆fN

′;

2. N↔τ
⋆bifN

′ ⇔ N↔τ
⋆b⋆fN

′.

↔τ
ibif ↔τ

ibsf ↔τ
ibpwf ↔τ

ibpomf

❄❄❄❄

↔τ
sbif ↔τ

sbsf ↔τ
sbpwf ↔τ

sbpomf

❄❄❄❄

↔τ
pwbif ↔τ

pwbsf ↔τ
pwbpwf ↔τ

pwbpomf

❄❄❄❄

↔τ
pombif ↔τ

pombsf ↔τ
pombpwf ↔

τ
pombpomf

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

Merging of back-forth τ -bisimulation equivalences

↔τ
ibif ↔τ

ibsf ↔τ
ibpwf ↔τ

ibpomf

❄❄❄

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

❄

↔τ
pombpomf

✛

✛

✛

✛

✛

Interrelations of back-forth τ -bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 128

Comparing back-forth τ -bisimulation equivalences with basic ones

Proposition 12 For nets N and N ′

1. N↔τ
ibifN

′ ⇔ N↔τ
ibrN

′ [Gla93];

2. N↔τ
pombpomfN

′ ⇔ N↔τ
pomhbrN

′ [Pin93];

3. N↔τ
iSTbrN

′ ⇒ N↔τ
ibsfN

′ [Tar97].

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

��✠ ��✠ ��✠ ��✠

��✠

��✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈❲✁

✁
✁

✁
✁
✁✁☛

✁
✁
✁

✁
✁

✁✁☛

✁
✁

✁
✁

✁
✁✁☛

≃ ✟
✬ ↔τ

pomhSTbr

↔τ
iSTbr

❄

❄

��✠ ✂
✂
✂
✂
✂
✂✂✌

❄

Interrelations of back-forth τ -bisimulation equivalences with basic ones

Theorem 12 Let↔,↔↔ ∈ {≡τ ,↔τ ,≃} and ⋆, ⋆⋆ ∈ { , i, s, pw, pom,

iST, pwST, pomST, pomh, pomhST, ibr, iSTbr, pomhSTbr, pomhbr,

mes, ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. For nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 129

c

b

♥

♥t
❄

❄

❄
c

a

♥

♥t
❄

❄

❄

N

♥t
✚

✚✚❂
❩

❩❩⑦
c

b

♥

♥t
❄

❄

❄

c

a

♥

♥t
❄

❄

❄

N ′

c

♥t
✚

✚✚❂
❩
❩❩⑦

❩
❩❩⑦

✚
✚✚❂

↔τ
sbpwf

↔τ
pwST

6≡τpom

BFT: Example of back-forth τ -bisimulation equivalences

• In Figure BT(c), N↔τ
sbsfN

′, but N 6≡τpwN
′.

• In Figure BFT, N↔τ
sbpwfN

′, but N 6≡τpomN
′.

• In Figure BT1(a), N↔τ
ibpomfN

′, but N↔/ τsbsfN
′.

• In Figure BT(b), N↔τ
iSTbrN

′, but N↔/ τsbsfN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 130

Logic BFL [NMV90]

Definition 67 ⊤ denotes the truth, a ∈ Act.

A formula of BFL:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | 〈← a〉Φ | 〈a〉Φ

BFL is the set of all formulas of BFL.

Definition 68 Let N be a net and (π, σ) ∈ Runs(N). The satisfaction

relation |=N ∈ Runs(N)×BFL:

1. (π, σ) |=N ⊤— always;

2. (π, σ) |=N ¬Φ, if (π, σ) 6|=N Φ;

3. (π, σ) |=N Φ∧Ψ, if (π, σ) |=N Φ and (π, σ) |=N Ψ;

4. (π, σ) |=N 〈← a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π̃, σ̃)
π̂
→ (π, σ), where

π̂ = (Ĉ, ϕ̂), vis(LĈ(TĈ)) = a and (π̃, σ̃) |=N Φ;

5. (π, σ) |=N 〈a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π, σ)
π̂
→ (π̃, σ̃), where

π̂ = (Ĉ, ϕ̂), vis(LĈ(TĈ)) = a and (π̃, σ̃) |=N Φ.

[a]Φ = ¬〈a〉¬Φ, [← a]Φ = ¬〈← a〉¬Φ.

N |=N Φ, if (πN , ε) |=N Φ.

Definition 69 N and N ′ are logical equivalent in BFL, N=BFLN
′, if

∀Φ ∈ BFLN |=N Φ ⇔ N ′ |=N ′ Φ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 131

Let N be a net and π ∈ Π(N), a ∈ Act.

The set of visible extensions of a process π by action a (image set) is

V isImage(π, a) = {π̃ | π
π̂
→ π̃, π̂ = (Ĉ, ϕ̂), vis(LĈ(TĈ)) = a}.

A net N is a image-finite one, if

∀π ∈ Π(N) ∀a ∈ Act |V isImage(π, a)| <∞.

Theorem 13 For image-finite nets N and N ′

N↔τ
ibrN

′ ⇔ N↔τ
ibifN

′ ⇔ N=BFLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 132

Example on logical equivalence of BFL

♥
a τ b

a

♥t
❄

❄

❄

◗
◗◗s

✑
✑✑✰

N ′

↔τ
pomhST

6=BFL
♥
τ b

a

♥t
❄

❄

✡✡✢ ❏❏❫
N

Differentiating power of =BFL

N↔τ
pomhSTN

′, but N 6=BFLN ′, because for Φ = 〈a〉[← a]〈b〉⊤,

N 6|=N Φ, but N ′ |=N ′ Φ, since in N ′ an action a can occur so that it will be

simulated by sequence τa in N .

Then the state of the net N reached after τ must be related with the initial state

of a net N , but in such a case the occurrence of action b from the initial state of

N ′ cannot be imitated from the corresponding state of N .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 133

Logic SPBFL [Pin93]

Definition 70 ⊤ denotes the truth, ρ is a pomset with labeling into Act.

A formula of SPBFL:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | 〈← ρ〉Φ | 〈a〉Φ

SPBFL is the set of all formulas of SPBFL.

Definition 71 Let N be a net and (π, σ) ∈ Runs(N). The satisfaction

relation |=N ∈ Runs(N)× SPBFL:

1. (π, σ) |=N ⊤— always;

2. (π, σ) |=N ¬Φ, if (π, σ) 6|=N Φ;

3. (π, σ) |=N Φ∧Ψ, if (π, σ) |=N Φ and (π, σ) |=N Ψ;

4. (π, σ) |=N 〈← ρ〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π̃, σ̃)
π̂
→ (π, σ), where

π̂ = (Ĉ, ϕ̂), vis(ρĈ) ∈ ρ and (π̃, σ̃) |=N Φ;

5. (π, σ) |=N 〈a〉Φ, if ∃(π̃, σ̃) ∈ Runs(N) (π, σ)
π̂
→ (π̃, σ̃), where

π̂ = (Ĉ, ϕ̂), vis(LĈ(TĈ)) = a and (π̃, σ̃) |=N Φ.

[a]Φ = ¬〈a〉¬Φ, [← ρ]Φ = ¬〈← ρ〉¬Φ.

N |=N Φ, if (πN , ε) |=N Φ.

Definition 72 N and N ′ are logical equivalent in SPBFL, N=SPBFLN
′,

if ∀Φ ∈ SPBFLN |=N Φ ⇔ N ′ |=N ′ Φ.

Theorem 14 For image-finite nets N and N ′

N↔τ
pomhbrN

′ ⇔ N↔τ
pombpomfN

′ ⇔ N=SPBFLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 134

Example on logical equivalence of SPBFL

b c c

♥ ♥ ♥t
a

♥tN

❄

✚
✚✚❂

b c c

♥ ♥ ♥ ♥t t
a

♥tN ′

❄

b
❄

✟✟✟✟✙

❄ ❄
◗
◗◗s❄ ❄

❍❍❍❍❥

◗
◗◗s

◗
◗◗s❄❄

◗
◗◗s

❩
❩❩⑦

=BFL

6=SPBFL

Differentiating power of =SPBFL

N=BFLN
′, but N 6=SPBFLN

′, because for Φ = [a][b]〈c〉〈← (a; b)‖c〉⊤,

N |=N Φ, but N ′ 6|=N ′ Φ since only in N ′ after a action b can occur so that c

must depend on a.

Here (a; b)‖c denotes the pomset where b depends on a, and a, b are

independent with c.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 135

Simulation with and without silent actions

Interrelations of equivalences with τ -equivalences

Theorem 15 Let↔ ∈ {≡,↔}, ⋆ ∈ {i, s, pw, pom, iST, pwST, pomST,

mes, sbsf, sbpwf, sbpomf}, ⋆⋆ ∈ {s, pw, pom}. For nets N and N ′

1. N↔⋆N
′ ⇒ N↔τ

⋆N
′;

2. N↔iN
′ ⇒ N↔τ

ibrN
′;

3. N↔iSTN
′ ⇒ N↔τ

iSTbrN
′;

4. N↔pomhN
′ ⇒ N↔τ

pomhSTbrN
′;

5. N↔⋆⋆N
′ ⇒ N↔τ

ib⋆⋆fN
′.

and all the implications are strict.

b c

♥
a

♥t
❄

❄

✡✡✢ ❏❏❫

N

τ b

♥
a

♥t
❄

❄

✡✡✢ ❏❏❫

N ′

↔τ
pomhSTbr

6≡τmes
6≡i

b c

♥
✡✡✢ ❏❏❫

❄

ETE: Example of interrelations of equivalences and τ -equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 136

• In Figure ETE, N↔τ
pomhSTbrN

′, but N 6≡iN
′, since only in the net N ′ an

action a can occur in the initial state.

• In Figure BT2(a), N≡τmesN
′, but N 6≡iN ′, since only in the net N ′ an

action τ can occur in the initial state.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 137

Refinements

SM-refinements

b c2

b c2 c1

a a c1

♥ ♥

♥♥♥

♥ ♥t t
❄ ❄
◗
◗◗s

✑
✑✑✰

✚
✚✚❂

❩
❩❩⑦
✚

✚✚❂

❄ ❄ ❄

❄ ❄

❄ ❄

b b c2 c1 c2

b c2

a a a c1 c1

♥ ♥

♥♥♥♥♥

♥ ♥ ♥ ♥t t t t

❄

❄ ❄

❄ ❄ ❄ ❄ ❄

✚
✚✚❂

❩
❩❩⑦
✚

✚✚❂❄ ❄

❄ ❄ ❄ ❄
PPPq ✏✏✏✮

❳❳❳❳❳❳❳③
✘✘✘✘✘✘✘✾

6≡τi

ref(N, c,D) ref(N ′, c,D)

b b c

a a c

♥ ♥ ♥

♥ ♥t t
❄❄

◗
◗◗s

✚
✚❂

N

b b b c

♥ ♥ ♥ ♥
a a a c c

♥ ♥ ♥ ♥t t t t
❄ ❄ ❄ ❄
PPPq ✏✏✏✮

❳❳❳❳❳❳❳③
✘✘✘✘✘✘✘✾

N ′

↔τ
s

6≡τpw
↔/ τiST
↔/ τsbsf

c2

c1

♥

♥

♥t
❄

❄

❄

❄

D

◗
◗◗s

✑
✑✑✰

PPPPPq
✏✏✏✏✮

◗
◗◗s

✑
✑✑✰

PPPPPq
✏✏✏✏✮

♥ ♥✟✟✟✟✙
❍❍❍❍❥

❏❏❫ ✡✡✢

❙❙✇ ✓✓✴

❏❏❫

✓✓✴

❅❅❘

✟✟✟✟✙
❍❍❍❍❥

❏❏❫ ✡✡✢

❙❙✇ ✓✓✴

❏❏❫✡✡✢

♥ ♥

✧✧

◗
◗◗s

✧✧

❄

✡✡✢

❙❙✇ ❙❙✇

◗
◗◗s

RBT: The τ -equivalences between≡τi and↔τ
s are not preserved by

SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 138

b b

a2

a1

♥♥

♥

♥t

t

❄

❄

❄

❄

❄ ❄
✑

✑✑✰

ref(N, a,D)

b b

a2

a1

♥ ♥♥

♥

♥t

t t

❄

❄

❄

❄

❄ ❄
✑

✑✑✰
✑

✑✑✰

≡τpom

↔/ τi

a1 a2♥

❏
❏

❏
❏

❏
❏❏❪

✲ ✲ ✲

ref(N ′, a,D)

b b

a

♥♥

♥

t
❄

❄

❄ ❄
✑

✑✑✰
b b

a

♥ ♥♥

♥

t t
❄

❄

❄ ❄
✑

✑✑✰
✑

✑✑✰

tN N ′

↔τ
pom

↔τ
ibpomf

↔/ τiST
↔/ τsbsf
6≡τmes

t
❍❍❍❍❨

a✲

a2

a1

♥

♥
❄

❄

❄

tD

♥❄

RBT1: The τ -equivalences between↔τ
i and↔τ

pom are not preserved by

SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 139

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈❈❲

❄

❄ ❄

❄

❄

❄

❄

N

↔τ
pomhbr

↔/ τiST
6≡τmes

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c

τ

τ

✡✡✢ ❏❏❫

✑
✑✑✰ ❈

❈
❈
❈
❈
❈❈❲

❄

❄

❄

❄

❄

❄

❄

N ′

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c

τ

τ

✑
✑✑✰

◗
◗◗s

✑
✑✑✰ ❅

❅
❅

❅
❅

❅
❅❘

❄

❄

❄

❄

❄

❄

❄

♥ ♥t
b

❄

❄
✑

✑✑✰
◗
◗◗s

❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

✏✏✏✏✮

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾
❄✞ ✆

c1

c2

♥

♥

♥

t
❄

❄

❄

❄

D

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c1

c2

τ

✡✡✢ ❏❏❫

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

ref(N, c,D)

≡τpom
↔/ τi
6≡τmes

♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c1

c2

τ

✡✡✢ ❏❏❫

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

ref(N ′, c,D) ♥

♥ ♥

♥

♥

♥

t t

t
a

b

a c1

c2

τ

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

❄

❄

❄

❄

❄

❄

❄

♥ ♥t
b

❄

❄
✑

✑✑✰

❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

✏✏✏✏✮

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✾
❄✞ ✆

τ

♥❄
❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❲

τ

♥❄
❄

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❈❲

τ

♥❄
❄

❈
❈
❈
❈
❈
❈❈❲

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❏❫

RBT2: The τ -equivalences between↔τ
i and↔τ

pomhbr are not preserved by

SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 140

• In Figure RBT, N↔τ
sN

′, but ref(N, c,D) 6≡τi ref(N
′, c,D), since only

in ref(N ′, c,D) the sequence of actions c1abc2 can occur.

• In Figure RBT1, N↔τ
pomN

′, but ref(N, a,D)↔/ τi ref(N
′, a,D), since

only in ref(N ′, a,D) after occurrence of action a1 action b can not occur.

• In Figure RBT2, N↔τ
pomhbrN

′, but ref(N, a,D)↔/ τi ref(N
′, a,D),

since only in ref(N ′, a,D) an action c1 may occur so that after the

corresponding action c1 in the net N an action a may occur in such a way

that the action b never occur.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 141

Proposition 13 [BDKP91,Dev92,Tar97] Let ⋆ ∈ {i, s}, ⋆⋆ ∈ {i, s, pw, pom,

pomh, ibr, pomhbr, ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. Then

the τ -equivalences ≡τ⋆ , ↔
τ
⋆⋆ are not preserved by SM-refinements.

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

��✠ ��✠ ��✠ ��✠

��✠

��✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈❲

A

B
C

✁
✁

✁
✁

✁
✁✁☛

✁
✁
✁

✁
✁

✁✁☛

✁
✁

✁
✁

✁
✁✁☛

≃ ✟
✬ ↔τ

pomhSTbr

↔τ
iSTbr

❄

❄

��✠ ✂
✂
✂
✂
✂
✂✂✌

❄

The τ -equivalences which are not preserved by SM-refinements

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 142

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

��✠ ��✠ ��✠ ��✠

��✠

��✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈❲

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

✁
✁
✁

✁
✁
✁✁☛

✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁
✁

✁✁☛

≃ ✟
✬ ↔τ

pomhSTbr

↔τ
iSTbr

❄

❄

��✠ ✂
✂
✂
✂
✂
✂✂✌

❄

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

Preservation of the τ -equivalences by SM-refinements

Theorem 16 Let↔ ∈ {≡τ ,↔τ ,≃} and

⋆ ∈ { , i, s, pw, pom, iST, pwST,

pomST, pomh, pomhST, ibr, pomhbr, iSTbr, pomhSTbr,mes,

ibsf, ibpwf, ibpomf, sbsf, sbpwf, sbpomf}. For nets N, N ′ s.t.

a ∈ LN (TN) ∩ LN ′(TN ′) ∩ Act and SM-net D

N↔⋆N
′ ⇒ ref(N, a,D)↔⋆ref(N

′, a,D)

iff the equivalence↔⋆ is in oval in the figure above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 143

Net subclasses

The τ -equivalences on nets without silent transitions

Proposition 14 Let↔ ∈ {≡,↔}, ⋆ ∈ {i, s, pw, pom, iST, pwST,

pomST,mes, sbsf, sbpwf, sbpomf}, ⋆⋆ ∈ {s, pw, pom}. For nets

without silent transitions N and N ′

1. N↔⋆ N
′ ⇔ N↔τ

⋆N
′ [Gla93,Tar97];

2. N↔iN
′ ⇔ N↔τ

ibrN
′ [Gla93];

3. N↔iSTN
′ ⇔ N↔τ

iSTbrN
′ [Tar97];

4. N↔pomhN
′ ⇔ N↔τ

pomhSTbrN
′ [Tar97];

5. N↔⋆⋆N
′ ⇔ N↔τ

ib⋆⋆fN
′ [Tar97].

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

��✠ ��✠ ��✠ ��✠

��✠

��✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈❲✁

✁
✁

✁
✁
✁✁☛

✁
✁
✁

✁
✁

✁✁☛

✁
✁

✁
✁

✁
✁✁☛

≃ ✟
✬ ↔τ

pomhSTbr

↔τ
iSTbr

❄

❄

��✠ ✂
✂
✂
✂
✂
✂✂✌

❄

Merging of the τ -equivalences on nets without silent transitions

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 144

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

≡τmes

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

≃

✛ ✛ ✛

✛✛✛

✛✛

❄❄❄❄

❄

❄

❄ ❄ ❄��✠ ��✠ ��✠

❅❅❘✛ ✛

❄

Interrelations of the τ -equivalences on nets without silent transitions

Theorem 17 Let↔,↔↔ ∈ {≡,↔,≃}, ⋆, ⋆⋆ ∈ { , i, s, pw, pom, iST,

pwST, pomST, pomh, ibr,mes, sbsf, sbpwf, sbpomf}. For nets without

silent transitions N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 145

The τ -equivalences on sequential nets

Definition 73 A net N = (PN , TN ,WN , LN ,MN) is sequential, if

∀M ∈ RS(N) ¬∃t, u ∈ TN : •t+ •u ⊆M .

Proposition 15 For sequential nets N and N ′

1. N≡τiN
′ ⇔ N≡τpomN

′ [Eng85];

2. N↔τ
iN

′ ⇔ N↔τ
pomhN

′ [BDKP91];

3. N↔τ
iSTN

′ ⇔ N↔τ
pomhSTN

′ [Tar98a];

4. N↔τ
ibrN

′ ⇔ N↔τ
pomhbrN

′ [Tar98a];

5. N↔τ
iSTbrN

′ ⇔ N↔τ
pomhSTbrN

′ [Tar98a].

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

��✠ ��✠ ��✠ ��✠

��✠

��✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈❲✁

✁
✁

✁
✁
✁✁☛

✁
✁
✁

✁
✁

✁✁☛

✁
✁

✁
✁

✁
✁✁☛

≃ ✟
✬ ↔τ

pomhSTbr

↔τ
iSTbr

❄

❄

��✠ ✂
✂
✂
✂
✂
✂✂✌

❄

Merging of the τ -equivalences on sequential nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 146

≡τi ≡τmes
❄

↔τ
i ↔τ

iST
✛

↔τ
ibr

✛

❄

↔τ
iSTbr ≃✛

✛

❄ ❄

Interrelations of the τ -equivalences on sequential nets

Theorem 18 Let↔,↔↔ ∈ {≡τ ,↔τ ,≃}, ⋆, ⋆⋆ ∈ { , i, iST, ibr, iSTbr,

mes}. For sequential nets N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

• In Figure BT2(a), N≡τmesN
′, but N↔/ τiN

′.

• In Figure BT2(c), N↔τ
iN

′, but N↔/ τibrN
′.

• In Figure BT2(b), N↔τ
iN

′, but N↔/ τiSTN
′.

• In Figure BT1(c), N↔τ
iSTbrN

′, but N 6≡τmesN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 147

N ♥

♥
✡ ✑

♥

✠✒

b

e

❄

❄

❅❅❘

♥

♥
✡ ✑✠✒

b

e

❄

❄

♥

♥
✡ ✑✠✒

b

e

❄

❄

♥

♥
✡ ✑✠✒

b

e

❄

❄

♥
✠✒

b

e

❄

❄

❄

♥
b

e

❄

❄

♥
❄

ttttt N ′

✠

✓

✒

✲

↔τ
pomhSTbr

6≡τmes

✫ ✪

��✠ ❅❅❘ ��✠ ❅❅❘ ��✠ ❅❅❘ ��✠ ❅❅❘

☛ ✟
2

♥
τ
❄

❄

♥
τ
❄

❄

♥
τ
❄

♥
τ
❄

♥
τ
❄

❄ ❄ ❄

✻✻ ✻✻ ✻✻ ✻✻ ✻✻

The complete and reduced PNs with invisible transitions of the abstract dining

philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 148

≡τi ≡τs ≡τpw ≡τpom

↔τ
i ↔τ

s ↔τ
pw ↔τ

pom

↔τ
iST ↔τ

pwST ↔τ
pomST

↔τ
pomh

↔τ
pomhST

↔τ
ibr

↔τ
pomhbr

≡τmes

↔τ
ibsf ↔τ

ibpwf ↔τ
ibpomf

↔τ
sbsf ↔τ

sbpwf ↔τ
sbpomf

✛ ✛

✛ ✛ ✛

✛ ✛

❄ ❄ ❄

✛ ✛ ✛ ✛

✛✛✛

❄

❄

❄❄❄❄

❄

��✠ ��✠ ��✠ ��✠��✠ ��✠ ��✠

��✠

��✠

❄

❈
❈
❈
❈
❈
❈
❈
❈
❈❲

☛✡ ✟✠ ☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠

✟
✬

☛✡ ✟✠

☛✡ ✟✠

✁
✁

✁
✁

✁
✁✁☛

✁
✁

✁
✁
✁

✁✁☛

✁
✁
✁

✁
✁
✁✁☛

≃

↔τ
pomhSTbr

↔τ
iSTbr

❄

❄

��✠ ✂
✂
✂
✂
✂
✂✂✌

❄

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

New results for the τ -equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 149

Decidability

Decidability results for the τ -equivalences

• ≡τi

– is decidable for:

finite safe nets (EXPSPACE) [JM96].

– is undecidable for:

labeled nets [Jan95].

• ≡τs

– is decidable for:

finite safe nets (EXPSPACE) [JM96].

• ≡τpom

– is decidable for:

finite safe nets (EXPSPACE) [JM96].

• ↔τ
i

– is decidable for:

finite safe nets (DEXPTIME) [JM96].

– is undecidable for:

labeled nets [Jan95].

• ↔τ
s

– is decidable for:

finite safe nets (DEXPTIME) [JM96].

• ↔τ
pom

– is decidable for:

finite safe nets (DEXPTIME / EXPSPACE)[JM96].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 150

• ↔τ
iST

– is decidable for:

bounded nets [Dev92];

finite safe nets (DEXPTIME) [JM96].

• ↔τ
pomST

– is decidable for:

finite safe nets (DEXPTIME / EXPSPACE) [JM96].

• ↔τ
pomh

– is decidable for:

finite safe nets (DEXPTIME) [Vog91b,JM96].

• ↔τ
pomhST

– is decidable for:

finite safe nets (DEXPTIME) [Vog91b,JM96].

• ↔τ
ibr

– is decidable for:

finite safe nets (DEXPTIME) [JM96].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 151

Open questions

Further research

τ -variants of place bisimulation equivalences.

• New equivalences.

Interleaving place τ -bisimulation equivalence (∼τi).

Behavior preserving reduction of Petri nets with silent transitions

[Aut93,APS94].

• Interleaving branching place τ -bisimulation equivalence (∼τibr).

• Non-interleaving variants of place τ -bisimulations (∼τs ,∼
τ
pw and ∼τpom).

• Interrelations of the place τ -bisimulations.

Whether any two of∼τi ,∼
τ
s and ∼τpw coincide?

We have only counterexamples showing that

∼τibr and ∼τpom do not imply each other and

do not merge with any of three mentioned τ -equivalences.

• Interrelations of the place τ -bisimulations with the other τ -equivalences we

proposed.

We compared place equivalences with other ones on Petri nets without silent

transitions [Tar98b].

• Preservation of place τ -bisimulations by SM-refinements.

We can show that no place τ -bisimulation relation is preserved by

SM-refinements [Tar98b].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 152

• Interrelations of place τ -bisimulations on net subclasses.

On nets without silent transitions place τ -equivalences coincide with the

corresponding relations that do not abstract of silent actions. In particular,

∼τibr merges with∼i.

On sequential nets, all non-interleaving place relations coincide with

interleaving ones: only∼τi and ∼τibr are remained.

∼τs ∼τpw ∼τpom✛✛∼τi ✛

∼τibr

❄

Interrelations of place τ -bisimulation equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 153

Review of Stochastic Petri Nets

Abstract : Stochastic Petri nets (SPNs) are an extension of Petri nets (PNs) with

an ability of performance (quantitative) analysis.

Behavior analysis is accomplished via stochastic process built on the basis of an

SPN.

Kinds of SPNs: discrete and continuous timing, various time transition delays,

inhibitor arcs and transition priorities.

Four well-known SPN classes are described: Discrete Time SPNs (DTSPNs),

Continuous Time SPNs (CTSPNs), Generalized SPNs (GSPNs) and

Deterministic SPNs (DSPNs).

Application examples and areas are presented.

Defining of labeling and equivalences is discussed.

Keywords : Inhibitor and priority Petri nets, stochastic Petri nets, probability

distributions, Markov processes and chains, transient and stationary behaviour,

labeling, equivalences.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 154

Contents

• Introduction

– Previous work

• Basic definitions

– Petri nets with inhibitor arcs and priorities

– Foundations of probability theory

– Stochastic processes

– Discrete time Markov chains

– Semi-Markov chains

– Continuous time Markov chains

– General analysis of Markov chains

– Solution methods for Markov chains

• Discrete time stochastic Petri nets

– Formal model of DTSPNs

– Analysis methods for DTSPNs

– Example of DTSPNs

– Summary for DTSPNs

• Continuous time stochastic Petri nets

– Formal model of CTSPNs

– Analysis methods for CTSPNs

– Example of CTSPNs

– Summary for CTSPNs

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 155

• Generalized stochastic Petri nets

– Formal model of GSPNs

– Analysis methods for GSPNs

– Example of GSPNs

– Summary for GSPNs

• Deterministic stochastic Petri nets

– Formal model of DSPNs

– Analysis methods for DSPNs

– Example of DSPNs

– Summary for DSPNs

• Overview and discussion

– The results obtained

– Advantages and disadvantages of stochastic Petri nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 156

Introduction

Previous work

• Continuous time (subsets of IR+): interleaving semantics

– Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:

exponential transition firing delays,

Continuous time Markov chain (CTMC).

– Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:

exponential and zero transition firing delays,

Semi-Markov chain (SMC).

– Extended generalized stochastic Petri nets (EGSPNs)

[HS89,MBBCCC89]:

hyper-exponential or Erlang or phase and zero transition firing delays.

– Deterministic stochastic Petri nets (DSPNs) [MC87,MCF90]:

exponential and deterministic transition firing delays,

Semi-Markov process (SMP), if no two deterministic transitions are

enabled in any marking.

– Extended deterministic stochastic Petri nets (EDSPNs) [GL94]:

non-exponential and deterministic transition firing delays.

– Extended stochastic Petri nets (ESPNs) [DTGN85]:

arbitrary transition firing delays.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 157

• Discrete time (subsets of IN): step semantics

– Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:

geometric transition firing delays,

Discrete time Markov chain (DTMC).

– Discrete time deterministic and stochastic Petri nets (DTDSPNs) [ZFH01]:

geometric and fixed transition firing delays,

Semi-Markov chain (SMC).

– Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:

phase and fixed transition firing delays,

Semi-Markov chain (SMC).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 158

Basic definitions

Petri nets with inhibitor arcs and priorities

Definition 74 A Petri net with inhibitor arcs and priorities (IPPN) is a tuple

N = (PN , TN ,WN , LN , HN ,ℵN ,MN):

• (PN , TN ,WN , LN ,MN) is a marked net;

• HN : (PN × TN)→ IN is the inhibitor arc weight function;

• ℵN : TN → IN is the transition priority function.

a c

b τ

♥t ♥t

♥ ♥
✚✚❂

❄❄

❄❄

❄

✱✱❜
t2

2

p4

t4

t1

t3

p3

p1N

ℵ = 1

❄ ❄

❄

Petri net with inhibitor arcs and priorities (IPPN)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 159

Let N be an IPPN and t ∈ TN . The negative precondition ◦t of t is the multiset

(◦t)(p) = HN (p, t).

Let M be a marking of IPPN N . A transition t has concession in M , if •t ⊆M

and ∀p ∈ PN (◦t)(p) > M(p).

Concess(M) is the set of all transitions having concession in M .

A transition t is enabled in M , if ∀u ∈ Concess(M) ℵN (t) ≥ ℵN (u).

Ena(M) is the set of all transitions enabled in M .

Marking change and other notions related to reachability, boundness, liveness

and reversibility are defined as for marked nets.

☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠1110

1001

0021 1000

0000 0020

❄

��✠ ❩❩⑦

❄❄

RG(N)

t2

t1 t4

t3 t1

Reachability graph of the IPPN

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 160

Foundations of probability theory

Probability theory: [Gne69,Bor86]. Formal methods: [Mar90,Her00,Hav00].

V is a set of elementary events. 2V is the set of all subsets (powerset) of V .

Field of random events over V (σ-algebra of subsets of V) is a set G ⊆ 2V :

1. V ∈ G;

2. A ∈ G ⇒ A ∈ G (A is a completion of A);

3. A1, A2, . . . ∈ G ⇒ ∩∞i=1Ai,∪
∞
i=1Ai ∈ G.

Probabilistic space is a triple Σ = (V,G,P):

• V is a set of elementary events;

• G ⊆ 2V is a field of random events over V ;

• P : G→ [0; 1] is a probabilistic measure on G.

Definition 75 Let Σ = (V,G,P) be a probabilistic space. Random value (RV)

is a function ξ : V → IR, s.t. ∀x ∈ IR {v ∈ V | ξ(v) < x} ∈ G and

∀x ∈ IR P(ξ < x) is defined.

Random values: discrete or continuous.

It depends on domain area (usually, IN or IR+).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 161

Definition 76 Probability distribution function (PDSF) of a RV ξ is:

Fξ(x) = P(ξ < x).

PDSF of a continuous RV is a nonnegative nondecreasing function s.t.

limx→−∞ Fξ(x) = 0 and limx→∞ Fξ(x) = 1.

Definition 77 Probability mass function (PMF) of a discrete RV:

pξ(xi) = P(ξ = xi) (i ∈ IN).

Probability density function (PDF) of a continuous RV ξ:

fξ(x) =
d

dx
Fξ(x),

if Fξ is absolute continuous or could be differentiated on the whole its domain.

PMF of a discrete RV in vector form: pξ = (pξ(x1), pξ(x2), . . .).

PDF of a continuous RV is nonnegative and
∫∞

−∞ fξ(x)dx = 1.

For discrete RV ξ PMF is

Fξ(xn) =
n−1∑

i=0

pξ(xi).

For continuous RV ξ PDF is

Fξ(x) =

∫ x

−∞

fξ(y)dy.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 162

Definition 78 Mean value (MV) of a discrete RV ξ is

M(ξ) =
∞∑

i=0

xipξ(xi),

if the series is absolute summarizable.

Mean value (MV) of a continuous RV ξ is

M(ξ) =

∫ ∞

−∞

xfξ(x)dx,

if there exists the integral
∫∞

−∞ |x|fξ(x)dx.

Definition 79 Variance of RV ξ is

D(ξ) = M((ξ −M(ξ))2).

For discrete RV ξ its variance is

D(ξ) =

∞∑

i=0

(xi −M(ξ))2pξ(xi).

For continuous RV ξ its variance is

D(ξ) =

∫ ∞

−∞

(x−M(ξ))2fξ(x)dx.

The following holds: D(ξ) = M(ξ2)− (M(ξ))2.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 163

✲

✻

0

1

1 2 3 4

✲
✲

✲ ✲✲

✲
✲

✲

pξ

Fξ

PDSF and PMF graphics of geometric distribution with ρ = 1
2

Discrete geometric distribution:

Fξ(n) = P(ξ < n) = 1− ρn (ρ ∈ (0; 1), n ∈ IN)

pξ(i) = P(ξ = i) = ρi(1− ρ) (i ∈ IN)

M(ξ) =
∞∑

i=0

ipξ(i) =
ρ

1− ρ

D(ξ) =
∞∑

i=0

(i−M(ξ))2pξ(i) =
ρ

(1− ρ)2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 164

✲

✻

0

1

1 2 3 4

Fξ

fξ

PDSF and PDF graphics of exponential distribution with λ = 1

Continuous exponential distribution:

Fξ(x) = P(ξ < x) = 1− e−λx (λ ∈ IR, x ≥ 0)

fξ(x) =
d

dx
Fξ(x) = λe−λx (x ≥ 0)

M(ξ) =

∫ ∞

0

xfξ(x)dx =
1

λ

D(ξ) =

∫ ∞

0

(x−M(ξ))2fξ(x)dx =
1

λ2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 165

Stochastic processes

Definitions of Stochastic processes and Markov chains:

[Gne69,Bor86,Mar90,Her00].

Let (ξ1, . . . , ξn) be a vector of n RVs.

Joint PDSF is

Fξ(x) = P(ξ1 < x1, . . . , ξn < xn).

Joint PDF is

fξ(x) =
∂n

∂x1 . . . ∂xn
Fξ(x).

Definition 80 Let ∆ be a set of parameters (indices) and S be a set of states.

Stochastic process is a set of RVs {ξ(δ) | δ ∈ ∆} ⊆ S.

Usual interpretation: δ is time, ∆ is a time scale (discrete IN or continuous IR+),

S is a set of all states of RV ξ(δ).

Stochastic processes: discrete or continuous by type of set of states.

Stochastic chain is a stochastic process with discrete set of states.

Stochastic chains: discrete or continuous, depends on time scale.

Stochastic process is stationary, if its properties do not change with simultaneous

shift of all states along time scale.

Probabilistic characterization of stochastic processes: hard task.

Special classes of stochastic processes:

• Gauss: multi-factor processes of nature;

• Markov: dynamic of resource sharing systems.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 166

Definition 81 Let for sets of indices ∆, states S and numbers i ∈ IN holds

δ0, . . . , δi−1, δi ∈ ∆ (δ0 < . . . < δi−1 < δi), s0, . . . , si−1, si ∈ S.

Markov process (MP) is a stochastic process with

Markov property (post-effect absence, memoryless)

P(ξ(δi) = si | ξ(δ0) = s0, . . . , ξ(δi−1) = si−1) =

P(ξ(δi) = si | ξ(δi−1) = si−1).

Markov chain (MC) is a MP with a discrete set of states.

Discrete time MC (DTMC) is a MC with state changes on finite of countable sets.

Continuous time MC (CTMC) is a MC with state changes on intervals.

MC is (time-)homogeneous, if state change probabilities do not depend on

moments when they happen (δ ∈ IN for DTMCs or δ ∈ IR+ for CTMCs):

P(ξ(δi) = si | ξ(δj) = sj) = P(ξ(δi + δ) = si | ξ(δj + δ) = sj).

Furthermore, all MCs are considered to be homogeneous.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 167

Discrete time Markov chains

Geometric distribution is the only discrete one with memoryless property

P(ξ = i+ j | ξ > j) = P(ξ = i) (i, j ∈ IN, i ≥ 1).

Complete probabilistic description of a DTMC: PMF over set of states

S = {s1, . . . , sn} at the initial time moment and one-step (along discrete time

scale) transition probabilities ρij (1 ≤ i, j ≤ n) from si to sj .

(One-step) transition probability diagram (TPD) of a DTMC is a labeled oriented

graph with vertices corresponding to states from S, and arcs labeled by one-step

transition probabilities ρij (1 ≤ i, j ≤ n). TPD is a graphical representation of a

DTMC.

(One-step) transition probability matrix (TPM) of a DTMC is a matrix P of n× n

over [0; 1] with one-step transition probabilities

ρij = P(ξ(1) = sj | ξ(0) = si) (1 ≤ i, j ≤ n) as elements.

Matrix Pk has k-step transition probabilities as elements

ρij(k) = P(ξ(k) = sj | ξ(0) = si) (1 ≤ i, j ≤ n). P0 = I.

Chapman-Kolmogorov equation establishes a relation between k + l-step

probabilities (k, l ∈ IN) and k-step and l-step ones:

Pk+l = PkPl.

Probability to stay in si during k steps and state change at step k + 1 is

ρkii(1− ρii).

Change a state: success. Stay in a state: failure.

Sojourn time in states of a DTMC is geometrically distributed.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 168

A DTMC solution: PMF calculation at arbitrary time moment or

at equilibrium conditions.

Transient behaviour: transient states.

Let ψi(k) = P(ξ(k) = si) (1 ≤ i ≤ n) be probability to enter into si during k

steps, ψ(k) = (ψ1(k), . . . , ψn(k)) be its PMF at the moment k, its

(transient PMF), and P be TPM.

Transient PMF is a solution of equation system

ψ(k) = ψ(0)Pk.

Long time system behaviour: state probabilities could stabilize (equilibrate).

Stationary behaviour: steady states.

DTMC is ergodic, if steady state PMF exists.

Let ψi = limk→∞ ψi(k) (1 ≤ i ≤ n) be a probability for an ergodic DTMC to

be in steady state si, ψ = (ψ1, . . . , ψn) be its steady-state PMF, and P be

TPM.

Steady state PMF is a solution of equation system

ψ(P− I) = 0

ψ1T = 1
,

where I is the identity matrix of order n, 0 is a vector of n values 0, 1 is that of n

values 1.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 169

Steady state existence (ergodicity) conditions for a DTMC.

A state si (1 ≤ i ≤ n) of a DTMC non-essential, if

∃j (1 ≤ j ≤ n) ∃k ∈ IN ρij(k) > 0 and ∀l ∈ IN ρji(l) = 0.

Otherwise si is essential.

Essential states si and sj (1 ≤ i, j ≤ n) of a DTMC are communicating, if

∃k, l ∈ IN ρij(k) > 0 and ρji(l) > 0. The set of essential states is partitioned

by non-intersecting classes of communicating states S1, . . . , Sm.

If a class of communicating states Sc (1 ≤ c ≤ m) contains the only state si, it

is absorbing. In this case limk→∞ ρii(k) = 1 and

∀j 6= i (1 ≤ j ≤ n) limk→∞ ρij(k) = 0.

A DTMC is irreducible, if its state set is the only class of communicating essential

states, and reducible otherwise.

A probability for system starting from state si (1 ≤ i ≤ n) to

return to it first after k steps is

Returni(k) = P(ξ(k) = si, ξ(k − 1) 6= si, . . . , ξ(1) 6= si | ξ(0) = si).

A probability for system starting from state si (1 ≤ i ≤ n) to

return to it eventually is

Returni =

∞∑

k=1

Returni(k).

A state si (1 ≤ i ≤ n) of an irreducible DTMC is recurrent, if Returni = 1,

and non-recurrent (transient), if Returni < 1.

A state si (1 ≤ i ≤ n) of an irreducible DTMC is null, if limk→∞ ρii(k) = 0,

and non-null (positive) otherwise.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 170

A state si (1 ≤ i ≤ n) of an irreducible DTMC is periodic with period

di ∈ IN (di ≥ 2), if di is a maximal common divisor (MCD) of numbers

{k ∈ IN | Returni(k) > 0}. A state si is aperiodic otherwise.

For an irreducible DTMC there exists 23 = 8 types of states.

The following theorem: only 6 types exists.

Theorem 19 [Bor86] In an irreducible DTMC non-recurrent state is null.

State classification by two parameters.

1. Asymptotic properties: non-recurrent, recurrent null, non-null.

2. Arithmetic properties: periodic, aperiodic.

Theorem 20 (Solidarity) [Bor86] In an irreducible DTMC all states are of the

same type: recurrent or null or periodic with period d ∈ IN (d ≥ 2).

An irreducible DTMS is periodic, if all its states are periodic with period

d ∈ IN (d ≥ 2), and aperiodic otherwise.

Theorem 21 (Ergodicity) [Bor86] There is a state si of an irreducible and

aperiodic DTMC s.t.
∑∞
k=1 kReturni(k) <∞ iff

∀i, j (1 ≤ i, j ≤ n) there is an independent from ψ(0) and a unique

steady-state PMF ψ = (ψ1, . . . , ψn):

lim
k→∞

ρij(k) = lim
k→∞

ψj(k) = ψj > 0.

A DTMC is ergodic, if it has steady-state PMF.

A finite DTMC is ergodic iff it is irreducible and aperiodic.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 171

TPM of DTMC in Figure MC(a):

P =

 1− ρ ρ

χ 1− χ

 .

❥ ❥☛ ✟✡ ✠❄✻
s1

ρ

χ

s2

(a) ❥ ❥☛ ✟✡ ✠❄✻
s1

ρ

χ

s2

(b) ❥ ❥☛ ✟✡ ✠❄✻
s1

λ

µ

s2

(c)

F1 F2
�✁✄✂ �✁✄✂

1− ρ 1− χ1− ρ 1− χ

✲ ✲✛ ✛

MC: DTMC, SMC and CTMC

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 172

Semi-Markov chains

Semi-Markov chains (SMCs) are an extension of DTMCs: positive sojourn time

with PDSF Fi(δ) and PDF fi(δ) are associated with each state si.

Complete probabilistic description of a SMC: PMF over set of states

S = {s1, . . . , sn} at the initial time moment, one-step (along discrete time

scale) transition probabilities ρij (1 ≤ i, j ≤ n) from si to sj and vector of

PDSFs for sojourn time in states F (δ) = (F1(δ), . . . , Fn(δ)).

(One-step) transition probability diagram (TPD) of an SMC is a labeled oriented

graph with vertices corresponding to states from S, with the information on

PDSFs for sojourn time in the states, and arcs labeled by one-step transition

probabilities pij (1 ≤ i, j ≤ n). TPD is a graphical representation of an SMC.

Interpretation of SMCs.

State change moments: as DTMC with TPM P.

Coming in a state si: the next state change is only possible after time distributed

with PDSF Fi(δ).

SMC solution: PMF calculation at arbitrary time or at equilibrium conditions.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 173

Calculation of steady-state PMF for SMC.

1. Find steady-state PMF ψ = (ψ1, . . . , ψn) for embedded DTMC (EDTMC)

with TPM P.

2. Find average sojourn time in states si (1 ≤ i ≤ n) as

SJ(si) =

∫ ∞

0

δfi(δ)dδ.

3. Find steady-state PMF ϕ = (ϕ1, . . . , ϕn) for SMC as

ϕi =
ψiSJ(si)∑n
j=1 ψjSJ(sj)

.

TPM of SMC in Figure MC(b):

P =

 1− ρ ρ

χ 1− χ

 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 174

Continuous time Markov chains

Exponential distribution is the only continuous one with memoryless property

P(ξ ≥ x+ d | ξ ≥ d) = P(ξ ≥ x) (x, d ∈ IR+).

A parameter λ is a rate of a CTMC transition.

Complete probabilistic description of a CTMC: PMF over set of states

S = {s1, . . . , sn} at the initial time moment and transition rates

qij (1 ≤ i, j ≤ n) from si to sj .

Transition rate diagram (TRD) of a CTMC is a labeled oriented graph with vertices

corresponding to states from S, and arcs labeled by transition rates

qij (1 ≤ i, j ≤ n). TRD is a graphical representation of a CTMC.

Transition rate matrix (TRM) or infinitesimal generator of a CTMC is a matrix Q of

n× n over IR+ with transition rates

ρij = P(ξ(1) = sj | ξ(0) = si) (1 ≤ i, j ≤ n) as non-main-diagonal

elements. Each main-diagonal element is a negative sum of all other elements of

the corresponding line.

A CTMC solution: PMF calculation at arbitrary time moment or at equilibrium

conditions.

Let ϕi(δ) = P(ξ(δ) = si) (1 ≤ i ≤ n) be a probability for a CTMC to be in si

at the moment δ, ϕ(δ) = (ϕ1(δ), . . . , ϕn(δ)) be its PMF at the moment δ

(transient PMF), and Q be TRM.

Transient PMF is calculated as

ϕ(δ) = ϕ(0)eQδ,

where eQδ is matrix exponential eQδ =
∑∞

k=0
(Qδ)k

k! .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 175

A CTMC is ergodic, if its steady-state PMF exists.

Let ϕi = limδ→∞ ϕi(δ) (1 ≤ i ≤ n) be probability for an ergodic CTMC to be

in steady state si, ϕ = (ϕ1, . . . , ϕn) be its steady-state (equilibrium) PMF, and

Q be TRM.

Stationary PMF is a solution of equation system

ϕQ = 0

ϕ1T = 1
,

where 0 is a row vector of n values 0, 1 is that of n values 1.

Steady state existence (ergodicity) conditions for a CTMS: as for DTMC.

TRM of CTMC in Figure MC(c):

Q =

 −λ λ

µ −µ

 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 176

General analysis of Markov chains

1. Find all states si (1 ≤ i ≤ n) from S.

2. DTMC: calculate one-step transition probabilities ρij from its state si to

sj (1 ≤ i, j ≤ n).

SMC: calculate one-step transition probabilities ρij from state of EDTMC si

to sj (1 ≤ i, j ≤ n).

CTMC: calculate transition rates qij from its state si to sj (1 ≤ i, j ≤ n).

3. DTMC: iteration system of linear equations to analyze its transient behaviour.

SMC: iteration system of linear equations to analyze transient behaviour of

EDTMC.

CTMC: matrix exponent system of linear equations to analyze its transient

behaviour.

4. DTMC: fixpoint system of linear equations to analyze its stationary behaviour

SMC: fixpoint system of linear equations to analyze stationary behaviour of

EDTMC.

CTMC: equilibrium system of linear equations to analyze its stationary

behaviour.

5. DTMC and CTMC: calculate state probabilities analytically or with numerical

methods.

SMC: calculate state probabilities of EDTMC analytically or with numerical

methods, weight them with average sojourn time in states and normalize. The

result are state probabilities of SMC.

6. Calculate standard performance indices using state probabilities

(throughout, waiting, response time, etc.).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 177

Solution methods for Markov chains [Hav01]

Let a MC has n states.

• Transient state probabilities

– Runge-Kutta methods

– Uniformization (randomization, Jensen’s method): O(λtn) (sparse matrix,

λ is the uniformization rate, t is a current time) or O(n2) (general case)

• Stationary state probabilities

– Direct

∗ Gaussian elimination: O(n3)

∗ LU decomposition: O(n3)

– Iterative

∗ The power method: O(n2)

∗ The Jakobi method: O(n2)

∗ The Gauss-Seidel method: O(n2)

∗ The successive over-relaxation (SOR): O(n2)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 178

Discrete time stochastic Petri nets

Formal model of DTSPNs

Definition 82 A discrete time SPN (DTSPN) is a tuple

N = (PN , TN ,WN ,ΩN ,MN):

• (PN , TN ,WN ,MN) ia an unlabeled PN;

• ΩN : TN → (0; 1) is the transition conditional probability function.

Concurrent transition firings at discrete time moments.

DTSPNs have step semantics.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 179

Let M be a marking of a DTSPN N = (PN , TN ,WN ,ΩN ,MN). Then

t ∈ Ena(M) fires in the next time moment with probability ΩN (t), if no other

transition is enabled in M .

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability that the set of

transitions U is ready for firing in M :

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1− ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =

∏
u∈Ena(M)(1− ΩN (u)) Ena(M) 6= ∅;

1 otherwise.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability that the set of

transitions U fires in M :

PT (U,M) =
PF (U,M)∑

{V |•V⊆M} PF (V,M)
.

If U = ∅ then M = M̃ and

PT (∅,M) =
PF (∅,M)∑

{V |•V⊆M} PF (V,M)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 180

Analysis methods for DTSPNs

For all DTSPN N = (PN , TN ,WN ,ΩN ,MN) we have

RS(N) = RS(PN , TN ,WN ,MN): reachability sets of a DTSPN and its

underlying PN coincide.

Qualitative properties of a DTSPNs: analysis of reachability graphs for

underlying PNs.

Quantitative properties of a DTSPNs: analysis of DTMCs for bounded and live

DTSPNs.

DTMC DTMC(N) corresponding to a DTSPN N :

1. Set of states S = RS(N).

2. Probability ρij (1 ≤ i, j ≤ n = |S|) of state change from Mi to Mj is

ρij =
∑

{U |Mi
U
→Mj}

PT (U,Mi);

3. the initial state s1 =MN .

(One-step) TPM P for DTMC(N) with elements ρij .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 181

Transient (k-step) PMF for DTMC DTMC(N):

ψ(k) = ψ(0)Pk,

where k ∈ IN and ψ(0) = (ψ1(0), . . . , ψn(0)) is a probability of the initial

distribution, ψi(0) (1 ≤ i ≤ n):

ψi(0) =

1 Mi =MN

0 otherwise
.

Here ψ(k) = (ψ1(k), . . . ψn(k)) is a transient PMF over k-step reachable

markings, and ψi(k) (1 ≤ i ≤ n) are transient probabilities of Mi.

Steady state PMF for DTMC DTMC(N):

ψ(P− I) = 0

ψ1T = 1
.

Here ψ = (ψ1, . . . , ψn) is a steady-state PMF over reachable markings, and

ψi (1 ≤ i ≤ n) are steady-state probabilities of Mi.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 182

Performance indices for DTSPNs.

• Average sojourn time in a marking Mi is the mean of the residence time RV ξ

with PMF pξ(k) = ρk−1
ii (1− ρii) (k ≥ 1).

SJ(Mi) = M(ξ) =
1

1− ρii
.

• Fraction of residence time in a marking Mi is ψi.

• Average recurrence time in a marking Mi is inverse to the fraction of

residence time in it:

RC(Mi) =
1

ψi
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 183

Example of DTSPNs

♥♥t t
❄ ❄

✎

✍

✏

✑✑✒

✲ ✛
N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

DTMC(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✩

✪

✛✄✂ ✲
✄✂ ✲
✄✂ ✲
✄✂ ✲

(1− ρ)2

1− ρ 1− ρ

1− χ

ρ2
ρ(1− ρ)

ρ(1− ρ)

ρ ρ

χ

♥ ♥❄ ❄
ρ ρ

χ

Ordered2

Cooked2

❙❙✇ ✡✡✢

Ordered1

Cooked1

DTSPN of restaurant and its DTMC

Restaurant with two-course dinner: DTSPN N .

First, the dinner is ordered.

When both dishes have been cooked, they are served.

Cooking processes of the dishes are independent.

Cooking time is about equal.

Places: PN = {p1, p2, p3, p4}.

Transitions: TN = {t1, t2, t3}.

Conditional probabilities: ΩN (t1) = ΩN (t2) = ρ, ΩN (t3) = χ.

Interpretation of places.

p1: first dish has been ordered (Ordered1).

p2: second dish has been ordered (Ordered2).

p3: first dish has been cooked (Cooked1).

p4: second dish has been cooked (Cooked2).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 184

Interpretation of markings.

M1 = (1, 1, 0, 0): both dishes have been ordered (Ordered).

M2 = (0, 1, 1, 0): first dish has been cooked (Cooked1).

M3 = (1, 0, 0, 1): second dish has been cooked (Cooked2).

M4 = (0, 0, 1, 1): both dishes have been cooked (Cooked).

Interpretation of transitions and their conditional probabilities.

1. When both dishes have been ordered, first dish is cooked:

t1 with probability ρ.

2. When both dishes have been ordered, second dish is cooked:

t2 with probability ρ.

3. When both dishes have been cooked, they are served:

t3 with probability χ.

One-step TPM for DTMC DTMC(N) is

P =

(1− ρ)2 ρ(1− ρ) ρ(1− ρ) ρ2

0 1− ρ 0 ρ

0 0 1− ρ ρ

χ 0 0 1− χ

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 185

Steady-state PMF for DTMC DTMC(N) is a solution of equation system

ρ(2− ρ)ψ1 = χψ4

ρ(1− ρ)ψ1 = ρψ2

ρ(1− ρ)ψ1 = ρψ3

ρ2ψ1 + ρψ2 + ρψ3 = χψ4

ψ1 + ψ2 + ψ3 + ψ4 = 1

The result is

ψ =
1

χ(3− 2ρ) + ρ(2− ρ)
(χ, χ(1− ρ), χ(1− ρ), ρ(2− ρ)).

The case ρ = χ = 1
2 :

ψ =
1

7
(2, 1, 1, 3).

Performance indices.

• Average dinner delivery time is SJ(M4) =
1

1−PT (∅,M4)
= 1

1− 1
2

= 2.

• Dinner delivery time fraction is ψ4 = 3
7 .

• Average service time for a visitor is RC(M1) =
1
ψ1

= 7
2 = 3 1

2 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 186

Summary for DTSPNs

DTSPNs are standardly unlabeled:

acceptable to model logically different activities:

transitions t1 and t3 of DTSPN from restaurant example;

not acceptable to model logically equal activities:

transitions t1 and t2 of DTSPN from restaurant example.

Transition labeling:

LN (t1) = LN (t2) = Cook, LN (t3) = Serve.

Conditional probabilities are associated with actions:

Cook has probability ρ, and Serve has χ.

Transition concurrency in DTSPNs: step semantics for labeled DTSPNs.

Definition of DTSPN transition labeling: [BT00].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 187

Continuous time stochastic Petri nets

Formal model of CTSPNs

Definition 83 A continuous time SPN (CTSPN) is a tuple

N = (PN , TN ,WN ,ΩN ,MN):

• (PN , TN ,WN ,MN) is an unlabeled PN;

• ΩN : TN → IR+ is the transition rate function.

Each transition t ∈ TN of a CTSPN N has rate ΩN (t), a parameter of

exponential distribution.

When a transition becomes enabled, its timer is set up to the corresponding

arbitrary delay.

Then the timer is decreased with a constant rate.

When timer reaches zero, the transition fires.

Transitions that enabled in the same marking and share tokens. The transition

that will fire is chosen with conflict resolving rules.

• Preselection According to a metric (for example, priority).

• Race The one with minimal firing delay.

CTSPNs: race rule.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 188

Keeping track of the past by a transition firing: continue and restart mechanisms.

• Resampling The timers of all transitions are discarded. New values of the

timers are set for the transitions that are enabled in the new marking.

Memory of the past: no.

• Enabling memory The timers of the transitions that are disabled are restarted.

The timers of the transitions that are not disabled hold their values.

Memory of the past: enabling memory variable, associated with each

transition. The variable measures the enabling time of a transition since the

last time it became enabled.

• Age memory The timers of all transitions hold their values.

Memory of the past: age memory variable, associated with each transition.

The variable measures the cumulative enabling time of a transition since the

last time it fired.

CTSPNs: all the three concepts are equivalent.

Resampling: parallel execution, hypothesis test, theoretical viewpoint.

Enabling and age memory: practical, application viewpoint.

Further: CTSPNs with race and resampling.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 189

Sojourn time in a marking M is exponentially distributed with parameter∑
u∈Ena(M) ΩN (u).

PDSF of sojourn time in M is that of minimal firing delay of transitions from

Ena(M).

Probability to fire (first) in a marking M of t ∈ Ena(M) is

PE(t,M) =
ΩN (t)∑

u∈Ena(M) ΩN (u)
.

Average sojourn time in a marking M is

SJ(M) =
1∑

t∈Ena(M) ΩN (t)
.

Continuous time PDSF: zero probability of simultaneous transition firing.

CTSPNs have interleaving semantics, unlike DTSPNs.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 190

Analysis methods for CTSPNs

For all CTSPNs N = (PN , TN ,WN ,ΩN ,MN) we have

RS(N) = RS(PN , TN ,WN ,MN): reachability sets of a CTSPN and its

underlying PN coincide.

Qualitative properties of a CTSPNs: analysis of reachability graphs for underlying

PNs.

Quantitative properties of a CTSPNs: analysis of CTMCs for bounded CTSPNs.

CTMC CTMC(N) corresponding to a CTSPN N :

1. Set of states S = RS(N).

2. Rate rij (1 ≤ i, j ≤ n = |S|) of transition from Mi to Mj is

rij =

∑
{t|Mi

t
→Mj}

ΩN (t) i 6= j

0 i = j
.

3. the initial state s1 =MN .

TRM Q for CTMC CTMC(N) with elements

qij =

∑
{t|Mi

t
→Mj}

ΩN (t) i 6= j

−
∑
t∈Ena(Mi)

ΩN (t) i = j
.

TRM Q could be defined as

qij =

rij i 6= j

−
∑

{k|1≤k≤n, k 6=i} rik i = j
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 191

Transient PMF for CTMC CTMC(N) is calculated as

ϕ(δ) = ϕ(0)eQδ,

where ϕ(0) = (ϕ1(0), . . . , ϕn(0)) is the probability of the initial distribution

with elements ϕi(0) (1 ≤ i ≤ n):

ϕi(0) =

1 Mi =MN

0 otherwise
.

Here ϕ(δ) = (ϕ1(δ), . . . ϕn(δ)) is transient PMF over reachable markings,

and ϕi(δ) (1 ≤ i ≤ n) are transient probabilities of markings Mi.

Steady state PMF for CTMC CTMC(N) is a solution of equation system

ϕQ = 0

ϕ1T = 1
.

Here ϕ = (ϕ1, . . . , ϕn) is steady-state PMF over reachable markings, and

ϕi (1 ≤ i ≤ n) are steady-state probabilities of markings Mi.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 192

Performance indices for CTSPNs.

• Probability of an event defined through markings. An eventA is defined

through a condition that holds for the markings MarkA ⊆ RS(N).

The steady-state probability ofA is

P(A) =
∑

{i|Mi∈MarkA}

ϕi.

• Probability to have k tokens in a place p ∈ PN is

Tokens(p, k) =
∑

{i|Mi(p)=k}

ϕi.

• Average number of tokens in a place p ∈ PN is

Tokens(p) =
∑

{i|p∈Mi}

Mi(p)ϕi =
∑

k≥1

Tokens(p, k)k.

• Firing frequency (average number of firings per unit of time) of a transition

t ∈ TN is

Freq(t) =
∑

{i|t∈Ena(Mi)}

ΩN (t)ϕi.

• TravNum is the average token number in traversing a subnet of the

CTSPN. Rate is the average input (output) token rate into (out) the subnet.

Average delay of a token in traversing the subnet in steady state is

Delay =
TravNum

Rate
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 193

Example of CTSPNs

♥

♥
♥

t
✻

✻

✛

✲

N
Off

On

α βFailed1

µ

λ

CTMC(N)

α β

µ

λ

☛

✡

✟

✠

✏

✑

✛

✲

✛1000

0100

0001
✡✡✢

❆❆❯

❏❏❪♥
✻

✻
Failed2

µ

λ

✲

✛

0010

µ

λ

✓

✒

✲

✁✁✕

☛✡ ✟✠ ☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠✻ ✻

CTSPN of garland and its CTMC

Garland with two lamps: CTSPN N .

The lamps are sequentially connected and about equal.

One can turn the garland on and off.

When the garland is turned on, one lamp can fail (but not both).

The failed lamp is replaced immediately.

Places: PN = {p1, p2, p3, p4}.

Transitions: TN = {t1, t2, t3, t4, t5, t6}.

Rates: ΩN (t1) = α, ΩN (t2) = β, ΩN (t3) = ΩN (t5) = λ, ΩN (t4) =

ΩN (t6) = µ.

Interpretation of places.

p1: the garland is off (Off).

p2: the garland is on (On).

p3: first lamp failed (Failed1).

p4: second lamp failed (Failed2).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 194

Interpretation of markings.

M1 = (1, 0, 0, 0): the garland is off (Off).

M2 = (0, 1, 0, 0): the garland is on (On).

M3 = (0, 0, 1, 0): first lamp failed (Failed1).

M4 = (0, 0, 0, 1): second lamp failed (Failed2).

Interpretation of transitions and their rates.

1. When the garland is turned off, after time with exponential distribution

parameter α, it could be turned on:

t1 with rate α.

2. When the garland is turned on, after time with exponential distribution

parameter β, it could be turned off:

t2 with rate β.

or after time with exponential distribution parameter λ first lamp is failed:

t3 with rate λ,

or second lamp is failed:

t5 with rate λ.

3. When the garland is failed, after time with exponential distribution parameter

µ, first lamp is replaced:

t4 with rate µ.

or second lamp is replaced:

t6 with rate µ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 195

TRM for CTMC CTMC(N) is

Q =

−α α 0 0

β −(β + 2λ) λ λ

µ 0 −µ 0

µ 0 0 −µ

Steady state PMF for CTMC CTMC(N) is a solution of equation system

αϕ1 = βϕ2 + µϕ3 + µϕ4

(β + 2λ)ϕ2 = αϕ1

µϕ3 = λϕ2

µϕ4 = λϕ2

ϕ1 + ϕ2 + ϕ3 + ϕ4 = 1

The result is:

ϕ =
1

µ(β + 2λ) + α(µ+ 2λ)
(µ(β + 2λ), αµ, αλ, αλ).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 196

Performance indices.

• Fraction of time when the garland is on is ϕ2.

• Fraction of time when the garland is failed is ϕ3 + ϕ4 = 2ϕ3 = 2ϕ4.

• Average rate if firing one of t3 or t5 is

Freq(t3, t5) = Freq(t3) + Freq(t5), where

Freq(t3) = λϕ2 = Freq(t5).

Average rate if firing one of t4 or t6 is

Freq(t4, t6) = Freq(t4) + Freq(t6), where

Freq(t4) = µϕ3 = µϕ4 = Freq(t6).

Average time between two consecutive failures (repairs) is
1

Freq(t3,t5)
= 1

2λϕ2
= 1

2µϕ3
= 1

2µϕ4
= 1

Freq(t4,t6)
.

• Average rate if firing of t1 is Freq(t1) = αϕ1.

Average rate if firing one of t2 or t3 or t5 is

Freq(t2, t3, t5) = Freq(t2) + Freq(t3) + Freq(t5), where

Freq(t2) = βϕ2, F req(t3) = λϕ2 = Freq(t5).

Average time between two consecutive turning on (off) is
1

Freq(t1)
= 1

αϕ1
= 1

(β+2λ)ϕ2
= 1

Freq(t2,t3,t5)
.

Steady state PMF for garland with n lamps is

ϕ =
1

µ(β + nλ) + α(µ+ nλ)
(µ(β + nλ), αµ, αλ, . . . , αλ︸ ︷︷ ︸

n

).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 197

Summary for CTSPNs

CTSPNs are standardly unlabeled:

acceptable to model logically different activities:

transitions t1 and t2 of CTSPN from garland example;

not acceptable to model logically equal activities:

transitions t3 and t5 (t4 and t6) of CTSPN from garland example.

Transition labeling:

LN (t1) = TurnOn, LN (t2) = TurnOff,

LN (t3) = LN (t5) = LampFailure,

LN (t4) = LN (t6) = LampChange.

Rates are associated with actions:

TurnOn has rate α, TurnOff has β, LampFailure has λ, and

LampChange has µ.

Transition interleaving in CTSPNs: interleaving semantics for labeled CTSPNs.

