Discrete time stochastic Petri box calculus with immediate multiactions

Igor V. Tarasyuk ${ }^{1}$ Hermenegilda Macià ${ }^{2}$ Valentín Valero ${ }^{2}$
${ }^{1}$ A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia ${ }^{2}$ High School of Computer Science Engineering, UCLM, Albacete, Spain

London, 17th September

Index

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work

Summary

- We propose discrete time stochastic Petri Box Calculus extended with immediate multiactions, called dtsiPBC.
- The step operational semantics is constructed via labeled probabilistic transition systems.

■ The denotational semantics is defined via labeled discrete time stochastic Petri nets with immediate transitions (LDTSIPNs) A consistency of both semantics is demonstrated.

- In order to evaluate performance, the corresponding semi-Markov chains are analyzed

Summary

- We propose discrete time stochastic Petri Box Calculus extended with immediate multiactions, called dtsiPBC.
- The step operational semantics is constructed via labeled probabilistic transition systems.
- The denotational semantics is defined via labeled discrete time stochastic Petri nets with immediate transitions (LDTSIPNs) A consistency of both semantics is demonstrated
- In order to evaluate performance, the corresponding semi-Markov chains are analyzed

Summary

■ We propose discrete time stochastic Petri Box Calculus extended with immediate multiactions, called dtsiPBC.

- The step operational semantics is constructed via labeled probabilistic transition systems.

■ The denotational semantics is defined via labeled discrete time stochastic Petri nets with immediate transitions (LDTSIPNs).
n A consistency of both semantics is demonstrated
■ In order to evaluate performance, the corresponding semi-Markov
chains are analyzed

Summary

■ We propose discrete time stochastic Petri Box Calculus extended with immediate multiactions, called dtsiPBC.

- The step operational semantics is constructed via labeled probabilistic transition systems.

■ The denotational semantics is defined via labeled discrete time stochastic Petri nets with immediate transitions (LDTSIPNs).

- A consistency of both semantics is demonstrated.
- In order to evaluate performance, the corresponding semi-Markov
chains are analyzed

Summary

- We propose discrete time stochastic Petri Box Calculus extended with immediate multiactions, called dtsiPBC.
- The step operational semantics is constructed via labeled probabilistic transition systems.

■ The denotational semantics is defined via labeled discrete time stochastic Petri nets with immediate transitions (LDTSIPNs).

- A consistency of both semantics is demonstrated.

■ In order to evaluate performance, the corresponding semi-Markov chains are analyzed.

Example:

$$
E=[(\{a\}, \rho) *((\{b\}, \chi) ;(((\{c\}, /) ;(\{d\}, \theta))]((\{e\}, m) ;(\{f\}, \phi)))) * \text { Stop }]
$$

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work

Stochastic and immediate multiactions

- stochastic multiaction is a pair (α, ρ), where α is a multiaction and $\rho \in(0 ; 1)$ is the probability of the multiaction α. These probabilities are used to calculate the probabilities of state changes (steps) at discrete time moments.
$I \in\{1,2,3, \ldots\}$ is the non-zero weight of the multiaction α.
- Stochastic and immediate multiactions cannot be executed together in some concurrent step, i.e., the steps can only consist either of stochastic or immediate multiactions, the latter having a priority over stochastic ones. Thus, in a state where both kinds of multiactions can occur, immediate multiactions always occur before stochastic ones.

Stochastic and immediate multiactions

- stochastic multiaction is a pair (α, ρ), where α is a multiaction and $\rho \in(0 ; 1)$ is the probability of the multiaction α. These probabilities are used to calculate the probabilities of state changes (steps) at discrete time moments.
- immediate multiaction is a pair (α, I), where α is a multiaction and $I \in\{1,2,3, \ldots\}$ is the non-zero weight of the multiaction α.
- Stochastic and immediate multiactions cannot be executed together in some concurrent step, i.e., the steps can only consist either of stochastic or immediate multiactions, the latter having a priority over stochastic ones. Thus, in a state where both kinds of multiactions can occur, immediate multiactions always occur before stochastic ones.

Stochastic and immediate multiactions

- stochastic multiaction is a pair (α, ρ), where α is a multiaction and $\rho \in(0 ; 1)$ is the probability of the multiaction α. These probabilities are used to calculate the probabilities of state changes (steps) at discrete time moments.
- immediate multiaction is a pair (α, I), where α is a multiaction and $I \in\{1,2,3, \ldots\}$ is the non-zero weight of the multiaction α.
■ Stochastic and immediate multiactions cannot be executed together in some concurrent step, i.e., the steps can only consist either of stochastic or immediate multiactions, the latter having a priority over stochastic ones. Thus, in a state where both kinds of multiactions can occur, immediate multiactions always occur before stochastic ones.

Regular static expressions

Definition

Let $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}$, and $a \in A c t$. A regular static expression of dtsiPBC is defined by the following syntax:

$$
\begin{gathered}
E::=(\alpha, \kappa)|E ; E| E \square E|E \| E| E[f] \mid E \text { rsa| } \\
E \text { sy a| }[E * D * E], \\
\text { where } D::=(\alpha, \kappa)|D ; E| D \square D|D[f]| D \text { rs a } \mid \\
D \text { sya } \mid[D * D * E] .
\end{gathered}
$$

RegStatExpr will denote the set of all regular static expressions of dtsiPBC.

Dynamic expressions

Dynamic expressions specify process states and are obtained from static ones which are annotated with upper or lower bars and specify active components of the system at the current time instant.

Definition

Let $E \in$ StatExpr, $a \in$ Act. Dynamic expressions are defined as follows:

$$
\begin{aligned}
G::= & \bar{E}|\underline{E}| G ; E|E ; G| G \square E|E \square G| G| | G|G[f]| \\
& G \text { rsa| }|G \operatorname{sya}|[G * E * E]|[E * G * E]|[E * E * G]
\end{aligned}
$$

\bar{E} denotes the initial, and \underline{E} denotes the final state of the process.
The underlying static expression of a dynamic one is obtained by removing all the upper and lower bars from it.

