Equivalence Relations for Net and

Algebraic Models of Concurrency

Igor V. Tarasyuk

A.P. Ershov Institute of Informatics Systems
Siberian Division of the Russian Academy of Sciences
6, Acad. Lavrentiev pr., Novosibirsk 630090, Russia

itar@iis.nsk.su

www.iis.nsk.su\persons\itar\index.html

1. Equivalences for Petri nets
2. Equivalences for Petri nets with silent transitions

3. Equivalences for process algebras: calculus AFP»

Equivalences for Petri Nets

Abstract: Behavioural equivalences of concurrent sys-
tems modeled by Petri nets are considered.

Known basic, back-forth and place bisimulation equiva-
lences are supplemented by new ones.

The equivalence interrelations are examined for the gen-
eral Petri nets as well as for their subclasses of sequential
nets (no concurrent transitions), strictly labeled nets (un-
labeled) and T-nets (no place branching).

A logical characterization of back-forth bisimulation equiv-
alences in terms of logics with past modalities is proposed.

An effective net reduction method based on place bisim-
ulation relations is presented.

A preservation of all the equivalences by refinements is
investigated to find out their appropriateness for top-down
design.

Keywords: Petri nets, sequential nets, strictly labeled
nets, T-nets, basic equivalences, back-forth bisimulations,
place bisimulations, logical characterization, net reduc-
tion, refinement.

Contents

¢ Introduction
— Previous work

— New equivalences

e Basic definitions
— Multisets
— Labeled nets
— Marked nets
— Partially ordered sets
— Event structures
— Processes

— Branching processes

e Basic simulation
— Trace equivalences
— Usual bisimulation equivalences
— ST-bisimulation equivalences
— History preserving bisimulation equivalences
— Conflict preserving equivalences

— Comparing basic equivalences

e Back-forth simulation and logics

Sequential runs
Back-forth bisimulation equivalences
Comparing back-forth bisimulation equivalences

Comparing back-forth bisimulation equivalences
with basic ones

Logic HML
Logic PBFL
Logic PrBFL

e Place simulation and net reduction

Place bisimulation equivalences
Comparing place bisimulation equivalences

Comparing place bisimulation equivalences with
basic and back-forth ones

Net reduction based on place bisimulation
equivalences

¢ Refinements

SM-refinements

e Net subclasses

The equivalences on sequential nets
The equivalences on strictly labeled nets

The equivalences on T-nets

e Decidability

Decidability results for the equivalences

Previous work

The following basic equivalences are known:

e Trace equivalences (respect protocols of behaviour):

interleaving (=;) [Hoa80], step (=5) [Pom86], partial
word (=,,) [Gra81] and pomset (=,.,,) [Pragé].

e Usual bisimulation equivalences (respect branching
structure of behaviour):

interleaving («;) [Par81], step («=s) [NT84], partial
word («=,,)[Vog91la], pomset (<,.m) [BCa87] and
process (<=,,) [AS92].

e ST-bisimulation equivalences (respect the duration or
maximality of events in behaviour):

interleaving («<=;s7) [GV8T], partial word (<pwsT)
[Vog91la] and pomset («<=pomsr) [VOg91lal.

e History preserving bisimulation equivalences (respect
the “history” of behaviour):

pomset (<=pomn) [RT88].

e Conflict preserving equivalences (respect conflicts of
events):

occurrence (=,..) [NPW81].

e Isomorphism (coincidence up to renaming of compo-
nents):

(~).

Back-forth bisimulation equivalences: bisimulation rela-
tion do not only require systems to simulate each other
behavior in the forward direction but also when going back
in history, i.e. backward.

They are connected with equivalences of logics with past
modalities.

Interleaving back interleaving forth bisimulation equiva-
lence (=i = <) [NMV9O0].

Step back step forth (<), partial word back partial
word forth (<=,) and pomset back pomset forth
(<=pombpom) bisimulation equivalences [Che92a,Che92b,
Che92c].

All possible back-forth equivalences in interleaving, step,
partial word and pomset semantics s.t. types of backward
and forward simulations may differ. New relations: step
back partial word forth (<.,.,r) and step back pomset
forth (<u,0m) bisimulation equivalences [Pin93].

Place bisimulation equivalences [ABS91] are based on def-
inition from [O1d89,01d91]. They are relations over places
instead of markings or processes. The relation on mark-
ings is obtained via “/ifting” that on places.

The main application of the place equivalences is effective
behaviour preserving reduction of Petri nets.

Interleaving place bisimulation equivalence (~;) and inter-
leaving strict place bisimulation equivalence (~;) [ABS91].

Step (~s), partial word (~py), pomset (~pom) and pro-
cess (~,,) place bisimulation equivalences. Their strict
analogues: (~s, ~pu, ~pom, ~pr).

Merging: ~;, = ~, = ~pw and ~, = Npw — pom — pr —
~,-. Three different relations remain: ~;, ~,,, and ~ .
[AS92].

New equivalences

e Basic equivalences:
process trace (=),
process ST-bisimulation («,.s7),
process history preserving bisimulation (+,,;,) and
multi event structure (=,.cs).

e Back-forth bisimulation equivalences:
step back process forth (<,,;) and
pomset back process forth (<,—,>p(m,,bp7.f).

Nondeter-
minism
Y

Isomorphism e

Conflict o
preserving

History ®
preserving
bisimulation
S=24ST
ST- o)
bisimulation

\

\
~

\

[
V)

Usual ® o
bisimulation

Trace ® ®

“ZpwST

2

—occ

Interleaving Step

Classification of basic equivalences

Partial Pomset

Process X

Causality

Basic equivalences are positioned on coordinate plane.

New relations are depicted in red colour.

Moving along X axis: a degree of causality grows.

Moving along Y axis: a degree of non-determinism grows.

Interleaving Step

al||b=ab + ba ab|lc=a(b||c) + (al|lc)b
b a b C
allb> = allc ;
a b a a —
b abllc c
Partial word Pomset Process
al|lb=al|b + ab a=a a=a

P S
PR

Causality degrees

10

Trace Usual bisimulation

a(b+ c)=ab+ ac

a @ @ a
b C b c b b
ab ac b

a ac allb ab allb ab ab
ST-bisimulation History preserving Conflict
bisimulation preserving
. - m O O
I = |
a b
a a a

Isomorphism

| P Y

abl|c a(bl[c) abllc a(blle) a(blle)

a a

Nondeterminism degrees

11

Multisets

Definition 1 A finite multiset (bag) M over a set X is
a mapping M : X — IN s.t. {x € X | M(x) > 0} < 0.

M(X) is the set of all finite multisets over X.

For x € X, M(x) is a number of elements x in M.
When Vx € X M(x) <1, M is a proper set.

The cardinality of a multiset M: |M| =} _ M(x).

Let My, M> € M(X) and x € X, then:

(Mi+Mz)(x) = Mi(x)+ Ma(z);
(M1—M>3)(x) = max{Mi(x)— Mz(x),0};
(M1UM2)(z) = max{Mi(z), M2(z)};
(MinMz)(z) = min{Mi(z), M>(x)};
MiCM> <& Ve X Mi(zx) < Ma(x);
xceM < M(x) > 0.

We write M +x —y for M + {z} — {y}.
The empty multiset: ().
with identical elements.

M ={z,z,x,y, 2,2} denotes the multiset M s.t.
M(x) =3, M(y) =1, M(z) = 2, and for other elements
M is equal to O.

M o o
X X X Yy y zZ

Example of multiset

12

Labeled nets
Let Act = {a,b,...} be a set of action names or labels.

T ¢ Act denotes silent action that represents an internal
activity. Let Act, = ActU {7}.

Definition 2 A labeled net is a quadruple
N = (PN, TN, Fn,In):

o v =1{p,q,...} is a set of places,
o v ={t,u,...} is a set of transitions,

o ['v:(PyxTn)U(Ty x Py) — IN is the flow relation
with weights;

o /v : Ty — Act; is a labeling of transitions with action
names.

Given labeled nets N = (Py, Ty, Fn,lx) and
N' = <PN/,TN/,FN/,ZN/>. A mapping B : PyUTNy — Py UTN IS
an isomorphism between N and N’, denoted by 3 : N~N’,
if:

1. 3 is a bijection s.t. B(PN) = Py and B(TN) = TN,

2. Vpe Py vVt €Ty Fn(p,t) = Fn(8(p), 8(t)) and
FN(t7p) — F]\p(ﬁ(t),ﬁ(p)),

3. Vi e Ty Iy(t) = In(8(1)).

Labelled nets N and N’ are isomorphic, denoted by N~N’,
if 38 : N~N’.

13

t to

o
O
p3 \

P4

N pl/@\ %pz
S
/

[
p5<l>
d
U

Example of labeled net
Let N be a labeled net and ¢t € Ty.

i3

The precondition °t and the postcondition t® of t are the
multisets: (*t)(p) = Fx(p,t) and (t*)(p) = Fn(t,p). Simi-
lar for places: (°p)(t) = Fy(t,p) and (p°*)(t) = Fn(p,t).
°N = {p € Py | ®*p = 0} is the set of initial (input) and
N°¢ ={p € Py | p* = 0} is the set of final (output) places
of .

A labeled net N is acyclic, if there exist no transitions
to,...,tn € Ty S.T. t;_1ﬂ°ti#@ (1 <i<n)and tg = t,.

A labeled net N is ordinary if Vp € Py ®*p and p® are proper
sets (not multisets).

Let N = (Pn,Tn, Fn,ly) be acyclic ordinary labeled net
and x,y € Py UTy. Then:

e x<yy & xFiy, where Fy is a transitive closure of
Fy (strict causal dependence relation);

o x=ny & (x <y y)V (z =1vy) (a relation of causal
dependence);

o xH# Ny & JtbueTy (tFu, *tN°uxD tIyz, u=<yN
y) (a relation of conflict);

o [yvx={y€ PvUTn |y <nx} (the set of strict prede-
cessors of x).

A set T C Ty is left-closed in N, ifvVieT ([nt)NTy CT.
14

Marked nets

A marking of a labeled net N is M € M(Py).

Definition 3 A marked net (net) is a tuple
N = <PN,TN,FN,ZN, MN>, where <PN,TN,FN,ZN> is a labeled
net and My € M(Py) is the initial marking.

Given nets N = (Pn, TN, Fn,ln, My) and
N' = <PN/,TN/,FN/,ZN/,MN/>. A mapping g . PvUTy —
Py U Ty is an isomorphism between N and N’, 3: N~N/,
if:

1. 8: (PN, TN, Fn,IN)>~(Pn, TN, Fni, In);

2. Vp e Py Mn(p) = Mn(8(p)).

Nets N and N’ are isomorphic, N~N', if 33 : N~N'.

ta T ? 11 f? to

pPs Q Q Q pPa
L |p3 S

ts | d C| i3
b

Example of marked net

Let M € M(Py) be a marking of a net N. A transition
t € Ty is fireable in M, if *t C M. If t is fireable in M, its

firing yields a new marking M= M- °t+t°, Mi>]\7.

A marking M of a net N is reachable, if M = My or there

exists a reachable marking M of N s.t. M -5 M for some
te€Ty. Mark(N) is a set of all reachable markings of a
net V.

15

A net N is n-bounded (n € IN), if VM € Mark(N) Vp €
Py M(p) <n. A net N is bounded, if 3n € IN s.t. N is
n-bounded. A net N is safe, if it is 1-bounded.

An action a € Act is auto-concurrent in N, if AM €
Mark(N) Jt,u € Ty s.t Iny(t) = a =Iy(u) and *t+°*u C M.
A net N is auto-concurrency free, if no action is auto-
concurrent in V.

An action a € Act is self-concurrentin N, if 3M € Mark(N)
dt € Ty s.t in(t) = a and *t+°t C M. A net N is self-
concurrency free, if no action is self-concurrent in N.

16

Partially ordered sets [Prag6]

Definition 4 A partially ordered set (poset) is a pair
p=(X,<):

o X ={x,y,...} is an underlying set;

e <~ C X xX isastrict partial order (irreflexive transitive
relation) over X.

Let p = (X, <) be a poset. A restriction of p to the set
Y C Xisply =(Y,<N(YxY)). Asetof strict predecessors
of e Xis lr={ye X|y<z}. AsetY C X is left-
closed, ifVyeY |y CY.

Let p1 = (X1,<1) and po = (X5, <2) be posets. p; is a
strict prefix of po, p1<p2, if p1 = p2|y s.t. Y C X is a finite
left-closed set. p; is a prefix of pp, notation pi1<p2, if p1<dp2

or p1 = po2.

Definition 5 A labeled partially ordered set (Iposet,
causal structure) is a triple p = (X, <,1):

e (X <) is a poset;
o |: X — Act, is a labeling function.

The notions defined for posets are transferred to Iposets.
Let p = (X, <,1) and p' = (X', </,I') be Iposets.

A mapping B : X — X' is a label-preserving bijection be-
tween p and p/, B : p=/p/, if:

1. g is a bijection;
2. Vr e X I(x) =U(B(x)).

We write p=p/, if 38 : p < p'.
17

A mapping 3 : X — X' is a homomorphism between p and
o, B pCp, if:

1. Brpx=p;

2. Ve,ye X x <y = B(x) < B(y).
We write pCp/, if 36 : p C p.
A mapping 8 : X — X’ is an isomorphism between p and
o, B:ip=p,ifB:pCp and 871 :p C p. Lposets p and p
are isomorphic, p~p', if A6 : p ~p.

Definition 6 Partially ordered multiset (pomset) is an
isomorphism class of Iposets.

(a)71 3 (b) z1 (a) 23 (b) (c)a

N N

x2 x4 x> (b) x4 (a) b

AN

Examples of poset, Iposet and pomset

18

Event structures [NPW81]

Definition 7 An event structure (ES) is a triple £ =
(X, <, #):

o ¥ ={z,y,...} is a set of events,

e - C X x X s a strict partial order, a causal depen-
dence relation, which satisfies to the principle of finite
causes: Vz € X | | z| < oo;

o /#+ C X x X is an irreflexive symmetrical conflict rela-
tion, which satisfies to the principle of conflict hered-

ity: Ve,y,z € X x#y <z = xH=z.

Let € = (X, <,#) be LES and Y C X. A restriction of &
totheset Yis: &ly = (Y, <nN(Y xY),# N (Y xY)).

Definition 8 A labeled event structure (LES) is a
quadruple € = (X, <, #,1):

e (X, <, #) is an event structure,
e | : X — Act, is a labeling function.

The notions defined for ES’s are transferred to LES’s.

19

Let ¢ = (X,<,#,0) and ¢ = (X', </, #' ') be LES’s. A
mapping 6 : X — X’ is an isomorphism between ¢ and
g, g, it

1. B is a bijection;

2. Ve e X l(z) =1U(B(x));

3. Vo,ye X x <y < ((z) < 6(y);

4. Vx,y € X z#y < B(x)# 6(y).
LES’'s £ and & are isomorphic, £~¢', if 36 : & ~ .

Definition 9 A multi-event structure (MES) is an iso-
morphism class of LES's.

(@)1 e w3 (B)ar (a)--vws) (a oo

.

x2 x4 x> (b) x4 (a) b

Examples of ES, LES and MES

20

Processes [BD87]

Definition 10 A causal net is an acyclic ordinary labeled
net C = <P0,Tc, Fe, lc>, s.t.:

1. Vr € Po |°r] < 1 and |r*] < 1, i.e. places are un-
branched,

2. Vx € PeNTe | lo x| < oo, i.e. a set of causes is finite.

Based on causal net C = (Po,T¢, Fe,lc), one can define
Iposet = (To, <N N(Te x Te), lc>.

For any causal net C there is a sequence of transition
firings: °C = Lo - --- 5 L, =C°s.t. L; C Po (0<i<
n), Po = U yL; and T¢c = {v1,...,v,}. It is called a full
execution of C.

Definition 11 Given a net N and a causal net C. A
mapping ¢ . Po UTo — Py UTyN is an homomorphism of C
into N, ¢ : C—N, if:

1. po(Pz) € M(Py) and o(T¢) € M(Ty), i.e. sorts are
preserved;

2. Yv € To *o(v) = p(*v) and o(v)® = p(*), i.e. flow
relation is respected,

3. Vv € Te le(v) = In(w(v)), i.e. labeling is preserved.

Since homomorphisms respect the flow relation, if °C Y
. 2% C° is a full execution of C, then M = ¢(°C) o)

) o(C°) = M is a sequence of transition firings in N.

21

Definition 12 A fireable in marking M process of a net
N is a pair m = (C,¢), where C is a causal net and o :
C — N is an homomorphism s.t. M = p(°C). A fireable
in My process is a process of N.

is a set of all fireable in marking M, and
IS the set of all processes of a net V.

The initial process of a net N is = (Cn,pn) € T(N),
s.t. T, = 0.

If m € MN(N,M), then firing of this process transforms a
marking M into M = M —@(°C) 4+ ¢(C°) = ¢(C°), M-SM.

Let 7= (C,¢), #=(C,5) € N(N), #=(C,p) €
M(N,p(C°)). A process « is a prefix of a process 7, if
To C Tg is a left-closed set in C'. A process 7 is a suffix

of a process 7, if T5 =15\ Tc.

In such a case a process 7 is an extension of w by process
7, and 7 is an extending process for m, T5%. We write
r—7, if T = 7 for some 7.

A process 7 is an extension of a process w by one tran-
sition, m—7% or 77, if @ = &, T4 = {v} and I5(v) = a

A process 7 is an extension of a process w by sequence of
ey . ~ W ~ . .

transitions, 1% or m—=&, if 3m; € M(N) (1 <i<n) 7>

... S, =%, o0=w1---v, and 15(0) = w.

A process 7 is an extension of a process « by multiset of
transitions, wlﬁr or wi%, if 5 T, <5= 0, T@ = V and
la(V) = A.

