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2 The research area and motivation

Stochastic Petri nets (SPNs) are a well-known model for quantitative analysis of discrete dynamic event systems
proposed in [37, 38, 24]. Essentially, SPNs are a high level language for specification and performance analysis
of concurrent systems. A stochastic process corresponding to this formal model is a Markov chain generated
and analysed by well-developed algorithms and methods. Firing probabilities distributed along continuous or
discrete time scale are associated with transitions of an SPN. Thus, there exist SPNs with continuous and
discrete time. Markov chains of the corresponding types are associated with the SPNs. As a rule, for SPNs
with continuous time (CTSPNs), exponential or phase distributions of transition probabilities are used. For
SPNs with discrete time (DTSPNs), geometric or combinations of geometric distributions are usually used.
Transitions of CTSPNs fire one by one at continuous time moments. Hence, the semantics of this model is
interleaving one. In this semantics, parallel computations are modeled by all possible execution sequences of
their components. Transitions of DTSPNs fire concurrently in steps at discrete time moments. Hence, this
model has step semantics. In this semantics, parallel computations are modeled by sequences of concurrent
occurrences (steps) of their components. In [17, 18], a labeling for transitions of CTSPNs with action names
was proposed. Labeling allows SPNs to model processes with functionally similar components: the transitions
corresponding to the similar components are labeled by the same action. Moreover, one can compare labeled
SPNs by different behavioural equivalences, and this makes possible to check stochastic processes specified by
labeled SPNs for functional similarity. Therefore, one can compare both functional and performance properties,
and labeled SPNs turn into a formalism for quantitative and qualitative analysis.

Algebraic calculi hold a special place among formal models for specification of concurrent systems and
analysis of their behavioral properties. In such process algebras (PAs), a system or a process is specified by an
algebraic formula. A verification of the properties is accomplished at a syntactic level by means of well-developed
systems of equivalences, axioms and inference rules. One of the first PAs was CCS (Calculus of Communicating
Systems) [36]. Process algebras has been acknowledged to be very suitable formalism to operate with real
time and stochastic systems as well. In the last years, stochastic extensions of PAs called stochastic process
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algebras (SPAs) became very popular as a modeling framework. SPAs do not just specify actions that can
happen (qualitative features) as usual process algebras, but they associate some quantitative parameters with
actions (quantitative characteristics). The papers [29, 16, 27, 22, 53, 11] propose a variety of SPAs. Process
algebras allow one to specify processes in a compositional way via an expressive formal syntax. On the other
hand, Petri nets provide one with an ability for visual representation of a process structure and execution.
Hence, the relationship between SPNs and SPAs is of particular interest, since it allows to combine advantages
of the both models. For this, a semantics of algebraic formulas in terms of Petri nets is usually defined. In the
stochastic case, the Markov chain of the stochastic process specified by an SPA formula is built based on the
state transition graph of the corresponding SPN.

As a rule, stochastic process calculi proposed in the literature are interleaving. As a semantic area, the
interleaving formalism of transition systems is used. For example, an extension of CCS with probabilities and
time called TPCCS was defined in [26]. An enrichment of BPA with probabilistic choice, prBPA, as well
as an extension of prBPA with parallel composition operator named ACP+

π have been proposed in [1]. A
standard way for probabilistic extension of process algebras into the calculi of probabilistic transition systems
was described in [30]. The most famous SPAs proposed so far are PEPA [27], TIPP [29] and EMPA [10]. It is
worth to mention the stochastic process calculus PPA constructed in [51, 52] as well. Therefore, an investigation
of a stochastic extension for more expressive and powerful algebraic calculi is very important. At present, the
development of step or “true concurrent” (such that parallelism is considered as a causal independence) SPAs
is in the very beginning. One can mention a concurrent SPA of finite processes StAFP0 with step semantics
proposed in [15]. At the same time, there still exists no algebra of infinite concurrent stochastic processes.