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

I Conclusions and future work

Inaction Rules

instantaneous structural transformations

Let $E, F, K \in \operatorname{RegStatExpr}, G, H, \widetilde{G}, \tilde{H} \in \operatorname{Reg} D y n E x p r$ and $a \in A c t$ ．
Inaction rules for overlined and underlined regular static expressions

$\overline{\overline{E ; F}} \Rightarrow \overline{\bar{E} ; F}$	$\underline{E} ; F \Rightarrow E ; \bar{F}$	$E ; \underline{F} \Rightarrow \underline{E ; F}$				
$\overline{\bar{\square} \square \bar{F}} \Rightarrow \bar{E} \square F$	$\overline{E \square \bar{F}} \Rightarrow E \square \bar{F}$	$\underline{E} \square F \Rightarrow \underline{E \square F}$				
$E \square \underline{F} \Rightarrow \underline{E \square F}$	$\overline{E \\| F} \Rightarrow \bar{E} \\| \bar{F}$	$\underline{E} \\| \underline{F} \Rightarrow \underline{E \\| F}$				
$\overline{E[f]} \Rightarrow \bar{E}[f]$	$\underline{E}[f] \Rightarrow \underline{E[f]}$	$\overline{E r s a} \Rightarrow \overline{\bar{E} r s a}$				
$\underline{E r s a} \Rightarrow \underline{E r s a}$	$\overline{E s y a} \Rightarrow \bar{E}$ sya	\underline{E} sy $a \Rightarrow \underline{E s y a}$				
$\overline{[E * F * K]} \Rightarrow[\bar{E} * F * K]$	$[\underline{E} * F * K] \Rightarrow[E * \bar{F} * K]$	$[E * \underline{F} * K] \Rightarrow[E * \bar{F} * K]$				
$[E * \underline{F} * K] \Rightarrow[E * F * \bar{K}]$	$[E * F * \underline{K}] \Rightarrow[E * F * K]$					

Inaction rules for arbitrary regular dynamic expressions

$$
\begin{array}{lll}
\frac{G \Rightarrow \tilde{G}, \circ \in\{;, \square\}}{G \circ E \Rightarrow \widetilde{G} \circ E} & \frac{G \Rightarrow \widetilde{G}, \circ \in\{;, \square\}}{E \circ G \Rightarrow E \circ \tilde{G}} & \frac{G \Rightarrow \widetilde{G}}{G\|H \Rightarrow \tilde{G}\| H} \\
\frac{H \Rightarrow \vec{H}}{G\|H \Rightarrow G\| \tilde{H}} & \frac{G \Rightarrow \widetilde{G}}{G[f] \Rightarrow \tilde{G}[f]} & \frac{G \Rightarrow \widetilde{G}, \circ \in\{r s, s y\}}{G \circ a \Rightarrow \tilde{G} \circ a} \\
\frac{G \Rightarrow \widetilde{G}}{[G * E * F] \Rightarrow[\widetilde{G} * E * F]} & \frac{G \Rightarrow \widetilde{G}}{[E * G * F] \Rightarrow[E * \widetilde{G} * F]} & \frac{G \Rightarrow \widetilde{\widetilde{c}}}{[E * F * G] \Rightarrow[E * F * \widetilde{G}]} \\
\hline
\end{array}
$$

Initial and final dynamic expressions

An operative regular dynamic expression G : no inaction rule can be applied to it.
G and G^{\prime} are structurally equivalent, $G \approx G^{\prime}$, if they can be reached each from other by applying inaction rules in a forward or backward direction.
G is an initial dynamic expression, $\operatorname{init}(G)$, if $\exists E \in \operatorname{RegStatExpr} G \in[\bar{E}]_{\approx}$.
G is a final dynamic expression, final (G), if $\exists E \in \operatorname{RegStatExpr} G \in[\underline{E}]_{\approx}$.

Action and empty loop rules

■ Action rules with immediate multiactions: execution of non-empty multisets of immediate multiactions. They define instantaneous dynamic expression transformations due to the execution of non-empty multisets of immediate multiactions.
multisets of stochastic multiactions, they are time consuming, they take one time unit in each step and it mades dynamic expression tranformations
execution of the empty multiset of activities at a time step, which is used to capture a delay of one time unit at any state when no immediate multiactions are executable. No dynamic expression transformations.

Action and empty loop rules

- Action rules with immediate multiactions: execution of non-empty multisets of immediate multiactions. They define instantaneous dynamic expression transformations due to the execution of non-empty multisets of immediate multiactions.

■ Action rules with stochastic multiactions: execution of non-empty multisets of stochastic multiactions, they are time consuming, they take one time unit in each step and it mades dynamic expression tranformations.
execution of the empty multiset of activities at a time step, which is used to capture a delay of one time unit at any state when no immediate multiactions are executable No dynamic expression transformations

Action and empty loop rules

- Action rules with immediate multiactions: execution of non-empty multisets of immediate multiactions. They define instantaneous dynamic expression transformations due to the execution of non-empty multisets of immediate multiactions.

■ Action rules with stochastic multiactions: execution of non-empty multisets of stochastic multiactions, they are time consuming, they take one time unit in each step and it mades dynamic expression tranformations.

- Empty loop rule: execution of the empty multiset of activities at a time step, which is used to capture a delay of one time unit at any state when no immediate multiactions are executable. No dynamic expression transformations.

$\operatorname{Can}(G)$: set of all sets of activities which can be executed from G

Let $(\alpha, \kappa) \in \mathcal{S I L}, \quad E, F \in \operatorname{RegStatExpr}, \quad G, H \in \operatorname{OpRegDynExpr}$ and $a \in$ Act.
1 If final (G) then $\operatorname{Can}(G)=\emptyset$.
2 If $G=\overline{(\alpha, \kappa)}$ then $\operatorname{Can}(G)=\{\{(\alpha, \kappa)\}$.
3 If $\uparrow \in \operatorname{Can}(G)$ then

4 If $\Upsilon \in \operatorname{Can}(G)$ and $\equiv \in \operatorname{Can}(H)$ then $\Upsilon+\equiv \in \operatorname{Can}(G \| H)$
5 If $\Upsilon \in \operatorname{Can}(G$ sy $a)$ and $(\alpha, \kappa),(\beta, \lambda) \in \Upsilon$ s.t. $a \in \alpha, \hat{a} \in \beta$ then
$\cdot\left(\Upsilon+\left\{\left(\alpha \oplus_{a} \beta, \kappa \cdot \lambda\right)\right\}\right) \backslash\{(\alpha, \kappa),(\beta, \lambda)\} \in \operatorname{Can}(G$ sy a), if $\kappa, \lambda \in(0 ; 1)$

- $\left(\Upsilon+\left\{\left(\alpha \oplus_{a} \beta, \kappa+\lambda\right)\right\}\right) \backslash\{(\alpha, \kappa),(\beta, \lambda)\} \in \operatorname{Can}(G$ sy a), if $\kappa, \lambda \in \mathbb{N} \backslash\{0\}$

$\operatorname{Can}(G)$: set of all sets of activities which can be executed from G

Let $(\alpha, \kappa) \in \mathcal{S I L}, \quad E, F \in$ RegStatExpr, $\quad G, H \in$ OpRegDynExpr and $a \in$ Act.
1 If final (G) then $\operatorname{Can}(G)=\emptyset$.
2 If $G=\overline{(\alpha, \kappa)}$ then $\operatorname{Can}(G)=\{\{(\alpha, \kappa)\}\}$.
3 If $\Upsilon \in \operatorname{Can}(G)$ then
■ $\Upsilon \in \operatorname{Can}(G \circ E), \gamma \in \operatorname{Can}(E \circ G)(\circ \in\{;, \square\})$,
■ $\Upsilon \in \operatorname{Can}(G \| H), \gamma \in \operatorname{Can}(H \| G)$,

