
Discrete time stochastic Petri box calculus
with immediate multiactions

Igor V. Tarasyuk1 Hermenegilda Macià2 Valent́ın Valero2

1A.P. Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russia

2High School of Computer Science Engineering, UCLM, Albacete, Spain

London, 17th September

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 1 / 36

Index

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 2 / 36

Introduction

Summary

We propose discrete time stochastic Petri Box Calculus extended with
immediate multiactions, called dtsiPBC.

The step operational semantics is constructed via labeled probabilistic
transition systems.

The denotational semantics is defined via labeled discrete time
stochastic Petri nets with immediate transitions (LDTSIPNs).

A consistency of both semantics is demonstrated.

In order to evaluate performance, the corresponding semi-Markov
chains are analyzed.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 3 / 36

Introduction

Summary

We propose discrete time stochastic Petri Box Calculus extended with
immediate multiactions, called dtsiPBC.

The step operational semantics is constructed via labeled probabilistic
transition systems.

The denotational semantics is defined via labeled discrete time
stochastic Petri nets with immediate transitions (LDTSIPNs).

A consistency of both semantics is demonstrated.

In order to evaluate performance, the corresponding semi-Markov
chains are analyzed.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 3 / 36

Introduction

Summary

We propose discrete time stochastic Petri Box Calculus extended with
immediate multiactions, called dtsiPBC.

The step operational semantics is constructed via labeled probabilistic
transition systems.

The denotational semantics is defined via labeled discrete time
stochastic Petri nets with immediate transitions (LDTSIPNs).

A consistency of both semantics is demonstrated.

In order to evaluate performance, the corresponding semi-Markov
chains are analyzed.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 3 / 36

Introduction

Summary

We propose discrete time stochastic Petri Box Calculus extended with
immediate multiactions, called dtsiPBC.

The step operational semantics is constructed via labeled probabilistic
transition systems.

The denotational semantics is defined via labeled discrete time
stochastic Petri nets with immediate transitions (LDTSIPNs).

A consistency of both semantics is demonstrated.

In order to evaluate performance, the corresponding semi-Markov
chains are analyzed.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 3 / 36

Introduction

Summary

We propose discrete time stochastic Petri Box Calculus extended with
immediate multiactions, called dtsiPBC.

The step operational semantics is constructed via labeled probabilistic
transition systems.

The denotational semantics is defined via labeled discrete time
stochastic Petri nets with immediate transitions (LDTSIPNs).

A consistency of both semantics is demonstrated.

In order to evaluate performance, the corresponding semi-Markov
chains are analyzed.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 3 / 36

Introduction

Example:
E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f }, φ)))) ∗ Stop]

TS(E)

�
 �	
�
 �	�
 �	

?

�
�= @@R

�

�

�

�

- �

� �

s2

s4 s5

�
 �	
?

s1
({a},ρ),ρ

({b},χ),χ

({c},l),
l

l+m

({e},m),
m

l+m

{d},θ),
θ

({f},φ),
φ

s3

�� -

� �� �6 6

� �6
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

�

�

({a},ρ)

nt
?

N

({d},θ) ({f},φ)

n n
? ?

({c},l)

n

n?

({e},m)

 	 ZZ~

? ?

({b},χ)

n
?

?

	

#

"

�

�

- �

t1

t2

t3 t4

t5 t6

p1

p2

p3

p4 p5

p6

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 4 / 36

Syntax

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work
I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 5 / 36

Syntax

Stochastic and immediate multiactions

stochastic multiaction is a pair (α, ρ), where α is a multiaction and
ρ ∈ (0; 1) is the probability of the multiaction α. These probabilities
are used to calculate the probabilities of state changes (steps) at
discrete time moments.

immediate multiaction is a pair (α, l), where α is a multiaction and
l ∈ {1, 2, 3, . . .} is the non-zero weight of the multiaction α.

Stochastic and immediate multiactions cannot be executed together
in some concurrent step, i.e., the steps can only consist either of
stochastic or immediate multiactions, the latter having a priority over
stochastic ones. Thus, in a state where both kinds of multiactions can
occur, immediate multiactions always occur before stochastic ones.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 5 / 36

Syntax

Stochastic and immediate multiactions

stochastic multiaction is a pair (α, ρ), where α is a multiaction and
ρ ∈ (0; 1) is the probability of the multiaction α. These probabilities
are used to calculate the probabilities of state changes (steps) at
discrete time moments.

immediate multiaction is a pair (α, l), where α is a multiaction and
l ∈ {1, 2, 3, . . .} is the non-zero weight of the multiaction α.

Stochastic and immediate multiactions cannot be executed together
in some concurrent step, i.e., the steps can only consist either of
stochastic or immediate multiactions, the latter having a priority over
stochastic ones. Thus, in a state where both kinds of multiactions can
occur, immediate multiactions always occur before stochastic ones.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 5 / 36

Syntax

Stochastic and immediate multiactions

stochastic multiaction is a pair (α, ρ), where α is a multiaction and
ρ ∈ (0; 1) is the probability of the multiaction α. These probabilities
are used to calculate the probabilities of state changes (steps) at
discrete time moments.

immediate multiaction is a pair (α, l), where α is a multiaction and
l ∈ {1, 2, 3, . . .} is the non-zero weight of the multiaction α.

Stochastic and immediate multiactions cannot be executed together
in some concurrent step, i.e., the steps can only consist either of
stochastic or immediate multiactions, the latter having a priority over
stochastic ones. Thus, in a state where both kinds of multiactions can
occur, immediate multiactions always occur before stochastic ones.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 5 / 36

Syntax

Regular static expressions

Definition

Let (α, κ) ∈ SIL, and a ∈ Act. A regular static expression of dtsiPBC is
defined by the following syntax:

E ::= (α, κ) | E ; E | E �E | E ‖ E | E [f] | E rs a |
E sy a | [E ∗ D ∗ E],

where D ::= (α, κ) | D; E | D �D | D[f] | D rs a |
D sy a | [D ∗ D ∗ E].