Petri box calculus (PBC) is a flexible and expressive process algebra based on calculi CCS [36] and AFP0

[33]. PBC was proposed more than 10 years ago [3], and it was well explored since that time [2, 14, 19, 32,
34, 12, 13, 20, 21, 23, 28, 4, 5, 31, 6, 7, 8, 9]. It was intended to become a tool for description of a Petri
net structure and relationships between nets. Its goal was to propose a compositional semantics for high level
constructs of concurrent programming languages in terms of elementary Petri nets. Thus, PBC serves as a
bridge between theory and applications. Formulas of PBC are combined not from single actions (including the
invisible one) and variables only, as in CCS, but from multisets of actions called multiactions (basic formulas)
as well. In contrast to CCS, concurrency and synchronization are different operations (concurrent constructs).
Synchronization is defined as a unary multi-way stepwise operation based on communication of actions and
their conjugates. The other fundamental operations are sequence and choice (sequential constructs). The
calculus includes also restriction and relabeling (abstraction constructs). To specify infinite processes, refinement,
recursion and iteration operations were added (hierarchical constructs). Thus, unlike CCS, algebra PBC has
an additional iteration construction to specify infiniteness in the cases when finite Petri nets can be used as
the semantic interpretation. For PBC, denotational semantics in terms of a subclass of Petri nets equipped
with interface and considered up to isomorphism was proposed. This subclass is called Petri boxes. Calculus
PBC has step operational semantics in terms of labeled transition systems based on structural operational
semantics (SOS) rules. Pomset operational semantics of PBC was defined in [34] such that the partial order
information was extracted from “decorated” step traces. In these step sequences, multiactions were annotated
with an information on the relative position of the expression part they were derived from. Last years, several
extensions of PBC were presented.

A stochastic extension of PBC called stochastic Petri box calculus (sPBC) was proposed in [48, 49, 50, 39,
44, 45, 46, 35]. In sPBC, multiactions have stochastic durations that follow negative exponential distribution.
Each multiaction is instantaneous and equipped with a rate that is a parameter of the corresponding exponential
distribution. The execution of a multiaction is possible only after the corresponding stochastic time delay. Just
a finite part of PBC was used for the stochastic enrichment. This means that sPBC has neither refinement or
recursion or iteration operations. Denotational semantics was defined in terms of a subclass of labeled continuous
time stochastic Petri nets (CTSPNs) called stochastic Petri boxes (s-boxes). Calculus sPBC has interleaving
operational semantics in terms of labeled transition systems. Note that we have interleaving behaviour here
because of the fact that a simultaneous firing of any two transitions has zero probability in accordance to
the properties of continuous time distributions. Current research in this branch has an aim to extend the
specification abilities of sPBC and to define an appropriate congruence relation over algebraic formulas. Recent
results on constructing iteration for sPBC were reported in [41, 42]. In the papers [40, 43], a number of new
equivalence relations were proposed for regular terms of sPBC to choose later a suitable candidate for a
congruence. In [47] special multiactions with zero time delay were added to sPBC. Denotational semantics of
such a sPBC extension was defined via a subclass of labeled generalized SPNs (GSPNs). The subclass is called
generalized stochastic Petri boxes (gs-boxes).

Nevertheless, there is still no stochastic extension of PBC with step semantics. It could be done with the use
of labeled DTSPNs as a semantic area, since discrete time models allow for concurrent action occurrences. The
enrichment based of DTSPNs would be more natural than interleaving one based on CTSPNs because PBC
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has step denotational and operational semantics. Hence, it is worth to propose the discrete time stochastic
enrichment of PBC based on DTSPNs.