- $f(\Upsilon) \in \operatorname{Can}(G[f])$,

■ $\Upsilon \in \operatorname{Can}(G$ sy $a), \Upsilon \in \operatorname{Can}(G$ rs $a)($ when $a, ~ a ̂ \notin \mathcal{A}(\Upsilon))$,
■ $\Upsilon \in \operatorname{Can}([G * E * F]), \Upsilon \in \operatorname{Can}([E * G * F]), \Upsilon \in \operatorname{Can}([E * F * G])$
4 If $\Upsilon \in \operatorname{Can}(G)$ and $\equiv \in \operatorname{Can}(H)$ then $\Upsilon+\equiv \in \operatorname{Can}(G \| H)$

$\operatorname{Can}(G)$: set of all sets of activities which can be executed from G

Let $(\alpha, \kappa) \in \mathcal{S I} \mathcal{L}, \quad E, F \in$ RegStatExpr, $\quad G, H \in$ OpRegDynExpr and $a \in$ Act.
1 If final (G) then $\operatorname{Can}(G)=\emptyset$.
2 If $G=\overline{(\alpha, \kappa)}$ then $\operatorname{Can}(G)=\{\{(\alpha, \kappa)\}\}$.
3 If $\Upsilon \in \operatorname{Can}(G)$ then
■ $\Upsilon \in \operatorname{Can}(G \circ E), \gamma \in \operatorname{Can}(E \circ G)(\circ \in\{;, \square\})$,
■ $\Upsilon \in \operatorname{Can}(G \| H), \gamma \in \operatorname{Can}(H \| G)$,

- $f(\Upsilon) \in \operatorname{Can}(G[f])$,

■ $\Upsilon \in \operatorname{Can}(G$ sy $a), \Upsilon \in \operatorname{Can}(G$ rs $a)($ when $a, ~ a ̂ \notin \mathcal{A}(\Upsilon))$,
■ $\Upsilon \in \operatorname{Can}([G * E * F]), \Upsilon \in \operatorname{Can}([E * G * F]), \Upsilon \in \operatorname{Can}([E * F * G])$
4 If $\Upsilon \in \operatorname{Can}(G)$ and $\equiv \in \operatorname{Can}(H)$ then $\Upsilon+\equiv \in \operatorname{Can}(G \| H)$
5 If $\Upsilon \in \operatorname{Can}(G$ sy $a)$ and $(\alpha, \kappa),(\beta, \lambda) \in \Upsilon$ s.t. $a \in \alpha, \hat{a} \in \beta$ then

- $\left(\Upsilon+\left\{\left(\alpha \oplus_{a} \beta, \kappa \cdot \lambda\right)\right\}\right) \backslash\{(\alpha, \kappa),(\beta, \lambda)\} \in \operatorname{Can}(G$ sy a), if $\kappa, \lambda \in(0 ; 1)$
- $\left(\Upsilon+\left\{\left(\alpha \oplus_{a} \beta, \kappa+\lambda\right)\right\}\right) \backslash\{(\alpha, \kappa),(\beta, \lambda)\} \in \operatorname{Can}(G$ sy $a)$, if $\kappa, \lambda \in \boldsymbol{N} \backslash\{0\}$

$\operatorname{tang}(G), \operatorname{vanish}(G)$

■ G is tangible, $\operatorname{tang}(G)$, if $\operatorname{Can}(G)$ contains only multisets of stochastic multiactions. Stochastic multiactions are only executable from tangible ones.

- G is vanishing, vanish(G), if there are immediate multiactions in the multisets from $\operatorname{Can}(G)$, hence, there are non-empty multisets of immediate multiactions in $\operatorname{Can}(G)$: Immediate multiactions are only executable from vanishing operative dynamic expressions. No stochastic multiactions can be executed from a vanishing operative dynamic expression G, even if Can(G) contains sets of stochastic multiactions.
- Immediate multiactions have a priority over stochastic ones.

```
Let }(\alpha,\rho),(\beta,\chi)\in\mathcal{SL},(\alpha,I),(\beta,m)\in\mathcal{IL}\mathrm{ and }(\alpha,\kappa)\in\mathcal{SIL}
E,F\inRegStatExpr, G,H\inOpRegDynExpr, G,H\inRegDynExpr and a\inAct
```

The names of the action rules with immediate multiactions have suffix ' i '

$\operatorname{tang}(G), \operatorname{vanish}(G)$

- G is tangible, $\operatorname{tang}(G)$, if $\operatorname{Can}(G)$ contains only multisets of stochastic multiactions. Stochastic multiactions are only executable from tangible ones.
- G is vanishing, vanish (G), if there are immediate multiactions in the multisets from $\operatorname{Can}(G)$, hence, there are non-empty multisets of immediate multiactions in $\operatorname{Can}(G)$: Immediate multiactions are only executable from vanishing operative dynamic expressions. No stochastic multiactions can be executed from a vanishing operative dynamic expression G, even if $\operatorname{Can}(G)$ contains sets of stochastic multiactions.
- Immediate multiactions have a priority over stochastic ones.

The names of the action rules with immediate multiactions have

$\operatorname{tang}(G), \operatorname{vanish}(G)$

■ G is tangible, $\operatorname{tang}(G)$, if $\operatorname{Can}(G)$ contains only multisets of stochastic multiactions. Stochastic multiactions are only executable from tangible ones.

■ G is vanishing, vanish (G), if there are immediate multiactions in the multisets from $\operatorname{Can}(G)$, hence, there are non-empty multisets of immediate multiactions in $\operatorname{Can}(G)$: Immediate multiactions are only executable from vanishing operative dynamic expressions. No stochastic multiactions can be executed from a vanishing operative dynamic expression G, even if $\operatorname{Can}(G)$ contains sets of stochastic multiactions.

■ Immediate multiactions have a priority over stochastic ones.

The names of the action rules with immediate multiactions have

$\operatorname{tang}(G), \operatorname{vanish}(G)$

■ G is tangible, $\operatorname{tang}(G)$, if $\operatorname{Can}(G)$ contains only multisets of stochastic multiactions. Stochastic multiactions are only executable from tangible ones.

■ G is vanishing, vanish (G), if there are immediate multiactions in the multisets from $\operatorname{Can}(G)$, hence, there are non-empty multisets of immediate multiactions in $\operatorname{Can}(G)$: Immediate multiactions are only executable from vanishing operative dynamic expressions. No stochastic multiactions can be executed from a vanishing operative dynamic expression G, even if $\operatorname{Can}(G)$ contains sets of stochastic multiactions.

■ Immediate multiactions have a priority over stochastic ones.

The names of the action rules with immediate multiactions have

$\operatorname{tang}(G), \operatorname{vanish}(G)$

■ G is tangible, $\operatorname{tang}(G)$, if $\operatorname{Can}(G)$ contains only multisets of stochastic multiactions. Stochastic multiactions are only executable from tangible ones.