RegStatExpr will denote the set of all regular static expressions of dtsiPBC.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 6 / 36

Syntax

Dynamic expressions

Dynamic expressions specify process states and are obtained from static
ones which are annotated with upper or lower bars and specify active
components of the system at the current time instant.

Definition

Let E ∈ StatExpr , a ∈ Act. Dynamic expressions are defined as follows:

G ::= E | E | G ; E | E ; G | G �E | E �G | G ‖ G | G [f] |
G rs a | G sy a | [G ∗ E ∗ E] | [E ∗ G ∗ E] | [E ∗ E ∗ G]

E denotes the initial, and E denotes the final state of the process.

The underlying static expression of a dynamic one is obtained by removing all the
upper and lower bars from it.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 7 / 36

Operational semantics

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work
I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 8 / 36

Operational semantics

Inaction Rules
instantaneous structural transformations

Let E ,F ,K ∈ RegStatExpr , G ,H, G̃ , H̃ ∈ RegDynExpr and a ∈ Act.

Inaction rules for overlined and underlined regular static expressions

E ;F ⇒ E ;F E ;F ⇒ E ;F E ;F ⇒ E ;F

E�F ⇒ E�F E�F ⇒ E�F E�F ⇒ E�F

E�F ⇒ E�F E‖F ⇒ E‖F E‖F ⇒ E‖F
E [f]⇒ E [f] E [f]⇒ E [f] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K]

[E∗F∗K]⇒ [E∗F∗K] [E∗F∗K]⇒ [E∗F∗K]

Inaction rules for arbitrary regular dynamic expressions

G⇒G̃ , ◦∈{; ,�}
G◦E⇒G̃◦E

G⇒G̃ , ◦∈{; ,�}
E◦G⇒E◦G̃

G⇒G̃

G‖H⇒G̃‖H
H⇒H̃

G‖H⇒G‖H̃
G⇒G̃

G [f]⇒G̃ [f]

G⇒G̃ , ◦∈{rs,sy}
G◦a⇒G̃◦a

G⇒G̃

[G∗E∗F]⇒[G̃∗E∗F]

G⇒G̃

[E∗G∗F]⇒[E∗G̃∗F]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 8 / 36

Operational semantics

Initial and final dynamic expressions

An operative regular dynamic expression G : no inaction rule can be applied to it.

G and G ′ are structurally equivalent, G≈G ′, if they can be reached each from
other by applying inaction rules in a forward or backward direction.

G is an initial dynamic expression, init(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

G is a final dynamic expression, final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 9 / 36

Operational semantics

Action and empty loop rules

Action rules with immediate multiactions: execution of non-empty
multisets of immediate multiactions. They define instantaneous
dynamic expression transformations due to the execution of
non-empty multisets of immediate multiactions.

Action rules with stochastic multiactions: execution of non-empty
multisets of stochastic multiactions, they are time consuming, they
take one time unit in each step and it mades dynamic expression
tranformations.

Empty loop rule: execution of the empty multiset of activities at a
time step, which is used to capture a delay of one time unit at any
state when no immediate multiactions are executable. No dynamic
expression transformations.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 10 / 36

Operational semantics

Action and empty loop rules

Action rules with immediate multiactions: execution of non-empty
multisets of immediate multiactions. They define instantaneous
dynamic expression transformations due to the execution of
non-empty multisets of immediate multiactions.

Action rules with stochastic multiactions: execution of non-empty
multisets of stochastic multiactions, they are time consuming, they
take one time unit in each step and it mades dynamic expression
tranformations.

Empty loop rule: execution of the empty multiset of activities at a
time step, which is used to capture a delay of one time unit at any
state when no immediate multiactions are executable. No dynamic
expression transformations.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 10 / 36

Operational semantics

Action and empty loop rules

Action rules with immediate multiactions: execution of non-empty
multisets of immediate multiactions. They define instantaneous
dynamic expression transformations due to the execution of
non-empty multisets of immediate multiactions.

Action rules with stochastic multiactions: execution of non-empty
multisets of stochastic multiactions, they are time consuming, they
take one time unit in each step and it mades dynamic expression
tranformations.

Empty loop rule: execution of the empty multiset of activities at a
time step, which is used to capture a delay of one time unit at any
state when no immediate multiactions are executable. No dynamic
expression transformations.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 10 / 36

Operational semantics

Can(G): set of all sets of activities which can be executed from G

Let (α, κ) ∈ SIL, E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr and a ∈ Act.

1 If final(G) then Can(G) = ∅.
2 If G = (α, κ) then Can(G) = {{(α, κ)}}.
3 If Υ ∈ Can(G) then

Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦ G) (◦ ∈ {; ,�}),
Υ ∈ Can(G‖H), Υ ∈ Can(H‖G),
f (Υ) ∈ Can(G [f]),

Υ ∈ Can(G sy a), Υ ∈ Can(G rs a)(when a, â 6∈ A(Υ)),
Υ ∈ Can([G ∗ E ∗ F]), Υ ∈ Can([E ∗ G ∗ F]), Υ ∈ Can([E ∗ F ∗ G])

4 If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H)

5 If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ s.t. a ∈ α, â ∈ β then
• (Υ + {(α⊕a β, κ · λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1)
• (Υ + {(α⊕a β, κ+ λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ IN\{0}

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 11 / 36

Operational semantics

Can(G): set of all sets of activities which can be executed from G

Let (α, κ) ∈ SIL, E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr and a ∈ Act.