3 The results obtained

We proposed a discrete time stochastic extension of finite PBC called dtsPBC. The work consisted of the
following stages. First, we presented syntax of dtsPBC. Each multiaction of the initial calculus PBC was
associated with a conditional probability. Such a pair is called stochastic multiaction or activity. Second, we
proposed semantics of dtsPBC. Step operational semantics was constructed in terms of labeled transition
systems based on action and inaction rules. The complexity here was a careful elaboration of step probabilities
for formulas with parallelism and synchronization as well as the conflict resolving mechanism related to the
probabilistic choice. Denotational semantics was defined in terms of a subclass of labeled DTSPNs (LDTSPNs)
called discrete time stochastic Petri boxes (dts-boxes). At last, we defined a number of probabilistic equivalences
in the algebraic setting based of transition systems without empty behaviour. These relations are weaker than
the semantic equivalence of dtsPBC. They are used to identify stochastic processes with similar behaviour
which are differentiated by the semantic equivalence that is too strict in many cases. Moreover, the proposed
equivalences could be used to construct later a congruence relation based on one of them. In the best case, a
complete and correct finite axiomatization of the congruence could be constructed. The hard task here would
be to find a congruence that is not too distinctive, i.e., it should differentiate formulas with really different
behaviour only in accordance to our needs. Moreover, the relation is to be axiomatizable and easy to check.

3.1 Syntax

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} be the set of conjunctive actions
(conjugates) such that a 6= â and ˆ̂a = a. Let A = Act∪ Âct be the set of all actions, and L = INA

f be the set of
all multiactions. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability of
multiaction α. Let SL be the set of all activities. The alphabet of (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). For
(α, ρ) ∈ SL, we define its multiaction part as L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ.

Activities are combined into formulas by the following operations: sequential execution ;, choice [], parallelism
‖, relabeling [f ], synchronization sy and restriction rs.

Relabeling functions f : A → A are bijections preserving conjugates, i.e., ∀x ∈ A f(x̂) = f̂(x). Let α, β ∈ L
be two multiactions such that for some action a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and a ∈ β. Then
synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =
{

α(x) + β(x)− 1, if x = a or x = â;
α(x) + β(x), otherwise.

Definition 3.1 Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC is defined as

E ::= (α, ρ) | E; E | E[]E | E‖E | E[f ] | E rs a | E sy a.

Let StatExpr denote the set of all static expressions of dtsPBC.

Definition 3.2 Let (α, ρ) ∈ SL and a ∈ Act. A dynamic expression of dtsPBC is defined as

G ::= E | E | G; E | E; G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a.

Let DynExpr denote the set of all dynamic expressions of dtsPBC.

3.2 Operational semantics

We construct step operational semantics in terms of labeled transition systems.
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3.2.1 Inaction rules

Let E, F ∈ StatExpr, G ∈ DynExpr and a ∈ Act.

E;F ∅→ E; F E;F ∅→ E; F E; F ∅→ E;F E[]F ∅→ E[]F E[]F ∅→ E[]F

E[]F ∅→ E[]F E[]F ∅→ E[]F E‖F ∅→ E‖F E‖F ∅→ E‖F E[f ] ∅→ E[f ]

E[f ] ∅→ E[f ] E rs a
∅→ E rs a E rs a

∅→ E rs a E sy a
∅→ E sy a E sy a

∅→ E sy a

G
∅→ G

Let E ∈ StatExpr, G, H, G̃, H̃ ∈ DynExpr and a ∈ Act.

G
∅→G̃, ◦∈{;,[]}

G◦E ∅→G̃◦E
G
∅→G̃, ◦∈{;,[]}

E◦G ∅→E◦G̃
G
∅→G̃

G‖H ∅→G̃‖H
H
∅→H̃

G‖H ∅→G̃‖H
G
∅→G̃

G[f ]
∅→G̃[f ]

G
∅→G̃, ◦∈{rs,sy}
G◦a ∅→G̃◦a

A dynamic expression G is operative if no inaction rule can be applied to it. Let OpDynExpr denote the
set of all operative dynamic expressions of dtsPBC.

Let ' = ( ∅→ ∪ ∅←−)∗ be dynamic expression isomorphism in dtsPBC.