■ G is vanishing, vanish(G), if there are immediate multiactions in the multisets from $\operatorname{Can}(G)$, hence, there are non-empty multisets of immediate multiactions in $\operatorname{Can}(G)$: Immediate multiactions are only executable from vanishing operative dynamic expressions. No stochastic multiactions can be executed from a vanishing operative dynamic expression G, even if $\operatorname{Can}(G)$ contains sets of stochastic multiactions.

■ Immediate multiactions have a priority over stochastic ones.
Let $(\alpha, \rho),(\beta, \chi) \in \mathcal{S} \mathcal{L},(\alpha, I),(\beta, m) \in \mathcal{I} \mathcal{L}$ and $(\alpha, \kappa) \in \mathcal{S} \mathcal{I} \mathcal{L}$.
$E, F \in \operatorname{RegStatExpr}, G, H \in O p R e g D y n E x p r, \widetilde{G}, \widetilde{H} \in \operatorname{Reg} D y n E x p r$ and $a \in A c t$.
The names of the action rules with immediate multiactions have suffix 'i'.

Action and empty loop rules

$D R(G)$

Definition

The derivation set $D R(G)$ of a dynamic expression G is the minimal set:

- $[G]_{\approx} \in \operatorname{DR}(G)$;
- if $[H]_{\approx \in D R(G)}$ and $\exists \Upsilon H \xrightarrow{\Upsilon} \widetilde{H}$ then $[\widetilde{H}] \approx \in D R(G)$.

Let G be a dynamic expression and $s, \tilde{s} \in D R(G)$

The set of all multisets of activities executable from s is

$$
E x e c(s)=\left\{\uparrow \mid \exists H \in s \exists \widetilde{H} H{ }^{\Upsilon} \tilde{H}\right\}
$$

$D R(G)=D R_{T}(G) \cup D R_{V}(G)$

$D R(G)$

Definition

The derivation set $D R(G)$ of a dynamic expression G is the minimal set:

- $[G]_{\approx} \in D R(G)$;
- if $[H] \approx \in D R(G)$ and $\exists \Upsilon H \xrightarrow{\Upsilon} \widetilde{H}$ then $[\widetilde{H}] \approx \in D R(G)$.

Let G be a dynamic expression and $s, \tilde{s} \in D R(G)$.

The set of all multisets of activities executable from s is

$$
\operatorname{Exec}(s)=\{\Upsilon \mid \exists H \in s \exists \widetilde{H} H \xrightarrow{\Upsilon} \widetilde{H}\}
$$

$D R(G)=D R_{T}(G) \cup D R_{V}(G)$

Probabilities

Let $\Upsilon \in \operatorname{Exec}(s) \backslash\{\emptyset\}$. The probability of the multiset of stochastic multiactions or the weight of the multiset of immediate multiactions Υ which is ready for execution in s :

$$
\operatorname{PF}(\Upsilon, s)= \begin{cases}\prod_{(\alpha, \rho) \in \Upsilon} \rho \cdot \prod_{\{\{(\beta, \chi)\} \in \operatorname{Exec}(s) \mid(\beta, \chi) \notin \Upsilon\}}(1-\chi), & s \in D R_{T}(G) \\ \sum_{(\alpha, l) \in \Upsilon} l, & s \in D R_{V}(G)\end{cases}
$$

In the case $\Upsilon=\emptyset$ and $s \in D R_{T}(G)$:

$$
P F(\emptyset, s)= \begin{cases}\prod_{\{(\beta, \chi)\} \in \operatorname{Exec}(s)}(1-\chi), & \operatorname{Exec}(s) \neq\{\emptyset\} \\ 1, & \operatorname{Exec}(s)=\{\emptyset\}\end{cases}
$$

The probability to execute the multiset of activities \uparrow in s:

The probability to move from s to s^{\prime} by executing any multiset of activities:

$\left\{\Upsilon \mid \exists H \in s \quad \exists \tilde{H} \in s^{\prime} \quad H \xrightarrow{\Upsilon} \tilde{H}\right\}$

Probabilities

Let $\Upsilon \in \operatorname{Exec}(s) \backslash\{\emptyset\}$. The probability of the multiset of stochastic multiactions or the weight of the multiset of immediate multiactions Υ which is ready for execution in s :

$$
\operatorname{PF}(\Upsilon, s)= \begin{cases}\prod_{(\alpha, \rho) \in \Upsilon} \rho \cdot \prod_{\{\{(\beta, \chi)\} \in \operatorname{Exec}(s) \mid(\beta, \chi) \notin \Upsilon\}}(1-\chi), & s \in D R_{T}(G) \\ \sum_{(\alpha, l) \in \Upsilon} l, & s \in D R_{V}(G)\end{cases}
$$

In the case $\Upsilon=\emptyset$ and $s \in D R_{T}(G)$:

$$
\operatorname{PF}(\emptyset, s)= \begin{cases}\prod_{\{(\beta, \chi)\} \in \operatorname{Exec}(s)}(1-\chi), & \operatorname{Exec}(s) \neq\{\emptyset\} \\ 1, & \operatorname{Exec}(s)=\{\emptyset\}\end{cases}
$$

The probability to execute the multiset of activities Υ in s:

$$
P T(\Upsilon, s)=\frac{P F(\Upsilon, s)}{\sum_{\equiv \in \operatorname{Exec}(s)} P F(\Xi, s)}
$$

The probability to move from s to s

$$
\operatorname{PM}\left(s, s^{\prime}\right)=
$$

$$
\left\{\Upsilon \mid \exists H \in s \exists \tilde{H} \in s^{\prime} H \xrightarrow{\Upsilon} \widetilde{H}\right\}
$$

Probabilities

Let $\Upsilon \in \operatorname{Exec}(s) \backslash\{\emptyset\}$. The probability of the multiset of stochastic multiactions or the weight of the multiset of immediate multiactions Υ which is ready for execution in s :

$$
\operatorname{PF}(\Upsilon, s)= \begin{cases}\prod_{(\alpha, \rho) \in \Upsilon} \rho \cdot \prod_{\{\{(\beta, \chi)\} \in \operatorname{Exec}(s) \mid(\beta, \chi) \notin \Upsilon\}}(1-\chi), & s \in D R_{T}(G) \\ \sum_{(\alpha, l) \in \Upsilon} l, & s \in D R_{V}(G)\end{cases}
$$

In the case $\Upsilon=\emptyset$ and $s \in D R_{T}(G)$:

$$
\operatorname{PF}(\emptyset, s)= \begin{cases}\prod_{\{(\beta, \chi)\} \in \operatorname{Exec}(s)}(1-\chi), & \operatorname{Exec}(s) \neq\{\emptyset\} \\ 1, & \operatorname{Exec}(s)=\{\emptyset\}\end{cases}
$$

The probability to execute the multiset of activities Υ in s:

$$
P T(\Upsilon, s)=\frac{P F(\Upsilon, s)}{\sum_{\equiv \in \operatorname{Exec}(s)} P F(\bar{\Xi}, s)}
$$

The probability to move from s to s^{\prime} by executing any multiset of activities:

$$
P M\left(s, s^{\prime}\right)=\sum_{\{\Upsilon \mid \exists H \in s} P \tilde{\exists \tilde{H} \in s^{\prime}} \underset{H \xrightarrow{\Upsilon} \tilde{H}\}}{ } P T(\Upsilon, s)
$$

$T S(G):($ labeled probabilistic) transition system

Definition

$T S(G)=\left(S_{G}, L_{G}, \mathcal{T}_{G}, s_{G}\right)$, where

- the set of states is $S_{G}=D R(G)$;
- the set of labels is $L_{G} \subseteq N_{f}^{S \mathcal{I L}} \times(0 ; 1]$;
- the set of transitions is

$$
\mathcal{T}_{G}=\{(s,(\Upsilon, P T(\Upsilon, s)), \tilde{s}) \mid s \in D R(G), \exists H \in s \exists \widetilde{H} \in \tilde{s} H \xrightarrow{\Upsilon} \widetilde{H}\} ;
$$

- the initial state is $s_{G}=[G]_{\approx}$.