1 If final(G) then Can(G) = ∅.
2 If G = (α, κ) then Can(G) = {{(α, κ)}}.
3 If Υ ∈ Can(G) then

Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦ G) (◦ ∈ {; ,�}),
Υ ∈ Can(G‖H), Υ ∈ Can(H‖G),
f (Υ) ∈ Can(G [f]),

Υ ∈ Can(G sy a), Υ ∈ Can(G rs a)(when a, â 6∈ A(Υ)),
Υ ∈ Can([G ∗ E ∗ F]), Υ ∈ Can([E ∗ G ∗ F]), Υ ∈ Can([E ∗ F ∗ G])

4 If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H)

5 If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ s.t. a ∈ α, â ∈ β then
• (Υ + {(α⊕a β, κ · λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1)
• (Υ + {(α⊕a β, κ+ λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ IN\{0}

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 11 / 36

Operational semantics

Can(G): set of all sets of activities which can be executed from G

Let (α, κ) ∈ SIL, E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr and a ∈ Act.

1 If final(G) then Can(G) = ∅.
2 If G = (α, κ) then Can(G) = {{(α, κ)}}.
3 If Υ ∈ Can(G) then

Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦ G) (◦ ∈ {; ,�}),
Υ ∈ Can(G‖H), Υ ∈ Can(H‖G),
f (Υ) ∈ Can(G [f]),

Υ ∈ Can(G sy a), Υ ∈ Can(G rs a)(when a, â 6∈ A(Υ)),
Υ ∈ Can([G ∗ E ∗ F]), Υ ∈ Can([E ∗ G ∗ F]), Υ ∈ Can([E ∗ F ∗ G])

4 If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H)

5 If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ s.t. a ∈ α, â ∈ β then
• (Υ + {(α⊕a β, κ · λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1)
• (Υ + {(α⊕a β, κ+ λ)})\{(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ IN\{0}

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 11 / 36

Operational semantics

tang(G) , vanish(G)

G is tangible, tang(G), if Can(G) contains only multisets of stochastic
multiactions. Stochastic multiactions are only executable from tangible ones.

G is vanishing, vanish(G), if there are immediate multiactions in the
multisets from Can(G), hence, there are non-empty multisets of immediate
multiactions in Can(G): Immediate multiactions are only executable from
vanishing operative dynamic expressions. No stochastic multiactions can be
executed from a vanishing operative dynamic expression G , even if Can(G)
contains sets of stochastic multiactions.

Immediate multiactions have a priority over stochastic ones.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr , G̃ , H̃ ∈ RegDynExpr and a ∈ Act.

The names of the action rules with immediate multiactions have suffix ‘i’.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 12 / 36

Operational semantics

tang(G) , vanish(G)

G is tangible, tang(G), if Can(G) contains only multisets of stochastic
multiactions. Stochastic multiactions are only executable from tangible ones.

G is vanishing, vanish(G), if there are immediate multiactions in the
multisets from Can(G), hence, there are non-empty multisets of immediate
multiactions in Can(G): Immediate multiactions are only executable from
vanishing operative dynamic expressions. No stochastic multiactions can be
executed from a vanishing operative dynamic expression G , even if Can(G)
contains sets of stochastic multiactions.

Immediate multiactions have a priority over stochastic ones.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr , G̃ , H̃ ∈ RegDynExpr and a ∈ Act.

The names of the action rules with immediate multiactions have suffix ‘i’.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 12 / 36

Operational semantics

tang(G) , vanish(G)

G is tangible, tang(G), if Can(G) contains only multisets of stochastic
multiactions. Stochastic multiactions are only executable from tangible ones.

G is vanishing, vanish(G), if there are immediate multiactions in the
multisets from Can(G), hence, there are non-empty multisets of immediate
multiactions in Can(G): Immediate multiactions are only executable from
vanishing operative dynamic expressions. No stochastic multiactions can be
executed from a vanishing operative dynamic expression G , even if Can(G)
contains sets of stochastic multiactions.

Immediate multiactions have a priority over stochastic ones.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr , G̃ , H̃ ∈ RegDynExpr and a ∈ Act.

The names of the action rules with immediate multiactions have suffix ‘i’.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 12 / 36

Operational semantics

tang(G) , vanish(G)

G is tangible, tang(G), if Can(G) contains only multisets of stochastic
multiactions. Stochastic multiactions are only executable from tangible ones.

G is vanishing, vanish(G), if there are immediate multiactions in the
multisets from Can(G), hence, there are non-empty multisets of immediate
multiactions in Can(G): Immediate multiactions are only executable from
vanishing operative dynamic expressions. No stochastic multiactions can be
executed from a vanishing operative dynamic expression G , even if Can(G)
contains sets of stochastic multiactions.

Immediate multiactions have a priority over stochastic ones.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr , G̃ , H̃ ∈ RegDynExpr and a ∈ Act.

The names of the action rules with immediate multiactions have suffix ‘i’.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 12 / 36

Operational semantics

tang(G) , vanish(G)

G is tangible, tang(G), if Can(G) contains only multisets of stochastic
multiactions. Stochastic multiactions are only executable from tangible ones.

G is vanishing, vanish(G), if there are immediate multiactions in the
multisets from Can(G), hence, there are non-empty multisets of immediate
multiactions in Can(G): Immediate multiactions are only executable from
vanishing operative dynamic expressions. No stochastic multiactions can be
executed from a vanishing operative dynamic expression G , even if Can(G)
contains sets of stochastic multiactions.

Immediate multiactions have a priority over stochastic ones.

Let (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL and (α, κ) ∈ SIL.

E ,F ∈ RegStatExpr , G ,H ∈ OpRegDynExpr , G̃ , H̃ ∈ RegDynExpr and a ∈ Act.