Definition of CTSPN transition labeling: [Buc95].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 198

Generalized stochastic Petri nets

Formal model of GSPNs

Definition 84 A generalized SPN (GSPN) is a tuple

N = (PN , TN ,WN , HN ,ΩN ,ℵN ,MN):

• (PN , TN ,WN , HN ,ℵN ,MN) is an unlabeled IPPN with TN consisting of

exponential and immediate transitions and ℵN having value 0 for exponential

transitions and 1 for immediate ones;

• ΩN : TN → IR+ is a function of exponential transition rates and immediate

transition weights.

Marking M is tangible, if Ena(M) contains exponential transitions only.

Marking M is vanishing, if Ena(M) contains at least one immediate transition.

RST (N) is the set of all tangible markings of a GSPN N .

RSV (N) is the set of all vanishing markings of a GSPN N .

RS(N) = RST (N) ∪RSV (N), RST (N) ∩RSV (N) = ∅.

Probability to fire (first) in a marking M of t ∈ Ena(M) is

PE(t,M) =
ΩN (t)∑

u∈Ena(M) ΩN (u)
.

In a tangible marking (t is exponential), ΩN (t) is the rate of t.

In a vanishing marking (t is immediate), ΩN (t) is the weight of t.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 199

Average sojourn time in a marking M is

SJ(M) =

1∑
t∈Ena(M) ΩN (t) M ∈ RST (N)

0 M ∈ RSV (N)
.

Transitions fire one by one, even simultaneously enabled immediate ones.

Concurrent firing of simultaneously enabled immediate transitions does not

change the behaviour.

GSPNs have interleaving semantics, like CTSPNs.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 200

Analysis methods for GSPNs

For all IPPNs N = (PN , TN ,WN , HN ,ℵN ,MN) we have

RS(N) ⊆ RS(PN , TN ,WN ,MN): reachability set of an IPPN contains in

that of PN.

Adding inhibitor arcs and transition priorities reduces reachability set of a PN.

For all GSPNs N = (PN , TN ,WN , HN ,ΩN ,ℵN ,MN) we have

RS(N) = RS(PN , TN ,WN , HN ,ℵN ,MN): reachability sets of a GSPN

and its underlying IPPN coincide.

Qualitative properties of a GSPNs: analysis of reachability graphs for underlying

IPPNs.

Quantitative properties of a GSPNs: analysis of SMCs for bounded reversible

GSPNs.

Embedded DTMC (EDTMC) EDTMC(N) corresponding to GSPN N :

1. Set of states S = RS(N).

2. Probability ρij (1 ≤ i, j ≤ n = |S|) of a transition from Mi to Mj is

ρij =
∑

{t|Mi
t
→Mj}

PE(t,Mi);

3. the initial state s1 =MN .

(One-step) TPM P for EDTMC EDTMC(N) has elements ρij .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 201

Transient (k-step) PMF for EDTMC EDTMC(N) is a solution of equation

system

ψ(k) = ψ(0)Pk,

where k ∈ IN , and ψ(0) = (ψ1(0), . . . , ψn(0)) is probability of the initial

distribution with elements ψi(0) (1 ≤ i ≤ n):

ψi(0) =

1 Mi =MN

0 otherwise
.

Here ψ(k) = (ψ1(k), . . . ψn(k)) is transient PMF over k-step reachable

markings, and ψi(k) (1 ≤ i ≤ n) transient probabilities of markings Mi.

Steady state PMF for EDTMC EDTMC(N) is a solution of equation system

ψ(P− I) = 0

ψ1T = 1
.

Here ψ = (ψ1, . . . , ψn) is steady-state PMF over reachable markings, and

ψi (1 ≤ i ≤ n) are steady-state probabilities of markings Mi.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 202

Steady state PMF for SMC corresponding to GSPN N is ϕ = (ϕ1, . . . , ϕn):

multiplication of each ψi (1 ≤ i ≤ n) by average sojourn time SJ(Mi) and

normalization of the distribution.

Marking M is vanishing: SJ(M) = 0.

Marking M is tangible: only exponential transitions are enabled, and sojourn time

is calculated as for CTSPNs.

Thus, for 1 ≤ i ≤ n:

ϕi =

ψiSJ(Mi)∑
n
j=1 ψjSJ(Mj)

Mi ∈ RST (N)

0 Mi ∈ RSV (N)
.

The method above: appropriate by small number of vanishing markings.

Eliminating of vanishing markings: appropriate by big number of vanishing

markings [MCB84,Mar90].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 203

Example of GSPNs

♥
♥
t

✁✁☛ ❆❆❯

✒✑

N

♥✍✌✎☞

❄

❄ ❄

❄ ❄

λ

α β

µ ν

DTMC(N)☞

✌

✎

✍

❄

✲ ✛
☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠

❄

✚✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

1000

0100

0010 0001

1

1 1

α
α+β

β
α+β

InTown

Trns

InBus InTrain

GSPN of traveller and its EDTMC

Traveller that visit new towns: GSPN N .

After looking town, the traveller goes to another by the next train of bus.

Buses depart not so frequent as trains, but they go quicker.

Time of stay in town, number of train and bus departures and their velocities do

not depend on particular town.

Distances between all pairs consisting of current and the next town are about

equal.

Places: PN = {p1, p2, p3, p4}.

Transitions: TN = {t1, t2, t3, t4, t5}, where t1, t4, t5 are exponential, and

t2, t3 are immediate ones.

Rates / weights:

ΩN (t1) = λ, ΩN (t2) = α, ΩN (t3) = β, ΩN (t4) = µ, ΩN (t5) = ν.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 204

Interpretation of places.

p1: to be in current town (InTown).

p2: transport departs to the next town (Trsp).

p3: to be in bus (InBus).

p4: to be in train (InTrain).

Interpretation of markings.

M1 = (1, 0, 0, 0): to be in current town (InTown).

M2 = (0, 1, 0, 0): transport departs to the next town (Trsp).

M3 = (0, 0, 1, 0): to be in bus (InBus).

M4 = (0, 0, 0, 1): to be in train (InTrain).

Marking M2 is vanishing, time of stay is 0: enter the transport immediately after it

comes.

RST (N) = {M1,M3,M4} and RSV (N) = {M2}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 205

Interpretation of transitions and their rates / weights.

1. When traveller comes to town, after time that exponentially distributed with

parameter λ, (s)he looks the town and waits for transport to the next place:

t1 with rate λ.

2. Transport that departs is with probability α bus:

t2 with weight α,

or is with probability β train:

t3 with weight β.

Another interpretation of weights: for α bus departures we have β train

departures.

Buses depart less frequently: α ≤ β.

3. When traveller enters bus, after time that exponentially distributed with

parameter µ, (s)he comes by bus to the next town:

t4 with rate µ.

4. When traveller enters train, after time that exponentially distributed with

parameter ν, (s)he comes by train to the next town:

t5 with rate ν .

Buses go quicker: µ ≥ ν.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 206

TRM for EDTMC EDTMC(N) is

P =

0 1 0 0

0 0 α
α+β

β
α+β

1 0 0 0

1 0 0 0

Steady state PMF for EDTMC EDTMC(N) is a solution of equation system

ψ1 = ψ3 + ψ4

ψ1 = ψ2

α
α+βψ2 = ψ3

β
α+βψ2 = ψ4

ψ1 + ψ2 + ψ3 + ψ4 = 1

The result is

ψ =
1

3

(
1, 1,

α

α+ β
,

β

α+ β

)
.

Vector of average sojourn time in markings is

SJ =

(
1

λ
, 0,

1

µ
,
1

ν

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 207

Steady state PMF ψ weighted by SJ is

1

3

(
1

λ
, 0,

α

µ(α+ β)
,

β

ν(α+ β)

)
.

Normalized weighted steady-state PMF is

ψSJT =
1

3

(
1

λ
+

αν + βµ

µν(α+ β)

)
.

Steady state PMF for SMC corresponding to GSPN N is

ϕ =
1

1
λ + αν+βµ

µν(α+β)

(
1

λ
, 0,

α

µ(α+ β)
,

β

ν(α+ β)

)
.

When buses and trains depart with equal frequency (α = β) and

go with equal velocity (µ = ν), we have

ϕ =
1

2(λ+ µ)
(2µ, 0, λ, λ).

Then average time of stay in transport w.r.t. that of in town is λ
µ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 208

Summary for GSPNs

GSPNs are standardly unlabeled:

acceptable to model logically different activities:

transitions t1 and t4 of GSPN from traveller example;

not acceptable to model logically equal activities:

transitions t2 and t3 (t4 and t5) of GSPN from traveller example.

Transition labeling:

LN (t1) = SeeTown, LN (t2) = LN (t3) = τ ,

LN (t4) = LN (t5) = BusTravel.

Weights are associated with transitions:

t2 has weight α, t3 has β.

Rates are associated with actions:

SeeTown has rate λ, BusTravel has µ.

Transition interleaving in GSPNs: interleaving semantics for labeled GSPNs.

Definition of GSPN transition labeling: [Buc98].

Eliminating of vanishing markings: do not take into account M2.

Steady state analysis based on reduced EDTMC:

redirect outgoing arcs from M2 to M1,

and delete arc between M1 and M2.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 209

Deterministic stochastic Petri nets

Formal model of DSPNs

Definition 85 A deterministic time SPN (DSPN) is a tuple

N = (PN , TN ,WN , HN ,ΩN ,ℵN ,MN):

• (PN , TN ,WN , HN ,ℵN ,MN) is an unlabeled IPPN with TN consisting of

exponential and deterministic transitions and ℵN having value 0 for

exponential transitions and value 1 for immediate ones (deterministic

transitions with zero delay);

• ΩN : TN → IR+ is a function of exponential transition rates and

deterministic transition delays.

Behaviour of DSPNs: race with enabling memory.

DSPNs have interleaving semantics, like CTSPNs and GSPNs

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 210

Analysis methods for DSPNs

Transitions of a DSPN.

1. Exclusive: for all markings enabling it, this is the only enabled one.

2. Competitive: it is not exclusive, and for all markings enabling it, all enabled

transitions are in conflict with it.

3. Concurrent: it is not exclusive, and for some marking enabling it, some

enabled transition is not in conflict with it.

Consider only DSPNs s.t. in all markings, at most one concurrent deterministic

transition is enabled.

Then reachability graph structure is independent of time constraints.

In addition, semi-Markov process can be associated with a DSPN.

Concurrent deterministic transitions:

independent, that cannot be disabled, and

preemptable, that can be disabled.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 211

Possibilities for behaviour of a DSPN N .

1. In Mi (1 ≤ i ≤ n) no deterministic transition is enabled or

an exclusive deterministic is enabled.

No deterministic transition: average sojourn time in Mi is

SJ(Mi) =
1∑

t∈Ena(Mi)
ΩN (t)

.

If ∃t ∈ TN Mi
t
→Mj , probability of state change from Mi to Mj is

ρij =

∑
{t|Mi

t
→Mj}

ΩN (t)
∑
t∈Ena(Mi)

ΩN (t)
.

2. In Mi an independent deterministic transition td ∈ TN is enabled together

with exponential ones.

The next state of EDTMC is sampled only at the instant of firing of td,

with no respect of state changes due to firings of exponential transitions

during the enabling interval ΩN (td) = θd.

The state changes are “delayed” to the instant of firing of td.

State change probability for EDTMC: Chapman-Kolmogorov equation.

3. In Mi a competitive or a preemptable deterministic transition td ∈ TN is

enabled.

The next state of EDTMC is sampled at the instant of firing of td or the instant

of disabling of td.

Probability of firing of td is computed based on transient evolution of the

stochastic part of process during enabling interval θd.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 212

Solution technique: one deterministic transition,

otherwise repeat the analysis step.

For a DSPN N , RS(N) consists of two marking classes:

MD(N): td is enabled,

ME(N): td is not enabled.

States of EDTMC for DSPN N are reordered: markings from MD(N) come

first.

TRM for CTMC is

Q =

 D K

Q21 Q22

 .

Submatrix D: rates of exponential transitions not conflicting with td (transition

rates between markings of MD(N)).

Submatrix K: rates of exponential transitions conflicting with td (transition rates

from markings of MD(N) to ME(N)).

Submatrices Q21 and Q22: rates of exponential transitions enabled in markings

of MD(N).

TRM reduction: respect only rates of exponential transitions enabled in the same

markings as deterministic one.

Reduced TRM for CTMC is

Q′ =

 D K

0 0

 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 213

Let td be preemptable determinstic transition and

Mi ∈MD(N), Mj ∈ME(N).

Probability of EDTMC state change from Mi to Mj , if td is preemptable, is

uie
Q′θduTj ,

where ui (1 ≤ i ≤ n) is a vector of length n with i-th element be 1, and all

other be 0-s.

Probability of EDTMC state change from Mi to Mj , if td fires, is

uie
Q′θd∆du

T
j ,

where ∆d is TPM resulting by firing of td defined as

∆d =

 ∆DD ∆DE

0 I

 .

Hence, i-th (corresponding to Mi) line of TPM for EDTMC is

P(i) = uie
Q′θd∆d.

Average sojourn time in Mi is

SJ(Mi) =

∫ θd

0

uie
Q′x

 1T

0T

 dx,

where 1 is a row vector of |MD(N)| values 1, and 0 is that of |ME(N)|

values 0.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 214

If td is independent then SJ(Mi) = θd.

If td is preemptable then

SJ(Mi) =
∑

{j|Mj∈MD(N)}

ui

 D−1(eDθd − I) 0

0 0

uTj .

Steady-state PMF for DSPN is constructed from that for EDTMC.

First, weighting of steady-state marking probabilities by average sojourn time in

that makings.

Second, converting probabilities of markings enabling concurrent deterministic

transitions with

Conversion matrix Cd: difference between average sojourn time in a marking of

DSPN and in a state of EDTMC.

Elements (i, j) of conversion matrix Cd s.t. Mi,Mj ∈MD(N) are defined as

Cd(i, j) =
1

SJ(Mi)
ui

∫ θd

0

eQ
′xdxuTj =

1

SJ(Mi)
ui

 D−1(eDθd − I) 0

0 0

uTj .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 215

Example of DSPNs

♥

♥

♥ ♥t

3

❄

❄

❄

❄

❄

N

✌

✲☛

✡ ✕✒
✻

✓✏
❄

ThinkNo

m1λ

RequestNo

0

θ

FreeService ☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

RG(N) RG∗(N)

3001

2101

2010

1110

0210

1201

3001

2010

1110

0210

❄

❄

❄

❄

❄

❄

❄

❄

e

i

e

e

d

e+ i

e

e

✔

✕
✓

✒

✓
✒

✓
✒

✓
✒

✲

✲

✛

✲

✲

✔
✕

✛

d

i

d

d

d+ i

d+ i

M1

M2

M3

M4

M5

M6

M ′
4

M ′
1

M ′
2

M ′
3

DSPN of queue with its complete and reduced reachability graphs

Queue M/D/1/3/3 of three consumers: DSPN N .

Queue type: type of incoming process / distribution of service time / number of

servers in service station / number of consumers / number of requests.

Symbol ‘M’: Markov process, and ‘D’: deterministic distribution.

Queue M/D/1/3/3: Markov incoming process and deterministic service time

distribution of 3 consumers with 3 requests (one for each consumer) on 1 server.

Consumers think, then request for service, and are served one by one at service

station, if it is free.

Places: PN = {p1, p2, p3, p4}.

Transitions: TN = {t1, t2, t3}, where t2, t3 are deterministic (t2 is immediate,

deterministic with zero delay), and t1 is exponential one.

Rates / delays: ΩN (t1) = m1λ, ΩN (t2) = 0, ΩN (t3) = θ, where m1 is a

number of tokens in place p1 (rate of t1 depend on input flow).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 216

Transition names according to their types: exponential t1 is named e, immediate

t2 is named i, and deterministic t3 is named d.

Interpretation of places.

p1: number of thinking consumers (ThinkNo),

p2: number of consumers that requested service (RequestNo),

p3: consumer is at service station (Service),

p4: service station is free (Free).

Interpretation of markings.

M1 = (3, 0, 0, 1): 3 consumers think about service, and service station is free

(3T+F).

M2 = (2, 1, 0, 1): 2 consumers think about service, 1 consumer requests

service, and service station is free (2T+R+F).

M3 = (2, 0, 1, 0): 2 consumers think about service, and 1 consumer is served

(2T+S).

M4 = (1, 1, 1, 0): 1 consumer thinks about service, 1 consumer requests

service, and 1 consumer is served (T+R+S).

M5 = (0, 2, 1, 0): 2 consumers request service, and 1 consumer is served

(2R+S).

M6 = (1, 2, 0, 1): 1 consumer thinks about service, 2 consumers request

service, and service station is free (T+2R+F).

Markings M2 and M6 are vanishing: zero sojourn time, corresponds to service

immediately after request, if service station is free.

Other markings are tangible.

RST (N) = {M1,M3,M4,M5} and RSV (N) = {M2,M6}.

Eliminating of vanishing markings from complete reachability graph RG(N):

reduced reachability graph RG∗(N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 217

Interpretation of transitions and their rates / delays.

1. When consumer has thought about service, after time that exponentially

distributed with parameter m1λ, (s)he requests service:

transition t1 with rate m1λ.

2. hen service has been requested, and service station is free, then immediately,

with delay 0, service starts:

transition t2 with delay 0.

3. When consumer is at service station, after time θ (s)he is served:

transition t3 with delay θ.

The only deterministic transition t3 cannot be enabled concurrently with other

ones (and with itself) in all markings: the analysis applicability condition is fulfilled.

Transition t3 is concurrent independent one.

States of reduced reachability graph RG∗(N): tangible markings

M1 ∈ME(N) and M3,M4,M5 ∈MD(N).

Reordering: M3 7→M ′
1, M4 7→M ′

2, M5 7→M ′
3, M1 7→M ′

4.

Complete and reduced TRMs for CTMC are

Q =

−2λ 2λ 0 0

0 −λ λ 0

0 0 0 0

3λ 0 0 −3λ

Q′ =

−2λ 2λ 0 0

0 −λ λ 0

0 0 0 0

0 0 0 0

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 218

TPM resulting by deterministic transition firing is

∆ =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

Matrix exponential is

eQ
′θ =

e−2λθ e−λθ(1− e−2λθ) (1− e−λθ)(1− e−2λθ) 0

0 e−λθ 1− e−λθ 0

0 0 1 0

0 0 0 1

Matrix exponential changed by probabilities of deterministic transition firing is

eQ
′θ∆ =

e−λθ(1− e−2λθ) (1− e−λθ)(1− e−2λθ) 0 e−2λθ

e−λθ 1− e−λθ 0 0

0 1 0 0

0 0 0 1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 219

☛✡ ✟✠✄✂ ✲
EDTMC∗(N)

☛✡ ✟✠
☛✡ ✟✠✄✂ ✲
2010

1110

☛✡ ✟✠3001

0210

❄

❄ ✏
✑
✏
✑
✏
✑

✛

✛

✛

1

(1−e−λθ)(1−e−2λθ)

e−2λθ

e−λθ

1
1−e−λθ

e−λθ(1−e−2λθ)

M ′
4

M ′
1

M ′
2

M ′
3

d

d+i

d+i

e+d+i

e+d+i

e+i

e+e+d+i

EDTMC for DSPN of queue

TPM for EDTMC EDTMC∗(N) based on RG∗(N) is

P =

e−λθ(1− e−2λθ) (1− e−λθ)(1− e−2λθ) 0 e−2λθ

e−λθ 1− e−λθ 0 0

0 1 0 0

1 0 0 0

Steady state PMF of “visit” probabilities for EDTMC is a solution of equation

system

(1− e−λθ + e−3λθ)ψ1 − e−λθψ2 = ψ4

(1− e−λθ)(1− e−2λθ)ψ1 = e−λθψ2

ψ3 = 0

e−2λθψ1 = ψ4

ψ1 + ψ2 + ψ3 + ψ4 = 1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 220

The result is

ψ =
1

1 + e−2λθ + 2e−3λθ
(e−λθ, (1− e−λθ)(1− e−2λθ), 0, e−3λθ).

Since deterministic transition t3 is independent, SJ(M1) = SJ(M2) = θ.

Average sojourn time vector for markings of N is

SJ =

(
θ, θ, θ,

1

3λ

)
.

Steady state PMF ψ weighted by SJ is

(
ψ1θ, ψ2θ, 0,

ψ4

3λ

)
.

Sojourn time in M1 and M2 must be redistributed between them and M3.

Let ck =
∫ θ
0
e−kλxdx = 1−e−kλθ

kλθ , (1 ≤ k ≤ 3).

Conversion matrix is

C =

c2 c1 − c3 1− c1 − c2 + c3 0

0 c1 1− c1 0

0 0 1 0

0 0 0 1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 221

Weighted steady-state PMF changed by conversion matrix is

(
ψ1θc2, ψ1θ(c1 − c3) + ψ2θc1, ψ1θ(1− c1 − c2 + c3) + ψ2θ(1− c1),

ψ4

3λ

)
.

The last step: normalization of converted weighted steady-state PMF.

Stable state PMF for DSPN is

ϕ =
1

ψ1 + ψ2 +
ψ4

3λθ

×

(
ψ1c2, ψ1(c1 − c3) + ψ2c1, ψ1(1− c1 − c2 + c3) + ψ2(1− c1),

ψ4

3λθ

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 222

Summary for DSPNs

DSPNs are standardly unlabeled:

acceptable to model logically different activities:

all transitions of DSPN from queue example;

not acceptable to model logically equal activities.

Transition labeling:

LN (t1) = Require, LN (t2) = τ, LN (t3) = Serve.

Rates and delays are associated with actions:

Require has rate λ, τ has delay 0, and Serve has delay θ.

Transition interleaving in DSPNs: interleaving semantics for labeled DSPNs.

Definition of DSPN transition labeling: not presenteqd yet.

DSPNs are an extension of GSPNs by arbitrary fixed (deterministic) delays, not

zero only, as in GSPNs.

DSPNs have good expressive power, but their analysis is complex: calculation of

many matrix exponentials.

Complexity grows very fast: adding new token (consumer) or another

deterministic transition in DSPN of queue example.

Elimination of restricting conditions: deterministic DTSPNs (DDTSPNs) [ZCH97].

DDTSPNs are discrete analogue of DSPNs: deterministic and geometric

transitions.

Constant distributionof deterministic transitions is a partial case of geometric one:

no restriction by number of enabled determinsitic transitions.

Decision complexity of DSPNs: partition by subsystems and numerical methods.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 223

Overview and discussion

The results obtained

Description of four well-known types of SPNs.

Analysis methods and illustrative examples.

Comparison and application areas.

Ways to define transition labeling: behavioural equivalences.

The most perspective model: DTSPNs and their extensions, like DDTSPNs.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 224

Advantages and disadvantages of stochastic Petri nets

Advantages

• Convenient for theoretical reasoning on behaviour of systems with shared

resources and for use in development tools.

• Performance can be evaluated from SPN structure, and detailed analysis is

accomplished using MC with well-known algorithms.

• Applicable when synchronization is important: analysis of systems with

interacting components.

Disadvantages

• High complexity of large system specification because of absence of

modularity and intricateness of the corresponding SPNs.

• More abstract SPNs with better expressive power: analytical and structural

restrictions or partitioning, simulation and numerical methods.

• Concurrency of the PN underlying an SPN is reflected only partially in the

corresponding MC: in the best case, it has step semantics that is not “true

concurrent”.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 225

Equivalences for Stochastic Petri Nets
and Stochastic Process Algebras a

Abstract : Labeled discrete time stochastic Petri nets (LDTSPNs) are proposed.

The visible behavior of LDTSPNs is described by transition labels. The dynamic

behavior is defined.

Trace and bisimulation probabilistic equivalences are introduced.

A diagram of their interrelations is presented.

Some of the equivalences are characterized via formulas of probabilistic modal

logics.

The equivalences are used to compare stationary behavior of nets.

Stochastic algebra of finite processes StAFP0 is proposed with a net semantics

based on a subclass of LDTSPNs.

Keywords : Stochastic Petri nets, step semantics, probabilistic equivalences,

bisimulation, modal logics, stationary behavior, stochastic process algebras.

aThe joint work with Peter Buchholz, Faculty of Computer Science IV, University of Dortmund, Ger-

many.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 226

Contents

• Introduction

– Previous work

• Labeled discrete time stochastic Petri nets

– Formal model

– Behavior of the model

– Example of LDTSPNs

• Stochastic simulation

– Properties of probabilistic relations

– Probabilistic τ -trace equivalences

– Probabilistic τ -bisimulation equivalences

– Backward probabilistic τ -bisimulation equivalences

– Back and forth probabilistic τ -bisimulation equivalences

– Reduction example

– Examples of the probabilistic relations

– Comparing the probabilistic τ -equivalences

– Logic IPML

– Logic SPML

– Stationary behaviour

• Stochastic process algebra StAFP0

– Syntax

– Semantics

– Axiomatization

• Overview and open questions

– The results obtained

– Further research

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 227

Introduction

Previous work

Transition labeling

• CTSPNs [Buc95]

• GSPNs [Buc98]

• DTSPNs [BT00]

Equivalences

• Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]

• SPAs [HR94,Hil94,BGo98]

• Markov process algebras (MPAs) [Buc94,BKe01]

• CTSPNs [Buc95]

• GSPNs [Buc98]

• Stochastic automata (SAs) [Buc99]

• Stochastic event structures (SESs) [MCW03]

Probabilistic modal logics

• Logic PML [LS91]

Process algebras

• AFP0 [KCh85]

• PBC [BDH92]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 228

Labeled discrete time stochastic Petri nets

Formal model

Definition 86 A labeled discrete time stochastic Petri net (LDTSPN) is a tuple

N = (PN , TN ,WN ,ΩN , LN ,MN):

• PN and TN are finite sets of places and transitions

(PN ∪ TN 6= ∅, PN ∩ TN = ∅);

• WN : (PN × TN) ∪ (TN × PN)→ IN is the arc weight function;

• ΩN : TN → (0; 1) is the transition conditional probability function;

• LN : TN → Actτ = Act ∪ {τ} is the transition labeling function;

• MN ∈ IN
PN
fin is the initial marking.

Concurrent transition firings at discrete time moments.

LDTSPNs have step semantics.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 229

Behavior of the model

Let M be a marking of a LDTSPN N = (PN , TN ,WN ,ΩN , LN ,MN). Then

t ∈ Ena(M) fires in the next time moment with probability ΩN (t), if no other

transition is enabled in M .

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability that the set of

transitions U is ready for firing in M :

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1− ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =

∏
u∈Ena(M)(1− ΩN (u)) Ena(M) 6= ∅;

1 otherwise.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M or U = ∅ and tang(M). The

probability that the set of transitions U fires in M :

PT (U,M) =
PF (U,M)∑

{V |•V⊆M} PF (V,M)
.

If U = ∅ then M = M̃ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 230

Firing of U changes marking M to M̃ =M − •U + U•, M
U
→P M̃ , where

P = PT (U,M).

We write M
U
→M̃ if ∃P M

U
→P M̃ .

For U = {t} we write M
t
→PM̃ and M

t
→M̃ .

For A ∈ INActτ
fin we define vis(A) =

∑
a∈A∩Act a.

Let A ∈ INAct
fin . M

A
→PM̃ is a step starting in M , performing transitions that

are visibly labeled by A and ending in M̃ .

The probability P = PS(A,M, M̃) is

PS(A,M, M̃) =
∑

{U⊆Ena(M)|M
U
→M̃, vis(LN (U))=A}

PT (U,M).

We write M
A
→M̃ if ∃P M

A
→P M̃ .

For A = {a} we write M
a
→PM̃ and M

a
→M̃ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 231

Definition 87 For a LDTSPN N we define the following notions.

• The reachability set RS(N) is the minimal set of markings s.t.

– MN ∈ RS(N);

– if M ∈ RS(N) and M
A
→ M̃ then M̃ ∈ RS(N).

• The reachability graph RG(N) is a directed labeled graph with

– the set of nodes RS(N);

– an arc labeled by A, P from node M to M̃

if M
A
→P M̃ .

• The underlying Discrete Time Markov Chain (DTMC) DTMC(N) is a

DTMC with

– the state space RS(N);

– a transition M→PM̃

if at least one arc from M to M̃ exists in RG(N).

The probability P = PM(M, M̃) is

PM(M, M̃) =
∑

A∈INActfin

PS(A,M, M̃);

– the initial state s1 =MN .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 232

An internal step M
∅
→PM̃ takes place when

• M̃ is reachable from M by firing a set of internal transitions or

• no transition fires.

The recursive definition for k ≥ 0 empty steps:

PSk(∅,M, M̃) =

∑
M∈RS(N) PS

k−1(∅,M,M)·

PS(∅,M, M̃) if k ≥ 1;

1 if k = 0 and

M = M̃ ;

0 otherwise.

The probability of reaching M̃ from M by internal steps, followed by an visible

step A is

PS∗(A,M, M̃) = PS(A,M, M̃)

∞∑

k=0

PSk(∅,M,M).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 233

New transition relation: M
A
→→PM̃ , where P = PS∗(A,M, M̃) and A 6= ∅.

We write M
A
→→M̃ if ∃P M

A
→→P M̃ .

For A = {a} we write M
a
→→PM̃ and M

a
→→M̃ .

RS∗(N) and RG∗(N) are the visible reachability set and graph.

The visible underlying DTMC DTMC∗(N) with state space RS∗(N) and

transition probabilities

PM∗(M, M̃) =
∑

A∈INActfin \∅

PS∗(A,M, M̃).

We write M→→PM̃ if P = PM∗(M, M̃).

A trap is a loop of internal transitions starting and ending in some marking M

which occurs with probability 1.

For each M , the sum
∑∞
k=0 PS

k(∅,M,M) is finite as long as no traps exist.

In this case, PS∗(A,M, M̃) defines a probability distribution:

∑

A∈INActfin \∅

∑

M̃∈RS∗(N)

PS∗(A,M, M̃) = 1.

Interleaving semantics: the interleaving transition relation.

Let N be a LDTSPN, M, M̃ ∈ RS∗(N), a ∈ Act and M
a
→→ M̃ . We write

M
a
⇀⇀PM̃ , if P = PS∗

i (a,M, M̃) and

PS∗
i (a,M, M̃) =

PS∗({a},M, M̃)∑
{b∈Act|∃M M

b
→→M}

PS∗({b},M,M)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 234

Example of LDTSPNs

τ

a b

♥♥

♥

t t
❄ ❄

❏❏❫ ✡✡✢

❄❄

✎

✍

✏

✑✑✒

✲ ✛
N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

RG(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✩

✪

✛✄✂ ✲
✄✂ ✲
✄✂ ✲
✄✂ ✲

∅,q11

∅,q22 ∅,q33

∅,q44

{a,b},
q14

a,q12 b,q13

b,q24 a,q34

∅,q41

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002
❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

{a,b},
r14

a,r12 b,r13

b,r24 a,r34✄✂ ✲
{a,b},r44

RG∗(N)

❏
❏

❏❏❪

✓
✓
✓✓✼a,

r42
b,
r43

A LDTSPN and the corresponding reachability graphs

q11 = ΩN (t1)ΩN (t2) q12 = ΩN (t1)ΩN (t2) q13 = ΩN (t1)ΩN (t2)

q14 = ΩN (t1)ΩN (t2) q22 = ΩN (t2) q24 = ΩN (t2)

q33 = ΩN (t1) q34 = ΩN (t1) q41 = ΩN (t3)

q44 = ΩN (t3)

r12 = r42 = q12
1−q11

r13 = r43 = q13
1−q11

r14 = r44 = q14
1−q11

r24 = 1 r34 = 1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 235

Stochastic simulation

Properties of probabilistic relations

a b

♥t
✡✡✢ ❏❏❫

N(a)

a b

♥t
✡✡✢ ❏❏❫

N ′

a

b

♥

♥

t
❄

❄

❄

N

a a

b

♥❄
❄

♥tN ′

b

♥❄
❄

b b

✑
✑✑✰

◗
◗◗s

✑
✑✑✰

◗
◗◗s

1
2

1
2

1
3

1
2

1
2

1
2

2
5

1
2

3
5

1
3

1
6

1
2

(b)

PP: Properties of probabilistic equivalences

• In Figure PP(a) LDTSPNs N and N ′ could not be related by any (even trace)

probabilistic equivalence, since only in N ′ action a has probability 1
3 .

• In Figure PP(b) LDTSPNs N and N ′ are related by any (even bisimulation)

probabilistic equivalence, since in our model probabilities of consequent

actions are multiplied, and that of alternative ones are summed.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 236

Probabilistic τ -trace equivalences

Definition 88 A visible interleaving probabilistic trace of a LDTSPN N is a pair

(σ, PT ∗(σ)), where σ = a1 · · · an ∈ Act∗ and

PT ∗(σ) =
∑

{M1,...,Mn|MN
a1⇀⇀P1

M1
a2⇀⇀P2

···
an⇀⇀PnMn}

n∏

i=1

Pi.

The set of all visible interleaving probabilistic traces of a LDTSPN N is

V isIntProbTraces(N). LDTSPNs N and N ′ are interleaving probabilistic

τ -trace equivalent, N≡τipN
′, if

V isIntProbTraces(N) = V isIntProbTraces(N ′).

Definition 89 A visible step probabilistic trace of a LDTSPN N is a pair

(Σ, PT ∗(Σ)), where Σ = A1 · · ·An ∈ (INAct
fin)

∗ and

PT ∗(Σ) =
∑

{M1,...,Mn|MN
A1→→P1

M1
A2→→P2

···
An→→PnMn}

n∏

i=1

Pi.

The set of all visible step probabilistic traces of a LDTSPN N is

V isStepProbTraces(N). LDTSPNs N and N ′ are step probabilistic τ -trace

equivalent, N≡τspN
′, if

V isStepProbTraces(N) = V isStepProbTraces(N ′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 237

Probabilistic τ -bisimulation equivalences

Let for LDTSPN N L ⊆ RS∗(N), M ∈ RS∗(N) and A ∈ INAct
fin .

We write M
A
→→PL if P = PM∗

A(M,L) and

PM∗
A(M,L) =

∑

{M̃∈L|M
A
→→M̃}

PS∗(A,M, M̃).

We write M
A
→→L if ∃P M

A
→→P L.

For A = {a} we write M
a
→→PL and M

a
→→L.

Similarly, we define M
a
⇀⇀PL based on the interleaving transition relation.

Definition 90 Let N be a LDTSPN. An equivalenceR ⊆ RS∗(N)2 is a

⋆-probabilistic τ -bisimulation between M1 and M2 of N , ⋆ ∈{interleaving,

step},R :M1↔
τ
⋆pM2, ⋆ ∈ {i, s}, if ∀L ∈ RS∗(N)/R

• ∀x ∈ Act and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INAct
fin and →֒=→→, if ⋆ = s;

M1
x
→֒P L ⇔ M2

x
→֒P L.

M1 and M2 are ⋆-probabilistic τ -bisimulation equivalent, ⋆ ∈{interleaving,

step}, M1↔τ
⋆pM2, if ∃R :M1↔τ

⋆pM2, ⋆ ∈ {i, s}.

Definition 91 Let N and N ′ be two LDTSPNs.

R ⊆ (RS∗(N) ∪RS∗(N ′))2 is a ⋆-probabilistic τ -bisimulation between N

and N ′, ⋆ ∈{interleaving, step},R : N↔τ
⋆pN

′, if

R :MN↔τ
⋆pMN ′ , ⋆ ∈ {i, s}.

N and N ′ are ⋆-probabilistic τ -bisimulation equivalent, ⋆ ∈{interleaving, step},

N↔τ
⋆pN

′, if ∃R : N↔τ
⋆pN

′, ⋆ ∈ {i, s}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 238

Backward probabilistic τ -bisimulation equivalences

Let for LDTSPN N L ⊆ RS∗(N), M ∈ RS∗(N) and A ∈ INAct
fin .

We write L
A
→→PM if P = PM∗

A(L,M) and

PM∗
A(L,M) =

∑

{M̃∈L|M̃
A
→→M}

PS∗(A, M̃,M).

We write L
A
→→M if ∃P L

A
→→P M .

For A = {a} we write L
a
→→PM and L

a
→→M .

Similarly, we define L
a
⇀⇀PM based on the interleaving transition relation.

Definition 92 Let N be a LDTSPN. An equivalenceR ⊆ RS∗(N)2 is a

⋆-backward probabilistic τ -bisimulation between M1 and M2 of N ,

⋆ ∈{interleaving, step},R :M1↔τ
⋆bpM2, ⋆ ∈ {i, s}, if ∀L ∈ RS∗(N)/R

• ∀x ∈ Act and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INAct
fin and →֒=→→, if ⋆ = s;

[MN]R = {MN},

M1
x
→֒P RS∗(N) ⇔ M2

x
→֒P RS∗(N),

L
x
→֒P M1 ⇔ L

x
→֒P M2.

M1 and M2 are ⋆-backward probabilistic τ -bisimulation equivalent,

⋆ ∈{interleaving, step}, M1↔τ
⋆bpM2, if ∃R :M1↔τ

⋆bpM2, ⋆ ∈ {i, s}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 239

The indicator function Γ recovers a LDTSPN by a marking belonging to it.

For LDTSPN N and M ∈ RS∗(N) we define Γ(M) = N .

Definition 93 Let N and N ′ be two LDTSPNs.

R ⊆ (RS∗(N) ∪RS∗(N ′))2 is a ⋆-backward probabilistic τ -bisimulation

between N and N ′, ⋆ ∈{interleaving, step},R : N↔τ
⋆bpN

′, ⋆ ∈ {i, s}, if

∀L,K ∈ (RS∗(N) ∪RS∗(N ′))/R ∀M1,M2 ∈ L

• ∀x ∈ Act and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INAct
fin and →֒=→→, if ⋆ = s;

[MN]R = {MN ,MN ′},

M1
x
→֒P RS∗(Γ(M1)) ⇔ M2

x
→֒P RS∗(Γ(M2)),

K
x
→֒

P·
|L∩RS∗(Γ(M1))|
|K∩RS∗(Γ(M1))|

M1 ⇔ K
x
→֒

P·
|L∩RS∗(Γ(M2))|
|K∩RS∗(Γ(M2))|

M2.

N and N ′ are ⋆-backward probabilistic τ -bisimulation equivalent,

⋆ ∈{interleaving, step}, N↔τ
⋆bpN

′, if ∃R : N↔τ
⋆bpN

′, ⋆ ∈ {i, s}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 240

Back and forth probabilistic τ -bisimulation equivalences

Definition 94 LDTSPNs N and N ′ are ⋆-back and forth probabilistic

τ -bisimulation equivalent, ⋆ ∈{interleaving, step}, N↔τ
⋆bfpN

′, if

N↔τ
⋆pN

′ and N↔τ
⋆bpN

′, ⋆ ∈ {i, s}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 241

Reduction example

N ♥

♥
✡ ✑

♥

✠✒

b

e

❄

❄

❅❅❘

♥

♥
✡ ✑✠✒

b

e

❄

❄

♥

♥
✡ ✑✠✒

b

e

❄

❄

♥

♥
✡ ✑✠✒

b

e

❄

❄

♥
✠✒

b

e

❄

❄

❄

♥
b

e

❄

❄

♥
❄

ttttt N ′

✠

✓

✒

✲

↔τ
sbfp

6≃

✫ ✪

��✠ ❅❅❘ ��✠ ❅❅❘ ��✠ ❅❅❘ ��✠ ❅❅❘

☛ ✟

♥
τ
❄

❄

♥
τ
❄

❄

♥
τ
❄

♥
τ
❄

♥
τ
❄

❄ ❄ ❄

✻✻ ✻✻ ✻✻ ✻✻ ✻✻

♥
b

e

❄

❄

♥
❄

t

✡

✔

✕

✛t
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
5

1
4

2
5

1
4

1
2

1
2

1
2

1
2

1
2

The complete and reduced LDTSPNs of the abstract dining philosophers system

b and e correspond to the beginning and the end of eating of some philosopher.

τ corresponds to an activity of some philosopher during the eating.

This activity is not respected in behavioural analysis of the system.

N↔τ
sbfpN

′, hence, N ′ is a reduction of N w.r.t.↔τ
sbfp.

N 6≃N ′, since N ′ is smaller than N .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 242

Examples of the probabilistic relations

b

aab

♥

♥♥

♥t

c

N3

❄
❩
❩❩⑦✚

✚✚❃

✓✓✴❏❏❪

❄

✬✲

��✠

b b

aab

♥ ♥

♥♥

♥t

c c

N4

✓✓✴❏❏❪

❄❄ ✁
✁
✁
✁✁✕

❆
❆

❆
❆❑

✬ ✩
b

✁✁☛ ❆❆❯✑
✑

✑✑✸
◗

◗
◗◗❦

❄ ❄

✲ ✛

b

ab

♥

♥

♥t

c

N1

✓✓✴❏❏❪

❄
b b

aab

♥ ♥

♥♥

♥t

c c

N2

✓✓✴❏❏❪

❄❄ ✁
✁
✁
✁✁✕

❆
❆

❆
❆❑

✬ ✩
b

✁✁☛ ❆❆❯✑
✑

✑✑✸
◗

◗
◗◗❦

❄ ❄

✲ ✛

✁✁✕ ❆❆❯

❄

❆
❆

❆
❆❑

b

❩
❩❩⑦

◗
◗◗s

✤✲
❏❏❫ ✡✡✣

❏❏❫ ✡✡✣

✓✓✴

❙
❙

❙
❙❙♦

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

LDTSPNs related via different probabilistic τ -equivalences

N1≡
τ
spN2≡

τ
spN3≡

τ
spN4 N1↔

τ
spN2↔

τ
spN4 N1↔

τ
sbpN3↔

τ
sbpN4

N1↔τ
sbfpN4 N2↔/ τipN3 N2↔/ τibpN3

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 243

Comparing the probabilistic τ -equivalences

≡τip ≡τsp

↔τ
ip ↔τ

sp

↔τ
ibp ↔τ

sbp

↔τ
ibfp ↔τ

sbfp

❄ ❄

❄ ❄

��✠ ��✠

��✠ ��✠

≃

❄
✛

✛

✛

✛

Interrelations of the probabilistic τ -equivalences

Proposition 16 Let ⋆ ∈ {i, s}. For LDTSPNs N and N ′

1. N↔τ
⋆pN

′ ⇒ N≡τ⋆pN
′;

2. N↔τ
⋆bpN

′ ⇒ N≡τ⋆pN
′;

3. N↔τ
⋆bfpN

′ ⇒ N↔τ
⋆pN

′ and N↔τ
⋆bpN

′.

Theorem 22 Let↔,↔↔ ∈ {≡τ ,↔τ ,≃} and

⋆, ⋆⋆ ∈ { , ip, sp, ibp, sbp, ibfp, sbfp}. For LDTSPNs N and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff in the graph in figure above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 244

Examples of the probabilistic relations

a b

♥♥t t
❄ ❄

(a)

N

↔τ
ibfp

6≡τsp

b a

♥ ♥
a b

♥t
❄

❄

❄

❄

✁✁☛ ❆❆❯

N ′

(b)

N

b

♥
a a

♥t
✁✁☛ ❆❆❯

❄

❄

≡τsp
↔/ τip
↔/ τibp

b

♥
a

♥t N ′

❄

b

aab

♥

♥♥

♥t

c

N ′

❄
❩

❩❩⑦✚
✚✚❃

✓✓✴❏❏❪

❄

✬✲

✓✓✴

b

ab

♥

♥

♥t

c

N

✓✓✴❏❏❪

❄
b b

aab

♥ ♥

♥♥

♥t

c c

N ′

✓✓✴❏❏❪

❄❄ ✁
✁
✁
✁✁✕

❆
❆

❆
❆❑

✬ ✩
b

✁✁☛ ❆❆❯✑
✑
✑✑✸

◗
◗

◗◗❦

❄ ❄

✲ ✛

✁✁✕ ❆❆❯

❄

❆
❆

❆
❆❑

b

❩
❩❩⑦

◗
◗◗s

✤✲
❏❏❫ ✡✡✣

✓✓✴

(c)

(d)

b

ab

♥

♥

♥t

c

N

✓✓✴❏❏❪

❄

✁✁✕ ❆❆❯

❄

❆
❆
❆
❆❑

✤✲

↔τ
sp

↔/ τibp

↔τ
sbp

↔/ τip

(e)

N

c

♥
a

♥

t
❄

❄

❄
c

♥
b

♥

t
❄

❄

❄

↔τ
sbfp

6≃

N ′

❙
❙

❙
❙❙♦

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

c 1
2

❄

✡✡✢ ❏❏❫
c

♥❄
❄

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

S: Examples of the probabilistic τ -equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 245

• In Figure S(a), N↔τ
ibfpN

′, but N 6≡τspN
′, since only in the LDTSPN N ′

actions a and b cannot occur concurrently.

• In Figure S(b), N≡τspN
′, but N↔/ τipN

′ and N↔/ τibpN
′, since only in the

LDTSPN N ′ an action a can occur so that no action b can occur afterwards.

• In Figure S(c), N↔τ
spN

′, but N↔/ τibpN
′, since only in N ′ there is a place

with two input transitions labeled by b. Hence, the probability for a token to go

to this place is always more than for that with only one input b-labeled

transition.

• In Figure S(d), N↔τ
sbpN

′, but N↔/ τipN
′, since only in the LDTSPN N ′ an

action a can occur so that a sequence of actions bc cannot occur just after it.

• In Figure S(e), N↔τ
sbfpN

′ but N 6≃N ′, since upper transitions of LDTSPNs

N and N ′ are labeled by different actions (a and b).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 246

Logic IPML

Definition 95 ⊤ denotes the truth, a ∈ Act, P ∈ (0; 1].

A formula of IPML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | ∇a | 〈a〉PΦ

IPML is the set of all formulas of IPML.

Definition 96 Let N be a LDTSPN and M ∈ RS∗(N). The satisfaction

relation |=N ⊆ RS
∗(N)× IPML:

1. M |=N ⊤— always;

2. M |=N ¬Φ, if M 6|=N Φ;

3. M |=N Φ∧Ψ, if M |=N Φ and M |=N Ψ;

4. M |=N ∇a, if not M
a
⇀⇀ RS∗(N);

5. M |=N 〈a〉PΦ, if ∃L ⊆ RS∗(N)M
a
⇀⇀Q L, Q ≥ P and

∀M̃ ∈ L M̃ |=N Φ.

〈a〉Φ = ∃P 〈a〉PΦ.

〈a〉QΦ implies 〈a〉PΦ, ifQ ≥ P .

We write N |=N Φ, if MN |=N Φ.

Definition 97 N and N ′ are logical equivalent in IPML, N=IPMLN
′, if

∀Φ ∈ IPMLN |=N Φ ⇔ N ′ |=N ′ Φ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 247

Let for a LDTSPN N M ∈ RS∗(N), a ∈ Act.

The set of next to M markings after occurrence of visible action a

(visible image set) is V isImage(M,a) = {M̃ |M
a
→→ M̃}.

A LDTSPN N is a image-finite one, if

∀M ∈ RS∗(N) ∀a ∈ Act |V isImage(M,a)| <∞.

Theorem 23 For image-finite LDTSPNs N and N ′

N↔τ
ipN

′ ⇔ N=IPMLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 248

N

b

♥
a a

♥t
✁✁☛ ❆❆❯

❄

❄

6=IPML

b

♥
a

♥t N ′

❄
1
2

1
2

1
2

1
2

1
2

c 1
2

c 1
2

♥❄
❄

❄

✡✡✢ ❏❏❫

≡τsp

Differentiating power of =IPML

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠
01

00

RG(N)✄✂ ✲
✄✂ ✲
✄✂ ✲

∅, 12

∅, 13

∅,1

a, 12 ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

100

010

000

RG(N ′)

✓
✓

✓✓✴

❏
❏
❏❏❫

✄✂ ✲
✄✂ ✲
✄✂ ✲

∅, 13

∅, 12

∅,1

a, 13

b, 12

10

❄☛
✡
✟
✠✲ ✛

b, 13 c, 13

☛✡ ✟✠001

❙
❙
❙❙✇

✓
✓

✓✓✴

✄✂ ✲
∅, 12

a, 13

c, 12

Reachability graphs of the LDTSPNs above

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 249

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠
01

00

RG∗(N)

a,1 ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

100

010

000

RG∗(N ′)

✓
✓

✓✓✴

❏
❏
❏❏❫

a, 12

b,1

10

❄☛
✡
✟
✠✲ ✛

b, 12 c, 12

☛✡ ✟✠001

❙
❙
❙❙✇

✓
✓

✓✓✴

a, 12

c,1

Visible reachability graphs of the LDTSPNs above

N≡τspN
′, but N 6=IPMLN

′, because for Φ = 〈a〉1〈b〉 1
2
⊤, N |=N Φ, but

N ′ 6|=N ′ Φ, since only in N ′ an action a can occur so that no action b can occur

afterwards.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 250

Logic SPML

Definition 98 ⊤ denotes the truth, A ∈ INAct
fin , P ∈ (0; 1].

A formula of SPML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | ∇A | 〈A〉PΦ

SPML is the set of all formulas of SPML.

Definition 99 Let N be a LDTSPN and M ∈ RS∗(N). The satisfaction

relation |=N ⊆ RS
∗(N)× SPML:

1. M |=N ⊤— always;

2. M |=N ¬Φ, if M 6|=N Φ;

3. M |=N Φ∧Ψ, if M |=N Φ and M |=N Ψ;

4. M |=N ∇A, if not M
A
⇀⇀ RS∗(N);

5. M |=N 〈A〉PΦ, if ∃L ⊆ RS∗(N)M
A
→→Q L, Q ≥ P and

∀M̃ ∈ L M̃ |=N Φ.

〈A〉Φ = ∃P 〈A〉PΦ.

〈A〉QΦ implies 〈A〉PΦ, ifQ ≥ P .

We write N |=N Φ, if MN |=N Φ.

Definition 100 N and N ′ are logical equivalent in SPML, N=SPMLN
′, if

∀Φ ∈ SPMLN |=N Φ ⇔ N ′ |=N ′ Φ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 251

Let for a LDTSPN N M ∈ RS∗(N), A ∈ INAct
fin .

The set of next to M markings after occurrence of multiset of visible actions A

(visible image set) is V isImage(M,A) = {M̃ |M
A
→→ M̃}.

A LDTSPN N is a image-finite one, if

∀M ∈ RS∗(N) ∀A ∈ INAct
fin |V isImage(M,A)| <∞.

Theorem 24 For image-finite LDTSPNs N and N ′

N↔τ
spN

′ ⇔ N=SPMLN
′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 252

a b

♥♥t t
❄ ❄

N

↔τ
ibfp

6=SPML

b a

♥ ♥
a b

♥t
❄

❄

❄

❄

✁✁☛ ❆❆❯

N ′

1
2

1
2

1
2

1
2

1
2

1
2

Differentiating power of =SPML

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

11

01 10

00

RG(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✄✂ ✲
✄✂ ✲
✄✂ ✲
✄✂ ✲

∅, 14

∅, 12 ∅, 12

∅,1

{a,b},
1
4

a, 14 b, 14

b, 12 a, 12

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

100

010 001

000

RG(N ′)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✄✂ ✲
✄✂ ✲
✄✂ ✲
✄✂ ✲

∅, 13

∅, 12 ∅, 12

∅,1

a, 13 b, 13

b, 12 a, 12

Reachability graphs of the LDTSPNs above

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 253

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

11

01 10

00

RG∗(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

{a,b},
1
3

a, 13 b, 13

b,1 a,1

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

100

010 001

000

RG∗(N ′)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

a, 12 b, 12

b,1 a,1

Visible reachability graphs of the LDTSPNs above

N↔τ
ibfpN

′ but N 6=SPMLN
′, because for Φ = 〈{a, b}〉 1

3
⊤, N |=N Φ, but

N ′ 6|=N ′ Φ, since only in N ′ actions a and b cannot occur concurrently.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 254

Stationary behaviour

The PMF ψ∗ for the embedded steady-state distribution after occurrence of a

visible action is the unique solution of

∑
M̃∈RS∗(N)

ψ∗(M̃) · PM∗(M̃,M) = ψ∗(M)
∑
M∈RS∗(N) ψ

∗(M) = 1
.

A visible step trace of LDTSPN N is a chain Σ = A1 · · ·An ∈ Act∗, where

∃M ∈ RS∗(N)M
A1→→P1 M1

A2→→P2 · · ·
An→→Pn Mn. The probability of the

step trace Σ to start in the marking M is

PS∗(Σ,M) =
∑

{M1,...,Mn|M
A1→→P1

M1
A2→→P2

···
An→→PnMn}

n∏

i=1

Pi.

Theorem 25 Let Σ be a visible step trace of LDTSPNs N and N ′ and

R :↔τ
spN

′ or NR :↔τ
sbpN

′. Then ∀L ∈ (DR(G) ∪DR(G′))/R

∑

M∈L∩RS∗(N)

ψ∗(M)PS∗(Σ,M) =
∑

M ′∈L∩RS∗(N ′)

ψ∗(M ′)PS∗(Σ,M ′).

The trace equivalences do not guarantee the equality from the theorem above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 255

b c

a

♥

♥t
❄

❄

✁✁☛ ❆❆❯

✗

✖

✲ ✏

✑

✛

✠ ✡

N

≡τsp
↔/ τip
↔/ τibp

b c

a a

♥

♥t
❄

✁✁☛ ❆❆❯

✗

✖

✲ ✏

✑

✛

✠ ✡

N ′

♥❄
❄ ❄

1
2

1
2

1
2

1
2

1
2

1
2

1
2

LDTSPNs for which the equality from the theorem above does not hold

In the figure above, N≡τspN
′, but N↔/ τipN

′ and N↔/ τibpN
′.

The equality from the theorem above does not hold.

For N , the probabilities of being in the possible markings is 1
2 ,

1
2 .

For N ′, the probabilities of being in the possible markings is 1
2 ,

1
4 ,

1
4 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 256

Stochastic process algebra StAFP0

Algebra of finite nondeterministic parallel processes AFP0 [KCh85].

Specification of acyclic nets (A-nets, ANs).

Stochastic algebra of finite processes StAFP0.

Specification of stochastic A-nets (SANs).

Syntax

An activity (a, ω):

• a ∈ Act is the action label;

• ω ∈ (0; 1) is the probability of action a.

AP is the set of all activities.

Operations: concurrency ‖, precedence ;, alternative▽.

Definition 101 Let (a, ω) ∈ AP . A formula of StAFP0:

P ::= (a, ω) | P‖P | P ;P | P▽P.

StAFP0 is the set of all formulas of StAFP0.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 257

Semantics

Formulas of StAFP0 specify a subclass of LDTSPNs, Stochastic A-nets

(SANs): TN ⊆ Act, LN = idTN , MN = •N .

Thus, a SAN is specified by a quadruple N = (PN , TN ,WN ,ΩN).

The net representation of formulas, a mapping DSt0 from StAFP0 to SANs.

Let (a, ω) ∈ AP . An atomic net DSt0(a, ω) = (PN , TN ,WN ,ΩN), where

• PN = {ā, a};

• TN = {a};

• WN = {(ā, a), (a, a)};

• ΩN = {(a, ω)}.

a

♥

♥

t
❄

❄

ā

a

ω

DSt0(a, ω)

An atomic net

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 258

Let N = (PN , TN ,WN ,ΩN) be a SAN and Q,R ⊆ PN .

A forming operation ⊗:

Q⊗R = {q ∪ r | q ∈ Q, r ∈ R}.

The merging operation µ over a SAN N = (PN , TN ,WN ,ΩN) merges two

sets of its places Q,R ⊆ P :

µ(N,Q,R) = (P̃N , TN , W̃N ,ΩN), where

• P̃N = PN \ (Q ∪R) ∪ (Q⊗R);

• ∀t ∈ TN W̃N (p, t) =

WN (p, t), p ∈ P̃N \ (Q⊗R);

max{WN (r, t),WN (q, t)}, p = (q ∪ r) ∈ Q⊗R,

q ∈ Q, r ∈ R.

∀t ∈ TN W̃N (t, p) =

WN (t, p), p ∈ P̃N \ (Q⊗R);

max{WN (t, r),WN (t, q)}, p = (q ∪ r) ∈ Q⊗R,

q ∈ Q, r ∈ R.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 259

Let N = (PN , TN ,WN ,ΩN) and N ′ = (PN ′ , TN ′ ,WN ′ ,ΩN ′) be two

SANs. Net operations:

Concurrency N‖N ′ = (PN ∪ PN ′ , TN ∪ TN ′ ,WN ∪WN ′ ,Ω), where

Ω(a) =

ΩN (a), a ∈ TN \ TN ′ ;

ΩN ′(a), a ∈ TN ′ \ TN ;

ΩN (a) · ΩN ′(a), a ∈ TN ∩ TN ′ .

Precedence N ;N ′ = µ(N‖N ′, N•, •N ′).

Alternative N▽N ′ = µ(µ(N‖N ′, •N, •N ′), N•, N ′•).

Nets N and N ′ combined by ; and▽ contain no equally named transitions.

Formulas P and P ′ combined by ; and▽ contain no identical actions.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 260

Let P,Q ∈ StAFP0. The net representation of combined formulas:

1. DSt0(P‖Q) = DSt0(P)‖DSt0(Q);

2. DSt0(P ;Q) = DSt0(P);DSt0(Q);

3. DSt0(P▽Q) = DSt0(P)▽DSt0(Q).

Definition 102 Formulas P and P ′ are semantic equivalent in StAFP0,

P=St0P
′, ifDSt0(P)≃DSt0(P

′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 261

Axiomatization

Let P ∈ StAFP0. The structure of P , φP ∈ AFP0, specifies the

non-stochastic process: replace each activity (a, ω) of P by a.

The action probability function ΩP from actions contained in activities of P to

(0; 1). Let (a, ω1), . . . , (a, ωn) be all activities of P with action a. Then

ΩP (a) = ω1 · · ·ωn.

The axiom system ΘSt0: in accordance with =St0. Here a ∈ Act and

P,Q,G ∈ StAFP0.

1. Associativity

1.1 P‖(Q‖R) = (P‖Q)‖R

1.2 P ; (Q;R) = (P ;Q);R

1.3 P ▽ (Q▽R) = (P ▽Q)▽R

2. Commutativity

2.1 P‖Q = Q‖P

2.2 P ▽Q = Q▽ P

3. Distributivity

3.1 P ; (Q‖R) = (P1;Q)‖(P2;R), φP=φP1
=φP2

, ΩP=ΩP1
·ΩP2

3.2 (P‖Q);R = (P ;R1)‖(Q;R2), φR=φR1
=φR2

, ΩR=ΩR1
·ΩR2

3.3 P ▽ (Q‖R) = (P1 ▽Q)‖(P2 ▽R), φP=φP1
=φP2

, ΩP=ΩP1
·ΩP2

4. Probability

4.1 P = P1‖P2, φP=φP1
=φP2

, ΩP=ΩP1
·ΩP2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 262

The axiom system ΘSt0 is sound w.r.t. the equivalence =St0.

A formula P ∈ StAFP0 is a totally stratified one iff P = P1‖ · · · ‖Pn, n ≥ 1

and each Pi (1 ≤ i ≤ n) is a primitive formula, does not contain ‖.

Theorem 26 Any formula P ∈ StAFP0 can be transformed (with the use of

ΘSt0) into an equivalent (via =St0) totally stratified one.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 263

Overview and open questions

The results obtained

• A new class of stochastic Petri nets with labeled transitions and a step

semantics for transition firing (LDTSPNs).

• Equivalences for LDTSPNs which preserve interesting aspects of behavior

and thus can be used

to compare systems and to compute for a given one a minimal equivalent

representation [Buc95].

• A diagram of interrelations for the equivalences.

• Logical characterization of the equivalences via probabilistic modal logics.

• An application of the equivalences for comparing stationary behavior of

LDTSPNs.

• Stochastic algebra of finite processes StAFP0 for specification of stochastic

A-nets (SANs).

• A sound axiomatization of the net equivalence.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 264

Further research

• Other equivalences in interleaving and step semantics:

interleaving branching bisimulation [PRS92]

(respecting conflicts with invisible transitions),

back-forth bisimulations [NMV90,Pin93]

(moving backward along history of computation).

• True concurrent equivalences:

partial word and pomset relations [PRS92,Vog92,MCW03]

(partial order models of computation).

• Logical characterization of back and back-forth equivalences:

probabilistic extension of back-forth logic (BFL) [CLP92]

(probabilistic eventuality operator for back moves).

• More flexible process algebras:

Petri box calculus (PBC) [BDH92]

(infinite processes: recursion and iteration).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 265

Equivalences for process algebras: calculus AFP2

Abstract : A process algebra AFP2 was proposed by L.A. Cherkasova in 1989.

It has a semantics of posets with non-actions and deadlocked actions to respect

non-determinism.

Via formulas of AFP2, one can analyze behavior of A-nets (Acyclic nets). The

considered Petri net equivalences are investigated on this net subclass.

Semantic equivalences of formulas AFP2 (algebraic equivalences) are

transferred into A-nets, and their interrelations with the net equivalences are

investigated.

A term rewrite system RWS2 is produced from axiom system Θ2 for semantic

equivalences. Its confluence (in the case of termination) is proved.

A method of automatic check for algebraic equivalences based on RWS2 was

implemented as a program CANON in C programming language.

Keywords : Process algebras, syntax, semantics, semantic (algebraic)

equivalences, axiomatization, A-nets, net equivalences, term rewrite systems,

implementation.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 266

Contents

• Introduction

– Process algebras: semantics of concurrency

– Process algebras: specification and analysis

• Calculus AFP2

– Algebra of finite processes AFP2

– Syntax

– Denotational semantics

– Axiomatization

– Canonical form of formulas

• Net and algebraic simulation

– Equivalences on A-nets

– Comparing the net and algebraic equivalences

• Term rewriting

– Term rewrite system RWS2

– Notices on RWS2

– Confluence of RWS2

• Implementation

– Program CANON

– Examples of formula transformation with CANON

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 267

Introduction

Process algebras: semantics of concurrency

In process calculi, a process is specified by an algebraic formula.

A verification of its properties is accomplished by means of equivalences, axioms

and inference rules.

The calculi below construct a process from atomic actions with precedence,

parallelism, non-determinism and some auxiliary operations.

1. Interleaving semantics.

CCS [Mil80], CSP [Hoa80], TCSP [Hoa85,Old87a], BPA [BK89].

Concurrency is interpreted as sequential non-determinism.

2. Step semantics.

SCCS [Mil83], ACP [BK84], CCSP [Old87b], PBC [BDH92].

A special operator for simultaneous occurrence of actions.

3. Pomset semantics.

Algebra of event structures [BCa87].

A causal dependence relation over actions imposes partial ordering. Two

actions are parallel if they are causally independent.

Interleaving calculi are more suitable in technical staff.

Algebras based on step and pomset semantics have more natural specification of

concurrency.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 268

Process algebras: specification and analysis

1. Descriptive calculi.

They provide a description of structural properties of systems: specification.

An example is AFP0 [Ch89].

2. Analytical calculi.

They combine mechanisms as for specification of processes as for

investigation of their behavioral properties: analysis, verification.

An example is AFP2 [Ch89].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 269

Calculus AFP2

Algebra of finite processes AFP2

AFP2 has semantics of posets with non-actions and deadlocked actions (to

respect non-determinism).

A synchronization is by action name. The only event corresponds to equally

named actions.

Syntax

The symbol alphabets.

• α = {a, b, . . .} is an alphabet of actions.

• ᾱ = {ā, b̄, . . .} is an alphabet of non-actions.

• ∆α = {δa, δb, . . .} is an alphabet of deadlocked actions.

α̂ = α ∪ ᾱ ∪∆α.

Symbols of α̂ are combined into formulas by operations ; (precedence),▽

(exclusive or, alternative), ‖ (concurrency), ∨ (disjunction, union), ⌉⌉ (“not occur”),

⌉̃⌉ (“mistaken not occur”).

Definition 103 A formula of AFP2 is:

P ::= a | ā | δa | ⌉⌉a | ⌉̃⌉P | P ;Q | P‖Q | P▽Q | P∨Q.