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

LDTSIPN

Definition

A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is $N=\left(P_{N}, T_{N}, W_{N}, \Omega_{N}, L_{N}, M_{N}\right)$, where

- P_{N} and $T_{N}=T s_{N} \uplus T i_{N}$ are finite sets of places and stochastic and immediate transitions,
s.t. $P_{N} \cup T_{N} \neq \emptyset$ and $P_{N} \cap T_{N}=\emptyset$;
- $W_{N}:\left(P_{N} \times T_{N}\right) \cup\left(T_{N} \times P_{N}\right) \rightarrow \boldsymbol{N}$ is the arc weight function;
- $\Omega_{N}: T_{N} \rightarrow(0 ; 1) \cup(N \backslash\{0\})$ is the transition probability and weight function;
- $L_{N}: T_{N} \rightarrow \mathcal{L}$ is the transition labeling function;
- $M_{N} \in \boldsymbol{N}_{f}^{P_{N}}$ is the initial marking.

Concurrent transition firings at discrete time moments. LDTSIPNs have step semantics Immediate transitions always fire first, if they can. The associated probabilities in the firings are defined in the same way that in the operational semantics.

LDTSIPN

Definition

A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is $N=\left(P_{N}, T_{N}, W_{N}, \Omega_{N}, L_{N}, M_{N}\right)$, where

- P_{N} and $T_{N}=T s_{N} \uplus T i_{N}$ are finite sets of places and stochastic and immediate transitions,
s.t. $P_{N} \cup T_{N} \neq \emptyset$ and $P_{N} \cap T_{N}=\emptyset$;
- $W_{N}:\left(P_{N} \times T_{N}\right) \cup\left(T_{N} \times P_{N}\right) \rightarrow \boldsymbol{N}$ is the arc weight function;
- $\Omega_{N}: T_{N} \rightarrow(0 ; 1) \cup(N \backslash\{0\})$ is the transition probability and weight function;
- $L_{N}: T_{N} \rightarrow \mathcal{L}$ is the transition labeling function;
- $M_{N} \in \boldsymbol{N}_{f}^{P_{N}}$ is the initial marking.

Concurrent transition firings at discrete time moments. LDTSIPNs have step semantics. Immediate transitions always fire first, if they can. The associated probabilities in the firings are defined in the same way that in the operational semantics.

dtsi-boxes

A discrete time stochastic and immediate Petri box (dtsi-box) is $N=\left(P_{N}, T_{N}, W_{N}, \Lambda_{N}\right)$ is a DTSIPN where:
Λ_{N} is the place and transition labeling function s.t.

- $\Lambda_{N} \mid P_{N}: P_{N} \rightarrow\{\mathrm{e}, \mathrm{i}, \mathrm{x}\}$ (it specifies entry, internal and exit places);
- $\left.\Lambda_{N}\right|_{T_{N}}: T_{N} \rightarrow\left\{\varrho \mid \varrho \subseteq \boldsymbol{N}_{f}^{\mathcal{S I L}} \times \mathcal{S I L} \mathcal{L}\right\}$ (it associates transitions with the relabeling relations).

Moreover

- For the set of entry places of $N,{ }^{\circ} N=\left\{p \in P_{N} \mid \Lambda_{N}(p)=\mathrm{e}\right\}$, and the set of exit places of $N, N^{\circ}=\left\{p \in P_{N} \mid \Lambda_{N}(p)=x\right\}$, it holds: ${ }^{\circ} N \neq \emptyset \neq N^{\circ}$ and ${ }^{\circ}\left({ }^{\circ} N\right)=\emptyset=\left(N^{0}\right)^{\circ}$

A dtsi-box is plain if $\forall t \in T_{N} \Lambda_{N}(t) \in \mathcal{S} \mathcal{L}$, i.e., $\Lambda_{N}(t)$ is the constant relabeling. A marked plain dtsi-box is a pair $\left(N, M_{N}\right)$, where N is a plain dtsi-box.

dtsi-boxes

A discrete time stochastic and immediate Petri box (dtsi-box) is $N=\left(P_{N}, T_{N}, W_{N}, \Lambda_{N}\right)$ is a DTSIPN where:
Λ_{N} is the place and transition labeling function s.t.

- $\Lambda_{N} \mid P_{N}: P_{N} \rightarrow\{\mathrm{e}, \mathrm{i}, \mathrm{x}\}$ (it specifies entry, internal and exit places);
- $\left.\Lambda_{N}\right|_{T_{N}}: T_{N} \rightarrow\left\{\varrho \mid \varrho \subseteq \boldsymbol{N}_{f}^{\mathcal{S I L}} \times \mathcal{S I L} \mathcal{L}\right\}$ (it associates transitions with the relabeling relations).

Moreover,
■ $\forall t \in T_{N}{ }^{\bullet} t \neq \emptyset \neq t^{\bullet}$.
■ For the set of entry places of $N,{ }^{\circ} N=\left\{p \in P_{N} \mid \Lambda_{N}(p)=e\right\}$, and the set of exit places of $N, N^{\circ}=\left\{p \in P_{N} \mid \Lambda_{N}(p)=x\right\}$, it holds: ${ }^{\circ} N \neq \emptyset \neq N^{\circ}$ and $\bullet\left({ }^{\circ} N\right)=\emptyset=\left(N^{\circ}\right)^{\bullet}$.

A dtsi-box is plain if $\forall t \in T_{N} \wedge_{N}(t) \in \mathcal{S} \mathcal{L}$, i.e., $\wedge_{N}(t)$ is the constant relabeling A marked plain dtsi-box is a pair $\left(N, M_{N}\right)$, where N is a plain dtsi-box.

dtsi-boxes

A discrete time stochastic and immediate Petri box (dtsi-box) is $N=\left(P_{N}, T_{N}, W_{N}, \Lambda_{N}\right)$ is a DTSIPN where:
Λ_{N} is the place and transition labeling function s.t.
■ $\Lambda_{N} \mid P_{N}: P_{N} \rightarrow\{\mathrm{e}, \mathrm{i}, \times\}$ (it specifies entry, internal and exit places);

- $\left.\Lambda_{N}\right|_{T_{N}}: T_{N} \rightarrow\left\{\varrho \mid \varrho \subseteq \boldsymbol{N}_{f}^{\mathcal{S I L}} \times \mathcal{S I L}\right\}$ (it associates transitions with the relabeling relations).