The names of the action rules with immediate multiactions have suffix ‘i’.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 12 / 36

Operational semantics

Action and empty loop rules

El tang(G)

G
∅→G

B (α, κ)
{(α,κ)}−→ (α, κ)

S G
Υ→G̃

G ;E
Υ→G̃ ;E E ;G

Υ→E ;G̃
C G

Γ→G̃ , ¬init(G)∨(init(G)∧tang(E))

G []E
Γ→G̃ []E E []G

Γ→E []G̃

Ci G
I→G̃

G []E
I→G̃ []E E []G

I→E []G̃
P1 G

Γ→G̃ , tang(H)

G‖H Γ→G̃‖H H‖G Γ→H‖G̃

P1i G
I→G̃

G‖H I→G̃‖H H‖G I→H‖G̃
P2 G

Γ→G̃ , H
∆→H̃, tang(G)∧tang(H)

G‖HΓ+∆−→G̃‖H̃

P2i G
I→G̃ , H

J→H̃

G‖H I+J−→G̃‖H̃
L G

Υ→G̃

G [f]
f (Υ)−→G̃ [f]

Rs G
Υ→G̃ , a,â 6∈A(Υ)

G rs a
Υ→G̃ rs a

I1 G
Υ→G̃

[G∗E∗F]
Υ→[G̃∗E∗F]

I2 G
Γ→G̃ , ¬init(G)∨(init(G)∧tang(F))

[E∗G∗F]
Γ→[E∗G̃∗F]

I2i G
I→G̃

[E∗G∗F]
I→[E∗G̃∗F]

I3 G
Γ→G̃ , ¬init(G)∨(init(G)∧tang(F))

[E∗F∗G]
Γ→[E∗F∗G̃]

I3i G
I→G̃

[E∗F∗G]
I→[E∗F∗G̃]

Sy1 G
Υ→G̃

G sy a
Υ→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β, tang(G sy a)

G sy a
Γ′+{(α⊕aβ,ρ·χ)}−−−−−−−−−−−−→G̃ sy a

Sy2i G sy a
I ′+{(α,l)}+{(β,m)}−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
I ′+{(α⊕aβ,l+m)}−−−−−−−−−−−−→G̃ sy a

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 13 / 36

Operational semantics

DR(G)

Definition

The derivation set DR(G) of a dynamic expression G is the minimal set:

[G]≈ ∈ DR(G);

if [H]≈ ∈ DR(G) and ∃Υ H
Υ→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is

Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ→ H̃}

DR(G) = DRT (G) ∪ DRV (G)

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 14 / 36

Operational semantics

DR(G)

Definition

The derivation set DR(G) of a dynamic expression G is the minimal set:

[G]≈ ∈ DR(G);

if [H]≈ ∈ DR(G) and ∃Υ H
Υ→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all multisets of activities executable from s is

Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ→ H̃}

DR(G) = DRT (G) ∪ DRV (G)

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 14 / 36

Operational semantics

Probabilities

Let Υ ∈ Exec(s) \ {∅}. The probability of the multiset of stochastic multiactions or the
weight of the multiset of immediate multiactions Υ which is ready for execution in s:

PF (Υ, s) =

{ ∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ)6∈Υ}(1− χ), s ∈ DRT (G)∑

(α,l)∈Υ l , s ∈ DRV (G)

In the case Υ = ∅ and s ∈ DRT (G):

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅}

1, Exec(s) = {∅}
The probability to execute the multiset of activities Υ in s:

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)

The probability to move from s to s ′ by executing any multiset of activities:

PM(s, s ′) =
∑

{Υ|∃H∈s ∃H̃∈s′ H
Υ→H̃}

PT (Υ, s)

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 15 / 36

Operational semantics

Probabilities

Let Υ ∈ Exec(s) \ {∅}. The probability of the multiset of stochastic multiactions or the
weight of the multiset of immediate multiactions Υ which is ready for execution in s:

PF (Υ, s) =

{ ∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ)6∈Υ}(1− χ), s ∈ DRT (G)∑

(α,l)∈Υ l , s ∈ DRV (G)

In the case Υ = ∅ and s ∈ DRT (G):

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅}

1, Exec(s) = {∅}
The probability to execute the multiset of activities Υ in s:

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)

The probability to move from s to s ′ by executing any multiset of activities:

PM(s, s ′) =
∑

{Υ|∃H∈s ∃H̃∈s′ H
Υ→H̃}

PT (Υ, s)

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 15 / 36

Operational semantics

Probabilities

Let Υ ∈ Exec(s) \ {∅}. The probability of the multiset of stochastic multiactions or the
weight of the multiset of immediate multiactions Υ which is ready for execution in s:

PF (Υ, s) =

{ ∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ)6∈Υ}(1− χ), s ∈ DRT (G)∑

(α,l)∈Υ l , s ∈ DRV (G)

In the case Υ = ∅ and s ∈ DRT (G):

PF (∅, s) =

{ ∏
{(β,χ)}∈Exec(s)(1− χ), Exec(s) 6= {∅}

1, Exec(s) = {∅}
The probability to execute the multiset of activities Υ in s:

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)

The probability to move from s to s ′ by executing any multiset of activities:

PM(s, s ′) =
∑

{Υ|∃H∈s ∃H̃∈s′ H
Υ→H̃}

PT (Υ, s)

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 15 / 36

Operational semantics

TS(G):(labeled probabilistic) transition system

Definition

TS(G) = (SG , LG , TG , sG), where

the set of states is SG = DR(G);

the set of labels is LG ⊆ INSILf × (0; 1];

the set of transitions is
TG = {(s, (Υ,PT (Υ, s)), s̃) | s ∈ DR(G), ∃H ∈ s ∃H̃ ∈ s̃ H

Υ→ H̃};
the initial state is sG = [G]≈.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 16 / 36

Denotational semantics

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work
I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 17 / 36

Denotational semantics

LDTSIPN

Definition

A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is
N = (PN ,TN ,WN ,ΩN , LN ,MN), where

PN and TN = TsN] TiN are finite sets of places and stochastic and immediate
transitions,
s.t. PN ∪ TN 6= ∅ and PN ∩ TN = ∅;
WN : (PN × TN) ∪ (TN × PN)→ IN is the arc weight function;

ΩN : TN → (0; 1) ∪ (IN \ {0}) is the transition probability and weight function;

LN : TN → L is the transition labeling function;

MN ∈ INPN
f is the initial marking.