Here a ∈ α, ā ∈ ᾱ, δa ∈ ∆α are elementary formulas.

AFP2 is the set of all formulas of AFP2.

Definition 104 Formulas P and P ′ of AFP2 are isomorphic, P≃P ′, if they

coincide up to associativity w.r.t. ; , ‖,∨,▽ and commutativity w.r.t. ‖,∨,▽.

For example, (a‖b‖c̄) ∨ (c‖ā‖b̄)≃(ā‖b̄‖c) ∨ (b‖a‖c̄).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 270

Denotational semantics

Let X ⊆ α̂. We propose the following notations.

• X+ = X ∩ α is the subset of actions of X ;

• X− = X ∩ ᾱ is the subset of non-actions of X ;

• ∆X = X ∩∆α is the subset of deadlocked actions of X .

We consider only posets ρ = (X,≺) over α̂ with the following restrictions.

1. a, ā and δa do not occur in X together;

2. ≺ is irreflexive;

3. ∀x, y ∈ X− ∪∆X (x 6≺ y) ∧ (y 6≺ x), all elements of X− ∪∆X are

incomparable;

4. ∀x ∈ X+ ∀y ∈ X− ∪∆X (x 6≺ y) ∧ (y 6≺ x), all elements of X+ and

X− ∪∆X are incomparable.

The modified union of posets absorbs equal computations and ones which can be

continued in another behaviour of nondeterministic process.

ρ∪̃ρ′ =

ρ, ρ′⊳ρ;

ρ′, ρ⊳ρ′;

{ρ, ρ′}, otherwise.

The operations over posets are introduced: ; (precedence), ‖ (concurrency),▽

(alternative), ⌉⌉ (not occur) and ⌉̃⌉ (mistaken not occur).

If a constructed poset ρ does not satisfy the conditions 1-4, we “correct” it with

regularization operation Regul.

It singles out the maximal prefix of ρ “before” some contradictions arise. All the

actions occuring “after” that contradictions are announced as the deadlocked

ones.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 271

• D1 = {δa | (a ∈ X) ∧ (a ≺ a)} ∪ {δa | (a ∈ X) ∧ (ā ∈ X)} ∪

{δa | (a ∈ X) ∧ (δa ∈ X)} ∪ {δa | (ā ∈ X) ∧ (δa ∈ X)} ∪∆X ;

• D2 = {δa | (a ∈ X) ∧ (δb ∈ D1) ∧ (δb ≺ a)};

• D3 = {δa | ā ∈ X}.

D =

∅, D1 = ∅;

D1 ∪D2 ∪D3, otherwise.

Then Regul(ρ) = (D, ∅) ∪ (Y,≺ ∩(Y × Y)), where Y = X \ α̂(D). If ρ

satisfies the conditions 1-4, then Regul(ρ) = ρ.

Let ρ = (X,≺), ρ′ = (X,≺′). We define poset operations.

Not occur ⌉⌉ρ = (ᾱ(X), ∅).

Mistaken not occur ⌉̃⌉ρ = (∆α(X), ∅).

Precedence

ρ;ρ′ = Regul(X ∪X ′,≺ ∪ ≺′ ∪(X+ × (X ′)+) ∪ (∆X × (X ′)+)).

Concurrency ρ‖ρ′ = Regul(X ∪X ′, (≺ ∪ ≺′)∗), where (≺ ∪ ≺′)∗ is a

transitive closure of≺ ∪ ≺′.

Alternative

ρ▽ρ′ = Regul(X ∪ ᾱ(X ′),≺, l∪ l′)∪̃Regul(ᾱ(X)∪X ′,≺′) (ρ▽ ρ′

is not a poset, but a set of two posets describing alternative behaviours).

We extend the operations above to sets of posets. Let P = ∪ni=1ρi and

P ′ = ∪mj=1ρ
′
j .

Then ¬P = ∪̃
n
i=1¬ρi, where ¬ ∈ {⌉⌉, ⌉̃⌉} and P◦P ′ = ∪̃

n
i=1(∪̃

m
j=1ρi ◦ ρ

′
j),

where ◦ ∈ {; , ‖,▽}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 272

Definition 105 A denotational semantics of AFP2 is a mapping D2 from

AFP2 into set of posets.

1. D2(a) = ({a}, ∅), D2(ā) = ({ā}, ∅), D2(δa) = ({δa}, ∅);

2. D2(¬P) = ¬D2(P), ¬ ∈ {⌉⌉, ⌉̃⌉};

3. D2(P◦Q) = D2(P)◦D2(Q), ◦ ∈ {; , ‖,▽};

4. D2(P∨Q) = D2(P)∪̃D2(Q).

Definition 106 Formulas P and P ′ are semantic equivalent in AFP2,

P=2P
′, iffD2(P) = D2(P

′).

If ρ = (X,≺) is a poset, then ρ+ = (X+,≺) is the visible part of ρ over α.

For any formula P of AFP2, D2(P) = ∪ni=1ρi is a set of posets, which

characterize a nondeterministic process specified by P .

An visible part of this set is defined asD+
2 (P]) = ∪

n
i=1ρ

+
i .

Definition 107 Formulas P and P ′ are observation semantic equivalent in

AFP2, P=+
2 P

′, iffD+
2 (P) = D

+
2 (P

′).

A context C is a formula of AFP2 with zero or more subformulas replaced by

“holes” to be filled by other formulas.

C(P) means putting of the formula P in each such “hole”.

Proposition 17 [Ch89] For any formulas P and P ′ of AFP2

P=2P
′ ⇔ ∀C C(P)=2C(P

′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 273

Example of semantic equivalence of AFP2

c

ba

♥

♥

♥

t
✡✡✢ ❏❏❫

❆❆❯ ✁✁☛

❄

❄

N

6≡i
a b

c

♥ ♥ ♥

♥ ♥ ♥

♥

t t tN ′

❄

❄

❄

❄

❄

❄

✑
✑✑✰

◗
◗◗s

❩
❩❩⑦

✚
✚✚❂

◗
◗◗s

✑
✑✑✰

ba

♥

♥

t
✡✡✢ ❏❏❫

❆❆❯ ✁✁☛

N1

=+
L2

6≡pr
a b

♥ ♥ ♥

♥ ♥ ♥

t t tN ′
1

❄

❄

❄

❄

✑
✑✑✰

◗
◗◗s

❩
❩❩⑦

✚
✚✚❂

c

♥

♥
❄

❄

N2
t

A-nets from example of congruence

Thus, =2 is a congruence w.r.t. operations of AFP2.

But =+
2 is not a congruence.

Let P1 = a▽ b, P ′
1 = (a▽ b)‖a‖b and P2 = c.

Then D+
2 (P1) = D

+
2 (P

′
1) = {({a}, ∅), ({b}, ∅) and P1=

+
2 P

′
1.

But D+
2 (P1;P2]) = {({a, b},≺1), ({b, c},≺2)}, whereas

D+
2 (P

′
1;P2) = {({a}, ∅), ({b}, ∅)}, and P1;P2 6=

+
2 P

′
1;P2.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 274

Axiomatization

An axiom system Θ2 is in accordance to the equivalence =2.

Here a ∈ α, ā ∈ ᾱ, δa ∈ ∆α, P,Q,R ∈ AFP2.

1. Associativity

1.1 P‖(Q‖R) = (P‖Q)‖R

1.2 P ▽ (Q▽R) = (P ▽Q)▽R

1.3 P ∨ (Q ∨R) = (P ∨Q) ∨R

1.4 P ; (Q;R) = (P ;Q);R

2. Commutativity

2.1 P‖Q = Q‖P

2.2 P ▽Q = Q▽ P

2.3 P ∨Q = Q ∨ P

3. Distributivity

3.1 (P‖Q);R = (P ;R)‖(Q;R)

3.2 P ; (Q‖R) = (P ;Q)‖(P ;R)

3.3 (P ∨Q);R = (P ;R) ∨ (Q;R)

3.4 P ; (Q ∨R) = (P ;Q) ∨ (P ;R)

3.5 (P ∨Q)‖R = (P‖R) ∨ (Q‖R)

3.6 P ▽ (Q‖R) = (P ▽Q)‖(P ▽R)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 275

4. Axioms for▽ and ⌉⌉

4.1 P ▽Q = (P‖(⌉⌉Q)) ∨ ((⌉⌉P)‖Q)

4.2 ⌉⌉(P‖Q) = (⌉⌉P)‖(⌉⌉Q)

4.3 ⌉⌉(P ∨Q) = (⌉⌉P) ∨ (⌉⌉Q)

4.4 ⌉⌉(P ;Q) = (⌉⌉P)‖(⌉⌉Q)

4.5 ⌉⌉a = ā

4.6 ⌉⌉ā = ā

4.7 ⌉⌉δa = ā

5. Structural properties

5.1 ā;P = ā‖P

5.2 P ; ā = P‖ā

5.3 P‖(P ;Q) = (P ;Q)

5.4 Q‖(P ;Q) = (P ;Q)

5.5 P ;Q;R = (P ;Q)‖(Q;R)

5.6 (P ;Q)‖(Q;R) = (P ;Q)‖(Q;R)‖(P ;R)

5.7 P‖P = P

5.8 P ∨ P = P

5.9 P ∨Q = P or Q ⊳ P (⊳ is a strict prefix of formulas, defined later)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 276

6. Axioms for deadlocked actions and ⌉̃⌉

6.1 a‖ā = δa

6.2 a; a = δa

6.3 a‖δa = δa

6.4 δa;P = δa‖(⌉̃⌉P)

6.5 P ; δa = P‖δa

6.6 δa‖(⌉⌉P) = δa‖(⌉̃⌉P)

6.7 ⌉̃⌉a = δa

6.8 ⌉̃⌉ā = δa

6.9 ⌉̃⌉δa = δa

6.10 ⌉̃⌉(P‖Q) = (⌉̃⌉P)‖(⌉̃⌉Q)

6.11 ⌉̃⌉(P ;Q) = (⌉̃⌉P)‖(⌉̃⌉Q)

6.12 ⌉̃⌉(P ∨Q) = (⌉̃⌉P) ∨ (⌉̃⌉Q)

The axiom system Θ2 is sound for =2: if P = P ′ is an axiom of Θ2, then

P=2P
′.

To prove that Θ2 is complete for =2, we introduce a canonical form of formulas.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 277

Canonical form of formulas

A canonical form of formulas of AFP2 is a disjunctive normal form.

Elementary members: symbols from α̂ or elementary precedences (of two

actions).

Conjunction: ‖, disjunction: ∨.

Let P be a formula of AFP2. Alphabet α(P) of P is:

1. α(a) = α(ā) = α(δa) = a;

2. α(¬P) = α(P), ¬ ∈ {⌉⌉, ⌉̃⌉};

3. α(P◦Q) = α(P) ∪ α(Q), ◦ ∈ {; , ‖,▽,∨}.

• ᾱ(P) = {ā | a ∈ α(P)};

• ∆α(P) = {δa | a ∈ α(P)};

• α̂(P) = α(P) ∪ ᾱ(P) ∪∆α(P).

Contents of P , cont(P), is:

1. cont(a) = a, cont(ā) = ā, cont(δa) = δa;

2. cont(¬P) = cont(P), ¬ ∈ {⌉⌉, ⌉̃⌉};

3. cont(P◦Q) = cont(P) ∪ cont(Q), ◦ ∈ {; , ‖,▽,∨}.

• cont+(P) = cont(P) ∩ α is the set of actions of P ;

• cont−(P) = cont(P) ∩ ᾱ is the set of non-actions of P ;

• ∆cont(P) = cont(P) ∩∆α is the set of deadlocked actions of P .

Precedence is a formula P1; . . . ;Pn = ;ni=1Pi, where Pi ∈ α̂ (1 ≤ i ≤ n);

Conjunction is a formula P1‖ . . . ‖Pn = ‖ni=1Pi, where Pi are precedences

(1 ≤ i ≤ n).

Disjunction is a formula P = P1∨ . . .∨Pn = ∨ni=1Pi, where Pi (1 ≤ i ≤ n)

are conjunctions.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 278

Normal conjunction is a conjunction P = ‖ni=1Pi s.t.:

1. Every formula Pi (1 ≤ i ≤ n) has one of the forms:

(a) elementary formula a (a ∈ α), ā (ā ∈ ᾱ), δa (δa ∈ ∆α);

(b) elementary precedence (a; b), where a, b ∈ α and a 6= b;

2. If there is a formula Pi (1 ≤ i ≤ n) s.t. Pi = δa (δa ∈ ∆α), then there is

no another one Pj (1 ≤ j ≤ n) s.t. Pj = b̄ (b̄ ∈ ᾱ);

3. For any formulas Pi and Pj (1 ≤ i 6= j ≤ n) s.t. α(Pi) ∩ α(Pj) 6= ∅, Pi
and Pj have a form of different elementary precedences;

4. For any pair Pi = (a; b) and Pj = (b; c) (1 ≤ i 6= j ≤ n) there exists a

formula Pk = (a; c) (1 ≤ k ≤ n) describing the transitive closure of the

precedence relation for actions a, b and c.

1 (2,3,4)-conjunction is a conjunction that satisfy the condition 1 (2,3,4) from the

definition above.

For example, 1,2,3,4-conjunction is a normal one.

Let P and Q be normal conjunctions. A formula P is a strict prefix of Q, P⊳Q, if:

1. cont+(P) ⊂ cont+(Q);

2. elementary precedence (a; b) is a conjunctive member of Q and

b ∈ cont+(P) iff (a; b) is a conjunctive member of P .

A formula P is a prefix of Q, P⊳Q, if P ⊳ Q or P ≃ Q.

For example, in the formula (a‖c‖b̄‖d̄‖ē) ∨ (c‖δa‖δb‖δd‖δe)∨

(a‖δb‖δc‖δd‖δe) ∨ ((b; d)‖(b; e)‖ā‖c̄), the second and third conjunctions are

strict prefixes of the first one.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 279

Definition 108 A formula P is in canonical form if it is a disjunction

P = ∨ni=1Pi with the following properties.

1. Pi (1 ≤ i ≤ n) is a normal conjunction;

2. for any Pi and Pj (1 ≤ i 6= j ≤ n) Pi 6≃ Pj ;

3. for any Pi and Pj (1 ≤ i 6= j ≤ n) ¬(Pi ⊳ Pj ∨ Pj ⊳ Pi).

As for conjunction, we define 1 (2,3)-disjunction.

For example, 1,2,3-disjunction is a canonical form.

Each disjunctive member of canonical form characterizes one of alternative

behaviours of the nondeterministic process specified by the formula.

It has a form practically coinciding with a poset corresponding to this behaviour.

For example, the formula (a‖c‖b̄‖d̄‖ē) ∨ ((b; d)‖(b; e)‖ā‖c̄) is in canonical

form.

A conjunction (disjunction) is maximal if there is no longer one containing it as a

conjunctive (disjunctive) member.

Theorem 27 [Ch89] Any formula of AFP2 can be reduced to the unique (up to

isomorphism) canonical form.

The set of all canonical forms of a formula P is canon(P).

Definition 109 P=Θ2P
′ means that the equality of P and P ′ can be proved

using Θ2.

Theorem 28 [Ch89] For any formulas P and P ′ of AFP2

P=2P
′ ⇔ P=Θ2P

′.

To check equivalence of formulas P and P ′ of AFP2, one can reduce them to

canonical forms Q and Q′ and compare the latter up to isomorphism.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 280

Net and algebraic simulation

Equivalences on A-nets

A descriptive algebra AFP0 with semantics based on finite A-nets [KCh85].

Any finite A-net can be specified by a formula of the algebra using “regularization”

algorithm [Kot78].

A mapping Ξ from the set of all formulas of AFP0 into that of AFP2 s.t. the set

of posets of the net specified by a formula P of AFP0, coincide with the set of

posets of nondeterministic process specified by the formula Ξ(P) of AFP2

[Ch89].

Given an A-net specified by the formula P of AFP0, one can analyze its

behavior by means of the same formula P of AFP2.

Definition 110 An A-net (Acyclic net) is an acyclic ordinary strictly labeled net

N = (PN , TN ,WN , LN ,MN):

1. ∀p ∈ PN (•p 6= ∅) ∨ (p• 6= ∅), there are no isolated places;

2. ∀p, q ∈ PN (•p = •q) ∧ (p• = q•) ⇒ p = q, there are no “superfluous”

places;

3. ∀t ∈ TN (•t 6= ∅) ∧ (t• 6= ∅), all transitions have input and output places;

4. ∀x ∈ PN ∪ TN | ↓ x| <∞, the set of causes is finite;

5. ∀p ∈ PN ∀t, u ∈ TN t, u ∈ •p ⇒ t al u, transitions with common output

place are alternative;

6. MN = •N , an initial marking is a set of input places of the net.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 281

The alternative relation, al, is defined as follows. Let t, u ∈ TN for A-net N .

t al u if the following is valid.

1. (t 6≺N u) ∧ (u 6≺N t);

2. (•t∩•u 6= ∅)∨(∃p ∈ •t ∀t′ ∈ •p t′ al u)∨(∃q ∈ •u ∀u′ ∈ •q t al u′)∨

(t = u).

Since we consider nets only with finite processes, item 4 may be ignored.

Items 5 and 6 guarantee a safeness of A-nets.

A mapping Ξ : AFP0 → AFP2 is defined as:

1. Ξ(a) = a;

2. Ξ(P ;0Q) = P ;2Q;

3. Ξ(P‖0Q) = P‖2Q;

4. Ξ(P▽0Q) = P▽2Q.

The number 0 (2) marks the operations of AFP0 (AFP2).

Denotational semantics of AFP0 is a mapping D0, which associates with every

formula P a set of maximal C-subnets of finite A-net N , specified by the formula.

Theorem 29 [Ch89] Let P be a formula of AFP0 and Q be a formula of

AFP2 s.t. Q = Ξ(P). Then

{ρC | C ∈ D0(P)} = D
+
2 (Q).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 282

Proposition 18 [Tar97] For A-nets N and N ′

1. N≡iN
′ ⇔ N≡mesN

′;

2. N≡prN
′ ⇔ N↔prhN

′.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

✛

≃

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄

≡mes ≡occ

❄

❄
✛

Merging of the basic equivalences on A-nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 283

≡i ≡pr✛

≃

≡occ
❄

❄

Interrelations of the basic equivalences on A-nets

Theorem 30 Let↔,↔↔ ∈ {≡,≃}, ⋆, ⋆⋆ ∈ { , i, pr, occ}. For A-nets N

and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff there exists a directed path from↔⋆ to↔↔⋆⋆ in the graph above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 284

b

a

♥

♥ ♥

t
❄

❄❩❩❩⑦

❄

N ′

≡mes
6≡pr
=2

♥❄
b

a

♥

♥

t
❄

❄

❄

♥❄

N

a b c

♥ ♥ ♥

♥ ♥ ♥

t t t
❄

❄

❄

❄

◗
◗◗s

✚
✚✚❂

✑
✑✑✰

❩
❩❩⑦

◗
◗◗s

✚
✚✚❂

a b c

♥ ♥ ♥

♥ ♥ ♥

t t t
❄

❄

❄

❄

◗
◗◗s

✚
✚✚❂

✑
✑✑✰

❩
❩❩⑦

◗
◗◗s

✚
✚✚❂

✑
✑✑✰

❩
❩❩⑦

❄

❄

N N ′

(a)

(c)

↔prh

≡mes

6≡occ

a b

♥ ♥ ♥

♥ ♥ ♥

t t t
❄

❄

❄

❄

✑
✑✑✰

❩
❩❩⑦

◗
◗◗s

✚
✚✚❂

N

(b)

a b

♥ ♥ ♥

♥ ♥ ♥

t t t
❄

❄

❄

❄

✑
✑✑✰

❩
❩❩⑦

◗
◗◗s

✚
✚✚❂

c

◗
◗◗s

✑
✑✑✰

♥❄

N ′

≡occ
6≃

6=2

AN: Examples of the basic equivalences on A-nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 285

• In Figure AN(a), N≡iN
′, but N 6≡prN

′, since a causal net of process of N ′

with action a not isomorphic to any causal net of process of N .

P = a; b, P ′ = (a; b)‖a.

B = a; b, B′ = [x : (({a, x}; b)‖x̂)].

• In Figure AN(c), N≡prN
′, but N 6≡occN

′, since only in the unfolding of N ′

there is a place which is an input one for three transitions.

P = (a▽ b)‖(b▽ c)‖(a▽ c), P ′ = (a▽ b▽ c)‖(a▽ b)‖c.

B = [{x, y} : (({a, x}[]{b, y})‖x̂‖ŷ)],

B′ = [{x, y, z} : (({a, x}[]{b, y})‖(x̂; {c, z})‖(ŷ; ẑ))].

• In Figure AN(b), N≡occN ′, but N 6≃N ′, since only in the net N ′ there is a

transition labeled by c (which never fires).

P = (a▽ b)‖a‖b, P ′ = (a▽ b)‖(a; c)‖(b; c).

B = [{x, y, z} : (({a, x}[]{b, y})‖({b, ŷ}[]{c, z})‖({a, x̂}[]{c, ẑ}))],

B′ = [{x, y, z} : (({a, x}[]{b, y}[]{c, z})‖({a, x̂}[]{b, ŷ})‖{c, ẑ})].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 286

Comparing the net and algebraic equivalences

Definition 111 Let↔ be a formula equivalence of AFP2, and the formulas P

and P ′ correspond to the finite A-nets N and N ′ (as described before).

N and N ′ are equivalent (w.r.t.↔), notation N↔N ′, iff the formulas

corresponding them are also equivalent, P↔P ′.

Proposition 19 [Tar97] For A-nets N and N ′

N≡iN
′ ⇔ N=+

2 N
′.

≡i=+
2

≡pr

=2

= ✛

≃✛

≡occ
❄

❄❄

Interrelations of the basic net and algebraic equivalences

Theorem 31 Let↔,↔↔ ∈ {≡,≃,=}, ⋆, ⋆⋆ ∈ { , i, pr, occ,D+
2 ,D2}. For

A-nets N and N ′

N↔⋆N
′ ⇒ N↔⋆⋆N

′

iff there exists a directed path from↔⋆ to↔↔⋆⋆ in the graph above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 287

Equivalences on weakly labeled A-nets

Definition 112 A weakly labeled A-net is an net with all properties of A-net with

exception of strict labeling.

≡i ≡s ≡pw ≡pom ≡pr

↔i ↔s ↔pw ↔pom ↔pr

↔iST ↔pwST ↔pomST ↔prST

↔pomh ↔prh

✛ ✛ ✛ ✛

✛✛✛ ✛

✛✛✛

✛

≃

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄❄

≡mes ≡occ

❄

❄
✛

Interrelations of the basic equivalences on weakly labeled A-nets

Theorem 32 Let↔,↔↔ ∈ {≡,↔,≃}, ⋆, ⋆⋆ ∈ { , i, s, pwpom, pr, iST,

pwST, pomST, prST, pomh, prh,mes, occ}. For weakly labeled A-nets N

and N ′

N↔⋆N
′ ⇒ N↔↔⋆⋆N

′

iff there exists a directed path from↔⋆ to↔↔⋆⋆ in the graph above.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 288

a b

♥ ♥
♥ ♥
❄

❄

❄

❄

t t
N

↔i

6≡s
a b

b a

♥
♥ ♥

♥

t
❄

❄

❄

❄

N ′

(a)

a

b

a

♥
♥

♥

t
❄

❄

N ′(d)

≡pr

↔/ i
a

b

♥
♥

♥

t
❄

❄

❄

❄

N

a

b b

♥

♥ ♥

♥ ♥

t

t
❄

❄

❄

❄

✚✚❂

❩
❩❩⑦

N

(b)

↔pwST

6≡pom
a b

♥ ♥
♥ ♥
❄

❄

❄

❄

t t N ′

a

b

c

d

♥

♥

♥

♥

♥ ♥

t t
❄

❄

❄

❄

❄

❄

❄

❄

N(c)

↔iST

6≡pw

b b d d

a c

♥ ♥

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

t t

t
N ′

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

✑
✑✑✰

◗
◗◗s

❩❩⑦

✑
✑✑✰

✚✚❂

❩
❩❩⑦

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✘✘✘✘✘✾
❳❳❳❳❳③

✏✏✏✏✏✮
PPPPPq

❄

❄

❳❳❳❳❳③
✘✘✘✘✘✾

✡✡✢ ❏❏❫

❏❏❫ ✡✡✢

✡✡✢ ❏❏❫

❏❏❫

✄
✄
✄
✄
✄
✄✄✎

LAN: Examples of weakly labeled A-nets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 289

b

a a

b

♥ ♥

♥ ♥

♥ ♥ ♥

♥♥
♥

♥N(a) t t t

t t
❄

❄

◗
◗◗s❄

✲ ↔pr

↔/ iST

a

b

b

a

b

♥ ♥
♥ ♥
♥ ♥♥ ♥
♥ ♥
♥ ♥

t t

t t

t

N ′

❄

❄

❄

❳❳❳❳❳③

❄

❄
✛✲

❍❍❍❍❍❥

✟✟✟✟✟✙
✻

✲ ✛

✲
✑

✑✑✰
✑

✑✑✰

✚
✚✚❃

✛
✚
✚❃

c

a

d

♥

♥♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

♥

t

t t t
N(b)

❄

✑
✑✑✰

PPPPPq

❄

❄

❄

❄

◗
◗◗s

✚
✚✚❂

↔prST

↔/ pomh

b
❄

❄

✑
✑✑✰

c
❄

❄

◗
◗◗s

✚
✚✚❂

c

a

d

♥

♥♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

♥

t

t t t
❄

✑
✑✑✰

PPPPPq

❄

❄

❄

❄

◗
◗◗s

✚
✚✚❂

b
❄

❄

✑
✑✑✰

c
❄

❄

◗
◗◗s

✚
✚✚❂

b
❄

❄

✑
✑✑✰

❩
❩❩⑦

N ′

✘✘✘✘✘✾

❩
❩❩⑦

❩
❩❩⑦

a

♥

♥

t
❄

❄

N(c)

a a

♥

♥

t
✁✁☛ ❆❆❯

❏❏❫ ✡✡✢

N ′

↔prh

6≡mes

❄

❄

❄

❄

✑
✑✑✰

❩
❩❩⑦

◗
◗◗s

✚
✚✚❂

✑
✑✑✰

❩
❩❩⑦

✚
✚✚❂

LAN1: Examples of weakly labeled A-nets (continued)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 290

In the following examples, E, E′ are formulas of AFLP2 [Tar96] and B, B′

are that of PBC [BDH92].

• In Figure LAN(a), N↔iN
′, but N 6≡sN ′, since only in N ′ actions a and b

can occur concurrently.

E = e‖f, E′ = (e1; f1)▽ (e2; f2).

B = a‖b, B′ = (a; b)[](b; a).

• In Figure LAN(c), N↔iSTN
′, but N 6≡pwN ′, since N is associated with

the pomset s.t. even less sequential one cannot be executed in N ′.

E = (e; f)‖(g;h), E′ = (e; (f1▽ f2))‖(e; (f2▽ h1))‖

(g; (f2 ▽ h1))‖(g; (h1▽ h2))‖(f1 ▽ h2).

B = (a; b)‖(c; d),

B′ = [{x, y1, y2, y′2, z, v1, v
′
1, v2} : (({a, x}; ({b, y1}[]{b, y2}))‖

({a, x̂}; ({b, ŷ2, y′2}[]{d, v1}))‖({c, z}; ({b, ŷ
′
2}[]{d, v̂1, v

′
1}))‖

({c, ẑ}; ({d, v̂′1}[]{d, v2}))‖({b, ŷ1}[]{d, v̂2}))].

• In Figure LAN(b), N↔pwSTN
′, but N 6≡pomN ′, since only in N ′ action b

can depend on a.

E = e‖f, E′ = (e; f1)‖(f1▽ f2).

B = a‖b, B′ = [x : ((a; {b, x})‖(b[]x̂))].

• In Figure AN(a), N≡mesN ′, but N 6≡prN ′.

E = e; f, E′ = (e; f)‖e.

B = a; b, B′ = [x : (({a, x}; b)‖x̂)].

• In Figure LAN(d), N≡prN ′, but N↔/ iN ′, since only in N ′ action a can

occur so that b cannot occur after it.

E = e; f, E′ = (e1; f)▽ e2.

B = a; b, B′ = (a; b)[]a.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 291

• In Figure LAN1(a), N↔prN
′, but N↔/ iSTN

′, since only in N ′ action a

can begin working so that no b can start unless a finishes.

E = ((e1 ▽ e2); f1)‖(f1▽ f2)‖e1‖e2‖f2,

E′ = ((e1; f1)▽ (e2; f3))‖(f1 ▽ f2)‖(e2▽ f2)‖e1‖f3.

B = [{x1, x2, y1, y2} : ((({a, x1}[]{a, x2}); {b, y1})‖(ŷ1[]{b, y2})‖

x̂1‖x̂2‖ŷ2)],

B′ = [{x1, x2, y1, y2, y3} : (({a, x1}; {b, y1})[]({a, x2}; {b, y3}))‖

(ŷ1[]{b, y2})‖(x̂2[]ŷ2)‖x̂1‖ŷ3)].

• In Figure LAN1(b), N↔prSTN
′, but N↔/ pomhN ′, since only in N ′

actions a and b can occur so that the next action, c, must depend on a.

E = (e; f ;h)‖(e; g2)‖(g1 ▽ g2)‖f‖g1,

E′ = (e; (f1 ▽ f2);h)‖(e; g2)‖(f2 ▽ g1)‖(g1 ▽ g2)‖f1.

B =

[{x, y, z1, z2} : (({a, x}; {b, y}; d)‖(x̂; {c, z2})‖({c, z1}[]ẑ2)‖ŷ‖

ẑ1)],

B′ = [{x, y1, y2, z1, z2} : ({a, x}; ({b, y1}[]{b, y2}); d)‖(x̂; {c, z2})‖

(ŷ2[]{c, z1})‖(ẑ1[]ẑ2)‖ŷ1)].

• In Figure LAN1(c), N↔prhN
′, but N 6≡mesN ′, since only MES that

corresponding to N ′ has two conflict actions a.

E = e, E′ = e1 ▽ e2.

B = a, B′ = a[]a.

• In Figure AN(b), N≡occN ′, but N 6≃N ′.

E = (e▽ f)‖e‖f, E′ = (e▽ f)‖(e; g)‖(f ; g).

B = [{x, y} : (({a, x}[]{b, y})‖x̂‖ŷ),

B′ = {x, y, z} : (({a, x}[]{b, y})‖(x̂; {c, z})‖(ŷ; ẑ))].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 292

Term rewriting

Term rewrite system RWS2

Let P = P1◦ . . . ◦Pi−1◦Pi◦Pi+1◦ . . . ◦Pn, ◦ ∈ {; , ‖,▽,∨}.

A substitution [P]PiQ of subformula Pi by subformula Q in P is

P1◦ . . . Pi−1◦Q◦Pi+1◦ . . . ◦Pn.

In the rules of RWS2, P,Q,R denote formulas of AFP2 and

a, b, c ∈ α, ā, b̄ ∈ ᾱ, δa, δb ∈ ∆α, ♦ ∈ {
−, δ}.

The numbers in parentheses are the that of equalities of Θ2 used to produce the

corresponding transition rules.

1.1 ◦ ∈ {; , ‖,∨} ⇒

P ◦ (Q ◦R)→ (P ◦Q) ◦R

(1.1, 1.3, 1.4)

2.1 (•, ◦) ∈ {(‖, ;), (∨, ;), (∨, ‖)} ⇒

(P ◦Q) •R→ (P •R) ◦ (Q •R)

(3.1, 3.3, 3.5)

2.2 (•, ◦) ∈ {(‖, ;), (∨, ;), (∨, ‖)} ⇒

P • (Q ◦R)→ (P •Q) ◦ (P •R)

(2.1, 3.2, 3.4, 3.5)

3.1 P ▽Q→ (P‖(⌉⌉Q)) ∨ ((⌉⌉P)‖Q)

(4.1)

4.1 ◦ ∈ {‖, ; },¬ ∈ {⌉⌉, ⌉̃⌉} ⇒

¬(P ◦Q)→ (¬P)‖(¬Q)

(4.2, 4.4, 6.10, 6.11)

4.2 ¬ ∈ {⌉⌉, ⌉̃⌉} ⇒

¬(P ∨Q)→ (¬P) ∨ (¬Q)

(4.3, 6.12)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 293

4.3 P = a or P = ♦a ⇒

⌉⌉P → ā

(4.5, 4.6, 4.7)

4.4 P = a or P = ♦a ⇒

⌉̃⌉P → δa

(6.7, 6.8, 6.9)

5.1 P,Q,R ∈ α̂ ⇒

(P ;Q);R→ ((P ;Q)‖(Q;R))‖(P ;R)

(5.5, 5.6)

5.2 Q ∈ α̂ ⇒

ā;Q→ ā‖Q

(5.1)

5.3 P ∈ α̂ ⇒

P ; ā→ P‖ā

(5.2)

5.4 a; a→ δa

(6.2)

5.5 Q = b or Q = ♦b ⇒

δa;Q→ δa‖δb

(6.4, 6.7, 6.8, 6.9)

5.6 P ∈ α̂ ⇒

P ; δa → P‖δa

(6.5)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 294

6.1 P is 1-conjunction, P ′ = δa is a conjunctive member of P ⇒

P‖b̄→ P‖δb

(1.1, 2.1, 4.5, 6.6, 6.7)

6.2 P is 1-conjunction, P ′ = b̄ is a conjunctive member of P ⇒

P‖δa → [P]P
′

δb
‖δa

(1.1, 2.1, 4.5, 6.6, 6.7)

7.1 P is 1,2-conjunction, P ′ is a conjunctive member of P, P ′ = a or

P ′ = b ⇒

P‖(a; b)→ [P]P
′

(a;b)

(1.1, 2.1, 5.3, 5.4)

7.2 P is 1,2-conjunction, P ′ is a conjunctive member of P, P ′ = (a; b) or

P ′ = (b; a) ⇒

P‖a→ P

(1.1, 2.1, 5.3, 5.4)

7.3 P is 1,2-conjunction, P ′ = a is a conjunctive member of P ⇒

P‖♦a→ [P]P
′

δa

(1.1, 2.1, 6.1, 6.3)

7.4 P is 1,2-conjunction, P ′ is a conjunctive member of P, P ′ = ♦a ⇒

P‖a→ [P]P
′

δa

(1.1, 2.1, 6.1, 6.3)

7.5 P is 1,2-conjunction, P ′ = (a; b) is a conjunctive member of P ⇒

P‖♦a→ [P]P
′

δb
‖δa

(1.1, 1.4, 2.1, 5.1, 6.1, 6.3, 6.4, 6.7)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 295

7.6 P is 1,2-conjunction, P ′ = (b; a) is a conjunctive member of P ⇒

P‖♦a→ [P]P
′

b ‖δa

(1.1, 2.1, 5.2, 6.1, 6.3, 6.5)

7.7 P is 1,2-conjunction, P ′ is a conjunctive member of P, P ′ = ♦a ⇒

P‖(a; b)→ [P]P
′

δa
‖δb

(1.1, 1.4, 2.1, 5.1, 6.1, 6.3, 6.4, 6.7)

7.8 P is 1,2-conjunction, P ′ is a conjunctive member of P, P ′ = ♦a ⇒

P‖(b; a)→ [P]P
′

δa
‖b

(1.1, 2.1, 5.2, 6.1, 6.3, 6.5)

7.9 P is 1,2-conjunction, P ′ = Q is a conjunctive member of P ⇒

P‖Q→ P

(1.1, 2.1, 5.7)

8.1 P is 1,2,3-conjunction, P ′ = (a; b) is a conjunctive member of P , in the

maximal 1,2,3-conjunction containing P as a conjunctive member, there is no

conjunctive member P ′′ = (a; c) ⇒

P‖(b; c)→ (P‖(b; c))‖(a; c)

(1.1, 2.1, 5.6)

8.2 P is 1,2,3-conjunction, P ′ = (c; a) is a conjunctive member of P , in the

maximal 1,2,3-conjunction containing P as a conjunctive member there is no

conjunctive member P ′′ = (b; a) ⇒

P‖(b; c)→ (P‖(b; c))‖(b; a)

(1.1, 2.1, 5.6)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 296

9.1 P is 1-disjunction, P ′ is a disjunctive member of P, P ′≃Q ⇒

P ∨Q→ P

(1.1, 1.3, 2.1, 2.3, 5.8)

10.1 P is 1,2-disjunction, Q is a normal conjunction, P ′ is a disjunctive member of

P, Q ⊳ P ′ ⇒

P ∨Q→ P

(1.3, 2.3, 5.9)

10.2 P is 1,2-disjunction, Q is a normal conjunction, P ′ is a disjunctive member of

P, P ′ ⊳ Q ⇒

P ∨Q→ [P]P
′

Q

(1.3, 2.3, 5.9)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 297

Notices on RWS2

• Rule 1.1 (left associativity): to avoid infinite chains

P ◦ (Q ◦R)→ (P ◦Q) ◦R→ P ◦ (Q ◦R)→ · · · , ◦ ∈ {; , ‖,∨}.

No commutativity rules: to avoid infinite chains

P ◦Q→ Q ◦ P → P ◦Q→ · · · , ◦ ∈ {‖,∨}.

Symmetrical rules are required.

• Rules 2.1-2.2 (symmetrical distributivity): to obtain disjunction of conjunctions

with precedences or elementary formulas as conjunctive members.

• Rule 3.1: to remove▽.

• Rules 4.1–4.4: to remove ⌉⌉ and ⌉̃⌉.

• Rules 5.1–5.6: to transform precedences into elementary ones (property 1 of

normal conjunction).

Conjunctive (disjunctive) members we want to transform in a pair are not

always adjacent: search in conjunction (disjunction) is required.

• Rules 6.1–6.2: to avoid conjunction of non-actions and deadlocked actions

(property 2 of normal conjunction).

• Rules 7.1–7.9: to avoid common alphabet symbols in conjunctive members,

with exception of that in two different elementary precedences (property 3 of

normal conjunction).

• Rules 8.1–8.2: to add a “transitive closure” elementary precedence to the pair

of ones with common action (property 4 of normal conjunction).

Search in a maximal conjunction: to avoid infinite chains

(a; b)‖(b; c)→ ((a; b)‖(b; c))‖(a; c)→

(((a; b)‖(b; c))‖(a; c))‖(a; c)→ · · · .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 298

• Rule 9.1: to remove isomorphic disjunctive members (property 1 of normal

disjunction).

• Rules 10.1–10.2: to remove prefixed disjunctive members (property 2 of

normal disjunction).

Rules 6.1–6.2 and 7.5–7.8 are based on the following derived axioms. Numbers

over equality signs are that of axioms of Θ2. Symbol ∗ marks reverse axiom

application. Numbers in parentheses are that of previous derived axioms.

1. ā‖(a; b)
5.1∗
= ā; (a; b)

1.4
= (ā; a); b

5.1
= (ā‖a); b

2.1
= (a‖ā); b

6.1
= δa; b

6.4
=

δa‖(⌉̃⌉b)
6.7
= δa‖δb;

2. δa‖(a; b)
6.1∗
= (a‖ā)‖(a; b)

1.1∗
= a‖(ā‖(a; b))

(1)
= a‖(δa‖δb)

1.1
=

(a‖δa)‖δb
6.3
= δa‖δb;

3. ā‖(b; a)
2.1
= (b; a)‖ā

5.2∗
= (b; a); ā

1.1∗
= b; (a; ā)

5.2
= b; (a‖ā)

6.1
= b; δa

6.5
=

b‖δa
2.1
= δa‖b;

4. δa‖(b; a)
6.1∗
= (a‖ā)‖(b; a)

1.1∗
= a‖(ā‖(b; a))

(3)
= a‖(δa‖b)

1.1
=

(a‖δa)‖b
6.3
= δa‖b;

5. δa‖b̄
4.5∗
= δa‖(⌉⌉b)

6.6
= δa‖(⌉̃⌉b)

6.7
= δa‖δb.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 299

Confluence of RWS2

Proposition 20 [Tar97] No rule from the groups 1–5 can be applied to a formula

of AFP2 iff it is a disjunction of 1-conjunctions.

Proposition 21 [Tar97] No rule from the groups 1–6 can be applied to a formula

of AFP2 iff it is a disjunction of 1,2-conjunctions.

Proposition 22 [Tar97] No rule from the groups 1–7 can be applied to a formula

of AFP2 iff it is a disjunction of 1,2,3-conjunctions.

ā δa

a(a; b)b

b̄δb

❅
❅
❅

❅
❅

❅
❅
❅

❅
❅

❅
❅

❅
❅
❅
❅

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�
�

1

3 4

2

2

34

1

3 4

3 4

5
5

5 5

5

5 5

✻

❄

✛ ✲

✻

❄
✛ ✲
��✠

❅❅■ ��✒

❅❅❘
✛ ✲

✻

❄
✲✛

❄

✻❅❅■

❅❅❘��✠

��✒

✻

✲

✻

✛

✛
❄

✻

✲
✻✻

✲

✲
❄ ❄

✛

Conjunctive members with intersecting alphabets

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 300

Proposition 23 [Tar97] No rule from the groups 1–8 can be applied to a formula

of AFP2 iff it is a 1-disjunction.

Proposition 24 [Tar97] No rule from the groups 1–9 can be applied to a formula

of AFP2 iff it is a 1,2-disjunction.

Theorem 33 [Tar97] No rule from RWS2 can be applied to a formula of

AFP2 iff it is in the canonical form.

Hence, to check semantic equivalence of two formulas of AFP2, it is enough to

transform them to the canonical forms with the use of RWS2 and then check

these canonical forms for isomorphism.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 301

Implementation

Program CANON

A program CANON in C programming language (more than 2000 lines) based

on the previous results. It transforms any formula of AFP2 into canonical form.

A structure of function main.

Print information about program

and format of input formula;

Print "Formula has been read";

Transform list into tree; Dispose list;

Print formula;

step=1; /*step number*/

do

{

Print step;

nar=0; /*the initial number of rule

applications at the present step*/

Apply rules; Print nar;

step++; /*next step*/

}

while(nar!=0);

Print canonical form.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 302

Special symbol representation in CANON

Initial

symbol − δ ⌉⌉ ⌉̃⌉ ; ‖ ▽ ∨

Symbolic

constant NOT DLT NOC MNO PRC CNC ALT DSJ

ASCII-

symbol - * ‘ ˜ ; | # +

A structure of formulas.

1. a;

2. -a , *a ;

3. ‘a , ˜a ;

4. ‘(P) , ˜(P) ;

5. a#b , a+b , a|b , a;b ;

6. a#(P) , a+(P) , a|(P) , a;(P) ;

7. (P)#a , (P)+a , (P)|a , (P);a ;

8. (P)#(Q) , (P)+(Q) , (P)|(Q) , (P);(Q) .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 303

a +)
❄ ❄

start finish

❄ ❄

✻ ✻

(a)

(b)

+ \0

\0 a * b

❄
❩

❩
❩⑦

✑
✑

✑✑✰�
�
�✒

❅
❅❅■

ancestor

❦❦❦
❄

✁✁ ❆❆
∨

a δb

(c)

ancestor

(
❄

✻
*

❄

✻
b

❄

✻

s s
s s

s s s s s s s s s s

List and tree representations of the formula a ∨ δb

♥
♥
♥
♥

♥
♥
♥

❄

▲▲

☞☞

☞☞

☞☞

✲

✛

✲ ✛

root

p

q r

‖

;

;

a

b

c d

▲▲

▲▲

ancestor

A tree to which the rule 1.1 can be applied

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 304

A structure of rules.

if(root!=NULL)

{

if(the rule is directly applicable

to the tree with pointer root)

{

Set pointers to subtrees corresponding

to subformulas in the rule;

Print rule number and subformulas;

Transform tree in accordance to the rule;

(*addrnar)++; /*increase counter of rules

applied at the present step*/

Print new formula;

}

else

{

Apply rule to the left subtree;

Apply rule to the right subtree;

}

}

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 305

❧
❧ ❧▲▲
❧ ❧▲▲

☞☞

☞☞

◦

◦
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲
✲

root

p

rq

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

◦

◦
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲

p

pr

✲

✛

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

◦

◦
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲

p

r

q
✲

✛

✲

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

◦

◦
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲

r

q✛q

✛ root✛ root✛ root✛

✲

✛ ✲ ✲

✛

✇

✠ ✠

Tree transformations with rule 1.1

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

•

◦
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲

r

q✛
p

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

◦

•
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲
q✛

p
✲

r

✲

❧
❧
❧▲▲
❧ ❧▲▲☞☞ ☞☞

◦

•

☞☞ ▲▲ ☞☞ ▲▲ ☞☞ ▲▲
r

❧☞☞•
p

q

✲

❧
❧
❧
❧ ❧▲▲☞☞ ☞☞

◦

•

☞☞ ▲▲ ☞☞ ▲▲ ☞☞ ▲▲

r
❧•

p ❧▲▲
☞☞ ▲▲

q

=r

✱✱ ❧❧
root✛ root✛ root✛ root✛

✛

✠ ✠

✇ ✇ ✇✇ ✇ ✠✇

Tree transformations with rule 2.1

❧
❧ ❧▲▲
❧ ❧▲▲

☞☞

☞☞

•

◦
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲
q

p
❧
❧ ❧▲▲
❧ ❧▲▲

☞☞

☞☞

◦

•
☞☞ ▲▲

☞☞ ▲▲ ☞☞ ▲▲

✲ ✲

❧
❧
❧▲▲
❧ ❧▲▲☞☞

◦

•

☞☞ ▲▲☞☞ ▲▲ ☞☞ ▲▲

❧☞☞• ✲

❧
❧
❧

❧ ❧▲▲ ☞☞☞☞

◦

•

☞☞ ▲▲☞☞ ▲▲ ☞☞ ▲▲

r
❧• ❧▲▲

☞☞ ▲▲=p

✱✱ ❧❧
root✛ root✛ root✛ root✛

✠ ✠

✇

✲ ✠
q

▲▲

p
✇

rr

✲q
✠✲p ✴q

✲p

r
✠

Tree transformations with rule 2.2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 306

❧
❧ ❧▲▲☞☞
▽

☞☞ ▲▲ ☞☞ ▲▲

p

✲

root✛

✠✇
q
❧
❧ ❧▲▲☞☞
‖

☞☞ ▲▲ ☞☞ ▲▲

p
root✛

✠✇
q

✲

❧
❧☞☞ ‖

☞☞ ▲▲

p
root✛

✇ ❧▲▲⌉⌉ ✲ ❧
❧☞☞ ‖

☞☞ ▲▲

p
✇ ❧▲▲⌉⌉
❧ vertex✛∨

✲☞☞ ❧
❧☞☞ ‖

☞☞ ▲▲

p

root

✇ ❧▲▲⌉⌉
❧ vertex✛∨

✲☞☞✇ ❧▲▲‖

❧
❧
❧

☞☞
‖

☞☞ ▲▲

☞☞ ▲▲

p

root

✇

q

❧▲▲⌉⌉
❧ vertex✛∨

✲✇ ❧‖❧☞☞
✲

⌉⌉

❩❩�� ❧
❧☞☞ ‖

☞☞ ▲▲

p

root

✇ ❧▲▲⌉⌉
❧ vertex✛∨

✲✇ ❧‖❧☞☞⌉⌉
❩❩��

❧
☞☞ ▲▲

q ✲

❧
☞☞ ▲▲

q ✲ ❧
☞☞ ▲▲

q ✲

❧
☞☞ ▲▲

q ✲ ❧
☞☞ ▲▲=p

root
✇

❧
❧☞☞ ‖

☞☞ ▲▲

p

root

✇ ❧▲▲⌉⌉
❧ vertex✛∨

✇ ❧‖❧☞☞⌉⌉
❩❩��

❧
☞☞ ▲▲

q ✲ ❧
☞☞ ▲▲=p

❧▲▲
☞☞ ▲▲=q

Tree transformations with rule 3.1

❧
❧
❧ ❧▲▲☞☞

¬

◦

☞☞ ▲▲ ☞☞ ▲▲

p
✲

root✛

✠
q

❘

✠
vertex
❧
❧
❧ ❧▲▲☞☞

¬

‖

☞☞ ▲▲ ☞☞ ▲▲

p
✲

root✛

✠
q

❘

✠
vertex
❧
❧ ❧▲▲☞☞
‖

☞☞ ▲▲ ☞☞ ▲▲

p

✲✠
q

❘

vertex✛ ❧
❧
❧▲▲‖

☞☞ ▲▲

☞☞ ▲▲
p

✲✠
q

❘

vertex✛

❧☞☞¬
❧
❧
❧▲▲‖

☞☞ ▲▲

p
❘

vertex✛

❧☞☞¬ ❧
☞☞ ▲▲

✠
q

¬

Tree transformations with rule 4.1❧
❧
❧ ❧▲▲☞☞

¬

∨

☞☞ ▲▲ ☞☞ ▲▲

p
✲

root✛

✠
q

❘

✠
vertex
❧
❧ ❧▲▲☞☞
∨

☞☞ ▲▲ ☞☞ ▲▲

p

✲✠
q

❘

vertex✛ ❧
❧
❧▲▲∨

☞☞ ▲▲

☞☞ ▲▲
p

✲✠
q

❘

vertex✛

❧☞☞¬
❧
❧
❧▲▲∨

☞☞ ▲▲

p
❘

vertex✛

❧☞☞¬ ❧
☞☞ ▲▲

✠
q

¬

Tree transformations with rule 4.2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 307

♥
♥
⌉⌉

a,♦a

✲
root✛

��✠
p
♥a,♦a

✲
p✛ ♥̄a p✛

Tree transformations with rule 4.3♥
♥
⌉̃⌉

a,♦a

✲
root✛

��✠
p
♥a,♦a

✲
p✛ ♥δa p✛

Tree transformations with rule 4.4

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

;

;

r

q✛
p

✲

root✛

✠

✇

❧
❧❧ ▲▲
❧ ❧▲▲

☞☞

☞☞

‖

;

r

q✛
p

✲

root✛

✠

✇

❧
❧
❧

▲▲❧ ❧▲▲
☞☞

☞☞

‖

;
q

p
✲

root✛

✇

❧▲▲;
✠

❧
❧

❧
▲▲❧ ❧▲▲☞☞

‖

;
qp

✲

root✛

✇

❧;
✠ ❧☞☞=q

✚✚ ❧❧

❧
❧

❧
▲▲❧ ❧▲▲☞☞

‖

;
qp

✲

root✛

✇

❧;
✠ ❧☞☞=q

✚✚ ❧❧

❧‖
✚✚

vertex✛

❧
❧

❧
▲▲❧ ❧▲▲☞☞

‖

;
qp

✲

root✛

✇

❧;
✠ ❧☞☞=q

✚✚ ❧❧

❧‖
✚✚

vertex✛

❧;❧❧ ❧
❧

❧
▲▲❧ ❧▲▲☞☞

‖

;

r

qp
✲

root✛

✇

❧;
✠ ❧☞☞=q

✚✚ ❧❧

❧‖ vertex✛

❧;❧☞☞=p

✛

✧✧ ❜❜

r✛r✛

r✛r✛

❧
❧

❧
▲▲❧ ❧▲▲☞☞

‖

;

r

qp

root✛

✇

❧;
✠ ❧☞☞=q

✚✚ ❧❧

❧‖ vertex✛

❧;❧☞☞=p

✛

✧✧ ❜❜

❧▲▲=r
Tree transformations with rule 5.1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 308

♥
♥ ♥

;
qp

root✛

❙❙✇ ��✠☞☞ ▲▲
ā

✲
♥
♥ ♥
‖

qp
root✛

❙❙✇ ��✠☞☞ ▲▲
ā

Tree transformations with rule 5.2♥
♥ ♥

;
qp

root✛

❙❙✇ ��✠☞☞ ▲▲
ā

✲
♥
♥ ♥
‖

qp
root✛

❙❙✇ ��✠☞☞ ▲▲
ā

Tree transformations with rule 5.3♥
♥ ♥

;
qp

root✛

❙❙✇ ��✠☞☞ ▲▲
a

✲

a

♥
♥ ♥
δa

qp
root✛

❙❙✇ ��✠☞☞ ▲▲
aa

♥δa root✛
✲

Tree transformations with rule 5.4♥
♥ ♥

;
qp

root✛

❙❙✇ ��✠☞☞ ▲▲
b,♦b

✲
♥
♥ ♥
‖

qp
root✛

❙❙✇ ��✠☞☞ ▲▲
δa δa b,♦b

✲
♥
♥ ♥
‖

qp
root✛

❙❙✇ ��✠☞☞ ▲▲
δa δb

Tree transformations with rule 5.5♥
♥ ♥

;
qp

root✛

❙❙✇ ��✠☞☞ ▲▲
δa

✲
♥
♥ ♥
‖

qp
root✛

❙❙✇ ��✠☞☞ ▲▲
δa

Tree transformations with rule 5.6

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 309

♥
♥

♥

▲▲

♥ ♥▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

��✠❙❙✇
b̄
♥‖
♥▲▲

☞☞ ▲▲

♥
♥▲▲

‖

p1δa ✛

♥
♥

♥

▲▲

♥ ♥▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

��✠❙❙✇
δb
♥‖
♥▲▲

☞☞ ▲▲

♥
♥▲▲

‖

p1δa ✛

♣♣♣
♣♣♣ ♣♣♣

♣♣♣

Tree transformations with rule 6.1♥
♥

♥

▲▲

♥ ♥▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

��✠❙❙✇
δa
♥‖
♥▲▲

☞☞ ▲▲

♥
♥▲▲

‖

p1b̄ ✛

♥
♥

♥

▲▲

♥ ♥▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

��✠❙❙✇
δa
♥‖
♥▲▲

☞☞ ▲▲

♥
♥▲▲

‖

p1δb ✛

♣♣♣
♣♣♣ ♣♣♣

♣♣♣

Tree transformations with rule 6.2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 310

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
;❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1a/b✛

♣♣♣
♣♣♣ ❧ ❧▲▲☞☞

❍❍❍

a b

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

q

p root✛

✠

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲ ❧❧
❧ ❧▲▲☞☞
‖

☞☞ ▲▲ ☞☞ ▲▲

q

p

✠
;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲

Tree transformations with rule 7.1♥

♥♥
♥ ♥▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

��✠

❙❙✇

;

♥‖ ♥
☞☞ ▲▲♥‖♣♣♣
♣♣♣

♥ ♥▲▲☞☞
a/b b/a

❍❍❍

❛❛

✲ ♥♥
♥ ♥▲▲☞☞

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p

��✠
;

♥‖ ♥
☞☞ ▲▲♥‖♣♣♣
♣♣♣

♥ ♥▲▲☞☞
a/b b/a

❍❍❍

❛❛
✲♥❛❛

a q✛

Tree transformations with rule 7.2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 311

❧
❧

❧
▲▲

❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
♦a❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1a ✛

❧
❧

❧
▲▲

❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

✠✇
♦a❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣ ♣♣♣

♣♣♣ ❧
❧ ❧▲▲☞☞
‖

☞☞ ▲▲ ☞☞ ▲▲

p ❧‖ ❧▲▲
☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣✲

✲

Tree transformations with rule 7.3❧
❧

❧
▲▲

❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
a❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1♦a✛

❧
❧

❧
▲▲

❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

✠✇
a❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣ ♣♣♣

♣♣♣ ❧
❧ ❧▲▲☞☞
‖

☞☞ ▲▲ ☞☞ ▲▲

p ❧‖ ❧▲▲
☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣✲

✲

Tree transformations with rule 7.4

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 312

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✠

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲

❧❛❛♦a q✛
❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✠

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲

❧❛❛δa q✛
❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✇

δb

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣ ❛❛
❧❛❛δa q✛

✛
▲▲

Tree transformations with rule 7.5

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✠

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
b a

❍❍❍

❛❛
✲

❧❛❛♦a q✛
❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✠

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
b a

❍❍❍

❛❛
✲

❧❛❛δa q✛
❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✇

b

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣ ❛❛
❧❛❛δa q✛

✛
▲▲

Tree transformations with rule 7.6

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 313

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
;❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1♦a✛

♣♣♣
♣♣♣ ❧ ❧▲▲☞☞

❍❍❍

a b

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
;❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣ ❧ ❧▲▲☞☞

❍❍❍

a b

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

q

p root✛

✇
δb❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣

▲▲
✛

Tree transformations with rule 7.7

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
;❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1♦a✛

♣♣♣
♣♣♣ ❧ ❧▲▲☞☞

❍❍❍

b a

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp

✲

root✛

✠✇
;❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣ ❧ ❧▲▲☞☞

❍❍❍

b a

❧
❧

❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

q

p root✛

✇
b❧‖ ❧▲▲

☞☞ ▲▲
❧
❧▲▲‖ p1δa✛

♣♣♣
♣♣♣

▲▲
✛

Tree transformations with rule 7.8

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 314

♥
♥

♥
♥ ♥▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

��✠❙❙✇♥‖
♥▲▲

☞☞ ▲▲

♥
♥▲▲

‖

p1✛

♣♣♣
♣♣♣ ♥

♥ ♥▲▲☞☞

‖

☞☞ ▲▲ ☞☞ ▲▲

p ♥‖
♥▲▲

☞☞ ▲▲

♥
♥▲▲

‖

p1✛

♣♣♣
♣♣♣✲

✲
☞☞ ▲▲

▲▲

☞☞ ▲▲=q

☞☞ ▲▲=q

Tree transformations with rule 7.9

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 315❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛

✲

❧;❧ ❧▲▲☞☞
b c

✛

q✛
PPPP ❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲

❧;❧ ❧▲▲☞☞
b c

✛

q✛
PPPP

❧
☞☞
‖ vertex✛

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p
✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲

❧;❧ ❧▲▲☞☞
b c

✛

q

PPPP

❧
☞☞
‖ vertex✛root

✇

✲

❧❛❛ ; ❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p
✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
✲

❧;❧ ❧▲▲☞☞
b c

✛

q

PPPP

❧
☞☞
‖ vertex✛root

✇

✲

❧;❧☞☞a
PPPPPP

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p
✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
a b

❍❍❍

❛❛
❧;❧ ❧▲▲☞☞

b c

✛

q

PPPP

❧
☞☞
‖ vertex✛root

✇

✲

❧;❧☞☞a
PPPPPP

❧▲▲c

Tree transformations with rule 8.1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 316❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
c a

❍❍❍

❛❛

✲

❧;❧ ❧▲▲☞☞
b c

✛

q✛
PPPP ❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p root✛

✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
c a

❍❍❍

❛❛
✲

❧;❧ ❧▲▲☞☞
b c

✛

q✛
PPPP

❧
☞☞
‖ vertex✛

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p
✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
c a

❍❍❍

❛❛
✲

❧;❧ ❧▲▲☞☞
b c

✛

q

PPPP

❧
☞☞
‖ vertex✛root

✇

✲

❧❛❛ ; ❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p
✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
c a

❍❍❍

❛❛
✲

❧;❧ ❧▲▲☞☞
b c

✛

q

PPPP

❧
☞☞
‖ vertex✛root

✇

✲

❧;❧☞☞b
PPPPPP

❧

❧❧
❧ ❧▲▲

☞☞

☞☞

‖

‖

☞☞ ▲▲ ☞☞ ▲▲

p1

p
✇

;

❧‖ ❧
☞☞ ▲▲❧‖♣♣♣
♣♣♣
❧ ❧▲▲☞☞
c a

❍❍❍

❛❛
❧;❧ ❧▲▲☞☞

b c

✛

q

PPPP

❧
☞☞
‖ vertex✛root

✇

✲

❧;❧☞☞b
PPPPPP

❧▲▲a

Tree transformations with rule 8.2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 317

♥
♥

♥
♥ ♥▲▲

☞☞

☞☞

∨

∨

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

��✠❙❙✇♥∨
♥▲▲

☞☞ ▲▲

♥
♥▲▲

∨

p1✛

♣♣♣
♣♣♣ ♥

♥ ♥▲▲☞☞

☞☞ ▲▲ ☞☞ ▲▲

p ♥
♥▲▲

☞☞ ▲▲

♥
♥▲▲

p1✛

♣♣♣
♣♣♣✲

✲
☞☞ ▲▲

▲▲

☞☞ ▲▲≃q

☞☞ ▲▲≃q

∨

∨

∨

Tree transformations with rule 9.1♥
♥

♥
♥ ♥▲▲

☞☞

☞☞

∨

∨

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

��✠❙❙✇♥∨
♥▲▲

☞☞ ▲▲

♥
♥▲▲

∨

p1✛

♣♣♣
♣♣♣ ♥

♥ ♥▲▲☞☞

☞☞ ▲▲ ☞☞ ▲▲

p ♥
♥▲▲

☞☞ ▲▲

♥
♥▲▲

p1✛

♣♣♣
♣♣♣✲

✲
☞☞ ▲▲

▲▲

☞☞ ▲▲

⊳p1

☞☞ ▲▲

∨

∨

∨

Tree transformations with rule 10.1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 318

♥
♥

♥
♥ ♥▲▲

☞☞

☞☞

∨

∨

☞☞ ▲▲ ☞☞ ▲▲

qp root✛

��✠❙❙✇♥∨
♥▲▲

☞☞ ▲▲

♥
♥▲▲

∨

p1✛

♣♣♣
♣♣♣ ♥

♥ ♥▲▲☞☞

☞☞ ▲▲ ☞☞ ▲▲

p ♥
♥▲▲

☞☞ ▲▲

♥
♥▲▲ q✛

♣♣♣
♣♣♣✲

✲
☞☞ ▲▲

▲▲

☞☞ ▲▲⊳q

☞☞ ▲▲

∨

∨

∨

♥

♥
♥ ♥▲▲

☞☞

☞☞

∨

∨

☞☞ ▲▲ ☞☞ ▲▲

p root✛

❙❙✇♥∨
♥▲▲

☞☞ ▲▲

♥
♥▲▲

∨

q✛

♣♣♣
♣♣♣

✲

☞☞ ▲▲

Tree transformations with rule 10.2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 319

Example of formula transformation with CANON

The initial formula: (a▽ (b; e))‖(d▽ (c; e)).

a b

♥

♥t

e

♥

c

♥

♥t
d

♥

N
✡✡✢ ❏❏❫

❄

❙❙✇ ✓✓✴

✡✡✢ ❏❏❫

❄

✡✡✢ ❏❏❫

❇
❇
❇
❇
❇
❇❇◆

✂
✂
✂
✂
✂
✂✂✌

A-net for the formula (a▽ (b; e))‖(d▽ (c; e))

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 320

The author of this program is I.V. Tarasyuk

Program CANON transforms formulas of algebras AFP_2, AFLP_2

into canonical form

Input formula should be in one of the following forms:

1. a

2. -a *a

3. ‘a ˜a

4. ‘(P) ˜(P)

5. a;b a|b a#b a+b

6. a;(P) a|(P) a#(P) a+(P)

7. (P);a (P)|a (P)#a (P)+a

8. (P);(Q) (P)|(Q) (P)#(Q) (P)+(Q)

where a and b are symbols of elementary actions,

P and Q are formulas types 2-8

Input formula

Sign of end is EOF

Formula has been read

Your formula is:

(a#(b;e))|(d#(c;e))

Step 1

Rule 3.1 is applied

P=a

Q=(b;e)

New formula is:

((a|(‘(b;e)))+((‘a)|(b;e)))|(d#(c;e))

Rule 3.1 is applied

P=d

Q=(c;e)

New formula is:

((a|(‘(b;e)))+((‘a)|(b;e)))|((d|(‘(c;e)))+((‘d)|(c;e)))

Rule 4.1 is applied

P=b

Q=e

New formula is:

((a|((‘b)|(‘e)))+((‘a)|(b;e)))|((d|(‘(c;e)))+((‘d)|(c;e)))

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 321

Rule 4.1 is applied

P=c

Q=e

New formula is:

((a|((‘b)|(‘e)))+((‘a)|(b;e)))|((d|((‘c)|(‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied

P=b

New formula is:

((a|((-b)|(‘e)))+((‘a)|(b;e)))|((d|((‘c)|(‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied

P=e

New formula is:

((a|((-b)|(-e)))+((‘a)|(b;e)))|((d|((‘c)|(‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied

P=a

New formula is:

((a|((-b)|(-e)))+((-a)|(b;e)))|((d|((‘c)|(‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied

P=c

New formula is:

((a|((-b)|(-e)))+((-a)|(b;e)))|((d|((-c)|(‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied

P=e

New formula is:

((a|((-b)|(-e)))+((-a)|(b;e)))|((d|((-c)|(-e)))+((‘d)|(c;e)))

Rule 4.3 is applied

P=d

New formula is:

((a|((-b)|(-e)))+((-a)|(b;e)))|((d|((-c)|(-e)))+((-d)|(c;e)))

Number of applied rules in step 1 is 10

Step 2

Rule 1.1 is applied

P=a

Q=(-b)

R=(-e)

New formula is:

(((a|(-b))|(-e))+((-a)|(b;e)))|((d|((-c)|(-e)))+((-d)|(c;e)))

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 322

Rule 1.1 is applied

P=d

Q=(-c)

R=(-e)

New formula is:

(((a|(-b))|(-e))+((-a)|(b;e)))|(((d|(-c))|(-e))+((-d)|(c;e)))

Rule 2.1 is applied

P=((a|(-b))|(-e))

Q=((-a)|(b;e))

R=(((d|(-c))|(-e))+((-d)|(c;e)))

New formula is:

(((a|(-b))|(-e))|(((d|(-c))|(-e))+((-d)|(c;e))))+

(((-a)|(b;e))|(((d|(-c))|(-e))+((-d)|(c;e))))

Rule 2.2 is applied

P=((a|(-b))|(-e))

Q=((d|(-c))|(-e))

R=((-d)|(c;e))

New formula is:

((((a|(-b))|(-e))|((d|(-c))|(-e)))+(((a|(-b))|(-e))|((-d)|(c;e))))+

(((-a)|(b;e))|(((d|(-c))|(-e))+((-d)|(c;e))))

Rule 2.2 is applied

P=((-a)|(b;e))

Q=((d|(-c))|(-e))

R=((-d)|(c;e))

New formula is:

((((a|(-b))|(-e))|((d|(-c))|(-e)))+(((a|(-b))|(-e))|((-d)|(c;e))))+

((((-a)|(b;e))|((d|(-c))|(-e)))+(((-a)|(b;e))|((-d)|(c;e))))

Number of applied rules in step 2 is 5

Step 3

Rule 1.1 is applied

P=((((a|(-b))|(-e))|((d|(-c))|(-e)))+(((a|(-b))|(-e))|((-d)|(c;e))))

Q=(((-a)|(b;e))|((d|(-c))|(-e)))

R=(((-a)|(b;e))|((-d)|(c;e)))

New formula is:

(((((a|(-b))|(-e))|((d|(-c))|(-e)))+(((a|(-b))|(-e))|((-d)|(c;e))))+

(((-a)|(b;e))|((d|(-c))|(-e))))+(((-a)|(b;e))|((-d)|(c;e)))

Number of applied rules in step 3 is 1

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 323

Step 4

Rule 1.1 is applied

P=((a|(-b))|(-e))

Q=(d|(-c))

R=(-e)

New formula is:

((((((a|(-b))|(-e))|(d|(-c)))|(-e))+(((a|(-b))|(-e))|((-d)|(c;e))))+

(((-a)|(b;e))|((d|(-c))|(-e))))+(((-a)|(b;e))|((-d)|(c;e)))

Rule 1.1 is applied

P=((a|(-b))|(-e))

Q=(-d)

R=(c;e)

New formula is:

((((((a|(-b))|(-e))|(d|(-c)))|(-e))+((((a|(-b))|(-e))|(-d))|(c;e)))+

(((-a)|(b;e))|((d|(-c))|(-e))))+(((-a)|(b;e))|((-d)|(c;e)))

Rule 1.1 is applied

P=((-a)|(b;e))

Q=(d|(-c))

R=(-e)

New formula is:

((((((a|(-b))|(-e))|(d|(-c)))|(-e))+((((a|(-b))|(-e))|(-d))|(c;e)))+

((((-a)|(b;e))|(d|(-c)))|(-e)))+(((-a)|(b;e))|((-d)|(c;e)))

Rule 1.1 is applied

P=((-a)|(b;e))

Q=(-d)

R=(c;e)

New formula is:

((((((a|(-b))|(-e))|(d|(-c)))|(-e))+((((a|(-b))|(-e))|(-d))|(c;e)))+

((((-a)|(b;e))|(d|(-c)))|(-e)))+((((-a)|(b;e))|(-d))|(c;e))

Number of applied rules in step 4 is 4

Step 5

Rule 1.1 is applied

P=((a|(-b))|(-e))

Q=d

R=(-c)

New formula is:

(((((((a|(-b))|(-e))|d)|(-c))|(-e))+((((a|(-b))|(-e))|(-d))|(c;e)))+

((((-a)|(b;e))|(d|(-c)))|(-e)))+((((-a)|(b;e))|(-d))|(c;e))

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 324
Rule 1.1 is applied

P=((-a)|(b;e))

Q=d

R=(-c)

New formula is:

(((((((a|(-b))|(-e))|d)|(-c))|(-e))+((((a|(-b))|(-e))|(-d))|(c;e)))+

(((((-a)|(b;e))|d)|(-c))|(-e)))+((((-a)|(b;e))|(-d))|(c;e))

Number of applied rules in step 5 is 2

Step 6

Rule 7.6 is applied

P=((((-a)|(b;e))|d)|(-c))

P’=(b;e)

Q=(-e)

New formula is:

(((((((a|(-b))|(-e))|d)|(-c))|(-e))+((((a|(-b))|(-e))|(-d))|(c;e)))+

(((((-a)|b)|d)|(-c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Rule 7.8 is applied

P=(((a|(-b))|(-e))|(-d))

P’=(-e)

Q=(c;e)

New formula is:

(((((((a|(-b))|(-e))|d)|(-c))|(-e))+((((a|(-b))|(*e))|(-d))|c))+

(((((-a)|b)|d)|(-c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Rule 7.9 is applied

P=((((a|(-b))|(-e))|d)|(-c))

P’=(-e)

Q=(-e)

New formula is:

((((((a|(-b))|(-e))|d)|(-c))+((((a|(-b))|(*e))|(-d))|c))+

(((((-a)|b)|d)|(-c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Number of applied rules in step 6 is 3

Step 7

Rule 6.1 is applied

P=((a|(-b))|(*e))

P’=(*e)

Q=(-d)

New formula is:

((((((a|(-b))|(-e))|d)|(-c))+((((a|(-b))|(*e))|(*d))|c))+

(((((-a)|b)|d)|(-c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 325

Rule 6.2 is applied

P=((a|(-b))|(*e))

P’=(-b)

Q=(*d)

New formula is:

((((((a|(-b))|(-e))|d)|(-c))+((((a|(*b))|(*e))|(*d))|c))+

(((((-a)|b)|d)|(-c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Rule 6.2 is applied

P=((((-a)|b)|d)|(-c))

P’=(-c)

Q=(*e)

New formula is:

((((((a|(-b))|(-e))|d)|(-c))+((((a|(*b))|(*e))|(*d))|c))+

(((((-a)|b)|d)|(*c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Number of applied rules in step 7 is 3

Step 8

Rule 6.2 is applied

P=((((-a)|b)|d)|(*c))

P’=(-a)

Q=(*e)

New formula is:

((((((a|(-b))|(-e))|d)|(-c))+((((a|(*b))|(*e))|(*d))|c))+

(((((*a)|b)|d)|(*c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Number of applied rules in step 8 is 1

Step 9

Number of applied rules in step 9 is 0

Canonical form is:

((((((a|(-b))|(-e))|d)|(-c))+((((a|(*b))|(*e))|(*d))|c))+

(((((*a)|b)|d)|(*c))|(*e)))+((((-a)|(b;e))|(-d))|(c;e))

Canonical form is: (a‖d‖b̄‖c̄‖ē) ∨ (a‖c‖δb‖δd‖δe) ∨ (b‖d‖δa‖δc‖δe) ∨

((b; e)‖(c; e)‖ā‖d̄).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 326

Discrete time stochastic Petri box calculus

Abstract : In [MVF01], a continuous time stochastic extension sPBC of finite

PBC was proposed.