Moreover,

- $\forall t \in T_{N}{ }^{\bullet} t \neq \emptyset \neq t^{\bullet}$.

■ For the set of entry places of $N,{ }^{\circ} N=\left\{p \in P_{N} \mid \Lambda_{N}(p)=e\right\}$, and the set of exit places of $N, N^{\circ}=\left\{p \in P_{N} \mid \Lambda_{N}(p)=\times\right\}$, it holds: ${ }^{\circ} N \neq \emptyset \neq N^{\circ}$ and $\bullet\left({ }^{\circ} N\right)=\emptyset=\left(N^{\circ}\right)^{\bullet}$.
A dtsi-box is plain if $\forall t \in T_{N} \Lambda_{N}(t) \in \mathcal{S} \mathcal{L}$, i.e., $\Lambda_{N}(t)$ is the constant relabeling. A marked plain dtsi-box is a pair $\left(N, M_{N}\right)$, where N is a plain dtsi-box.

plain and operator dtsi-boxes

Algebra of dtsi-boxes

Let $(\alpha, \kappa) \in \mathcal{S I L}, a \in \operatorname{Act}$ and $E, F, K \in \operatorname{RegStat}$ Expr. The denotational semantics of $d t s i P B C$ is a mapping Box $_{d t s i}$ from RegStatExpr into plain dtsi-boxes:

- Box $_{d t s i}\left((\alpha, \kappa)_{\iota}\right)=N_{(\alpha, \kappa)_{\iota}}$;

■ $\operatorname{Box}_{d t s i}(E \circ F)=\Theta_{\circ}\left(\operatorname{Box}_{d t s i}(E)\right.$, Box $\left._{d t s i}(F)\right), \circ \in\{;,[], \|\}$;

- $\operatorname{Box}_{d t s i}(E[f])=\Theta_{[f]}\left(\operatorname{Box}_{d t s i}(E)\right)$;

■ $\operatorname{Box}_{d t s i}(E \circ a)=\Theta_{\circ a}\left(\operatorname{Box}_{d t s i}(E)\right), \circ \in\{r s, s y\}$;

- $\operatorname{Box}_{d t s i}([E * F * K])=\Theta_{[* *]}\left(\operatorname{Box}_{d t s i}(E)\right.$, Box $_{d t s i}(F)$, Box $\left._{d t s i}(K)\right)$.

Theorem

For any static expression E

$$
T S(\bar{E}) \simeq R G\left(B o x_{d t s i}(\bar{E})\right)
$$

Algebra of dtsi-boxes

Let $(\alpha, \kappa) \in \mathcal{S I L}, a \in \operatorname{Act}$ and $E, F, K \in \operatorname{RegStat}$ Expr. The denotational semantics of $d t s i P B C$ is a mapping Box $_{d t s i}$ from RegStatExpr into plain dtsi-boxes:

- Box $_{d t s i}\left((\alpha, \kappa)_{\iota}\right)=N_{(\alpha, \kappa)_{\iota}}$;

■ $\operatorname{Box}_{d t s i}(E \circ F)=\Theta_{\circ}\left(\operatorname{Box}_{d t s i}(E)\right.$, Box $\left._{d t s i}(F)\right), \circ \in\{;,[], \|\}$;

- $\operatorname{Box}_{d t s i}(E[f])=\Theta_{[f]}\left(\operatorname{Box}_{d t s i}(E)\right)$;
- $\operatorname{Box}_{d t s i}(E \circ a)=\Theta_{\circ a}\left(\operatorname{Box}_{d t s i}(E)\right), \circ \in\{\mathrm{rs}, \mathrm{sy}\}$;
- $\operatorname{Box}_{d t s i}([E * F * K])=\Theta_{[* *]}\left(\operatorname{Box}_{d t s i}(E), \operatorname{Box}_{d t s i}(F)\right.$, Box $\left._{d t s i}(K)\right)$.

Theorem

For any static expression E

$$
T S(\bar{E}) \simeq R G\left(B_{d t s i}(\bar{E})\right)
$$

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

Z Conclusions and future work

SMC(G)

For a dynamic expression G, a discrete random variable is associated with every tangible state from $D R(G)$. The random values (residence time in the tangible states) are geometrically distributed:
the probability to stay in the tangible state $s \in D R(G)$ for $k-1$ moments and leave it at the moment $k \geq 1$ is

$$
P M(s, s)^{k-1}(1-P M(s, s))
$$

- The average sojourn time in the state s is

The stochastic process associated with a dynamic expression G : the underlying semi-Markov chain (SMC) of G, SMC(G).

SMC(G)

For a dynamic expression G, a discrete random variable is associated with every tangible state from $D R(G)$. The random values (residence time in the tangible states) are geometrically distributed:
the probability to stay in the tangible state $s \in D R(G)$ for $k-1$ moments and leave it at the moment $k \geq 1$ is

$$
P M(s, s)^{k-1}(1-P M(s, s))
$$

- The average sojourn time in the state s is

$$
S J(s)= \begin{cases}\frac{1}{1-P M(s, s)}, & s \in D R_{T}(G) \\ 0, & s \in D R_{V}(G)\end{cases}
$$

The stochastic process associated with a dynamic expression G : the underlying semi-Markov chain (SMC) of G, SMC(G).

EDTMC(G)

SMC(G) can be analyzed by extracting the embedded (absorbing) discrete time Markov chain (EDTMC) of G, EDTMC(G).

Let $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$. The probability to move from s to \tilde{s} by executing any
multiset of activities after possible self-loops is

Definition

Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain (EDTMC) of G, EDTMC (G), has the state space $D R(G)$ and the transitions $s \rightarrow \mathcal{P} \tilde{s}$, if $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$, where $\mathcal{P}=P M^{*}(s, \tilde{s})$

EDTMC(G)

SMC(G) can be analyzed by extracting the embedded (absorbing) discrete time Markov chain (EDTMC) of G, EDTMC(G).

Let $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$. The probability to move from s to \tilde{s} by executing any multiset of activities after possible self-loops is

$$
P M^{*}(s, \tilde{s})=\left\{\begin{array}{ll}
\frac{P M(s, \tilde{s})}{1-P M(s, s,}, & s \rightarrow s ; \\
P M(s, \tilde{s}), & \text { otherwise; }
\end{array}\right\}
$$

Definition

Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain (EDTMC) of $G, \operatorname{EDTMC}(G)$, has the state space $D R(G)$ and the transitions $s \rightarrow \mathcal{p} \tilde{s}$, if $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$, where $\mathcal{P}=P M^{*}(s, \tilde{s})$

EDTMC(G)

SMC(G) can be analyzed by extracting the embedded (absorbing) discrete time Markov chain (EDTMC) of G, EDTMC(G).