22

Causal nets of processes

23

@}D Q/Q O

b b

Causal nets of maximal processes

24

Branching processes [Eng91]

Definition 13 An occurrence net is an acyclic ordinary
labeled net O = (Pp,To, Fo,lo), s.t.:

1. Vre Po |°r| <1, i.e. there are no backwards conflicts;

2. Vx € PoUTp —(x#o0x), i.e. conflict relation is irreflex-
ive;

3. Vx € PoUTp | lo x| < oo, i.e. set of causes is finite.

Let O = (Pp,To, Fo,lp) be occurrence net and

N = (Pn,Tn, Fn,ln, My) be some net. A mapping o :
PoUTp — PyUTy isan homomorphism O into N, ¢ : O—N,
if:

1. Yv(Pp) € M(Py) and ¢ (Tp) € M(Ty). i.e. sorts are
preserved;

2. YveTp lo(v) = In((v)), i.e. labeling is preserved;

3. Yv € Tp *¢Y(v) = ¥ (*v) and ¥ (v)®* = ¥ (v*), i.e. flow
relation is respected;

4. Yo,w € To (*v = *w) A (Y(v) = Yp(w)) = v = w, i.e.
there are no ‘superfluous”’” conflicts.

Based on occurrence net O = (Pp,Tp, Fo,lo), one can
define LES ¢ = (To, <o N(To x To),#o0 N (To x To),lo).

Definition 14 A branching process of a net N is a pair
w = (0O,), where O is an occurrence net and ¢ : O — N
is an homomorphism s.t. My = ¢ (°O).

is the set of all branching processes of a net N.
The initial branching process of a net N coincides with its
initial process, i.e. = TN.

25

I:et w — (Oaw)a w = (67775) < @(N>7 O = <P07T07F07l0>7
O = (P5,T5, Fs, l52' w is a prefix of @, if Tp C T is a
left-closed set in O.

Then @ is an extension of w, and w is an extending
branching process for w, w—w.

A branching process w = (O,1) of a net N is maximal,

if it cannot be extended, i.e. V& = (0,7) s.t. w — @ !

The set of all maximal branching processes of a net NV con-
sists of the unique (up to isomorphism) branching process

— (Omax7 ¢mam)-

An isomorphism class of occurrence net O,a: 1S AN UN-
folding of a net N, notation

On the basis of unfolding U (IN) of a net N, one can define
MES = &) Which is an isomorphism class of LES
o for O e U(N).

26

8

Occurrence nets of branching processes

27

a c b f a C b

Q/ \Q O @/b O
(b) N (@ Omaz

@}D Q/CKCP

Occurrence nets of maximal branching processes

28

Trace equivalences

Definition 15 An interleaving trace of a net N is a

sequence aj---an € Act* s.t. Ty > m 3 ... B 1,
e N(N) (1<i<n).

The set of all interleaving traces of N is IntT'races(IN).

N and N’ are interleaving trace equivalent, N=;N’, if
IntTraces(N) = IntTraces(N').

Definition 16 A step trace of a net N is a sequence

Ar-Ap € (M(Act))* sit. in B B B r, meN(N)

(1<i<n).
The set of all step traces of N is Stepl'races(IN).

N and N’ are step trace equivalent, N=.N’, if
StepTraces(N) = StepTraces(N').

Definition 17 A pomset trace of a net N is a pomset p,
an isomorphism class of Iposet pc for m = (C,p) € MN(N).

The set of all pomset traces of N is Pomsets(IN).

N and N’ are partial word trace equivalent, N=,,N’, if
Pomsets(N) C Pomsets(N') and Pomsets(N') C Pomsets(N).

Definition 18 N and N’ are pomset trace equivalent,
N=,,.N', if Pomsets(N) = Pomsets(N’).

Definition 19 A process trace of a net N is an
isomorphism class of causal net C for m = (C,p) € M(N).

The set of all process traces of N is ProcessNets(IN).

N and N’ are process trace equivalent, N=,, N/, if
ProcessNets(IN) = ProcessNets(N').

29

Activity Sim(Activity)
RC States x States’ R R R R R
) Sim(Activity) Activity

Bisimulation equivalence

~

S

V2

30

Usual bisimulation equivalences

Definition 20 R CN(N) x N(N') is a x-bisimulation
between nets N and N’, % €{interleaving, step, partial
word, pomset, process}, R : N« N', x € {i, s, pw,pom, pr},
if:

1. (on,7N) € R.

2. (m,) € R, Wi%,
(a) |T/C\| =1, if =2,
(b) <5= B, if x =5,

=/

= 37 5%, (77) € R and
(a) pg C pg, If +=puw;

(b) pg =~ pg, if x€{i.s,pom};
(c) C~C', if+=pr.

3. As item 2, but the roles of N and N’ are reversed.

N and N’ are x-bisimulation equivalent, % E{interleaving,
step, partial word, pomset, process}, N« N’, if
AR : N~ N', ~ € {i, s, pw,pom,pr}.

31

ST-bisimulation equivalences
Definition 21 [Vog92] An ST-marking of a net N is a

pair (M,U):
o I € M(Py) is the marking;
o [/ € M(Ty) are the transitions.

(Mn.0) is the initial ST-marking of a net N.
T ={tt,t7 |t € Ty} is a set of transition parts.

t7 is the beginning, and ¢~ is the end of t.
A transition part g € Tﬁ,ﬁ is enabled in ST-marking

Q= (MU), Q%, if:

1. ML ifg=1tt or

2. teU, ifqg=1t".
If ¢ is enabled in M, its occurrence transforms ST-marking
Q into Q, Q-LQ, as:

1. M=M—°*tand U=U-+t, ifqg=1tT or

2. M=M+t*and U=U—t, ifg=1t".

We write Q—Q, if Q % Q for some q.
An ST-marking @ of N is reachable from @, if:

~

1. Q=0Q or

2. thereNis a reachable from @ ST-marking @ S.t.
Q— Q.
An ST-marking Q of N is reachable, if it is reachable from
My.

ST — Mark(N) is the set of all reachable ST-markings of
N.

32

Definition 22 AnST-process ofanet N isa pair (g, wp):

1. wg,mp € M(N), mp = 7p;

2. Yv,we€Tg, v<c,w = v€lg,.
e mp iS the current process;

e 7p IS the completed part;

e Ty IS the still working part.

Obviously, <¢,= 0.

ST —T1(N) is the set of all ST-processes of a net N.
(7,) is the initial ST-process of a net N.

Let (mg,7p), (7E,7p) € ST — MN(N).

We write (ng, 7p)—(7g,7p), if g — g and 7p — 7p.

W —~ W ~

™ Tp Uy T s
N(N) e ¢ ° s o .

ST-processes

33

Definition 23 RC ST —MNM(N) x ST — N(N') x B, where
B={8|8:Tc —To, = (C,¢) € N(N),

7 = (C'¢') € N(N')}, is a »-ST-bisimulation between
nets N and N’, x €{interleaving, partial word, pomset,
process}, R: N N, ~€{ }, if:

1. ((7n,7n), (mn,), 0) € R.

2. ((ﬂ-Eaﬂ-P)?(ﬂ-/E’aﬁlp)aB) €cR = B - PCy = pPCy, and
B(vis(1c,)) = vis(Tcy).

3. ((ZTE,WP),(W};J}:),@ € R, (7TE>7TP)~ — (7, Tp) =
357 (%/Ea%% : (7TlE77T/P) - (%/E7%P)7 6|TCE 267
((%Ea%P)a (%IEH%/P 76) S R, and ifﬂ-P l %Ea
why T &y, v = Blz., then:

(a) v 1:po Cpo, if = ,
(b) v :pc =~ pc, if = ;
(c) C~C, if x=

4. As item 3, but the roles of N and N’ are reversed.

N and N’ are x-ST-bisimulation equivalent, x €{interleaving,
partial word, pomset, process}, N N’ ifAIR : N N’

c{ }.

34

History preserving bisimulation equivalences

Definition 24 R CN(N) x N(N') x B, where
B={B|8:Tc —Tc, m = (C,p) € NI(N),

= (C',¢") € M(N')}, is a x-history preserving
bisimulation between nets N and N’, x e{pomset,
process}, N« N', « & {pom,pr}, if:

1. (nn, 7N, 0) €ER.

2. (m,7,8) ER =
(a) B:ps = pa, if € {pom,pr};
(b) C~C", if =pr.

3. (-’77’7'('/7/8)672/’ 7-(-'0_)7':"- = HB’ 7‘2('./:7_(_/_)7*{_/’
Blr. = 6, (7, 7,B) € R.

4. As item 3, but the roles of N and N' are reversed.
N and N' are x-history preserving bisimulation equivalent,

x €{pomset, process}, N« ,N', if IR : N, N,
* € {pom, pr}.

35

I_I(N) ’ | | | |
T T ! ! &
vy e & S —
~ |
Usual)
~
N ~ ST- Y,

History preserving

A distinguish ability of the bisimulation equivalences

36

Conflict preserving equivalences

Definition 25 N and N’ are MES conflict preserving
equivalent, N=,,..N/, if E(N) = E(N').

Definition 26 N and N’ are occurrence conflict
preserving equivalent, N=,..N', ifU(N) = U(N").

37

Comparing basic equivalences

12

= — =5 - —=pw

Epom
Interrelations of basic equivalences

_ 1 Let < «»e{= <~} and ».~» € { i, s, pw,
pom, pr,iST, pwST, pomST, prST, pomh, prh, mes, occ}. For
nets N and N' N« N' = N«», N’ iff there exists a
directed path from <, to «».. in the graph above.

38

c St a c
Fpw
) C L L)
d b b d d
(e)
N/ @ N (@ N /ﬂ

B: Examples of basic equivalences

39

(a) N (e N' (o)

(b) N@ N’(T)

=prST

\ \
Q@ QD 4 @ (R AT

b

(C)N@ o N'/Q @ v ~NO

a b

;_—'Lmes —occec

OO

& C

B1l: Examples of basic equivalences (continued)

40

In Figure B(a), N«+,N’, but N#.N’, since only in the
net N’ actions a and b can happen concurrently.

In Figure B(c), N N’, but N#,,N’, since for the
pomset corresponding to the net N there is no even
less sequential pomset in N'.

In Figure B(b), N N’ but N N’, since only
in the net N’ an action b can depend on action a.

In Figure B(d), N N’ but N+#, N’ since N’ is a
causal net which is not isomorphic to N (because of
additional output place).

In Figure B(e), N=, N’, but N</£,N’, since only in
net N’ action a can happen so that action b cannot
happen afterwards.

In Figure B1(a), N N’ but N N’ since only
in net N’ action a can start so that no action b can
begin working until a finishes.

In Figure B1(b), N N’ but N N’ since only
in net N/ actions a and b can happen so that action
¢ must depend on a.

In Figure B1(c), N N’ but N N’ since only
net N’ has corresponding MES with two conflict ac-
tions a.

In Figure B1(d), N N’ but N#N’, since upper

transitions of nets N and N’ are labeled by different
actions (a and b).

41

Sequential runs [Che92a,Tar97]

Definition 27 A sequential run of a net N is a pair

(m,0):

e a process m € M(N):
of transitions;

e a sequence o € T} s.t. my — !
of transitions.
The set of all sequential runs of a net N is Runs(INV).

The initial sequential run of a net N is a pair (7, 2)
(e is the empty sequence).

Let (7,0), (7,0) € Runs(N).

We write (r,0)5(7,5), if © & %, 36 € TS %, % and

o = o00.

We write (m,0)—(7,0), if (7, 0) KR (7,5) for some .

42

lo| is the length of a sequence o.

Let (m,0) € Runs(N), (7’,0") € Runs(N’) and

o=V, 0 =0 0.

We define a mapping B2 : Tc — Te:
o (3= f)
o 47 ={(vi,)) |1<i<n}

Let (m,0) € Runs(N) and o = vy -+ - Un,
N = ... 5 m (1 <i<n). Then:

o 7(0) = 7y,
(i) =m (1 <i<mn),

e 0(0) =¢,
o(i) =v1---v; (1 <i<n).

43

Back-forth bisimulation equivalences
Definition 28 R C Runs(N) x Runs(N') is a x-back xx-forth

bisimulation between nets N and N’, x,xx €{interleaving, step, partial
word, pomset,process}, R : Ny fN', *, %% € {i, s, pw, pom, pr}, if:

1. ((7‘(‘]\[,6),(7‘(’]\[/,6)) eR.
2. ((m,o0),(r,0")) eR

o (back) (#5) 5 (x,0),
(a) |TE‘ =1, if =1,

(b) =<5= @, if ~=s;
= 37,5 (#,5) 5 («,0), (75),(#5)) R and
(a) 05 C o i+ =
(b) P5 = P5 if « € {i,s,pom};
(c) O, ifx = pr;

o (forth) (o) 5 (%,5),
(a) |TE\ =1, if ¥ =1;

(b) <o= B, if x5 = s;

= AF.F): (o) D (7,5), ((75),(7,5)) € R and
(3) psy C oy i w5 = puo;
(b) PSP if v € {i, s, pom};

A~ o~

(c) C~C', if «»=pr.
3. As item 2, but the roles of N and N’ are reversed.

N and N’ are x-back xx-forth bisimulation equivalent, %, »x €{interleaving,
step, partial word, pomset, process}, N, N', if AR : Ny, f N,
*, %% € {i, s, pw, pom, pr}.

44

Comparing back-forth bisimulation equivalences

_ 1 [Pin93,Tar97] Let x € {i,s, pw,pom,pr}.

For nets N and N':
1. Ni——)pwb*fN/ <~ Ni—ﬁpomb*fN/;

2. N@*bifN/ ~ Ni—)*b*fN/.

])

‘ =2sbhif <—— $S2Zsbsf — shbpw f ~—Zsbpom f~—— SZsbprf

e IS

2ibif ~—— 2ibsf +—— SZibpwf ——ibpom f~—— ibprf

Merging of back-forth bisimulation equivalences
prbprf

SZpombpom f—=Zpombpr f

|

2sbsf —— Ssbpwf ~——Zsbpom f—— Zsbprf

| | |

S2ibif ~—— 2ibsf —— SZibpwf ——ibpom f~—— ibprf

Interrelations of back-forth bisimulation equivalences

45

Comparing back-forth bisimulation equivalences with

basic ones

_ 2 [Pin93,Tar97] Let x € {i,s,pw,pom,pr}

and «» € {pom,pr}. For nets N and N':

1. Nevj N & N« N,

2. N@**STN/ = Ni—)sb**fN/.

|

—y

2

~Zpomh “prh
\\
S=Zpombpr f
<2 ST “ZpwS'T ZpomST prST
Zsbsf ~—1— SZsbpwf ~——Zsbpom f—— Zsbprf

< pw

oSS

i |

—pom +——— Epr

Interrelations of back-forth bisimulation equivalences
with basic ones

_ 2 Let < «»e{= .~} and ~,»x € { i, s, pw,
pom, pr,tST, pwST, pomST, prST, pomh, prh, mes, occ, sbsf,
sbpw [, sbpom [, sbpr [, pombpr[}. For nets N and N’ N« N’

= N« , . N' iff in the graph above there exists a directed
path from <, to « ..

46

(@) N (e (o) N (o) (o)

g WO
O @O Q@0
C C C C C

(b)

2
®
®

=

o >/@

o
PN

3O

b
l =sbprif -
9 ° <> o] ° D

© N (9 N'/@\
<{@§%© @ﬁgy

NN
b b

BF: Examples of back-forth bisimulation equivalences

47

In Figure B(c), N N’, but N#,,N'.

In Figure BF(a), N N’ but N N’, since only
in the net N’ action ¢ can depend on actions a and b.

In Figure BF(b), N N’ but N N’ since only
in the net N’ action a can start so that:

1. until finishing of a the sequence of actions bc can-
not happen, and

2. immediately after finishing of a action ¢ cannot
happen.

In Figure BF(c), N N’ but N N’ since
only in the net N’ the process with action a can start
so that it can be extended by process with action b
in the only way (i.e. so that extended process be
unique).

In Figure B(b), N N’ but N N', since only
in the net N’ the sequence of actions ab can happen
so that b must depend on a.

In Figure B1(a), N N’, but N N’, since only in
the net N’ action a can happen so that action b must
depend on a.

48

TR O,
OO OO O
C\/ C C C

O

O

a

b

N

ON®
/

C

More clear, but weaker example of back-forth

bisimulation equivalences

49

Logic HML [HM85]

Definition 29 T denotes the truth, a € Act.
A formula of HML:

b= T|D|PAV | (a)P

HML is the set of all formulas of HM L.

Definition 30 Let N be a net and = € M(N). The
satisfaction relation =5 € M(N) x HML:

1. m =x T — always,;

2. k=N P, if 7 EN D

3. ml=ny PAV, if =y ® and m =n WV,

4. m=y (a)P, ifFF € N(N) 75 7 and 7 =x .

[a]P = —(a)—P,
N =y @, if 7y Ex .

Definition 31 N and N’ are are logical equivalent in
HML, N:HA[LN/, ifvV® € HML N |:N b < N |:N’ D.

Let for a net N w# € NM(N), a € Act.

The set of extensions of a process « by action a
(image set) is Image(r,a) = {7 | # = 7}.

A net N is a finite-image one, if Vo € M(N) Va € Act
|[Image(m,a)| < oo.

_ 3 For image-finite nets N and N’
N@,ﬁN’ R N@jb,’fN/ <~ N:'H]\[LN/.
50

Example on logical equivalence of HML

" TA

pr
a

C
(PQ

Z=HML

[
i
b

Differentiating power of =g,

N=, N', but N#4,,,, N, because for & = [a](b) T,
N E=n @, but N’ =N P since only in the net N’ an action
a can happen so that no b is possible afterwards.

51

Logic PBFL [CLP92]

Definition 32 T denotes the truth, a € Act and p is a
pomset with labeling into Act.

A formula of PBF'L:
D= T|D|PAV | (« p)P | (a)P

PBFL is the set of all formulas of PBF'L.

Definition 33 Let (m,0) € Runs(N) for a net N. The
satisfaction relation =5 € Runs(IN) x PBFL:

1. (m,0) =x T — always,
2. (m,0) =N P, if (r,0) EN P,
3. (m,0) =N PAV, if (m,0) =y D and (7,0) =n VY,

4. (w,0) =n (<« p)P, if A(7,5) € Runs(N)
(#,6) = (m,0), where 7 = (C, @), pz € p and
(77',5’) |:N CD,'

5. (m,0) =x (a)®, if 3(7,5) € Runs(N) (r,0) = (7#,5),
where 7 = (C, @), la(Ta) =a and (w,5) =n D.
[a]® = —(a)~D, [« p]P = —(— p)P
N |:N CD, it (7‘(‘]\[,8) |:N P.

Definition 34 N and N’ arelogical equivalent in PBFL,
N=ppr N, ifvd € PBFL N |:N o & N |:N’ D.

L0 4 For image-finite nets N and N’

/ / I /
N*fp()th ~ Nﬁpmnbpom_/'N ~ N—PBI”LN .