3.2.2 Action rules

Let (α, ρ), (β, χ) ∈ SL, E ∈ StatExpr, G, H ∈ OpDynExpr, G̃, H̃ ∈ DynExpr and a ∈ Act. Moreover, let
Γ, ∆ ∈ INSL

f . The alphabet of Γ ∈ INSL
f is defined as A(Γ) = ∪(α,ρ)∈ΓA(α).

(α,ρ)
{(α,ρ)}−→ (α,ρ)

G
Γ→G̃

G;E
Γ→G̃;E

G
Γ→G̃

E;G
Γ→E;G̃

G
Γ→G̃

G[]E
Γ→G̃[]E

G
Γ→G̃

E[]G
Γ→E[]G̃

G
Γ→G̃

G‖H Γ→G̃‖H
G

Γ→G̃

H‖G Γ→H‖G̃
G

Γ→G̃, H
∆→H̃

G‖HΓ+∆−→ G̃‖H
G

Γ→G̃

G[f ]
f(Γ)−→G̃[f ]

G
Γ→G̃, a,â 6∈A(Γ)

G rs a
Γ→G̃ rs a

G
Γ→G̃

G sy a
Γ→G̃ sy a

G sy a
Γ+{(α,ρ)}+{(β,χ)}−→ G̃ sy a, a ∈ A(α), â ∈ A(β)

G sy a
Γ+{(α⊕aβ,ρ·χ)}−→ G̃ sy a

3.2.3 Transition systems

For a dynamic expression G, we define the transition system TS(G) and the underlying discrete time Markov
chain (DTMC) DTMC(G).

Example 3.1 Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ) and E = E1; E2. The identical activities of the com-
posite static expression are enumerated as follows: E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ). In Figure 1 the transition
system TS(E) and the underlying DTMC DTMC(E) are presented. Note that for the reason of simplicity in
the graphical representation states are depicted by expressions belonging to the corresponding equivalence classes,
and singleton multisets are written without braces.

3.3 Denotational semantics

We construct denotational semantics in terms of a subclass of labeled DTSPNs called discrete time stochastic
Petri boxes (dts-boxes).

3.3.1 Labeled DTSPNs

We propose a class on labeled DTSPNs (LDTSPNs), an extension of DTSPNs with transition labeling. For a
LDTSPN N , we define the reachability graph RG(N) and the underlying discrete time Markov chain (DTMC)
DTMC(N).

Example 3.2 In Figure 2 an LDTSPN with two visible transitions t1 (labeled by a), t2 (labeled by b) and and
one invisible transition t3 (labeled by τ) is depicted. Transition probabilities of N are denoted by ρi = ΩN (ti) (1 ≤
i ≤ 3). In the figure one can see the reachability graph RG(N) and the underlying DTMC DTMC(N) as well.
The reachability set consists of markings M1 = (1, 1, 0), M2 = (0, 1, 1), M3 = (1, 0, 1), M4 = (0, 0, 2).
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Figure 1: The transition system and the underlying DTMC of E = (({a}, ρ)1[]({a}, ρ)2); ({b}, χ)
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3.3.2 Algebra of dts-boxes

We propose a class of plain discrete time stochastic Petri boxes (plain dts-boxes), a discrete time stochastic
extension of plain Petri boxes from PBC. The structure of the plain dts-box corresponding to a static expression
is constructed as in PBC, i.e., via refinement and labeling. The plain and operator dts-boxes are presented in
Figure 3.

Definition 3.3 Let (α, ρ) ∈ SL and E, F,∈ StatExpr. The denotational semantics dtsPBC is a mapping
Boxdts from StatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i
;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};
3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy}.

We denote isomorphism of transition systems by ', and the same symbol denotes isomorphism of reachability
graphs and DTMCs. Moreover, ' will denote an isomorphism between transition systems and reachability
graphs.

Theorem 3.1 For any static expression E

TS(E) ' RG(Boxdts(E), ◦Boxdts(E)).

Definition 3.4 Two dynamic expressions G and G′ are equivalent w.r.t. semantics of dtsPBC, denoted by
G =dts G′, if TS(G) ' TS(G′).