Concurrent transition firings at discrete time moments. LDTSIPNs have step semantics.
Immediate transitions always fire first, if they can. The associated probabilities in the
firings are defined in the same way that in the operational semantics.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 17 / 36

Denotational semantics

LDTSIPN

Definition

A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is
N = (PN ,TN ,WN ,ΩN , LN ,MN), where

PN and TN = TsN] TiN are finite sets of places and stochastic and immediate
transitions,
s.t. PN ∪ TN 6= ∅ and PN ∩ TN = ∅;
WN : (PN × TN) ∪ (TN × PN)→ IN is the arc weight function;

ΩN : TN → (0; 1) ∪ (IN \ {0}) is the transition probability and weight function;

LN : TN → L is the transition labeling function;

MN ∈ INPN
f is the initial marking.

Concurrent transition firings at discrete time moments. LDTSIPNs have step semantics.
Immediate transitions always fire first, if they can. The associated probabilities in the
firings are defined in the same way that in the operational semantics.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 17 / 36

Denotational semantics

dtsi-boxes

A discrete time stochastic and immediate Petri box (dtsi-box) is
N = (PN ,TN ,WN ,ΛN) is a DTSIPN where:
ΛN is the place and transition labeling function s.t.

ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places);

ΛN |TN
: TN → {% | % ⊆ INSILf × SIL} (it associates transitions with the

relabeling relations).

Moreover,

∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN(p) = e}, and the set
of exit places of N,N◦ = {p ∈ PN | ΛN(p) = x}, it holds: ◦N 6= ∅ 6= N◦ and
•(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN ΛN(t) ∈ SL, i.e., ΛN(t) is the constant relabeling.
A marked plain dtsi-box is a pair (N,MN), where N is a plain dtsi-box.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 18 / 36

Denotational semantics

dtsi-boxes

A discrete time stochastic and immediate Petri box (dtsi-box) is
N = (PN ,TN ,WN ,ΛN) is a DTSIPN where:
ΛN is the place and transition labeling function s.t.

ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places);

ΛN |TN
: TN → {% | % ⊆ INSILf × SIL} (it associates transitions with the

relabeling relations).

Moreover,

∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN(p) = e}, and the set
of exit places of N,N◦ = {p ∈ PN | ΛN(p) = x}, it holds: ◦N 6= ∅ 6= N◦ and
•(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN ΛN(t) ∈ SL, i.e., ΛN(t) is the constant relabeling.
A marked plain dtsi-box is a pair (N,MN), where N is a plain dtsi-box.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 18 / 36

Denotational semantics

dtsi-boxes

A discrete time stochastic and immediate Petri box (dtsi-box) is
N = (PN ,TN ,WN ,ΛN) is a DTSIPN where:
ΛN is the place and transition labeling function s.t.

ΛN |PN
: PN → {e, i, x} (it specifies entry, internal and exit places);

ΛN |TN
: TN → {% | % ⊆ INSILf × SIL} (it associates transitions with the

relabeling relations).

Moreover,

∀t ∈ TN
•t 6= ∅ 6= t•.

For the set of entry places of N, ◦N = {p ∈ PN | ΛN(p) = e}, and the set
of exit places of N,N◦ = {p ∈ PN | ΛN(p) = x}, it holds: ◦N 6= ∅ 6= N◦ and
•(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN ΛN(t) ∈ SL, i.e., ΛN(t) is the constant relabeling.
A marked plain dtsi-box is a pair (N,MN), where N is a plain dtsi-box.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 18 / 36

Denotational semantics

plain and operator dtsi-boxes

(α, ρ)

n

n
?

?

N(α,ρ)ι

tι %[f]

n

n
?

?

Θ[f]

u[f] %rs a

n

n
?

?

Θrs a

urs a %sy a

n

n
?

?

Θsy a

usy a %id

n

n
?

?

Θ;

u1
;

%id

n
?

?

u2
;

%id

n

n
?

?

Θ‖

u1
‖ %id

n

n
?

?

u2
‖%idu1

[]
%id u2

[]

Θ[]n

n
 	 @@R

S
Sw

�
�/

�
� �?6

%id

n

n
?

?

Θ[∗∗]

u1
[∗∗]

%id

n
?

?

u3
[∗∗]

%id u2
[∗∗]

(α, l)

n

n
?

?

N(α,l)ι

tι

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 19 / 36

Denotational semantics

Algebra of dtsi-boxes

Let (α, κ) ∈ SIL, a ∈ Act and E ,F ,K ∈ RegStatExpr . The denotational
semantics of dtsiPBC is a mapping Boxdtsi from RegStatExpr into plain
dtsi-boxes:

Boxdtsi ((α, κ)ι) = N(α,κ)ι ;

Boxdtsi (E◦F) = Θ◦(Boxdtsi (E),Boxdtsi (F)), ◦ ∈ {; , [], ‖};
Boxdtsi (E [f]) = Θ[f](Boxdtsi (E));

Boxdtsi (E◦a) = Θ◦a(Boxdtsi (E)), ◦ ∈ {rs, sy};
Boxdtsi ([E∗F∗K]) = Θ[∗∗](Boxdtsi (E),Boxdtsi (F),Boxdtsi (K)).