52

Example on logical equivalence of PBF'L

N (@) O

l i
a\
RAT

a =HML
Differentiating power of =pgry,

#PBFL

\
Qo8 A

N:[]]\[LN,, but N;ﬁpBFLN/, because for

& = [a][b](c)(+ (a;b)|lc)T, N =n P, but N’ =n P since
only in the net N’ after action a¢ an action b can happen
so that ¢ must depend on a.

Here (a;b)|/c denotes the pomset where b depends on a,
and a, b are independent with c.

53

Logic PrBFL [Tar97]

Definition 35 T denotes the truth, a € Act and C is the
isomorphism class of a causal net C'.

A formula of PrBFL:
dii= T|DP|PAV | («— C)D | (a)P

PrBFL is the set of all formulas of PrBF'L.

Definition 36 Let (w,0) € Runs(N) for a net N. The
satisfaction relation =y € Runs(IN) x PrBFL:

1. (m,0) =nx T — always,
2. (m,0) =N P, if (7,0) EN P,
3. (m,0) =N PAV, if (m,0) =y D and (7,0) =n VY,

4. (mw,0) |?N («— C), if A(7,5) € Runs(N)

(%,5) = (m,0), where # = (C,), C € C and
(%75) |:N CD"

5. (m,0) En (&), if 3(7,5) € Runs(N) (r,0) 5 (7,5),
where 7 = (C, @), la(Ta) =a and (w,0) =y P.
[a]® = —(a)~P, [« C]d = —(+ C)~P.
N |:N CD, it (7‘(‘]\[,8) |:N P.

Definition 37 N and N’ arelogical equivalent in PrBF L,
N=p, 5N, ifvd € PrBFL N |:N o & N’ |:N’ P.

_ 5 For image-finite nets N and N’
N@prhN/ < Nﬁprbpr,/'N/ ~ N:PI'BI”LN/-

54

Example on logical equivalence of PrBFL

V@ PEON

/a\ [
@”@/@ Q\/@@”@V@

b b b b

Differentiating power of

N N’, but N N’, because for & = [a](b)(+— C)T,
N =n @, but N’ =n P, since only in the net N’ a pro-

cess with action a can start so that it can be extended by

b in the only way (connecting pairwise output and input

places).

Here C is an isomorphism class of causal net where two
output places of an a-labeled transition are both the input
places of b-labeled one.

55

Place bisimulation equivalences
Definition 38 R C M(N) x M(N') is a x-bisimulation
between nets N and N’, x € {interleaving, step, partial

word, pomset, process}, R : N« N', x € {i, s, pw,pom, pr},
if:

1. (My,My) € R.
2. (M,M") eR, M M,
(a) |T/C\| =1, if =21,
(b) =<5= O, if « = s;
— 3IM: M' S M, (M,M') e R and
(@) ps C pay if + = pu;
(b) ps = pg, i+ € {i,s,pom};
(c) C~C', if+=pr.
3. As item 2, but the roles of N and N' are reversed.

N and N’ are x-bisimulation equivalent, x € {interleaving,
step, partial word, pomset, process}, N« N’, if
AR : N~ N', ~ € {i, s, pw,pom,pr}.

56

Definition 39 Let for nets N and N' R C Py X Py.
A lifting of R is R C M(Py) x M(Py), defined as:

H{(p1, 1), -, (Pn,P)} € M(R) :

M,M)eR &
() {M:{pl,...pn}, M= {p},...p,}

Definition 40 R C Py x Py is a x-place bisimulation
between nets N and N’, x €{interleaving, step, partial
word, pomset, process}, R : N~.N', if R : N—,N/,

* € {i, s, pw, pom, pr}.

N and N’ are x-place bisimulation equivalent,
* e{interleaving, step, partial word, pomset, process},
N ~, N', if AR : N~.N', « € {i, s, pw,pom,pr}.

57

Strict place bisimulations require additionally the corre-
sponding transitions to be related by K.

Definition 41 Let for nets N and N' t € Ty, t' € Th.
Then:

(°t,*t') e R A
(t,t) e R & (t*,t'*) e R A
In(t) = In ()

Definition 42 R C Py X Py is a strict x-place bisimula-

tion between nets N and N’, x €{interleaving, step, partial
word, pomset, process}, R : N~ N/, x € { 1,
if:

1. R : N—.N'.

2. The new requirement is added to item 2 (and to 3)
of the definition of x-bisimulation:

Vo e T (p(v), @' (B(v))) € R, where:
(a) B:pg E pg, if + = puw,

(b) B:ps=pg, if «€{ }
(c) B:C~C", if+=

N and N’ are strict x-place bisimulation equivalent,
x €{interleaving, step, partial word, pomset, process},
N~ N', if IR : N~.N', ~€/{ }.

58

An important property of place bisimulations: additivity.
Let for nets N and N/ R : N~ N', » e { }.

Then R and R implies

R.

If we add n tokens in each of the places p € Py and p’ € Py

s.t. (p,p’) € R, then the resulting nets must be also place
bisimulation equivalent.

59

Comparing place bisimulation equivalences

_ 3 [AS92] For nets N and N':

1. NN,N/ <~ NprN/,'

2. Nv, N & N~ N < N=~,N’.

‘\‘i_
(I
(I
o
(I

-~

I
I
I
I
I
I
I
I
I
-~
I
I
I
I
I
I
I
I
R
~—
o
(I
(I
(I
-
I
I
I
I
-~
I
I
I
I
- —+
-

Merging of place bisimulation equivalences

?: Npom f\.)p,’,,

Interrelations of place bisimulation equivalences

60

Comparing place bisimulation equivalences with basic
and back-forth ones

_ [Tar97, Tar98b] For nets N and N’

N~, N = N, N

\ \ "

Zpombpr f

“ZpomST =

prST

2sbsf ~—1— S2sbpwf ~—SZsbpom f~—— SZsbprf

v /

<:>Z -~ <:>S [— <:> ,,pom<—

| \)

i ~—T—"pom \ \

—=y <+ —g —pw —pom —pr

Interrelations of place bisimulation equivalences with
basic and back-forth ones

_ 6 Let < «» € {= < ~,~}, x,+x€{ i, s, pw,
pom, pr,tST, pwST, pomST, prST, pomh, prh, mes, occ, sbsf,
sbpw f, sbpom. [, sbpr [, pombpr [}. For nets N and N’ N« N’
= N« N' iff in the graph above there exists a directed
path from «— . to «-...

61

P: Examples of place bisimulation equivalences

62

In Figure P(a), N~ N’, but N N’ since only in
the net N’ action b can depend on a.

In Figure P(b), N N’ but N+, N’ since only in
the net N’ the transition with label a has two input
(and two output) places.

In Figure P(c), N N’', but N+,N’, since any place
bisimulation must relate input places of the nets N
and N’. But if we add one additional token in each of
these places, then only in N’ the action ¢ can happen.

In Figure P(b), N N’, but N N’, since only in
the net N’ action a can start so that no b can begin
working until ending a.

In Figure B1(c), N~,.N’, but N N’, since only the
MES corresponding to the net N’ has two conflict
actions a.

In Figure P(b), N N', but N N’, since only
in the net N’ action a can happen so that b must
depend on a.

63

Net reduction based on place bisimulation
equivalences

An autobisimulation is a bisimulation between a net and
itself.

An equibisimulation is an autobisimulation that is an
equivalence.

— 5 [AS92] Let R, and R» be reflexive inter-
eaving place autobisimulations of a net N. Then

(R1UR2)* (transitive closure of (R1UR>)) is an interleav-
ing place autobisimulation.

Definition 43 For a net N,
Ri(N)={R|R: N ~; N, R is reflexive} is a canonical
interleaving place bisimulation.

Definition 44 Let for a net N £ C Py X Py be an
equivalence.

For p € Py, [ple = {q| (p,q) € £} is an equivalence class
of p w.r.t. £.

For M € M(Py), M/g = Z
(partitioning) of M w.r.t. £.

sep,[Ple is a categorization

N/e =(Pn/e,Tn,Fn/e,In, Mn/c), where Fy /¢ is constructed
as:

1. *t= M in N = .t:M/g in N/g,'

2. t*=M in N = t':M/g an/g.

o~

M 5 M in N implies M/g - M /¢ in N/e.

6 [AS92] If R : N~ N is an equivalence
then []R . NNZ‘N/g.

Definition 45 A canonical interleaving categorization of
anet N isanet N/. = N/rn-

64

Definition 46 For a net N, R C Py x Py has a transfer
property, ifVt € Ty Vp € *t Vg : (p,q) € R holds:

and

e 7 [AS92] If for a net N, R C Py x Py is a
reflexive and symmetrical relation having transfer property
then R* (transitive closure of R) is an interleaving place
bisimulation in N.

ool 8 [AS92] For a net N, the maximal relation
R C Py x Py having transfer property is R;(N).

An effective algorithm of computing R;(N) [AS92]:
1. The initial relation: R = Py X Py.

2. Check all pairs (p,q) € R for transfer property.

(a) If the property is valid for all that pairs then

(b) Otherwise, there exists a pair (p,q), for which
transfer property is not valid. Then we remove

the pairs (p,q) and (g,p) from R and go to item
2.

If a net is finite then a number of the pairs is finite too.

A complexity: , iFVE e Ty |t 4+ |t°] < d
(the constant depends on d) [Pfi92].

An implementation: a system CAESAR on LOTOS pro-
gramming language [Pfi92].

65

The results on using and for net reduction

e \We cannot use for net simplification, since there
is an example s.t. foranet N: N N/ [AS92].

e Since — ~;, we can modify the algorithm for R;
to obtain R,-: we shall look for bisimulation between
transitions in the pairs appearing during check of the
transfer property.

A complexity of the algorithm will be the same. Thus,
it is possible to reduce net effectively modulo

Important results (due to interrelations of with the
other equivalences).

1. Since implies and . a reduced net has
the same histories of behavior and timed traces [G\V87]
as the initial one.

2. Since coincide with - all the properties
that can be specified in logic PrBFL are preserved in
the reduced net.

66

T D,
@ O C
~ T J
C‘D O O CP O

Q/
=0
)"

a

)
\
O

—~
()
N

C

Reduction of the net corresponding to a PBC formula
pX.(a; (X||(b; X))) modulo ~;

67

SM-refinements [BDKP91]

Definition 47 AnSM-netisanet D = (Pp,Tp, Fp,lp, Mp)
S.t.:

1. VYVt € Tp |°t| = |t*| = 1, i.e. each transition has exactly
one input and one output place;

2. Elpina Pout € Pp s.t. Din # Pout and °D = {pm},
D°® = {pout}, i.e. net D has unique input and unique

output place.

3. Mp = {pw}, i.e. at the beginning there is unique
token in p;,.

Definition 48 Let N = (Pn,Tn, Fn,ln, My) be a net, a €
lN(TN) and D = <PD,TD,FD,ZD,M_D> be SM-net. An SM-
refinement, ref(N,a, D), isa net N = (P, Ty, Fy, I, M) :

o PN = PN U {<p, U> | P < PD \ {pin)pOUt}7 u € l]_\fl(a’)}'.

o == (Ty\Iy ()U{({t,u)|teTp, uely(a)};

([Fn(Z,7), #,5€ PxU(Ty\ Iy (a));
Fp(z,y), T = (x, >y<,%ueme
o IN(Z,y) =1 Fn(Z,u), §=(y,u), T € "*u, uEl(M,yema
FN(“’?@)? 5_< > ge u, UEZ (CL), xe.pOUt;
L 0, otherW/se

z%m:{mwxaem\ww%
N Ip(t), &= (tu), t€Tp, ucly(a);

N _) Mny(p), pe€ Py;
o Myxp) = { 0, otherwise.

An equivalence is preserved by refinements, if equivalent
nets remain equivalent after applying any refinement op-
erator to them accordingly.

638

Usg | Q alui b| us a {1
L |
qs <> Q @ qa /@\pl
a3 _/
us | d c| us tr |e] | f| ta
»
p2 () () p3
tz | f €l ts
Hpout
q1 ° ’ref(N,a,D) %’)P g
<t1,U4>T <t1,ul T b| wuo
<p17u4 pl:“le
(t2,u1)

(ta, ua)

f f
L (p2,u1) l
(p2, ua)_) (P (p3, ua) @ @(ps,UH

(t3,u1)

(s, ua)
CJ5\<>/ qsv @ q4
l N\
d
N

Example of SM-refinement

—

69

0 o ea _so e

a a % a a c c c1
SagpEdansp &
ref(N,c, D) ref(N',c, D) Q

N s

555 . b0

Q@ O Q@ O

RB: The equivalences between =, and <, are not
preserved by SM-refinements

70

D
ai

az

.

RBF: The equivalences between «; and <, are not
preserved by SM-refinements

71

ref(N,a, D) ref(N',a, D)
o

a1 pomh @ a1

O 77O O

as fi—mes a as

RBF1: The equivalences between <. and <, ,pprf are
not preserved by SM-refinements

72

RP: The equivalences between «; and ~,, are not
preserved by SM-refinements

73

In Figure RB, N«-.N’, but ref(N,c,D)# ref(N',c, D),
since only in ref(N',¢c,D) the sequence of actions
ci1abco, can happen.

In Figure RBF, N N’, but ref(N,a, D)
ref(N',a, D), since only in the net ref(N’,a, D) action
a1 €an happen so that immediately after it:

1. the sequence of actions bc cannot happen, and

2. the sequence of actions a>c cannot happen.

In Figure RBF1, N N’, but ref(N,a, D)
ref(N’,a,D), since only in the net ref(N’,a, D) action
a1 c€an happen so that after it the sequence of ac-
tions a>b can happen which has only one correspond-
ing process (the transition labeled by b connects with
transition with label a> in the only way).

In Figure RP, N N’, but ref(N,a, D)

ref(N’,a,D), since only in the net ref(N’,a, D) after
action a; action b cannot happen.

74

IEEEEEREN 7 (50KP91, Tar97] Let « € {i, s},

*x € {1, s, pw, pom, pr, sbsf, sbpw f, sbpom f, sbpr f, pombpr f },

*x++ € {i,pom}. Then the equivalences =, «-... ~... are

not preserved by SM-refinements.

p— . j— . ~
—Imes —OcCC —_—

|

SZpomh

l

S=prh

l

Y

pr

—\
pombpr f
=23 ST ZpwS'T- “ZpomST =pr T
Y N
SZsbsf +—1— SZsbpwf ~—SZsbpom f—+ Zsbprf
‘ \ / S /
~i —t—"pom B/
D
Y Y Y Y Y
=i ~—— =s Epw Epom Epr
A

T he equivalences which are not preserved by

SM-refinements

75

—mes —occ =~

pomh <_>107“h\‘}<—(~pr)
\

pombpr f
;ST pwS “pomST ZprS
Ssbsf ~—t— SZsbpw f ~——STsbpom f~—— “Tsbprf

€ ——— g —— 2pw =Zpom

i

i ~—T— "pom J

T A S

=] +—— =5 —pw —pom —=pr

Preservation of the equivalences by SM-refinements

ISR 0 Lot — c{= — ~ ~}andx € {is pw pom,

pr, 1ST, pwST, pom ST, prST, pomh, prh, mes, occ, sbs f, sbpw f,
sbpom [, sbpr [, pombpr[}. For nets N, N' s.t. a € INn(Ty) N
INn(Tn') and SM-net D: N« N’ = ref(N,a,D)«.ref(N',a, D)
iff the equivalence <, is in oval in the figure above.

76

The equivalences on sequential nets

Definition 49 A net N = <PN,TN,FN,ZN,MN> is
sequential, if VM € Mark(N) —=3t,u e Ty : *t+°*u C M.

_ 8 For sequential nets N and N':
1. N=.N' & N=,,.N' [Eng85];

2. NN & N<,,,,,N' [BDKP91];

3. N, N' & Ny N' [Tar97];

4. N~N'" & N~,,,N'" [Tar97].

—mes+——— —occ +— =X

“ZpwS'T-

\

|
|
|
t)sbsf N sbpw f <—**prf)m:f‘_ ==sbprf
|
|
|

VARV

pw ——2pom— 2pr

Merging of the equivalences on sequential nets

77

\
e

) =pr

Interrelations of the equivalences on sequential nets

10 Let <+, «» € {=, <, ~, 2}, +,xx€{ i pr,
prST prh,mes, occ}. For sequential nets N and N' N« , N’

= N« . N' iff in the graph above there exists a directed
path from <, to «»,..

78

N(T) N’@

ofe p:fi& e

/\
b

%TI’Z@S

Q® O O®

C C

(b) N@f G<)@
”pomh

pom\
%p?“ Q

%mes

SN: Examples of the equivalences on sequential nets

79

In Figure B(d), N N’, but N#, N'.
In Figure RB(e), N=,, N/, but N-/,N'.
In Figure BF(c), N N’ but N N'.

In Figure SN(a), N N’, but N N’, since only
in the net N’ there is process with actions a and b
s.t. it can be extended by process with action c¢ in
the only way (i.e. so that connection of causal net
with action ¢ and a-containing subnet of causal net
with actions a and b be unique).

In Figure B1(c), N N’ but N N,
In Figure B1(d), N=,..N’, but N*N’.

In Figure SN(b), N~,N’, but N+, N’, since only in
the net N’ the transition with label ¢ has two input
places.

In Figure P(c), N N’ but N+, N'.

In Figure B1(c), N~, N, but N#,,..N'.

80

The equivalences on strictly labeled nets

Definition 50 A net N = (Py,Tn, Fn,ly) is strictly
labeled (unlabeled) ifVt,u € T In(t) 7= In(u).

_ 9 Let » € {i,pw,pom,pr}. For strictly

labeled nets N and N':
1. N=.N' & N« N' [PRS92,Tar97];

2. N=.N' & N<,oyN' [Tar97].

Emjes -~ EOCC - 2
“pomh “prh ~pr
pombpr f

| |
: 24 i i S : | T pw : \<:>p07n\ i <:>p7 :
| | | | | | | | | |
| | | | | | | |
| | | | / | / | | | .
| | | | Do | - | | |
| | | Y T ‘NpO’n\ { ‘ ‘ J \
| | | | | | | | | |
| | | | | | | | | |
[[[Y [[Y [[[[[
LS S | =pw | =pom——— =pr |
| | |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Merging of the equivalences on strictly labeled nets

81

“pwST

N@

S

b

C

fjé pom

(b)
OB ZONORORIO
;: a ‘ b a

N(® N @ (®
“pomST
Fpomh

OpO

:
D

UL: Examples of the equivalences on strictly labeled nets

82

In Figure UN(a), N« N’, but N#.N’, since only in
the net NV actions a and b can happen concurrently.