In [MVCC03], iteration operator was added to sPBC .

Algebra sPBC has interleaving semantics, but PBC has step one.

We constructed a discrete time stochastic extension dtsPBC of finite PBC

[Tar05] and enriched it with iteration [Tar06].

Step operational semantics is defined in terms of labeled probabilistic transition

systems.

Denotational semantics is defined in terms of a subclass of labeled DTSPNs

(LDTSPNs) called discrete time stochastic Petri boxes (dts-boxes).

We propose a variety of stochastic equivalences.

The interrelations of all the introduced equivalences are investigated.

It is explained how to use the equivalences for transition systems and discrete

time Markov chains reduction.

A logical characterization of the equivalences is presented via probabilistic modal

logics.

We demonstrate how to apply the equivalences to compare stationary behaviour.

A congruence relation is defined.

The case studies of performance evaluation are presented.

Keywords : Stochastic Petri nets, stochastic process algebras, Petri box calculus,

iteration, discrete time, transition systems, operational semantics, dts-boxes,

denotational semantics, empty loops, stochastic equivalences, reduction, modal

logics, stationary behaviour, congruence, performance evaluation.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 327

Contents

• Introduction

– Previous work

• Syntax

• Operational semantics

– Inaction rules

– Action and empty loop rules

– Transition systems

• Denotational semantics

– Labeled DTSPNs

– Algebra of dts-boxes

• Stochastic equivalences

– Empty loops in transition systems

– Empty loops in reachability graphs

– Stochastic trace equivalences

– Stochastic bisimulation equivalences

– Stochastic isomorphism

– Interrelations of the stochastic equivalences

• Reduction modulo equivalences

• Logical characterization

– Logic iPML

– Logic sPML

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 328

• Stationary behaviour

– Theoretical background

– Steady state and equivalences

– Simplification of performance analysis

• Preservation by algebraic operations

• Case studies

– Shared memory system

– Dining philosophers system

• Overview and open questions

– The results obtained

– Further research

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 329

Introduction

Previous work

• Continuous time (subsets of IR+): interleaving semantics

– Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:

exponential transition firing delays,

Continuous time Markov chain (CTMC).

– Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:

exponential and zero transition firing delays,

Semi-Markov chain (SMC).

• Discrete time (subsets of IN): interleaving and step semantics

– Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:

geometric transition firing delays,

Discrete time Markov chain (DTMC).

– Discrete time deterministic and stochastic Petri nets (DTDSPNs) [ZFH01]:

geometric and fixed transition firing delays,

Semi-Markov chain (SMC).

– Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:

phase and fixed transition firing delays,

Semi-Markov chain (SMC).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 330

Stochastic process algebras

• MTIPP [HR94]

• GSPA [BKLL95]

• PEPA [Hil96]

• Sπ [Pri96]

• EMPA [BGo98]

• GSMPA [BBGo98]

• sACP [AHR00]

• TCP dst [MVi08]

More stochastic process calculi

• TIPP [GHR93]

• TPCCS [Han94]

• PM − TIPP [Ret95]

• PPA [NFL95]

• prBPA, ACP+
π [And99]

• StAFP0 [BT01]

• SM − PEPA [Brad05]

• iPEPA [HBC13]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 331

Algebra PBC and its extensions

• Petri box calculus PBC [BDH92]

• Time Petri box calculus tPBC [Kou00]

• Timed Petri box calculus TPBC [MF00]

• Stochastic Petri box calculus sPBC [MVF01,MVCC03]

• Ambient Petri box calculus APBC [FM03]

• Arc time Petri box calculus atPBC [Nia05]

• Generalized stochastic Petri box calculus gsPBC [MVCR08]

• Discrete time stochastic Petri box calculus dtsPBC [Tar05,Tar06]

• Discrete time stochastic and immediate Petri box calculus

dtsiPBC [TMV10,TMV13]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 332

Classification of stochastic process algebras

Time Interleaving semantics Non-interleaving semantics

Continuous MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ,

EMPA (SMC, CTMC), GSMPA (GSMP)

sPBC (CTMC), gsPBC (SMC)

Discrete TCP dst (DTMRC) sACP , dtsPBC (DTMC),

dtsiPBC (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.

The underlying stochastic process: in parentheses near the SPA names.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 333

Transition labeling

• CTSPNs [Buc95]

• GSPNs [Buc98]

• DTSPNs [BT00]

Stochastic equivalences

• Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]

• SPAs [HR94,Hil94,BGo98]

• Markov process algebras (MPAs) [Buc94,BKe01]

• CTSPNs [Buc95]

• GSPNs [Buc98]

• Stochastic automata (SAs) [Buc99]

• Stochastic event structures (SESs) [MCW03]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 334

Syntax

The set of all finite multisets over X is INX
fin.

Act = {a, b, . . .} is the set of elementary actions.

Âct = {â, b̂, . . .} is the set of conjugated actions (conjugates) s.t. â 6= a and
ˆ̂a = a.

A = Act ∪ Âct is the set of all actions.

L = INA
fin is the set of all multiactions.

The alphabet of α ∈ L isA(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where

α ∈ L and ρ ∈ (0; 1) is the probability of multiaction α.

SL is the set of all activities.

The alphabet of (α, ρ) ∈ SL isA(α, ρ) = A(α).

The alphabet of Γ ∈ INSL
fin isA(Γ) = ∪(α,ρ)∈ΓA(α).

For (α, ρ) ∈ SL, its multiaction part is L(α, ρ) = α and

its probability part is Ω(α, ρ) = ρ.

The multiaction part of Γ ∈ INSL
fin is L(Γ) =

∑
(α,ρ)∈Γ α.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 335

The operations: sequential execution ;, choice [], parallelism ‖, relabeling [f],

restriction rs, synchronization sy and iteration [∗ ∗].

Sequential execution and choice have the standard interpretation.

Parallelism does not include synchronization unlike that in standard process

algebras.

Relabeling functions f : A → A are bijections preserving conjugates:

∀x ∈ A f(x̂) = f̂(x).

For α ∈ L, let f(α) =
∑

x∈α f(x).

For Γ ∈ INSL
fin, let f(Γ) =

∑
(α,ρ)∈Γ(f(α), ρ).

Restriction over a ∈ Act: any process behaviour containing a or its conjugate â

is not allowed.

Let α, β ∈ L be two multiactions s.t. for a ∈ Act we have a ∈ α and â ∈ β, or

â ∈ α and a ∈ β. Then synchronization of α and β by a is α⊕aβ = γ:

γ(x) =

α(x) + β(x)− 1, x = a or x = â;

α(x) + β(x), otherwise.

In the iteration, the initialization subprocess is executed first,

then the body one is performed zero or more times,

finally, the termination one is executed.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 336

Static expressions specify the structure of processes.

Definition 113 Let (α, ρ) ∈ SL and a ∈ Act. A static expression of

dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E∗E∗E].

StatExpr is the set of all static expressions of dtsPBC .

Definition 114 Let (α, ρ) ∈ SL and a ∈ Act. A regular static expression of

dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E∗D∗E],

where D ::= (α, ρ) | D;E | D[]D | D[f] | D rs a | D sy a | [D∗D∗E].

RegStatExpr is the set of all regular static expressions of dtsPBC .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 337

Dynamic expressions specify the states of processes.

Dynamic expressions are obtained from static ones annotated with upper or lower

bars.

The underlying static expression of a dynamic one: removing all upper and lower

bars.

Definition 115 Let E ∈ StatExpr and a ∈ Act. A dynamic expression of

dtsPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |

[G∗E∗E] | [E∗G∗E] | [E∗E∗G].

DynExpr is the set of all dynamic expressions of dtsPBC .

Definition 116 A dynamic expression is regular if its underlying static

expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsPBC .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 338

Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations.

Let E,F,K ∈ RegStatExpr and a ∈ Act.

Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f]⇒ E[f] E[f]⇒ E[f] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K]

[E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 339

Let E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃
G⇒G̃

G‖H⇒G̃‖H
H⇒H̃

G‖H⇒G‖H̃

G⇒G̃

G[f]⇒G̃[f]

G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a
G⇒G̃

[G∗E∗F]⇒[G̃∗E∗F]

G⇒G̃

[E∗G∗F]⇒[E∗G̃∗F]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

Definition 117 A regular dynamic expression is operative if no inaction rule can

be applied to it.

OpRegDynExpr is the set of all operative regular dynamic expressions of

dtsPBC .

We shall consider regular expressions only and omit the word “regular”.

Definition 118 ≈ = (⇒ ∪ ⇐)∗ is the structural equivalence of dynamic

expressions in dtsPBC .

G and G′ are structurally equivalent, G≈G′, if they can be reached each from

other by applying inaction rules in a forward or backward direction.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 340

Action and empty loop rules

Action rules: execution of non-empty multisets of activities at a time step.

Empty loop rule: execution of the empty multiset of activities at a time step.

Let (α, ρ), (β, χ) ∈ SL, E, F ∈ RegStatExpr,

G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr,

a ∈ Act and Γ,∆ ∈ INSL
fin \ {∅}, Γ

′ ∈ INSL
fin.

Action and empty loop rules

ElG
∅
→ G B (α, ρ)

{(α,ρ)}
−→ (α, ρ) SC1

G
Γ
→G̃, ◦∈{;,[]}

G◦E
Γ
→G̃◦E

SC2
G

Γ
→G̃, ◦∈{;,[]}

E◦G
Γ
→E◦G̃

P1 G
Γ
→G̃

G‖H
Γ
→G̃‖H

P2 H
Γ
→H̃

G‖H
Γ
→G‖H̃

P3 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

L G
Γ
→G̃

G[f]
f(Γ)
−→G̃[f]

Rs
G

Γ
→G̃, a,â 6∈A(Γ)

G rs a
Γ
→G̃ rs a

I1 G
Γ
→G̃

[G∗E∗F]
Γ
→[G̃∗E∗F]

I2 G
Γ
→G̃

[E∗G∗F]
Γ
→[E∗G̃∗F]

I3 G
Γ
→G̃

[E∗F∗G]
Γ
→[E∗F∗G̃]

Sy1 G
Γ
→G̃

G sy a
Γ
→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→G̃ sy a

Comparison of inaction, action and empty loop rules

Rules State change Time progress Activities execution

Inaction rules − − −

Action rules ± + +

Empty loop rule − + −

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 341

Transition systems

Definition 119 Let n ∈ IN . The numbering of expressions is

ι ::= n | (ι)(ι).

Num is the set of all numberings of expressions.

The content of a numbering ι ∈ Num is

Cont(ι) =

{ι}, ι ∈ IN ;

Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

(a)
1

(b)

1 2

�
�

�

❅
❅
❅

(c)

1

�
�

�

❅
❅
❅

2 3

�
�

�

❅
❅
❅

✉ ✉
✉ ✉

✉
✉ ✉
✉ ✉

The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

[G]≈ = {H | G ≈ H} is the equivalence class of a dynamic expression G

w.r.t. structural equivalence.

Definition 120 The derivation set DR(G) of a dynamic expression G is the

minimal set:

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃ΓH
Γ
→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is

Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ
→ H̃}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 342

Let Γ ∈ Exec(s) \ {∅}. The probability that the multiset of activities Γ is ready

for execution in s:

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Γ}

(1− χ).

In the case Γ = ∅ we define

PF (∅, s) =

∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, otherwise.

Let Γ ∈ Exec(s). The probability to execute the multiset of activities Γ in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Γ|∃H∈s ∃H̃∈s̃ H
Γ
→H̃}

PT (Γ, s).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 343

Definition 121 The (labeled probabilistic) transition system of a dynamic

expression G is TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSL
fin × (0; 1];

• the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s, s̃ ∈

DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Γ
→ H̃};

• the initial state is sG = [G]≈.

A transition (s, (Γ,P), s̃) ∈ TG is written as s
Γ
→P s̃.

We write s
Γ
→s̃ if ∃P s

Γ
→P s̃ and s→s̃ if ∃Γ s

Γ
→ s̃.

Definition 122 Let G,G′ be dynamic expressions and

TS(G) = (SG, LG, TG, sG), TS(G
′) = (SG′ , LG′ , TG′ , sG′) be their

transition systems. A mapping β : SG → SG′ is an isomorphism between

TS(G) and TS(G′), β : TS(G)≃TS(G′), if

1. β is a bijection s.t. β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

TS(G) and TS(G′) are isomorphic, TS(G)≃TS(G′), if

∃β : TS(G) ≃ TS(G′).

For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 123 G and G′ are equivalent w.r.t. transition systems, G=tsG
′, if

TS(G)≃TS(G′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 344

Definition 124 The underlying discrete time Markov chain (DTMC) of a

dynamic expression G, DTMC(G), has the state space DR(G), the initial

state [G]≈ and transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).

For a dynamic expression G, a discrete random variable is associated with every

state of DTMC(G).

The random variables (residence time in the states) are geometrically distributed:

the probability to stay in the state s ∈ DR(G) for k − 1 moments and leave it at

the moment k ≥ 1 is PM(s, s)k−1(1− PM(s, s)).

The mean value formula: the average sojourn time in the state s is

SJ(s) =
1

1− PM(s, s)
.

The average sojourn time vector SJ of G has the elements

SJ(s), s ∈ DR(G).

Analogously: the sojourn time variance in the state s is

V AR(s) =
PM(s, s)

(1− PM(s, s))2
.

The sojourn time variance vector V AR of G has the elements

V AR(s), s ∈ DR(G).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 345

E1;E2

E1;E2

TS(E)✄✂ ✲

✄✂ ✲
∅, 1−ρ1+ρ

∅,1−χ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✄✂ ✲

✄✂ ✲

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

({a},ρ)2,
ρ

1+ρ

1−ρ
1+ρ

1−χ

2ρ
1+ρ

❄

☛
✡
✟
✠

E1;E2

E1;E2

✄✂ ✲☛✡ ✟✠
1

χ

❄
E1;E2

✄✂ ✲☛✡ ✟✠
∅,1

({b},χ),
χ

❄
E1;E2

The transition system and the underlying DTMC of E for

E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ)

Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ) and E = E1;E2.

The identical activities of the composite static expression are enumerated as:

E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 346

[E1∗E2∗E3]

[E1∗E2∗E3]

TS(E)✞✝ ✲

✞✝ ✲
∅, 1−ρ1+ρ

∅, (1−χ)(1−θ)
1−χθ

DTMC(E)

✲ ✛

({a},ρ)1,
ρ

1+ρ

✞✝ ✲

✞✝ ✲
({a},ρ)2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

✞✝ ✲
1

❄
[E1∗E2∗E3]

✞✝ ✲
∅,1

({c},θ),
θ(1−χ)
1−χθ ❄
[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

EXPRIT:The transition system and the underlying DTMC of E for

E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]

Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ), E3 = ({c}, θ) and

E = [E1 ∗ E2 ∗ E3].

The identical activities of the composite static expression are enumerated as:

E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)].

DR(E) consists of s1 = [[E1 ∗ E2 ∗ E3]]≈, s2 = [[E1 ∗E2 ∗E3]]≈,

s3 = [[E1 ∗E2 ∗E3]]≈.

The average sojourn time vector of E is SJ =
(

1+ρ
2ρ ,

1−χθ
θ(1−χ) ,∞

)
.

The sojourn time variance vector of E is

V AR =

(
1− ρ2

4ρ2
,
(1− θ)(1− χθ)

θ2(1− χ)2
,∞

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 347

Denotational semantics

Labeled DTSPNs

Definition 125 A labeled discrete time stochastic Petri net (LDTSPN) is a tuple

N = (PN , TN ,WN ,ΩN , LN ,MN):

• PN and TN are finite sets of places and transitions

(PN ∪ TN 6= ∅, PN ∩ TN = ∅);

• WN : (PN × TN) ∪ (TN × PN)→ IN is the arc weight function;

• ΩN : TN → (0; 1) is the transition probability function;

• LN : TN → L is the transition labeling function;

• MN ∈ IN
PN
fin is the initial marking.

Concurrent transition firings at discrete time moments.

LDTSPNs have step semantics.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 348

Let M be a marking of a LDTSPN N = (PN , TN ,WN ,ΩN , LN ,MN). Then

t ∈ Ena(M) fires in the next time moment with probability ΩN (t), if no other

transition is enabled in M .

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability that the set of

transitions U is ready for firing in M :

PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1− ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =

∏
u∈Ena(M)(1− ΩN (u)) Ena(M) 6= ∅;

1 otherwise.

Let U ⊆ Ena(M) and •U ⊆M . The probability that the set of transitions U

fires in M :

PT (U,M) =
PF (U,M)∑

{V |•V⊆M} PF (V,M)
.

If U = ∅ then M = M̃ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 349

Firing of U changes marking M to M̃ =M − •U + U•, M
U
→PM̃ , where

P = PT (U,M).

We write M
U
→M̃ if ∃P M

U
→P M̃ and M→M̃ if ∃U M

U
→ M̃ .

For U = {t} we write M
t
→PM̃ and M

t
→M̃ .

Definition 126 Let N be an LDTSPN.

• The reachability set RS(N) is the minimal set of markings s.t.

– MN ∈ RS(N);

– if M ∈ RS(N) and M → M̃ then M̃ ∈ RS(N).

• The reachability graph RG(N) is a directed labeled graph with

– the set of nodes RS(N);

– an arc labeled by (U, P) from node M to M̃ if M
U
→P M̃ .

• The underlying Discrete Time Markov Chain (DTMC) DTMC(N) is a

DTMC with

– the state space RS(N);

– a transition M→PM̃ , where P = PM(M, M̃) is the probability to

move from M to M̃ by firing any set of transitions:

PM(M, M̃) =
∑

{U |M
U
→M̃}

PT (U,M);

– the initial state MN .

The average sojourn time in the marking M is

SJ(M) =
1

1− PM(M,M)
.

The average sojourn time vector SJ of N has the elements

SJ(M), M ∈ RS(N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 350

The sojourn time variance in the marking M is

V AR(M) =
PM(M,M)

(1− PM(M,M))2
.

The sojourn time variance vector V AR of N has the elements

V AR(M), M ∈ RS(N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 351

{a} {b}

∅

ρ χ

θ

p1 p2

p3

t1 t2

t3

♥♥
♥
t t
❄ ❄

❏❏❫ ✡✡✢

❄❄

✎

✍

✏

✑✑✒

✲ ✛
N

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

RG(N)

❄

✓
✓

✓✴

❙
❙
❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✩

✪

✛✄✂ ✲
✄✂ ✲
✄✂ ✲
✄✂ ✲

∅,(1−ρ)(1−χ)

∅,1−χ ∅,1−ρ

∅,1−θ

{t1,t2},
ρχ

t1,ρ(1−χ) t2,(1−ρ)χ

t2,χ t1,ρ

t3,θ

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

110

011 101

002

DTMC(N)

❄

✓
✓

✓✴

❙
❙
❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✩

✪

✛

ρχ

ρ(1−χ) (1−ρ)χ

χ ρ

θ

✄✂ ✲
✄✂ ✲
✄✂ ✲
✄✂ ✲

(1−ρ)(1−χ)

1−χ 1−ρ

1−θ

LDTSPN, its reachability graph and the underlying DTMC

The transitions are t1 (labeled by {a}), t2 (labeled by {b}) and t3 (labeled by ∅).

The transition probabilities are ρ = ΩN (t1), χ = ΩN (t2), θ = ΩN (t3).

RS(N) consists of M1 = (1, 1, 0), M2 = (0, 1, 1), M3 = (1, 0, 1),

M4 = (0, 0, 2).

The average sojourn time vector of N is

SJ =

(
1

ρ+ χ− ρχ
,
1

χ
,
1

ρ
,
1

θ

)
.

The sojourn time variance vector of N :

V AR =

(
1− ρ− χ+ ρχ

(ρ+ χ− ρχ)2
,
1− χ

χ2
,
1− ρ

ρ2
,
1− θ

θ2

)
.

The elements Pij (1 ≤ i, j ≤ 4) of (one-step) transition probability matrix

(TPM) of DTMC(N) are

Pij =

PM(si, sj) si → sj ;

0 otherwise.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 352

The (one-step) TPM of DTMC(N) is

P =

(1− ρ)(1− χ) ρ(1− χ) χ(1− ρ) ρχ

0 1− χ 0 χ

0 0 1− ρ ρ

θ 0 0 1− θ

The steady-state PMF ψ is a solution of

ψ(P− I) = 0

ψ1T = 1
,

where I is the identity matrix of size four and 0 = (0, 0, 0, 0), 1 = (1, 1, 1, 1).

For ρ = χ = θ

ψ =

(
1

5− 3ρ
,
1− ρ

5− 3ρ
,
1− ρ

5− 3ρ
,
2− ρ

5− 3ρ

)
.

The inverse of the steady-state PMF is the mean recurrence time vector

RC =

(
5− 3ρ,

5− 3ρ

1− ρ
,
5− 3ρ

1− ρ
,
5− 3ρ

2− ρ

)
.

The average time to come back to the initial marking MN =M1 in the long-term

behaviour is in (2; 5).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 353

Algebra of dts-boxes

Definition 127 A discrete time stochastic Petri box (dts-box) is

N = (PN , TN ,WN ,ΛN), where

• PN and TN are finite sets of places and transitions, respectively, s.t.

PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN × TN)∪ (TN × PN)→ IN is a function of the weights of arcs

between places and transitions and vice versa;

• ΛN is the place and transition labeling function s.t.

– ΛN |PN : PN → {e, i, x} (it specifies entry, internal and exit places);

– ΛN |TN : TN → {̺ | ̺ ⊆ INSL
fin × SL} (it associates transitions with

the relabeling relations on activities).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN (p) = e},

and the set of exit places of N, N◦ = {p ∈ PN | ΛN (p) = x}, it holds:

◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A dts-box is plain if ∀t ∈ TN ΛN (t) = ̺(α,ρ), where ̺(α,ρ) = {(∅, (α, ρ))} is

the constant relabeling, identified with (α, ρ).

A marked plain dts-box is a pair (N,MN), where N is a plain dts-box and

MN ∈ IN
PN
fin is its marking.

Let N = (N, ◦N) and N = (N,N◦).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 354

(α, ρ)

♥

♥
❄

❄

N(α,ρ)ι

e

x

tι ̺[f]

♥

♥
❄

❄

Θ[f]

e

x

u[f] r̺s a

♥

♥
❄

❄

Θrs a

e

x

urs a s̺y a

♥

♥
❄

❄

Θsy a

e

x

usy a ̺id

♥

♥
❄

❄

Θ;

e

u1;

̺id

♥
❄

❄
x

u2;

i

̺id

♥

♥
❄

❄

Θ‖

e

u1‖

x

̺id

♥

♥
❄

❄

e

u2‖

x

̺idu1[] ̺id u2[]

Θ[]♥

♥
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

✄ �
✂ ✁❄✻

̺id

♥

♥
❄

❄

Θ[∗ ∗]

e

u1[∗ ∗]

̺id

♥
❄

❄
x

u3[∗ ∗]

i ̺id u2[∗ ∗]

The plain and operator dts-boxes

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 355

Definition 128 Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr.

The denotational semantics of dtsPBC is a mapping Boxdts from

RegStatExpr into plain dts-boxes:

1. Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2. Boxdts(E◦F) = Θ◦(Boxdts(E), Boxdts(F)), ◦ ∈ {; , [], ‖};

3. Boxdts(E[f]) = Θ[f](Boxdts(E));

4. Boxdts(E◦a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs,sy};

5. Boxdts([E∗F∗K]) = Θ[∗ ∗](Boxdts(E), Boxdts(F), Boxdts(K)).

For E ∈ RegStatExpr, let Boxdts(E) = Boxdts(E) and

Boxdts(E) = Boxdts(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 356

We denote isomorphism of transition systems by≃,

and the same symbol denotes isomorphism of reachability graphs and DTMCs

as well as isomorphism between transition systems and reachability graphs.

Theorem 34 For any static expression E

TS(E)≃RG(Boxdts(E)).

Proposition 25 For any static expression E

DTMC(E)≃DTMC(Boxdts(E)).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 357

100

010

RG(N)✄✂ ✲

✄✂ ✲
∅, 1−ρ1+ρ

∅, (1−χ)(1−θ)
1−χθ

DTMC(N)

✲ ✛

t1,
ρ

1+ρ

✄✂ ✲

✄✂ ✲
t2,

ρ
1+ρ

1−ρ
1+ρ

2ρ
1+ρ

❄

☛
✡
✟
✠

✄✂ ✲
1

❄✄✂ ✲
∅,1

t4,
θ(1−χ)
1−χθ

❄
001

�✁✛

t3,
χ(1−θ)
1−χθ

θ(1−χ)
1−χθ

1−θ
1−χθ✂ ✁✻

({a},ρ)2

♥

♥

N

e

t2

({c},θ)

♥
❄

❄
x

t4

({b},χ) t3

({a},ρ)1t1

✑
✑✑✰

◗
◗◗s

❩
❩❩⑦

✚
✚✚❂

t 100

010

001

✲

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

BOXIT:The marked dts-box N = Boxdts(E) for

E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)], its reachability graph and

the underlying DTMC

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 358

☛✡ ✟✠
(E1‖E2)sy a

(E1‖E2)sy a

TS(E)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✄✂ ✲
✄✂ ✲
✄✂ ✲

∅,P11

∅,P22 ∅,P33

∅,P44

{({a},ρ),
({â},χ)},

P
‖
14

({a},ρ),P12 ({â},χ),P13

({â},χ),P24 ({a},ρ),P34

�✁✛

❄

({∅},ρχ),

Psy
14

DTMC(E)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

✄✂ ✲
✄✂ ✲
✄✂ ✲

P11

P22 P33

P44

P12 P13

P24 P34

�✁✛

❄

P14

(E1‖E2)sy a (E1‖E2)sy a

(E1‖E2)sy a

(E1‖E2)sy a

(E1‖E2)sy a (E1‖E2)sy a

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

EXPR:The transition system and the underlying DTMC of E for

E = (({a}, ρ)‖({â}, χ)) sy a

♠♠t t
❄ ❄

N

✞✝ ☎✆ ✞✝ ☎✆
✞✝ ☎✆

✞✝ ☎✆

1100

0110 1001

0011

RG(N)

❄

✓
✓

✓✴

❙
❙
❙✇

❏
❏
❏❫

✓
✓

✓✴

✄✂ ✲
✄✂ ✲
✄✂ ✲

∅,P11

∅,P22 ∅,P33

∅,P44

{t1,t2},

P
‖
14

t1,P12 t2,P13

t2,P24 t1,P34

�✁✛

❄

t(1)(2),

Psy
14

({a},ρ) ({â},χ)(∅,ρχ)

♠ ♠❄ ❄

◗
◗◗s

✑
✑✑✰

✚
✚✚❂

❩
❩❩⑦

t1 t2

t(1)(2)

x x

e e

✞✝ ☎✆ ✞✝ ☎✆
✞✝ ☎✆

✞✝ ☎✆

1100

0110 1001

0011

DTMC(N)

✓
✓

✓✴

❙
❙
❙✇

❏
❏
❏❫

✓
✓

✓✴

✄✂ ✲
✄✂ ✲
✄✂ ✲

P11

P22 P33

P44

P12 P13

P24 P34

�✁✛

❄

P14

BOX:The marked dts-box N = Boxdts(E) for

E = (({a}, ρ)‖({â}, χ)) sy a, its reachability graph and the underlying DTMC

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 359

The normalization factorN = 1
1−ρ2χ−ρχ2+ρ2χ2 .

P11 = N (1− ρ)(1− χ)(1− ρχ) P12 = Nρ(1− χ)(1− ρχ)

P13 = Nχ(1− ρ)(1− ρχ) Psy
14 = Nρχ(1− ρ)(1− χ)

P
‖
14 = Nρχ(1− ρχ) P22 = 1− χ

P24 = χ P33 = 1− ρ

P34 = ρ P44 = 1

P14 = Psy
14 + P

‖
14 = Nρχ(2− ρ− χ)

The case ρ = χ = 1
2 :

P11 = P12 = P13 = P
‖
14 =

3

13
, Psy

14 =
1

13
,

P22 = P24 = P33 = P34 =
1

2
, P44 = 1, P14 =

4

13
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 360

({a}, 12)

✍✌✎☞✉
❄

e

N

({b}, 12) ({c}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄
✍✌✎☞ ✍✌✎☞

❏
❏❫

✁
✁☛

✍✌✎☞x

❄ ❄

({d}, 12)

❄

❏❏❫ ✓✓✴

✟✟✟✟✯
❍❍❍❍❨

☞

✌

✎

✍✲ ✛

✻ ✻

★

✧

✥

✦✲ ✛

p1

p2 p3

p4 p5

p6

t1

t2 t3

t4

RG(N)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠

❄

❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

100000

011110

011200 011020

011001

t1,
1
2

t2,
1
2

t3,
1
2

t3,
1
5

t2,
1
5

t4,
1
5

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲ �✁✛

✞✝ ✲

∅, 1
5 {t2,t3}, 1

5

∅, 1
2

∅, 1
2

∅, 1
2

∅,1

The marked dts-box N = Boxdts(E) for

E = [(({a}, 12) ∗ (({b},
1
2)‖({c},

1
2)) ∗ ({d},

1
2)] and its reachability graph

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 361

M1 = (1, 0, 0, 0, 0, 0) is the initial marking.

M2 = (0, 1, 1, 1, 1, 0) is obtained from M1 by firing t1.

M3 = (0, 1, 1, 2, 0, 0) is obtained from M2 by firing t2 and has 2 tokens

in the place p4.

M4 = (0, 1, 1, 0, 2, 0) is obtained from M2 by firing t3 and has 2 tokens

in the place p5.

Concurrency in the second argument of iteration in E can lead to non-safeness

of the corresponding marked dts-box N , but it is 2-bounded in the worst case.

The origin of the problem: N has as a self-loop with two subnets which can

function independently.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 362

Stochastic equivalences

Empty loops in transition systems

Let G be a dynamic expression and s ∈ DR(G).

The probability to stay in s due to k (k ≥ 1) empty loops is (PT (∅, s))k.

Let Γ ∈ Exec(s) \ {∅}. The probability to execute the non-empty multiset of

activities Γ in s after possible empty loops:

PT ∗(Γ, s) = PT (Γ, s)
∑∞
k=0(PT (∅, s))

k = PT (Γ,s)
1−PT (∅,s) =

EL(s)PT (Γ, s),

where EL(s) = 1
1−PT (∅,s) is the empty loops abstraction factor.

The empty loops abstraction vector EL of G has the elements

EL(s), s ∈ DR(G).

Definition 129 The (labeled probabilistic) transition system without empty loops

TS∗(G) has the state space DR(G) and the transitions s
Γ
→→P s̃, if

s
Γ
→ s̃, Γ 6= ∅ and P = PT ∗(Γ, s).

We write s
Γ
→→s̃ if ∃P s

Γ
→→P s̃ and s→→s̃ if ∃Γ s

Γ
→→ s̃.

For Γ = {(α, ρ)} we write s
(α,ρ)
→→ P s̃ and s

(α,ρ)
→→ s̃.

For E ∈ RegStatExpr, let TS∗(E) = TS∗(E).

Definition 130 G and G′ are equivalent w.r.t. transition systems without empty

loops, G=ts∗G
′, if TS∗(G)≃TS∗(G′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 363

Definition 131 The underlying DTMC without empty loops DTMC∗(G) has

the state space DR(G) and transitions s→→P s̃, if s→→ s̃, where

P = PM∗(s, s̃) is the probability to move from s to s̃ by executing any

non-empty multiset of activities after possible empty loops:

PM∗(s, s̃) =
∑

{Γ|s
Γ
→→s̃}

PT ∗(Γ, s) =

EL(s)(PM(s, s)− PT (∅, s)), s = s̃;

EL(s)PM(s, s̃), otherwise,

where PM(s, s)− PT (∅, s) is the probability to stay in s due to any

non-empty loop, i.e. by executing any non-empty multiset of activities.

For E ∈ RegStatExpr, let DTMC∗(E) = DTMC∗(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 364

[E1∗E2∗E3]

[E1∗E2∗E3]

TS∗(E) DTMC∗(E)

✲ ✛

({a},ρ)1,
1
2 ({a},ρ)2,

1
2 1

❄

☛
✡
✟
✠

[E1∗E2∗E3]

[E1∗E2∗E3]

❄
[E1∗E2∗E3]

({c},θ),
θ(1−χ)
χ+θ−2χθ❄

[E1∗E2∗E3]

☎✆✛

({b},χ),
χ(1−θ)
χ+θ−2χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

✛

χ(1−θ)
χ+θ−2χθ

θ(1−χ)
χ+θ−2χθ

☎✆

The transition system and the underlying DTMC without empty loops of E in

Figure EXPRIT

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 365

Empty loops in reachability graphs

Let N be an LDTSPN and M ∈ RS(N).

The probability to stay in M due to k (k ≥ 1) empty loops is (PT (∅,M))k.

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability that the non-empty

set of transitions U fires in M after possible empty loops:

PT ∗(U,M) = PT (U,M)
∑∞
k=0(PT (∅,M))k = PT (U,M)

1−PT (∅,M) =

EL(M)PT (U,M),

where EL(M) = 1
1−PT (∅,M) is the empty loops abstraction factor.

The empty loops abstraction vector of N , EL, has the elements

EL(M), M ∈ RS(N).

Definition 132 The reachability graph without empty loops RG∗(N) with the

set of nodes RS(N) and the set of arcs corresponding to the transitions

M
U
→→PM̃ , if M

U
→ M̃, U 6= ∅ and P = PT ∗(U,M).

We write M
U
→→M̃ if ∃P M

U
→→P M̃ and M→→M̃ if ∃U M

U
→→ M̃ .

For U = {t} we write M
t
→→PM̃ and M

t
→→M̃ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 366

Definition 133 The underlying DTMC without empty loops DTMC∗(N) has

the state space RS(N) and transitions M→→PM̃ , if M →→ M̃ , where

P = PM∗(M, M̃) is the probability to move from M to M̃ by firing any

non-empty set of transitions after possible empty loops:

PM∗(M, M̃) =
∑

{U∈Ena(M)|M
U
→→M̃}

PT ∗(U,M) =

EL(M)(PM(M,M)− PT (∅,M)), M = M̃ ;

EL(M)PM(M, M̃), otherwise,

where PM(M,M)− PT (∅,M) is the probability to stay in M due to any

non-empty loop, i.e. by firing any non-empty multiset of transitions.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 367

Theorem 35 For any static expression E

TS∗(E)≃RG∗(Boxdts(E)).

Proposition 26 For any static expression E

DTMC∗(E)≃DTMC∗(Boxdts(E)).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 368

100

010

RG∗(N) DTMC∗(N)

✲ ✛

t1,
1
2 t2,

1
2 1

❄

☛
✡
✟
✠

❄

t4,
θ(1−χ)
χ+θ−2χθ

❄
001

☎✆✛

t3,
χ(1−θ)
χ+θ−2χθ

θ(1−χ)
χ+θ−2χθ

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

100

010

001

☎✆✛

χ(1−θ)
χ+θ−2χθ

The reachability graph and the underlying DTMC without empty loops of N in

Figure BOXIT

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 369

☛✡ ✟✠
(E1‖E2)sy a

(E1‖E2)sy a

TS∗(E)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

{({a},ρ),
({â},χ)},

P
‖∗
14

({a},ρ),P∗
12 ({â},χ),P∗

13

({â},χ),P∗
24 ({a},ρ),P∗

34

❄

({∅},ρχ),

Psy∗
14

DTMC∗(E)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

P∗
12 P∗

13

P∗
24 P∗

34

❄

P∗
14

(E1‖E2)sy a (E1‖E2)sy a

(E1‖E2)sy a

(E1‖E2)sy a

(E1‖E2)sy a (E1‖E2)sy a

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

The transition system and the underlying DTMC without empty loops of E in

Figure EXPR

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

RG∗(N)

❄

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

{t1,t2},
P

‖∗
14

t1,P
∗
12 t2,P

∗
13

t2,P
∗
24 t1,P

∗
34

❄

t(1)(2),
Psy∗

14

☛✡ ✟✠ ☛✡ ✟✠

☛✡ ✟✠

☛✡ ✟✠

1100

0110 1001

0011

DTMC∗(N)

✓
✓

✓✓✴

❙
❙
❙❙✇

❏
❏
❏❏❫

✓
✓

✓✓✴

P∗
12 P∗

13

P∗
24 P∗

34

❄

P∗
14

The reachability graph and the underlying DTMC without empty loops of N in

Figure BOX

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 370

The normalization factorN ∗ = 1
ρ+χ−2ρ2χ−2ρχ2+2ρ2χ2 .

P∗
12 = P12

1−P11
= N ∗ρ(1− χ)(1− ρχ)

P∗
13 = P13

1−P11
= N ∗χ(1− ρ)(1− ρχ)

Psy∗
14 =

Psy
14

1−P11
= N ∗ρχ(1− ρ)(1− χ)

P
‖∗
14 =

P
‖
14

1−P11
= N ∗ρχ(1− ρχ)

P∗
24 = P24

1−P22
= 1

P∗
34 = P34

1−P33
= 1

P∗
14 = Psy∗

14 + P
‖∗
14 =

Psy
14+P

‖
14

1−P11
= N ∗ρχ(2− ρ− χ)

The case ρ = χ = 1
2 :

P∗
12 = P∗

13 = P
‖∗
14 =

3

10
, Psy∗

14 =
1

10
, P∗

24 = P∗
34 = 1, P∗

14 =
2

5
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 371

Stochastic trace equivalences

Let G be a dynamic expression, s, s̃ ∈ DR(G) and s
(α,ρ)
→→ s̃. We write

s
(α,ρ)
⇀⇀ P s̃, where P = pt∗((α, ρ), s) is the probability to execute the activity

(α, ρ) in s after possible empty loops when only one-element steps are allowed:

pt∗((α, ρ), s) =
PT ∗({(α, ρ)}, s)∑

{(β,χ)}∈Exec(s) PT
∗({(β, χ)}, s)

.

For Γ ∈ INSL
fin, we consider L(Γ) ∈ INL

fin, i.e. (possibly empty) multisets of

multiactions.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 372

Definition 134 An interleaving stochastic trace of a dynamic expression G is a

pair (σ, PT ∗(σ)), where σ = α1 · · ·αn ∈ L
∗ and

PT ∗(σ) =
∑

{(α1,ρ1),...,(αn,ρn)|[G]≈=s0
(α1,ρ1)
⇀⇀ s1

(α2,ρ2)
⇀⇀ ···

(αn,ρn)
⇀⇀ sn}∏n

i=1 pt
∗((αi, ρi), si−1).

We denote a set of all interleaving stochastic traces of a dynamic expression G

by IntStochTraces(G). G and G′ are interleaving stochastic trace

equivalent, G≡isG
′, if

IntStochTraces(G) = IntStochTraces(G′).

Let E = (({a}, 12)‖({â},
1
2)) sy a.

IntStochTraces(E) = {(∅, 17), ({a},
3
7), ({â},

3
7), ({a}{â},

3
7),

({â}{a}, 37)}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 373

Definition 135 A step stochastic trace of a dynamic expression G is a pair

(Σ, PT ∗(Σ)), where Σ = A1 · · ·An ∈ (INL
fin \ {∅})

∗ and

PT ∗(Σ) =
∑

{Γ1,...,Γn|[G]≈=s0
Γ1→→s1

Γ2→→···
Γn→→sn, L(Γi)=Ai (1≤i≤n)}∏n

i=1 PT
∗(Γi, si−1).

We denote a set of all step stochastic traces of a dynamic expression G by

StepStochTraces(G). G and G′ are step stochastic trace equivalent,

G≡ssG′, if

StepStochTraces(G) = StepStochTraces(G′).

Let E = (({a}, 12)‖({â},
1
2)) sy a.

StepStochTraces(E) = {({∅}, 1
10), ({{a}},

3
10), ({{â}},

3
10),

({{a}}{{â}}, 3
10), ({{â}}{{a}},

3
10), ({{â}, {a}},

3
10)}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 374

Stochastic bisimulation equivalences

Let G be a dynamic expression andH ⊆ DR(G). For s ∈ DR(G) and

A ∈ INL
fin \ {∅} we write s

A
→→PH, where P = PM∗

A(s,H) is the overall

probability to move from s into the set of statesH via non-empty steps with the

multiaction part A after possible empty loops:

PM∗
A(s,H) =

∑

{Γ|∃s̃∈H s
Γ
→→s̃, L(Γ)=A}

PT ∗(Γ, s).

We write s
A
→→H if ∃P s

A
→→P H.

We write s→→PH if ∃A s
A
→→ H, where P = PM∗(s,H) is the overall

probability to move from s into the set of statesH via any non-empty steps after

possible empty loops:

PM∗(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→→s̃}

PT ∗(Γ, s).

We write s
α
⇀⇀PH, where P = pm∗

α(s,H) is the overall probability to move

from s into the set of statesH via steps with the multiaction part {α} after

possible empty loops when only one-element steps are allowed:

pm∗
α(s,H) =

∑

{(α,ρ)|∃s̃∈H s
(α,ρ)
→→ s̃}

pt∗((α, ρ), s).

We write s
α
⇀⇀H if ∃P s

α
⇀⇀P H.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 375

Definition 136 Let G and G′ be dynamic expressions. An equivalence relation

R ⊆ (DR(G) ∪DR(G′))2 is a ⋆-stochastic bisimulation between G and

G′, ⋆ ∈{interleaving, step},R : G↔⋆sG
′, ⋆ ∈ {i, s}, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R

• ∀x ∈ L and →֒=⇀⇀, if ⋆ = i;

• ∀x ∈ INL
fin \ {∅} and →֒=→→, if ⋆ = s;

s1
x
→֒P H ⇔ s2

x
→֒P H.

Two dynamic expressions G and G′ are ⋆-stochastic bisimulation equivalent,

⋆ ∈{interleaving, step}, G↔⋆sG
′, if ∃R : G↔⋆sG

′, ⋆ ∈ {i, s}.

R⋆s(G,G
′) =

⋃
{R | R : G↔⋆sG

′}, ⋆ ∈ {i, s}, is the union of all

⋆-stochastic bisimulations between G and G′, ⋆ ∈{interleaving, step}.

Proposition 27 Let G and G′ be dynamic expressions and

G↔⋆sG
′, ⋆ ∈ {i, s}. ThenR⋆s(G,G

′) is the largest ⋆-stochastic

bisimulation between G and G′, ⋆ ∈{interleaving, step}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 376

Stochastic isomorphism

Let G be a dynamic expression, s, s̃ ∈ DR(G) and s
A
→→P {s̃}. We write

s
A
→→P s̃.

Definition 137 Let G,G′ be dynamic expressions. A mapping

β : DR(G)→ DR(G′) is a stochastic isomorphism between G and G′,

β : G=stoG
′, if

1. β is a bijection s.t. β([G]≈) = [G′]≈;

2. ∀s, s̃ ∈ DR(G) ∀A ∈ INL
fin \ {∅} s

A
→→P s̃ ⇔ β(s)

A
→→P β(s̃).

G and G′ are stochastically isomorphic, G=stoG
′, if ∃β : G=stoG

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 377

E′

E′

TS(E′)✞✝ ✲

✞✝ ✲

TS(E)

✲ ✛

✞✝ ✲

✞✝ ✲

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

∅, 12

∅,1

({a}, 12),
1
2

❄

☛
✡
✟
✠

E

E

∅, 13

∅,1

({a}, 12)1,
1
3 ({a}, 12)2,

1
3

E′

E′

TS∗(E′)TS∗(E)

✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠

({a}, 12),1

❄

☛
✡
✟
✠

E

E

({a}, 12)1,
1
2 ({a}, 12)2,

1
2

E′′

E′′

TS(E′′)✞✝ ✲

✞✝ ✲✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛
✡
✟
✠

∅, 12

∅,1

({a}, 12)1,
1
4 ({a}, 12)2,

1
4

E′′

E′′

TS∗(E′′)

✲ ✛

☛✡ ✟✠
☛✡ ✟✠

☛
✡
✟
✠({a}, 12)1,

1
2 ({a}, 12)2,

1
2

Properties of the stochastic isomorphism based on transition systems with empty

loops

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 378

E = ({a}, 12), E
′ = ({a}, 12)1[]({a},

1
2)2, E

′′ = ({a}, 13)1[]({a},
1
3)2.

The (one-element) multisets of activities which label the transitions of

TS∗(E), TS∗(E′), TS∗(E′′), and non-empty ones of

TS(E), TS(E′), TS(E′′), have the same multiaction part {{a}}.

• E=stoE′=stoE′′, since the probability of the only one non-empty transition

in TS∗(E) is 1, the probability of both non-empty transitions in TS∗(E′)

and TS∗(E′′) is 1
2 , and 1 = 1

2 + 1
2 .

• E is not equivalent to E′ w.r.t. the stronger version of stochastic

isomorphism, since the probability of the only one non-empty transition in

TS(E) is 1
2 , whereas the probability of both non-empty transitions in

TS(E′) is 1
3 , and 1

2 6=
2
3 = 1

3 + 1
3 .

• E′ is not equivalent to E′′ w.r.t. the stronger version of stochastic

isomorphism, since the probability of both non-empty transitions in TS(E′)

is 1
3 , whereas the probability of both non-empty transitions in TS(E′′) is 1

4 ,

and 1
3 + 1

3 = 2
3 6=

1
2 = 1

4 + 1
4 .

• E is equivalent to E′′ w.r.t. the stronger version of stochastic isomorphism,

since the probability of the only one non-empty transition in TS(E) is 1
2 , the

probability of both non-empty transitions in TS(E′′) is 1
4 , and 1

2 = 1
4 + 1

4 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 379

Interrelations of the stochastic equivalences

Proposition 28 Let ⋆ ∈ {i, s}. For dynamic expressions G and G′:

1. G↔⋆sG
′ ⇒ G≡⋆sG′;

2. G=ts∗G
′ ⇔ G=tsG

′.

≡is ≡ss

↔is ↔ss

❄ ❄

≈

❄

✛

✛

=sto

❄

❄

=ts

Interrelations of the stochastic equivalences

Theorem 36 Let↔,↔↔ ∈ {≡,↔,=,≈} and ⋆, ⋆⋆ ∈ { , is, ss, sto, ts}.

For dynamic expressions G and G′

G↔⋆G
′ ⇒ G↔↔⋆⋆G

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 380

Validity of the implications

• The implications↔ss →↔is, ↔ ∈ {≡,↔} are valid, since single

activities are one-element multisets.

• The implications↔⋆s → ≡⋆s, ⋆ ∈ {i, s}, are valid by the proposition

above.

• The implication =sto →↔ss is proved as follows. Let β : G=stoG
′. Then

R : G↔ssG
′, whereR = {(s, β(s)) | s ∈ DR(G)}.

• The implication =ts → =sto is valid, since stochastic isomorphism is that of

transition systems without empty loops up to merging of transitions with labels

having identical multiaction parts.

• The implication ≈ → =ts is valid, since the transition system of a dynamic

formula is defined based on its structural equivalence class.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 381

Absence of the additional nontrivial arrows

(a) Let E = ({a}, 12)‖({b},
1
2) and

E′ = (({a}, 12); ({b},
1
2))[](({b},

1
2); ({a},

1
2)). Then E↔isE

′, but

E 6≡ssE′, since only in TS∗(E′) multiactions {a} and {b} cannot be

executed concurrently.

(b) Let E = ({a}, 12); (({b},
1
2)[]({c},

1
2)) and

E′ = (({a}, 12); ({b},
1
2))[](({a},

1
2); ({c},

1
2)). Then E≡ssE′, but

E↔/ isE′, since only in TS∗(E′) a multiaction {a} can be executed so that

no multiaction {b} can occur afterwards.

(c) Let E = ({a}, 12); ({b},
1
2) and

E′ = ({a}, 12); ({b},
1
2)[]({a},

1
2); ({b},

1
2). Then E↔ssE

′, but

E 6=stoE′, since TS∗(E′) has more states than TS∗(E).

(d) Let E = ({a}, 12) and E′ = ({a}, 12)1[]({a},
1
2)2. Then E=stoE′, but

E 6=tsE′, since only TS(E′) has two transitions.

(e) Let E = ({a}, 12); ({â},
1
2) and E′ = (({a}, 12); ({â},

1
2)) sy a. Then

E=tsE′, but E 6≈E′, since E and E′ cannot be reached each from other by

applying inaction rules.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 382

({a}, 1
2
) ({b}, 1

2
) ({a}, 1

2
) ({a}, 1

2
)

({b}, 1
2
) ({c}, 1

2
)({b}, 1

2
) ({c}, 1

2
)

({a}, 1
2
)({a}, 1

2
) ({b}, 1

2
)

({b}, 1
2
) ({a}, 1

2
)

♠ ♠
♠ ♠
t t

♠ ♠ ♠ ♠
♠t ♠t ♠t

♠
♠
♠ ♠

❄ ❄

❄ ❄ ❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

��✠ ❩❩⑦ ��✠ ❩❩⑦

❙❙✇ ��✠ ❙❙✇ ��✠❙❙✇ ��✠

��✠ ❩❩⑦

e

x

e

x

x x x

e e e

(a) (b)N N ′ N N ′

↔is

6≡ss

≡ss

↔/ is

({a}, 1
2
) ({a}, 1

2
)

({b}, 1
2
) ({b}, 1

2
)

♠ ♠
♠t

♠

❄

❄

❄

❄

��✠ ❩❩⑦

❙❙✇ ��✠
x

e

N ′

({a}, 1
2
)

({b}, 1
2
)

♠❄
❄

♠t

♠x

e

N(c)

❄

❄

↔ss

6=sto

({a}, 1
2
)

♠❄
♠t e
x

N(d)

❄ =sto

6=ts

({a}, 1
2
) ({a}, 1

2
)

♠
♠❙❙✇ ��✠

��✠ ❩❩⑦

x

t eN ′

({a}, 1
2
)

♠❄
♠t eN(e)

❄

=ts

6≈

({a}, 1
2
)

({â}, 1
2
)

♠❄
❄

♠t

♠x

e

N ′

❄

❄

(∅, 1
4
)

❙
❙
❙
❙✇

✡
✡

✡
✡✡✢

✄ �
✂ ✁❄✻

({â}, 1
2
)

♠
❄

♠x❄
Dts-boxes of the dynamic expressions from equivalence examples of the theorem above

In the figure above N = Boxdts(E) and N ′ = Boxdts(E′) for each picture

(a)–(e).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 383

Reduction modulo equivalences

♥

♥

♥

♥

♥ ♥

t t
❄

❄

❄

❄

❄

❄

❄

❄

N

↔ss

6=sto

♥ ♥

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

t t

t

N ′

❄

❄

❄

❄

❄

❄

❄

❄

❩❩⑦

✑
✑✑✰

✚✚❂

❩
❩❩⑦

✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✘✘✘✘✘✾
❳❳❳❳❳③

✏✏✏✏✏✮
PPPPPq

❳❳❳❳③
✘✘✘✘✾

({a}, 14)

({b}, 18)

({c}, 14)

({d}, 18)

({a}, 14) ({c}, 14)

({b}, 18) ({d}, 18)({b}, 18) ({d}, 18)

e

x

e

x

e

x

e

xx xx

e

♥ ♥t et e
❙❙✇ ✓✓✴

✡✡✢ ❏❏❫

❙❙✇ ✓✓✴

✡✡✢ ❏❏❫

Reduction of a dts-box up to↔ss

Let E = (({a}, 12); ({b},
1
2))‖(({c},

1
2); ({d},

1
2)) and E′ =

((({a, x}, 12); (({b, y1},
1
2)[]({b, y2},

1
2)))‖(({a, x̂},

1
2); (({b, ŷ2, y

′
2},

1
2)[]

({d, v1},
1
2)))‖(({c, z},

1
2); (({b, ŷ

′
2},

1
2)[]({d, v̂1, v

′
1},

1
2)))‖(({c, ẑ},

1
2);

(({d, v̂′1},
1
2)[]({d, v2},

1
2)))‖(({b, ŷ1},

1
4)[]({d, v̂2},

1
4))) sy x sy y1 sy y2

sy y′2 sy z sy v1 sy v
′
1 sy v2 rs x rs y1 rs y2 rs y

′
2 rs z rs v1 rs v

′
1 rs v2. Then

E↔ssE
′, but E 6=stoE′, since TS∗(E′) has more states than TS∗(E). E is

a reduction of E′ w.r.t.↔ss.

In the figure above N = Boxdts(E) and N ′ = Boxdts(E′).

N is a reduction of N ′ w.r.t. the net version of↔ss.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 384

An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expression G and a step stochastic autobisimulation

R : G↔ssG, let K ∈ DR(G)/R and s1, s2 ∈ K.

We have ∀K̃ ∈ DR(G)/R ∀A ∈ IN
L
fin \ {∅} s1

A
→→P K̃ ⇔ s2

A
→→P K̃.

The equality is valid for all s1, s2 ∈ K, hence, we can rewrite it asK
A
→→PK̃,

where P = PM∗
A(K, K̃) = PM∗

A(s1, K̃) = PM∗
A(s2, K̃).

We writeK
A
→→K̃ if ∃P K

A
→→P K̃ and K→→K̃ if ∃AK

A
→→ K̃.

The similar arguments: we writeK→→P K̃, where

P = PM∗(K, K̃) = PM∗(s1, K̃) = PM∗(s2, K̃).

Rss(G) =
⋃
{R | R : G↔ssG} is the largest step stochastic

autobisimulation on G.

Definition 138 The quotient (by↔ss) (labeled probabilistic) transition system

without empty loops of a dynamic expression G is

TS∗
↔ss

(G) = (S↔ss
, L↔ss

, T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
⊆ (INL

fin \ {∅})× (0; 1];

• T↔ss
= {(K, (A,PM∗

A(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G), K
A
→→

K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→→PK̃.

For E ∈ RegStatExpr, let TS∗
↔ss

(E) = TS∗
↔ss

(E).

Definition 139 The quotient (by↔ss) underlying DTMC without empty loops of

a dynamic expression G, DTMC∗
↔ss

(G), has the state space

DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →→P K̃,

where P = PM∗(K, K̃).

For E ∈ RegStatExpr, let DTMC∗
↔ss

(E) = DTMC∗
↔ss

(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 385

Logical characterization

Logic iPML

Definition 140 ⊤ is the truth, α ∈ L, P ∈ (0; 1]. A formula of iPML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | ∇α | 〈α〉PΦ

iPML is the set of all formulas of the logic iPML.

Definition 141 Let G be a dynamic expression and s ∈ DR(G). The

satisfaction relation |=G ⊆ DR(G)× iPML:

1. s |=G ⊤— always;

2. s |=G ¬Φ, if s 6|=G Φ;

3. s |=G Φ∧Ψ, if s |=G Φ and s |=G Ψ;

4. s |=G ∇α, if not s
α
⇀⇀ DR(G);

5. s |=G 〈α〉PΦ, if ∃H ⊆ DR(G) s
α
⇀⇀Q H, Q ≥ P and

∀s̃ ∈ H s̃ |=G Φ.

〈α〉Φ = ∃P 〈α〉PΦ. 〈α〉QΦ implies 〈α〉PΦ, ifQ ≥ P .

We write G |=G Φ, if [G]≈ |=G Φ.

Definition 142 G and G′ are logically equivalent in iPML, G=iPMLG
′, if

∀Φ ∈ iPMLG |=G Φ ⇔ G′ |=G′ Φ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 386

Let G be a dynamic expression and s ∈ DR(G), α ∈ L.

The set of states reached from s by execution of α, the image set, is

Image(s, α) = {s̃ | ∃{(α, ρ)} ∈ Exec(s) s
(α,ρ)
→→ s̃}.

A dynamic expression G is an image-finite one, if

∀s ∈ DR(G) ∀α ∈ L |Image(s, α)| <∞.

Theorem 37 For image-finite dynamic expressions G and G′

G↔isG
′ ⇔ G=iPMLG

′.