Let $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$. The probability to move from s to \tilde{s} by executing any multiset of activities after possible self-loops is

$$
P M^{*}(s, \tilde{s})=\left\{\begin{array}{ll}
\frac{P M(s, \tilde{s})}{1-P M(s, s)}, & s \rightarrow s ; \\
P M(s, \tilde{s}), & \text { otherwise }
\end{array}\right\}
$$

Definition

Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain (EDTMC) of $G, E D T M C(G)$, has the state space $D R(G)$ and the transitions $s \rightarrow \mathcal{p} \tilde{s}$, if $s \rightarrow \tilde{s}$ and $s \neq \tilde{s}$, where $\mathcal{P}=P M^{*}(s, \tilde{s})$.

SMC

Theorem

For any static expression E
$S M C(\bar{E}) \simeq S M C\left(\right.$ Box $\left._{d t s i}(\bar{E})\right)$

$S M C(G)$ can be also analyzed by removing the vanish states considering the reduced discrete time Markov chain of G.

SMC

Theorem

For any static expression E

$$
S M C(\bar{E}) \simeq S M C\left(\text { Box }_{d t s i}(\bar{E})\right)
$$

$\operatorname{SMC}(G)$ can be also analyzed by removing the vanish states considering the reduced discrete time Markov chain of G.

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

two processors accessing a common shared memory

■ After activation of the system, two processors are active, and the common memory is available. Each processor can request an access to the memory after which the instantaneous decision is made.

- When the decision is made in favour of a processor, it starts an acquisition of the memory, and another processor waits until the former one ends its operations, and the system returns to the state with both active processors and the available memory.

two processors accessing a common shared memory

■ After activation of the system, two processors are active, and the common memory is available. Each processor can request an access to the memory after which the instantaneous decision is made.

- When the decision is made in favour of a processor, it starts an acquisition of the memory, and another processor waits until the former one ends its operations, and the system returns to the state with both active processors and the available memory.

The static expression

- a corresponds to the system activation.

■ $r_{i}(1 \leq i \leq 2)$ represent the common memory request of processor i.

- d_{i} correspond to the instantaneous decision on the memory allocation in favour of the processor i.
- m_{i} represent the common memory access of processor i.

■ The other actions are used for communication purpose only.

$$
\begin{aligned}
& P_{1}=\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{1}, y_{1}\right\}, 1\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& P_{2}=\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}, 1\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& M=\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, 1\right) ;\left(\left\{\widehat{z}_{1}\right\}, \frac{1}{2}\right)\right)[]\left(\left(\left\{\widehat{y_{2}}\right\}, 1\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) * \text { Stop }\right]
\end{aligned}
$$

The static expression

- a corresponds to the system activation.

■ $r_{i}(1 \leq i \leq 2)$ represent the common memory request of processor i.

- d_{i} correspond to the instantaneous decision on the memory allocation in favour of the processor i.
- m_{i} represent the common memory access of processor i.

■ The other actions are used for communication purpose only.

$$
\begin{aligned}
& P_{1}=\left[\left(\left\{x_{1}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{1}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{1}, y_{1}\right\}, 1\right) ;\left(\left\{m_{1}, z_{1}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& P_{2}=\left[\left(\left\{x_{2}\right\}, \frac{1}{2}\right) *\left(\left(\left\{r_{2}\right\}, \frac{1}{2}\right) ;\left(\left\{d_{2}, y_{2}\right\}, 1\right) ;\left(\left\{m_{2}, z_{2}\right\}, \frac{1}{2}\right)\right) * \text { Stop }\right] \\
& M=\left[\left(\left\{a, \widehat{x_{1}}, \widehat{x_{2}}\right\}, \frac{1}{2}\right) *\left(\left(\left(\left\{\widehat{y_{1}}\right\}, 1\right) ;\left(\left\{\widehat{z_{1}}\right\}, \frac{1}{2}\right)\right)[]\left(\left(\left\{\widehat{y_{2}}\right\}, 1\right) ;\left(\left\{\widehat{z_{2}}\right\}, \frac{1}{2}\right)\right)\right) * \text { Stop }\right] \\
& E=\left(P_{1}\left\|P_{2}\right\| M\right) \\
& \quad \text { sy } x_{1} \text { sy } x_{2} \text { sy } y_{1} \text { sy } y_{2} \text { sy } z_{1} \text { sy } z_{2} \text { rs } x_{1} \text { rs } x_{2} \text { rs } y_{1} \text { rs } y_{2} \text { rs } z_{1} \text { rs } z_{2}
\end{aligned}
$$

dtsi-box

$T S(E)$

s_{1} : the initial state, s_{2} : the system is activated and the memory is not requested, s_{3} : the memory is requested by the Processor 1, s_{4} : the memory is requested by the Processor $2, s_{5}$: the memory is allocated to the Processor $1, s_{6}$: the memory is requested by two processors, s_{7} : the memory is allocated to the Processor $2, s_{8}$: the memory is allocated to the Processor 1 and the memory is requested by the Processor 2, s_{9} : the memory is allocated to the Processor 2 and the memory is requested by the Processor $\begin{aligned} & \text { dtsiPBC-PASM 2012 } \\ & \text { I.V. Tarasyuk, H. Macià, V. Valero }\end{aligned}$ わのल

$S M C(\bar{E})$

The average sojourn time vector of \bar{E} :

$$
S J=\left(8, \frac{4}{3}, 0,0, \frac{8}{5}, 0, \frac{8}{5}, 4,4\right) .
$$

The TPM for EDTMC($\bar{E})$:

$$
\mathbf{P}^{*}=\left[\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{5} & 0 & \frac{1}{5} & 0 & 0 & 0 & \frac{3}{5} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 & \frac{3}{5} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

long term analysis

The steady-state PMF for EDTMC($\bar{E})$:

$$
\psi^{*}=\left(0, \frac{3}{44}, \frac{15}{88}, \frac{15}{88}, \frac{15}{88}, \frac{1}{44}, \frac{15}{88}, \frac{5}{44}, \frac{5}{44}\right) .
$$

The steady-state PMF ψ^{*} weighted by $S J=\left(8, \frac{4}{3}, 0,0, \frac{8}{5}, 0, \frac{8}{5}, 4,4\right)$:

$$
\left(0, \frac{1}{11}, 0,0, \frac{3}{11}, 0, \frac{3}{11}, \frac{5}{11}, \frac{5}{11}\right) .
$$

We normalize the steady-state weighted PMF dividing it by the sum of its components $\psi^{*} S J^{T}=\frac{17}{11}$.

The steady-state PMF for $\operatorname{SMC}(\bar{E})$:

$$
\varphi=\left(0, \frac{1}{17}, 0,0, \frac{3}{17}, 0, \frac{3}{17}, \frac{5}{17}, \frac{5}{17}\right) .
$$

Transient probabilities from RDTMC

Note that the corresponding values coincide for s_{5}, s_{7} as well as for s_{8}, s_{9}.