In Figure UN(b), N N’ but N N', since only
in the net N’ action b can depend on a.

In Figure B(d), N N’ but N#,, N'.
In Figure UN(c), N N’, but N N', since

only in the net N’ a sequence of actions ab can happen
so that ¢ must depend on a.

In Figure UN(d), N N’, but N N’, since only
in the unfolding of the net N’ transitions with labels a
and b have common input place. A MES with conflict
actions a and b corresponds to this unfolding.

In Figure B1(d), N N’ but N2N'.

In Figure P(c), N N', but N+4,N'.

83

The equivalences on T-nets

Definition 51 A net N = (Py,Tn, Fn,ln) is @ T-net, if
Vpe Py |°p| <1 and |p*| < 1.

BEEEEEER 10 [7ar97] For auto-concurrency free

T-nets N and N N—= N & N« N'.

— [— - ~Y
—TMmes —O0CC

| a l

Np/r

“Zpomh prh

AN

pombpr f

2 ST ~—— S2pwST—2pom ST ~——

‘ \ \

|
|
S2sbsf ~—t— SZsbpwf ——Zsbpom f~—— SZsbprf

AN AN A

,

—— ~pom { J
A

—pw ——— —pom+——— —Dpr

,,,,,,,,,,,,,,,,

Merging of the equivalences on T-nets

84

a a 5—4: a a a ;l a a
O OO . O O
(c) (d)

TN: Examples of the equivalences on T-nets

85

In Figure TN(a), N« N’, but N4.N’, since only in
the net N’ an action a cannot happen concurrently
with itself (i.e., it is not auto-concurrent).

In Figure TN(b), N=.N’, but N+#,,N’, since the net
N structurally represents a pomset s.t. even less se-
quential one cannot happen in N’.

In Figure UN(b), N N’, but N N'.
In Figure B(d), N N’, but N#, N'.

In Figure TN(c), N=, . N’, but N</,N’, since only in
the net N’ an action a can happen so that no b is
possible afterwards.

In Figure TN(d), N N’ but N N’ since only in
the behaviour of N’ there is a MES with two conflict
actions a.

In Figure B1(d), N N’ but NN'.

86

\
\
"

—mes —occ =~

Y
pomh prh ~pr

\

Zpombpr f

New results for the equivalences

87

Decidability results for the equivalences

— is decidable for:
unlabeled (strictly labeled) nets [Jan94];
finite safe nets (EXPSPACE) [JM96].

— is undecidable for:
communication free (BPP) nets [CHM93];
nets with > 2 unbounded places [Jan94].

— is decidable for:
finite safe nets (EXPSPACE) [JM96].

® —pom

— is decidable for:
unlabeled (strictly labeled) nets [Jan94];
finite safe nets (EXPSPACE) [JM96];
communication free (BPP) nets [CHMO93].

— is decidable for:
unlabeled (strictly labeled) nets [Jan94];
finite safe nets (DEXPTIME) [JM96];
communication free (BPP) nets [CHMO93];

nets s.t. one of them is deterministic up to
bisimilarity [Jan94].

— is undecidable for:
nets with > 2 unbounded places [Jan94].

88

]

— is decidable for:
finite safe nets (DEXPTIME) [JM96].

Zpom

— is decidable for:
finite safe nets (DEXPTIME / EXPSPACE) [JM96].

<=2iST
— is decidable for:

bounded nets [Dev92];
finite safe nets (DEXPTIME) [JM96].

“ZpomST

— is decidable for:
finite safe nets (DEXPTIME / EXPSPACE) [JM96].

S=Zpomh

— is decidable for:
safe nets (DEXPTIME) [Vog91b].

— is decidable for:

arbitrary nets (polynomial, O(|Pyx|? x |Tn]|?),
if Vt € T |*t] + [t*] < const) [AS92].

('\Jpr
— is decidable for:

arbitrary nets (polynomial, O(|Py|? x |Tn|?),
if Vt € Ty |°t| + |t*] < const) [AS92].

89

Equivalences for Petri Nets
with Silent Transitions

Abstract: Behavioural equivalences of concurrent sys-
tems modeled by Petri nets with silent transitions are
considered.

Known basic m-equivalences and back-forth r-bisimulation
equivalences are supplemented by new ones.

Their interrelations are examined for the general Petri nets
as well as for their subclasses of no silent transitions and
sequential nets (no concurrent transitions).

A logical characterization of back-forth r-equivalences in
terms of logics with past modalities is proposed.

A preservation of all the equivalences by refinements is
investigated to find out their appropriateness for top-down
design.

Keywords: Petri nets with silent transitions, sequen-
tial nets, basic T-equivalences, back-forth T-bisimulation
equivalences, logical characterization, refinement.

90

Contents

e Introduction
— Previous work

— New r-equivalences

e Basic r-simulation
— t-trace equivalences
— Usual m-bisimulation equivalences
— ST-r-bisimulation equivalences
— History preserving m-bisimulation equivalences

— History preserving ST-r-bisimulation
equivalences

— Usual branching r-bisimulation equivalences

— History preserving branching r-bisimulation
equivalences

— ST-branching mbisimulation equivalences

— History preserving ST-branching r-bisimulation
equivalences

— Conflict preserving r-equivalences

— Comparing basic r-equivalences

91

e Back-forth r-simulation and logics
— Back-forth m—bisimulation equivalences

— Comparing back-forth r-bisimulation
equivalences

— Comparing back-forth r-bisimulation
equivalences with basic ones

— Logic BFL
— Logic SPBFL

¢ Simulation with and without silent actions
— Interrelations of equivalences with
T-equivalences
¢ Refinements

— SM-refinements

e Net subclasses

— The m-equivalences on nets without silent
transitions

— The m-equivalences on sequential nets

e Decidability

— Decidability results for the r-equivalences

e Open questions

— Further research

92

Previous work

Equivalences which abstract of silent actions are r-equivalences
(they are labeled by 7). The following basic T-equivalences
are known:

e T-trace equivalences (respect protocols of behavior):

interleaving (=7) [Pom86], step (=) [Pom86], partial
word (=/,) [Vog9lal] and pomset (=],,,) [PRS92].

e Usual T-bisimulation equivalences (respect branching
structure of behavior):

interleaving (<=7) [Mil80], step («I) [Pom86], partial
word («],) [Vog9la] and pomset («,,) [PRS92].

e ST-rt-bisimulation equivalences (respect the duration
or maximality of events in behavior):
interleaving (<7sr) [Vog91a], partial word (<7 o)
[Vog91la] and pomset (<] o) [Vog9lal.

e History preserving T-bisimulation equivalences (respect
the “history” of behavior):

pomset (<7 ,) [Devo2].

e History preserving ST-r-bisimulation equivalences (re-
spect the “history” and the duration or maximality of
events in behavior):

pomset (<7) [Dev92].

pomhS'l

e Usual branching T-bisimulation equivalences (respect
branching structure of behavior with a special care
for silent actions):

interleaving (<7,) [Gla93].

93

e History preserving branching rt-bisimulation equiva-
lences (respect “history” and branching structure of
behavior with a special care for silent actions):

pomset () [Devo?2].

e Isomorphism (coincidence up to renaming of compo-
nents):

().

Back-forth bisimulation equivalences: bisimulation rela-
tion do not only require simulation in the forward direc-
tion but also also when going back in history, i.e.
backward. They connected with equivalences of logics
with past modalities.

Interleaving back interleaving forth T-bisimulation equiva-
lence (=) [NMVOOQ].

Pomset back pomset forth T-bisimulation equivalence
(=) [Pin93].

94

New rm-equivalences

e Basic T-equivalences:
interleaving ST-branching T-bisimulation (<7,),

pomset history preserving ST-branching T-bisimulation
(ﬁgothTbT) and

multi event structure (=7 ..).

—mes

e Back-forth r-bisimulation equivalences:

interleaving back step forth (=7}, ,),
interleaving back partial word forth (<,),
interleaving back pomset forth (<,),
step back step forth (=7,),

step back partial word forth (<],) and

step back pomset forth (<[,).

95

¢ ()

<::¥f;
e

O

b

P2

d

vz’s(C)@

a

(p1]g2)

)

C

(p2, 1)

O

O

C
(pljdgl\#éiﬁéé%éiigif%?:qQ)
g3
: -

d

(Px, q3)

An application of the mapping vis to a causal net

o ()

a

(izgf;

O

z
q1 q2
-

e

. mkx (p
1 .

m’s(O)Q

a

(p1]g2)

(p2, 1)

O

b

)

C d

f

(Px» q3)

An application of the mapping vis to an occurrence net

96

ap rap

T
2y

O

a

A crash of interrelations of the process m-bisimulation
equivalences comparing with that of the process
bisimulation equivalences

97

T-trace equivalences
The empty string is denoted by «.

Let 0 = a1---ay € Act: and a € Act,. We define vis(o) as:

1. vis(e) =¢;

vis(o), a=Tr.

2. vis(oa) = { vis(o)a, a7 T;

Definition 52 A visible interleaving trace of a net N is
a sequence vis(ai---ap) € Act* s.t.

TN >TSS, m e M(N) (1<i<n).

The set of all visible interleaving traces of N is
VisIntTraces(IN).

N and N’ are interleaving t-trace equivalent, N="N’, if
VisIntTraces(N) = VisIntTraces(N').

Let X = A;--- A, € (M(Act;))* and A € M(Act;). We
define vis(X) as:

1. vis(e) = ¢;

. | vis(Z)(AN Act), AN Act # 0;
2. vis(XA) = { vis(X), otherwise.

Definition 53 A visible step trace of a net N is a

sequence vis(Ay - An) € (M(Act))* s.t.

WNéleig...éwrn, m € M(N) (1 <i<n).

The set of all visible step traces of N is VisStepTraces(IN).
N and N’ are step r-trace equivalent, N="N’, if
VisStepTraces(N) = VisStepTraces(N').

98

Let p = (X, <,l) is Iposet s.t. [: X — Act.. We denote:
o vis(X) ={x € X |l(x) € Act};

o vis(p) = pluis(x)-

Definition 54 A visible pomset trace of a net N is a
pomset vis(p), an isomorphism class of Iposet vis(pc) for
m = (C,p) € N(N).

The set of all visible pomset traces of N is VisPomsets(IN).

N and N' are partial word 7-trace equivalent, N N’ if

VisPomsets(N) C VisPomsets(N') and
VisPomsets(N') C VisPomsets(N).

Definition 55 N and N’ are pomset 7-trace equivalent,
N N', if VisPomsets(N) = VisPomsets(N').

99

Usual m-bisimulation equivalences

Let C = (P, T¢, Fo,lc) be causal net. We denote:

o vis(To) = {v € To | lo(v) € Act};

o vis(<c) =< N(vis(Te) x vis(Ty)).
Definition 56 R C N(N) x N(N') is a x-r-bisimulation

between nets N and N’, x &{interleaving, step, partial
word, pomset}, R : N N', « € {i, s, pw,pom}, if:

1. (on,7N) € R.
2. (m,7)eR, 7 KR T,
(a) |v7js(Ta)| =1, if »=1;
(b) vis(=z) =0, if x =5,
- I o S F (77)€R and
(a) m’s(pa) C m’s(pa , If % = pw;
(b) m's(pa) ~ m’s(pa), if x € {i,s,pom}.
3. As item 2, but the roles of N and N' are reversed.
N and N’ are x-T-bisimulation equivalent, E{interleaving,

step, partial word, pomset}, N<—IN’, if 3R : N~ N/,
* € {i, s, pw, pom}.

100

ST-m-bisimulation equivalences

Definition 57 An ST-rt-process of a net N is a pair
(g, 7p):

1. wg,mp € N(N), 7np = 7g;

2. Yo,w € Te, (v<c,w)V (og,(v) =7) = veTg,.
e mp iS a current process;

e 7wp iS the completed part;

e my IS the still working part.

Obviously, <¢,= 0.

STT —TI(N) is the set of all ST-r-processes of a net N.
(7,) is the initial ST-t-process of a net N.

Let (mg,7p), (Tg,7p) € ST™ — MN(N).

We write (7TE,7TP)—>(77'E,77'p), if g — 7w and wp — Tp.

™W ~ W ~

TN TP TE T 708
N(N) e « o s o .

ST-1-processes

101

Definition 58 R C ST™—IMN(N)x ST™—N(N') x B, where
B=A{p|B:vis(Tc) — vis(Ter), m = (C,¢) € N(N),

7 = (C',¢") € MN(N')} is a »ST-r-bisimulation between
nets N and N’, x €{interleaving, partial word, pomset},
RN N, ~€e{ }, if:

1. ((7n,7n), (my,), 0) € R.

2. ((WE77TP)7(7TIE77733)7ﬁ) ER = 6 : Uis(pCE) = ’U’I:S(,OO/E)
and B(vis(1¢,)) = vis(1c,).

3. ((rg,7p), (7, 7p),B) € R, (wp,7p) — (T, 7p) =
357 (7?35’77?33) : (772377‘-})) — (77‘-23777—}))7 B|m’s(TCE) — Ba
((Fg, 7p), (7, 7),B) € R, and if tp = g,

s o Ty ¥ = B|M-S(TC), then:
(a) v~ 1 :wvis(po) T vis(pe), if » = puw;
(b) ~ :wvis(pc) = vis(pcr), If x =

4. As item 3, but the roles of N and N’ are reversed.

N and N’ are x-ST-7m-bisimulation equivalent,
x €{interleaving, partial word, pomset}, N N’ if
IR N N, « e 3

102

History preserving r-bisimulation equivalences
Definition 59 R CIMN(N) x N(N') x B, where
B = {B | B ’UiS(TC) — UiS(TC’)a T = (Ca 90) € I—I(N)7

7 = (C',¢") € N(N")}, is a pomset history preserving
T-bisimulation between nets N and N, R: N« N', if:

1. (7TN,7TN/,(Z)) cR.
2. (m,7",B) e R = [:vis(pc) ~ vis(pc).

3. (mn,B)ER, m—F = I, 7 =7,
B'vis(TC) — Ba (71‘:777'/,5) ceR.

4. As item 3, but the roles of N and N’ are reversed.

N and N’ are pomset history preserving t-bisimulation
equivalent, N~ N/, if 3R : N~ N’.

pomh pomh

103

History preserving ST-r-bisimulation equivalences

Definition 60 R C ST™—TM(N)x ST™—N(N') x B, where
B={6]|8:vis(Tc) — vis(Tc), m = (C,p) € N(N),

7 = (C',¢") €e N(N')}, is a pomset history preserving
ST-r-bisimulation between nets N and N', R : N« ., N’

if:
1. ((rn,7N), (7N, 7)), D) € R.

2. ((WEaﬂ-P))(W}E)W;D))B) ER = /B : ,U,I:S(pCE) = UiS(PC;E)
and B(vis(1¢,)) = vis(Tc,).

3. (G, mp), (nley), B) € R, (rmymp) — (Frofip) =
Elﬁa (7?/1?777—% : (7-‘-/1?771-33) - (7?/1?77?33% /8|vis(TcE) :ﬁa
((%Ea%P)a (%/Ea%P)aﬁ) € R.

4. As item 3, but the roles of N and N’ are reversed.

N and N' are pomset history preserving ST-r-bisimulation

i T I . T /
eCIU|Va|ent, Ni—)/)()m/zb'TN ’ it IR : N@pothTN .

104

(a)
M(N)

M(N')

(b)

N(N)

N(N")

™ T , T
° 0 ¢
TN /1	~/
7T 7T	
® P o	
a ~	
™ T, T	
o	
N T a ™ :	
7TN/ T '7‘:(‘-/	
® é ® & &

A distinguish ability of the usual and the branching

T-bisimulation equivalences

105

Usual branching r-bisimulation equivalences
For a net N and =, 7 € NMN(N) we write 7=7 when

37 = (C,$) s.t. # 5 7 and vis(T5) = 0.

Definition 61 R CN(N) x N(N') is an interleaving
branching r-bisimulation between nets N and N/,
R : N, N if:

1br

1. (7TN,7TN/) eER.

2. (m,7)eER, 157 =
(a) a= 7 and (w,n') € R or

(b) a% 7 and 37, # 7' =7 57, (m,7) € R,
(m,7") € R.

3. As item 2, but the roles of N and N' are reversed.

N and N' are interleaving branching r-bisimulation
equivalent, N/, N', if IR : N~ N'.

106

History preserving branching r-bisimulation
equivalences

Definition 62 R CN(N) x N(N') x B, where
B={B|8:Tc —Tc, m = (C,p) € N(N),

7 = (C',¢") € M(N')}, is a pomset history preserving
branching r-bisimulation between nets N and N’,

R :N«T N’ if:

pomhbr

1. (7TN,7TN/,®) cR.
2. (m,7",B8) e R = [:vis(pc) ~ vis(pc).

3. (mn,B)eER, T —> T =
(a) (m,7',B) € R or
(b) 3B, 7, 7w > T — 7, Bl =6
(7-(-7 7_-(-,7 /8) E R7 (7':(:7 7':(:,’ /8) E R'

4. As item 3, but the roles of N and N' are reversed.

N and N’ are pomset history preserving branching
T-bisimulation equivalent, N« ., N’ if3R : N« . N

pomhbr

/

107

ST-branching mbisimulation equivalences

Let (wg,wp), (Fp,7p) € ST™ —M(N). We write
(7TE,7TP):>(77'E,77'1D), if 7 = g and wp = 7Tp.

Definition 63 RC ST™—TM(N)x ST™—N(N') x B, where
B=A{8]|8:vis(Tc) = vis(Ter), m = (C,¢) € N(N),

= (C',¢") € M(N")} is an interleaving ST-branching
T-bisimulation between nets N and N’,

R : N N’ if:

1. ((7n,7N), (7N, 7)), D) € R.

2. ((ﬂ-Eaﬂ-P)’(ﬂJEaﬂ-;D))B) ER = /8 : vis(pCE = Uis(pC’E)
and B(vis(T¢,)) = vis(Tc,).

3. ((mg,mp), (0, 7p),B) € R, (g, wp) — (Tg,Tp) =

(a) ((%Ea%P)a (ﬂJEvﬂﬁD)76) € R or
(b) 33, (7, 7p), (Fp@p) @ (g, wp) = (T 7Tp) —
(77-;377?]3)7 Blvis(TcE) — 67 ((ﬂ-Eaﬂ-P)a (%/Ea%%)aﬁ) S R:
((%Ea%P)a (7':‘:,E>7‘:‘:P)7/8) €ER.
4. As item 3, but the roles of N and N’ are reversed.