Let E = ({a}, 12); (({b},
1
2)[]({c},

1
2)) and

E′ = (({a}, 12); ({b},
1
2))[](({a},

1
2); ({c},

1
2)). Then E 6=iPMLE′,

because for Φ = 〈{a}〉1〈{b}〉 1
2
⊤ we have E |=E Φ, but E′ 6|=E′ Φ, since

only in TS∗(E′) a multiaction {a} can be executed so that no multiaction {b}

can occur afterwards.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 387

Logic sPML

Definition 143 ⊤ is the truth, A ∈ INL
fin \ {∅}, P ∈ (0; 1].

A formula of sPML:

Φ ::= ⊤ | ¬Φ | Φ∧Φ | ∇A | 〈A〉PΦ

sPML is the set of all formulas of the logic sPML.

Definition 144 Let G be a dynamic expression and s ∈ DR(G). The

satisfaction relation |=G ⊆ DR(G)× sPML:

1. s |=G ⊤— always;

2. s |=G ¬Φ, if s 6|=G Φ;

3. s |=G Φ∧Ψ, if s |=G Φ and s |=G Ψ;

4. s |=G ∇A, if not s
A
→→ DR(G);

5. s |=G 〈A〉PΦ, if ∃H ⊆ DR(G) s
A
→→Q H, Q ≥ P and

∀s̃ ∈ H s̃ |=G Φ.

〈A〉Φ = ∃P 〈A〉PΦ. 〈A〉QΦ implies 〈A〉PΦ, ifQ ≥ P .

We write G |=G Φ, if [G]≈ |=G Φ.

Definition 145 G and G′ are logically equivalent in sPML, G=sPMLG
′, if

∀Φ ∈ sPMLG |=G Φ ⇔ G′ |=G′ Φ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 388

Let G be a dynamic expression and s ∈ DR(G), A ∈ INL
fin \ {∅}.

The set of states reached from s by execution of A, the image set, is

Image(s, A) = {s̃ | ∃Γ ∈ Exec(s) L(Γ) = A, s
Γ
→→ s̃}.

A dynamic expression G is an image-finite one, if

∀s ∈ DR(G) ∀A ∈ INL
fin \ {∅} |Image(s, A)| <∞.

Theorem 38 For image-finite dynamic expressions G and G′

G↔ssG
′ ⇔ G=sPMLG

′.

Let E = ({a}, 12)‖({b},
1
2) and

E′ = (({a}, 12); ({b},
1
2))[](({b},

1
2); ({a},

1
2)). Then E↔isE

′ but

E 6=sPMLE′, because for Φ = 〈{a, b}〉 1
3
⊤ we have E |=E Φ, but

E′ 6|=E′ Φ, since only in TS∗(E′) multiactions {a} and {b} cannot be

executed concurrently.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 389

Stationary behaviour

Theoretical background

The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition

probability matrix (TPM) P∗ for DTMC∗(G):

P∗
ij =

PM∗(si, sj), si →→ sj ;

0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF)

ψ∗[k] = (ψ∗
1 [k], . . . , ψ

∗
n[k]) for DTMC∗(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k.

where ψ∗[0] = (ψ∗
1 [0], . . . , ψ

∗
n[0]) is the initial PMF:

ψ∗
i [0] =

1, si = [G]≈;

0, otherwise.

ψ∗[k + 1] = ψ∗[k]P∗, k ∈ IN .

The steady-state PMF ψ∗ = (ψ∗
1 , . . . , ψ

∗
n) for DTMC∗(G) is a solution of

ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n, 0 is a vector of n values 0, 1 is that of

n values 1.

When DTMC∗(G) has the single steady state, ψ∗ = limk→∞ ψ∗[k].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 390

For s ∈ DR(G) with s = si (1 ≤ i ≤ n) we define

ψ∗[k](s) = ψ∗
i [k] (k ∈ IN) and ψ∗(s) = ψ∗

i .

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G).

The following performance indices (measures) are based on the steady-state

PMF.

• The average recurrence (return) time in the state s (i.e. the number of

discrete time units or steps required for this) is 1
ψ∗(s) .

• The fraction of residence time in the state s is ψ∗(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the

probability of the event determined by a condition that is true for all states

from S is
∑

s∈S ψ
∗(s).

• The relative fraction of residence time in the set of states S w.r.t. that in S̃ is∑
s∈S ψ

∗(s)∑
s̃∈S̃ ψ

∗(s̃) .

• The steady-state probability to perform a step with a multiset of activities ∆ is∑
s∈DR(G) ψ

∗(s)
∑

{Γ|∆⊆Γ} PT
∗(Γ, s).

• The probability of the event determined by a reward function r on the states is∑
s∈DR(G) ψ

∗(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

Theorem 39 Let G be a dynamic expression and EL be its empty loops

abstraction vector. The steady-state PMFs ψ for DTMC(G) and ψ∗ for

DTMC∗(G) are related as: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)EL(s)∑

s̃∈DR(G) ψ
∗(s̃)EL(s̃)

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 391

Steady state and equivalences

For s ∈ DR(G) with s = si (1 ≤ i ≤ n) we define

ψ∗[k](s) = ψ∗
i [k] (k ∈ IN) and ψ∗(s) = ψ∗

i .

Proposition 29 Let G,G′ be dynamic expressions withR : G↔ssG
′ and ψ∗

be the steady-state PMF for DTMC∗(G), ψ′∗ be the steady-state PMF for

DTMC∗(G′). Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′).

The result of the proposition above is valid if we replace steady-state probabilities

with transient ones.

Let G be a dynamic expression. The transient PMF ψ∗
↔ss

[k] (k ∈ IN) and the

steady-state PMF ψ∗
↔ss

for DTMC∗
↔ss

(G) are defined like the corresponding

notions ψ∗[k] and ψ∗ for DTMC∗(G).

By the proposition above: ∀K ∈ DR(G)/Rss(G) ψ
∗
↔ss

(K) =
∑
s∈K ψ

∗(s).

Stop = ({c}, 12) rs c is the process that performs empty loops with probability 1

and never terminates.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 392

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 12) ({d}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 12)

❏
❏❫

✁
✁☛

❏❏❫ ✓✓✴

❏
❏❫

✁
✁☛

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({d}, 12)1 ({c}, 12)2

✍✌✎☞ ✍✌✎☞
❄ ❄

({c}, 12)1

✍✌✎☞x

✍✌✎☞❄

({d}, 12)2

��✠
❩❩⑦

❄ ❄

({b}, 12)

✍✌✎☞
❄

❄

✥

✦

★

✧✠ ✍

✲ ✛

✠ ✍

↔is

6≡ss✬

✫

✥

✦

✲ ✛

↔is does not guarantee a coincidence of steady-state probabilities to enter into

an equivalence class

Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop] and

E′ = [({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2;

({c}, 12)2))) ∗ Stop]. We have E↔isE
′. DR(E) consists of

s1 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop]]≈,

s4 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop]]≈,

s5 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop]]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 393

DR(E′) consists of

s′1 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2;

({c}, 12)2))) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2;

({c}, 12)2))) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2;

({c}, 12)2))) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2;

({c}, 12)2))) ∗ Stop]]≈,

s′5 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1; ({d},

1
2)1)[](({d},

1
2)2;

({c}, 12)2))) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,
3

8
,
1

8
,
1

8

)
, ψ′∗ =

(
0,

1

3
,
1

3
,
1

6
,
1

6

)
.

ConsiderH = {s3, s
′
3}. We have

∑
s∈H∩DR(E) ψ

∗(s) = ψ∗(s3) =
3
8 ,

whereas
∑

s′∈H∩DR(E′) ψ
′∗(s′) = ψ′∗(s′3) =

1
3 . Thus,↔is does not

guarantee a coincidence of steady-state probabilities to enter into an equivalence

class.

In the figure above N = Boxdts(E) and N ′ = Boxdts(E′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 394

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 12) ({d}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 12)

❏
❏❫

✁
✁☛

❏❏❫ ✓✓✴

❏
❏❫

✁
✁☛

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({d}, 12)2 ({c}, 12)3

✍✌✎☞ ✍✌✎☞
❄ ❄

({c}, 12)2

✍✌✎☞x

({d}, 12)3

❄ ❄

({b}, 12)

✥

✦

★

✧✠ ✍

✲ ✛

✍

↔is

↔/ ss ✥

✦

≡ss

✍✌✎☞ ✍✌✎☞
❏❏❫ ✓✓✴

❏
❏❫

✁
✁☛✲ ✛

✍✌✎☞ ✍✌✎☞
❄ ❄

❏
❏❫

✁
✁☛

✟✟✟✟✙
❍❍❍❍❥

({c}, 12)1 ({d}, 12)1

✏✏✏✏✏✮
PPPPPq

★

✧✠

✥

✦✍

✲ ✛✬

✫

✩

✪✧

★

✧ ✦✑
The intersection of↔is and ≡ss does not guarantee a coincidence of

steady-state probabilities to enter into an equivalence class

Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
2)‖({d},

1
2))) ∗ Stop] and

E′ = [({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop].

We have E↔isE
′ and E≡ssE′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 395

DR(E) is as in the previous example.

DR(E′) consists of

s′1 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈,

s′2 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈,

s′3 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈,

s′4 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈,

s′5 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈,

s′6 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈,

s′7 = [[({a}, 12) ∗ (({b},
1
2); ((({c},

1
2)1‖({d},

1
2)1))[]((({c},

1
2)2;

({d}, 12)2)[](({d},
1
2)3; ({c},

1
2)3))))) ∗ Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

3

8
,
3

8
,
1

8
,
1

8

)
, ψ′∗ =

(
0,

13

38
,
13

38
,
3

38
,
3

38
,
3

38
,
3

38

)
.

ConsiderH = {s3, s′3}. We have
∑
s∈H∩DR(E) ψ

∗(s) = ψ∗(s3) =
3
8 ,

whereas
∑

s′∈H∩DR(E′) ψ
′∗(s′) = ψ′∗(s′3) =

13
38 . Thus,↔is plus ≡ss do

not guarantee a coincidence of steady-state probabilities to enter into an

equivalence class.

In figure above N = Boxdts(E) and N ′ = Boxdts(E′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 396

Definition 146 A derived step trace of a dynamic expression G is

Σ = A1 · · ·An ∈ (INL
fin \ {∅})

∗, where

∃s ∈ DR(G) s
Γ1→→ s1

Γ2→→ · · ·
Γn→→ sn, L(Γi) = Ai (1 ≤ i ≤ n).

The probability to execute the derived step trace Σ in s:

PT ∗(Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→→s1

Γ2→→···
Γn→→sn, L(Γi)=Ai (1≤i≤n)}

∏n
i=1 PT

∗(Γi, si−1).

Theorem 40 Let G,G′ be dynamic expressions withR : G↔ssG
′ and ψ∗ be

the steady-state PMF for DTMC∗(G), ψ′∗ be the steady-state PMF for

DTMC∗(G′) and Σ be a derived step trace of G and G′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s)PT ∗(Σ, s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′)PT ∗(Σ, s′).

The result of the theorem above is valid

if we replace steady-state probabilities with transient ones.

By the theorem above: ∀K ∈ DR(G)/Rss(G)

ψ∗
↔ss

(K)PT ∗(Σ,K) =
∑

s∈K

ψ∗(s)PT ∗(Σ, s),

where ∀s ∈ K PT ∗(Σ,K) = PT ∗(Σ, s).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 397

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 12)1 ({c}, 12)2

({b}, 12)

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({c}, 12)1 ({c}, 12)2

✍✌✎☞ ✍✌✎☞
❄ ❄

({b}, 12)1

✍✌✎☞x

❄

({b}, 12)2

��✠
❩❩⑦

❄ ❄

✍✌✎☞✥

✦

★

✧✠ ✍ ✠ ✍

=sto

6=ts

✲ ✛✍✌✎☞❄
❄

��✠
❩❩⑦
✍✌✎☞❄

✲ ✛ ✥

✦

★

✧
↔ss preserves steady-state behaviour in the equivalence classes

Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
2)1[]({c},

1
2)2)) ∗ Stop] and

E′ = [({a}, 12) ∗ ((({b},
1
2)1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2)) ∗ Stop].

We have E=stoE′, hence, E↔ssE
′.

DR(E) consists of

s1 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)1[]({c},

1
2)2)) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)1[]({c},

1
2)2)) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
2)1[]({c},

1
2)2)) ∗ Stop]]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 398

DR(E′) consists of

s′1 = [[({a}, 12) ∗ ((({b},
1
2)1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2))∗

Stop]]≈,

s′2 = [[({a}, 12) ∗ ((({b},
1
2)1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2))∗

Stop]]≈,

s′3 = [[({a}, 12) ∗ ((({b},
1
2)1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2))∗

Stop]]≈,

s′4 = [[({a}, 12) ∗ ((({b},
1
2)1; ({c},

1
2)1)[](({b},

1
2)2; ({c},

1
2)2))∗

Stop]]≈.

The steady-state PMFs ψ∗ for DTMC∗(E) and ψ′∗ for DTMC∗(E′) are

ψ∗ =

(
0,

1

2
,
1

2

)
, ψ′∗ =

(
0,

1

2
,
1

4
,
1

4

)
.

ConsiderH = {s3, s
′
3, s

′
4}. The steady-state probabilities forH coincide:∑

s∈H∩DR(E) ψ
∗(s) = ψ∗(s3) =

1
2 = 1

4 + 1
4 = ψ′∗(s′3) + ψ′∗(s′4) =∑

s′∈H∩DR(E′) ψ
′∗(s′).

Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence class

H and start the derived step trace Σ from it coincide:

ψ∗(s3)(PT
∗({({c}, 12)1}, s3) + PT ∗({({c}, 12)2}, s3)) =

1
2

(
1
2 + 1

2

)
= 1

2 = 1
4 · 1 +

1
4 · 1 =

ψ′∗(s′3)PT
∗({({c}, 12)1}, s

′
3) + ψ′∗(s′4)PT

∗({({c}, 12)2}, s
′
4).

In the figure above N = Boxdts(E) and N ′ = Boxdts(E′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 399

Simplification of performance analysis

The method of performance analysis simplification.

1. The system under investigation is specified by a static expression of

dtsPBC .

2. The transition system without empty loops of the expression is constructed.

3. After examining this transition system for self-similarity and symmetry, a step

stochastic autobisimulation equivalence for the expression is determined.

4. The quotient underlying DTMC without empty loops of the expression is

constructed from the quotient transition system without empty loops.

5. The steady-state probabilities and performance indices based on this DTMC

are calculated.

E TS∗(E) TS∗
↔∗
ss
(E) DTMC∗

↔∗
ss
(E) ψ∗

↔∗
ss

✲ ✲ ✲ ✲ Performance✲

Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying DTMCs containing

one closed communication class of states, which is ergodic, to ensure

uniqueness of the stationary distribution.

If a DTMC contains several closed communication classes of states that are all

ergodic: several stationary distributions may exist, depending on the initial PMF.

The general steady-state probabilities are then calculated as

the sum of the stationary probabilities of all the ergodic classes of states,

weighted by the probabilities to enter these classes,

starting from the initial state and passing through transient states.

The underlying DTMC of each process expression has one initial PMF

(that at the time moment 0): the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 400

Preservation by algebraic operations

Definition 147 Let↔ be an equivalence of dynamic expressions. Static

expressions E and E′ are equivalent w.r.t.↔, E↔E′, if E↔E′.

({a}, 12) ({a}, 13)

♥ ♥

♥ ♥

t t
❄ ❄

❄ ❄

e

x

e

x

N1

({a}, 12) ({b}, 12)

♥

♥❙
❙✇

��✠

��✠ ❩❩⑦

x

t eNN ′
1

({b}, 12)

♥

♥

t
❄

❄

e

x

N2

({a}, 13) ({b}, 12)

♥

♥❙
❙✇

��✠

��✠ ❩❩⑦

x

t eN ′

=sto

6=ts
6≡is

SC1: The equivalences between≡is and =sto are not congruences

Let E = ({a}, 12), E
′ = ({a}, 13) and F = ({b}, 12). We have E=stoE′,

since both TS∗(E) and TS∗(E′) have the transitions with the multiaction part

of labels {a} and probability 1. On the other hand, E[]F 6≡isE′[]F , since only in

TS∗(E′[]F) the probabilities of the transitions with the multiaction parts of

labels {a} and {b} are different (13 and 2
3 , respectively). Thus, no equivalence

between ≡is and =sto is a congruence.

In the figure above

N1 = Boxdts(E), N ′
1 = Boxdts(E′), N2 = Boxdts(F) and

N = Boxdts(E[]F), N ′ = Boxdts(E′[]F).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 401

Proposition 30 Let ⋆ ∈ {is, ss}, ⋆⋆ ∈ {sto, ts}. The equivalences

≡⋆, ↔⋆, =⋆⋆ are not preserved by algebraic operations.

Proposition 31 The equivalence ≈ is preserved by algebraic operations.

({a}, 12) ({a}, 12)

♥ ♥

♥ ♥

t t
❄ ❄

❄ ❄

e

x

e

N1 NN ′
1

({b}, 12)

♥

♥

t
❄

❄

e

x

N2 N ′

=ts

6≈

♥x

({a}, 12)

♥

♥

t
❄

❄

e

({a}, 12)

♥

♥

t
❄

❄

e

({b}, 12)

♥
❄

❄
x

6≡is

♥
({b}, 12)

♥
❄

❄
x

SC2: The equivalences between≡is and =ts are not congruences

Let E = ({a}, 12), E
′ = ({a}, 12); Stop and F = ({b}, 12). We have

E=tsE′, since both TS(E) and TS(E′) have the transitions with the

multiaction part of labels {a} and probability 1
2 . On the other hand,

E;F 6≡isE′;F , since only in TS∗(E′;F) no other transition can fire after the

transition with the multiaction part of label {a}. Thus, no equivalence between

≡is and =ts is a congruence.

In the figure above

N1 = Boxdts(E), N ′
1 = Boxdts(E′), N2 = Boxdts(F) and

N = Boxdts(E;F), N ′ = Boxdts(E′;F).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 402

For an analogue of =ts to be a congruence, we have to equip transition systems

with two extra transitions skip and redo as in [MVC02].

The equivalences between≡is and =sto defined on the basis of the enriched

transition systems will still be non-congruences by Example SC1.

Rules for skip and redo: skipping and redoing all executions.

Let E ∈ RegStatExpr.

Rules for skip and redo

Sk E
skip
→ E Rd E

redo
→ E

Definition 148 Let E be a static expression and TS(E) = (S, L, T , s). The

(labeled probabilistic) sr-transition system of E is a quadruple

TSsr(E) = (Ssr, Lsr, Tsr, ssr), where

• Ssr = S ∪ {[E]≈};

• Lsr ⊆ (INSL
fin × (0; 1]) ∪ {(skip, 0), (redo, 1)};

• Tsr = T \ {([E]≈, (∅, 1), [E]≈)} ∪

{([E]≈, (skip, 0), [E]≈), ([E]≈, (redo, 1), [E]≈)};

• ssr = s.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 403

Definition 149 Let E,E′ be static expressions and

TSsr(E) = (Ssr, Lsr, Tsr, ssr), TSsr(E′) = (S′
sr, L

′
sr, T

′
sr, s

′
sr) be their

sr-transition systems. A mapping β : Ssr → S′
sr is an isomorphism between

TSsr(E) and TSsr(E′), β : TSsr(E)≃TSsr(E′), if

1. β is a bijection s.t. β(ssr) = s′sr and β([E]≈) = [E′]≈;

2. ∀s, s̃ ∈ Ssr ∀Γ s
Γ
→P s̃ ⇔ β(s)

Γ
→P β(s̃).

Two sr-transition systems TSsr(E) and TSsr(E′) are isomorphic,

TSsr(E)≃TSsr(E′), if ∃β : TSsr(E)≃TSsr(E′).

For E ∈ RegStatExpr, let TSsr(E) = TSsr(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 404

TSsr(E; Stop)✞✝ ✲

✞✝ ✲ ❄

E;Stop

☛✡ ✟✠
☛✡ ✟✠
☛✡ ✟✠

TSsr(E)✞✝ ✲∅, 12

({a}, 12),
1
2

❄

E

E

☛✡ ✟✠
☛✡ ✟✠ E;Stop

E;Stop

∅, 12

({a}, 12),
1
2

∅,1

✘

✙✛

✘

✙✛

redo,1

skip,0

redo,1 skip,0

✬

✫

✲✲★

✧
6≈

TSSR: The sr-transition systems of E and E; Stop for E = ({a}, 12)

Let E = ({a}, 12). In the figure above the transition systems TSsr(E) and

TSsr(E; Stop) are presented.

In the latter sr-transition system the final state can be reached by the transition

(skip, 0) only from the initial state.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 405

Definition 150 E and E′ are isomorphic w.r.t. sr-transition systems,

E=tssrE′, if TSsr(E)≃TSsr(E′).

sr-transition systems without empty loops can be defined and the equivalence

=tssr∗ based on them.

The coincidence of =tssr and =tssr∗ can be proved as for =ts and =ts∗.

≡is ≡ss

↔is ↔ss

❄ ❄

≈

❄

✛

✛

=sto

❄

❄

=tssr

❄

=ts

Interrelations of the stochastic equivalences and the new congruence

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 406

Theorem 41 Let↔,↔↔ ∈ {≡,↔,=,≈} and

⋆, ⋆⋆ ∈ { , is, ss, sto, ts, tssr}. For dynamic expressions G and G′

G↔⋆G
′ ⇒ G↔↔⋆⋆G

′

iff in the graph in figure above there exists a directed path from↔⋆ to↔↔⋆⋆.

Validity of the implications

• The implication =tssr → =ts is valid, since sr-transition systems have more

states and transitions than usual ones.

• The implication ≈ → =tssr is valid, since the sr-transition system of a

dynamic formula is defined based on its structural equivalence class.

Absence of the additional nontrivial arrows

• Let E = ({a}, 12) and E′ = ({a}, 12); Stop. We have E=tsE′ (see

example with Figure SC2). On the other hand, E 6=tssrE′, since only in

TSsr(E′) after the transition with multiaction part of label {a} we do not

reach the final state (see Figure TSSR).

• Let E = ({a}, 12) and E′ = (({a}, 12); ({â},
1
2)) sy a. Then E=tssrE′,

since E=tsE′ by the last example from the equivalence interrelations

theorem, and the final states of both TSsr(E′) and TSsr(E′) are

reachable from the others with “normal” transitions (not with skip only). On the

other hand, E 6≈E′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 407

Theorem 42 Let a ∈ Act and E,E′, F ∈ RegStatExpr. If E=tssrE′

then

1. E◦F=tssrE′◦F, F◦E=tssrF◦E′, ◦ ∈ {; , [], ‖};

2. E[f]=tssrE′[f];

3. E◦a=tssrE′◦a, ◦ ∈ {rs,sy};

4. [E∗F∗K]=tssr[E′∗F∗K], [F∗E∗K]=tssr[F∗E′∗K],

[F∗K∗E]=tssr[F∗K∗E′].

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 408

Case studies

Shared memory system

The standard system

A model of two processors accessing a common shared memory [MBCDF95]

✲

✛

✛

✲

Processor 1 Processor 2Memory

The diagram of the shared memory system

After activation of the system (turning the computer on), two processors are

active, and the common memory is available. Each processor can request an

access to the memory.

When a processor starts an acquisition of the memory, another processor waits

until the former one ends its operations, and the system returns to the state with

both active processors and the available memory.

a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i.

bi and ei correspond to the beginning and the end of the common memory

access of processor i.

The other actions are used for communication purpose only.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 409

The static expression of the first processor is

E1 = [({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop].

The static expression of the shared memory is

E3 = [({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2);

({ẑ2},
1
2))) ∗ Stop].

The static expression of the shared memory system with two processors is

E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

Effect of synchronization

The synchronization of ({bi, yi},
1
2) and ({ŷi},

1
2) produces

({bi},
1
4) (1 ≤ i ≤ 2).

The synchronization of ({ei, zi},
1
2) and ({ẑi},

1
2) produces

({ei},
1
4) (1 ≤ i ≤ 2).

The synchronization of ({a, x̂1, x̂2},
1
2) and ({x1},

1
2) produces ({a, x̂2},

1
4),

Synchronization of ({a, x̂1, x̂2},
1
2) and ({x2},

1
2) produces ({a, x̂1},

1
4).

Synchronization of ({a, x̂2},
1
4) and ({x2},

1
2), as well as ({a, x̂1},

1
4) and

({x1},
1
2)

produces ({a}, 18).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 410

DR(E) consists of

s1 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s2 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s3 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s4 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s5 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 411

s6 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s7 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s8 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s9 = [([({x1},
1
2) ∗ (({r1},

1
2); ({b1, y1},

1
2); ({e1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({b2, y2},

1
2); ({e2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 412

Interpretation of the states

s1: the initial state,

s2: the system is activated and the memory is not requested,

s3: the memory is requested by the first processor,

s4: the memory is requested by the second processor,

s5: the memory is allocated to the first processor,

s6: the memory is requested by two processors,

s7: the memory is allocated to the second processor,

s8: the memory is allocated to the first processor and the memory is requested by

the second processor,

s9: the memory is allocated to the second processor and the memory is

requested by the first processor.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 413

✛
✚
✘
✙s1

✛
✚
✘
✙s2

✛
✚
✘
✙s6

✛
✚
✘
✙s3

✛
✚
✘
✙s5

✛
✚
✘
✙s8

✛
✚
✘
✙s4

✛
✚
✘
✙s7

✛
✚
✘
✙s9

❄

❄

❄

❄

❄

❄

TS∗(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�

��✒

✲ ✛

✛ ✲

✬

✫

✩

✪✲ ✛

({a}, 1
8
),1

({r1}, 1
2
), 1

3
({r2}, 1

2
), 1

3

{({r1}, 1
2
),({r2}, 1

2
)}, 1

3

({b1}, 1
4
), 1

5
({b2}, 1

4
), 1

5

({r2}, 1
2
), 3

5
({r1}, 1

2
), 3

5
({r2}, 1

2
), 3

5
({r1}, 1

2
), 3

5

{({r1}, 1
2
),

({e2}, 1
4
)}, 1

5

{({r2}, 1
2
),

({e1}, 1
4
)}, 1

5

({e1}, 1
4
), 1

5
({e2}, 1

4
), 1

5

({b1}, 1
4
), 1

2
({b2}, 1

4
), 1

2

{({r2}, 1
2
),

({b1}, 1
4
)}, 1

5

{({r1}, 1
2
),

({b2}, 1
4
)}, 1

5

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁☛

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆❯

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

({e1}, 1
4
),1 ({e2}, 1

4
),1

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐

The transition system without empty loops of the shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 414

✛
✚
✘
✙s1

✛
✚
✘
✙s2

✛
✚
✘
✙s6

✛
✚
✘
✙s3

✛
✚
✘
✙s5

✛
✚
✘
✙s8

✛
✚
✘
✙s4

✛
✚
✘
✙s7

✛
✚
✘
✙s9

❄

❄

❄

❄

❄

❄

DTMC∗(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�

��✒

✲ ✛

✛ ✲

✬

✫

✩

✪✲ ✛

1

1
3

1
3

1
3

1
5

1
5

3
5

3
5

3
5

3
5

1
5

1
5

1
5

1
5

1
2

1
2

1
5

1
5

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁☛

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆❯

✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❏

❏
❏

❏
❏

❏
❏

❏
❏❪

1 1

❅
❅

❅
❅

❅
❅❅■

PPPPPPPPPPPPPPPPPPP✐

The underlying DTMC without empty loops of the shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 415

The TPM for DTMC∗(E) is

P∗ =

0 1 0 0 0 0 0 0 0

0 0 1
3

1
3 0 1

3 0 0 0

0 0 0 0 1
5

3
5 0 1

5 0

0 0 0 0 0 3
5

1
5 0 1

5

0 1
5 0 1

5 0 0 0 3
5 0

0 0 0 0 0 0 0 1
2

1
2

0 1
5

1
5 0 0 0 0 0 3

5

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

The steady-state PMF for DTMC∗(E) is

ψ∗ =

(
0,

3

209
,
75

418
,
75

418
,
15

418
,
46

209
,
15

418
,
35

209
,
35

209

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 416

Transient and steady-state probabilities of the shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144

ψ∗
3 [k] 0 0 0.3333 0 0.2467 0.2489 0.0592 0.2484 0.2000 0.1071 0.2368 0.1794

ψ∗
5 [k] 0 0 0 0.0667 0 0.0493 0.0498 0.0118 0.0497 0.0400 0.0214 0.0359

ψ∗
6 [k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201

ψ∗
8 [k] 0 0 0 0.2333 0.2400 0.0493 0.2318 0.1910 0.0956 0.2221 0.1662 0.1675

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ8
*@kD

Ψ6
*@kD

Ψ5
*@kD

Ψ3
*@kD

Ψ2
*@kD

Ψ1
*@kD

Transient probabilities alteration diagram of the shared memory system

We depict the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the

corresponding values coincide for s3, s4 as well as for s5, s7 as well as for s8, s9.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 417

Performance indices

• The average recurrence time in the state s2, the average system run-through,

is 1
ψ∗

2
= 209

3 = 69 2
3 .

• The common memory is available in the states s2, s3, s4, s6 only.

The steady-state probability that the memory is available is

ψ∗
2 + ψ∗

3 + ψ∗
4 + ψ∗

6 = 124
209 .

The steady-state probability that the memory is used,

the shared memory utilization, is 1− 124
209 = 85

209 .

• The common memory request of the first processor ({r1},
1
2) is only

possible from the states s2, s4, s7.

The request probability in each of the states is a sum of execution

probabilities for all multisets of activities containing ({r1},
1
2).

The steady-state probability of the shared memory request from the first

processor is

ψ∗
2

∑
{Γ|({r1},

1
2)∈Γ} PT

∗(Γ, s2) +

ψ∗
4

∑
{Γ|({r1},

1
2)∈Γ} PT

∗(Γ, s4) +

ψ∗
7

∑
{Γ|({r1},

1
2)∈Γ} PT

∗(Γ, s7) =
3

209

(
1
3 + 1

3

)
+ 75

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
= 38

209 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 418

({e2,z2},
1
2)

({b2,y2},
1
2)

✍

✍✌✎☞✉ e

({r2},
1
2)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x

✍✌✎☞

✜

✢

✛

({e1,z1},
1
2)

✍✌✎☞
({b1,y1},

1
2)

✍✌✎☞x

({r1},
1
2)

✍✌✎☞
❄

❄

✠

✍✌✎☞✉ e

✍✌✎☞

❄

✛

✚

✲

({x1},
1
2)

❄

❄

❄

❄

❄

❄

({x2},
1
2)

❄

❄

N1 N2

({a,x̂1,x̂2},
1
2)

({ẑ1},
1
2) ({ẑ2},

1
2)

({ŷ1},
1
2) ({ŷ2},

1
2)

✍✌✎☞❄
��✠ ❅❅❘

✠✍✕✖

✻✻

N3

✍✌✎☞x

✍✌✎☞✉
❄

e

✍✌✎☞❄
❄
✍✌✎☞❄
❄

The marked dts-boxes of two processors and shared memory

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 419

({a}, 18)

✍✌✎☞✉
❄

e

N

({e1},
1
4) ({e2},

1
4)

✍✌✎☞ ✍✌✎☞
({b1},

1
4)

✍✌✎☞x

({b2},
1
4)

({r1},
1
2)

✍✌✎☞
❄

❄

✠ ✍

✍✌✎☞✉ e✍✌✎☞✉ e

❅❅❘ ��✠

✍✌✎☞

❄

({r2},
1
2)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x✍✌✎☞x

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❄

✚
✚❂

❩
❩⑦

��✠ ❅❅❘

✠✍

✛

✚

✜

✢

✲ ✛

✕✖

✻✻

The marked dts-box of the shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 420

The abstract system

The static expression of the first processor is

F1 = [({x1},
1
2) ∗ (({r},

1
2); ({b, y1},

1
2); ({e, z1},

1
2)) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1
2) ∗ (({r},

1
2); ({b, y2},

1
2); ({e, z2},

1
2)) ∗ Stop].

The static expression of the shared memory is F3 =

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1},

1
2); ({ẑ1},

1
2))[](({ŷ2},

1
2); ({ẑ2},

1
2))) ∗ Stop].

The static expression of the abstract shared memory system with two processors

is F = (F1‖F2‖F3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

DR(F) resembles DR(E), and TS∗(F) is similar to TS∗(E).

DTMC∗(F)≃DTMC∗(E), thus, the TPM and the steady-state PMF for

DTMC∗(F) and DTMC∗(E) coincide.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 421

Performance indices

The first and second performance indices are the same for the standard and

abstract systems.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, 12) is only possible from

the states s2, s3, s4, s5, s7.

The request probability in each of the states is a sum of execution

probabilities for all multisets of activities containing ({r}, 12).

The steady-state probability of the shared memory request from a processor

is ψ∗
2

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s2) + ψ∗
3

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s3) +

ψ∗
4

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s4) + ψ∗
5

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s5) +

ψ∗
7

∑
{Γ|({r}, 12)∈Γ} PT

∗(Γ, s7) =
3

209

(
1
3 + 1

3 + 1
3

)
+ 75

418

(
3
5 + 1

5

)
+

75
418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
+ 15

418

(
3
5 + 1

5

)
= 75

209 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 422

The quotient of the abstract system

DR(F)/Rss(F) = {K1,K2,K3,K4,K5,K6}, where

K1 = {s1} (the initial state),

K2 = {s2} (the system is activated and the memory is not requested),

K3 = {s3, s4} (the memory is requested by one processor),

K4 = {s5, s7} (the memory is allocated to a processor),

K5 = {s6} (the memory is requested by two processors),

K6 = {s8, s9} (the memory is allocated to a processor and the memory is

requested by another processor).

DRT (F)/Rss(F) = {K1,K2,K4,K6} and

DRV (F)/Rss(F) = {K3,K5}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 423

TS∗
↔ss

(F)

✛
✚
✘
✙K6

✛
✚
✘
✙K5

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

{a},1

{e}, 15

{b},1

{r}, 35 {{r},{r}}, 13

{r}, 23

{r}, 35

{b}, 15

{e},1

{{r},{e}}, 15

{{r},{b}}, 15

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✡✢

❏
❏
❏
❏
❏
❏❏❫

✓
✓

✓
✓

✓
✓✓✴

❏
❏

❏
❏

❏
❏❏❪❏❏

❏
❏
❏
❏❏❫

✓
✓
✓
✓
✓
✓✼

The quotient transition system without empty loops of the abstract shared

memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 424

DTMC∗
↔ss

(F)

✛
✚
✘
✙K6

✛
✚
✘
✙K5

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

1

1
5

1

3
5

1
3

2
3

3
5

1
5

1

1
5

1
5

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✡✢

❏
❏
❏
❏
❏
❏❏❫

✓
✓

✓
✓

✓
✓✓✴

❏
❏

❏
❏

❏
❏❏❪❏❏

❏
❏
❏
❏❏❫

✓
✓
✓
✓
✓
✓✼

The quotient underlying DTMC without empty loops of the abstract shared

memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 425

The TPM for DTMC∗
↔ss

(F) is

P′∗ =

0 1 0 0 0 0

0 0 2
3 0 1

3 0

0 0 0 1
5

3
5

1
5

0 1
5

1
5 0 0 3

5

0 0 0 0 0 1

0 0 1 0 0 0

.

The steady-state PMF ψ′∗ for DTMC∗
↔ss

(F) is

ψ′∗ =

(
0,

3

209
,
75

209
,
15

209
,
46

209
,
70

209

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 426

Transient and steady-state probabilities of the quotient abstract shared memory

system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′
1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗[k] 0 1 0 0 0.0267 0 0.0197 0.0199 0.0047 0.0199 0.0160 0.0144

ψ′
3
∗[k] 0 0 0.6667 0 0.4933 0.4978 0.1184 0.4967 0.4001 0.2142 0.4735 0.3589

ψ′
4
∗[k] 0 0 0 0.1333 0 0.0987 0.0996 0.0237 0.0993 0.0800 0.0428 0.0718

ψ′
5
∗[k] 0 0 0.3333 0.4000 0 0.3049 0.2987 0.0776 0.3047 0.2416 0.1351 0.2201

ψ′
6
∗[k] 0 0 0 0.4667 0.4800 0.0987 0.4636 0.3821 0.1912 0.4443 0.3325 0.3349

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ6’*@kD

Ψ5’*@kD

Ψ4’*@kD

Ψ3’*@kD

Ψ2’*@kD

Ψ1’*@kD

Transient probabilities alteration diagram of the quotient abstract shared memory

system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 427

Performance indices

• The average recurrence time in the stateK2, where no processor requests

the memory, the average system run-through, is 1
ψ′

2
∗ = 209

3 = 69 2
3 .

• The common memory is available in the states K2,K3,K5 only.

The steady-state probability that the memory is available is

ψ′
2
∗
+ ψ′

3
∗
+ ψ′

5
∗
= 3

209 + 75
209 + 46

209 = 124
209 .

The steady-state probability that the memory is used (i.e. not available), the

shared memory utilization, is 1− 124
209 = 85

209 .

• The common memory request of a processor {r} is only possible from the

statesK2,K3,K4.

The request probability in each of the states is a sum of execution

probabilities for all multisets of multiactions containing {r}.

The steady-state probability of the shared memory request from a processor

is ψ′
2
∗ ∑

{A,K|{r}∈A, K2
A
→→K}

PM∗
A(K2,K) +

ψ′
3
∗∑

{A,K|{r}∈A, K3
A
→→K}

PM∗
A(K3,K) +

ψ′
4
∗∑

{A,K|{r}∈A, K4
A
→→K}

PM∗
A(K4,K) =

3
209

(
2
3 + 1

3

)
+ 75

209

(
3
5 + 1

5

)
+ 15

209

(
3
5 + 1

5

)
= 75

209 .

The performance indices are the same for the complete and quotient abstract

shared memory systems.

The coincidence of the first and second performance indices illustrates the

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived

step traces from steady states:

one should apply its result to the derived step traces

{{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}} of F and itself,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 428

The generalized system

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({b1, y1}, ρ); ({e1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({b2, y2}, ρ); ({e2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ)))∗

Stop].

The static expression of the generalized shared memory system with two

processors is

K = (K1‖K2‖K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

Interpretation of the states

s̃1: the initial state,

s̃2: the system is activated and the memory is not requested,

s̃3: the memory is requested by the first processor,

s̃4: the memory is requested by the second processor,

s̃5: the memory is allocated to the first processor,

s̃6: the memory is requested by two processors,

s̃7: the memory is allocated to the second processor,

s̃8: the memory is allocated to the first processor and the memory is requested by

the second processor,

s̃9: the memory is allocated to the second processor and the memory is

requested by the first processor.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 429

The TPM for DTMC∗(K) is P̃∗ =

0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 ρ(1−ρ)
1+ρ−ρ2

1−ρ2

1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0

0 0 0 0 0 1−ρ2

1+ρ−ρ2
ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

The steady-state PMF for DTMC∗(K) is

ψ̃∗ = 1
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) (0, 2ρ

2(2− ρ)(1− ρ)2,

(2− p)(1− p+ p2)2, (2− p)(1− p+ p2)2, ρ(2− ρ− 4ρ2 + 4ρ3 − ρ4),

2(2 + ρ− 5ρ2 + ρ3 + ρ4), ρ(2− ρ− 4ρ2 + 4ρ3 − ρ4),

2 + 3ρ− 6ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 430

Performance indices

• The average recurrence time in the state s̃2, where no processor requests the

memory, the average system run-through, is
1
ψ̃∗

2

= 6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

ρ2(2−ρ)(1−ρ)2 .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6.

The steady-state probability that the memory is available is

ψ̃∗
2 + ψ̃∗

3 + ψ̃∗
4 + ψ̃∗

6 =
ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + (2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) +

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) +
2+ρ−5ρ2+ρ3+ρ4

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 =

4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

The steady-state probability that the memory is used (i.e. not available), the

shared memory utilization, is

1− 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 2+5ρ−7ρ2−3ρ3+5ρ4−ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

• The common memory request of the first processor ({r1}, ρ) is only possible

from the states s̃2, s̃4, s̃7.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of activities containing ({r1}, ρ).

The steady-state probability of the shared memory request from the first

processor is

ψ̃∗
2

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃2) +

ψ̃∗
4

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃4) +

ψ̃∗
7

∑
{Γ|({r1},ρ)∈Γ} PT

∗(Γ, s̃7) =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ
2−ρ + ρ

2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
=

2+3ρ−4ρ2−2ρ3+2ρ4

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5) .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 431

The abstract generalized system and its reduction

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({b, y1}, ρ); ({e, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({b, y2}, ρ); ({e, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ)))∗

Stop].

The static expression of the abstract shared memory generalized system with two

processors is

L = (L1‖L2‖L3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

DR(L) resembles DR(K), and TS∗(L) is similar to TS∗(K).

DTMC∗(L)≃DTMC∗(K), thus, the TPM and the steady-state PMF for

DTMC∗(L) and DTMC∗(K) coincide.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 432

Performance indices

The first and second performance indices are the same for the generalized

system and its abstraction.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, ρ) is only possible from

the states s̃2, s̃3, s̃4, s̃5, s̃7.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of activities containing ({r}, ρ).

The steady-state probability of the shared memory request from a processor

is ψ̃∗
2

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
3

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃3) +

ψ̃∗
4

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃4) + ψ̃∗
5

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃5) +

ψ̃∗
7

∑
{Γ|({r},ρ)∈Γ} PT

∗(Γ, s̃7) =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ
2−ρ + 1−ρ

2−ρ +
ρ

2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

(2−ρ)(1+ρ−ρ2)2

2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
2(6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5)

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
=

(2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 433

The quotient of the abstract system

DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where

K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and the memory is not requested),

K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor),

K̃5 = {s̃6} (the memory is requested by two processors),

K̃6 = {s̃8, s̃9} (the memory is allocated to a processor and the memory is

requested by another processor).

DRT (L)/Rss(L)
= {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L)

= {K̃3, K̃5}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 434

The TPM for DTMC∗
↔ss

(L) is

P̃′∗ =

0 1 0 0 0 0

0 0 2(1−ρ)
2−ρ 0 ρ

2−ρ 0

0 0 0 ρ(1−ρ)
1+ρ−ρ2

1−ρ2

1+ρ−ρ2
ρ2

1+ρ−ρ2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1

0 0 1 0 0 0

.

The steady-state PMF for DTMC∗
↔ss

(L) is

ψ̃′∗ = 1
6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 (0, ρ

2(2− ρ)(1− ρ)2,

(2− ρ)(1 + ρ− ρ2)2, ρ(2− ρ− 4ρ2 + 4ρ3 − ρ4),

2 + ρ− 5ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 435

Performance indices

• The average recurrence time in the state K̃2, where no processor requests

the memory, the average system run-through, is
1
ψ̃′∗

2

= 6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

ρ2(2−ρ)(1−ρ)2 .

• The common memory is available only in the states K̃2, K̃3, K̃5.

The steady-state probability that the memory is available is

ψ̃′∗
2 + ψ̃′∗

3 + ψ̃′∗
5 =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 + (2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 +

2+ρ−5ρ2+ρ3+ρ4

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

The steady-state probability that the memory is used (i.e. not available), the

shared memory utilization, is

1− 4+4ρ−7ρ2−7ρ3+9ρ4−2ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 = 2+5ρ−7ρ2−3ρ3+5ρ4−ρ5

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 436

• The common memory request of a processor {r} is only possible from the

states K̃2, K̃3, K̃4.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of multiactions containing {r}.

The steady-state probability of the shared memory request from a processor

is ψ̃′∗
2

∑
{A,K̃|{r}∈A, K̃2

A
→→K̃}

PM∗
A(K̃2, K̃) +

ψ̃′∗
3

∑
{A,K̃|{r}∈A, K̃3

A
→→K̃}

PM∗
A(K̃3, K̃) +

ψ̃′∗
4

∑
{A,K̃|{r}∈A, K̃4

A
→→K̃}

PM∗
A(K̃4, K̃) =

ρ2(2−ρ)(1−ρ)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
2(1−ρ)
2−ρ + ρ

2−ρ

)
+

(2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
+

ρ(2−ρ−4ρ2+4ρ3−ρ4)
6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5

(
1−ρ2

1+ρ−ρ2 + ρ2

1+ρ−ρ2

)
=

(2−ρ)(1+ρ−ρ2)2

6+9ρ−14ρ2−10ρ3+14ρ4−3ρ5 .

The performance indices are the same for the complete and quotient abstract

generalized shared memory systems.

The coincidence of the first and second performance indices illustrates the

proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived

step traces from steady states:

one should apply its result to the derived step traces

{{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}} of L and itself,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 437

Dining philosophers system

The standard system

A model of five dining philosophers [P81]

The diagram of the dining philosophers system

After activation of the system (the philosophers come in the dining room), five

forks appear on the table.

If the left and right forks available for a philosopher, he takes them simultaneously

and begins eating.

At the end of eating, the philosopher places both his forks simultaneously back on

the table.

a corresponds to the system activation.

bi and ei correspond to the beginning and the end of eating of philosopher

i (1 ≤ i ≤ 5).

The other actions are used for communication purpose only.

The expression of each philosopher includes two alternative subexpressions:

the second one specifies a resource (fork) sharing with the right neighbor.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 438

Arbitrary number of philosophers

The most interesting: the maximal sets of philosophers which can dine together.

The system with 1 philosopher: the only maximal set is ∅.

The system with 2 philosophers: the maximal sets are {1}, {2}.

The system with 3 philosophers: the maximal sets are {1}, {2}, {3}.

The system with 4 philosophers: the maximal sets are {1, 3}, {2, 4}.

The system with 5 philosophers: the maximal sets are

{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}.

The system with 6 philosophers: the maximal sets are

{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}.

The system with 7 philosophers: the maximal sets are

{1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}, {2, 4, 7}, {2, 5, 7}, {3, 5, 7}.

A nontrivial behaviour: at least 5 philosophers occupy the table.

The neighbors cannot dine together: the maximal number of the dining persons

for the system with n philosophers will be ⌊n2 ⌋.

If the philosopher i belongs to some maximal set then the philosopher

i(mod n) + 1 belongs to the

next one.

• n is an even number: 2 maximal sets of n2 persons,

i.e. the philosophers numbered with all odd natural numbers ≤ n

and those numbered with all even natural numbers ≤ n.

• n is an odd number: n maximal sets of n−1
2 persons,

since from a maximal set one can “shift” clockwise n− 1 times by one

element modulo n until the next maximal set will coincide with the initial one.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 439

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Ei = [({xi},
1
2) ∗ ((({bi, ŷi},

1
2); ({ei, ẑi},

1
2))[](({yi+1},

1
2);

({zi+1},
1
2))) ∗ Stop].

The static expression of the philosopher 5 is

E5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[]

(({y1},
1
2); ({z1},

1
2))) ∗ Stop].

The static expression of the dining philosophers system is

E = (E1‖E2‖E3‖E4‖E5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4

sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3

rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

Effect of synchronization

Synchronization of ({bi, yi},
1
2) and ({ŷi},

1
2) produces

({bi},
1
4) (1 ≤ i ≤ 5).

Synchronization of ({ei, zi},
1
2) and ({ẑi},

1
2) produces

({ei},
1
4) (1 ≤ i ≤ 5).

Synchronization of ({a, x̂1, x̂2, x̂3, x̂4},
1
2) and ({x1},

1
2) produces

({a, x̂2, x̂3, x̂4},
1
4).

Synchronization of ({a, x̂2, x̂3, x̂4},
1
4) and ({x2},

1
2) produces

({a, x̂3, x̂4},
1
8).

Synchronization of ({a, x̂3, x̂4},
1
8) and ({x3},

1
2) produces ({a, x̂4},

1
16).

Synchronization of ({a, x̂4},
1
16) and ({x4},

1
2) produces ({a}, 1

32).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 440

DR(E) consists of

s1 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s2 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s3 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 441

s4 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s5 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s6 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[]({y1},

1
2);

(({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 442

s7 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s8 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s9 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 443

s10 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s11 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈,

s12 =

[([({x1},
1
2) ∗ ((({b1, ŷ1},

1
2); ({e1, ẑ1},

1
2))[](({y2},

1
2); ({z2},

1
2)))∗

Stop]‖[({x2},
1
2) ∗ ((({b2, ŷ2},

1
2); ({e2, ẑ2},

1
2))[](({y3},

1
2); ({z3},

1
2)))∗

Stop]‖[({x3},
1
2) ∗ ((({b3, ŷ3},

1
2); ({e3, ẑ3},

1
2))[](({y4},

1
2); ({z4},

1
2)))∗

Stop]‖[({x4},
1
2) ∗ ((({b4, ŷ4},

1
2); ({e4, ẑ4},

1
2))[](({y5},

1
2); ({z5},

1
2)))∗

Stop]‖[({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b5, ŷ5},

1
2); ({e5, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop]) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5

sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4

rs y5 rs z1 rs z2 rs z3 rs z4 rs z5]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 444

Interpretation of the states

s1: the initial state,

s2: the system is activated and no philosophers dine,

s3: philosopher 1 dines,

s4: philosophers 1 and 4 dine,

s5: philosophers 1 and 3 dine,

s6: philosopher 4 dines,

s7: philosopher 3 dines,

s8: philosophers 2 and 4 dine,

s9: philosophers 3 and 5 dine,

s10: philosopher 2 dines,

s11: philosopher 5 dine,

s12: philosophers 2 and 5 dine.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 445

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s4

✛
✚
✘
✙s6

✛
✚
✘
✙s7

✛
✚
✘
✙s8

✛
✚
✘
✙s9

✛
✚
✘
✙s10

✛
✚
✘
✙s11

✛
✚
✘
✙s12

✛
✚
✘
✙s3

✛
✚
✘
✙s1

TS∗(E)

✻

❄

❄

✻

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙♦❙

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇

PPPPPPPPPPPPPPPPP✐
PPPPPPPPPPPPPPPPPq

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮

❳❳❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳②

❄

✻

✘✘✘✘✘✘✘✘✘✘✘✾
✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳❳② ❳❳❳❳❳❳❳❳❳③

❏
❏

❏
❏

❏
❏

❏
❏

❏❏❪

✻

❄

✘✘✘✘✘✘✘✘✘✘✘✿
✘✘✘✘✘✘✘✘✘✾

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✣
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✛ ✲
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❖ ❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

✚
✚
✚

✚
✚
✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚✚❃✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❂

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙
❙♦

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

({a}, 1
32

),1

({e4}, 1
4
), 3

7

({b4}, 1
4
), 3

11

({b3}, 1
4
), 3

11

({e3}, 1
4
), 3

7

({e1}, 1
4
), 3

7
({b1}, 1

4
), 3

11

({b5}, 1
4
),

3
11

({e5}, 1
4
),

3
7

({e3}, 1
4
), 3

7

({b3}, 1
4
), 3

11

({b2}, 1
4
), 3

11

({e2}, 1
4
), 3

7

({e5}, 1
4
), 3

7

({b5}, 1
4
), 3

11

({b4}, 1
4
), 3

11

({e4}, 1
4
), 3

7

({e2}, 1
4
),

3
7

({b2}, 1
4
),

3
11

({e1}, 1
4
), 3

7
({b1}, 1

4
), 3

11

({b1}, 1
4
), 3

20

({e1}, 1
4
), 3

11

{({b1}, 1
4
),

({b3}, 1
4
)}, 1

20

{({e1}, 1
4
),

({e3}, 1
4
)}, 1

7

({b3}, 1
4
), 3

20

({e3}, 1
4
), 3

11

{({b3}, 1
4
),

({b5}, 1
4
)}, 1

20

{({e3}, 1
4
),

({e5}, 1
4
)}, 1

7

({b5}, 1
4
), 3

20

({e5}, 1
4
), 3

11

{({b2}, 1
4
),

({b5}, 1
4
)}, 1

20

{({e2}, 1
4
),

({e5}, 1
4
)}, 1

7

({b2}, 1
4
), 3

20

({e2}, 1
4
), 3

11

{({b2}, 1
4
),

({b4}, 1
4
)}, 1

20

{({e2}, 1
4
),

({e4}, 1
4
)}, 1

7

({b4}, 1
4
), 3

20

({e4}, 1
4
), 3

11

{({b1}, 1
4
),

({b4}, 1
4
)}, 1

20

{({e1}, 1
4
),

({e4}, 1
4
)}, 1

7

{({b1}, 1
4
),

({e4}, 1
4
)},

1
11

{({b4}, 1
4
),

({e1}, 1
4
)}, 1

11

{({b3}, 1
4
),

({e1}, 1
4
)},

1
11

{({b1}, 1
4
),

({e3}, 1
4
)}, 1

11

{({b5}, 1
4
),

({e3}, 1
4
)},

1
11

{({b3}, 1
4
),

({e5}, 1
4
)}, 1

11

{({b5}, 1
4
),({e2}, 1

4
)}, 1

11

{({b2}, 1
4
),({e5}, 1

4
)}, 1

11

{({b4}, 1
4
),

({e2}, 1
4
)},

1
11

{({b2}, 1
4
),

({e4}, 1
4
)}, 1

11

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮
PPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPP✐

❏
❏

❏
❏

❏
❏

❏
❏

❏❪
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✡
✡
✡
✡
✡
✡
✡
✡
✡✣✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩

❩
❩
❩
❩
❩❩⑦❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩❩⑥

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✗

The transition system without empty loops of the dining philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 446

✛
✚
✘
✙s2

✛
✚
✘
✙s5

✛
✚
✘
✙s4

✛
✚
✘
✙s6

✛
✚
✘
✙s7

✛
✚
✘
✙s8

✛
✚
✘
✙s9

✛
✚
✘
✙s10

✛
✚
✘
✙s11

✛
✚
✘
✙s12

✛
✚
✘
✙s3

✛
✚
✘
✙s1

DTMC∗(E)

✻

❄

❄

✻

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙♦❙

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇

PPPPPPPPPPPPPPPPP✐
PPPPPPPPPPPPPPPPPq

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮

❳❳❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳②

❄

✻

✘✘✘✘✘✘✘✘✘✘✘✾
✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳❳② ❳❳❳❳❳❳❳❳❳③

❏
❏

❏
❏

❏
❏

❏
❏

❏❏❪

✻

❄

✘✘✘✘✘✘✘✘✘✘✘✿
✘✘✘✘✘✘✘✘✘✾

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✣
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✛ ✲
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❖ ❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲

✚
✚
✚

✚
✚
✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚✚❃✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❂

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙
❙♦

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇◆

1

3
7

3
11

3
11

3
7

3
7

3
11

3
11

3
7

3
7

3
11

3
11

3
7

3
7

3
11

3
11

3
7

3
7

3
11

3
7

3
11

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

3
20

3
11

1
20

1
7

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✮
PPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPP✐

❏
❏

❏
❏

❏
❏

❏
❏

❏❪
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❫

✡
✡
✡
✡
✡
✡
✡
✡
✡✣✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✢

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩

❩
❩
❩
❩
❩❩⑦❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩❩⑥

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✎✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✗

The underlying DTMC without empty loops of the dining philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 447

The TPM for DTMC∗(E) is

P∗ =

0 1 0 0 0 0 0 0 0 0 0 0

0 0 3
20

1
20

1
20

3
20

3
20

1
20

1
20

3
20

3
20

1
20

0 3
11 0 3

11
3
11

1
11

1
11 0 0 0 0 0

0 1
7

3
7 0 0 3

7 0 0 0 0 0 0

0 1
7

3
7 0 0 0 3

7 0 0 0 0 0

0 3
11

1
11

3
11 0 0 0 3

11 0 1
11 0 0

0 3
11

1
11 0 3

11 0 0 0 3
11 0 1

11 0

0 1
7 0 0 0 3

7 0 0 0 3
7 0 0

0 1
7 0 0 0 0 3

7 0 0 0 3
7 0

0 3
11 0 0 0 1

11 0 3
11 0 0 1

11
3
11

0 3
11 0 0 0 0 1

11 0 3
11

1
11 0 3

11

0 1
7 0 0 0 0 0 0 0 3

7
3
7 0

.

The steady-state PMF for DTMC∗(E) is

ψ∗ =

(
0,

2

11
,
1

10
,

7

110
,

7

110
,
1

10
,
1

10
,

7

110
,

7

110
,
1

10
,
1

10
,

7

110

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 448

Transient and steady-state probabilities of the dining philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ∗
3 [k] 0 0 0.1500 0.0701 0.1189 0.0878 0.1079 0.0949 0.1033 0.0979 0.1014 0.1000

ψ∗
4 [k] 0 0 0.0500 0.0818 0.0503 0.0726 0.0578 0.0674 0.0612 0.0652 0.0626 0.0636

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ4
*@kD

Ψ3
*@kD

Ψ2
*@kD

Ψ1
*@kD

Transient probabilities alteration diagram of the dining philosophers system

We depict the probabilities for the states s1, . . . , s4 only, since the corresponding

values coincide for s3, s6, s7, s10, s11 as well as for s4, s5, s8, s9, s12.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 449

Performance indices

• The average recurrence time in the state s2, where all the forks are available,

the average system run-through, is 1
ψ∗

2
= 11

2 = 5 1
2 .

• Nobody eats in the state s2. The fraction of time when no philosophers dine

is ψ∗
2 = 2

11 .

Only one philosopher eats in the states s3, s6, s7, s10, s11. The fraction of

time when only one philosopher dines is

ψ∗
3 + ψ∗

6 + ψ∗
7 + ψ∗

10 + ψ∗
11 = 1

10 + 1
10 + 1

10 + 1
10 + 1

10 = 1
2 .

Two philosophers eat together in the states s4, s5, s8, s9, s12. The fraction

of time when two philosophers dine is

ψ∗
4 + ψ∗

5 + ψ∗
8 + ψ∗

9 + ψ∗
12 = 7

110 + 7
110 + 7

110 + 7
110 + 7

110 = 7
22 .

The relative fraction of time when two philosophers dine w.r.t. when only one

philosopher dines is 7
22 ·

2
1 = 7

11 .

• The beginning of eating of first philosopher ({b1},
1
4) is only possible from

the states s2, s6, s7.

The beginning of eating probability in each of the states is a sum of execution

probabilities for all multisets of activities containing ({b1},
1
4).

The steady-state probability of the beginning of eating of first philosopher is

ψ∗
2

∑
{Γ|({b1},

1
4)∈Γ} PT

∗(Γ, s2) +

ψ∗
6

∑
{Γ|({b1},

1
4)∈Γ} PT

∗(Γ, s6) +

ψ∗
7

∑
{Γ|({b1},

1
4)∈Γ} PT

∗(Γ, s7) =
2
11

(
3
20 + 1

20 + 1
20

)
+ 1

10

(
3
11 + 1

11

)
+ 1

10

(
3
11 + 1

11

)
= 13

110 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 450

({e1,ẑ1}, 1
2
) ({z2}, 1

2
)

({b1,ŷ1}, 1
2
) ({y2}, 1

2
)

❦
��✠ ❅❅❘

✆✡✌✍

✻✻

N1

❦x
❦❄
❄
❦❄
❄

❦s e
({x1}, 1

2
)

❄

❄

({e2,ẑ2}, 1
2
) ({z3}, 1

2
)

({b2,ŷ2}, 1
2
) ({y3}, 1

2
)

❦
��✠ ❅❅❘

✆✡✌✍

✻✻

N2

❦x
❦❄
❄
❦❄
❄

❦s e
({x2}, 1

2
)

❄

❄

({e3,ẑ3}, 1
2
) ({z4}, 1

2
)

({b3,ŷ3}, 1
2
) ({y4}, 1

2
)

❦
��✠ ❅❅❘

✆✡✌✍

✻✻

N3

❦x
❦❄
❄
❦❄
❄

❦s e
({x3}, 1

2
)

❄

❄

({e4,ẑ4}, 1
2
) ({z5}, 1

2
)

({b4,ŷ4}, 1
2
) ({y5}, 1

2
)

❦
��✠ ❅❅❘

✆✡✌✍

✻✻

N4

❦x
❦❄
❄
❦❄
❄

❦s e
({x4}, 1

2
)

❄

❄

({e5,ẑ5}, 1
2
) ({z1}, 1

2
)

({b5,ŷ5}, 1
2
) ({y1}, 1

2
)

❦
��✠ ❅❅❘

✆✡✌✍

✻✻

N5

❦x
❦❄
❄
❦❄
❄

❦s e
❄

❄
({a,x̂1,x̂2,x̂3,x̂4}, 1

2
)

The marked dts-boxes of the dining philosophers

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 451

({a}, 1
32)

✍✌✎☞✉
❄

e

N

({e2},
1
4) ({e3},

1
4)

✍✌✎☞ ✍✌✎☞
({b2},

1
4)

✍✌✎☞x

({b3},
1
4)

✍✌✎☞✉ e✍✌✎☞✉ e

✍✌✎☞x ✍✌✎☞x

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

��✠ ❅❅❘

✠✍✕✖

✻✻

✍✌✎☞✉ e ✍✌✎☞✉ e

✍✌✎☞x ✍✌✎☞x

✍✌✎☞
❅❅❘

✠✖

✻
✍✌✎☞

��✠

✍✕

✻

({e1},
1
4)

✍✌✎☞
({b1},

1
4)

✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

��✠

✍✕

✻

({e4},
1
4)

✍✌✎☞
({b4},

1
4)

✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❅❅❘

✠✖

✻
✍✌✎☞

��✠

✍✕

✻

({e5},
1
4)

✍✌✎☞
({b5},

1
4)

✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❅❅❘

✠✖

✻
✍✌✎☞

❅❅❘

✠✖

✻

✫ ✪

✻

✛ ✘
❄

❄

✏✏✏✏✏✏✏✏✏✏✮

PPPPPPPPPPq

◗
◗

◗
◗◗s

✑
✑

✑
✑✑✰

PPPPPq
✏✏✏✏✏✮

❩
❩⑦

✚
✚❂

The marked dts-box of the dining philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 452

The abstract system

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Fi = [({xi},
1
2) ∗ ((({b, ŷi},

1
2); ({e, ẑi},

1
2))[](({yi+1},

1
2);

({zi+1},
1
2))) ∗ Stop].

The static expression of the philosopher 5 is

F5 = [({a, x̂1, x̂2, x̂2, x̂4},
1
2) ∗ ((({b, ŷ5},

1
2); ({e, ẑ5},

1
2))[](({y1},

1
2);

({z1},
1
2))) ∗ Stop].

The static expression of the abstract dining philosophers system is

F = (F1‖F2‖F3‖F4‖F5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4

sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3

rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(F) resembles DR(E), and TS∗(F) is similar to TS∗(E).

DTMC∗(F)≃DTMC∗(E), thus, TPM and the steady-state PMF for

DTMC∗(F) and DTMC∗(E) coincide.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 453

Performance indices

The first performance index and the second group of the indices are the same for

the standard and abstract systems.

The following performance index: non-personalized viewpoint to the philosophers.

• The beginning of eating of a philosopher ({b}, 14) is only possible from the

states s2, s3, s6, s7, s10, s11.

The beginning of eating probability in each of the states is a sum of execution

probabilities for all multisets of activities containing ({b}, 14).

The steady-state probability of the beginning of eating of a philosopher is

ψ∗
2

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s2) + ψ∗
3

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s3) +

ψ∗
6

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s6) + ψ∗
7

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s7) +

ψ∗
10

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s10) +

ψ∗
11

∑
{Γ|({b}, 14)∈Γ} PT

∗(Γ, s11) =
2
11

(
3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20 + 3
20 + 1

20

)
+

1
4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+

1
4

(
3
11 + 1

11 + 3
11 + 1

11

)
+ 1

4

(
3
11 + 1

11 + 3
11 + 1

11

)
+

1
4

(
3
11 + 1

11 + 3
11 + 1

11

)
= 6

11 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 454

The reduction of the abstract system

The static expression of the philosopher 1 is

F ′
1 = [({x}, 12) ∗ (({b},

2
5); ({e},

1
4)) ∗ Stop].

The static expression of the philosopher 2 is

F ′
2 = [({a, x̂}, 1

16) ∗ (({b},
2
5); ({e},

1
4)) ∗ Stop].

The static expression of the reduced abstract dining philosophers system is

F ′ = (F ′
1‖F

′
2) sy x rs x.