Theorem

For any static expression E

TS(E)'RG (Boxdtsi (E))

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 20 / 36

Denotational semantics

Algebra of dtsi-boxes

Let (α, κ) ∈ SIL, a ∈ Act and E ,F ,K ∈ RegStatExpr . The denotational
semantics of dtsiPBC is a mapping Boxdtsi from RegStatExpr into plain
dtsi-boxes:

Boxdtsi ((α, κ)ι) = N(α,κ)ι ;

Boxdtsi (E◦F) = Θ◦(Boxdtsi (E),Boxdtsi (F)), ◦ ∈ {; , [], ‖};
Boxdtsi (E [f]) = Θ[f](Boxdtsi (E));

Boxdtsi (E◦a) = Θ◦a(Boxdtsi (E)), ◦ ∈ {rs, sy};
Boxdtsi ([E∗F∗K]) = Θ[∗∗](Boxdtsi (E),Boxdtsi (F),Boxdtsi (K)).

Theorem

For any static expression E

TS(E)'RG (Boxdtsi (E))

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 20 / 36

Performance evaluation

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work
I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 21 / 36

Performance evaluation

SMC (G)

For a dynamic expression G , a discrete random variable is associated with every
tangible state from DR(G). The random values (residence time in the tangible
states) are geometrically distributed:
the probability to stay in the tangible state s ∈ DR(G) for k − 1 moments and
leave it at the moment k ≥ 1 is

PM(s, s)k−1(1− PM(s, s))

The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The stochastic process associated with a dynamic expression G : the underlying
semi-Markov chain (SMC) of G , SMC (G).

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 21 / 36

Performance evaluation

SMC (G)

For a dynamic expression G , a discrete random variable is associated with every
tangible state from DR(G). The random values (residence time in the tangible
states) are geometrically distributed:
the probability to stay in the tangible state s ∈ DR(G) for k − 1 moments and
leave it at the moment k ≥ 1 is

PM(s, s)k−1(1− PM(s, s))

The average sojourn time in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The stochastic process associated with a dynamic expression G : the underlying
semi-Markov chain (SMC) of G , SMC (G).

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 21 / 36

Performance evaluation

EDTMC (G)

SMC (G) can be analyzed by extracting the embedded (absorbing) discrete time
Markov chain (EDTMC) of G , EDTMC (G).

Let s → s̃ and s 6= s̃. The probability to move from s to s̃ by executing any
multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s,s̃)

1−PM(s,s) , s → s;

PM(s, s̃), otherwise;

}

Definition

Let G be a dynamic expression. The embedded (absorbing) discrete time Markov
chain (EDTMC) of G , EDTMC (G), has the state space DR(G) and the
transitions s→→P s̃, if s → s̃ and s 6= s̃, where P = PM∗(s, s̃).

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 22 / 36

Performance evaluation

EDTMC (G)

SMC (G) can be analyzed by extracting the embedded (absorbing) discrete time
Markov chain (EDTMC) of G , EDTMC (G).

Let s → s̃ and s 6= s̃. The probability to move from s to s̃ by executing any
multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s,s̃)

1−PM(s,s) , s → s;

PM(s, s̃), otherwise;

}

Definition

Let G be a dynamic expression. The embedded (absorbing) discrete time Markov
chain (EDTMC) of G , EDTMC (G), has the state space DR(G) and the
transitions s→→P s̃, if s → s̃ and s 6= s̃, where P = PM∗(s, s̃).

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 22 / 36

Performance evaluation

EDTMC (G)

SMC (G) can be analyzed by extracting the embedded (absorbing) discrete time
Markov chain (EDTMC) of G , EDTMC (G).

Let s → s̃ and s 6= s̃. The probability to move from s to s̃ by executing any
multiset of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s,s̃)

1−PM(s,s) , s → s;

PM(s, s̃), otherwise;

}

Definition

Let G be a dynamic expression. The embedded (absorbing) discrete time Markov
chain (EDTMC) of G , EDTMC (G), has the state space DR(G) and the
transitions s→→P s̃, if s → s̃ and s 6= s̃, where P = PM∗(s, s̃).

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 22 / 36

Performance evaluation

SMC

Theorem

For any static expression E

SMC (E)'SMC (Boxdtsi (E))

SMC (G) can be also analyzed by removing the vanish states considering
the reduced discrete time Markov chain of G .

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 23 / 36

Performance evaluation

SMC

Theorem

For any static expression E

SMC (E)'SMC (Boxdtsi (E))

SMC (G) can be also analyzed by removing the vanish states considering
the reduced discrete time Markov chain of G .

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 23 / 36

Case study: shared memory system

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work
I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 24 / 36

Case study: shared memory system

two processors accessing a common shared memory

-

�

�

-

After activation of the system, two processors are active, and the common
memory is available. Each processor can request an access to the memory
after which the instantaneous decision is made.

When the decision is made in favour of a processor, it starts an acquisition
of the memory, and another processor waits until the former one ends its
operations, and the system returns to the state with both active processors
and the available memory.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 24 / 36

Case study: shared memory system

two processors accessing a common shared memory

-

�

�

-

After activation of the system, two processors are active, and the common
memory is available. Each processor can request an access to the memory
after which the instantaneous decision is made.

When the decision is made in favour of a processor, it starts an acquisition
of the memory, and another processor waits until the former one ends its
operations, and the system returns to the state with both active processors
and the available memory.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 24 / 36

Case study: shared memory system

The static expression

a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i .

di correspond to the instantaneous decision on the memory allocation in
favour of the processor i .

mi represent the common memory access of processor i .

The other actions are used for communication purpose only.

P1 = [({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]

P2 = [({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]

M = [({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop]

E = (P1‖P2‖M)
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 25 / 36

Case study: shared memory system

The static expression

a corresponds to the system activation.

ri (1 ≤ i ≤ 2) represent the common memory request of processor i .

di correspond to the instantaneous decision on the memory allocation in
favour of the processor i .

mi represent the common memory access of processor i .

The other actions are used for communication purpose only.

P1 = [({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]

P2 = [({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]

M = [({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop]

E = (P1‖P2‖M)
sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 25 / 36

Case study: shared memory system

dtsi-box

({m2,z2}, 12)

({d2,y2},1)

nt

({r2}, 12)

n
?