Performance indices

- The average recurrence time in the state s_{2}, where no processor requests the memory, the average system run-through, is $\frac{1}{\varphi_{2}}=17$.
- The common memory is available only in the states $s_{2}, s_{3}, s_{4}, s_{6}$. The steady-state probability that the memory is available is $\varphi_{2}+\varphi_{3}+\varphi_{4}+\varphi_{6}=\frac{1}{17}+0+0+0=\frac{1}{17}$ The steady-state probability that the memory is used (i.e., not available), the shared memory utilization, is $1-\frac{1}{17}=\frac{16}{17}$
- After activation of the system, we leave the state s_{1} for ever, and the common memory is either requested or allocated in every remaining state, with exception of S_{2}
The rate with which the shared memory necessity emerges coincides with the rate of leaving s_{2}, calculated as $\frac{\varphi_{2}}{S_{2}^{1}}=\frac{1}{17} \cdot \frac{3}{4}=\frac{3}{68}$

Performance indices

- The average recurrence time in the state s_{2}, where no processor requests the memory, the average system run-through, is $\frac{1}{\varphi_{2}}=17$.
- The common memory is available only in the states $s_{2}, s_{3}, s_{4}, s_{6}$.

The steady-state probability that the memory is available is $\varphi_{2}+\varphi_{3}+\varphi_{4}+\varphi_{6}=\frac{1}{17}+0+0+0=\frac{1}{17}$.
The steady-state probability that the memory is used (i.e., not available), the shared memory utilization, is $1-\frac{1}{17}=\frac{16}{17}$.

- After activation of the system, we leave the state s_{1} for ever, and the common memory is either requested or allocated in every remaining state, with exception of s_{2}.
The rate with which the shared memory necessity emerges coincides with
the rate of leaving s_{2}, calculated as $\frac{\varphi_{2}}{S J_{2}}=\frac{1}{17} \cdot \frac{3}{4}=\frac{3}{6}$

Performance indices

- The average recurrence time in the state s_{2}, where no processor requests the memory, the average system run-through, is $\frac{1}{\varphi_{2}}=17$.
- The common memory is available only in the states $s_{2}, s_{3}, s_{4}, s_{6}$.

The steady-state probability that the memory is available is $\varphi_{2}+\varphi_{3}+\varphi_{4}+\varphi_{6}=\frac{1}{17}+0+0+0=\frac{1}{17}$.
The steady-state probability that the memory is used (i.e., not available), the shared memory utilization, is $1-\frac{1}{17}=\frac{16}{17}$.

- After activation of the system, we leave the state s_{1} for ever, and the common memory is either requested or allocated in every remaining state, with exception of s_{2}.
The rate with which the shared memory necessity emerges coincides with the rate of leaving s_{2}, calculated as $\frac{\varphi_{2}}{S J_{2}}=\frac{1}{17} \cdot \frac{3}{4}=\frac{3}{68}$.
- The common memory request of the first processor $\left(\left\{r_{1}\right\}, \frac{1}{2}\right)$ is only possible from the states s_{2}, s_{7}.
The request probability in each of the states is the sum of the execution probabilities for all multisets of activities containing ($\left\{r_{1}\right\}, \frac{1}{2}$).
The steady-state probability of the shared memory request from the first processor is

$$
\begin{gathered}
\varphi_{2} \sum_{\left\{\Upsilon \left\lvert\,\left(\left\{r_{1}\right\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{2}\right)+\varphi_{7} \sum_{\left\{\Upsilon \left\lvert\,\left(\left\{r_{1}\right\}, \frac{1}{2}\right) \in \Upsilon\right.\right\}} P T\left(\Upsilon, s_{7}\right)= \\
=\frac{1}{17}\left(\frac{1}{4}+\frac{1}{4}\right)+\frac{3}{17}\left(\frac{3}{8}+\frac{1}{8}\right)=\frac{2}{17}
\end{gathered}
$$

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work

Conclusions

- A discrete time stochastic and immediate extension dtsiPBC of finite $P B C$ enriched with iteration.
- The step operational semantics based on labeled probabilistic transition systems.
- The denotational semantics in terms of a subclass of LDTSIPNs.
- A consistency of both semantics.
- A method of performance evaluation based on underlying SMCs.

■ A case study: the shared memory system.

Conclusions

- A discrete time stochastic and immediate extension $d t s i P B C$ of finite $P B C$ enriched with iteration.
- The step operational semantics based on labeled probabilistic transition systems.
- The denotational semantics in terms of a subclass of LDTSIPNs.
- A consistency of both semantics.
- A method of performance evaluation based on underlying SMCs.
- A case study: the shared memory system.

Conclusions

- A discrete time stochastic and immediate extension $d t s i P B C$ of finite $P B C$ enriched with iteration.
■ The step operational semantics based on labeled probabilistic transition systems.
■ The denotational semantics in terms of a subclass of LDTSIPNs.
- A consistency of both semantics.
- A method of performance evaluation based on underlying SMCs.
- A case study: the shared memory system.

Conclusions

- A discrete time stochastic and immediate extension $d t s i P B C$ of finite $P B C$ enriched with iteration.
■ The step operational semantics based on labeled probabilistic transition systems.
- The denotational semantics in terms of a subclass of LDTSIPNs.

■ A consistency of both semantics.

- A method of performance evaluation based on underlying SMCs.

■ A case study: the shared memory system.

Conclusions

- A discrete time stochastic and immediate extension $d t s i P B C$ of finite $P B C$ enriched with iteration.
■ The step operational semantics based on labeled probabilistic transition systems.
- The denotational semantics in terms of a subclass of LDTSIPNs.
- A consistency of both semantics.
- A method of performance evaluation based on underlying SMCs.
- A case study: the shared memory system.

Conclusions

- A discrete time stochastic and immediate extension dtsiPBC of finite $P B C$ enriched with iteration.
- The step operational semantics based on labeled probabilistic transition systems.
- The denotational semantics in terms of a subclass of LDTSIPNs.
- A consistency of both semantics.
- A method of performance evaluation based on underlying SMCs.

■ A case study: the shared memory system.

Future work

■ Constructing a congruence relation: the equivalence that withstands application of the algebraic operations.

- Introducing the deterministically timed multiactions with fixed time
- Extending the syntax with recursion operator

Future work

■ Constructing a congruence relation: the equivalence that withstands application of the algebraic operations.
■ Introducing the deterministically timed multiactions with fixed time delays

- Extending the syntax with recursion operator

Future work

■ Constructing a congruence relation: the equivalence that withstands application of the algebraic operations.
■ Introducing the deterministically timed multiactions with fixed time delays
■ Extending the syntax with recursion operator.

Thank you for your attention!

The slides can be downloaded from Internet:
http://itar.iis.nsk.su/files/itar/pages/pasm12sld.pdf