DR(F ′) consists of

s′1 = [([({x}, 12) ∗ (({b},
2
5)1; ({e},

1
4)1) ∗ Stop]‖

[({a, x̂}, 1
16) ∗ (({b},

2
5)2; ({e},

1
4)2) ∗ Stop]) sy x rs x]≈,

s′2 = [([({x}, 12) ∗ (({b},
2
5)1; ({e},

1
4)1) ∗ Stop]‖

[({a, x̂}, 1
16) ∗ (({b},

2
5)2; ({e},

1
4)2) ∗ Stop]) sy x rs x]≈,

s′3 = [([({x}, 12) ∗ (({b},
2
5)1; ({e},

1
4)1) ∗ Stop]‖

[({a, x̂}, 1
16) ∗ (({b},

2
5)2; ({e},

1
4)2) ∗ Stop]) sy x rs x]≈,

s′4 = [([({x}, 12) ∗ (({b},
2
5)1; ({e},

1
4)1) ∗ Stop]‖

[({a, x̂}, 1
16) ∗ (({b},

2
5)2; ({e},

1
4)2) ∗ Stop]) sy x rs x]≈,

s′5 = [([({x}, 12) ∗ (({b},
2
5)1; ({e},

1
4)1) ∗ Stop]‖

[({a, x̂}, 1
16) ∗ (({b},

2
5)2; ({e},

1
4)2) ∗ Stop]) sy x rs x]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 455

Interpretation of the states

s′1: the initial state,

s′2: the system is activated and no philosophers dine,

s′3, s
′
4: one philosopher dines,

s′5: two philosophers dine.

ConsiderR : F↔ssF
′ such that

(DR(F) ∪DR(F ′))/R = {H1,H2,H3,H4}, where

H1 = {s1, s
′
1} (the initial state),

H2 = {s2, s′2} (the system is activated and no philosophers dine),

H3 = {s3, s6, s7, s10, s11, s
′
3, s

′
4} (one philosopher dines),

H4 = {s4, s5, s8, s9, s12, s
′
5} (two philosophers dine).

F ′ is a reduction of F w.r.t.↔ss.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 456

✛
✚
✘
✙

TS∗(F ′)

s′1

✛
✚
✘
✙s′3

✛
✚
✘
✙s′4

✛
✚
✘
✙s′5

✛
✚
✘
✙s′2

❄

❄

✻

✲✛

�
�

�
�

�
��✒�
�

�
�

�
�✠ ❅

❅
❅

❅
❅

❅■

❅
❅

❅
❅

❅
❅❅■❅

❅
❅

❅
❅
❅❘ �

�
�

�
�
�✒�
�

�
�

�
��✠

❅
❅

❅
❅

❅
❅❅❘

({a}, 1
32

),1

({e}, 1
4
)1,

3
11

({b}, 2
5
)2,

3
8

({e}, 1
4
)2,

3
7

({b}, 2
5
)1,

6
11

({b}, 2
5
)1,

3
8

({e}, 1
4
)2,

3
11

({b}, 2
5
)2,

6
11

({e}, 1
4
)1,

3
7

{({b}, 2
5
)2,

({e}, 1
4
)1}, 2

11

{({b}, 2
5
)1,

({e}, 1
4
)2}, 2

11
{({e}, 1

4
)1,

({e}, 1
4
)2}, 1

7

{({b}, 2
5
)1,

({b}, 2
5
)2}, 1

4

The transition system without empty loops of the reduced abstract dining

philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 457

✛
✚
✘
✙

DTMC∗(F ′)

s′1

✛
✚
✘
✙s′3

✛
✚
✘
✙s′4

✛
✚
✘
✙s′5

✛
✚
✘
✙s′2

❄

❄

✻

✲✛

�
�

�
�

�
��✒�
�

�
�

�
�✠ ❅

❅
❅

❅
❅

❅■

❅
❅

❅
❅

❅
❅❅■❅

❅
❅

❅
❅
❅❘ �

�
�

�
�
�✒�
�

�
�

�
��✠

❅
❅

❅
❅

❅
❅❅❘

1

3
11

3
8

3
7

6
11

3
8

3
11

6
11

3
7

2
11

2
11

1
7

1
4

The underlying DTMC without empty loops of the reduced abstract dining

philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 458

The TPM for DTMC∗(F ′) is

P′∗ =

0 1 0 0 0

0 0 3
8

3
8

1
4

0 3
11 0 2

11
6
11

0 3
11

2
11 0 6

11

0 1
7

3
7

3
7 0

.

The steady-state PMF for DTMC∗(F ′) is

ψ′∗ =

(
0,

2

11
,
1

4
,
1

4
,
7

22

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 459

Transient and steady-state probabilities of the reduced abstract dining

philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′
1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗[k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ′
3
∗[k] 0 0 0.3750 0.1753 0.2973 0.2195 0.2697 0.2372 0.2583 0.2446 0.2535 0.2500

ψ′
5
∗[k] 0 0 0.2500 0.4091 0.2513 0.3628 0.2890 0.3371 0.3059 0.3261 0.3130 0.3182

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ5’*@kD

Ψ3’*@kD

Ψ2’*@kD

Ψ1’*@kD

Transient probabilities alteration diagram of the reduced abstract dining

philosophers system

We depict the probabilities for the states s′1, s
′
2, s

′
3, s

′
5 only, since the

corresponding values coincide for s′3, s
′
4.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 460

Performance indices

• The average recurrence time in the state s′2, where all the forks are available,

the average system run-through, is 1
ψ′

2
∗ = 11

2 = 5 1
2 .

• Nobody eats in the state s′2. The fraction of time when no philosophers dine

is ψ′
2
∗
= 2

11 .

Only one philosopher eats in the states s′3, s
′
4. The fraction of time when only

one philosopher dines is ψ′
3
∗
+ ψ′

4
∗
= 1

4 + 1
4 = 1

2 .

Two philosophers eat together in the state s′5. The fraction of time when two

philosophers dine is ψ′
5
∗
= 7

22 .

The relative fraction of time when two philosophers dine w.r.t. when only one

philosopher dines is 7
22 ·

2
1 = 7

11 .

• The beginning of eating of a philosopher ({b}, 25) is only possible from the

states s′2, s
′
3, s

′
4.

The beginning of eating probability in each of the states is a sum of execution

probabilities for all multisets of activities containing ({b}, 25).

The steady-state probability of the beginning of eating of a philosopher is

ψ′
2
∗∑

{Γ|({b}, 25)∈Γ} PT
∗(Γ, s′2) + ψ′

3
∗ ∑

{Γ|({b}, 25)∈Γ} PT
∗(Γ, s′3) +

ψ′
4
∗∑

{Γ|({b}, 25)∈Γ} PT
∗(Γ, s′4) =

2
11

(
3
8 + 3

8 + 1
4

)
+ 1

4

(
6
11 + 2

11

)
+ 1

4

(
6
11 + 2

11

)
= 6

11 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 461

The performance indices are the same for the complete and the reduced abstract

dining philosophers systems.

The coincidence of the first performance index as well as the second group of

indices illustrates the proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived

step traces from steady states:

one should apply its result to the derived step traces

{{b}}, {{b}, {b}}, {{b}, {e}} of F and F ′,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 462

({x}, 12)

✍✌✎☞✉ e

N ′
1

({e}, 14) ({e}, 14)

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 25)

✍✌✎☞x

✥

✦

★

✧✠ ✍

✲ ✛

({b}, 25)
❄

❄

❄

❄

✍✌✎☞✉ e

✍✌✎☞x

({a,x̂}, 1
16)

N ′
2

❄

❄

❄

❄

The marked dts-boxes of the reduced abstract dining philosophers

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 463

({a}, 1
32)

✍✌✎☞✉ e

N ′

({e}, 14)1 ({e}, 14)2

✍✌✎☞ ✍✌✎☞
❄ ❄

✍✌✎☞ ✍✌✎☞
({b}, 25)1

❏
❏❫

✁
✁☛

✍✌✎☞x

✥

✦

★

✧✠ ✍

✲ ✛

({b}, 25)2

❄

❄

❄

❄

✍✌✎☞✉ e

✓✓✴❙❙✇

✍✌✎☞x
The marked dts-box of the reduced abstract dining philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 464

The quotient of the abstract system

DR(F)/Rss(F) = {K1,K2,K3,K4}, where

K1 = {s1} (the initial state),

K2 = {s2} (the system is activated and no philosophers dine),

K3 = {s3, s6, s7, s10, s11} (one philosopher dines),

K4 = {s4, s5, s8, s9, s12} (two philosophers dine).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 465

✛
✚
✘
✙

TS∗
↔ss

(F)

K1

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

❄

❄

✻

❅
❅

❅
❅

❅
❅■

�
�
�

�
�
�✒�
�

�
�

�
��✠

❅
❅

❅
❅

❅
❅❅❘

{a},1

{b}, 34

{b}, 6
11

{e}, 3
11

{e}, 67

{{e},{e}}, 17

{{b},{b}}, 14✞✝✲
{{b},{e}}, 2

11

The quotient transition system without empty loops of the abstract dining

philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 466

✛
✚
✘
✙

DTMC∗
↔ss

(F)

K1

✛
✚
✘
✙K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

❄

❄

✻

❅
❅

❅
❅

❅
❅■

�
�
�

�
�
�✒�
�

�
�

�
��✠

❅
❅

❅
❅

❅
❅❅❘

1

3
4

6
11

3
11

6
7

1
7

1
4

✞✝✲
2
11

The quotient underlying DTMC without empty loops of the abstract dining

philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 467

The TPM for DTMC∗
↔ss

(F) is

P′′∗ =

0 1 0 0

0 0 3
4

1
4

0 3
11

2
11

6
11

0 1
7

6
7 0

.

The steady-state PMF for DTMC∗
↔ss

(F) is

ψ′′∗ =

(
0,

2

11
,
1

2
,
7

22

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 468

Transient and steady-state probabilities of the quotient abstract dining

philosophers system

k 0 1 2 3 4 5 6 7 8 9 10 ∞

ψ′′
1

∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′′
2

∗[k] 0 1 0 0.2403 0.1541 0.1981 0.1716 0.1884 0.1776 0.1846 0.1800 0.1818

ψ′′
3

∗[k] 0 0 0.7500 0.3506 0.5946 0.4391 0.5394 0.4745 0.5165 0.4893 0.5069 0.5000

ψ′′
4

∗[k] 0 0 0.2500 0.4091 0.2513 0.3628 0.2890 0.3371 0.3059 0.3261 0.3130 0.3182

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Ψ4’’ *@kD

Ψ3’’ *@kD

Ψ2’’ *@kD

Ψ1’’ *@kD

Transient probabilities alteration diagram of the quotient abstract dining

philosophers system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 469

Performance indices

• The average recurrence time in the stateK2, where all the forks are

available, the average system run-through, is 1
ψ′′

2
∗ = 11

2 = 5 1
2 .

• Nobody eats in the stateK2. The fraction of time when no philosophers dine

is ψ′′
2
∗
= 2

11 .

Only one philosopher eats in the stateK3. The fraction of time when only one

philosopher dines is ψ′′
3
∗
= 1

2 .

Two philosophers eat together in the stateK4. The fraction of time when two

philosophers dine is ψ′′
4
∗
= 7

22 .

The relative fraction of time when two philosophers dine w.r.t. when only one

philosopher dines is 7
22 ·

2
1 = 7

11 .

• The beginning of eating of a philosopher {b} is only possible from the states

K2,K3.

The beginning of eating probability in each of the states is a sum of execution

probabilities for all multisets of multiactions containing {b}.

The steady-state probability of the beginning of eating of a philosopher is

ψ′′
2
∗ ∑

{A,K|{b}∈A, K2
A
→→K}

PM∗
A(K2,K) +

ψ′′
3
∗ ∑

{A,K|{b}∈A, K3
A
→→K}

PM∗
A(K3,K) =

2
11

(
3
4 + 1

4

)
+ 1

2

(
6
11 + 2

11

)
= 6

11 .

The performance indices are the same for the complete and quotient abstract

dining philosophers systems.

The coincidence of the first performance index as well as the second group of

indices illustrates the proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived

step traces from steady states:

one should apply its result to the derived step traces

{{b}}, {{b}, {b}}, {{b}, {e}} of F and itself,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 470

The generalized system

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Ki = [({xi}, ρ) ∗ ((({bi, ŷi}, ρ); ({ei, ẑi}, ρ))[](({yi+1}, ρ);

({zi+1}, ρ))) ∗ Stop].

The static expression of the philosopher 5 is

K5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗ ((({b5, ŷ5}, ρ); ({e5, ẑ5}, ρ))[](({y1}, ρ);

({z1}, ρ))) ∗ Stop].

The static expression of the generalized dining philosophers system is

K = (K1‖K2‖K3‖K4‖K5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3

sy y4 sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2

rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

Interpretation of the states

s̃1: the initial state,

s̃2: the system is activated and no philosophers dine,

s̃3: philosopher 1 dines,

s̃4: philosophers 1 and 4 dine,

s̃5: philosophers 1 and 3 dine,

s̃6: philosopher 4 dines,

s̃7: philosopher 3 dines,

s̃8: philosophers 2 and 4 dine,

s̃9: philosophers 3 and 5 dine,

s̃10: philosopher 2 dines,

s̃11: philosopher 5 dine,

s̃12: philosophers 2 and 5 dine.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 471

The TPM for DTMC∗(K) is P̃∗ =

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1−ρ2

5
ρ2

5
ρ2

5
1−ρ2

5
1−ρ2

5
ρ2

5
ρ2

5
1−ρ2

5
1−ρ2

5
ρ2

5

0 1−ρ2

3−ρ2 0 1−ρ2

3−ρ2
1−ρ2

3−ρ2
ρ2

3−ρ2
ρ2

3−ρ2 0 0 0 0 0

0 ρ2

2−ρ2
1−ρ2

2−ρ2 0 0 1−ρ2

2−ρ2 0 0 0 0 0 0

0 ρ2

2−ρ2
1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0 0 0 0

0 1−ρ2

3−ρ2
ρ2

3−ρ2
1−ρ2

3−ρ2 0 0 0 1−ρ2

3−ρ2 0 ρ2

3−ρ2 0 0

0 1−ρ2

3−ρ2
ρ2

3−ρ2 0 1−ρ2

3−ρ2 0 0 0 1−ρ2

3−ρ2 0 ρ2

3−ρ2 0

0 ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0 0

0 ρ2

2−ρ2 0 0 0 0 1−ρ2

2−ρ2 0 0 0 1−ρ2

2−ρ2 0

0 1−ρ2

3−ρ2 0 0 0 ρ2

3−ρ2 0 1−ρ2

3−ρ2 0 0 ρ2

3−ρ2
1−ρ2

3−ρ2

0 1−ρ2

3−ρ2 0 0 0 0 ρ2

3−ρ2 0 1−ρ2

3−ρ2
ρ2

3−ρ2 0 1−ρ2

3−ρ2

0 ρ2

2−ρ2 0 0 0 0 0 0 0 1−ρ2

2−ρ2
1−ρ2

2−ρ2 0

The steady-state PMF for DTMC∗(K) is

ψ̃∗=
(
0, 1

2(3−ρ2)
, 1
10 ,

2−ρ2

10(3−ρ2)
, 2−ρ2

10(3−ρ2)
, 1
10 ,

1
10 ,

2−ρ2

10(3−ρ2)
, 2−ρ2

10(3−ρ2)
, 1
10 ,

1
10 ,

2−ρ2

10(3−ρ2)

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 472

Performance indices

• The average recurrence time in the state s2, where all the forks are available,

the average system run-through, is 1
ψ̃∗

2

= 2(3− ρ2).

• Nobody eats in the state s2. The fraction of time when no philosophers dine

is ψ̃∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the states s3, s6, s7, s10, s11. The fraction of

time when only one philosopher dines is ψ̃∗
3 + ψ̃∗

6 + ψ̃∗
7 + ψ̃∗

10 + ψ̃∗
11 =

1
10 + 1

10 + 1
10 + 1

10 + 1
10 = 1

2 .

Two philosophers eat together in the states s4, s5, s8, s9, s12. The fraction

of time when two philosophers dine is ψ̃∗
4 + ψ̃∗

5 + ψ̃∗
8 + ψ̃∗

9 + ψ̃∗
12 =

2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) +
2−ρ2

10(3−ρ2) =
2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine w.r.t. when only one

philosopher dines is 2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .

• The beginning of eating of first philosopher ({b1}, ρ2) is only possible from

the states s2, s6, s7.

The beginning of eating probability in each of the states is a sum of execution

probabilities for all multisets of activities containing ({b1}, ρ2).

The steady-state probability of the beginning of eating of first philosopher is

ψ̃∗
2

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s2)+ψ̃
∗
6

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s6)+

ψ̃∗
7

∑
{Γ|({b1},ρ2)∈Γ} PT

∗(Γ, s7) =
1

2(3−ρ2)

(
1−ρ2

5 + ρ2

5 + ρ2

5

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+ 1

10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2

)
= 3+ρ2

10(3−ρ2) .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 473

The abstract generalized system

The static expression of the philosopher i (1 ≤ i ≤ 4) is

Li = [({xi}, ρ) ∗ ((({b, ŷi}, ρ); ({e, ẑi}, ρ))[]

(({yi+1}, ρ); ({zi+1}, ρ))) ∗ Stop].

The static expression of the philosopher 5 is

L5 = [({a, x̂1, x̂2, x̂2, x̂4}, ρ) ∗ ((({b, ŷ5}, ρ); ({e, ẑ5}, ρ))[](({y1}, ρ);

({z1}, ρ))) ∗ Stop].

The static expression of the abstract generalized dining philosophers system is

L = (L1‖L2‖L3‖L4‖L5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4

sy y5 sy z1 sy z2 sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3

rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

DR(L) resembles DR(K), and TS∗(L) is similar to TS∗(K).

DTMC∗(L)≃DTMC∗(K), thus, TPM and the steady-state PMF for

DTMC∗(L) and DTMC∗(K) coincide.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 474

Performance indices

The first performance index and the second group of the indices are the same for

the generalized system and its abstract modification.

The following performance index: non-personalized viewpoint to the philosophers.

• The beginning of eating of a philosopher ({b}, ρ2) is only possible from the

states s̃2, s̃3, s̃6, s̃7, s̃10, s̃11.

The beginning of eating probability in each of the states is the sum of the

execution probabilities for all multisets of activities containing ({b}, ρ2).

The steady-state probability of the beginning of eating of a philosopher is

ψ̃∗
2

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃2) + ψ̃∗
3

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃3) +

ψ̃∗
6

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃6) + ψ̃∗
7

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃7) +

ψ̃∗
10

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃10) +

ψ̃∗
11

∑
{Γ|({b},ρ2)∈Γ} PT

∗(Γ, s̃11) =

1
2(3−ρ2)

(
1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 +

ρ2

5 + 1−ρ2

5 + ρ2

5 + 1−ρ2

5 + ρ2

5

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
+

1
10

(
1−ρ2

3−ρ2 + ρ2

3−ρ2 + 1−ρ2

3−ρ2 + ρ2

3−ρ2

)
= 3

2(3−ρ2) .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 475

The reduction of the abstract generalized system

The static expression of the philosopher 1 is

L′
1 = [({x}, ρ) ∗ (({b}, 2ρ2

1+ρ2); ({e}, ρ
2)) ∗ Stop].

The static expression of the philosopher 2 is

L′
2 = [({a, x̂}, ρ4) ∗ (({b}, 2ρ2

1+ρ2); ({e}, ρ
2)) ∗ Stop].

The static expression of the reduced abstract generalized dining philosophers

system is L′ = (L′
1‖L

′
2) sy x rs x.

ConsiderR : L↔ssL
′ such that

(DR(L) ∪DR(L′))/R = {H̃1, H̃2, H̃3, H̃4}, where

H̃1 = {s̃1, s̃′1} (the initial state),

H̃2 = {s̃2, s̃′2} (the system is activated and no philosophers dine),

H̃3 = {s̃3, s̃6, s̃7, s̃10, s̃11, s̃
′
3, s̃

′
4} (one philosopher dines),

H̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12, s̃′5} (two philosophers dine).

L′ is a reduction of L w.r.t.↔ss.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 476

The TPM for DTMC∗(L′) is

P̃′∗ =

0 1 0 0 0

0 0 1−ρ2

2
1−ρ2

2 ρ2

0 1−ρ2

3−ρ2 0 2ρ2

3−ρ2
2(1−ρ2)
3−ρ2

0 1−ρ2

3−ρ2
2ρ2

3−ρ2 0 2(1−ρ2)
3−ρ2

0 ρ2

2−ρ2
1−ρ2

2−ρ2
1−ρ2

2−ρ2 0

.

The steady-state PMF for DTMC∗(L′) is

ψ̃′∗ =

(
0,

1

2(3− ρ2)
,
1

4
,
1

4
,

2− ρ2

2(3− ρ2)

)
.

Performance indices

• The average recurrence time in the state s̃′2, where all the forks are available,

average system run-through, is 1
ψ̃′∗

2

= 2(3− ρ2).

• Nobody eats in the state s̃′2. The fraction of time when no philosophers dine

is ψ̃′∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the states s̃′3, s̃
′
4. The fraction of time when only

one philosopher dines is ψ̃′∗
3 + ψ̃′∗

4 = 1
4 + 1

4 = 1
2 .

Two philosophers eat together in the state s̃′5. The fraction of time when two

philosophers dine is ψ̃′∗
5 = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine w.r.t. when only one

philosopher dines is 2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 477

• The beginning of eating of a philosopher ({b}, 2ρ2

1+ρ2) is only possible from

the states s̃′2, s̃
′
3, s̃

′
4.

The beginning of eating probability in each of the states is the sum of the

execution probabilities for all multisets of activities containing ({b}, 2ρ2

1+ρ2).

The steady-state probability of the beginning of eating of a philosopher is

ψ̃′∗
2

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′2) +

ψ̃′∗
3

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′3) +

ψ̃′∗
4

∑
{Γ|({b}, 2ρ2

1+ρ2
)∈Γ}

PT ∗(Γ, s̃′4) =
1

2(3−ρ2)

(
1−ρ2

2 + 1−ρ2

2 + ρ2
)
+

1
4

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
+ 1

4

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
= 3

2(3−ρ2) .

The performance indices are the same for the complete and the reduced abstract

generalized dining philosophers systems.

The coincidence of the first performance index as well as the second group of

indices illustrates the proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived

step traces from steady states:

one should apply its result to the derived step traces

{{b}}, {{b}, {b}}, {{b}, {e}} of L and L′,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 478

The quotients for the abstract generalized system

DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4}, where

K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and no philosophers dine),

K̃3 = {s̃3, s̃6, s̃7, s̃10, s̃11} (one philosopher dines),

K̃4 = {s̃4, s̃5, s̃8, s̃9, s̃12} (two philosophers dine).

The TPM for DTMC∗
↔ss

(L) is

P̃′′∗ =

0 1 0 0

0 0 1− ρ2 ρ2

0 1−ρ2

3−ρ2
2ρ2

3−ρ2
2(1−ρ2)
3−ρ2

0 ρ2

2−ρ2
2(1−ρ2)
2−ρ2 0

.

The steady-state PMF for DTMC∗
↔ss

(L) is

ψ̃′′∗ =

(
0,

1

2(3− ρ2)
,
1

2
,

2− ρ2

2(3− ρ2)

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 479

Performance indices

• The average recurrence time in the state K̃2, where all the forks are

available, the average system run-through, is 1
ψ̃′′∗

2

= 2(3− ρ2).

• Nobody eats in the state K̃2. The fraction of time when no philosophers dine

is ψ̃′′∗
2 = 1

2(3−ρ2) .

Only one philosopher eats in the state K̃3. The fraction of time when only one

philosopher dines is ψ̃′′∗
3 = 1

2 .

Two philosophers eat together in the state K̃4. The fraction of time when two

philosophers dine is ψ̃′′∗
4 = 2−ρ2

2(3−ρ2) .

The relative fraction of time when two philosophers dine w.r.t. when only one

philosopher dines is 2−ρ2

2(3−ρ2) ·
2
1 = 2−ρ2

3−ρ2 .

• The beginning of eating of a philosopher {b} is only possible from the states

K̃2, K̃3.

The beginning of eating probability in each of the states is the sum of the

execution probabilities for all multisets of multiactions containing {b}.

The steady-state probability of the beginning of eating of a philosopher is

ψ̃′′∗
2

∑
{A,K̃|{b}∈A, K̃2

A
→→K̃}

PM∗
A(K̃2, K̃) +

ψ̃′′∗
3

∑
{A,K̃|{b}∈A, K̃3

A
→→K̃}

PM∗
A(K̃3, K̃) =

1
2(3−ρ2) ((1− ρ

2) + ρ2) + 1
2

(
2(1−ρ2)
3−ρ2 + 2ρ2

3−ρ2

)
= 3

2(3−ρ2) .

The performance indices are the same for the complete and quotient abstract

generalized dining philosophers systems.

The coincidence of the first performance index as well as the second group of

indices illustrates the proposition about steady-state probabilities.

The coincidence of the third performance index is by the theorem about derived

step traces from steady states:

one should apply its result to the derived step traces

{{b}}, {{b}, {b}}, {{b}, {e}} of L and itself,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 480

Effect of quantitative changes of ρ to performance of the quotient abstract

generalized dining philosophers system in its steady state

ρ ∈ (0; 1) is the probability of every multiaction of the system.

ψ̃′′∗
1 = 0 and ψ̃′′∗

3 = 1
2 are constants, and they do not depend on ρ.

ψ̃′′∗
2 = 1

2(3−ρ2) and ψ̃′′∗
4 = 2−ρ2

2(3−ρ2) depend on ρ.

ψ̃′′∗
2 + ψ̃′′∗

4 = 1
2(3−ρ2) +

2−ρ2

2(3−ρ2) =
1
2 , hence,

the sum of these steady-state probabilities does not depend on ρ.

Interpretation: the fraction of time when no or two philosophers dine

coincides with that when only one philosopher dines,

and both fractions are equal to 1
2 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 481

0.2 0.4 0.6 0.8 1.0
Ρ

0.05

0.10

0.15

0.20

0.25

0.30

Ψ
�

4
²*

Ψ
�

2
²*

Steady-state probabilities ψ̃′′∗
2 and ψ̃′′∗

4 as functions of the parameter ρ

The diagrams in figure above are symmetric w.r.t. the probability 1
4 .

The more is value of ρ, the less is the difference

ψ̃′′∗
4 − ψ̃

′′∗
2 = 2−ρ2

2(3−ρ2) −
1

2(3−ρ2) =
1−ρ2

2(3−ρ2) .

The difference tends to 1
6 when ρ approaches 0.

The difference tends to 0 when ρ approaches 1.

Note that ρ 6= 0 and ρ 6= 1.

Interpretation: the difference between the fractions of time when two and

when no philosophers dine.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 482

More interesting value: ψ̃′′∗
3 + ψ̃′′∗

4 − ψ̃
′′∗
2 = 1

2 +
2−ρ2

2(3−ρ2) −
1

2(3−ρ2) =
2−ρ2

3−ρ2 .

The value tends to 2
3 when ρ approaches 0.

The value tends to 1
2 when ρ approaches 1.

Interpretation: the difference between the fractions of time when some

(one or two) and when no philosophers dine.

When ρ is closer to 0, more time is spent for eating and

less time remains for thinking: dining is preferred.

When ρ is closer to 1, the situation is symmetric: thinking is preferred.

The influence of ρ to the performance indices presented before: similarly.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 483

Overview and open questions

The results obtained

✛
✚
✘
✙LDTSPNs

✛
✚
✘
✙dtsPBC

Probabilistic eq-s Stochastic eq-s

IPML/SPML iPML/sPML

✛

❄

❄ ✻

❄

❄ ✻

✛
✲

Stochastic formalisms and equivalences

• A discrete time stochastic extension dtsPBC

of finite PBC enriched with iteration.

• The step operational semantics

based on labeled probabilistic transition systems.

• The denotational semantics

in terms of a subclass of LDTSPNs.

• The stochastic algebraic equivalences

which have natural net analogues on LDTSPNs.

• The transition systems and DTMCs reduction

modulo stochastic equivalences.

• A logical characterization of stochastic bisimulation equivalences

via probabilistic modal logics.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 484

• An application of the equivalences to comparison of

stationary behaviour.

• A preservation w.r.t. algebraic operations

and the congruence relation.

• The case studies

of performance analysis.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 485

Further research

• Abstracting from silent activities

in definitions of the equivalences.

• Introducing the immediate multiactions

with zero delay.

• Extending the syntax

with recursion operator.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 486

Discrete time stochastic Petri box calculus
with immediate multiactions a

Abstract : In [MVF01], a continuous time stochastic extension sPBC of finite

Petri box calculus PBC [BDH92] was proposed. In [MVCC03], iteration operator

was added to sPBC .

Algebra sPBC has an interleaving semantics, but PBC has a step one.

We constructed a discrete time stochastic extension dtsPBC of finite PBC

[Tar05] and enriched it with iteration [Tar06].

We present the extension dtsiPBC of dtsPBC with immediate multiactions

[TMV10,TMV13]. dtsiPBC is a discrete time analog of sPBC with immediate

multiactions.

The step operational semantics is defined in terms of labeled probabilistic

transition systems.

The denotational semantics is defined in terms of a subclass of labeled DTSPNs

with immediate transitions (LDTSIPNs), called discrete time stochastic and

immediate Petri boxes (dtsi-boxes).

The corresponding semi-Markov chain and (reduced) discrete time Markov chain

are analyzed to evaluate performance.

We propose step stochastic bisimulation equivalence and investigate its

interrelations with others.

We explain how to use this equivalence for reduction of transition systems and

semi-Markov chains.

We demonstrate how to apply this equivalence to compare stationary behaviour

and simplify performance analysis.

The case study of performance evaluation is presented: the shared memory

system.
aThe joint work with Hermenegilda Macià S. and Valentı́n Valero R., High School of Computer Sci-

ence Engineering, University of Castilla - La Mancha, Albacete, Spain.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 487

Keywords : stochastic Petri net, stochastic process algebra, Petri box calculus,

discrete time, immediate multiaction, transition system, operational semantics,

immediate transition, dtsi-box, denotational semantics, Markov chain,

performance evaluation, stochastic equivalence, reduction, shared memory

system.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 488

Contents

• Introduction

– Previous work

• Syntax

• Operational semantics

– Inaction rules

– Action and empty loop rules

– Transition systems

• Denotational semantics

– Labeled DTSIPNs

– Algebra of dtsi-boxes

• Performance evaluation

– Analysis of the underlying SMC

– Analysis of the DTMC

– Analysis of the reduced DTMC

• Stochastic equivalences

– Step stochastic bisimulation equivalence

– Interrelations of the stochastic equivalences

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 489

• Reduction modulo equivalences

• Stationary behaviour

– Steady state and equivalences

– Simplification of performance analysis

• Shared memory system

– The standard system

– The abstract system and its reduction

– The generalized system

– The abstract generalized system and its reduction

• Overview and open questions

– Concurrency interpretation

– The results obtained

– Further research

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 490

Introduction

Previous work

• Continuous time (subsets of IR+): interleaving semantics

– Continuous time stochastic Petri nets (CTSPNs) [Mol82,FN85]:

exponential transition firing delays,

Continuous time Markov chain (CTMC).

– Generalized stochastic Petri nets (GSPNs) [MCB84,CMBC93]:

exponential and zero transition firing delays,

Semi-Markov chain (SMC).

– Extended generalized stochastic Petri nets (EGSPNs)

[HS89,MBBCCC89]:

hyper-exponential or Erlang or phase and zero transition firing delays.

– Deterministic stochastic Petri nets (DSPNs) [MC87,MCF90]:

exponential and deterministic transition firing delays,

Semi-Markov process (SMP), if no two deterministic transitions are

enabled in any marking.

– Extended deterministic stochastic Petri nets (EDSPNs) [GL94]:

non-exponential and deterministic transition firing delays.

– Extended stochastic Petri nets (ESPNs) [DTGN85]:

arbitrary transition firing delays.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 491

• Discrete time (subsets of IN): step semantics

– Discrete time stochastic Petri nets (DTSPNs) [Mol85,ZG94]:

geometric transition firing delays,

Discrete time Markov chain (DTMC).

– Discrete time deterministic and stochastic Petri nets (DTDSPNs) [ZFH01]:

geometric and fixed transition firing delays,

Semi-Markov chain (SMC).

– Discrete deterministic and stochastic Petri nets (DDSPNs) [ZCH97]:

phase and fixed transition firing delays,

Semi-Markov chain (SMC).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 492

Stochastic process algebras

• MTIPP [HR94]

• GSPA [BKLL95]

• PEPA [Hil96]

• Sπ [Pri96]

• EMPA [BGo98]

• GSMPA [BBGo98]

• sACP [AHR00]

• TCP dst [MVi08]

More stochastic process calculi

• TIPP [GHR93]

• WSCCS [Tof94]

• PM − TIPP [Ret95]

• SPADES [AKB98]

• NMSPA [LN00]

• SM − PEPA [Brad05]

• iPEPA [HBC13]

• mCCS [DH13]

• PHASE [CR14]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 493

Algebra PBC and its extensions

• Petri box calculus PBC [BDH92]

• Time Petri box calculus tPBC [Kou00]

• Timed Petri box calculus TPBC [MF00]

• Stochastic Petri box calculus sPBC [MVF01,MVCC03]

• Ambient Petri box calculus APBC [FM03]

• Arc time Petri box calculus atPBC [Nia05]

• Generalized stochastic Petri box calculus gsPBC [MVCR08]

• Discrete time stochastic Petri box calculus dtsPBC [Tar05,Tar06]

• Discrete time stochastic and immediate Petri box calculus

dtsiPBC [TMV10,TMV13]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 494

SPACLS: Classification of stochastic process algebras

Time Immediate Interleaving semantics Non-interleaving semantics

(multi)actions

Continuous No MTIPP (CTMC), GSPA (GSMP), Sπ,

PEPA (CTMP) GSMPA (GSMP)

sPBC (CTMC)

Yes EMPA (SMC, CTMC) —

gsPBC (SMC)

Discrete No — dtsPBC (DTMC)

Yes TCP dst (DTMRC) sACP ,

dtsiPBC (SMC, DTMC)

The SPNs-based denotational semantics: orange SPA names.

The underlying stochastic process: in parentheses near the SPA names.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 495

Transition labeling

• CTSPNs [Buc95]

• GSPNs [Buc98]

• DTSPNs [BT00]

Stochastic equivalences

• Probabilistic transition systems (PTSs) [BM89,Chr90,LS91,BHe97,KN98]

• SPAs [HR94,Hil94,BGo98]

• Markov process algebras (MPAs) [Buc94,BKe01]

• CTSPNs [Buc95]

• GSPNs [Buc98]

• Stochastic automata (SAs) [Buc99]

• Stochastic event structures (SESs) [MCW03]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 496

Syntax

The set of all finite multisets over X is INX
fin.

The set of all subsets (powerset) of X is 2X .

Act = {a, b, . . .} is the set of elementary actions.

Âct = {â, b̂, . . .} is the set of conjugated actions (conjugates) s.t. â 6= a and
ˆ̂a = a.

A = Act ∪ Âct is the set of all actions.

L = INA
fin is the set of all multiactions.

The alphabet of α ∈ L isA(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where

α ∈ L and ρ ∈ (0; 1) is the probability of the multiaction α.

SL is the set of all stochastic multiactions.

An immediate multiaction is a pair (α, l), where

α ∈ L and l ∈ IN≥1 is the weight of the multiaction α.

IL is the set of all immediate multiactions.

SIL = SL ∪ IL is the set of all activities.

The alphabet of (α, κ) ∈ SIL isA(α, κ) = A(α).

The alphabet of Υ ∈ INSIL
fin isA(Υ) = ∪(α,κ)∈ΥA(α).

For (α, κ) ∈ SIL, its multiaction part is L(α, κ) = α and

its probability or weight part is Ω(α, κ) = κ.

The multiaction part of Υ ∈ INSIL
fin is L(Υ) =

∑
(α,κ)∈Υ α.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 497

The operations: sequential execution ;, choice [], parallelism ‖, relabeling [f],

restriction rs, synchronization sy and iteration [∗ ∗].

Sequential execution and choice have the standard interpretation.

Parallelism does not include synchronization unlike that in standard process

algebras.

Relabeling functions f : A → A are bijections preserving conjugates:

∀x ∈ A f(x̂) = f̂(x).

For α ∈ L, let f(α) =
∑

x∈α f(x).

For Υ ∈ INSIL
fin , let f(Υ) =

∑
(α,κ)∈Υ(f(α), κ).

Restriction over a ∈ Act: any process behaviour containing a or its conjugate â

is not allowed.

Let α, β ∈ L be two multiactions s.t. for a ∈ Act we have a ∈ α and â ∈ β, or

â ∈ α and a ∈ β. Synchronization of α and β by a is α⊕aβ = γ:

γ(x) =

α(x) + β(x)− 1, x = a or x = â;

α(x) + β(x), otherwise.

In the iteration, the initialization subprocess is executed first,

then the body one is performed zero or more times,

finally, the termination one is executed.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 498

Static expressions specify the structure of processes.

Definition 151 Let (α, κ) ∈ SIL and a ∈ Act. A static expression of

dtsiPBC is

E ::= (α, κ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E∗E∗E].

StatExpr is the set of all static expressions of dtsiPBC .

Definition 152 Let (α, κ) ∈ SIL and a ∈ Act. A regular static expression of

dtsiPBC is

E ::= (α, κ) | E;E | E[]E | E‖E | E[f] | E rs a | E sy a | [E∗D∗E],

where D ::= (α, κ) | D;E | D[]D | D[f] | D rs a | D sy a | [D∗D∗E].

RegStatExpr is the set of all regular static expressions of dtsiPBC .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 499

Dynamic expressions specify the states of processes.

Dynamic expressions are obtained from static ones annotated with upper or lower

bars.

The underlying static expression of a dynamic one:

removing all upper and lower bars.

Definition 153 Let a ∈ Act and E ∈ StatExpr. A dynamic expression of

dtsiPBC is

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f] | G rs a | G sy a |

[G∗E∗E] | [E∗G∗E] | [E∗E∗G].

DynExpr is the set of all dynamic expressions of dtsiPBC .

A

Definition 154 A dynamic expression is regular if its underlying static

expression is regular.

RegDynExpr is the set of all regular dynamic expressions of dtsiPBC .

We shall consider regular expressions only and omit the word “regular”.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 500

Operational semantics

Inaction rules

Inaction rules: instantaneous structural transformations. Let

E,F,K ∈ RegStatExpr and a ∈ Act.

IRULES1: Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E‖F ⇒ E‖F E‖F ⇒ E‖F

E[f]⇒ E[f] E[f]⇒ E[f] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K]

[E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 501

Let E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

IRULES2: Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}

G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}

E◦G⇒E◦G̃
G⇒G̃

G‖H⇒G̃‖H
H⇒H̃

G‖H⇒G‖H̃

G⇒G̃

G[f]⇒G̃[f]

G⇒G̃, ◦∈{rs,sy}

G◦a⇒G̃◦a
G⇒G̃

[G∗E∗F]⇒[G̃∗E∗F]

G⇒G̃

[E∗G∗F]⇒[E∗G̃∗F]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

Definition 155 A regular dynamic expression is operative if no inaction rule can

be applied to it.

OpRegDynExpr is the set of all operative regular dynamic expressions of

dtsiPBC .

We shall consider regular expressions only and omit the word “regular”.

Definition 156 ≈ = (⇒ ∪ ⇐)∗ is the structural equivalence of dynamic

expressions in dtsiPBC .

G and G′ are structurally equivalent, G≈G′, if they can be reached each from

other by applying inaction rules in a forward or backward direction.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 502

Action and empty loop rules

Action rules with stochastic multiactions: execution of non-empty multisets of

stochastic multiactions.

Action rules with immediate multiactions: execution of non-empty multisets of

immediate multiactions.

Empty loop rule: execution of the empty multiset of activities at a time step.

Definition 157 Let n ∈ IN . The numbering of expressions is

ι ::= n | (ι)(ι).

Num is the set of all numberings of expressions.

The content of a numbering ι ∈ Num is

Cont(ι) =

{ι}, ι ∈ IN ;

Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

(a)
1

(b)

1 2

�
�

�

❅
❅
❅

(c)

1

�
�

�

❅
❅
❅

2 3

�
�

�

❅
❅
❅

✉ ✉
✉ ✉

✉
✉ ✉
✉ ✉

BTRNUM: The binary trees encoded with the numberings 1, (1)(2) and

(1)((2)(3))

[G]≈ = {H | G ≈ H} is the equivalence class of G ∈ RegDynExpr w.r.t.

structural equivalence.

G is an initial dynamic expression, init(G), if

∃E ∈ RegStatExpr G ∈ [E]≈.

G is a final dynamic expression, final(G), if

∃E ∈ RegStatExpr G ∈ [E]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 503

Definition 158 Let G ∈ OpRegDynExpr. The set of all non-empty

multisets of activities which can be potentially executed from G is Can(G). Let

(α, κ) ∈ SIL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and

a ∈ Act.

1. If final(G) then Can(G) = ∅.

2. If G = (α, κ) then Can(G) = {{(α, κ)}}.

3. If Υ ∈ Can(G) then Υ ∈ Can(G◦E), Υ ∈ Can(E◦G)

(◦ ∈ {;, [], ‖}), f(Υ) ∈ Can(G[f]),

Υ ∈ Can(G rs a) (when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a),

Υ ∈ Can([G∗E∗F]), Υ ∈ Can([E∗G∗F]), Υ ∈ Can([E∗F∗G]).

4. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ+ Ξ ∈ Can(G‖H).

5. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such

that a ∈ α, â ∈ β, then

(a) (Υ + {(α⊕a β, κ · λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if

κ, λ ∈ (0; 1);

(b) (Υ + {(α⊕a β, κ+ λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if

κ, λ ∈ IN≥1.

If Υ ∈ Can(G) then by definition of Can(G) ∀Ξ ⊆ Υ, Ξ 6= ∅ we have

Ξ ∈ Can(G).

If there are only stochastic (or only immediate) multiactions in the multisets from

Can(G) 6= ∅: these stochastic (or immediate) multiactions can be executed

from G.

Otherwise, besides stochastic ones, there are immediate multiactions in the

multisets from Can(G).

By the note above, there are non-empty multisets of immediate multiactions in

Can(G) as well: ∃Υ ∈ Can(G) Υ ∈ INIL
fin \ {∅}.

Then no stochastic multiactions can be executed from G, even if Can(G)

contains non-empty multisets of stochastic multiactions: immediate multiactions

have a priority over stochastic ones, and should be executed first.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 504

Definition 159 Let G ∈ OpRegDynExpr. The set of all non-empty

multisets of activities which can be executed from G is

Now(G) =

Can(G), (Can(G) ⊆ INSL
fin \ {∅})∨

(Can(G) ⊆ INIL
fin \ {∅});

Can(G) ∩ INIL
fin, otherwise.

G is tangible, tang(G), if Now(G) ⊆ INSL
fin \ {∅}. We have tang(G), if

Now(G) = ∅.

G is vanishing, vanish(G), if ∅ 6= Now(G) ⊆ INIL
fin \ {∅}.

Let G = (({a}, 1)[]({b}, 2))‖({c}, 12) and

G′ = (({a}, 1)[]({b}, 2))‖({c}, 12).

We have G≈G′, since G⇐ G′′ ⇒ G′ for

G′′ = (({a}, ♮1)[]({b}, ♮2))‖({c},
1
2), but

Can(G) = {{({a}, 1)}, {({c}, 12)}, {({a}, 1), ({c},
1
2)}},

Can(G′) = {{({b}, 2)}, {({c}, 12)}, {({b}, 2), ({c},
1
2)}} and

Now(G) = {{({a}, 1)}}, Now(G′) = {{({b}, 2)}}.

Clearly, vanish(G) and vanish(G′).

The executions like that of {({c}, 12)} (and all multisets including it) from G and

G′ must be disabled using pre-conditions in the action rules.

Immediate multiactions have a priority over stochastic ones:

the former are always executed first.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 505

Let H = ({a}, 1)[]({b}, 12) and H ′ = ({a}, 1)[]({b}, 12).

Then H≈H ′, since H ⇐ H ′′ ⇒ H ′ for H ′′ = ({a}, ♮1)[]({b},
1
2), but

Can(H) = Now(H) = {{({a}, 1)}} and

Can(H ′) = Now(H ′) = {{({b}, 12)}}.

We have vanish(H), but tang(H ′).

To make the action rules correct under structural equivalence: the executions like

that of {({b}, 12)} from H ′ must be disabled using the pre-conditions.

Immediate multiactions have a priority over stochastic ones:

the choices between them are always resolved in favour of the former.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

Further, E,F ∈ RegStatExpr, G,H ∈ OpRegDynExpr,

G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Moreover, Γ,∆ ∈ INSL
fin \ {∅}, Γ

′ ∈ INSL
fin, I, J ∈ IN

IL
fin \ {∅},

I ′ ∈ INIL
fin and Υ ∈ INSIL

fin \ {∅}.

The names of the action rules with immediate multiactions have a suffix ‘i’.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 506

ARULES: Action and empty loop rules

El
tang(G)

G
∅
→G

B (α, κ)
{(α,κ)}
−→ (α, κ)

S G
Υ
→G̃

G;E
Υ
→G̃;E E;G

Υ
→E;G̃

C
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(E))

G[]E
Γ
→G̃[]E E[]G

Γ
→E[]G̃

Ci G
I
→G̃

G[]E
I
→G̃[]E E[]G

I
→E[]G̃

P1
G

Γ
→G̃, tang(H)

G‖H
Γ
→G̃‖H H‖G

Γ
→H‖G̃

P1i G
I
→G̃

G‖H
I
→G̃‖H H‖G

I
→H‖G̃

P2 G
Γ
→G̃, H

∆
→H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i G
I
→G̃, H

J
→H̃

G‖H
I+J
−→G̃‖H̃

L G
Υ
→G̃

G[f]
f(Υ)
−→G̃[f]

Rs
G

Υ
→G̃, a,â6∈A(Υ)

G rs a
Υ
→G̃ rs a

I1 G
Υ
→G̃

[G∗E∗F]
Υ
→[G̃∗E∗F]

I2
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(F))

[E∗G∗F]
Γ
→[E∗G̃∗F]

I2i G
I
→G̃

[E∗G∗F]
I
→[E∗G̃∗F]

I3
G

Γ
→G̃, ¬init(G)∨(init(G)∧tang(F))

[E∗F∗G]
Γ
→[E∗F∗G̃]

I3i G
I
→G̃

[E∗F∗G]
I
→[E∗F∗G̃]

Sy1 G
Υ
→G̃

G sy a
Υ
→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→G̃ sy a

Sy2i G sy a
I′+{(α,l)}+{(β,m)}
−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
I′+{(α⊕aβ,l+m)}
−−−−−−−−−−−−→G̃ sy a

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 507

RULECMP: Comparison of inaction, action and empty loop rules

Rules State change Time progress Activities execution

Inaction rules − − −

Action rules ± + +

(stochastic multiactions)

Action rules ± − +

(immediate multiactions)

Empty loop rule − + −

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 508

Transition systems

Definition 160 The derivation set DR(G) of a dynamic expression G is the

minimal set:

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃ΥH
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is

Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ
→ H̃}.

The state s is tangible, if Exec(s) ⊆ INSL
fin.

For tangible states we may have Exec(s) = {∅}.

The state s is vanishing, if Exec(s) ⊆ INIL
fin \ {∅}.

The set of all tangible states from DR(G) is DRT (G).

The set of all vanishing states from DR(G) is DRV (G).

Obviously, DR(G) = DRT (G) ⊎DRV (G).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 509

Let Υ ∈ Exec(s) \ {∅}. The probability of the multiset of stochastic

multiactions or the weight of the multiset of immediate multiactions Υ which is

ready for execution in s:

PF (Υ, s) =

∏
(α,ρ)∈Υ ρ·∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1− χ), s ∈ DRT (G);

∑
(α,l)∈Υ l, s ∈ DRV (G).

In the case Υ = ∅ and s ∈ DRT (G) we define

PF (∅, s) =

∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.

Let Υ ∈ Exec(s). The probability to execute the multiset of activities Υ in s:

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

If s is tangible, then PT (∅, s) ∈ (0; 1]: the residence time in s is≥ 1.

The probability to move from s to s̃ by executing any multiset of activities:

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H
Υ
→H̃}

PT (Υ, s).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 510

Definition 161 The (labeled probabilistic) transition system of a dynamic

expression G is TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG = INSIL
fin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈

DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H
Υ
→ H̃};

• the initial state is sG = [G]≈.

A transition (s, (Υ,P), s̃) ∈ TG is written as s
Υ
→P s̃.

We write s
Υ
→s̃ if ∃P s

Υ
→P s̃ and s→s̃ if ∃Υ s

Υ
→ s̃.

Definition 162 Let G,G′ be dynamic expressions and

TS(G) = (SG, LG, TG, sG), TS(G
′) = (SG′ , LG′ , TG′ , sG′) be their

transition systems. A mapping β : SG → SG′ is an isomorphism between

TS(G) and TS(G′), β : TS(G)≃TS(G′), if

1. β is a bijection s.t. β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG ∀Υ s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

TS(G) and TS(G′) are isomorphic, TS(G)≃TS(G′), if

∃β : TS(G) ≃ TS(G′).

For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 163 G and G′ are equivalent w.r.t. transition systems, G=tsG
′, if

TS(G)≃TS(G′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 511

TS(E)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
({a},ρ),ρ

({b},χ),χ

({c},l),
l

l+m

({e},m),
m
l+m

{d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✂ ✁✻
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

TS: The transition system of E for

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

Stop = ({c}, 12) rs c is the process that performs empty loops with probability 1

and never terminates.

DR(E) consists of:

s1 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ))))∗

Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ))))∗

Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ))))∗

Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ))))∗

Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ))))∗

Stop]]≈.

DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 512

Denotational semantics

Labeled DTSIPNs

Definition 164 A labeled discrete time stochastic and immediate Petri net

(LDTSIPN) is N = (PN , TN ,WN ,ΩN , LN ,MN), where

• PN and TN = TsN ⊎ T iN are finite sets of places and stochastic and

immediate transitions, s.t. PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN)→ IN is the arc weight function;

• ΩN is the transition probability and weight function s.t.

– ΩN |TsN : TsN → (0; 1) (it associates stochastic transitions with

probabilities);

– ΩN |TiN : TiN → IN≥1 (it associates immediate transitions with

weights);

• LN : TN → L is the transition labeling function;

• MN ∈ IN
PN
fin is the initial marking.

Concurrent transition firings at discrete time moments.

LDTSIPNs have step semantics.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 513

Let N be an LDTSIPN and M, M̃ ∈ INPN
fin .

Immediate transitions have a priority over stochastic ones:

immediate transitions always fire first, if they can.

A transition t ∈ TN is enabled in M if •t ⊆M and one of the following holds:

1. t ∈ T iN or

2. ∀u ∈ TN
•u ⊆M ⇒ u ∈ TsN .

Ena(M) is the set of all transitions enabled in M .

Ena(M) ⊆ T iN or Ena(M) ⊆ TsN

A set of transitions U ⊆ Ena(M) is enabled in M if •U ⊆M .

The marking M is tangible, tang(M), if Ena(M) ⊆ TsN , in particular, if

Ena(M) = ∅.

The marking M is vanishing, vanish(M), if Ena(M) ⊆ T iN and

Ena(M) 6= ∅.

If tang(M) then a stochastic transition t ∈ Ena(M) fires in the next time

moment with probability ΩN (t), if no other conflicting stochastic transition is

enabled in M .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 514

Let U ⊆ Ena(M), U 6= ∅ and •U ⊆M . The probability of the set of

stochastic transitions or the weight of the set of immediate transitions U which is

ready for firing in M is

PF (U,M) =

∏
t∈U ΩN (t) ·

∏
u∈Ena(M)\U (1− ΩN (u)), tang(M);

∑
t∈U ΩN (t), vanish(M).

In the case U = ∅ and tang(M) we define

PF (∅,M) =

∏
u∈Ena(M)(1− ΩN (u)), Ena(M) 6= ∅;

1, Ena(M) = ∅.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 515

Let U ⊆ Ena(M) and •U ⊆M . The probability that the set of transitions U

fires in M :

PT (U,M) =
PF (U,M)∑

{V |•V⊆M} PF (V,M)
.

If U = ∅ and tang(M) then M = M̃ .

If tang(M) then PT (∅,M) ∈ (0; 1]: the residence time in M is≥ 1.

Firing of U changes M to M̃ =M − •U + U•, M
U
→PM̃ , where

P = PT (U,M).

We write M
U
→M̃ if ∃P M

U
→P M̃ and M→M̃ if ∃U M

U
→ M̃ .

The probability to move from M to M̃ by firing any set of transitions:

PM(M, M̃) =
∑

{U |M
U
→M̃}

PT (U,M).

We write M
U
→M̃ if ∃P M

U
→P M̃ and M→M̃ if ∃U M

U
→ M̃ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 516

Definition 165 Let N be an LDTSIPN.

• The reachability set RS(N) is the minimal set of markings s.t.

– MN ∈ RS(N);

– if M ∈ RS(N) and M → M̃ then M̃ ∈ RS(N).

• The reachability graph RG(N) is a directed labeled graph with

– the set of nodes RS(N);

– an arc labeled by (U, P) from node M to M̃ if M
U
→P M̃ .

The set of all tangible markings from RS(N) is RST (N).

The set of all vanishing markings from RS(N) is RSV (N).

RS(N) = RST (N) ∪RSV (N).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 517

Algebra of dtsi-boxes

Definition 166 A discrete time stochastic and immediate Petri box (dtsi-box) is

N = (PN , TN ,WN ,ΛN), where:

• PN and TN are finite sets of places and transitions, s.t. PN ∪ TN 6= ∅ and

PN ∩ TN = ∅;

• WN : (PN × TN)∪ (TN × PN)→ IN is a function of the weights of arcs

between places and transitions and vice versa;

• ΛN is the place and transition labeling function s.t.

– ΛN |PN : PN → {e, i, x} (it specifies entry, internal and exit places);

– ΛN |TN : TN → {̺ | ̺ ⊆ IN
SL
fin × SL} (it associates transitions with

the relabeling relations).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN (p) = e}, and the set

of exit places of N, N◦ = {p ∈ PN | ΛN (p) = x}, it holds: ◦N 6= ∅ 6= N◦

and •(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN ΛN (t) = ̺(α,κ), where ̺(α,κ) = {(∅, (α, κ))}

is a constant relabeling, identified with (α, κ).

A marked plain dtsi-box is a pair (N,MN), where N is a plain dtsi-box and

MN ∈ IN
PN
fin is its marking. Let N = (N, ◦N) and N = (N,N◦).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 518

(α, ρ)

♠
♠
❄

❄

N(α,ρ)ι

e

x

tι ̺[f]

♠
♠
❄

❄

Θ[f]

e

x

u[f] r̺s a

♠
♠
❄

❄

Θrs a

e

x

urs a s̺y a

♠
♠
❄

❄

Θsy a

e

x

usy a ̺id

♠
♠
❄

❄

Θ;

e

u1;

̺id

♠
❄

❄
x

u2;

i

̺id

♠
♠
❄

❄

Θ‖

e

u1‖

x

̺id

♠
♠
❄

❄

e

u2‖

x

̺idu1[] ̺id u2[]

Θ[]♠
♠
e

x

��✠ ❅❅❘

❙❙✇ ✓✓✴

✄ �
✂ ✁❄✻

̺id

♠
♠
❄

❄

Θ[∗ ∗]

e

u1[∗ ∗]

̺id

♠
❄

❄
x

u3[∗ ∗]

i ̺id u2[∗ ∗]

(α, l)

♠
♠
❄

❄

N(α,l)ι

e

x

tι

BOXOPS: The plain and operator dtsi-boxes

Definition 167 Let (α, κ) ∈ SIL, a ∈ Act and

E,F,K ∈ RegStatExpr. The denotational semantics of dtsiPBC is a

mapping Boxdtsi from RegStatExpr into plain dtsi-boxes:

1. Boxdtsi((α, κ)ι) = N(α,κ)ι ;

2. Boxdtsi(E◦F) = Θ◦(Boxdtsi(E), Boxdtsi(F)), ◦ ∈ {; , [], ‖};

3. Boxdtsi(E[f]) = Θ[f](Boxdtsi(E));

4. Boxdtsi(E◦a) = Θ◦a(Boxdtsi(E)), ◦ ∈ {rs,sy};

5. Boxdtsi([E∗F∗K]) =

Θ[∗ ∗](Boxdtsi(E), Boxdtsi(F), Boxdtsi(K)).

For E ∈ RegStatExpr, let Boxdtsi(E) = Boxdtsi(E) and

Boxdtsi(E) = Boxdtsi(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 519

We denote isomorphism of transition systems by≃,

and the same symbol denotes isomorphism of reachability graphs and DTMCs

as well as isomorphism between transition systems and reachability graphs.

Theorem 43 (OPDNSEM) For any static expression E

TS(E)≃RG(Boxdtsi(E)).

RG(N)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000

000100 000010

☛✡ ✟✠
❄

100000

t1,ρ

t2,χ

t3,
l

l+m
t4,

m
l+m

t5,θ t6,φ

001000

✄✂ ✲

✂✁✂✁✻ ✻

✂✁✻
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

({a},ρ)

♥t
❄

e

N

({d},θ) ({f},φ)

♥ ♥
❄ ❄

({c},l)

♥x

♥❄

({e},m)

��✠ ❩❩⑦

❄ ❄

({b},χ)

♥
❄

❄

✠ ✡

✬

✫

✜

✢

✲ ✛

t1

t2

t3 t4

t5 t6

p1

p2

p3

p4 p5

p6

BOXRG: The marked dtsi-boxN = Boxdtsi(E) for

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

and its reachability graph

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 520

({a}, 12)

✍✌✎☞✉
❄

e

N

({b}, 12) ({c}, 12)

✍✌✎☞ ✍✌✎☞
❄ ❄
✍✌✎☞ ✍✌✎☞

❏
❏❫

✁
✁☛

✍✌✎☞x

❄ ❄

({d}, 12)

❄

❏❏❫ ✓✓✴

✟✟✟✟✯
❍❍❍❍❨

☞

✌

✎

✍✲ ✛

✻ ✻

★

✧

✥

✦✲ ✛

p1

p2 p3

p4 p5

p6

t1

t2 t3

t4

RG(N)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠

❄

❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

100000

011110

011200 011020

011001

t1,
1
2

t2,
1
2

t3,
1
2

t3,
1
5

t2,
1
5

t4,
1
5

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲ �✁✛

✞✝ ✲

∅, 1
5 {t2,t3}, 1

5

∅, 1
2

∅, 1
2

∅, 1
2

∅,1

NRBOXRG: The marked dtsi-box N = Boxdtsi(E) for

E = [(({a}, 12) ∗ (({b},
1
2)‖({c},

1
2)) ∗ ({d},

1
2)] and its reachability graph

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 521

M1 = (1, 0, 0, 0, 0, 0) is the initial marking.

M2 = (0, 1, 1, 1, 1, 0) is obtained from M1 by firing t1.

M3 = (0, 1, 1, 2, 0, 0) is obtained from M2 by firing t2 and has 2 tokens

in the place p4.

M4 = (0, 1, 1, 0, 2, 0) is obtained from M2 by firing t3 and has 2 tokens

in the place p5.

Concurrency in the second argument of iteration in E can lead to non-safeness of

the corresponding marked dtsi-box N , but it is 2-bounded in the worst case.

The origin of the problem: N has as a self-loop with two subnets which can

function independently.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 522

Performance evaluation

Analysis of the underlying SMC

For a dynamic expression G, a discrete random variable is associated with every

tangible state from DRT (G).

The random variables (residence time in the tangible states) are geometrically

distributed: the probability to stay in the tangible state s ∈ DRT (G) for k − 1

moments

and leave it at the moment k ≥ 1 is PM(s, s)k−1(1− PM(s, s)).

The mean value formula: the average sojourn time in the tangible state s is
1

1−PM(s,s) .

The average sojourn time in the vanishing state s is 0.

The average sojourn time in the state s is

SJ(s) =

1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector SJ of G has the elements

SJ(s), s ∈ DR(G).

The sojourn time variance in the state s is

V AR(s) =

PM(s,s)
(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector V AR of G has the elements

V AR(s), s ∈ DR(G).

The stochastic process associated with a dynamic expression G: the underlying

semi-Markov chain (SMC) of G, SMC(G).

SMC(G) is analyzed by extracting the embedded (absorbing) discrete time

Markov chain (EDTMC) of G, EDTMC(G).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 523

Let G be a dynamic expression and s, s̃ ∈ DR(G).

Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

PM(s, s)k.

Let s→ s̃ and s 6= s̃. The probability to move from s to s̃ by executing any

multiset of activities after possible self-loops is

PM∗(s, s̃) =

PM(s, s̃)
∑∞
k=0 PM(s, s)k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

= SL(s)PM(s, s̃),where SL(s) =

1
1−PM(s,s) , s→ s;

1, otherwise;

is the self-loops abstraction factor in the state s.

The self-loops abstraction vector SL of G has the elements

SL(s), s ∈ DR(G).

We have ∀s ∈ DRT (G) SL(s) =
1

1−PM(s,s) = SJ(s), hence,

∀s ∈ DRT (G) PM
∗(s, s̃) = SJ(s)PM(s, s̃).

Definition 168 Let G be a dynamic expression. The embedded (absorbing)

discrete time Markov chain (EDTMC) of G, EDTMC(G), has the state space

DR(G), the initial state [G]≈ and the transitions s→→P s̃, if s→ s̃ and s 6= s̃,

where P = PM∗(s, s̃).

The underlying SMC of G, SMC(G), has the EDTMC EDTMC(G) and the

sojourn time in every s ∈ DRT (G) is geometrically distributed with the

parameter 1−PM(s, s) while the sojourn time in every s ∈ DRV (G) is equal

to zero.

For E ∈ RegStatExpr, let EDTMC(E) = EDTMC(E) and

SMC(E) = SMC(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 524

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|)

of (one-step) transition probability matrix (TPM) P∗ for EDTMC(G):

P∗
ij =

PM∗(si, sj), si → sj , si 6= sj ;

0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF)

ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF:

ψ∗[0](si) =

1, si = [G]≈;

0, otherwise.

We have ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 525

The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ
∗(sn)) for EDTMC(G) is a

solution of

ψ∗(P∗ − I) = 0

ψ∗1T = 1
,

where I is the identity matrix of order n and 0 is a row vector of n values 0, 1 is

that of n values 1.

When EDTMC(G) has the single steady state, ψ∗ = limk→∞ ψ∗[k].

The steady-state PMF ϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G):

ϕ(si) =

ψ∗(si)SJ(si)∑n
j=1 ψ

∗(sj)SJ(sj)
, si ∈ DRT (G);

0, si ∈ DRV (G).

To calculate ϕ, we apply abstracting from self-loops to get P∗ and ψ∗, followed

by weighting by SJ and normalization.

EDTMC(G) has no self-loops, unlike SMC(G), hence, the behaviour of

EDTMC(G) stabilizes quicker than that of SMC(G), since P∗ has only

zero elements at the main diagonal.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 526

SMC(E)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
1

1

l
l+m

m
l+m

1 1

s3

1
ρ

1
χ

0

1
θ

1
φ

EXPRSMC: The underlying SMC of E for

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

The average sojourn time vector of E:

SJ =

(
1

ρ
,
1

χ
, 0,

1

θ
,
1

φ

)
.

The sojourn time variance vector of E:

V AR =

(
1− ρ

ρ2
,
1− χ

χ2
, 0,

1− θ

θ2
,
1− φ

φ2

)
.

The TPM for EDTMC(E):

P∗ =

0 1 0 0 0

0 0 1 0 0

0 0 0 l
l+m

m
l+m

0 1 0 0 0

0 1 0 0 0

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 527

The steady-state PMF for EDTMC(E):

ψ∗ =

(
0,

1

3
,
1

3
,

l

3(l +m)
,

m

3(l +m)

)
.

The steady-state PMF ψ∗ weighted by SJ :

(
0,

1

3χ
, 0,

l

3θ(l +m)
,

m

3φ(l +m)

)
.