N and N’ are interleaving ST-branching r-bisimulation
equivalent, N N' ifdR : N N'.

108

History preserving ST-branching r-bisimulation
equivalences

Definition 64 R C ST™—TMN(N)x ST™—N(N'") x B, where
B={p8|p:vis(Tc) — vis(Tc), m# = (C,¢) € N(N),

= (C',¢") e M(N'")} is a pomset history preserving
ST-branching r-bisimulation between nets N and N’, R :
Ni_);othTbrN/’ if:

1. ((rn,7mN), (7N, 7)), D) € R.

2. ((WE77TP)7(7T/E’7T/P)aﬁ) cER = /8 : ’U’I:S(pCE) = ’U’iS(PC;E)
and B(vis(1¢,)) = vis(Tc,).
3. ((rg,mp), (7, 7p),B) €ER, (wg,7p) — (TE, 7p) =
(a) ((%Ea%P)a (7T/E77T§D)7/8) € 'R or
(b) 3B, (T @p), (R 7p) @ (wpmp) = (T 7p) —
(7?,[277?%)7 ﬁl'vis(TcE) :~ /37 ((ﬂ-Eaﬂ-P)? (%/E'a%/l-'))aﬁ) S R)
((%Ea%P)a (%/Ea%%)aﬁ) €R.

4. As item 3, but the roles of N and N' are reversed.

N and N’ are pomset history preserving ST-branching
T-bisimulation equivalent, N« . .. N’, if

p
. T /
IR NﬁpothTbrN :

109

Conflict preserving r-equivalences

Let € = (X, <,#,l) bea LESs.t. [: X — Act.. We denote
vis(X) = {x € X | I(z) € Act} and vis(§) = £|,is(x)-

Definition 65 N and N’ are MES-r-conflict preserving
equivalent, N=" N’, if vis(E(N)) = vis(E(N")).

—mes

110

Comparing basic r-equivalences

TN
-
~~pomhSTbr
e
~~pomhbr
-
/othT
T T
/ﬁSTbr “pomh
T T T T
2oy 29T ‘_7@wST <__i_jpomST
T
—T —T =T =7 =T
=, — =g =pw —pom —1mes

pom, 18T, pwST, pom ST, pomh, pomhST, ibr, pomhbr,:STbr,
pomhSTbr,mes}y. For nets N and N' N« N’ = N« N’
iff in the graph above there exists a directed path from

o, to « .

111

(2) (b)

EguacENoRos sdafi
OO 20O
b a B Cbs I

()

SONO MOBNONNO
I I c
O O o C)
b d b lb ii d

BT: Examples of basic m-equivalences

112

(a) N (o) (o) N’ (o) (o)
/ **]Com

l
b <*_>szom f @ @ b
- 72_5 T
. .
; mes ;
) N (o N (o)
l <*_J;omS T l
@ <*_ngpom f a

sSo F aar

l | l
C b b C C

S

(C)N CT) pothT ﬂ (d) N Q N Q

-
ﬁpomhbr a a a —~pomhsS b
T
;ws ~~pomhbr
—T
®© e
C C

BT1: Examples of basic m-equivalences (continued)

113

a —mes a <*_Jpomh a a
T T
**Z—br
o}
b T b T
LIS
T bl 7? OThS a T b
—1br
z;@es
O O
a a

a a & a a| ler—Ta \a\‘lc
S>°?ﬁg?'<3?£%%@£?
O O \\p

T T T

BT2: Examples of basic m-equivalences (continued 2)

114

In Figure BT(a), N N’ but N#4"N’, since only in
the net N’ actions a and b cannot happen concur-
rently.

In Figure BT(c), N N’ but N N’ since for
the pomset corresponding to the net N there is no
even less sequential pomset in N’.

In Figure BT(b), N N', but N N’, since only
in the net N’ action b can depend on a.

In Figure BT2(a), N N'’, but N<ATN’, since only
in the net N’ action 7 can happen so that in the cor-
responding initial state of the net N action a cannot
happen.

In Figure BT1(a), N N’, but N N’, since only

in the net N’ action a can start so that no action b
can begin to work until finishing a.

In Figure BT1(b), N N’ but N N', since

only in the net N’ after action a action b can happen
so that action ¢ must depend on a.

In Figure BT2(b), N N’ but N N’ since

only in the net N’ action a can start so that the
action b can never occur.

In Figure BT2(c), N N’, but N N’, since in

the net N’ an action a can happen so that it will be
simulated by sequence of actions 7a in N. Then the
state of the net N reached after = must be related
with the initial state of a net N, but in such a case
the occurrence of action b from the initial state of N’
cannot be imitated from the corresponding state of
N.

115

e In Figure BT2(d), N N’ but N N', since

in the net N’ an action ¢ may start so that during
work of the corresponding action ¢ in the net N an
action a may happen in such a way that the action b
never occur.

In Figure BT1(c), N N’, but N N', since

only the MES corresponding to the net N’ has two
conflict actions a.

In Figure BT1(d), N N’ but NN’ since unfire-
able transitions of the nets N and N’ are labeled by
different actions (a and b).

116

Back-forth r-bisimulation equivalences

Definition 66 R C Runs(N) x Runs(N') is a x-back
*x-forth 7-bisimulation between nets N and N’,

*, %% €{interleaving, step, partial word, pomset},
R:N<T, N x xx€&{i s pw pom}, if:

T xbxx f

1. ((71']\7,6), (7‘(’]\[/,6)) eR.

2. ((m,0),(r",0')) €R
o (back) (7,5) 5 (m,0),
(a) |vis(Ta)| =1, if »=1;
(b) vis(=z) =0, if x =5,

= 3(#,5): (#35)5 (x,0),

((w,0),(7,¢')) € R and
(a) vis(pg) E vis(pg), if = pw;

(b) m)s(pa) ~ vis(pa), if € {i, s, pom},
o (forth) (m,0) 5 (7,8),

(a) |vis(Ta)| =1, if »» = i;

(b) vis(<a) =0, if x» = s;

= I(#,5): (o) 5 (7,5,

((7‘:"_7 5-)7 (7':‘:,, 5-/)) e R and
(a) vis(pa) C vis(pa), if ¥x = pw;

(b) vis(pa) ~ vis(pa), if +x € {i, s, pomn}.
3. As item 2, but the roles of N and N' are reversed.

N and N’ are x-back xx-forth 7-bisimulation equivalent,

*, %% € {interleaving, step, partial word, pomset}, Nt{,)**fN’,
if AR : N7, . N', » 4x € {i, s, pw,pom}.

*bxk f

117

Comparing back-forth r-bisimulation equivalences

EEEEEEEE 11 (Pin93,Tar97] Let « € {i, s, pw, pom}.

For nets N and N':

1. N« N & N<7 N’;

pwb* f pomb* f

2. Neo[, N & N, N

**

| T T |
| pombi f ~~pombs f ~~pombpw f*— " pombpom f,
| |
- | |
! T T T T !
| pwbi f ~~pwbs f ~~pwbpw f ~“pwbpom f |
r::::k:::::::::&:::; 777777777777777777
\ T T \ T
| sbi f <*_Jsbsf | t)sbpwf sbpom f
S S S J |

T

T T T
Sivif ~— st —— Sibpwf —— Fibpom f

Merging of back-forth r-bisimulation equivalences

-
<*_Jpombpom f

T T T
<:>5be t)prwf <_>sbfomf

| l

T T
<*_Jibif D <*_szsf D <*_szpwf <_**szomf

Interrelations of back-forth T-bisimulation equivalences

118

Comparing back-forth r-bisimulation equivalences with
basic ones

_ 12 For nets N and N':

1. N N & N N' [Gla93];

2. N7 N' & N7

~“pombpom f pomhbr

N’ [Pin93];
3. N4 N = N<j N'[Tar97].
T B

-
/— '?thTbr

—mes

Interrelations of back-forth m-bisimulation equivalences
with basic ones

12 Let < «»e{=", 7.~} and ~, ++ € { i, s,
pw, pom, ST, pwST, pomST, pomh, pomhST, 1br,1STbr,
pomhSTbr, pomhbr, mes, ibs f,ibpw f, ibpom f, sbsf, sbpw f, sbpom f}.
For nets N and N' N--,N' = N« N' iff in the graph
above there exists a directed path from «, to « ...

119

NEe® (@
g lb :; bpw f
l l

O (& O

BFT: Example of back-forth m-bisimulation equivalences

e In Figure BT(c), N N', but N2 N'.

”bf

e In Figure BFT, N7, N’, but N#/

sbpw f pom

e In Figure BT1(a), N« , but N<£, N

prom

e In Figure BT(b), N—'.,, N’, but N@%bs

120

Logic BFL [NMV90]

Definition 67 [denotes the truth, a € Act.

A formula of BFL:
b= T|P|PAV | (+—a)P | (a)P

BFL is the set of all formulas of BF'L.

Definition 68 Let N be a net and (mw,0) € Runs(N).
The satisfaction relation =y € Runs(IN) x BFL:

1. (w,0) =nx T — always,
2. (m,0) =Ny P, if (7,0) EN P,
3. (m,0) =y PAV, if (m,0) =y P and (rw,0) =x V;

4. (m,0) =y (+ a)P, if 3(7,5) € Runs(N)
(#,6) = (m,0), where # = (C,), vis(I5(T5)) = a
and (7,5) =n @,

5. (m,0) En (&), if 3(7,5) € Runs(N) (n,0) > (7,5),
where 7 = (C, @), vis(la(Ta)) =a and (w,0) =n P.

[a]® = —(a)~P, [« a]P = ~(— a)~D.
N |:N CD, it (7‘(‘]\[,8) |:N D,

Definition 69 N and N’ are logical equivalent in BFL,
N N, If\V/CDEBFLN|=NCD & N/ — N D.

121

Let N be a net and w € M(N), a € Act.

The set of visible extensions of a process w by action a
(image set) is VisImage(w,a) = {7 | 7 = 7,
7= (C,p), vis(l5(T5)) = a}.

A net N is a finite-image one, if Vr € M(N) Va € Act
|VisImage(w,a)| < oo.

13 For image-finite nets N and N’
N« N' & Ni—*{bi[N/ <~ N:BFLN/-

1br

122

Example on logical equivalence of BFL

SN

T b a T b
l
O @
N N', but N N', because for ® = (a)[« a](b) T,

N =y @, but N =5 P, since in the net N’ an action a
can happen so that it will be simulated by sequence 7a in
N.

Then the state of the net N reached after - must be
related with the initial state of a net N, but in such a
case the occurrence of action b from the initial state of
N’ cannot be imitated from the corresponding state of N.

123

Logic SPBFL [Pin93]

Definition 70 T denotes the truth, p is a pomset with
labeling into Act.

A formula of SPBF'L:
D= T | 2P| PAV | («— p)P | (a)P

SPBFL is the set of all formulas of SPBF'L.

Definition 71 Let N be a net and (w,0) € Runs(N).
The satisfaction relation &=y € Runs(IN) x SPBFL:

1. (m,0) =x T — always,
2. (m,0) En ~P, If (m,0) Ey P;
3. (m,0) =Ny PAV, if (m,0) =y P and (7,0) =n V¥,

4. (m,0) =N («+ p)®, if A(7,5) € Runs(N)
(#,6) = (m,0), where # = (C,3), vis(p;) € p and
(7,5) =N P;

5. (m,0) =x (a)®, if 3(7,5) € Runs(N) (r,0) 5 (7,5),
where 7 = (C, @), m’s(la(Ta)) =a and (w,5) =y D.

[a]® = —(a)=P, [« p]P = ~(p)=P.
N |:N CD, it (ﬂ'N,E) |:N P.

Definition 72 N and N’ arelogical equivalent in SPBFL,
N=qppp N, if V® € SPBFL N |:N o < N |:N’ D.

L0 14 For image-finite nets N and N’
N<«T N & N7 /-N/ <~ N:SPBFLN/-

pomhbr pombpom,

124

Example on logical equivalence of SPBFL

N@ N’@

—BFL

@AQSPBFLC@\i i

C C

Differentiating power of =gppryr,

N=p 1 N', but N~5,5, . N', because for

& = [a][b](c)(+ (a;b)|lc)T, N E=n P, but N’ [=n P since
only in N’ after a action b can happen so that ¢ must
depend on a.

Here (a;b)||c denotes the pomset where b depends on a,
and a, b are independent with c.

125

Interrelations of equivalences with r-equivalences

_ 15 Let <« € {=, <}, ~ € {i,s,pw,pom, ST,

pwST, pomST, mes, sbsf, sbpwf, sbpomf}, rx € {s,pw,pom}.
For nets N and N':

1. No.N' = N N';

2. NN’ = N7, N';

3. NejsyN' = NI, N,

4. NepoN' = N on, N

5. Ne-.N' = N-/, N

and all the implications are strict.

N (o) N’ (o)

a - a
<*_Jpoth Tbr
b & T b
b C

ETE: Example of interrelations of equivalences and
T-equivalences

126

e In Figure ETE, N N’ but N#;N’, since only

in the net N’ an action a can happen in the initial
state.

e In Figure BT2(a), N N’ but N#;N’, since only in
the net N’/ an action 7 can happen in the initial state.

127

SM-refinements

N N’ D
N s
~_ i/ L
SppEdanss |
b b C b b b C C2
ref(N,c, D) ref(N.’,c,D) : Q
S50 . oD &
b Cco C1 b b Cc2 C1 Cc2
QD O m> O
b C2 b C2

RBT: The m-equivalences between =7 and <7 are not

1 - S

preserved by SM-refinements

128

N’ D

O (O)—1e O

a (_Z_T)}Tmm a ai

**ibgomf

O® i O@O® O
R |

b b b b a2

ref(N,a, D) ref(N',a,D) Q

® ORI GST

aq ai

an Qé: a2
Qﬁ @/@ ﬁ

RBT1: The rm-equivalences between <7 and <7

1

1 om are
not preserved by SM-refinements

129

a a \d\~
O @ O D@ O
b T zm /@\7—
O \@

o O

T Il
AL
a =4 3
V) S

@

C

T

RBT2: The 7-equivalences between <] and </ ,, are
not preserved by SM-refinements

130

e In Figure RBT, N<-'N’, but ref(N,c, D)
ref(N’,c,D), since only in ref(N',¢c, D) the sequence
of actions ciabcy can happen.

e In Figure RBT1, N N’, but ref(N,a, D)
ref(N’,a,D), since only in ref(N’,a, D) after occur-
rence of action aq action b can not happen.

e In Figure RBT2, N N’, but ref(N,a, D)
ref(N',a, D), since only in ref(N’,a, D) an action c;
may happen so that after the corresponding action ¢;

in the net N an action a may happen in such a way
that the action b never occur.

131

EEEEEEEEE 13 (BDKP91,Devo2, Tar97] Let « € {i, s},

** € {1, s, pw, pom, pomh, ibr, pomhbr, ibs f, ibpw f, ibpom f, sbs f,
sbpw f,sbpom f}. Then the T-equivalences =, < are not
preserved by SM-refinements.

T —
-
/— <*_jpoth Tbr

-
g*—Jpom hbr

-
ﬁ?poth T

T omST

) —s —pw —pom —mes

The Tm-equivalences which are not preserved by
SM-refinements

132

Preservation of the r-equivalences by SM-refinements

_ 16 Let« e {=" <" . ~}and+e{ i s pw pom,
ST, pwST, pomST, pomh, pomhST, 1br, pomhbr, 1ST'br,
pomhSTbr, mes, ibsf,ibpw f,ibpomf, sbsf, sbpw f, sbpomf}. For
nets N, N' s.t. ae€ln(Tn) Nin(Tn) N Act and SM-net D:
N« . N'" = ref(N,a,D)—.ref(N', a, D) iff the equivalence
<, Is in oval in the figure above.

133

The m-equivalences on nets without silent transitions

_ 14 Let «— € {=, <}, € {i, s, pw,pom,iST,
pwST, pom ST, mes, sbsf, sbpwf, sbpomf}, »x € {s,pw,pom}.
For nets without silent transitions N and N':

1. N+, N & N<TN' [Gla93, Tar97],

2. NN & N<, N' [Gla93];

3. Ne—,s7N' & N@Z‘TSTbrN/ [Tar97],'

4. NepounN' & N o, N [Tar97];

5. N, N < Ni—*)z‘Tb**fN, [Tar97].

T |
<*_Jpomhs Thy

/ |

Merging of the m-equivalences on nets without silent
transitions

134

12

T T
;sbs f ‘__/Hsbpw 1 /prom f
T T T T
ll — <:>S — <:>pw “pom
—T —T —T —T
= D — = -~ —pw —pom

Interrelations of the m-equivalences on nets without
silent transitions

_ 17 Let <« «» e {= < ~}, ++x€{ 1,5 pw,
pom,iST, pwST, pomST, pomh, ibr, mes, sbsf, sbpw f, sbpom f}.
For nets without silent transitions N and N' N« N' =
N« N'iffin the graph above there exists a directed path
from «—, to «»,..

135

The T-equivalences on sequential nets

Definition 73 A net N = <PN,TN,FN,ZN,MN> is
sequential, if VM € Mark(N) —3t,u € Ty . *t+ °*u C M.

_ 15 For sequential nets N and N':

1. N=/N' & N= N’ [Eng85];

—pom
2. NN & N7 . N'[BDKPII];

3. NojgpN' & N<J . opN' [Tar9sa];

4., N7 N' & N7

tbr pomhbr

N' [Tar98a],

5. Nejgp, N & N o on, N [Tar98aj.

Merging of the T-equivalences on sequential nets
136

fbr o lTTbT —
T T
Tz ST

T —T
(/ —mes

Interrelations of the T-equivalences on sequential nets

18 Let «+ «» e {=", ", >}, + +x€{ 1,057,
wbr 1S Tbr,mes}. For sequential nets N and N N« N =
N« N'iffin the graph above there exists a directed path
from <, to «»,,.

e In Figure BT2(a), N=] _.N’, but N</ N
e In Figure BT2(c), N«-/N’, but N<£|, N'.

e In Figure BT2(b), N—/N’, but N<£ . N’

e In Figure BT1(c), N/, N', but N+

7716’5

137

e
S @pomhs Tbr)

-
<*_Jpomhbr

New results for the r-equivalences

138

Decidability results for the r-equivalences

— is decidable for:
finite safe nets (EXPSPACE) [JM96].