?

n

?

n
n

�

�

�

({m1,z1}, 12)

n
({d1,y1},1)

n

{r1}, 12)

n
?

?

	

nt
n

?

�

�

-

({x1}, 12)

?

?

?

?

?

?

({x2}, 12)

?

?

({a,x̂1,x̂2}, 12)

({ẑ1}, 12) ({ẑ2}, 12)

({ŷ1},1) ({ŷ2},1)

n?
 	 @@R

	
 ��

66

n

nt
?

n?
?

n?
?

({a}, 1
8
)

nt
?

({m1}, 14) ({m2}, 14)

n n
({d1},2)

n

({d2},2)

({r1}, 12)

n
?

?

	

ntnt
@@R 	

n

?

({r2}, 12)

n
?

?

n

?

nn

n
n n�� BBN

AAU ���

�� BBN

AAU ���

?

��= ZZ~

 	 @@R

	

�

�

�

�

- �

��

66

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 26 / 36

Case study: shared memory system

TS(E) �
�

�
�s1

�
�

�
�s2

�
�

�
�s5

�
�

�
�s8

�
�

�
�s7

�
�

�
�s9

?

?

?

?

?

?

()

��
��
��
��

��
��

��
���1

 �

- �

� -

({a}, 1
8
), 1

8

({r1}, 1
2
), 1

4
({r2}, 1

2
), 1

4

{({r1}, 1
2
),({r2}, 1

2
)}, 1

4

({d1},2),1 ({d2},2),1

({r2}, 1
2
), 3

8
({r1}, 1

2
), 3

8

{({r1}, 1
2
),

({m2}, 1
4
)}, 1

8

{({r2}, 1
2
),

({m1}, 1
4
)}, 1

8

({m1}, 1
4
), 1

8
({m2}, 1

4
), 1

8

({d1},2), 1
2

({d2},2), 1
2

!!
!!
!!
!!

!!
!!!

�

aa
aa

aa
aa

aa
aaa

J
J
J
J
J
J
J
J]

({m1}, 1
4
), 1

4
({m2}, 1

4
), 1

4

@
@
@
@
@@I

PP
PP

PP
PP

PP
PP

PP
PPPi

s3 s4

s6

-��

-�� ��

 ��

� �6

� �6∅, 3
8

∅, 3
4

∅, 3
8

∅, 3
4

∅, 7
8

∅, 1
4

s1: the initial state, s2: the system is activated and the memory is not requested, s3: the
memory is requested by the Processor 1, s4: the memory is requested by the Processor
2, s5: the memory is allocated to the Processor 1, s6: the memory is requested by two
processors, s7: the memory is allocated to the Processor 2, s8: the memory is allocated
to the Processor 1 and the memory is requested by the Processor 2, s9: the memory is
allocated to the Processor 2 and the memory is requested by the Processor 1.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 27 / 36

Case study: shared memory system

SMC (E)

�
�

�
�s1

�
�

�
�s2

�
�

�
�s5

�
�

�
�s8

�
�

�
�s7

�
�

�
�s9

?

?

?

?

?

?

SMC(E)

��
��
��

��
��
��

��
���1

 �

- �

� -

1

1
3

1
3

1
3

1 1

3
5

3
5

1
5

1
5

1
5

1
5

1
2

1
2

!!
!!
!!

!!
!!
!!!

�

aa
aa

aa
aa

aa
aaa

J
J
J
J
J
J
J
J]

1 1

@
@
@
@
@@I

PP
PP

PP
PP

PP
PP

PP
PPPi

s3 s4

s6

0

8
5

4

0

8
5

4

8

4
3

0

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 28 / 36

Case study: shared memory system

The average sojourn time vector of E :

SJ =

(
8,

4

3
, 0, 0,

8

5
, 0,

8

5
, 4, 4

)
.

The TPM for EDTMC (E):

P∗ =

0 1 0 0 0 0 0 0 0
0 0 1

3
1
3 0 1

3 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1

5 0 1
5 0 0 0 3

5 0
0 0 0 0 0 0 0 1

2
1
2

0 1
5

1
5 0 0 0 0 0 3

5
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 29 / 36

Case study: shared memory system

long term analysis

The steady-state PMF for EDTMC (E):

ψ∗ =

(
0,

3

44
,

15

88
,

15

88
,

15

88
,

1

44
,

15

88
,

5

44
,

5

44

)
.

The steady-state PMF ψ∗ weighted by SJ =
(
8, 4

3 , 0, 0,
8
5 , 0,

8
5 , 4, 4

)
:(

0,
1

11
, 0, 0,

3

11
, 0,

3

11
,

5

11
,

5

11

)
.

We normalize the steady-state weighted PMF dividing it by the sum of its
components ψ∗SJT = 17

11 .

The steady-state PMF for SMC (E):

ϕ =

(
0,

1

17
, 0, 0,

3

17
, 0,

3

17
,

5

17
,

5

17

)
.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 30 / 36

Case study: shared memory system

Transient probabilities from RDTMC

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

s1
s2
s5
s7
s8
s9

Note that the corresponding values coincide for s5, s7 as well as for s8, s9.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 31 / 36

Case study: shared memory system

Performance indices

The average recurrence time in the state s2, where no processor requests the
memory, the average system run-through, is 1

ϕ2
= 17.

The common memory is available only in the states s2, s3, s4, s6.

The steady-state probability that the memory is available is
ϕ2 + ϕ3 + ϕ4 + ϕ6 = 1

17 + 0 + 0 + 0 = 1
17 .

The steady-state probability that the memory is used (i.e., not available),
the shared memory utilization, is 1− 1

17 = 16
17 .

After activation of the system, we leave the state s1 for ever, and the
common memory is either requested or allocated in every remaining state,
with exception of s2.