We normalize the steady-state weighted PMF dividing it by the sum of its

components:

ψ∗SJT =
θφ(l +m) + χ(φl + θm)

3χθφ(l +m)
.

Thus, the steady-state PMF for SMC(E):

ϕ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), 0, χφl, χθm).

The case l = m and θ = φ:

ϕ =
1

2(χ+ θ)
(0, 2θ, 0, χ, χ).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 528

Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G).

The following performance indices (measures) are based on the steady-state

PMF for SMC(G).

• The average recurrence (return) time in the state s (the number of discrete

time units or steps required for this) is 1
ϕ(s) .

• The fraction of residence time in the state s is ϕ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the

probability of the event determined by a condition that is true for all states

from S is
∑

s∈S ϕ(s).

• The relative fraction of residence time in the set of states S w.r.t. that in S̃ is∑
s∈S ϕ(s)∑
s̃∈S̃ ϕ(s̃)

.

• The rate of leaving the state s is
ϕ(s)
SJ(s) .

• The steady-state probability to perform a step with a multiset of activities Ξ is∑
s∈DR(G) ϕ(s)

∑
{Υ|Ξ⊆Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is∑
s∈DR(G) ϕ(s)r(s), where ∀s ∈ DR(G) 0 ≤ r(s) ≤ 1.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 529

Let N = (PN , TN ,WN ,ΩN , LN ,MN) be a LDTSIPN and M, M̃ ∈ INPN
fin .

The average sojourn time SJ(M), the sojourn time variance V AR(M), the

probabilities PM∗(M, M̃), the transition relation M→→PM̃ , the EDTMC

EDTMC(N), the underlying SMC SMC(N) and the steady-state PMF for it

are defined like for dynamic expressions.

We denote isomorphism of SMCs by≃.

Proposition 32 (SMCS) For any static expression E

SMC(E)≃SMC(Boxdtsi(E)).

SMC(N)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000

000100 000010

☛✡ ✟✠
❄

100000

1

1

l
l+m

m
l+m

1 1

001000

1
ρ

1
χ

0

1
θ

1
φ

BOXSMC: The underlying SMC of N = Boxdtsi(E) for

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 530

Analysis of the DTMC

Definition 169 Let G be a dynamic expression. The discrete time Markov chain

(DTMC) of G, DTMC(G), has the state space DR(G), the initial state [G]≈
and the transitions s→P s̃, where P = PM(s, s̃).

For E ∈ RegStatExpr, let DTMC(E) = DTMC(E).

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|)

of (one-step) transition probability matrix (TPM) P for DTMC(G) are

Pij =

PM(si, sj), si → sj ;

0, otherwise.

The steady-state PMF ψ for DTMC(G) is defined like that for EDTMC(G).

Theorem 44 (PMFS) Let G be a dynamic expression and SL be its self-loops

abstraction vector. Then the steady-state PMFs ψ for DTMC(G) and ψ∗ for

EDTMC(G) are related as: ∀s ∈ DR(G)

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

Proposition 33 (PMFSMC) Let G be a dynamic expression, ϕ be the

steady-state PMF for SMC(G) and ψ be the steady-state PMF for

DTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

, s ∈ DRT (G);

0, s ∈ DRV (G).

To calculate ϕ, we apply normalization to some elements of ψ (corresponding to

the tangible states), instead of abstracting from self-loops to get P∗ and ψ∗,

followed by weighting by SJ and normalization.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 531

Using DTMC(G) instead of EDTMC(G) allows one to avoid multistage

analysis.

DTMC(G) has self-loops, unlike EDTMC(G), hence, the behaviour of

DTMC(G) stabilizes slower than that of EDTMC(G) and P is denser

matrix than P∗, since P may have non-zero elements at the main diagonal.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 532

DTMC(E)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
ρ

χ

l
l+m

m
l+m

θ φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✂ ✁✻
1−ρ

1−χ

1−θ 1−φ

EXPRDTMC: The DTMC ofE for

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

The TPM for DTMC(E):

P =

1− ρ ρ 0 0 0

0 1− χ χ 0 0

0 0 0 l
l+m

m
l+m

0 θ 0 1− θ 0

0 φ 0 0 1− φ

.

The steady-state PMF for DTMC(E):

ψ =
1

θφ(1 + χ)(l+m) + χ(φl + θm)
(0, θφ(l +m), χθφ(l+m), χφl, χθm).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 533

Since DRT (E) = {s1, s2, s4, s5}, DRV (E) = {s3} and

by Proposition PMFSMC:

∑
s̃∈DRT (E) ψ(s̃) = ψ(s1) + ψ(s2) + ψ(s4) + ψ(s5) =

θφ(l+m)+χ(φl+θm)
θφ(1+χ)(l+m)+χ(φl+θm) .

ϕ(s1) = 0 · θφ(1+χ)(l+m)+χ(φl+θm)
θφ(l+m)+χ(φl+θm) = 0,

ϕ(s2) =
θφ(l+m)

θφ(1+χ)(l+m)+χ(φl+θm) ·
θφ(1+χ)(l+m)+χ(φl+θm)

θφ(l+m)+χ(φl+θm) =
θφ(l+m)

θφ(l+m)+χ(φl+θm) ,

ϕ(s3) = 0,

ϕ(s4) =
χφl

θφ(1+χ)(l+m)+χ(φl+θm) ·
θφ(1+χ)(l+m)+χ(φl+θm)

θφ(l+m)+χ(φl+θm) =

χφl
θφ(l+m)+χ(φl+θm) ,

ϕ(s5) =
χθm

θφ(1+χ)(l+m)+χ(φl+θm) ·
θφ(1+χ)(l+m)+χ(φl+θm)

θφ(l+m)+χ(φl+θm) =

χθm
θφ(l+m)+χ(φl+θm) .

The steady-state PMF for SMC(E):

ϕ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), 0, χφl, χθm).

This coincides with the result obtained with the use of ψ∗ and SJ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 534

Analysis of the reduced DTMC

Let G be a dynamic expression and P be the TPM for DTMC(G).

Reordering the states from DR(G): the first rows and columns of P correspond

to the states from DRV (G) and the last ones correspond to the states from

DRT (G).

Let |DR(G)| = n and |DRT (G)| = m. The resulting matrix is decomposed

as:

P =

 C D

E F

 .

The elements of the (n−m)× (n−m) submatrix C: the probabilities to move

from vanishing to vanishing states.

The elements of the (n−m)×m submatrix D: the probabilities to move from

vanishing to tangible states.

The elements of the m× (n−m) submatrix E: the probabilities to move from

tangible to vanishing states.

The elements of the m×m submatrix F: the probabilities to move from tangible

to tangible states.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 535

The TPM P⋄ for RDTMC(G) is the m×m matrix:

P⋄ = F+EGD,

where the elements of the matrix G are the probabilities to move from vanishing

to vanishing states in any number of state transitions, without traversal of the

tangible states:

G =
∞∑

k=0

Ck =

∑l
k=0 C

k, ∃l ∈ IN ∀k > l Ck = 0,

no loops among vanishing states;

(I−C)−1, limk→∞ Ck = 0,

loops among vanishing states;

where 0 is the square matrix consisting only of zeros and I is the identity matrix,

both of size n−m.

For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m, let Fij be the elements of the matrix

F, Eik be those of E, Gkl be those of G and Dlj be those of D.

The elements P⋄
ij of the matrix P⋄ are

P⋄
ij = Fij +

n−m∑

k=1

n−m∑

l=1

EikGklDlj =

Fij +
n−m∑

k=1

Eik

n−m∑

l=1

GklDlj = Fij +
n−m∑

l=1

Dlj

n−m∑

k=1

EikGkl,

i.e. P⋄
ij (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si

to the tangible state sj in any number of steps, without traversal of tangible states,

but possibly going through vanishing states.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 536

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = sj .

The probability to move from s to s̃ in any number of steps, without traversal of

tangible states is

PM⋄(s, s̃) = P⋄
ij.

Definition 170 Let G be a dynamic expression and [G]≈ ∈ DRT (G).

The reduced discrete time Markov chain (RDTMC) of G, denoted by

RDTMC(G), has the state space DRT (G), the initial state [G]≈ and the

transitions s→֒P s̃, where P = PM⋄(s, s̃).

RDTMCs of static expressions can be defined as well. For E ∈ RegStatExpr,

let RDTMC(E) = RDTMC(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 537

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). The transient (k-step,

k ∈ IN) probability mass function (PMF)

ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ
⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ
⋄[0](sm)) is the initial PMF:

ψ⋄[0](si) =

1, si = [G]≈;

0, otherwise.

ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ IN).

The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ
⋄(sm)) for RDTMC(G) is a

solution of:

ψ⋄(P⋄ − I) = 0

ψ⋄1T = 1
,

where I is the identity matrix of size m and 0 is a row vector of m values 0, 1 is

that of m values 1.

When RDTMC(G) has the single steady state, ψ⋄ = limk→∞ ψ⋄[k].

Proposition 34 (PMFSMCT) Let G be a dynamic expression, ϕ be the

steady-state PMF for SMC(G) and ψ⋄ be the steady-state PMF for

RDTMC(G). Then ∀s ∈ DR(G)

ϕ(s) =

ψ⋄(s), s ∈ DRT (G);

0, s ∈ DRV (G).

To calculate ϕ, we take all the elements of ψ⋄ as the steady-state probabilities of

the tangible states, instead of abstracting from self-loops to get P∗ and ψ∗,

followed by weighting by SJ and normalization.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 538

Using RDTMC(G) instead of EDTMC(G) allows one to avoid multistage

analysis. Constructing P⋄ requires calculating matrix powers or inverse matrices.

RDTMC(G) has self-loops, unlike EDTMC(G), hence, the behaviour of

RDTMC(G) may stabilize slower than that of EDTMC(G). P⋄ is smaller

and denser matrix than P∗, since P⋄ has non-zero elements at the main

diagonal and many of them outside it.

The complexity of the analytical calculation of ψ⋄ w.r.t. ψ∗ depends on the model

structure: the number of vanishing states and loops among them. Usually it is

lower, since the matrix size reduction plays an important role.

The elimination of vanishing states.

• The system models with many immediate activities:

significant simplification of the solution.

• The abstraction level of SMCs:

decreases their impact to the solution complexity.

• The abstraction level of transition systems:

allows immediate activities to specify logical structure.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 539

E =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop].

DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}.

We reorder the states from DR(E), by moving the vanishing states to the first

positions: s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E):

Pr =

0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0

χ 0 1− χ 0 0

0 0 θ 1− θ 0

0 0 φ 0 1− φ

.

The result of the decomposing Pr:

C = 0, D =
(
0, 0, l

l+m ,
m
l+m

)
,

E =

0

χ

0

0

, F =

1− ρ ρ 0 0

0 1− χ 0 0

0 θ 1− θ 0

0 φ 0 1− φ

.

Since C1 = 0, we have ∀k > 0Ck = 0, hence, l = 0 and there are no loops

among vanishing states. Then

G =

l∑

k=0

Ck = C0 = I.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 540

The TPM for RDTMC(E):

P⋄ = F+EGD = F+EID = F+ED =

1− ρ ρ 0 0

0 1− χ χl
l+m

χm
l+m

0 θ 1− θ 0

0 φ 0 1− φ

.

The steady-state PMF for RDTMC(E):

ψ⋄ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), χφl, χθm).

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s4), ψ
⋄(s5)).

By Proposition PMFSMCT,

ϕ(s1) = 0,

ϕ(s2) =
θφ(l+m)

θφ(l+m)+χ(φl+θm) ,

ϕ(s3) = 0,

ϕ(s4) =
χφl

θφ(l+m)+χ(φl+θm) ,

ϕ(s5) =
χθm

θφ(l+m)+χ(φl+θm) .

The steady-state PMF for SMC(E):

ϕ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), 0, χφl, χθm).

This coincides with the result obtained with the use of ψ∗ and SJ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 541

RDTMC(E)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

s1

s2

s4 s5

ρ

θ φ

χl
l+m

χm
l+m

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲1−χ1−ρ

1−θ 1−φ

EXPRRDTMC: The reduced DTMC of E for E =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

RSMC(E)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

s1

s2

s4 s5

1

1 1

l
l+m

m
l+m

1
ρ

1
χ

1
θ

1
φ

EXPRRSMC: The reduced SMC of E for E =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, φ)))) ∗ Stop]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 542

Stochastic equivalences

Step stochastic bisimulation equivalence

For Υ ∈ INSIL
fin , we consider L(Υ) ∈ INL

fin, i.e. (possibly empty) multisets of

multiactions.

Let G be a dynamic expression andH ⊆ DR(G). For s ∈ DR(G) and

A ∈ INL
fin we write s

A
→PH, where P = PMA(s,H) is the overall probability

to move from s into the set of statesH via steps with the multiaction part A:

PMA(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→s̃, L(Γ)=A}

PT (Γ, s).

We write s
A
→H if ∃P s

A
→P H.

We write s→PH if ∃A s
A
→H, where P = PM(s,H) is the overall

probability to move from s into the set of statesH via any steps:

PM(s,H) =
∑

{Γ|∃s̃∈H s
Γ
→s̃}

PT (Γ, s).

Definition 171 Let G and G′ be dynamic expressions. An equivalence relation

R ⊆ (DR(G) ∪DR(G′))2 is a step stochastic bisimulation between G and

G′,R : G↔ssG
′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ IN
L
fin

s1
A
→P H ⇔ s2

A
→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent,

G↔ssG
′, if ∃R : G↔ssG

′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 543

Proposition 35 (BISSPL) Let G and G′ be dynamic expressions and

R : G↔ssG
′. Then

R ⊆ (DRT (G) ∪DRT (G
′))2⊎(DRV (G) ∪DRV (G

′))2,

where ⊎ is disjoint union.

Rss(G,G′) =
⋃
{R | R : G↔ssG

′} is the union of all step stochastic

bisimulations between G and G′.

Proposition 36 (LARBIS) Let G and G′ be dynamic expressions and

G↔ssG
′. ThenRss(G,G

′) is the largest step stochastic bisimulation between

G and G′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 544

Interrelations of the stochastic equivalences

↔ss ≈=ts ✛✛

INTSTEQ: Interrelations of the stochastic equivalences

Theorem 45 (INTSTEQ) Let↔,↔↔ ∈ {↔,=,≈} and ⋆, ⋆⋆ ∈ { , ss, ts}.

For dynamic expressions G and G′

G↔⋆G
′ ⇒ G↔↔⋆⋆G

′

iff in the graph above there exists a directed path from↔⋆ to↔↔⋆⋆.

Validity of the implications

• The implication =ts →↔ss is proved as follows. Let β : G=tsG
′. Then

R : G↔ssG
′, whereR = {(s, β(s)) | s ∈ DR(G)}.

• The implication ≈ → =ts is valid, since the transition system of a dynamic

formula is defined based on its structural equivalence class.

Absence of the additional nontrivial arrows

(a) Let E = ({a}, 12) and E′ = ({a}, 13)1[]({a},
1
3)2. Then E↔ssE

′, but

E 6=tsE′, since TS(E) has only one transition from the initial to the final

state while TS(E′) has two such ones.

(b) Let E = ({a}, 12); ({â},
1
2) and E′ = ({a}, 12); ({â},

1
2)) sy a. Then

E=tsE′, but E 6≈E′, since E and E′ cannot be reached from each other by

applying inaction rules.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 545

({a}, 12)

✍✌✎☞❄
✍✌✎☞✉ e

x

N(a)

❄ ↔ss

6=ts
({a}, 13) ({a}, 13)

✍✌✎☞

✍✌✎☞
❙
❙✇

�
�✠

��✠
❩❩⑦

x

✉ e

N ′

({a}, 12)

✍✌✎☞❄
✍✌✎☞✉ e

N(b)

❄

=ts

6≈

({a}, 12)

({â}, 12)

✍✌✎☞❄
❄

✍✌✎☞✉

✍✌✎☞x

e

N ′

❄

❄

(∅, 14)

❙
❙
❙
❙
❙✇

✡
✡

✡
✡

✡✡✢

✞ ☎
✝ ✆

❄

✻
({â}, 12)

✍✌✎☞
❄

✍✌✎☞x❄
EXMSTEQ: Dtsi-boxes of the dynamic expressions from equivalence examples of

the Theorem INTSTEQ

In Figure EXMSTEQ, N = Boxdtsi(E) and N ′ = Boxdtsi(E′) for each

picture (a)–(b).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 546

Reduction modulo equivalences

An autobisimulation is a bisimulation between an expression and itself.

For a dynamic expression G and a step stochastic autobisimulation

R : G↔ssG, let K ∈ DR(G)/R and s1, s2 ∈ K.

We have ∀K̃ ∈ DR(G)/R ∀A ∈ IN
L
fin s1

A
→P K̃ ⇔ s2

A
→P K̃.

The equality is valid for all s1, s2 ∈ K, hence, we can rewrite it asK
A
→PK̃,

where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We writeK
A
→K̃ if ∃P K

A
→P K̃ and K→K̃ if ∃AK

A
→ K̃.

The similar arguments: we writeK→P K̃, where

P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).

SinceR ⊆ (DRT (G))
2⊎(DRV (G))2, we have ∀K ∈ DR(G)/R,

all states from K are tangible, when K ∈ DRT (G)/R,

or all of them are vanishing, when K ∈ DRV (G)/R.

The average sojourn time in the equivalence class (w.r.t. R) of states K is

SJR(K) =

1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (w.r.t. R) of states

of G, SJR, has the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (w.r.t. R) of states K is

V ARR(K) =

PM(K,K)
(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (w.r.t. R) of states

of G, V ARR, has the elements V ARR(K), K ∈ DR(G)/R.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 547

Rss(G) =
⋃
{R | R : G↔ssG} is the largest step stochastic

autobisimulation on G.

Definition 172 The quotient (by↔ss) (labeled probabilistic) transition system

of a dynamic expression G is TS↔ss
(G) = (S↔ss

, L↔ss
, T↔ss

, s↔ss
),

where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
⊆ (INL

fin)× (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K, K̃ ∈ DR(G)/Rss(G),

K
A
→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K

A
→PK̃.

For E ∈ RegStatExpr, let TS↔ss
(E) = TS↔ss

(E).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 548

Let F be an abstraction of E from the examples above, s.t.

c = e, d = f, θ = φ:

F = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({c},m); ({d}, θ)))) ∗ Stop].

DR(F) = {s1, s2, s3, s4, s5} is obtained from DR(E) via substitution of

e, f , φ by c, d, θ, respectively.

DRT (F) = {s1, s2, s4, s5} and DRV (F) = {s3}.

DR(F)/Rss(F) = {K1,K2,K3,K4},

where K1 = {s1}, K2 = {s2}, K3 = {s3}, K4 = {s4, s5}.

DRT (F)/Rss(F) = {K1,K2,K4} and DRV (F)/Rss(F) = {K3}.

TS↔ss
(F)

☛✡ ✟✠
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

{a},ρ

{b},χ

{d},θ

K3

✞✝ ✲
∅,1−ρ

❄

✞✝ ✲
∅,1−χ

✞✝ ✲
∅,1−θ

☞

✌

✛

{c},1

✚
QTS: The quotient transition system of F for F =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({c},m); ({d}, θ)))) ∗ Stop]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 549

The quotient (by↔ss) average sojourn time vector ofG is SJ↔ss
= SJRss(G).

The quotient (by↔ss) sojourn time variance vector of G is

V AR↔ss
= V ARRss(G).

Let K → K̃ and K 6= K̃. The probability to move from K to K̃ by executing any

multiset of activities after possible self-loops is

PM∗(K, K̃) =

PM(K, K̃)
∑∞
k=0 PM(K,K)k =

PM(K,K̃)
1−PM(K,K) , K → K;

PM(K, K̃), otherwise.

We have ∀K ∈ DRT (G)/Rss(G) PM
∗(K, K̃) = SJ↔ss

(K)PM(K, K̃).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 550

Definition 173 The quotient (by↔ss) EDTMC of a dynamic expression G,

EDTMC↔ss
(G), has the state space DR(G)/↔ss(G), the initial state

[[G]≈]Rss(G) and the transitions K→→P K̃, ifK → K̃ and K 6= K̃, where

P = PM∗(K, K̃).

The quotient (by↔ss) underlying SMC of G, SMC↔ss
(G), has the EDTMC

EDTMC↔ss
(G) and the sojourn time in every K ∈ DRT (G)/Rss(G) is

geometrically distributed with the parameter 1− PM(K,K) while the sojourn

time in every K ∈ DRV (G)/Rss(G) is equal to zero.

For E ∈ RegStatExpr, let SMC↔ss
(E) = SMC↔ss

(E).

The steady-state PMFs ψ∗
↔ss

for EDTMC↔ss
(G) and ϕ↔ss

for

SMC↔ss
(G) are defined like ψ∗ for EDTMC(G) and ϕ for SMC(G).

SMC↔ss
(F)

☛✡ ✟✠
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

1

1

1

K3

❄

☞

✌

✛

1

✚

1
ρ

1
χ

0

1
θ

EXPRQSMC: The quotient underlying SMC of F for F =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({c},m); ({d}, θ)))) ∗ Stop]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 551

Definition 174 Let G be a dynamic expression. The quotient (by↔ss) DTMC

of G, DTMC↔ss
(G), has the state space DR(G)/Rss(G), the initial state

[[G]≈]Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

For E ∈ RegStatExpr, let DTMC↔ss
(E) = DTMC↔ss

(E).

The steady-state PMF ψ↔ss
for DTMC↔ss

(G) is defined like ψ for

DTMC(G).

DTMC↔ss
(F)

☛✡ ✟✠
☛✡ ✟✠

❄

K2

K4

☛✡ ✟✠
❄

K1

ρ

χ

θ

K3

✞✝ ✲
1− ρ

❄

✞✝ ✲
1− χ

✞✝ ✲
1− θ

☞

✌

✛

1

✚
EXPRQDTMC: The quotient DTMC of F for F =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({c},m); ({d}, θ)))) ∗ Stop]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 552

Definition 175 The reduced quotient (by↔ss) DTMC of G, denoted by

RDTMC↔ss
(G), is defined like RDTMC(G), but it is constructed from

DTMC↔ss
(G) instead of DTMC(G).

For E ∈ RegStatExpr, let RDTMC↔ss
(E) = RDTMC↔ss

(E).

The steady-state PMF ψ⋄
↔ss

for RDTMC↔ss
(G) is defined like ψ⋄ for

RDTMC(G).

The relationships between the steady-state PMFs ψ↔ss
and ψ∗

↔ss
, ϕ↔ss

and

ψ↔ss
, ϕ↔ss

and ψ⋄
↔ss

are the same as those between their “non-quotient”

versions.

RDTMC↔ss
(F)

☛✡ ✟✠☛✡ ✟✠❄
K2

K4

☛✡ ✟✠
❄

K1

ρ

χ

θ

✞✝ ✲
1− ρ✞✝ ✲
1− χ✞✝ ✲
1− θ

✛

✚

✏

✑
EXPRQRDTMC: The reduced quotient DTMC of F for F =

[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({c},m); ({d}, θ)))) ∗ Stop]

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 553

TS SMC

DTMC RDTMC

TS↔ss
SMC↔ss

DTMC↔ss
RDTMC↔ss

✻ ✻

✻ ✻✲

✲

✲

✲

�
�✒

�
�✒

�
�✒

�
�✒

CUBTSMCQ: The cube of interrelations for standard and quotient transition

systems and Markov chains of expressions

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 554

Stationary behaviour

Steady state and equivalences

Proposition 37 (STPROB) Let G,G′ be dynamic expressions with

R : G↔ssG
′ and ϕ be the steady-state PMF for SMC(G), ϕ′ be the

steady-state PMF for SMC(G′). Then ∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

Let G be a dynamic expression and ϕ be the steady-state PMF for SMC(G),

ϕ↔ss
be the steady-state PMF for SMC↔ss

(G).

By Proposition STPROB: ∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K) =

∑

s∈K

ϕ(s).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 555

Definition 176 A derived step trace of a dynamic expression G is

Σ = A1 · · ·An ∈ (INL
fin)

∗, where ∃s ∈ DR(G) s
Γ1→ s1

Γ2→ · · ·
Γn→ sn,

L(Γi) = Ai (1 ≤ i ≤ n).

The probability to execute the derived step trace Σ in s:

PT (Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→s1

Γ2→···
Γn→sn, L(Γi)=Ai (1≤i≤n)}

n∏

i=1

PT (Γi, si−1).

Theorem 46 (STTRAC) Let G,G′ be dynamic expressions withR : G↔ssG
′

and ϕ be the steady-state PMF for SMC(G), ϕ′ be the steady-state PMF for

SMC(G′) and Σ be a derived step trace of G and G′. Then

∀H ∈ (DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ϕ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ϕ′(s′)PT (Σ, s′).

By Theorem STTRAC: ∀K ∈ DR(G)/Rss(G)

ϕ↔ss
(K)PT (Σ,K) =

∑

s∈K

ϕ(s)PT (Σ, s),

where ∀s ∈ K PT (Σ,K) = PT (Σ, s).

Proposition 38 (SJAVVA) Let G,G′ be dynamic expressions with

R : G↔ssG
′. Then ∀H ∈ (DR(G) ∪DR(G′))/R

SJR∩(DR(G))2(H ∩DR(G)) = SJR∩(DR(G′))2(H ∩DR(G
′)),

V ARR∩(DR(G))2(H ∩DR(G)) = V ARR∩(DR(G′))2(H ∩DR(G
′)).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 556

({a}, 12)

✍✌✎☞✉
❄

e

N

({c}, 13)1 ({c}, 13)2

({b}, 12)

✍✌✎☞x

({a}, 12)

✍✌✎☞✉
❄

e

N ′

({c}, 12)1 ({c}, 12)2

✍✌✎☞ ✍✌✎☞
❄ ❄

({b}, 13)1

✍✌✎☞x

❄

({b}, 13)2

��✠
❩❩⑦

❄ ❄

✍✌✎☞✥

✦

★

✧✠ ✍ ✠ ✍

↔ss

6=ts

✲ ✛✍✌✎☞❄
❄

��✠
❩❩⑦
✍✌✎☞❄

✲ ✛ ✥

✦

★

✧
SSBSSP:↔ss preserves steady-state behaviour and sojourn time properties in

the equivalence classes

Let E = [({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop] and

E′ = [({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop].

We have E↔ssE
′.

In Figure SSBSSP, N = Boxdtsi(E) and N ′ = Boxdtsi(E′).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 557

DR(E) consists of

s1 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop]]≈,

s2 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop]]≈,

s3 = [[({a}, 12) ∗ (({b},
1
2); (({c},

1
3)1[]({c},

1
3)2)) ∗ Stop]]≈.

DR(E′) consists of

s′1 =

[[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′2 =

[[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′3 =

[[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈,

s′4 =

[[({a}, 12) ∗ ((({b},
1
3)1; ({c},

1
2)1)[](({b},

1
3)2; ({c},

1
2)2)) ∗ Stop]]≈.

The steady-state PMFs ϕ for SMC(E) and ϕ′ for SMC(E′) are

ϕ =

(
0,

1

2
,
1

2

)
, ϕ′ =

(
0,

1

2
,
1

4
,
1

4

)
.

ConsiderH = {s3, s
′
3, s

′
4}. The steady-state probabilities forH coincide:∑

s∈H∩DR(E) ϕ(s) = ϕ(s3) =
1
2 = 1

4 + 1
4 = ϕ′(s′3) + ϕ′(s′4) =∑

s′∈H∩DR(E′) ϕ
′(s′).

Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence class

H and start the derived step trace Σ from it coincide:

ϕ(s3)(PT ({({c},
1
3)1}, s3) +PT ({({c}, 13)2}, s3)) =

1
2

(
1
4 + 1

4

)
= 1

4 =
1
4 ·

1
2 + 1

4 ·
1
2 = ϕ′(s′3)PT ({({c},

1
2)1}, s

′
3)+ϕ

′(s′4)PT ({({c},
1
2)2}, s

′
4).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 558

The sojourn time averages in the equivalence classH coincide:

SJRss(E,E′)∩(DR(E))2(H ∩DR(G)) =

SJRss(E,E′)∩(DR(E))2({s3}) =
1

1−PM({s3},{s3})
=

1
1−PM(s3,s3)

= 1
1− 1

2

= 2 = 1
1− 1

2

= 1
1−PM(s′3,s

′
3)

= 1
1−PM(s′4,s

′
4)

=

1
1−PM({s′3,s

′
4},{s

′
3,s

′
4})

= SJRss(E,E′)∩(DR(E′))2({s
′
3, s

′
4}) =

SJRss(E,E′)∩(DR(E′))2(H ∩DR(G
′)).

The sojourn time variances in the equivalence classH coincide:

V ARRss(E,E′)∩(DR(E))2(H ∩DR(G)) =

V ARRss(E,E′)∩(DR(E))2({s3}) =
PM({s3},{s3})

(1−PM({s3},{s3}))2
=

PM(s3,s3)
(1−PM(s3,s3))2

=
1
2

(1− 1
2)

2 = 2 =
1
2

(1− 1
2)

2 =
PM(s′3,s

′
3)

(1−PM(s′3,s
′
3))

2 =

PM(s′4,s
′
4)

(1−PM(s′4,s
′
4))

2 =
PM({s′3,s

′
4},{s

′
3,s

′
4})

(1−PM({s′3,s
′
4},{s

′
3,s

′
4}))

2 =

V ARRss(E,E′)∩(DR(E′))2({s
′
3, s

′
4}) =

V ARRss(E,E′)∩(DR(E′))2(H ∩DR(G
′)).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 559

Simplification of performance analysis

The method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsiPBC .

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similarity,

a step stochastic autobisimulation equivalence for the expression is

determined.

4. The quotient underlying SMC is constructed from the quotient transition

system.

5. Stationary probabilities and performance indices are calculated using the

SMC.

Simplification of the steps 4 and 5:

constructing the reduced quotient DTMC from the quotient transition system,

calculating the stationary probabilities of the quotient underlying SMC

using this DTMC and obtaining the performance indices.

E TS(E) TS↔ss
(E) SMC↔ss

(E)

RDTMC↔ss
(E)

ϕ↔ss

ψ⋄
↔ss

✲ ✲ ✲

✲
✻❆

❆
❆❯

✲ Performance✲

EQPEVA: Equivalence-based simplification of performance evaluation

The limitation of the method: the expressions with underlying SMCs containing

one closed communication class of states, which is ergodic, to ensure

uniqueness of the stationary distribution.

If an SMC contains several closed communication classes of states that are all

ergodic: several stationary distributions may exist, depending on the initial PMF.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 560

The general steady-state probabilities are then calculated as

the sum of the stationary probabilities of all the ergodic classes of states,

weighted by the probabilities to enter these classes,

starting from the initial state and passing through transient states.

The underlying SMC of each process expression has one initial PMF

(that at the time moment 0): the stationary distribution is unique.

It is worth applying the method to the systems with similar subprocesses.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 561

Shared memory system

A model of two processors accessing a common shared memory [MBCDF95]

The standard system

✲

✛

✛

✲

Processor 1 Processor 2Memory

SHMDIA: The diagram of the shared memory system

After activation of the system (turning the computer on), two processors are

active, and the common memory is available. Each processor can request an

access to the memory after which the instantaneous decision is made.

When the decision is made in favour of a processor, it starts an acquisition of the

memory, and another processor waits until the former one ends its operations,

and the system returns to the state with both active processors and the available

memory.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 562

a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i.

di correspond to the instantaneous decision on the memory allocation in favour of

the processor i.

mi represent the common memory access of processor i.

The other actions are used for communication purpose only.

The static expression of the first processor is

E1 = [({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop].

The static expression of the shared memory is

E3 = [({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2)))∗

Stop].

The static expression of the shared memory system with two processors is

E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

Effect of synchronization

The synchronization of ({di, yi}, 1) and ({ŷi}, 1) produces ({di}, 2)

(1 ≤ i ≤ 2).

The synchronization of ({mi, zi},
1
2) and ({ẑi},

1
2) produces ({mi},

1
4)

(1 ≤ i ≤ 2).

The synchronization of ({a, x̂1, x̂2},
1
2) and ({x1},

1
2) produces ({a, x̂2},

1
4),

Synchronization of ({a, x̂1, x̂2},
1
2) and ({x2},

1
2) produces ({a, x̂1},

1
4).

Synchronization of ({a, x̂2},
1
4) and ({x2},

1
2), as well as ({a, x̂1},

1
4) and

({x1},
1
2) produces ({a}, 18).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 563

DR(E) consists of

s1 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s2 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s3 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s4 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s5 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s6 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 564

s7 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s8 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s9 = [([({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]

‖[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]

‖[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 565

Interpretation of the states

DRT (E) = {s1, s2, s5, s7, s8, s9} and DRV (E) = {s3, s4, s6}.

s1: the initial state,

s2: the system is activated and the memory is not requested,

s3: the memory is requested by the first processor,

s4: the memory is requested by the second processor,

s5: the memory is allocated to the first processor,

s6: the memory is requested by two processors,

s7: the memory is allocated to the second processor,

s8: the memory is allocated to the first processor and the memory is requested by

the second processor,

s9: the memory is allocated to the second processor and the memory is

requested by the first processor.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 566

✗
✖
✔
✕s1

✗
✖
✔
✕s2

✗
✖
✔
✕s5

✗
✖
✔
✕s8

✗
✖
✔
✕s7

✗
✖
✔
✕s9

❄

❄

❄

❄

❄

❄

TS(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�
�✒

✲ ✛

✛ ✲

({a}, 1
8
), 1

8

({r1}, 1
2
), 1

4
({r2}, 1

2
), 1

4

{({r1}, 1
2
),({r2}, 1

2
)}, 1

4

({d1},2),1 ({d2},2),1

({r2}, 1
2
), 3

8
({r1}, 1

2
), 3

8

{({r1}, 1
2
),

({m2}, 1
4
)}, 1

8

{({r2}, 1
2
),

({m1}, 1
4
)}, 1

8

({m1}, 1
4
), 1

8
({m2}, 1

4
), 1

8

({d1},2), 1
2

({d2},2), 1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

({m1}, 1
4
), 1

4
({m2}, 1

4
), 1

4

❅
❅

❅
❅

❅
❅■

PPPPPPPPPPPPPPPPP✐
s3 s4

s6

✲✄✂

✲✄✂ �✁✛

�✁✛

✝✆✻

✝✆✻∅, 3
8

∅, 3
4

∅, 3
8

∅, 3
4

∅, 7
8

∅, 1
4

SHMTS: The transition system of the shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 567

✗
✖
✔
✕s1

✗
✖
✔
✕s2

✗
✖
✔
✕s5

✗
✖
✔
✕s8

✗
✖
✔
✕s7

✗
✖
✔
✕s9

❄

❄

❄

❄

❄

❄

SMC(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
��✒

✲ ✛

✛ ✲

1

1
3

1
3

1
3

1 1

3
5

3
5

1
5

1
5

1
5

1
5

1
2

1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

1 1

❅
❅

❅
❅

❅❅■

PPPPPPPPPPPPPPPPP✐
s3 s4

s6

0

8
5

4

0

8
5

4

8

4
3

0

SHMSMC: The underlying SMC of the shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 568

The average sojourn time vector of E:

SJ =

(
8,

4

3
, 0, 0,

8

5
, 0,

8

5
, 4, 4

)
.

The sojourn time variance vector of E:

V AR =

(
56,

4

9
, 0, 0,

24

25
, 0,

24

25
, 12, 12

)
.

The TPM for EDTMC(E):

P∗ =

0 1 0 0 0 0 0 0 0

0 0 1
3

1
3 0 1

3 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1
5 0 1

5 0 0 0 3
5 0

0 0 0 0 0 0 0 1
2

1
2

0 1
5

1
5 0 0 0 0 0 3

5

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 569

SHMTP: Transient and steady-state probabilities for the EDTMC of the shared

memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 0 0.0754 0.0859 0.0677 0.0641 0.0680 0.0691 0.0683 0.0680 0.0681 0.0682

ψ∗
3 [k] 0 0.2444 0.2316 0.1570 0.1554 0.1726 0.1741 0.1702 0.1696 0.1705 0.1707 0.1705

ψ∗
5 [k] 0 0.2333 0.0982 0.1516 0.1859 0.1758 0.1672 0.1690 0.1711 0.1708 0.1703 0.1705

ψ∗
6 [k] 0 0.0444 0.0323 0.0179 0.0202 0.0237 0.0234 0.0226 0.0226 0.0228 0.0228 0.0227

ψ∗
8 [k] 0 0 0.1163 0.1395 0.1147 0.1077 0.1130 0.1150 0.1139 0.1133 0.1136 0.1136

We depict the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the

corresponding values coincide for s3, s4 as well as for s5, s7 as well as for s8, s9.

æ

ææà

à

àà

à

à

àà

à

à
à
à

à
àà
à
àà
à
àààààààààààààààààààààààààààààààà

ìì

ì

ì

ìì

ì

ì

ì

ì

ì

ì
ì

ì

ìì

ì

ì
ì
ì
ì
ììì

ììììììììììììììììììììììììììì

òòò

ò

ò

òò

ò

ò

ò

ò

ò

ò
ò

ò

òò

ò

ò
ò
ò
ò
òòò

òòòòòòòòòòòòòòòòòòòòòòòòòò

ôô

ô

ôô

ô

ô
ôô
ô
ôôô

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ççç

ç
ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

çç
ç
çç
ç
ççççççççççççççççççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ8
*@kD

ô Ψ6
*@kD

ò Ψ5
*@kD

ì Ψ3
*@kD

à Ψ2
*@kD

æ Ψ1
*@kD

SHMTP: Transient probabilities alteration diagram for the EDTMC of the shared

memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 570

The steady-state PMF for EDTMC(E):

ψ∗ =

(
0,

3

44
,
15

88
,
15

88
,
15

88
,
1

44
,
15

88
,
5

44
,
5

44

)
.

The steady-state PMF ψ∗ weighted by SJ :

(
0,

1

11
, 0, 0,

3

11
, 0,

3

11
,
5

11
,
5

11

)
.

We normalize the steady-state weighted PMF dividing it by

the sum of its components ψ∗SJT = 17
11 .

The steady-state PMF for SMC(E):

ϕ =

(
0,

1

17
, 0, 0,

3

17
, 0,

3

17
,
5

17
,
5

17

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 571

Otherwise, from TS(E), we can construct DTMC(E)

and calculate ϕ using it.

The TPM for DTMC(E):

P =

7
8

1
8 0 0 0 0 0 0 0

0 1
4

1
4

1
4 0 1

4 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1
8 0 1

8
3
8 0 0 3

8 0

0 0 0 0 0 0 0 1
2

1
2

0 1
8

1
8 0 0 0 3

8 0 3
8

0 0 0 1
4 0 0 0 3

4 0

0 0 1
4 0 0 0 0 0 3

4

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 572

✗
✖
✔
✕s1

✗
✖
✔
✕s2

✗
✖
✔
✕s5

✗
✖
✔
✕s8

✗
✖
✔
✕s7

✗
✖
✔
✕s9

❄

❄

❄

❄

❄

❄

DTMC(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�
�✒

✲ ✛

✛ ✲

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

❅
❅

❅
❅

❅
❅■

PPPPPPPPPPPPPPPPP✐
s3 s4

s6

✲✄✂

✲✄✂ �✁✛

�✁✛

✝✆✻

✝✆✻

1
8

1
4

1
4

1
4

1 1

3
8

3
8

1
8

1
8

1
8

1
8

1
2

1
2

1
4

1
4

3
8

3
4

3
8

3
4

7
8

1
4

SHMDTMC: The DTMC of the shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 573

SHMTPDTMC: Transient and steady-state probabilities for the DTMC of the

shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013

ψ2[k] 0 0.1161 0.0829 0.0657 0.0569 0.0524 0.0501 0.0489 0.0483 0.0479 0.0478 0.0476

ψ3[k] 0 0.0472 0.0677 0.0782 0.0836 0.0864 0.0878 0.0885 0.0889 0.0891 0.0892 0.0893

ψ5[k] 0 0.0581 0.0996 0.1207 0.1315 0.1370 0.1399 0.1413 0.1421 0.1425 0.1427 0.1429

ψ6[k] 0 0.0311 0.0220 0.0171 0.0146 0.0133 0.0126 0.0123 0.0121 0.0120 0.0120 0.0119

ψ8[k] 0 0.0647 0.1487 0.1923 0.2146 0.2260 0.2319 0.2349 0.2365 0.2373 0.2377 0.2381

We depict the probabilities for the states s1, s2, s3, s5, s6, s8 only, since the

corresponding values coincide for s3, s4 as well as for s5, s7 as well as for s8, s9.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

à
ààà

ìì
ììì

ìììì
ìììììììì

ìììììììììììììììììììììììììììììììììì

òòò
ò
òò
òò
òòò

òòòò
òòòòòòòòòò

òòòòòòòòòòòòòòòòòòòòòòòòòò

ôô
ôôôççç
ç
ç
ç
ç
ç
çç
çç
çç
ççç

ççççç
ççççççççççççççç

çççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ8@kD

ô Ψ6@kD

ò Ψ5@kD

ì Ψ3@kD

à Ψ2@kD

æ Ψ1@kD

SHMTPDTMC: Transient probabilities alteration diagram for the DTMC of the

shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 574

The steady-state PMF for DTMC(E):

ψ =

(
0,

1

21
,
5

56
,
5

56
,
1

7
,
1

84
,
1

7
,
5

21
,
5

21

)
.

Remember that DRT (E) = {s1, s2, s5, s7, s8, s9} and

DRV (E) = {s3, s4, s6}. Hence,

∑

s∈DRT (E)

ψ(s) = ψ(s1)+ψ(s2)+ψ(s5)+ψ(s7)+ψ(s8)+ψ(s9) =
17

21
.

By Proposition PMFSMC DTMC(G):

ϕ(s1) = 0 · 2117 = 0,

ϕ(s2) =
1
21 ·

21
17 = 1

17 ,

ϕ(s3) = 0,

ϕ(s4) = 0,

ϕ(s5) =
1
7 ·

21
17 = 3

17 ,

ϕ(s6) = 0,

ϕ(s7) =
1
7 ·

21
17 = 3

17 ,

ϕ(s8) =
5
21 ·

21
17 = 5

17 ,

ϕ(s9) =
5
21 ·

21
17 = 5

17 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 575

Alternatively, from TS(E), we can construct the reduced DTMC of E,

RDTMC(E), and calculate ϕ using it.

DRT (E) = {s1, s2, s5, s7, s8, s9} and DRV (E) = {s3, s4, s6}.

We reorder the elements of DR(E) by

moving the equivalence classes of vanishing states to the first positions:

s3, s4, s6, s1, s2, s5, s7, s8, s9.

The reordered TPM for DTMC(E):

Pr =

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 7
8

1
8 0 0 0 0

1
4

1
4

1
4 0 1

4 0 0 0 0

0 1
8 0 0 1

8
3
8 0 3

8 0

1
8 0 0 0 1

8 0 3
8 0 3

8

0 1
4 0 0 0 0 0 3

4 0

1
4 0 0 0 0 0 0 0 3

4

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 576

The result of the decomposing Pr:

C =

0 0 0

0 0 0

0 0 0

 , D =

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1
2

1
2

 ,

E =

0 0 0

1
4

1
4

1
4

0 1
8 0

1
8 0 0

0 1
4 0

1
4 0 0

, F =

7
8

1
8 0 0 0 0

0 1
4 0 0 0 0

0 1
8

3
8 0 3

8 0

0 1
8 0 3

8 0 3
8

0 0 0 0 3
4 0

0 0 0 0 0 3
4

.

Since C1 = 0, we have ∀k > 0, Ck = 0, hence, l = 0 and there are no loops

among vanishing states. Then

G =
l∑

k=0

Ck = C0 = I.

The TPM for RDTMC(E):

P⋄ = F+EGD = F+EID = F+ED =

7
8

1
8 0 0 0 0

0 1
4

1
4

1
4

1
8

1
8

0 1
8

3
8

1
8

3
8 0

0 1
8

1
8

3
8 0 3

8

0 0 0 1
4

3
4 0

0 0 1
4 0 0 3

4

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 577

✗
✖
✔
✕s1

✗
✖
✔
✕s2

✗
✖
✔
✕s5

✗
✖
✔
✕s8

✗
✖
✔
✕s7

✗
✖
✔
✕s9

❄❄ ❄

RDTMC(E)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�
�✒�
�

�
�

�
��✠✛ ✲

❅
❅

❅
❅

❅
❅■❅
❅

❅
❅

❅
❅❅❘

PPPPPPPPPPPPPPPPP✐

✲✄✂

✲✄✂

�✁✛

�✁✛

✝✆✻

✝✆✻

✓ ✏
❄

✬ ✩
❄

1
8

1
4

1
4

3
8

3
8

1
8

1
8

1
4

1
4

1
8

1
8

3
4

3
8

3
4

3
87

8

1
4

1
8

1
8

SHMRDTMC: The reduced DTMC of the shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 578

SHMTRPR: Transient and steady-state probabilities for the RDTMC of the shared

memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ⋄
1 [k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013

ψ⋄
2 [k] 0 0.1244 0.0931 0.0764 0.0679 0.0635 0.0612 0.0600 0.0594 0.0591 0.0590 0.0588

ψ⋄
3 [k] 0 0.0863 0.1307 0.1530 0.1644 0.1703 0.1733 0.1748 0.1756 0.1760 0.1763 0.1765

ψ⋄
5 [k] 0 0.0951 0.1912 0.2413 0.2670 0.2802 0.2870 0.2905 0.2922 0.2932 0.2936 0.2941

We depict the probabilities for states s1, s2, s5, s8 only, since the corresponding

values coincide for s5, s7, as well as for s8, s9.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

àà

ìì
ì
ì
ìì
ìì
ììì

ìììì
ììììììììì

ììììììììììììììììììììììììììì

òòò
ò
ò
ò
ò
ò
ò
òò
òò
òò
òòò

òòòòò
òòòòòòòòòòòòòòòò

òòòòòòòòòòòò

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ò Ψ5
í@kD

ì Ψ3
í@kD

à Ψ2
í@kD

æ Ψ1
í@kD

SHMTRPR: Transient probabilities alteration diagram for the RDTMC of the

shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 579

The steady-state PMF for RDTMC(E):

ψ⋄ =

(
0,

1

17
,
3

17
,
3

17
,
5

17
,
5

17

)
.

Note that ψ⋄ = (ψ⋄(s1), ψ
⋄(s2), ψ

⋄(s5), ψ
⋄(s7), ψ

⋄(s8), ψ
⋄(s9)).

By Proposition PMFSMCT:

ϕ(s1) = 0, ϕ(s2) =
1
17 , ϕ(s5) =

3
17 ,

ϕ(s7) =
3
17 , ϕ(s8) =

5
17 , ϕ(s9) =

5
17 .

The steady-state PMF for SMC(E):

ϕ =

(
0,

1

17
, 0, 0,

3

17
, 0,

3

17
,
5

17
,
5

17

)
.

This coincides with the result obtained with the use of ψ∗ and SJ .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 580

Performance indices

• The average recurrence time in the state s2, where no processor requests the

memory, the average system run-through, is 1
ϕ2

= 17.

• The common memory is available only in the states s2, s3, s4, s6.

The steady-state probability that the memory is available is

ϕ2 + ϕ3 + ϕ4 + ϕ6 = 1
17 + 0 + 0 + 0 = 1

17 .

The steady-state probability that the memory is used (i.e. not available), the

shared memory utilization, is 1− 1
17 = 16

17 .

• After activation of the system, we leave the state s1 for ever, and the common

memory is either requested or allocated in every remaining state, with

exception of s2.

The rate with which the necessity of shared memory emerges coincides with

the rate of leaving s2, calculated as ϕ2

SJ2
= 1

17 ·
3
4 = 3

68 .

• The parallel common memory request of two processors

{({r1},
1
2), ({r2},

1
2)} is only possible from the state s2.

The request probability in this state is the sum of the execution probabilities

for all multisets of activities containing both ({r1},
1
2) and ({r2},

1
2).

The steady-state probability of the shared memory request from two

processors is

ϕ2

∑
{Υ|({({r1},

1
2),({r2},

1
2)}⊆Υ} PT (Υ, s2) =

1
17 ·

1
4 = 1

68 .

• The common memory request of the first processor ({r1},
1
2) is only

possible from the states s2, s7.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of activities containing ({r1},
1
2).

The steady-state probability of the shared memory request from the first

processor is

ϕ2

∑
{Γ|({r1},

1
2)∈Γ} PT (Γ, s2) + ϕ7

∑
{Γ|({r1},

1
2)∈Γ} PT (Γ, s7) =

1
17

(
1
4 + 1

4

)
+ 3

17

(
3
8 + 1

8

)
= 2

17 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 581

({m2,z2},
1
2
)

({d2,y2},1)

✍

✍✌✎☞✉ e

({r2},
1
2
)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x

✍✌✎☞

✜

✢

✛

({m1,z1},
1
2
)

✍✌✎☞
({d1,y1},1)

✍✌✎☞x

{r1},
1
2
)

✍✌✎☞
❄

❄

✠

✍✌✎☞✉ e

✍✌✎☞

❄

✛

✚

✲

({x1},
1
2
)

❄

❄

❄

❄

❄

❄

({x2},
1
2
)

❄

❄

N1 N2

({a,x̂1,x̂2},
1
2
)

({ẑ1},
1
2
) ({ẑ2},

1
2
)

({ŷ1},1) ({ŷ2},1)

✍✌✎☞❄
��✠ ❅❅❘

✠✍✕✖

✻✻

N3

✍✌✎☞x

✍✌✎☞✉
❄

e

✍✌✎☞❄
❄
✍✌✎☞❄
❄

SHMPMBOX: The marked dtsi-boxes of two processors and shared memory

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 582

({a}, 1
8
)

✍✌✎☞✉
❄

e

N

({m1},
1
4
) ({m2},

1
4
)

✍✌✎☞ ✍✌✎☞
({d1},2)

✍✌✎☞x

({d2},2)

({r1},
1
2
)

✍✌✎☞
❄

❄

✠ ✍

✍✌✎☞✉ e✍✌✎☞✉ e

❅❅❘ ��✠

✍✌✎☞

❄

({r2},
1
2
)

✍✌✎☞
❄

❄

✍✌✎☞

❄

✍✌✎☞x✍✌✎☞x

✍✌✎☞

✍✌✎☞ ✍✌✎☞
✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

✂✂✌ ❇❇◆

❆❆❯ ✁✁☛

❄

✚
✚❂

❩
❩⑦

��✠ ❅❅❘

✠✍

✛

✚

✜

✢

✲ ✛

✕✖

✻✻

SHMBOX: The marked dtsi-box of the shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 583

The abstract system and its reduction

The static expression of the first processor is

F1 = [({x1},
1
2) ∗ (({r},

1
2); ({d, y1}, 1); ({m, z1},

1
2)) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1
2) ∗ (({r},

1
2); ({d, y2}, 1); ({m, z2},

1
2)) ∗ Stop].

The static expression of the shared memory is F3 =

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop].

The static expression of the abstract shared memory system with two processors:

F = (F1‖F2‖F3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2

rs z1 rs z2.

DR(F) resembles DR(E), and TS(F) is similar to TS(E).

SMC(F)≃SMC(E), thus, the average sojourn time vectors of F and E,

the TPMs and the steady-state PMFs for EDTMC(F) and EDTMC(E)

coincide.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 584

Performance indices

The first, second and third performance indices are the same for the standard and

abstract systems.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, 12) is only possible from

the states s2, s5, s7.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of activities containing ({r}, 12).

The steady-state probability of the shared memory request from a processor

is ϕ2

∑
{Γ|({r}, 12)∈Γ} PT (Γ, s2) + ϕ5

∑
{Γ|({r}, 12)∈Γ} PT (Γ, s5) +

ϕ7

∑
{Γ|({r}, 12)∈Γ} PT (Γ, s7) =

1
17

(
1
4 + 1

4 + 1
4

)
+ 3

17

(
3
8 + 1

8

)
+ 3

17

(
3
8 + 1

8

)
= 15

68 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 585

The quotient of the abstract system

DR(F)/Rss(F) = {K1,K2,K3,K4,K5,K6}, where

K1 = {s1} (the initial state),

K2 = {s2} (the system is activated and the memory is not requested),

K3 = {s3, s4} (the memory is requested by one processor),

K4 = {s5, s7} (the memory is allocated to a processor),

K5 = {s6} (the memory is requested by two processors),

K6 = {s8, s9} (the memory is allocated to a processor and the memory is

requested by another processor).

DRT (F)/Rss(F) = {K1,K2,K4,K6} and

DRV (F)/Rss(F) = {K3,K5}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 586

TS↔ss
(F)

✛
✚
✘
✙K6 K5

K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

{a}, 18

{m}, 18

{d},1

{r}, 38 {{r},{r}}, 14

{r}, 12{d},1

{m}, 14

{{r},{m}}, 18

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪❏
❏
❏
❏
❏
❏❫

✓
✓
✓
✓
✓
✓✼

☎✆✛

∅, 78

✞✝✲
∅, 38

☎✆✛

∅, 14

✞✝✲
∅, 34

SHMQTS: The quotient transition system of the abstract shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 587

SMC↔ss
(F)

✛
✚
✘
✙K6 K5

K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

1

1
5

1

3
5

1
3

2
31

1

1
5

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪❏
❏
❏
❏
❏
❏❫

✓
✓
✓
✓
✓
✓✼

8
5

4

8

4
3

0

0

SHMQSMC: The quotient underlying SMC of the abstract shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 588

The quotient average sojourn time vector of F :

SJ ′ =

(
8,

4

3
, 0,

8

5
, 0, 4

)
.

The quotient sojourn time variance vector of F :

V AR′ =

(
56,

4

9
, 0,

24

25
, 0, 12

)
.

The TPM for EDTMC↔ss
(F):

P′∗ =

0 1 0 0 0 0

0 0 2
3 0 1

3 0

0 0 0 1 0 0

0 1
5

1
5 0 0 3

5

0 0 0 0 0 1

0 0 1 0 0 0

.

The steady-state PMF for EDTMC↔ss
(F):

ψ′∗ =

(
0,

3

44
,
15

44
,
15

44
,
1

44
,
5

22

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 589

The steady-state PMF ψ′∗ weighted by SJ ′:

(
0,

1

11
, 0,

6

11
, 0,

10

11

)
.

We normalize the steady-state weighted PMF dividing it by

the sum of its components ψ′∗SJ ′T = 17
11 .

The steady-state PMF for SMC↔ss
(F):

ϕ′ =

(
0,

1

17
, 0,

6

17
, 0,

10

17

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 590

SHMQTP: Transient and steady-state probabilities for the quotient EDTMC of the

abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50

ψ′
1
∗[k] 1 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗[k] 0 0 0.0754 0.0859 0.0677 0.0641 0.0680 0.0691 0.0683 0.0680 0.0681 0

ψ′
3
∗[k] 0 0.4889 0.4633 0.3140 0.3108 0.3452 0.3482 0.3404 0.3392 0.3409 0.3413 0

ψ′
4
∗[k] 0 0.4667 0.1964 0.3031 0.3719 0.3517 0.3344 0.3380 0.3422 0.3417 0.3407 0

ψ′
5
∗[k] 0 0.0444 0.0323 0.0179 0.0202 0.0237 0.0234 0.0226 0.0226 0.0228 0.0228 0

ψ′
6
∗[k] 0 0 0.2325 0.2791 0.2294 0.2154 0.2260 0.2299 0.2277 0.2267 0.2271 0

æ

ææà

à

àà

à

à

àà

à

à
à
à

à
àà
à
àà
à
àààààààààààààààààààààààààààààààà

ìì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ì
ì
ì

ì
ìì
ì
ìì
ì
ìììììììììììììììììììììììì

òòò

ò

ò

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

òò

ò

ò
ò
ò

ò
òò
ò
òò
ò
òòòòòòòòòòòòòòòòòòòòòòò

ôô

ô

ôô

ô

ô
ôô
ô
ôôô

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ççç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

çç

ç

ç
ç

ç

ç
çç
ç
çç
ç
ççççççççççççççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ6
¢*@kD

ô Ψ5
¢*@kD

ò Ψ4
¢*@kD

ì Ψ3
¢*@kD

à Ψ2
¢*@kD

æ Ψ1
¢*@kD

SHMQTP: Transient probabilities alteration diagram for the quotient EDTMC of

the abstract shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 591

The steady-state PMF for EDTMC↔ss
(F):

ψ′∗ =

(
0,

3

44
,
15

44
,
15

44
,
1

44
,
5

22

)
.

The steady-state PMF ψ′∗ weighted by SJ ′:

(
0,

1

11
, 0,

6

11
, 0,

10

11

)
.

We normalize the steady-state weighted PMF dividing it by the sum of its

components

ψ′∗SJ ′T =
17

11
.

The steady-state PMF for SMC↔ss
(F):

ϕ′ =

(
0,

1

17
, 0,

6

17
, 0,

10

17

)
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 592

Otherwise, from TS↔ss
(F), we can construct the quotient DTMC of F ,

DTMC↔ss
(F), and calculate ϕ′ using it.

DTMC↔ss
(F)

✛
✚
✘
✙K6 K5

K3

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

1
8

1
8

1

3
8

1
4

1
21

1
4

1
8

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪❏
❏
❏
❏
❏
❏❫

✓
✓
✓
✓
✓
✓✼

☎✆✛

7
8

✞✝✲
3
8

☎✆✛

1
4

✞✝✲
3
4

SHMQDTMC: The quotient DTMC of the abstract shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 593

SHMTPQDTMC: Transient and steady-state probabilities for the quotient DTMC of

the abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ′
1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013

ψ′
2[k] 0 0.1161 0.0829 0.0657 0.0569 0.0524 0.0501 0.0489 0.0483 0.0479 0.0478 0.0476

ψ′
3[k] 0 0.0944 0.1353 0.1564 0.1672 0.1727 0.1756 0.1770 0.1778 0.1782 0.1784 0.1786

ψ′
4[k] 0 0.1162 0.1992 0.2414 0.2630 0.2740 0.2797 0.2826 0.2841 0.2849 0.2853 0.2857

ψ′
5[k] 0 0.0311 0.0220 0.0171 0.0146 0.0133 0.0126 0.0123 0.0121 0.0120 0.0120 0.0119

ψ′
6[k] 0 0.1294 0.2974 0.3845 0.4292 0.4521 0.4638 0.4698 0.4729 0.4745 0.4753 0.4762

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

à
ààà

ìì

ìì
ìì
ìì
ììì

ìììì
ìììììììììì

ìììììììììììììììììììììììììì

òòò

ò
ò
ò
ò
ò
òò
òò
òòò

òòòò
òòòòòòò

òòòòòòòòòòòòòòòòòòòòòòòòò

ôô
ôôôççç
ç

ç

ç

ç
ç
ç
ç
ç
ç
ç
çç
çç
çç
ççç

ççççç
çççççççççççççç

çççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ6
¢@kD

ô Ψ5
¢@kD

ò Ψ4
¢@kD

ì Ψ3
¢@kD

à Ψ2
¢@kD

æ Ψ1
¢@kD

SHMTPQDTMC: Transient probabilities alteration diagram for the quotient DTMC

of the abstract shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 594

The TPM for DTMC↔ss
(F):

P′ =

7
8

1
8 0 0 0 0

0 1
4

1
2 0 1

4 0

0 0 0 1 0 0

0 1
8

1
8

3
8 0 3

8

0 0 0 0 0 1

0 0 1
4 0 0 3

4

.

The steady-state PMF for DTMC↔ss
(F):

ψ′ =

(
0,

1

21
,
5

28
,
2

7
,
1

84
,
10

21

)
.

DRT (F)/Rss(F) = {K1,K2,K4,K6} and

DRV (F)/Rss(F) = {K3,K5}. Hence,

∑

K∈DRT (F)/Rss(F)

ψ′(K) = ψ′(K1) + ψ′(K2) + ψ′(K4) + ψ′(K6) =
17

21
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 595

By the “quotient” analogue of Proposition PMFSMC:

ϕ′(K1) = 0 · 2117 = 0,

ϕ′(K2) =
1
21 ·

21
17 = 1

17 ,

ϕ′(K3) = 0,

ϕ′(K4) =
2
7 ·

21
17 = 6

17 ,

ϕ′(K5) = 0,

ϕ′(K6) =
10
21 ·

21
17 = 10

17 .

The steady-state PMF for SMC↔ss
(F):

ϕ′ =

(
0,

1

17
, 0,

6

17
, 0,

10

17

)
.

This coincides with the result obtained with the use of ψ′∗ and SJ ′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 596

Alternatively, from TS↔ss
(F), we can construct RDTMC↔ss

(F)

and calculate ϕ′ using it.

DRT (F)/Rss(F) = {K1,K2,K4,K6} and

DRV (F)/Rss(F) = {K3,K5}.

We reorder the elements of DR(F)/Rss(F) by

moving the equivalence classes of vanishing states to the first positions:

K3,K5,K1,K2,K4,K6.

The reordered TPM for DTMC↔ss
(F):

P′
r =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 7
8

1
8 0 0

1
2

1
4 0 1

4 0 0

1
8 0 0 1

8
3
8

3
8

1
4 0 0 0 0 3

4

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 597

The result of the decomposing P′
r:

C′ =

 0 0

0 0

 , D′ =

 0 0 1 0

0 0 0 1

 , E′ =

0 0

1
2

1
4

1
8 0

1
4 0

,

F′ =

7
8

1
8 0 0

0 1
4 0 0

0 1
8

3
8

3
8

0 0 0 3
4

.

Since C′1 = 0, we have ∀k > 0, C′k = 0, hence, l = 0 and

there are no loops among vanishing states. Then

G′ =
l∑

k=0

C′l = C′0 = I.

The TPM for RDTMC↔ss
(F):

P′⋄ = F′+E′G′D′ = F′+E′ID′ = F′+E′D′ =

7
8

1
8 0 0

0 1
4

1
2

1
4

0 1
8

1
2

3
8

0 0 1
4

3
4

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 598

RDTMC↔ss
(F)

✛
✚
✘
✙K6

✛
✚
✘
✙K4

✛
✚
✘
✙K2

✛
✚
✘
✙K1

1
8

1
2

1
4

1
8

☎✆✛

7
8

✞✝✲
1
2

☎✆✛

1
4

✞✝✲
3
4

✻✻

❄

✲✛

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

1
4

3
8

SHMQRDTMC: The reduced quotient DTMC of the abstract shared memory

system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 599

SHMQRTP: Transient and steady-state probabilities for the reduced quotient

DTMC of the abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50

ψ′
1
⋄[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013

ψ′
2
⋄[k] 0 0.1244 0.0931 0.0764 0.0679 0.0635 0.0612 0.0600 0.0594 0.0591 0.0590 0.0588

ψ′
3
⋄[k] 0 0.1726 0.2614 0.3060 0.3289 0.3406 0.3466 0.3497 0.3513 0.3521 0.3525 0.3529

ψ′
4
⋄[k] 0 0.1901 0.3824 0.4826 0.5341 0.5605 0.5740 0.5810 0.5845 0.5863 0.5872 0.5882

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

à
ààà

ìì

ì

ì
ì
ì
ì
ì
ìì
ìì
ìì
ììì

ììììì
ìììììììììììììì

ììììììììììììììì

òò
ò

ò

ò

ò

ò

ò
ò
ò
ò
ò
ò
ò
òò
òò
òò
òòò

òòòòò
òòòòòòòòòòòòòò

òòòòòòòòò

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ò Ψ4
¢�@kD

ì Ψ3
¢�@kD

à Ψ2
¢�@kD

æ Ψ1
¢�@kD

SHMQRTP: Transient probabilities alteration diagram for the reduced quotient

DTMC of the abstract shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 600

The steady-state PMF for RDTMC↔ss
(F):

ψ′⋄ =

(
0,

1

17
,
6

17
,
10

17

)
.

Note that ψ′⋄ = (ψ′⋄(K1), ψ
′⋄(K2), ψ

′⋄(K4), ψ
′⋄(K6)).