— is undecidable for:
labeled nets [Jan95].
o —/
— is decidable for:
finite safe nets (EXPSPACE) [JM96].
° Egom
— is decidable for:
finite safe nets (EXPSPACE) [JM96].

0<:>Z—

— is decidable for:
finite safe nets (DEXPTIME) [JM96].

— is undecidable for:
labeled nets [Jan95].

T
® - S

— is decidable for:
finite safe nets (DEXPTIME) [JM96].

“pom
— is decidable for:
finite safe nets (DEXPTIME / EXPSPACE)[JM96].

139

R
28T
— is decidable for:

bounded nets [Dev9o2];
finite safe nets (DEXPTIME) [JM96].

-
t)pomS T

— is decidable for:
finite safe nets (DEXPTIME / EXPSPACE) [JM96].

-
<>
~~pomh

— is decidable for:
finite safe nets (DEXPTIME) [Vog91b,JM96].

-
t)pomhs T

— is decidable for:
finite safe nets (DEXPTIME) [Vog91b,JM96].

T

<.
ibr

— is decidable for:
finite safe nets (DEXPTIME) [JM96].

140

Further research

T-variants of place bisimulation equivalences.

e New equivalences.

Interleaving place T-bisimulation equivalence (~7).
Behavior preserving reduction of Petri nets with silent
transitions [Aut93 APS94].

e Interleaving branching place t-bisimulation equiva-
lence (~7,).

e Non-interleaving variants of place r-bisimulations
(and).

e [nterrelations of the place r-bisimulations.
Whether any two of and coincide?

We have only counterexamples showing that and
do not imply each other and do not merge with
any of three mentioned r-equivalences.

e Interrelations of the place 7-bisimulations with the
other r-equivalences we proposed.

We compared place equivalences with other ones on
Petri nets without silent transitions [Tar98b].

e Preservation of place r-bisimulations
by SM-refinements.

We can show that no place r-bisimulation relation is
preserved by SM-refinements [Tar98b].

141

e Interrelations of place t-bisimulations on net sub-
classes.

On nets without silent transitions place
T-equivalences coincide with the corresponding rela-
tions that do not abstract of silent actions. In par-
ticular, merges with

On sequential nets, all non-interleaving place rela-
tions coincide with interleaving ones: only and
are remained.

142

Equivalences for process algebras:
calculus AF P>

Abstract: A process algebra AF P> was proposed by L A.
Cherkasova in 1989. It has a semantics of posets with
non-actions and deadlocked actions to respect
non-determinism.

Via formulas of AF P>, one can analyze behavior of A-nets
(Acyclic nets). The considered Petri net equivalences are
investigated on this net subclass.

Semantic equivalences of formulas AF P, (algebraic equiv-
alences) are transferred into A-nets, and their interrela-
tions with the net equivalences are investigated.

A term rewrite system RW S5 is produced from axiom sys-
tem ©, for semantic equivalences. Its confluence (in the
case of termination) is proved.

A method of automatic check for algebraic equivalences
based on RW S, was implemented as a program CANON
in C programming language.

Keywords: Process algebras, syntax, semantics, seman-
tic (algebraic) equivalences, axiomatization, A-nets, net
equivalences, term rewrite systems, implementation.

143

Contents

e Introduction
— Process algebras: semantics of concurrency

— Process algebras: specification and analysis

e Calculus AFP>
— Algebra of finite processes AF P>
— Syntax
— Denotational semantics
— Axiomatization

— Canonical form of formulas

e Net and algebraic simulation
— Equivalences on A-nets

— Comparing the net and algebraic equivalences

e Term rewriting
— Term rewrite system RW.S;
— Notices on RW S5
— Confluence of RW S

e Implementation
— Program CANON

— Examples of formula transformation with
CANON

144

Process algebras: semantics of concurrency

In process calculi, a process is specified by an algebraic
formula.

A verification of its properties is accomplished by means
of equivalences, axioms and inference rules.

The calculi below construct a process from atomic actions
with precedence, parallelism, non-determinism and some
auxilary operations.

1.

Interleaving semantics.

CCS [Mil80], CSP [Hoa80], TCSP [Hoa85,01d874a],
BPA [BK89].

Concurrency is interpreted as

Step semantics.

SCCS [Mil83], ACP [BKS84], CCSP [Old87b], PBC
[BDH92].

A special operator for of ac-
tions.

FPomset semantics.
Algebra of event structures [BCa87].

A causal dependence relation over actions imposes
. Two actions are parallel if they are
causally independent.

Interleaving calculi are more suitable in technical staff.

Algebras based on step and pomset semantics have more
natural specification of concurrency.

145

Process algebras: specification and analysis

1. Descriptive calculi.

They provide a description of structural properties of
systems: specification.

An example is APy [Ch89].

2. Analytical calculi.

They combine mechanisms as for specification of pro-
cesses as for investigation of their behavioral proper-
ties: analysis, verification.

An example is AF P, [Ch89].

146

Algebra of finite processes AF P>

AF P> has semantics of posets with non-actions and dead-
locked actions (to respect non-determinism).

A is by action . T he only event
corresponds to equally named actions.

Syntax

The symbol alphabets.

e o =1{a,b,...} is an alphabet of non-actions.
o A\, ={dq,d,...}isan alphabet of deadlocked actions.

a=aUJaUA,.

Symbols of a are combined into formulas by operations
. (precedence), ~7 (exclusive or, alternative), || (concur-
rency), V (disjunction, union), T| (“not occur”), T (“mis-
taken not occur”).

Definition 74 A formula of AF P> is:

Pu= ald|s|TalTIP|PQIPIQ| PvQ|PVQ.

Herea € o, a € o, 9, € A, are elementary formulas. AFP»
is the set of all formulas of AF P».

Definition 75 Formulas of AF P> P and P’ are isomor-
phic, P~P’, if they coincide up to associativity rules w.r.t.
|, V, v and commutativity rules w.r.t. ||,V,</.

For example, (al|b||c) Vv (c||al|b)~(allb||c) Vv (b]lalc).

147

Denotational semantics
Let X C a. We propose the following notations.

° = X N« is the subset of actions of X;

° = X Na is the subset of non-actions of X;

° = X NA, is the subset of deadlocked actions of
X.

We consider only posets p = (X, <) over a with the fol-
lowing restrictions.

1. a, a and ¢, do not occur in X together;
2. < is irreflexive;

3. Ve,ye X UAx (x Ay) ANy £ x), i.e. all elements of
X~ UAx are incomparable;

4. Vox € XT Vy € X UAx (2 A y) A(y # z), i.e. all
elements of X1+ and X~ U Ay are incomparable.

The modified union of posets absorbs equal computations
and ones which can be continued in another behaviour of
nondeterministic process.

. P; p'<dp;
pUp = ¢ o, p<p’,
{p,p'}, otherwise.

The operations over posets are introduced: ; (prece-
dence), || (concurrency), v (alternative), || (not occur)

and || (mistaken not occur).

If a constructed poset p does not satisfy the conditions
1-4, we ‘“correct” it with regularization operation [p].

It singles out the maximal prefix of p “before” some con-
tradictions arise. All the actions occuring “after” that
contradictions are announced as the deadlocked ones.

148

o Vi ={ds](a€e X)N(a<a)}U{d,|(a € X)A(ae X)}U
{00 | (a € X)A(0g € X)}U{ba | (a € X)AN(0q € X)}UAY;

e Do={6](aeX)N(8E DI)A(S<a)};
° D3:{5Q‘C_LEX}.

Dy =0;

p=170
o 1 U D> U D3, otherwise.

Then [p] = (D,0) U(Y,<N(Y xY)), where Y = X \ a(D).
If p satisfies the conditions 1-4, then [p] = p.

Let p = (X, <), p/ = (X,=<'). We define poset operations.
Not occur [|p = (a(X),0).
Mistaken not occur Jp = (A.(X),0).

Precedence p;p = [(XUX', U< UXT x (XM U
(Ax x (XN)T)H].

Concurrency p|lp = [(XUX’, (XU <)*], where (< U </)*
is a transitive closure of < U <.

Alternative pvyp = [(XUa(X'),<,1Uul’)]0
[(a(X) U X', <] (note that psyp’ is not a poset, but a
set of two posets describing alternative behaviours).

We extend the operations above to sets of posets. Let
P =Ul,p; and P' = UL, pl.

Then =P = U_;—p;, where = € {]], 7]} and
PoP' = Ui=1(TjL1pi 0 p}), where o € {;, |, V}.

149

Definition 76 A denotational semantics of AF P> is a
mapping D> from AFP, into set of posets.

1. Dala] = ({a},0), D2la] = ({a},0), D2[0] = ({da},0),
2. Dy[-P) = -Ds[P), =€ {]],T};
3. DQ[POQ] - DQ[P]ODQ[QL o€ {;) va}r

4. Da2[PVvQ] = D2[P]UD2[Q].

Definition 77 Formulas of AF'P> P and P’ are equiva-
lent w.r.t. denotational semantics, P=p P’, iff D3[P] =
D>[P].

If p= (X, <) is a poset, then p™ = (X, <) is the “observ-
able” part of p over «a.

For any formula P of AFP,, Dy[P] = Ul p; is a set
of posets, which characterize a nondeterministic process
specified by P.

An ‘“observable” part of this set is defined as: DJ[P] =
n .+
Ui=10; -

Definition 78 Formulas P and P’ are observation equiv-
alent w.r.t. denotational semantics, P=,. P, iff DJ [P] =

DI [P].

A context C is a formula of AF' P> with zero or more subfor-
mulas replaced by “holes” to be filled by other formulas.

C[P] means putting of the formula P in each such “hole”.

_ 16 [Ch89] For any two formulas P and P’
of AP, P=p P & VC C[P]=n».C[P].

150

Example of semantic equivalence of AF P,

WL
H Sod &
VWYX

Y Qo

i
|

l
O O

A-nets from example on congruence
Thus, —p is a congruence w.r.t. operations of AF P>,

But =, is not a congruence.
Let Pr =a<yb, P{ = (a7 b)l|la|lb and P> = c.
Then D [P1] = DI [P}] = {({a},0), ({b},0) and Pi=, P].

But DJ [P1;P] = {{{a, b}, <1), ({b,c}, <2)}, whereas
DF[P{;Po] = {({{a},0), ({b},0)}, and P1; P~ P};Ps.

151

AXxiomatization

An axiom system ©- is in accordance to the equivalence
. Here P, Q, R€ AFP3, ac€ a, a € a, i, € A,.

Associativity
PI(QIR) = (PQ)|IR
Pyv(QVR)={FPvVQ VR
PV(QVR)=(PVQ)VR
P (QR)=(PQ); R
Commutativity
PlQ=Q|P

PyQ=QvP
PVQ=QVP

Distributivity
(PlQ); R = (P; R)|(Q; R)
P (QIR) = (P;Q)|(P; R)
(PVQ),R=(P,R)V(Q:R)
P, (QVR)=(P;Q)V (P R)
(PVQ)IR=(P|R)V(Q|R)
Py @QIR)={FPvQ)IIPvR)

152

4. Axioms for 7 and]

4.1 P Q= (P(1Q) v TIP)Q)
4.2 T(PIQ) = (NP)HII(TNQ)

423 MPVvQ)=P)Vv(Q)

4.4 7P Q) = (T1P)II(NQ)

45 Jla=a
4.6 Jla=a
4.7 1da = a

5. Structural properties
51 a; P=allP
52 P;a= Plla
5.3 PI(P;Q) = (P;Q)
5.4 QP Q) = (P;Q)
55 PQ,R=(P;Q)|(Q; R)
5.6 (P,Q)(Q:R) = (P, Q)|(Q; R)||(P; R)
57 P|P=P
58 PVP=P
50 PvQ=PorQ«P

153

Axioms for deadlocked actions and ﬂ

alla = 4,

a.a =0,

al|ds = da

50 P = 8, (T1P)
P; 64 = P||0q

Sall (T1P) = 6all(T1P)
Tla= 64

Tla = 64

160 = éa

NweIR) = 1AM
;)= J1P)I(1Q)
Meve)=>Jr)vde)

The axiom system ©- is sound for e, if P= P is
an axiom of ©-, then P P’

In order to prove that ©» is complete for . we intro-
duce a canonical form of formulas.

154

Canonical form of formulas
A canonical form of formulas of AF P> is a

Elementary members: symbols from a or elementary prece-
dences (of two actions). Conjunction: ||, disjunction: V.

Let P be a formula of AFFP,. An alphabet of P, denoted
by «(F), is defined as follows.

1. a(a) = a(a) = a(d) = a;
2. a(=P) =a(P), - {171}
3. a(PoQ) = a(P)Ua(Q), ce{;,|,v,V}
o a(P)={a|acalP)};
o Au(FP)={ba|aealP)};
o () =a(P)Ua(P)UA.P).
A contents of P, denoted by cont (), is defined as follows.
1. cont(a) = a, cont(a) = a, cont(ds) = da;
2. cont(~P) = cont(P), — € {I.T};
3. cont(PoQ) = cont(P) Ucont(Q), o€ {;,|,, V}.
o cont™(P) =cont(P)Na is a set of actions of P;
e cont (IP) =cont(P)Na is a set of non-actions of P;

o AN ,.:(FP)=cont(P)NA, is a set of deadlocked actions

of P.
A precedence is a formula Pi;...;P, = ;.1 F;, where P; €
a (1<i<n);
A conjunction is a formula Pi||...||P, = ||/, F, where P,

are precedences (1 <i<n).

A disjunctionis a formula P = P,V ... VP, = VI, F;, where
P, (1 <i<mn) are conjunctions.

155

A normal conjunction is a conjunction P = ||'_,;P; with
the following properties.

1. Every formula P, (1 <17 <n) has one of the forms:

(a) elementary formula a (a € @), a (a € &),
6a (60 € Aq);

(b) elementary precedence (a;b), where a,b € o and

a #*= b;

2. If thereis a formula P, (1 <i<n) s.t. P,=9§, (4, €

A,), then there is no another one P; (1 <j <n) s.t.
Pj=1b (b€ a),

j < n) s.t.

For any formulas P, and P; (1 < ¢
a form of different

a(P;) ﬂOé(Pj) # (0, P; and P; have
elementary precedences;

For any pair P, = (a;b) and P; = (b;c) (1 <i# j <
n) there exists a formula P, = (a;¢) (1 < k < n)
describing the transitive closure of the precedence
relation for actions a, b and c.

1(2,3,4)-conjunction is a conjunction that satisfy the con-
dition 1 (2,3,4) from the definition above.

For example, 1,2,3,4-conjunction is a normal one.

Let P and Q be normal conjunctions. A formula P is a
strict prefix of), P<Q, if the following holds.

1.

2.

cont™(P) C cont™(Q);

elementary precedence (a;b) is a conjunctive mem-
ber of Q and b € cont™(P) iff (a;b) is a conjunctive
member of P.

A formula P is a prefix of), P<Q), if P<1@Q or P ~ Q).

156

For example, in the formula (al|c||bl|d||€) Vv (c|[6al|6p]|d4]|6c)V
(al|op||dc|[0al|0e) Vv ((b; d)||(b; e)||lallc), the second and third
conjunctions are strict prefixes of the first one.

Definition 79 A formula P is in canonical form if it is
a disjunction P = Vi_, P, with the following properties.

1. P, (1 <:<n) is a normal conjunction;

2. forany P, and P; (1<i# j<n) P #%P;

3. forany P, and P; (1<i# j<n) ~(P,<P;VP<dF).
As for conjunction, we define 1 (2,3)-disjunction. For

example, 1,2,3-disjunction is a canonical form.

Each disjunctive member of canonical form characterizes
one of alternative behaviours of the nondeterministic pro-
cess specified by the formula.

It has a form practically coinciding with a poset corre-
sponding to this behaviour.

For example, the formula (al|c|b]|d]||e) v ((b;d)]|(b;e)|al|c)
is in canonical form.

A conjunction (disjunction) is maximal if there is no longer
one containing it as a conjunctive (disjunctive) member.

e 19 /Ch89] Any formula of AF P, can be re-
duced to the unique (up to isomorphism) canonical form.

The set of all canonical forms of a formula P is

Definition 80 P P’ means that the equality of P and
P’ can be proved using ©-.

el 20 [/Ch89] For any formulas P and P’ of AF P!
P P & P P’

To check equivalence of formulas P and P’ of AF P>, one
can reduce them to canonical forms @ and Q' and compare
the latter up to isomorphism.

157

Equivalences on A-nets

A descriptive algebra AF Py with semantics based on finite
A-nets [KCh85].

Any finite A-net can be specified by a formula of the
algebra using ‘“regularization” algorithm [Kot78].

A mapping WV from the set of all formulas of AFF, into
that of AF [s.t. the set of posets of the net specified by
a formula P of AFF,, coincide with the set of posets of
nondeterministic process specified by the formula W(P)
of AFP> [Ch89].

Hence, given the A-net specified by a formula P of AF P,
one can analyze its behavior by means of the same formula
P of AFPQ.

Definition 81 An A-net (Acyclic net) is an acyclic ordi-
nary strictly labeled net N = (Py,Tn, Fn, Iy, My) with the
following properties.

1. Vpe Py (*p = 0)V (p* £ 0), i.e., there are no isolated
places;

2. Vp,ge Py (*p=°¢) AN(p*=¢q*) = p=yq, i.e., there
are no ‘“superfluous” places;

3. Vie Ty (t =0)AN(* #=0), i.e., all transitions have
input and output places;

4. Vxr € PyUTyN | | z| < o0, i.e., the set of causes is finite;

5. Vpe Py Vt,u €Ty t,u € *°p = t al u, i.e., transitions
with common output place are alternative;

6. My = °N, i.e., an initial marking is a set of input
places of the net.

158

The alternative relation, denoted by al, is defined as fol-
lows. Let t,u € Ty for A-net N. t al u if the following is
valid.

1. (t Av u) A (u AN t);

2. (*tN*u#E=P)Vv(@pectVte*pt al u) Vv
(Gge®uVu' €®gtalu)Vv(t=u).

Since we consider nets only with finite processes, item 4
may be ignhored.

Items 5 and 6 guarantee a safeness of A-nets.

A mapping V : AFPy — AFP, is defined as follows.
1. W(a) =a,
2. V(P;0Q) = P;»Q,
3. W(P[oQ) = P|]2Q,
4. W(PvoQ) = Pv2Q.