The rate with which the shared memory necessity emerges coincides with
the rate of leaving s2, calculated as ϕ2

SJ2
= 1

17 · 3
4 = 3

68 .

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 32 / 36

Case study: shared memory system

Performance indices

The average recurrence time in the state s2, where no processor requests the
memory, the average system run-through, is 1

ϕ2
= 17.

The common memory is available only in the states s2, s3, s4, s6.

The steady-state probability that the memory is available is
ϕ2 + ϕ3 + ϕ4 + ϕ6 = 1

17 + 0 + 0 + 0 = 1
17 .

The steady-state probability that the memory is used (i.e., not available),
the shared memory utilization, is 1− 1

17 = 16
17 .

After activation of the system, we leave the state s1 for ever, and the
common memory is either requested or allocated in every remaining state,
with exception of s2.

The rate with which the shared memory necessity emerges coincides with
the rate of leaving s2, calculated as ϕ2

SJ2
= 1

17 · 3
4 = 3

68 .

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 32 / 36

Case study: shared memory system

Performance indices

The average recurrence time in the state s2, where no processor requests the
memory, the average system run-through, is 1

ϕ2
= 17.

The common memory is available only in the states s2, s3, s4, s6.

The steady-state probability that the memory is available is
ϕ2 + ϕ3 + ϕ4 + ϕ6 = 1

17 + 0 + 0 + 0 = 1
17 .

The steady-state probability that the memory is used (i.e., not available),
the shared memory utilization, is 1− 1

17 = 16
17 .

After activation of the system, we leave the state s1 for ever, and the
common memory is either requested or allocated in every remaining state,
with exception of s2.

The rate with which the shared memory necessity emerges coincides with
the rate of leaving s2, calculated as ϕ2

SJ2
= 1

17 · 3
4 = 3

68 .

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 32 / 36

Case study: shared memory system

The common memory request of the first processor ({r1}, 1
2) is only possible

from the states s2, s7.

The request probability in each of the states is the sum of the execution
probabilities for all multisets of activities containing ({r1}, 1

2).

The steady-state probability of the shared memory request from the first
processor is

ϕ2

∑
{Υ|({r1}, 1

2)∈Υ}
PT (Υ, s2) + ϕ7

∑
{Υ|({r1}, 1

2)∈Υ}
PT (Υ, s7) =

=
1

17

(
1

4
+

1

4

)
+

3

17

(
3

8
+

1

8

)
=

2

17

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 33 / 36

Conclusions and future work

1 Introduction

2 Syntax

3 Operational semantics

4 Denotational semantics

5 Performance evaluation

6 Case study: shared memory system

7 Conclusions and future work
I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Conclusions

A discrete time stochastic and immediate extension dtsiPBC of finite
PBC enriched with iteration.

The step operational semantics based on labeled probabilistic
transition systems.

The denotational semantics in terms of a subclass of LDTSIPNs.

A consistency of both semantics.

A method of performance evaluation based on underlying SMCs.

A case study: the shared memory system.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Conclusions

A discrete time stochastic and immediate extension dtsiPBC of finite
PBC enriched with iteration.

The step operational semantics based on labeled probabilistic
transition systems.

The denotational semantics in terms of a subclass of LDTSIPNs.

A consistency of both semantics.

A method of performance evaluation based on underlying SMCs.

A case study: the shared memory system.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Conclusions

A discrete time stochastic and immediate extension dtsiPBC of finite
PBC enriched with iteration.

The step operational semantics based on labeled probabilistic
transition systems.

The denotational semantics in terms of a subclass of LDTSIPNs.

A consistency of both semantics.

A method of performance evaluation based on underlying SMCs.

A case study: the shared memory system.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Conclusions

A discrete time stochastic and immediate extension dtsiPBC of finite
PBC enriched with iteration.

The step operational semantics based on labeled probabilistic
transition systems.

The denotational semantics in terms of a subclass of LDTSIPNs.

A consistency of both semantics.

A method of performance evaluation based on underlying SMCs.

A case study: the shared memory system.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Conclusions

A discrete time stochastic and immediate extension dtsiPBC of finite
PBC enriched with iteration.

The step operational semantics based on labeled probabilistic
transition systems.

The denotational semantics in terms of a subclass of LDTSIPNs.

A consistency of both semantics.

A method of performance evaluation based on underlying SMCs.

A case study: the shared memory system.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Conclusions

A discrete time stochastic and immediate extension dtsiPBC of finite
PBC enriched with iteration.

The step operational semantics based on labeled probabilistic
transition systems.

The denotational semantics in terms of a subclass of LDTSIPNs.

A consistency of both semantics.

A method of performance evaluation based on underlying SMCs.

A case study: the shared memory system.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 34 / 36

Conclusions and future work

Future work

Constructing a congruence relation: the equivalence that withstands
application of the algebraic operations.

Introducing the deterministically timed multiactions with fixed time
delays

Extending the syntax with recursion operator.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 35 / 36

Conclusions and future work

Future work

Constructing a congruence relation: the equivalence that withstands
application of the algebraic operations.

Introducing the deterministically timed multiactions with fixed time
delays

Extending the syntax with recursion operator.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 35 / 36

Conclusions and future work

Future work

Constructing a congruence relation: the equivalence that withstands
application of the algebraic operations.

Introducing the deterministically timed multiactions with fixed time
delays

Extending the syntax with recursion operator.

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 35 / 36

Conclusions and future work

Thank you for your attention!

The slides can be downloaded from Internet:

http://itar.iis.nsk.su/files/itar/pages/pasm12sld.pdf

I.V. Tarasyuk, H. Macià, V. Valero dtsiPBC-PASM 2012 36 / 36

	Introduction
	Syntax
	Operational semantics
	Denotational semantics
	Performance evaluation
	Case study: shared memory system
	Conclusions and future work