By the “quotient” analogue of Proposition PMFSMCT:

ϕ′(K1) = 0,

ϕ′(K2) =
1
17 ,

ϕ′(K3) = 0,

ϕ′(K4) =
6
17 ,

ϕ′(K5) = 0,

ϕ′(K6) =
10
17 .

The steady-state PMF for SMC↔ss
(F):

ϕ′ =

(
0,

1

17
, 0,

6

17
, 0,

10

17

)
.

This coincides with the result obtained with the use of ψ′∗ and SJ ′.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 601

Performance indices

• The average recurrence time in the stateK2, where no processor requests

the memory, the average system run-through, is 1
ϕ′

2
= 17

1 = 17.

• The common memory is available only in the statesK2,K3,K5.

The steady-state probability that the memory is available is

ϕ′
2 + ϕ′

3 + ϕ′
5 = 1

17 + 0 + 0 = 1
17 .

The steady-state probability that the memory is used (i.e. not available),

the shared memory utilization, is 1− 1
17 = 16

17 .

• After activation of the system, we leave the stateK1 for all, and the common

memory is either requested or allocated in every remaining state, with

exception of K2.

The rate with which the necessity of shared memory emerges coincides with

the rate of leaving K2, calculated as
ϕ′

2

SJ′
2
= 1

17 ·
3
4 = 3

68 .

• The parallel common memory request of two processors {{r}, {r}} is only

possible from the stateK2.

The request probability in this state is the sum of the execution probabilities

for all multisets of multiactions containing {r} twice.

The steady-state probability of the shared memory request from two

processors is

ϕ′
2

∑
{A,K|{{r},{r}}⊆A, K2

A
→K}

PMA(K2,K) =
1
17 ·

1
4 = 1

68 .

• The common memory request of a processor {r} is only possible from the

statesK2,K4.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of multiactions containing {r}.

The steady-state probability of the shared memory request from a processor

is ϕ′
2

∑
{A,K|{r}∈A, K2

A
→K}

PMA(K2,K) +

ϕ′
4

∑
{A,K|{r}∈A, K4

A
→K}

PMA(K4,K) =

1
17

(
1
2 + 1

4

)
+ 6

17

(
3
8 + 1

8

)
= 15

68 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 602

The performance indices are the same for the complete and quotient abstract

shared memory systems.

The coincidence of the first and second performance indices illustrates

Proposition STPROB.

The coincidence of the third performance index illustrates Proposition STPROB

and Proposition SJAVVA.

The coincidence of the fourth performance index is by Theorem STTRAC:

one should apply its result to the derived step trace {{r}, {r}} of F and itself.

The coincidence of the fifth performance index is by Theorem STTRAC:

one should apply its result to the derived step traces

{{r}}, {{r}, {r}}, {{r}, {m}} of F and itself,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 603

The generalized system

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ)))∗

Stop].

The static expression of the generalized shared memory system with two

processors is

K = (K1‖K2‖K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

Interpretation of the states

DRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}.

s̃1: the initial state,

s̃2: the system is activated and the memory is not requested,

s̃3: the memory is requested by the first processor,

s̃4: the memory is requested by the second processor,

s̃5: the memory is allocated to the first processor,

s̃6: the memory is requested by two processors,

s̃7: the memory is allocated to the second processor,

s̃8: the memory is allocated to the first processor and the memory is requested by

the second processor,

s̃9: the memory is allocated to the second processor and the memory is

requested by the first processor.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 604

✗
✖
✔
✕s̃1

✗
✖
✔
✕s̃2

✗
✖
✔
✕s̃5

✗
✖
✔
✕s̃8

✗
✖
✔
✕s̃7

✗
✖
✔
✕s̃9

❄

❄

❄

❄

❄

❄

TS(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�
�✒

✲ ✛

✛ ✲

({a},ρ3),ρ3

({r1},ρ),

ρ(1−ρ)

({r2},ρ),

ρ(1−ρ)

{({r1},ρ),({r2},ρ)},ρ2

({d1},2l),1 ({d2},2l),1

({r2},ρ),

ρ(1−ρ2)

({r1},ρ),

ρ(1−ρ2)

{({r1},ρ),

({m2},ρ2)},ρ3

{({r2},ρ),

{m1},ρ2)},ρ3

({m1},ρ2),

ρ2(1−ρ)

({m2},ρ2),

ρ2(1−ρ)

({d1},2l), 1
2

({d2},2l), 1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

❅
❅

❅
❅

❅
❅■

PPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

✲✄✂

✲✄✂ �✁✛

�✁✛

✝✆✻

✝✆✻∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(1−ρ)2

SHMGTS: The transition system of the generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 605

✗
✖
✔
✕s̃1

✗
✖
✔
✕s̃2

✗
✖
✔
✕s̃5

✗
✖
✔
✕s̃8

✗
✖
✔
✕s̃7

✗
✖
✔
✕s̃9

❄

❄

❄

❄

❄

❄

SMC(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�

�
�
��✒

✲ ✛

✛ ✲

1
1−ρ
2−ρ

1−ρ
2−ρ

ρ
2−ρ

1 1

1−ρ2

1+ρ−ρ2
1−ρ2

1+ρ−ρ2

ρ2

1+ρ−ρ2
ρ2

1+ρ−ρ2

ρ(1−ρ)
1+ρ−ρ2

ρ(1−ρ)
1+ρ−ρ2

1
2

1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

1 1

❅
❅

❅
❅

❅❅■

PPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

0

1
ρ(1+ρ−ρ2)

1
ρ2

0

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ3

1
ρ(2−ρ)

0

SHMGSMC: The underlying SMC of the generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 606

The average sojourn time vector of K :

S̃J =

(
1

ρ3
,

1

ρ(2− ρ)
, 0, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ(1 + ρ− ρ2)
,
1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K :

Ṽ AR =
(

1−ρ3

ρ6 , (1−ρ)2

ρ2(2−ρ)2 , 0, 0,
(1−ρ)2(1+ρ)
ρ2(1+ρ−ρ2)2 , 0,

(1−ρ)2(1+ρ)
ρ2(1+ρ−ρ2)2 ,

1−ρ2

ρ4 , 1−ρ
2

ρ4

)
.

The TPM for EDTMC(K):

P̃∗ =

0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 607

The steady-state PMF for EDTMC(K):

ψ̃∗ = 1
2(6+3ρ−9ρ2+2ρ3) (0, 2ρ(2− 3ρ− ρ2), 2 + ρ− 3ρ2 + ρ3,

2 + ρ− 3ρ2 + ρ3, 2 + ρ− 3ρ2 + ρ3, 2ρ2(1− ρ), 2 + ρ− 3ρ2 + ρ3,

2− ρ− ρ2, 2− ρ− ρ2).

The steady-state PMF ψ̃∗ weighted by S̃J :

1
2ρ2(6+3ρ−9ρ2+2ρ3) (0, 2ρ

2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ),

2− ρ− ρ2, 2− ρ− ρ2).

We normalize the steady-state weighted PMF dividing it by the sum of its

components

ψ̃∗S̃J
T
=

2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

The steady-state PMF for SMC(K):

ϕ̃ = 1
2(2+ρ−ρ2−ρ3) (0, 2ρ

2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ),

2− ρ− ρ2, 2− ρ− ρ2).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 608

Otherwise, from TS(K), we can construct DTMC(K)

and calculate ϕ̃ using it.

The TPM for DTMC(K): P̃ =

1 − ρ3 ρ3 0 0 0 0 0 0 0

0 (1 − ρ)2 ρ(1 − ρ) ρ(1 − ρ) 0 ρ2 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 ρ2(1 − ρ) 0 ρ3 (1 − ρ)(1 − ρ2) 0 0 ρ(1 − ρ2) 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ2(1 − ρ) ρ3 0 0 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 0 0 ρ2 0 0 0 1 − ρ2 0

0 0 ρ2 0 0 0 0 0 1 − ρ2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 609

✗
✖
✔
✕s̃1

✗
✖
✔
✕s̃2

✗
✖
✔
✕s̃5

✗
✖
✔
✕s̃8

✗
✖
✔
✕s̃7

✗
✖
✔
✕s̃9

❄

❄

❄

❄

❄

❄

DTMC(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�
�

�
�
�✒

✲ ✛

✛ ✲

ρ3

ρ(1−ρ) ρ(1−ρ)

ρ2

1 1

ρ(1−ρ2) ρ(1−ρ2)

ρ3 ρ3

ρ2(1−ρ) ρ2(1−ρ)

1
2

1
2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

ρ2 ρ2

❅
❅

❅
❅

❅
❅■

PPPPPPPPPPPPPPPPP✐
s̃3 s̃4

s̃6

✲✄✂

✲✄✂ �✁✛

�✁✛

✝✆✻

✝✆✻(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

1−ρ3

(1−ρ)2

SHMGDTMC: The DTMC of the generalized shared memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 610

The steady-state PMF for DTMC(K):

ψ̃ = 1
2(2+ρ+ρ2−2ρ4) (0, 2ρ

2(1− ρ), ρ2(2 + ρ− 3ρ2 + ρ3),

ρ2(2 + ρ− 3ρ2 + ρ3), ρ(2− ρ), 2ρ4(1− ρ), ρ(2− ρ),

2− ρ− ρ2, 2− ρ− ρ2).

Remember that DRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} and

DRV (K) = {s̃3, s̃4, s̃6}. Hence,

∑
s̃∈DRT (K) ψ̃(s̃) =

ψ̃(s̃1) + ψ̃(s̃2) + ψ̃(s̃5) + ψ̃(s̃7) + ψ̃(s̃8) + ψ̃(s̃9) =
2+ρ−ρ2−ρ3

2+ρ+ρ2−2ρ4 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 611

By Proposition PMFSMC:

ϕ̃(s̃1) = 0 · 2+ρ+ρ
2−2ρ4

2+ρ−ρ2−ρ3 = 0,

ϕ̃(s̃2) =
ρ2(1−ρ)

2+ρ+ρ2−2ρ4 ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 ,

ϕ̃(s̃3) = 0,

ϕ̃(s̃4) = 0,

ϕ̃(s̃5) =
ρ(2−ρ)

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ(2−ρ)
2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃6) = 0,

ϕ̃(s̃7) =
ρ(2−ρ)

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ(2−ρ)
2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃8) =
2−ρ−ρ2

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃9) =
2−ρ−ρ2

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3) .

The steady-state PMF for SMC(K):

ϕ̃ = 1
2(2+ρ−ρ2−ρ3) (0, 2ρ

2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ),

2− ρ− ρ2, 2− ρ− ρ2).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 612

Alternatively, from TS(K), we can construct the reduced DTMC of K ,

RDTMC(K), and calculate ϕ̃ using it.

DRT (K) = {s̃1, s̃2, s̃5, s̃7, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}.

We reorder the elements of DR(K) by

moving the equivalence classes of vanishing states to the first positions:

s̃3, s̃4, s̃6, s̃1, s̃2, s̃5, s̃7, s̃8, s̃9.

The reordered TPM for DTMC(K) P̃r =

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 1 − ρ3 ρ3 0 0 0 0

ρ(1 − ρ) ρ(1 − ρ) ρ2 0 (1 − ρ)2 0 0 0 0

0 ρ3 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2) 0

ρ3 0 0 0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 ρ2 0 0 0 0 0 1 − ρ2 0

ρ2 0 0 0 0 0 0 0 1 − ρ2

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 613

The result of the decomposing P̃r:

C̃ =

0 0 0

0 0 0

0 0 0

 , D̃ =

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1
2

1
2

 , Ẽ =

0 0 0

ρ(1 − ρ) ρ(1 − ρ) ρ2

0 ρ3 0

ρ3 0 0

0 ρ2 0

ρ2 0 0

,

F̃ =

1 − ρ3 ρ3 0 0 0 0

0 (1 − ρ)2 0 0 0 0

0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) 0 ρ(1− ρ2) 0

0 ρ2(1 − ρ) 0 (1 − ρ)(1 − ρ2) 0 ρ(1 − ρ2)

0 0 0 0 1 − ρ2 0

0 0 0 0 0 1 − ρ2

.

Since C̃1 = 0, we have ∀k > 0, C̃k = 0, hence, l = 0 and there are no loops

among vanishing states. Then

G̃ =

l∑

k=0

C̃k = C̃0 = I.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 614

The TPM for RDTMC(K):

P̃
⋄ = F̃+ ẼG̃D̃ = F̃+ ẼID̃ = F̃+ ẼD̃ =

1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 ρ(1− ρ) ρ(1− ρ) ρ2

2
ρ2

2

0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ3 ρ(1− ρ2) 0

0 ρ2(1− ρ) ρ3 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)

0 0 0 ρ2 1− ρ2 0

0 0 ρ2 0 0 1− ρ2

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 615

✗
✖
✔
✕s̃1

✗
✖
✔
✕s̃2

✗
✖
✔
✕s̃5

✗
✖
✔
✕s̃8

✗
✖
✔
✕s̃7

✗
✖
✔
✕s̃9

❄❄ ❄

RDTMC(K)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶

�
�

�
�

�
�✒�
�

�
�

�
��✠✛ ✲

ρ3

ρ(1−ρ) ρ(1−ρ)

ρ(1−ρ2) ρ(1−ρ2)ρ2(1−ρ) ρ2(1−ρ)

ρ2 ρ2

ρ2

2
ρ2

2

❅
❅

❅
❅

❅
❅■❅
❅
❅

❅
❅

❅❅❘
PPPPPPPPPPPPPPPPP✐

✲✄✂

✲✄✂

�✁✛

�✁✛

✝✆✻

✝✆✻1−ρ2

(1−ρ)(1−ρ2)

1−ρ2

(1−ρ)(1−ρ2)

1−ρ3

(1−ρ)2

✓ ✏
❄

✬ ✩
❄ ρ3 ρ3

SHMGRDTMC: The reduced DTMC of the generalized shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 616

The steady-state PMF for RDTMC(K):

ψ̃⋄ = 1
2(2+ρ−ρ2−ρ3) (0, 2ρ

2(1− ρ), ρ(2− ρ), ρ(2− ρ),

2− ρ− ρ2, 2− ρ− ρ2).

Note that ψ̃⋄ = (ψ̃⋄(s̃1), ψ̃
⋄(s̃2), ψ̃

⋄(s̃5), ψ̃
⋄(s̃7), ψ̃

⋄(s̃8), ψ̃
⋄(s̃9)).

By Proposition PMFSMCT:

ϕ̃(s̃1) = 0, ϕ̃(s̃2) =
ρ2(1−ρ)

2+ρ−ρ2−ρ3
, ϕ̃(s̃5) =

ρ(2−ρ)

2(2+ρ−ρ2−ρ3)
,

ϕ̃(s̃7) =
ρ(2−ρ)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃8) = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃9) = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3)
.

The steady-state PMF for SMC(K):

ϕ̃ = 1
2(2+ρ−ρ2−ρ3) (0, 2ρ

2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ),

2− ρ− ρ2, 2− ρ− ρ2).

This coincides with the result obtained with the use of ψ̃∗ and S̃J .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 617

Performance indices

• The average recurrence time in the state s̃2, where no processor requests the

memory, the average system run-through, is 1
ϕ̃2

= 2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6.

The steady-state probability that the memory is available is

ϕ̃2 + ϕ̃3 + ϕ̃4 + ϕ̃6 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0 + 0 + 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 .

The steady-state probability that the memory is used (i.e. not available),

the shared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state s̃1 for all, and the common

memory is either requested or allocated in every remaining state, with

exception of s̃2.

The rate with which the necessity of shared memory emerges coincides with

the rate of leaving s̃2, calculated as
ϕ̃2

S̃J2
= ρ2(1−ρ)

2+ρ−ρ2−ρ3 ·
ρ(2−ρ)

1 = ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

• The parallel common memory request of two processors

{({r1}, ρ), ({r2}, ρ)} is only possible from the state s̃2.

The request probability in this state is the sum of the execution probabilities

for all multisets of activities containing both ({r1}, ρ) and ({r2}, ρ).

The steady-state probability of the shared memory request from two

processors is ϕ̃2

∑
{Υ|({({r1},ρ),({r2},ρ)}⊆Υ} PT (Υ, s̃2) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 ρ

2 = ρ4(1−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of the first processor ({r1}, ρ) is only possible

from the states s̃2, s̃7.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of activities containing ({r1}, ρ).

The steady-state probability of the shared memory request from the first

processor is ϕ̃2

∑
{Γ|({r1},ρ)∈Γ} PT (Γ, s̃2) +

ϕ̃7

∑
{Γ|({r1},ρ)∈Γ} PT (Γ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ) + ρ2) +

ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1− ρ

2) + ρ3) = ρ2(2+ρ−2ρ2)
2(2+ρ−ρ2−ρ3) .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 618

The abstract generalized system and its reduction

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, l); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, l); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 =

[({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with two

processors is

L = (L1‖L2‖L3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1

rs y2 rs z1 rs z2.

DR(L) resembles DR(K), and TS(L) is similar to TS(K).

SMC(L)≃SMC(K), thus, the average sojourn time vectors of L and K ,

the TPMs and the steady-state PMFs for EDTMC(L) and EDTMC(K)

coincide.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 619

Performance indices

The first, second and third performance indices are the same for the generalized

system and its abstract modification.

The following performance index: non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, ρ) is only possible from

the states s̃2, s̃5, s̃7.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of activities containing ({r}, ρ).

The steady-state probability of the shared memory request from a processor

is ϕ̃2

∑
{Γ|({r},ρ)∈Γ} PT (Γ, s̃2) + ϕ̃5

∑
{Γ|({r},ρ)∈Γ} PT (Γ, s̃5) +

ϕ̃7

∑
{Γ|({r},ρ)∈Γ} PT (Γ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ) + ρ(1− ρ) + ρ2) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1− ρ
2) +

ρ3) + ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1− ρ

2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 620

The quotient of the abstract generalized system

DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where

K̃1 = {s̃1} (the initial state),

K̃2 = {s̃2} (the system is activated and the memory is not requested),

K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor),

K̃5 = {s̃6} (the memory is requested by two processors),

K̃6 = {s̃8, s̃9} (the memory is allocated to a processor and the memory is

requested by another processor).

DRT (L)/Rss(L)
= {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L)

= {K̃3, K̃5}.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 621

TS↔ss
(L)

✛
✚
✘
✙K̃6 K̃5

K̃3

✛
✚
✘
✙K̃4

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃1

{a},ρ3

{m},ρ2(1−ρ)

{d},1

{r},ρ(1−ρ2) {{r},{r}},ρ2

{r},2ρ(1−ρ){d},1

{m},ρ2

{{r},{m}},ρ3

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪❏
❏
❏
❏
❏
❏❫

✓
✓
✓
✓
✓
✓✼

☎✆✛

∅,1−ρ3

✞✝✲
∅,

(1−ρ)(1−ρ2)

☎✆✛

∅,
(1−ρ)2

✞✝✲
∅,1−ρ2

SHMGQTS: The quotient transition system of the abstract generalized shared

memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 622

SMC↔ss
(L)

✛
✚
✘
✙K̃6 K̃5

K̃3

✛
✚
✘
✙K̃4

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃1

1

ρ(1−ρ)
1+ρ−ρ2

1

1−ρ2

1+ρ−ρ2
ρ

2−ρ

2(1−ρ)
2−ρ1

1

ρ2

1+ρ−ρ2

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪❏
❏
❏
❏
❏
❏❫

✓
✓
✓
✓
✓
✓✼

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ3

1
ρ(2−ρ)

0

0

SHMGQSMC: The quotient underlying SMC of the abstract generalized shared

memory system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 623

The quotient average sojourn time vector of F :

S̃J
′
=

(
1

ρ3
,

1

ρ(2− ρ)
, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ2

)
.

The quotient sojourn time variance vector of F :

Ṽ AR
′
=

(
1− ρ3

ρ6
,

(1− ρ)2

ρ2(2− ρ)2
, 0,

(1− ρ)2(1 + ρ)

ρ2(1 + ρ− ρ2)2
, 0,

1− ρ2

ρ4

)
.

The TPM for EDTMC↔ss
(L):

P̃′∗ =

0 1 0 0 0 0

0 0 2(1−ρ)
2−ρ 0 ρ

2−ρ 0

0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1

0 0 1 0 0 0

.

The steady-state PMF for EDTMC↔ss
(L):

ψ̃′∗ = 1
6+3ρ−9ρ2+2ρ3 (0, ρ(2− 3ρ+ ρ2), 2 + ρ− 3ρ2 + ρ3,

2 + ρ− 3ρ2 + ρ3, ρ2(1− ρ), 2− ρ− ρ2).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 624

The steady-state PMF ψ̃′∗ weighted by S̃J
′
:

1

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

We normalize the steady-state weighted PMF dividing it by the sum of its

components

ψ̃′∗S̃J
′T

=
2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

The steady-state PMF for SMC↔ss
(L):

ϕ̃′ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 625

Otherwise, from TS↔ss
(L), we can construct the quotient DTMC of L,

DTMC↔ss
(L), and calculate ϕ̃′ using it.

DTMC↔ss
(L)

✛
✚
✘
✙K̃6 K̃5

K̃3

✛
✚
✘
✙K̃4

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃1

ρ3

ρ2(1− ρ)

1

ρ(1− ρ2) ρ2

2ρ(1− ρ)1

ρ2

ρ3

❄

❄❄

✲

✛

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪❏
❏
❏
❏
❏
❏❫

✓
✓
✓
✓
✓
✓✼

☎✆✛

1− ρ3

✞✝✲
(1− ρ)(1− ρ2)

☎✆✛

(1− ρ)2

✞✝✲
1− ρ2

SHMGQDTMC: The quotient DTMC of the abstract generalized shared memory

system

(parallel executions of activities and the exclusively reachable states are marked

with orange)

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 626

The TPM for DTMC↔ss
(L):

P̃′ =

1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 2ρ(1− ρ) 0 ρ2 0

0 0 0 1 0 0

0 ρ2(1− ρ) ρ3 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)

0 0 0 0 0 1

0 0 ρ2 0 0 1− ρ2

.

The steady-state PMF for DTMC↔ss
(L):

ψ̃′ = 1
2+ρ+ρ2−2ρ4 (0, ρ

2(1− ρ), ρ2(2 + ρ− 3ρ2 + ρ3), ρ(2− ρ),

ρ4(1− ρ), 2− ρ− ρ2).

DRT (L)/Rss(L)
= {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L)

= {K̃3, K̃5}.

Hence,

∑
K̃∈DRT (L)/Rss(L)

ψ̃′(K̃) =

ψ̃′(K̃1) + ψ̃′(K̃2) + ψ̃′(K̃4) + ψ̃′(K̃6) =
2+ρ−ρ2−ρ3

2+ρ+ρ2−2ρ4 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 627

By the “quotient” analogue of Proposition PMFSMC:

ϕ̃′(K̃1) = 0 · 2+ρ+ρ
2−2ρ4

2+ρ−ρ2−ρ3 = 0,

ϕ̃′(K̃2) =
ρ2(1−ρ)

2+ρ+ρ2−2ρ4 ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 ,

ϕ̃′(K̃3) = 0,

ϕ̃′(K̃4) =
ρ(2−ρ)

2+ρ+ρ2−2ρ4 ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = ρ(2−ρ)
2+ρ−ρ2−ρ3 ,

ϕ̃′(K̃5) = 0,

ϕ̃′(K̃6) =
2−ρ−ρ2

2+ρ+ρ2−2ρ4 ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 2−ρ−ρ2

2+ρ−ρ2−ρ3 .

The steady-state PMF for SMC↔ss
(L):

ϕ̃′ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 628

Alternatively, from TS↔ss
(L), we can construct RDTMC↔ss

(L) and

calculate ϕ̃′ using it.

DRT (L)/Rss(L)
= {K̃1, K̃2, K̃4, K̃6} and

DRV (L)/Rss(L)
= {K̃3, K̃5}.

We reorder the elements of DR(L)/Rss(L)
by

moving the equivalence classes of vanishing states to the first positions:

K̃3, K̃5, K̃1, K̃2, K̃4, K̃6.

The reordered TPM for DTMC↔ss
(L):

P̃′
r =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1− ρ3 ρ3 0 0

2ρ(1− ρ) ρ2 0 (1− ρ)2 0 0

ρ3 0 0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)

ρ2 0 0 0 0 1− ρ2

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 629

The result of the decomposing P̃′
r:

C̃′ =

 0 0

0 0

 , D̃′ =

 0 0 1 0

0 0 0 1

 , Ẽ′ =

0 0

2ρ(1− ρ) ρ2

ρ3 0

ρ2 0

,

F̃′ =

1− ρ3 ρ3 0 0

0 (1− ρ)2 0 0

0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)

0 0 0 1− ρ2

.

Since C̃′1 = 0, we have ∀k > 0, C̃′k = 0, hence, l = 0 and

there are no loops among vanishing states. Then

G̃′ =
l∑

k=0

C̃′l = C̃′0 = I.

The TPM for RDTMC↔ss
(L):

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′ID̃′ = F̃′ + Ẽ′D̃′ =

1− ρ3 ρ3 0 0

0 (1− ρ)2 2ρ(1− ρ) ρ2

0 ρ2(1− ρ) 1− ρ− ρ2 + 2ρ3 ρ(1− ρ2)

0 0 ρ2 1− ρ2

.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 630

RDTMC↔ss
(L)

✛
✚
✘
✙K̃6

✛
✚
✘
✙K̃4

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃1

ρ2(1− ρ)

2ρ(1− ρ)

ρ2 ρ3

☎✆✛

1− ρ3

✞✝✲
1− ρ−
ρ2 + 2ρ3

☎✆✛

(1− ρ)2

✞✝✲
1− ρ2

✻✻

❄

✲✛

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓✴

ρ2ρ(1− ρ2)

SHMGQRDTMC: The reduced quotient DTMC of the abstract generalized shared

memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 631

The steady-state PMF for RDTMC↔ss
(L):

ψ̃′⋄ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), ρ(2− ρ), 2− ρ− ρ2).

Note that ψ̃′⋄ = (ψ̃′⋄(K̃1), ψ̃
′⋄(K̃2), ψ̃

′⋄(K̃4), ψ̃
′⋄(K̃6)).

By the “quotient” analogue of Proposition PMFSMCT:

ϕ̃′(K̃1) = 0,

ϕ̃′(K̃2) =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 ,

ϕ̃′(K̃3) = 0,

ϕ̃′(K̃4) =
ρ(2−ρ)

2+ρ−ρ2−ρ3 ,

ϕ̃′(K̃5) = 0,

ϕ̃′(K̃6) =
2−ρ−ρ2

2+ρ−ρ2−ρ3 .

The steady-state PMF for SMC↔ss
(L):

ϕ̃′ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 632

Performance indices

• The average recurrence time in the state K̃2, where no processor requests

the memory,

the average system run-through, is 1
ϕ̃′

2
= 2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states K̃2, K̃3, K̃5.

The steady-state probability that the memory is available is

ϕ̃′
2 + ϕ̃′

3 + ϕ̃′
5 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 + 0 + 0 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 .

The steady-state probability that the memory is used (i.e. not available),

the shared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state K̃1 for all, and the common

memory is either requested or allocated in every remaining state, with

exception of K̃2.

The rate with which the necessity of shared memory emerges coincides with

the rate of leaving K̃2, calculated as
ϕ̃′

2

S̃J
′

2

= ρ2(1−ρ)
2+ρ−ρ2−ρ3 ·

ρ(2−ρ)
1 = ρ3(1−ρ)(2−ρ)

2+ρ−ρ2−ρ3 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 633

• The parallel common memory request of two processors {{r}, {r}} is only

possible from the state K̃2.

The request probability in this state is the sum of the execution probabilities

for all multisets of multiactions containing {r} twice.

The steady-state probability of the shared memory request from two

processors is ϕ̃′
2

∑
{A,K̃|{{r},{r}}⊆A, K̃2

A
→K̃}

PMA(K̃2, K̃) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 ρ

2 = ρ4(1−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of a processor {r} is only possible from the

states K̃2, K̃4.

The request probability in each of the states is the sum of the execution

probabilities for all multisets of multiactions containing {r}.

The steady-state probability of the shared memory request from a processor

is ϕ̃′
2

∑
{A,K̃|{r}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) +

ϕ̃′
4

∑
{A,K̃|{r}∈A, K̃4

A
→K̃}

PMA(K̃4, K̃) =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 (2ρ(1− ρ) +

ρ2) + ρ(2−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ

2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 634

The performance indices are the same for the complete and quotient abstract

generalized shared memory systems.

The coincidence of the first and second performance indices illustrates

Proposition STPROB.

The coincidence of the third performance index illustrates Proposition STPROB

and Proposition SJAVVA.

The coincidence of the fourth performance index is by Theorem STTRAC:

one should apply its result to the derived step trace {{r}, {r}} of L and itself.

The coincidence of the fifth performance index is by Theorem STTRAC:

one should apply its result to the derived step traces

{{r}}, {{r}, {r}}, {{r}, {m}} of L and itself,

and sum the left and right parts of the three resulting equalities.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 635

Effect of quantitative changes of ρ to performance of the quotient abstract

generalized shared memory system in its steady state

ρ ∈ (0; 1) is the probability of every multiaction of the system.

The closer is ρ to 0, the less is the probability to execute some activities at every

discrete time step: the system will most probably stand idle.

The closer is ρ to 1, the greater is the probability to execute some activities at

every discrete time step: the system will most probably operate.

ϕ̃′
1 = ϕ̃′

3 = ϕ̃′
5 = 0 are constants, and they do not depend on ρ.

ϕ̃′
2 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 , ϕ̃
′
4 = ρ(2−ρ)

2+ρ−ρ2−ρ3 , ϕ̃
′
6 = 2−ρ−ρ2

2+ρ−ρ2−ρ3 depend on ρ.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 636

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

j
�

6
¢

j
�

4
¢

j
�

2
¢

SHMGQSSP: Steady-state probabilities ϕ̃′
2, ϕ̃

′
4, ϕ̃

′
6 as functions of the

parameter ρ

ϕ̃′
2, ϕ̃

′
4 tend to 0 and ϕ̃′

6 tends to 1 when ρ approaches 0.

When ρ is closer to 0, the probability that the memory is allocated to a processor

and the memory is requested by another processor increases:

more unsatisfied memory requests.

ϕ̃′
2, ϕ̃

′
6 tend to 0 and ϕ̃′

4 tends to 1 when ρ approaches 1.

When ρ is closer to 1, the probability that the memory is allocated to a processor

(and not requested by another one) increases: less unsatisfied memory requests.

The maximal value 0.0797 of ϕ̃′
2 is reached when ρ ≈ 0.7433.

In this case, the probability that the system is activated and the memory is not

requested is maximal: maximal shared memory availability is about 8%.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 637

0.2 0.4 0.6 0.8 1.0
Ρ

50

100

150

200

1

j
�

2
¢

SHMGQART: Average system run-through 1
ϕ̃′

2
as a function of the parameter ρ

The average system run-through is 1
ϕ̃′

2
.

It tends to∞ when ρ approaches 0 or 1.

The minimal value 12.5516 of 1
ϕ̃′

2
is reached when ρ ≈ 0.7433.

To speed up the system’s operation: take the parameter ρ closer to 0.7433.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 638

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

j
�

2
¢
S
�

2
¢
+j
�

4
¢
S
�

4
¢

j
�

2
¢
P
�

25
¢

j
�

2
¢

SJ
�

2
¢

1-j
�

2
¢
-j
�

3
¢
-j
�

5
¢

SHMGQIND: Some performance indices as functions of the parameter ρ

The shared memory utilization is 1− ϕ̃′
2 − ϕ̃

′
3 − ϕ̃

′
5.

It tends to 1 when ρ approaches 0 and when ρ approaches 1.

The minimal value 0.9203 of the utilization is reached when ρ ≈ 0.7433.

The minimal shared memory utilization is about 92%.

To increase the utilization: take the parameter ρ closer to 0 or 1.

The rate with which the necessity of shared memory emerges is
ϕ̃′

2

S̃J
′

2

.

It tends to 0 when ρ approaches 0 and when ρ approaches 1.

The maximal value 0.0751 of the rate is reached when ρ ≈ 0.7743.

The maximal rate with which the necessity of shared memory emerges is about
1
13 .

To decrease the rate: take the parameter ρ closer to 0 or 1.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 639

The steady-state probability of the shared memory request from two processors is

ϕ̃′
2P̃

′
25, where

P̃ ′
25 =

∑
{A,K̃|{{r},{r}}⊆A, K̃2

A
→K̃}

PMA(K̃2, K̃) = PM(K̃2, K̃5).

It tends to 0 when ρ approaches 0 and when ρ approaches 1.

The maximal value 0.0517 of the rate is reached when ρ ≈ 0.8484.

To decrease the probability: take the parameter ρ closer to 0 or 1.

The steady-state probability of the shared memory request from a processor is

ϕ̃′
2Σ̃

′
2 + ϕ̃′

4Σ̃
′
4, where

Σ̃′
i =

∑
{A,K̃|{r}∈A, K̃i

A
→K̃}

PMA(K̃i, K̃), i ∈ {2, 4}.

It tends to 0 when ρ approaches 0 and it tends to 1 when ρ approaches 1.

To increase the probability: take the parameter ρ closer to 1.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 640

Overview and open questions

Concurrency interpretation

Interleaving transition relation

Let G be a dynamic expression, s ∈ DR(G), Υ ∈ Exec(s) and |Υ| ≤ 1.

The probability to execute the multiset of activities Υ in s, when only zero-element

steps (i.e. empty loops) or one-element steps are allowed:

pt(Υ, s) =
PT (Υ, s)∑

{Ξ||Ξ|≤1} PT (Ξ, s)
.

✗
✖
✔
✕s̃1

✗
✖
✔
✕s̃2

✗
✖
✔
✕s̃5

✗
✖
✔
✕s̃8

✗
✖
✔
✕s̃7

✗
✖
✔
✕s̃9

❄❄

❄

❄

❄

ts(K)

�
�
�

�
�
�✒

✲ ✛

({a},ρ3),ρ3

({r1},ρ),
ρ

1+ρ
({r2},ρ),

ρ
1+ρ({d1},2l),1 ({d2},2l),1

({r2},ρ),
ρ(1+ρ)

1+ρ+ρ2
({r1},ρ),

ρ(1+ρ)

1+ρ+ρ2

({m1},ρ2),

ρ2

1+ρ+ρ2

({m2},ρ2),

ρ2

1+ρ+ρ2

✦✦✦✦✦✦✦✦✦✦✦✦✦✡
✡
✡
✡
✡
✡
✡
✡✣

❛❛❛❛❛❛❛❛❛❛❛❛❛❏
❏

❏
❏

❏
❏

❏
❏❪

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

❅
❅

❅
❅

❅
❅■

s̃3 s̃4

✲✄✂

✲✄✂ �✁✛

�✁✛

✝✆✻

✝✆✻∅,
1−ρ2

1+ρ+ρ2
∅,

1−ρ2

1+ρ+ρ2

∅,1−ρ2 ∅,1−ρ2

∅,1−ρ3

∅,
1−ρ
1+ρ

SHMGTSI: The interleaving transition system of the generalized shared memory

system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 641

ts↔is
(L)

✛
✚
✘
✙K̃6

K̃3

✛
✚
✘
✙K̃4

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃1

{a},ρ3

{m}, ρ2

1+ρ+ρ2

{r}, ρ(1+ρ)
1+ρ+ρ2

{r}, 2ρ
1+ρ{d},1

{m},ρ2

✻

❄

✲

✡
✡

✡
✡

✡
✡✢❏

❏
❏

❏
❏

❏❪

✓
✓
✓
✓
✓
✓✼

☎✆✛

∅,1−ρ3

✞✝✲
∅, 1−ρ2

1+ρ+ρ2

☎✆✛

∅, 1−ρ1+ρ

✞✝✲
∅,1−ρ2

SHMGQTSI: The interleaving quotient transition system of the abstract

generalized shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 642

rdtmc↔is
(L)

✛
✚
✘
✙K̃6

✛
✚
✘
✙K̃4

✛
✚
✘
✙K̃2

✛
✚
✘
✙K̃1

ρ2

1+ρ+ρ2

2ρ
1+ρ

ρ2 ρ3

☎✆✛

1− ρ3

✞✝✲
1−ρ2

1+ρ+ρ2

☎✆✛

1−ρ
1+ρ

✞✝✲
1− ρ2

✻✻

❄

✲✛

ρ(1+ρ)
1+ρ+ρ2

SHMGQRDTMCI: The interleaving reduced quotient DTMC of the abstract

generalized shared memory system

The steady-state PMF for rdtmc↔is
(L):

φ̃′⋄ =
1

2 + 4ρ+ 3ρ2 + 3ρ3
(0, ρ2(1 + ρ), 2ρ(1 + ρ+ ρ2), 2(1 + ρ)),

whereas the steady-state PMF for RDTMC↔ss
(L):

ψ̃′⋄ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), ρ(2− ρ), 2− ρ− ρ2).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 643

SHMQRTPI: Transient and steady-state probabilities for the interleaving reduced

quotient DTMC of the abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

φ′1
⋄[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013

φ′2
⋄[k] 0 0.1499 0.1155 0.0950 0.0844 0.0789 0.0761 0.0747 0.0739 0.0736 0.0734 0.0732

φ′3
⋄[k] 0 0.1992 0.2722 0.3061 0.3233 0.3322 0.3367 0.3390 0.3402 0.3408 0.3411 0.3415

φ′4
⋄[k] 0 0.1379 0.3493 0.4640 0.5231 0.5534 0.5690 0.5770 0.5811 0.5832 0.5842 0.5854

Let ρ = 1
2 and l = 1 in the above interleaving transition systems and DTMC.

The result: the interleaving transition system ts(E),

quotient transition system ts↔is
(F),

reduced quotient DTMC rdtmc↔is
(F)

of the concrete and abstract standard shared memory system.

The steady-state PMF for rdtmc↔is
(F):

φ′⋄ =

(
0,

3

41
,
14

41
,
24

41

)
,

whereas the steady-state PMF for RDTMC↔ss
(F):

ψ′⋄ =

(
0,

1

17
,
6

17
,
10

17

)
.

With k growing, φ′4
⋄
[k] = φ′⋄[k](K6) stabilizes slower than

ψ′
4
⋄
[k] = ψ′⋄[k](K6) from Table SHMQRTP and Figure SHMQRTP.

One reason: rdtmc↔is
(F) has no transition from K2 toK6,

unlike RDTMC↔ss
(F).

The absolute relative differences for k = 5:∣∣∣φ
′
4
⋄−φ′

4
⋄[5]

φ′
4
⋄

∣∣∣ =
∣∣ 0.5854−0.1379

0.5854

∣∣ = 0.4475
0.5854 ≈ 0.7644 (76%),

∣∣∣ψ
′
4
⋄−ψ′

4
⋄[5]

ψ′
4
⋄

∣∣∣ =
∣∣ 0.5882−0.1901

0.5882

∣∣ = 0.3981
0.5882 ≈ 0.6768 (68%, i.e. 8% less).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 644

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

à
ààà

ìì

ì

ì
ì
ì
ì
ìì
ìì
ììì

ìììì
ììììììììì

ìììììììììììììììììììììììì

òòò
ò

ò

ò

ò

ò

ò
ò
ò
ò
ò
ò
ò
òò
òò
òò
òòò

òòòòò
òòòòòòòòòòòòòò

òòòòòòòò

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ò Φ4
¢í@kD

ì Φ3
¢í@kD

à Φ2
¢í@kD

æ Φ1
¢í@kD

SHMQRTPI: Transient probabilities alteration diagram for the interleaving reduced

quotient DTMC of the abstract shared memory system

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 645

The results obtained

• A discrete time stochastic and immediate extension dtsiPBC

of finite PBC enriched with iteration.

• The step operational semantics based on labeled probabilistic transition

systems.

• The denotational semantics in terms of a subclass of LDTSIPNs.

• The method of performance analysis based on underlying SMCs.

• Step stochastic bisimulation equivalence of the expressions and dtsi-boxes.

• The transition systems and SMCs reduction modulo the equivalence.

• An application of the equivalence to comparison of stationary behaviour.

• The case study: the shared memory system.

Further research

• Constructing a congruence relation: the equivalence that withstands

application of the algebraic operations.

• Introducing the deterministically timed multiactions with fixed time delays

(including the zero delay).

• Extending the syntax with recursion operator.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 646

References

[ABS91] AUTANT C., BELMESK Z., SCHNOEBELEN PH. Strong bisimilarity on

nets revisited. Extended abstract. LNCS 506, p. 295–312, June 1991.

[AHR00] VAN DER AALST W.M.P., VAN HEE K.M., REIJERS H.A. Analysis of

discrete-time stochastic Petri nets. Statistica Neerlandica 54(2), p. 237–255,

2000, http://tmitwww.tm.tue.nl/staff/hreijers/

H.A. Reijers Bestanden/Statistica.pdf.

[And99] ANDOVA S. Process algebra with probabilistic choice. LNCS 1601, p.

111–129, 1999.

[AKB98] D’ARGENIO P.R., KATOEN J.-P., BRINKSMA E. A compositional

approach to generalised semi-Markov processes. Proceedings of 4th

International Workshop on Discrete Event Systems - 98 (WODES’98),

p. 391–397, Cagliary, Italy, IEEE Press, London, UK, 1998,

http://cs.famaf.unc.edu.ar/˜dargenio/

Publications/papers/wodes98.ps.gz.

[APS94] AUTANT C., PFISTER W., SCHNOEBELEN PH. Place bisimulations for

the reduction of labelled Petri nets with silent moves. Proceedings of

International Conference on Computing and Information, 1994.

[AS92] AUTANT C., SCHNOEBELEN PH. Place bisimulations in Petri nets. LNCS

616, p. 45–61, June 1992.

[Aut93] AUTANT C. Petri nets for the semantics and the implementation of

parallel processes. Ph.D. thesis, Institut National Polytechnique de Grenoble,

May 1993 (in French).

[BBGo98] BRAVETTI M., BERNARDO M., GORRIERI R. Towards performance

evaluation with general distributions in process algebras. LNCS 1466, p.

405–422, 1998,

http://www.cs.unibo.it/˜bravetti/papers/

concur98.ps.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 647

[BCa87] BOUDOL G., CASTELLANI I. On the semantics of concurrency: partial

orders and transition systems. LNCS 249, p. 123–137, 1987.

[BDH92] BEST E., DEVILLERS R., HALL J.G. The box calculus: a new causal

algebra with multi-label communication. LNCS 609, p. 21–69, 1992.

[BDKP91] BEST E., DEVILLERS R., KIEHN A., POMELLO L. Concurrent

bisimulations in Petri nets. Acta Informatica 28, p. 231–264, 1991.

[BGo98] BERNARDO M., GORRIERI R. A tutorial on EMPA: a theory of

concurrent processes with nondeterminism, priorities, probabilities and time.

TCS 202, p. 1–54, July 1998.

[BHe97] BAIER C., HERMANNS H. Weak bisimulation for fully probabilistic

processes. LNCS 1254, p. 119–130, 1997.

[BK84] BERGSTRA J.A., KLOP J.W. Process algebra for synchronous

communication. Information and Control 60, p. 109–137, 1984.

[BK89] BERGSTRA J.A., KLOP J.W. Process theory based on bisimulation

semantics. LNCS 354, p. 50–122, 1989.

[BKe01] BUCHHOLZ P., KEMPER P. Quantifying the dynamic behavior of process

algebras. LNCS 2165, p. 184–199, 2001.

[BKLL95] BRINKSMA E., KATOEN J.-P., LANGERAK R., LATELLA D. A stochastic

causality-based process algebra. The Computer Journal 38 (7), p. 552–565,

1995, http://eprints.eemcs.utwente.nl/6387/01/

552.pdf.

[BM89] BLOOM B., MEYER A. A remark on bisimulation between probabilistic

processes. LNCS 363, p. 26–40, 1989.

[Bor86] BOROVKOV A.A. Probability theory. Moscow, Nauka, 432 p., 1986 (in

Russian).

[Brad05] BRADLEY J.T. Semi-Markov PEPA: modelling with generally distributed

actions. International Journal of Simulation 6(3–4), p. 43–51, February 2005,

http://pubs.doc.ic.ac.uk/semi-markov-pepa/

semi-markov-pepa.pdf.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 648

[BT00] BUCHHOLZ P., TARASYUK I.V. A class of stochastic Petri nets with step

semantics and related equivalence notions. Technische Berichte

TUD-FI00-12, 18 p., Fakultät Informatik, Technische Universität Dresden,

Germany, November 2000, ftp://ftp.inf.tu-dresden.de/

pub/berichte/tud00-12.ps.gz.

[BT01] BUCHHOLZ P., TARASYUK I.V. Net and algebraic approaches to

probabilistic modeling. Joint Novosibirsk Computing Center and Institute of

Informatics Systems Bulletin, Series Computer Science 15, p. 31–64,

Novosibirsk, 2001, http://itar.iis.nsk.su/files/itar/

pages/spnpancc.pdf.

[Buc94] BUCHHOLZ P. Markovian process algebra: composition and

equivalence. In: U. Herzog and M. Rettelbach, eds., Proceedings of the 2nd

Workshop on Process Algebras and Performance Modelling, Arbeitsberichte

des IMMD 27, p. 11–30, University of Erlangen, 1994.

[Buc95] BUCHHOLZ P. A notion of equivalence for stochastic Petri nets. LNCS

935, p. 161–180, 1995.

[Buc98] BUCHHOLZ P. Iterative decomposition and aggregation of labeled

GSPNs. LNCS 1420, p. 226–245, 1998.

[Buc99] BUCHHOLZ P. Exact performance equivalence — an equivalence

relation for stochastic automata. TCS 215(1/2), p. 263–287, 1999.

[Ch89] CHERKASOVA L.A. Posets with non-actions: a model for concurrent

nondeterministic processes. Arbeitspapiere der GMD 403, 68 p., Germany,

July 1989.

[Che92a] CHERIEF F. Back and forth bisimulations on prime event structures.

LNCS 605, p. 843–858, June 1992.

[Che92b] CHERIEF F. Contributions à la sémantique du parallélisme:

bisimulations pour le raffinement et le vrai parallélisme. Ph.D. thesis, Institut

National Politechnique de Grenoble, France, October 1992 (in French).

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 649

[Che92c] CHERIEF F. Investigations of back and forth bisimulations on prime

event structures. Computers and Artificial Intelligence 11(5), p. 481–496,

1992.

[CHM93] CHRISTENSEN S., HIRSHFELD Y., MOLLER F. Bisimulation equivalence

is decidable for basic parallel processes. LNCS 715, p. 143–157, 1993.

[Chr90] CHRISTOFF I. Testing equivalence and fully abstract models of

probabilistic processes. LNCS 458, p. 128–140, 1990.

[CLP92] CHERIEF F., LAROUSSINIE F., PINCHINAT S. Modal logics with past for

true concurrency. Internal Report, LIFIA, Institut National Polytechnique,

Grenoble, France, May 1992.

[CMBC93] CHIOLA G., MARSAN M.A., BALBO G., CONTE G. Generalized

stochastic Petri nets: a definition at the net level and its implications. IEEE

Transactions on Software Engineering 19(2), p. 89–107, 1993.

[CR14] CIOBANU G., ROTARU A.S. PHASE: a stochastic formalism for

phase-type distributions. LNCS 8829, p. 91–106, 2014.

[Dev92] DEVILLERS R. Maximality preservation and the ST-idea for action

refinements. LNCS 609, p. 108–151, 1992.

[DH13] DENG Y., HENNESSY M. On the semantics of Markov automata.

Information and Computation 222, p. 139–168, 2013.

[DTGN85] DUGAN J.B., TRIVEDI K.S., GEIST R.M., NICOLA V.F. Extended

stochastic Petri nets: applications and analysis. Proceedings of 10th

International Symposium on Computer Performance Modelling, Measurement

and Evaluation - 84 (Performance’84), Paris, France, December 1984, p.

507–519, North-Holland, Amsterdam, The Netherlands, 1985.

[Eng85] ENGELFRIET J. Determinacy→ (observation equivalence = trace

equivalence). TCS 36, p. 21–25, 1985.

[Eng91] ENGELFRIET J. Branching processes of Petri nets. Acta Informatica

28(6), p. 575–591, 1991.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 650

[FM03] DE FRUTOS E.D., MARROQUÍN A.O. Ambient Petri nets. Electronic Notes

in Theoretical Computer Science 85(1), 27 p., 2003.

[FN85] FLORIN G., NATKIN S. Les reseaux de Petri stochastiques. Technique et

Science Informatique 4(1), 1985.

[GHR93] GÖTZ N., HERZOG U., RETTELBACH M. Multiprocessor and distributed

system design: the integration of functional specification and performance

analysis using stochastic process algebras. LNCS 729, p. 121–146, 1993.

[GL94] GERMAN R., LINDEMANN C. Analysis of stochastic Petri nets by the

method of supplementary variables. Performance Evaluation 20(1–3), p.

317–335, 1994.

[Gla90] VAN GLABBEEK R.J. The linear time – branching time spectrum.

Extended abstract. LNCS 458, p. 278–297, 1990.

[Gla93] VAN GLABBEEK R.J. The linear time – branching time spectrum II: the

semantics of sequential systems with silent moves. Extended abstract. LNCS

715, p. 66–81, 1993.

[Gne69] GNEDENKO B.V. A course of probability theory. Moscow, Nauka, 400 p.,

1969 (in Russian).

[Gra81] GRABOWSKI J. On partial languages. Fundamenta Informaticae IV(2), p.

428–498, 1981.

[GV87] VAN GLABBEEK R.J., VAANDRAGER F.W. Petri net models for algebraic

theories of concurrency. LNCS 259, p. 224–242, 1987.

[Han94] HANSSON H. Time and probability in formal design of distributed

systems. In: Real-Time Safety Critical Systems, Volume 1, Elsevier, The

Netherlands, 1994.

[Hav01] HAVERKORT B.R. Markovian models for performance and dependability

evaluation. LNCS 2090, p. 38–83, 2001.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 651

[HBC13] HAYDEN R.A., BRADLEY J.T., CLARK A. Performance specification and

evaluation with unified stochastic probes and fluid analysis. IEEE

Transactions on Software Engineering 39(1), p. 97–118, IEEE Computer

Society Press, January 2013, http://pubs.doc.ic.ac.uk/

fluid-unified-stochastic-probes/

fluid-unified-stochastic-probes.pdf.

[Her01] HERZOG U. Formal methods for performance evaluation. LNCS 2090,

p. 1–37, 2001.

[Hil94] HILLSTON J. A compositional approach for performance modelling. Ph.D.

thesis, University of Edinburgh, Department of Computer Science, 1994.

[Hil96] HILLSTON J. A compositional approach to performance modelling.

Cambridge University Press, UK, 1996.

[HM85] HENNESSY M., MILNER R.A.J. Algebraic laws for non-determinism and

concurrency. Journal of the ACM 32(1), p. 137–161, January 1985.

[Hoa80] HOARE C.A.R. Communicating sequential processes, on the

construction of programs. R.M. McKeag, A.M. Macnaghten, eds., Cambridge

University Press, p. 229–254, 1980.

[Hoa85] HOARE C.A.R. Communicating sequential processes. Prentice-Hall,

London, UK, 1985.

[HR94] HERMANNS H., RETTELBACH M. Syntax, semantics, equivalences and

axioms for MTIPP. In: Herzog U. and Rettelbach M., eds., Proceedings of the

2nd Workshop on Process Algebras and Performance Modelling.

Arbeitsberichte des IMMD 27, University of Erlangen, 1994.

[HS89] HAAS P.J., SHEDLER G.S. Stochastic Petri net representation of discrete

event simulations. IEEE Transactions on Software Engineering 15(4), p.

381–393, 1987.

[Jan94] JANČAR P. Decidability questions for bisimilarity of Petri nets and some

related problems. LNCS 775, p. 581–594, 1994.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 652

[Jan95] JANČAR P. High decidability of weak bisimilarity for Petri nets. LNCS

915, p. 349–363, 1995.

[JM96] JATEGAONKAR L., MEYER A.R. Deciding true concurrency equivalences

on safe, finite nets. TCS 154, p. 107–143, 1996.

[KCh85] KOTOV V.E., CHERKASOVA L.A. On structural properties of generalized

processes. LNCS 188, p. 288–306, 1985.

[KN98] KWIATKOWSKA M.Z., NORMAN G.J. A testing equivalence for reactive

probabilistic processes. Electronic Notes in Theoretical Computer Science

16(2), 19 p., 1998.

[Kot78] KOTOV V.E. An algebra for parallelism based on Petri nets. LNCS 64, p.

39–55, 1978.

[Kou00] KOUTNY M. A compositional model of time Petri nets. LNCS 1825, p.

303–322, 2000.

[LN00] LÓPEZ B.N., NÚÑEZ G.M. NMSPA: a non-Markovian model for stochastic

processes. Proceedings of International Workshop on Distributed System

Validation and Verification - 00 (DSVV’00), p. 33–40, 2000,

http://dalila.sip.uclm.es/membros/manolo/

papers/dsvv2000.ps.gz.

[LS91] LARSEN K.G., SKOU A. Bisimulation through probabilistic testing.

Information and Computation 94, p. 1–28, 1991.

[Mar90] MARSAN M.A. Stochastic Petri nets: an elementary introduction. LNCS

424, p. 1–29, 1990.

[MBBCCC89] MARSAN M.A., BALBO G., BOBBIO A., CHIOLA G., CONTE G.,

CUMANI A. The effect of execution policies on the semantics and analysis of

stochastic Petri nets. IEEE Transactions on Software Engineering 15(7), p.

832–846, 1989.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 653

[MBCDF95] MARSAN M.A., BALBO G., CONTE G., DONATELLI S.,

FRANCESCHINIS G. Modelling with generalized stochastic Petri nets. Wiley

Series in Parallel Computing, John Wiley and Sons, 316 p., 1995,

http://www.di.unito.it/˜greatspn/GSPN-Wiley/.

[MC87] MARSAN M.A., CHIOLA G. On Petri nets with deterministic and

exponentially distributed firing times. LNCS 266, p. 132–145, 1987.

[MCB84] MARSAN M.A., CONTE G., BALBO G. A class of generalized stochastic

Petri nets for performance evaluation of multiprocessor systems. ACM

Transactions on Computer Systems 2(2), p. 93–122, 1984.

[MCF90] MARSAN M.A., CHIOLA G., FUMAGALLI A. Improving the efficiency of

the analysis of DSPN models. LNCS 424, p. 30–50, 1990.

[MCW03] MAJSTER-CEDERBAUM M., WU J. Adding action refinement to

stochastic true concurrency models. LNCS 2885, p. 226–245, 2003.

[MF00] MARROQUÍN A.O., DE FRUTOS E.D. TPBC: timed Petri box calculus.

Technical Report, Departamento de Sistemas Infofmáticos y Programación,

Universidad Complutense de Madrid, Madrid, Spain, 2000 (in Spanish).

[Mil80] MILNER R.A.J. A calculus of communicating systems. LNCS 92, p.

172–180, 1980.

[Mil83] MILNER R.A.J. Calculi for synchrony and asynchrony. TCS 25, p.

267–310, 1983.

[Mol82] MOLLOY M. Performance analysis using stochastic Petri nets. IEEE

Transactions on Software Engineering 31(9), p. 913–917, 1982.

[Mol85] MOLLOY M. Discrete time stochastic Petri nets. IEEE Transactions on

Software Engineering 11(4), p. 417–423, 1985.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 654

[MVC02] MACIÀ S.H., VALERO R.V., CUARTERO G.F. A congruence relation in

finite sPBC. Technical Report DIAB-02-01-31 , 34 p., Department of Computer

Science, University of Castilla - La Mancha, Albacete, Spain, October 2002,

http://www.info-ab.uclm.es/retics/publications/

2002/tr020131.ps.

[MVCC03] MACIÀ S.H., VALERO R.V., CAZORLA L.D., CUARTERO G.F.

Introducing the iteration in sPBC. Technical Report DIAB-03-01-37 , 20 p.,

Department of Computer Science, University of Castilla - La Mancha,

Albacete, Spain, September 2003,

http://www.info-ab.uclm.es/

descargas/tecnicalreports/DIAB-03-01-37/

diab030137.zip.

[MVCR08] MACIÀ S.H., VALERO R.V., CUARTERO G.F., RUIZ D.M.C. sPBC: a

Markovian extension of Petri box calculus with immediate multiactions.

Fundamenta Informaticae 87(3–4), p. 367–406, IOS Press, Amsterdam, The

Netherlands, 2008.

[MVF01] MACIÀ S.H., VALERO R.V., DE FRUTOS E.D. sPBC: a Markovian

extension of finite Petri box calculus. Proceedings of 9th IEEE International

Workshop on Petri Nets and Performance Models - 01 (PNPM’01), p.

207–216, Aachen, Germany, IEEE Computer Society Press, September

2001, http://www.info-ab.uclm.es/retics/

publications/2001/pnpm01.ps.

[MVi08] MARKOVSKI J., DE VINK E.P. Extending timed process algebra with

discrete stochastic time. Lecture Notes of Computer Science 5140, p.

268–283, 2008.

[NFL95] NÚÑEZ G.M., DE FRUTOS E.D., LLANA D.L. Acceptance trees for

probabilistic processes. LNCS 962, p. 249–263, 1995.

[Nia05] NIAOURIS A. An algebra of Petri nets with arc-based time restrictions.

LNCS 3407, p. 447–462, 2005.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 655

[NMV90] DE NICOLA R., MONTANARI U., VAANDRAGER F.W. Back and forth

bisimulations. LNCS 458, p. 152–165, 1990.

[NPW81] NIELSEN M., PLOTKIN G., WINSKEL G. Petri nets, event structures and

domains. TCS 13, p. 85–108, 1981.

[NT84] NIELSEN M., THIAGARAJAN P.S. Degrees of non-determinism and

concurrency: A Petri net view. LNCS 181, p. 89–117, December 1984.

[Old87a] OLDEROG E.-R. TCSP: theory of communicating sequential processes.

LNCS 255, p. 441–465, 1987.

[Old87b] OLDEROG E.-R. Operational Petri net semantics for CCSP. LNCS 266,

p. 196–223, 1987.

[Old89b] OLDEROG E.-R. Strong bisimilarity on nets: a new concept for

comparing net semantics. LNCS 354, p. 549–573, 1989.

[Old91] OLDEROG E.-R. Nets, terms and formulas. Cambridge Tracts in

Theoretical Computer Science 23, Cambridge University Press, 1991.

[P81] J.L. PETERSON. Petri net theory and modeling of systems. Prentice-Hall,

1981.

[Par81] PARK D.M.R. Concurrency and automata on infinite sequences. LNCS

104, p. 167–183, March 1981.

[Pfi92] PFISTER W. Simplification sémantique des réseaux de Petri par la

bisimulation de places. Technical Report of DEA, University of Grenoble,

France, June 1992 (in French).

[Pin93] PINCHINAT S. Bisimulations for the semantics of reactive systems. Ph.D.

thesis, Institut National Politechnique de Grenoble, January 1993 (in French).

[Pom86] POMELLO L. Some equivalence notions for concurrent systems. An

overview. LNCS 222, p. 381–400, 1986.

[Pra86] PRATT V.R. The pomset model of parallel processes: unifying the

temporal and the spatial. LNCS 197, p. 180–196, 1986.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 656

[Pri96] PRIAMI C. Stochastic π-calculus with general distributions. Proceedings

of 4th International Workshop on Process Algebra and Performance

Modelling - 96 (PAPM’96), p. 41–57, CLUT Press, Torino, Italy, 1996.

[PRS92] POMELLO L., ROZENBERG G., SIMONE C. A survey of equivalence

notions for net based systems. LNCS 609, p. 410–472, 1992.

[Ret95] RETTELBACH M. Probabilistic branching in Markovian process algebras.

The Computer Journal 38(7), p. 590–599, 1995.

[RT88] RABINOVITCH A., TRAKHTENBROT B.A. Behaviour structures and nets.

Fundamenta Informaticae XI, p. 357–404, 1988.

[Tar96] TARASYUK I.V. Algebra AFLP2: a calculus of labelled nondeterministic

processes. Hildesheimer Informatik-Berichte 4/96, part 2, 18 p., Institut für

Informatik, Universität Hildesheim, Germany, January 1996.

[Tar97] TARASYUK I.V. Equivalence notions for models of concurrent and

distributed systems. Ph.D. thesis, 191 p., Institute of Informatics Systems,

Novosibirsk, 1997 (in Russian), http://itar.iis.nsk.su/

files/itar/pages/thesphd.pdf.

[Tar98a] TARASYUK I.V. τ -equivalences and refinement. Proceedings of

International Refinement Workshop and Formal Methods Pacific - 98

(IRW/FMP’98), Work-in-Progress Papers, Canberra, Australia, September 29

– October 2, 1998, J. Grundy, M. Schwenke, T. Vickers, eds., Joint Computer

Science Technical Report Series TR-CS-98-09, The Australian National

University, p. 110–128, September 1998, http://cs.anu.edu.au/

techreports/1998/TR-CS-98-09.pdf.

[Tar98b] TARASYUK I.V. Place bisimulation equivalences for design of concurrent

and sequential systems. Proceedings of MFCS’98 Workshop on

Concurrency, Brno, Czech Republic, August 27–29, 1998, Electronic Notes in

Theoretical Computer Science 18, p. 191–206, 1998,

http://itar.iis.nsk.su/files/itar/pages/

ENTCS-18-016.ps.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 657

[Tar05] TARASYUK I.V. Discrete time stochastic Petri box calculus. Berichte aus

dem Department für Informatik 3/05, 25 p., Carl von Ossietzky Universität

Oldenburg, Germany, November 2005, http://itar.iis.nsk.su/

files/itar/pages/dtspbcib_cov.pdf.

[Tar06] TARASYUK I.V. Iteration in discrete time stochastic Petri box calculus.

Bulletin of the Novosibirsk Computing Center, Series Computer Science, IIS

Special Issue 24, p. 129–148, NCC Publisher, Novosibirsk, 2006,

http://itar.iis.nsk.su/files/itar/pages/

dtsitncc.pdf.

[TMV10] TARASYUK I.V., MACIÀ S.H., VALERO R.V. Discrete time stochastic

Petri box calculus with immediate multiactions. Technical Report

DIAB-10-03-1 , 25 p., Department of Computer Systems, High School of

Computer Science Engineering, University of Castilla - La Mancha, Albacete,

Spain, March 2010, http://itar.iis.nsk.su/files/itar/

pages/dtsipbc.pdf.

[TMV13] TARASYUK I.V., MACIÀ S.H., VALERO R.V. Discrete time stochastic

Petri box calculus with immediate multiactions dtsiPBC. Electronic Notes in

Theoretical Computer Science 296, p. 229–252, Elsevier, 2013,

http://itar.iis.nsk.su/files/itar/pages/

dtsipbcentcs.pdf.

[Tof94] TOFTS C. Processes with probabilities, priority and time. Formal Aspects

of Computing 6(5), p. 536–564, 1994.

[Vog91a] VOGLER W. Bisimulation and action refinement. LNCS 480, p.

309–321, 1991.

[Vog91b] VOGLER W. Deciding history preserving bisimilarity. LNCS 510, p.

495–505, 1991.

[Vog92] VOGLER W. Modular construction and partial order semantics of Petri

nets. LNCS 625, 252 p., 1992.

Igor V. Tarasyuk: Equivalence Relations for Net and Algebraic Models of Concurrency 658

[ZCH97] ZIJAL R., CIARDO G., HOMMEL G. Discrete deterministic and

stochastic Petri nets. In: K. Irmscher, Ch. Mittaschand and K. Richter, eds.,

MMB’97, Aktuelle Probleme der Informatik: Band 1. VDE Verlag, 1997.

[ZFH01] ZIMMERMANN A., FREIHEIT J., HOMMEL G. Discrete time stochastic

Petri nets for modeling and evaluation of real-time systems. Proceedings of

Workshop on Parallel and Distributed Real Time Systems, San Francisco,

USA, 6 p., 2001, http://pdv.cs.tu-berlin.de/˜azi/

texte/WPDRTS01.pdf.

[ZG94] ZIJAL R., GERMAN R. A new approach to discrete time stochastic Petri

nets. Lecture Notes in Control and Information Sciences 199, p. 198–204,

1994.