The number O (2) marks the operations of AF Py (AF).

Denotational semantics of AF Py is a mapping , which
associates with every formula P a set of maximal C-
subnets of finite A-net NN, specified by the formula.

e 21 [/Ch89] Let P be a formula of AFPy and
Q be a formula of AFP> s.t. Q = W(P). Then

{pc | C € Do[P]} = DF[Q].

159

_ 17 [Tar97] For A-nets N and N':

1. NE,N’ <~ NEmesN/;

2. N=,N & N, ,N'

|

|

|

l

|

“pwS'I- “ZpomST-———=ZprST

(. |

R

(. |

(. |

ﬁl ~— <7y <:>pw <:>p07n<—9—¢— <:>p7 |
(. |
T
(. |

R — (. R |

=] —— =s —pw —pom +—++— —pr :

,,

Merging of the basic equivalences on A-nets

160

Interrelations of the basic equivalences on A-nets

_ 22 Let —,«»e {=.~}, » 45 € { i, pr occ}.

For A-nets N and N' N« N' = N« _ N' iff there ex-
ists a directed path from <, to «»,.. in the graph above.

161

(2)

O e N@%@ ICXG

S

L5 8y b Hud

S
o T

O cC 5
@@@ VBT
Sorth < e

AN: Examples of the basic equivalences on A-nets

e In Figure AN(a), N=,N’, but N+, N’, since a causal
net of process of N’ with action a not isomorphic to
any causal net of process of V.

P =ua;b, P'=(a;b)||a.

e In Figure AN(c), N=, N/, but N N’, since only in
the unfolding of N’ there is a place which is an input
one for three transitions.

P=(avbd)|vllavc), P=(avbvc)llasd)e.
e In Figure AN(b), N N', but N#4N’, since only in

the net N’ there is a transition labeled by ¢ (which
never fires).

P=(avbalb, P'=(avb(a;e)®;e).

162

Comparing the net and algebraic equivalences

Definition 82 Let <+ be a formula equivalence of AF P>,
and the formulas P and P’ correspond to the finite A-nets
N and N’ (as described before).

Two nets N and N’ are equivalent (w.r.t. <), notation
N« N', iff the formulas corresponding them are also equiv-
alent, i.e. P~ P’.

_ 18 [Tar97] For A-nets N and N' N—,N' <

N:D;N/'

Interrelations of the basic net and algebraic equivalences

_ 23 Let —,«»e {= ~ =}, + x4 1, pr occ,
DS .D-}. For A-nets N and N' N«-.N' = NN iff
there exists a directed path from <, to <., in the graph
above.

163

Equivalences on weakly labeled A-nets

Definition 83 A weakly labeled A-net is an net with all
properties of A-net with exception of strict labeling.

Y

|

—mes ™ —occ

l |
S=pomh “prh
l |
==ST pwST- “pomST =prST
| | l |
2 ~—— 25 “pw Zpom pr
T T

] T =g ——— —pw

—=pom =pr

Interrelations of the basic equivalences on weakly labeled
A-nets

_ 24 et —,«»e {= <« ~}, x4k €{ i, 5 pw,
pom, pr, ST, pwST, pomST, prST, pomh, prh, mes, occ}. For
weakly labeled A-nets N and N' N« N' = N« _N' iff
there exists a directed path from <, to «».. in the graph
above.

164

oxe

LAN: Examples of weakly labeled A-nets

()N@/@\@ N@%@\
Q pr

o~ (Ul

st] - Qﬂ
M oo b

(b) N N’ @

@/ S e
Bo ot Sbwird

f f

. .
FEmes

o

LAN1: Examples of weakly labeled A-nets (continued)

166

In the following examples, E, E’ are formulas of AF L
[Tar96] and B, B’ are that of PBC [BDH92].

e In Figure LAN(a), N« N’, but N4.N’, since only in
N’ actions a and b can be executed concurrently.

E=celf, E'= (e1; f1) v (e2; f2).
B = a|lb, B’ = (a;b)[(b; a).

e In Figure LAN(b), N N', but N N’, since
only in N’ action b can depend on a.

E=c|f, E'= (e fO)|(f1V f2).
B =a|lb, B'=z: ((a; {b,x})[|(b]Z)).

e In Figure AN(a), N N', but N#, N'.

E=e, f, E'= (e f)le.

B=ua;b, BB=x:(({a,z};b)||Z).

In Figure LAN(d), N=,, N/, but N/, N’, since only in
N’ action a can happen so that b cannot happen after
it.

FE = e;f, E = (el;f) YV €2.

B =a;b, B = (a;b)]a.

167

e In Figure LAN1(a), N« , . N’, but N N’, since only
in N" action a can begin working so that no b can start
unless a finishes.

E = ((e1 v e2); f)I(f1 v f2)llexlle2] f2,
E' = ((e1; f1) v (e2;) I(f1 v f2)[(e2 v f2)lex]l f3.

B = {z1,22,y1,92} : (({a,z1}[{a,z2}); {b,y1})]]
(G10{b, y2}) [|Z1[|Z2][92),

B = {$1,$2,y1,y2,y3} : (({CL,ZCl}; {b7 yl})[l({a,332},
{6, yz DI (@1 0{6, v2) | (Z2[72) | Z1]|73) -

e In Figure LAN1(b), N N’ but N N', since
only in N’ actions a and b can happen so that the
next action, ¢, must depend on a.

E = (e; fih)||(e; 92) (91 v 92) || fllg1,
E'= (e; (f1 v f2); b)) (e; g2) 1| (f2 7 91) 11 (91 7 92) || f1-

B ={z,y,21,2} : (({a,2}; {b,y}; D@ {c, 22}
({e, 21} 122)[31[%),

B' = {z,y1,y2 21, 22} : ({a, 2} ({b, y1}1{b, v2});)]
(@ {c, 22D | a1, 2 DI G1122)).

e In Figure LAN1(c), N N’, but N N’, since only
MES that corresponding to N’ has two conflict ac-
tions a.

E=e, E =e1eo.
B =a, B’ = dfa.

e In Figure AN(b), N N', but N4AN'.

E=(ev Dlelf, = (ev N Dl(f:9).

B ={z,y} : (({a, z}[{b,y})|Z|7),
B' = {x,y,z} : ({a, 2} [{b, y DI {c, 2DI[(7; 2)).

168

Term rewrite system RW Ss

A substitution of subformula 7, of a formula P by another
subformula), denoted by [P];), is the formula

Pio...P,_100)oP;410...0F,, where
P = Pjo...oP,_j0P0oP;yi0...0P,, o€ {;,|,v, V}.

In the following rules of RWW S5, P,Q, R denote formulas of
AFP> and a,b,c € o, a,b € &, 64,6, € An. The numbers
in parentheses are the that of equalities of ©> used to
produce the corresponding transition rules.

oe{;, VI =
Po(QoR) — (PoQ)oR
(1.1, 1.3, 1.4)

(0,0) € {([1,:), (V.5), (v, D} =
(PoQ)eR— (PeR)o(QeR)
(3.1, 3.3, 3.5)

(o,0) € {(II,;), (V,5), (v, 1D} =
Pe(QoR)— (PeQ)o(PeR)
(2.1, 3.2, 3.4, 3.5)

P Q— (PI(Q)) Vv ((TP)]Q)
(4.1)

oe{ll,;,-e{N.T} =
~(PoQ) — (—=P)|[1(-Q)
(4.2, 4.4, 6.10, 6.11)

-e{1,7} =
—(PVQ)— (=P)V(=Q)
(4.3, 6.12)

169

43 P=qagor P=agor P=29¢, —
_HP—>5,
(4.5, 4.6, 4.7)

4.4 P=agor P=aor P=590, —
ﬂP—>5a
(6.7, 6.8, 6.9)

51 PQ,Rea =

(P;Q); R— ((P;Q(Q; R)|I(P; R)
(5.5, 5.6)

52 Qea =
a,Q — allQ
(5.1)

53 Pea =
P;a — Plla
(5.2)

54 aa— O,
(6.2)

55 Q=borQ=borQ=¢ =
da; Q — dal|0p
(6.4, 6.7, 6.8, 6.9)

56 Pea =
P; 6q — Pl|dq
(6.5)

170

6.1

6.2

7.1

7.2

7.3

7.4

7.5

P is 1-conjunction, P’ = §, is a conjunctive member
of P =

P|5 — P||5,
(1.1, 2.1, 4.5, 6.6, 6.7)

P is 1-conjunction, P’ = b is a conjunctive member
of P =

P||6a — [P35 11a
(1.1, 2.1, 4.5, 6.6, 6.7)

P is 1,2-conjunction, P’ is a conjunctive member of
P, P=aor P=b =

Pll(a;b) — [P),
(1.1, 2.1, 5.3, 5.4)

P is 1,2-conjunction, P’ is a conjunctive member of
P, P'=(a;b) or PP =(b;a) =

Plla — P
(1.1, 2.1, 5.3, 5.4)

P is 1,2-conjunction, P’ = a is a conjunctive member
of P, e{,§} =

Pl|$a — [P]5a'

(1.1, 2.1, 6.1, 6.3)

P is 1,2-conjunction, P’ is a conjunctive member of
P, P=aor P=§, =

Plla — [P]5a'

(1.1, 2.1, 6.1, 6.3)

P is 1,2-conjunction, P’ = (a;b) is a conjunctive
member of P, e {7,6} =
P||$a — [Pl]|6a

(1.1, 1.4, 2.1, 5.1, 6.1, 6.3, 6.4, 6.7)

171

7.6

7.7

7.8

7.9

3.1

3.2

P is 1,2-conjunction, P’ = (b;a) is a conjunctive
member of P, e {,0} =

P||<>a - [P]bl |5a
(1.1, 2.1, 5.2, 6.1, 6.3, 6.5)

P is 1,2-conjunction, P’ is a conjunctive member of
P, P=aor P=§, =

Pl|(a; b) — [P]§ 1|0y
(1.1, 1.4, 2.1, 5.1, 6.1, 6.3, 6.4, 6.7)

P is 1,2-conjunction, P’ is a conjunctive member of
P P=gor P=§, =

P||(b;a) — [P]F||b
(1.1, 2.1, 5.2, 6.1, 6.3, 6.5)

P is 1,2-conjunction, P/ = @ is a conjunctive member
of P =

PllQ — P
(1.1, 2.1, 5.7)

P is 1,2,3-conjunction, P’ = (a;b) is a conjunctive
member of P, in the maximal 1,2,3-conjunction con-
taining P as a conjunctive member, there is no con-
junctive member P" = (a;¢c) =

Pl[(b;c) — (P]|(b; e))ll(a; c)
(1.1, 2.1, 5.6)

P is 1,2,3-conjunction, P’ = (¢;a) is a conjunctive
member of P, in the maximal 1,2,3-conjunction con-
taining P as a conjunctive member there is no con-
junctive member P" = (b;a) =

P|(b; c) — (P[(b; e))[|(b; a)
(1.1, 2.1, 5.6)

172

9.1

10.1

10.2

P is 1-disjunction, P’ is a disjunctive member of P,
P~Q =

PvVQ@—P
(1.1, 1.3, 2.1, 2.3, 5.8)

P is 1,2-disjunction, @ is a normal conjunction, P’ is
a disjunctive member of P, Q<P =

PVQ— P
(1.3, 2.3, 5.9)

P is 1,2-disjunction, @ is a normal conjunction, P’ is
a disjunctive member of P, PP« Q =

PvQ— [P]QI
(1.3, 2.3, 5.9)

173

Notices on RW S,

e Rule (left): to avoid infinite chains
Po(QoR) — (PoQ)oR — Po(QoR) — ---, o€ {;,|,V}.
No rules: to avoid infinite chains

PoQ—QoP—PoQ—---, o {|,V}.
Symmetrical rules are required.
e Rules (symmetrical): to obtain

disjunction of conjunctions with precedences or ele-
mentary formulas as conjunctive members.

e Rule . to remove vy.
e Rules . to remove || and J].
e Rules : to transform precedences into elemen-

tary ones (property 1 of normal conjunction).

Conjunctive (disjunctive) members we want to trans-
form in a pair are not always adjacent: search in con-
junction (disjunction) is required.

e Rules . to avoid conjunction of non-actions
and deadlocked actions (property 2 of normal con-
junction).

e Rules . to avoid common alphabet symbols

in conjunctive members, with exception of that in
two different elementary precedences (property 3 of
normal conjunction).

e Rules - to add a ‘“‘transitive closure” elemen-
tary precedence to the pair of ones with common
action (property 4 of normal conjunction).

Search in a maximal conjunction: to avoid infinite
chains (a; b)|[|(b; c) — ((a; 0)||(b; c))[(a;c) —
((Ca; O)[(b; N I(a; eNI(a; ¢) — - --.

174

e Rule . to remove isomorphic disjunctive members
(property 1 of normal disjunction).

e Rules . to remove prefixed disjunctive mem-
bers (property 2 of normal disjunction).

Rules and are based on the following de-
rived axioms. Numbers over equality signs are that of
axioms of ©->. Symbol * marks reverse axiom applica-
tion. Numbers in parentheses are that of previous derived
axioms.

— 5.1x% _ 1.4 ,_ 51 ,_ 2.1 _ 6.1

al|(a; b) a; (a;b) = (a;a);b = (alla); b = (alla); b
6.4 ~ 6.7

da; b = 0a||(]]0) = bal|6s;

Gull(ai0) = (@@ (aib) = allGll(ai b)) al(Balla) =
(allda) 185 == 8all by

5.2x%

al|(b;a) = (bia)|a = (bia);a = b;(a;a) = b; (alja) =

b, 5a 6.5 b||5a 2.1 (5a||b,

6.1x _ 1.1x% _ (3) 1.1

dal|(b; @) (alla)||(b; a) al|(al|(b;a)) = al[(da]b)
6.3

(allsa)llb 2 8allb;

5all8 = 5all () 2 6all (TIB) = 4|60

175

Confluence of RW Ss

m 19 [Tar97] No rule of the groups 1-5 can
e applied to a formula P of AF P> iff it is a disjunction

of 1-conjunctions.

20 [Tar97] No rule of the groups 1—6 can
be applied to a formula P of AF P iff it is a disjunction
of 1,2-conjunctions.

21 [Tar97] No rule of the groups 1—7 can
be applied to a formula P of AF P> iff it is a disjunction
of 1,2,3-conjunctions.

5 1 s

Conjunctive members with intersecting alphabets

176

22 [Tar97] No rule of the groups 1—8 can
be applied to a formula P of AF PP iffit is a 1-disjunction.

23 [Tar97] No rule of the groups 1-9 can
be applied to a formula P of AF PP iffitis a 1,2-disjunction.

L hcoien 25 [Tar97] No rule of a RW S, can be applied
to a formula P of AF P> iff it is in a canonical form.

Hence, to check semantic equivalence of two formulas of
AF P>, it is enough to transform them to canonical forms
with the use of RWWS> and then compare these canonical
forms by isomorphism.

177

Program CANON

A program CANON in C programming language (about
3000 lines) based on the previous results. It transforms
any formula of AF' P> into canonical form.

A structure of function main.

Print information about program
and format of input formula;

Print "Formula has been read";
Transform list into tree;
Dispose 1list;

Print formula;

step=1; /*step numberx*/

do

{

Print step;

nar=0; /*the initial number of rule
applications at the present step*/

Apply rules;

Print nar;

step++; /*next step*/
}

while(nar!=0);

Print canonical form.

178

Initial
symbol - 9 1] 1l : | Y Vv

Symbol
constant | NOT | DLT | NOC | MNO | PRC | CNC | ALT | DSJ

ASCII-
symbol - * ¢ - ; # +

Special symbol representation in CANON

A structure of formulas.

4. “(P) , “(P) ;

5. a##tb , atb , alb , a;b ;

6. a#(P) , a+t(P) , al(P) , a;(P) ;
7. (P)#a , (P)+a , (P)la , (P);a ;

3. (PM#(@ , P+ , I , (P);(Q .

179

(2)

stTrt finish
a ® + |®|@® (o * @ |@® ble|e ®
(b) ()
ancestor
l ancestor
+ \0| X o |@
lofa 1o (@) &

List and tree representations of the formula a V 9§

ancestor

(a) ﬁ)\<—root

p—(b) R

A tree to which the rule 1.1 can be applied

180

A structure of rules.

if (root!=NULL)
{
if (the rule is directly applicable
to the tree with pointer root)

{

Set pointers to subtrees corresponding
to subformulas in the rule;

Print rule number and subformulas;
Transform tree in accordance to the rule;

(*addrnar)++; /*increase counter of rules
applied at the the present step*/

Print new formula;

¥

else

{
Apply rule to the left subtree;

Apply rule to the right subtree;
X

}

181

Tree transformations with rules 1.1 and 2.1

Examples of formula transformation with CANON

The initial formula: (a <y (b;e))||(d~7 (c;e)).

The author of this program is I.V. Tarasyuk
Program CANON transforms formulas of algebras AFP_2, AFLP_2
into canonical form

Input formula should be in one of the following forms:

. a
. —a *a
‘a Ta
“(P) ~(P)

. a;b alb a#tb a+b

. a;(P) al(®) a#(P) at+(P)

(P);a (P)la (P)#a (P)+a

P); @ MdEI@ (E#W@Q P+

0O ~NO O WN -

where a and b are symbols of elementary actions,
P and Q are formulas types 2-8

Input formula
Sign of end is EOF

Formula has been read

Your formula is:
(a#t(b;e)) | (d#(c;e))

Step 1

Rule 3.1 is applied
P=a

Q=(b;e)

New formula is:

(Cal (“(b3e)))+((a)l(b;e))) | (d#(c;e))

Rule 3.1 is applied
P=d

Q=(c;e)

New formula is:

((al (“(b3e)))+((‘a)l(b;e))) (@l (“(c;e)))+((‘d) | (c;e)))

Rule 4.1 is applied
P=b

Q=e

New formula is:

(Gl (‘D) [(‘e)))+((‘a) | (b;e))) [((dl (“(c;e)))+((‘d)I(c;e)))

Rule 4.1 is applied
P=c

Q=e

New formula is:

(Gl (‘D) [(‘e)))+((“a) | (b;e))) [((dl ((‘c)(“e)))+((‘d)I(c;e)))

Rule 4.3 is applied
P=b
New formula is:

(@l ((-b) 1 (“e)))+((‘a)l(b;e))) [((dl ((“c)|(‘e)))+((‘d)](c;e)))

Rule 4.3 is applied
P=e
New formula is:

((al ((-b) 1 (=e)))+((“a) [(b;e))) [((dl ((“c) | (‘e)))+((‘d)](c;e)))

Rule 4.3 is applied
P=a
New formula is:

(Cal ((-b) 1 (=e)))+((-a) | (b;e))) [((dl ((“c) | (‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied
P=c
New formula is:

((al ((-b) | (e)))+((-a) | (b;e))) [((d| ((-c) | (‘e)))+((‘d)|(c;e)))

Rule 4.3 is applied
P=e
New formula is:

((al ((-b) | (=e)))+((-a) | (b;e))) [((d| ((-c) | (-e)))+((‘d) | (c;e)))

Rule 4.3 is applied
P=d
New formula is:

((al ((-b) | (&)))+((-a) | (b;e))) | ((d] ((-c) | (=e)))+((-d) | (c;e)))

Number of applied rules in step 1 is 10
Step 2

Rule 1.1 is applied
P=a

Q=(-Db)

R=(-e)

New formula is:

((al (b)) | (=e))+((-a) | (b;e))) | ((d| ((-c) | (-e)))+((-d) | (c;e)))

184

Rule 1.1 is applied
P=d

Q=(-c)

R=(-e)

New formula is:

(((al (b)) [(-e))+((-a) | (b;e))) | (((dl (-c)) | (-e))+((-d) | (c;e)))

Rule 2.1 is applied

P=((al (-b)) | (-e))

Q=((-a) | (b;e))

R=(((d] (-c)) | (me))+((-d) | (c;e)))

New formula is:

(Cal D)) T Een I @l el (=e))+((-d) I (c;e)))+
(((ma) [(b;e)) 1 (C(dl (=c)) | (=e))+((=d) | (c;e))))

Rule 2.2 is applied

P=((al (-b)) | (-e))

Q=((dl (-c)) | (-e))

R=((-d) | (c;e))

New formula is:

(((Cal (-p)) [(=e)) 1 ((dl (=c)) [(-e)))+(((al (-b)) | (-e)) [((-d) | (c;e))))+
(((ma) [(b;e)) | (((d] (=c)) | (=e))+((-d) [(c;e))))

Rule 2.2 is applied

P=((-a) | (bje))

Q=C((dl (-c)) | (-e))

R=((-d) [(c;e))

New formula is:

(CCCal (-b)) [(=e)) [((d] (=c)) [(=e)))+(((al (-b)) | (-e)) | ((-d) | (c;e))))+
((((-a) I (b;e)) 1 ((d] (=c)) | (=e)))+(((-a) | (b;e)) | ((-d) | (c;e))))

Number of applied rules in step 2 is 5
Step 3

Rule 1.1 is applied

P=((((al (-b)) | (=e)) | ((d]| (-c)) | (=e)))+(((al (-b)) | (-e)) | ((-d) | (c;e))))
Q=(((-a) | (b;e)) | ((d] (-c)) | (-e)))

R=(((-a) | (b;e)) [((-d) | (c;e)))

New formula is:

(CCCCal (-b)) [(=e)) [((dl (=c)) [(=e)))+(((al (-b)) | (-e)) | ((-d) [(c;e))))+
(((ma) [(b;e)) | ((dl (=c)) | (-e))))+(((-a) | (b;e)) | ((-d) | (c;e)))

Number of applied rules in step 3 is 1

185

Step 4

Rule 1.1 is applied

P=((al (-b)) | (-e))

Q=(dl (-c))

R=(-e)

New formula is:

(CCCCCal (b)) [(=ed)) 1 (dl (=c))) | (=e))+(((al (-b)) | (=e)) | ((-d) | (c;e))))+
(((-a) [(b;e)) | ((d]l (=c)) | (-e))))+(((-a) | (b;e)) | ((-d) | (c;e)))

Rule 1.1 is applied

P=((al (-b)) | (-e))

Q=(-d)

R=(c;e)

New formula is:

(CCCCal (-b)) 1 (=e)) 1 @l (-=c))) [(=e))+((((al (-b)) | (-e)) | (-d)) | (c;e)))+
(((=a) | (b;e)) [((dl (=c)) [(-e))))+(((-a) [(b;e)) | ((-d) | (c;e)))

Rule 1.1 is applied

P=((-a) | (bje))

Q=(dl (-c))

R=(-e)

New formula is:

(CCCCCal (-p)) [(=e)) 1 (dl (=c))) | (=e))+((((al (-b)) | (=e)) [(-d)) | (c;e)))+
((((-a) I (b;e)) 1 (dl (-c))) | (-e)))+(((-a) | (b;e)) | ((-d) | (c;e)))

Rule 1.1 is applied

P=((-a) | (bje))

Q=(-d)

R=(c;e)

New formula is:

(CCCCCal ¢-p)) 1 (=e)) 1 @l (=c))) | (=e))+((((al (-b)) [(=e)) [(-d)) | (c;e)))+
((C(-a) I (b;e)) 1 (dl (-c))) | (-e)))+((((-a) | (b;e)) | (-d)) | (c;e))

Number of applied rules in step 4 is 4
Step 5

Rule 1.1 is applied

P=((al (-b)) | (-e))

Q=d

R=(-c)

New formula is:

(CCCCCCal ¢-pN) 1 =e)) 1) [(=c)) | (=e))+((((al (-D)) [(=e)) [(-d)) | (c;e)))+
(CC(-a) [(b;e)) 1 (@l (=c))) | (-e)))+((((-a) | (b;e)) | (-d)) | (c;e))

186

Rule 1.1 is applied

P=((-a) | (bje))

Q=d

R=(-c)

New formula is:

(CCCCCCal (=P [(=e)) 1) [(=e)) | (=e))+((((al (-D)) | (=e)) [(-d)) | (c;e)))+
(CCC-a) [(b;e)) 1) [(=c)) | (e)))+((((-a) | (b;e)) | (-d)) | (c;e))

Number of applied rules in step 5 is 2
Step 6

Rule 7.6 is applied

P=((((-a) | (b;e)) Id) | (-c))

P’=(b;e)

Q=(-e)

New formula is:

(CCCCCCal (-p)) [(=e)) 1) [(=e)) | (=e))+((((al (-D)) | (=e)) [(-d)) | (c;e)))+
(CCCC=a) IB) [d) 1 (=c)) | (x€)))+((((-a) | (b;e)) | (-d)) | (c;e))

Rule 7.8 is applied

P=(((al (-b)) | (~e)) | (-d))

P’=(-e)

Q=(c;e)

New formula is:

(CCCCCal e I =eN 1)1 (=e)) 1 (=e))+(((al (-b)) | (*xe)) [(=d)) |c))+
(CCCC-a) D) [d) 1 (=c)) | (x€)))+((((-a) | (b;e)) | (-d)) | (c;e))

Rule 7.9 is applied

P=((((al (-b)) | (-e)) |d) | (-c))

P’=(-e)

Q=(-e)

New formula is:

(CCCCCal (-b)) 1 (=e)) [d) [(=c))+((((al (-b)) [(*xe)) | (-d)) |c))+
(CCC-a) Ip) [d) | (=)) | (*e)))+((((-a) | (b;e)) [(-d)) | (c;e))

Number of applied rules in step 6 is 3
Step 7

Rule 6.1 is applied

P=((al (-b)) | (xe))

P’=(xe)

Q=(-d)

New formula is:

(CCCCCal (-b)) 1 (=e)) [d) [(=c))+((((al (-b)) [(*xe)) | (*d)) |c))+
(CCC-a) IB) [d) | (=c)) | (xe)))+((((-a) | (b;e)) [(-d)) | (c;e))

187

Rule 6.2 is applied

P=((al (-b)) | (xe))

P’=(-b)

Q=(*d)

New formula is:

(CCCCCal (-p)) 1 (=e)) 1) [(=c))+(((Cal (xb)) | (*xe)) | (*d)) [c))+
(CCCC-a) D) [d) | (=c)) | (x€)))+((((-a) | (b;e)) | (-d)) | (c;e))

Rule 6.2 is applied

P=((((-a) Ib) |d) | (-c))

P’=(-c)

Q=(xe)

New formula is:

(CCCCCal (-p)) 1 (-e)) 1d) [(=c))+((((al (xb)) | (*xe)) | (*d)) |c))+
(CCC(-a) 1) [d) | (xc)) | (xe)))+((((-a) | (b;e)) | (-d)) | (c;e))

Number of applied rules in step 7 is 3
Step 8

Rule 6.2 is applied

P=((((-a) [b) |d) | (*c))

P’=(-a)

Q=(xe)

New formula is:

(CCCCCal (-b)) 1 (=e)) [d) | (=c))+((((al (*xb)) [(*xe)) | (*d)) |c))+
(CCC(xa) [b) [d) | (xc)) | (xe)))+((((-a) | (b;e)) [(-d)) | (c;e))

Number of applied rules in step 8 is 1
Step 9

Number of applied rules in step 9 is O
Canonical form is:

(CCCal (b)) 1 (=e)) 1d) | (=c))+((((al (*b)) [(*xe)) | (xd)) |c))+
(CCC(xa) [b) [d) | (*xc)) | (xe)))+((((-a) | (b;e)) | (-d)) [(c;e))

Canonical form is: (al|d|[b][c][e) V (allc||ds]|dal|de) V
(bl|d[|dal|dcl[de) Vv ((b; €)][(c; e)lalld).

188

References

[ABS91]

[APS94]

[AS92]

[Aut93]

[BCa87]

[BDHO2]

[BDKPO1]

[BK84]

[BKS9]

[Ch89]

C. Autant, Z. Belmesk, Ph. Schnoebelen. Strong
bisimularity on nets revisited. Extended abstract.
LNCS 506, pages 295—312, June 1991.

C. Autant, W. Pfister, Ph. Schnoebelen. Place
bisimulations for the reduction of labelled Petri nets
with silent moves. Proceedings of International Con-
ference on Computing and Information, 1994.

C. Autant, Ph. Schnoebelen. Place bisimulations in
Petri nets. LNCS 616, pages 45—61, June 1992.

C. Autant. Petri nets for the semantics and the im-
plementation of parallel processes. Ph.D. thesis, In-
stitut National Polytechnique de Grenoble, May 1993
(in French).

G. Boudol, I. Castellani. On the semantics of concur-
rency: partial orders and transition systems. LNCS
249, pages 123—137, 1987.

E. Best, R. Devillers, J.G. Hall. The box calculus: a
new causal algebra with multi-label communication.
LNCS 609, pages 21-69, 1992.

E. Best, R. Devillers, A. Kiehn, L. Pomello. Concur-
rent bisimulations in Petri nets. Acta Informatica 28,
pages 231—-264, 1991.

J.A. Bergstra , J.W. Klop. Process algebra for syn-
chronous communication. Information and Control
60, pages 109—-137, 1984.

J.A. Bergstra, J.W. Klop. Process theory based on
bisimulation semantics. LNCS 354, pages 50—-122,
1989.

L..A. Cherkasova Posets with non-actions: a model
for concurrent nondeterministic processes. Arbeitspa-
piere der GMD 403, 68 pages, Germany, July 1989.

189

[Che92a]

[Che92b]

[Che92c]

[CHMO3]

[CLPO2]

[Dev9?2]

[Eng85]

[Eng91]

[Gla90]

[Gla93]

F. Cherief. Back and forth bisimulations on prime
event structures. LNCS 605, pages 843—858, June
1992.

F. Cherief. Contributions a la sémantique du par-
allélisme: bisimulations pour le raffinement et le vrai
parallelisme. Ph.D. thesis, Institut National Politech-
nique de Grenoble, France, October 1992 (in French).

F. Cherief. Investigations of back and forth bisim-
ulations on prime event structures. Computers and
Artificial Intelligence 11(5), pages 481—496, 1992.

S. Christensen, Y. Hirshfeld, F. Moller. Bisimulation
equivalence is decidable for basic parallel processes.
[LNCS 715, pages 143—157, 1993.

F. Cherief, F. Laroussinie, S. Pinchinat. Modal log-
ics with past for true concurrency. Proceedings of
CONCUR'92, February 1992.

R. Devillers. Maximality preservation and the ST-
idea for action refinements. LNCS 609, pages 108—
151, 1992.

J. Engelfriet. Determinacy — (observation equiva-
lence = trace equivalence). TCS 36, pages 21-25,
1985.

J. Engelfriet. Branching processes of Petri nets. Acta
Informatica 28(6), pages 575—591, 1991.

R.J. van Glabbeek. The linear time — branching time
spectrum. Extended abstract. LNCS 458, pages
278—297, 1990.

R.J. van Glabbeek. The linear time — branching time
spectrum II: the semantics of sequential systems with
silent moves. Extended abstract. LNCS 715, pages
66—81, 1993.

190

[Gra81]

[GV8T7]

[HM85]

[Hoa80]

[Hoa85]

[Jan94]

[Jan95]

[JMO6]

[KCh85]

[Kot78]

[MiI80]

[Mil183]

J. Grabowski. On partial languages. Fundamenta
Informaticae IM(2), pages 428—-498, 1981.

R.J. van Glabbeek, F.W. VVaandrager. Petri net mod-
els for algebraic theories of concurrency. LNCS 259,
pages 224—242, 1987.

M. Hennessy, R.A.J. Milner. Algebraic laws for non-
determinism and concurrency. Journal of the ACM
32(1), pages 137—161, January 1985.

C.A.R. Hoare. Communicating sequential processes,
on the construction of programs. (McKeag R.M.,
Macnaghten A.M. eds.) Cambridge University Press,
pages 229—-254, 1980.

C.A.R. Hoare. Communicating sequential processes.
Prentice-Hall, London, 1985.

P. JancCar. Decidability questions for bisimularity of
Petri nets and some related problems. LNCS 775,
pages 581-594, 1994.

P. Jancar. High decidability of weak bisimularity for
Petri nets. LNCS 915, pages 349—-363, 1995.

L. Jategaonkar, A.R. Meyer. Deciding true concur-
rency equivalences on safe, finite nets. TCS 154,
pages 107—143, 1996.

V.E. Kotov, L.A. Cherkasova.
erties of generalized processes.
288—306, 1985.

On structural prop-
LNCS 188, pages

V.E. Kotov. An algebra for parallelism based on Petri
nets. LNCS 64, pages 39—-55, 1978.

R.A.J. Milner. A calculus of communicating systems.
LNCS 92, pages 172—180, 1980.

R.A.J. Milner. Calculi for synchrony and asynchrony.
TCS 25, pages 267—310, 1983.

191

[INMV9O]

INPWS81]

[INT84]

[O1d87a]

[O1d87Db]

[Old89b]

[O1d91]

[Par81]

[Pfi92]

[Pin93]

R. De Nicola, U. Montanari, F.W. Vaandrager. Back
and forth bisimulations. LNCS 458, pages 152—165,
1990.

M. Nielsen, G. Plotkin, G. Winskel. Petri nets, event
structures and domains. TCS 13, pages 85—108,
1981.

M. Nielsen, P.S. Thiagarajan. Degrees of non-deter-
minism and concurrency: A Petri net view. LNCS
181, pages 89—-117, December 1984.

E.-R. Olderog. TCSP: theory of communicating se-
quential processes. LNCS 255, pages 441—-465, 1987.

E.-R. Olderog. Operational Petri net semantics for
CCSP. LNCS 266, pages 196—223, 1987.

E.-R. Olderog. Strong bisimularity on nets: a new
concept for comparing net semantics. LNCS 354,
pages 549-573, 1989.

E.-R. Olderog. Nets, terms and formulas. Cam-
bridge Tracts in Theoretical Computer Science 23,
Cambridge University Press, 1991.

D.M.R. Park. Concurrency and automata on infinite
sequences. LNCS 104, pages 167—183, March 1981.

W. Pfister. Simplification semantique des réseaux de
Petri par la bisimulation de places. Technical Report
of DEA, University of Grenoble, France, June 1992
(in French).

S. Pinchinat. Bisimulations for the semantics of re-
active systems. Ph.D. thesis, Institut National Po-
litechnique de Grenoble, January 1993 (in French).

192

[POm86]

[Pra86]

[PRS92]

[RT88]

[Tar96]

[Tar97]

[Tar98a]

L. Pomello. Some equivalence notions for concurrent
systems. An overview. LNCS 222, pages 381—400,
1986.

V.R. Pratt. The pomset model of parallel processes:
unifying the temporal and the spatial. LNCS 197,
pages 180—196, 1986.

L. Pomello, G. Rozenberg, C. Simone. A survey of
equivalence notions for net based systems. LNCS
609, pages 410472, 1992.

A. Rabinovitch, B.A. Trakhtenbrot. Behaviour struc-
tures and nets. Fundamenta Informaticae XI, pages
357—404, 1988.

[.\V. Tarasyuk. Algebra AFLP>: a calculus of labelled
nondeterministic processes. Hildesheimer Informatik-
Berichte 4/96, part 2, 18 pages, Institut fir In-
formatik, Universitat Hildesheim, Germany, January
1996.

[.\VV. Tarasyuk. Equivalence notions for models of con-
current and distributed systems. Ph.D. thesis, 191
pages, Institute of Informatics Systems, Novosibirsk,
1997 (in Russian).

[.\V. Tarasyuk. T-equivalences and refinement. Pro-
ceedings of International Refinement Workshop and
Formal Methods Pacific - 98 (IRW/FMP'98), Work-
in-Progress Papers, Canberra, Australia, September
29 — October 2, 1998, Grundy, Jim; Schwenke, Mar-
tin and Vickers, Trevor, eds., Joint Computer Science
Technical Report Series TR-CS-98-09, The Aus-
tralian National University, pages 110—128, Septem-
ber 1998.

193

[Tar98b]

[Vog91la]

[Vog91b]

[Vog92]

[.\V. Tarasyuk. Place bisimulation equivalences for de-
sign of concurrent and sequential systems. Proceed-
ings of MFCS'98 Workshop on Concurrency, Brno,
Czech Republic, August 27—29, 1998, Electronic Notes
in Theoretical Computer Science 18, 16 pages, 1998
(http://www.elsevier.nl/locate/entcs/volumel18.html).

W. Vogler. Bisimulation and action refinement. LNCS
480, pages 309—321, 1991.

W. Vogler. Deciding history preserving bisimilarity.
LNCS 510, pages 495-505, 1991.

W. Vogler. Modular construction and partial order
semantics of Petri nets. LNCS 625, 252 pages, 1992.

194