Proposition 3.1 For any static expression E

DTMC(E) ' DTMC(Boxdts(E), ◦Boxdts(E)).

Example 3.3 Let E1 = ({a}, ρ), E2 = ({â}, χ) and E = (E1‖E2) sy a = (({a}, ρ)‖({â}, χ)) sy a. In Figure
4 the transition system TS(E) and the underlying DTMC DTMC(E) are presented. In Figure 5 the marked
dts-box N = (Boxdts(E), ◦Boxdts(E)), its reachability graph RG(N) and the underlying DTMC DTMC(N) are
presented. It is easy to see that TS(E) and RG(N) are isomorphic as well as DTMC(E) and DTMC(N).

The probabilities Pij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol ‖ inscribes that of the transition corresponding
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Figure 5: The marked dts-box N = (Boxdts(E), ◦Boxdts(E)), its reachability graph and the underlying DTMC

to the concurrent execution of two activities. To avoid complex notation, we use the normalization factor
N = 1

1−ρ2χ−ρχ2+ρ2χ2 .

P11 = N (1− ρ)(1− χ)(1− ρχ) P12 = Nρ(1− χ)(1− ρχ) P13 = Nχ(1− ρ)(1− ρχ)
P sy

14 = Nρχ(1− ρ)(1− χ) P‖14 = Nρχ(1− ρχ) P22 = 1− χ
P24 = χ P33 = 1− ρ P34 = ρ

P44 = 1 P14 = P sy
14 + P‖14 = Nρχ(2− ρ− χ)

Consider the case ρ = χ = 1
2 . Then the transition probabilities will be the following:

P11 = P12 = P13 = P‖14 =
3
13

, P sy
14 =

1
13

, P22 = P24 = P33 = P34 =
1
2
, P44 = 1, P14 =

4
13

.

3.4 Probabilistic equivalences

We propose a number of probabilistic equivalences of expressions. Semantic equivalence =dts is too strict in
many cases, hence, we need weaker equivalence notions to compare behaviour of processes specified by algebraic
formulas.

To identify processes with intuitively similar behavior, and to be able to apply standard constructions and
techniques, we should abstract from infinite behaviour. Since dtsPBC is a stochastic extension of finite PBC,
the only source of infinite behaviour are empty loops, i.e., the transitions which do not change states and have
empty multiaction parts of their labels. During such the abstraction, we should collect the probabilities of the
empty loops. Note that the resulting probabilities are those defined for infinite number of empty steps.

For a dynamic expression G, we define the transition system without empty loops TS∗(G) and the underlying
DTMC without empty loops DTMC∗(G). For a LDTSPN N , we define the reachability graph without empty
loops RG∗(N) and the underlying DTMC without empty loops DTMC∗(N).
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Figure 6: The transition system and the underlying DTMC without empty loops of E from Example 3.3

Theorem 3.2 For any static expression E

TS∗(E) ' RG∗(Boxdts(E), ◦Boxdts(E)).

Definition 3.5 Two dynamic expressions G and G′ are equivalent w.r.t. semantics of dtsPBC without empty
loops, denoted by G =dts∗ G′, if TS∗(G) ' TS∗(G′).

Proposition 3.2 For any static expression E

DTMC∗(E) ' DTMC∗(Boxdts(E), ◦Boxdts(E)).

Note that Theorem 3.2 guarantees that the net versions of algebraic equivalences could be easily defined.

Example 3.4 Let E and N be those from Example 3.3. In Figure 6 the transition system TS∗(E) and the
underlying DTMC DTMC∗(E) without empty loops are presented. In Figure 7 the reachability graph RG∗(N)
and the underlying DTMC DTMC∗(N) without from empty loops are presented. It is easy to see that TS∗(E)
and RG∗(N) are isomorphic as well as DTMC∗(E) and DTMC∗(N).

The probabilities P∗ij (1 ≤ i, j ≤ 4) are calculated as follows. Note that the symbol sy inscribes probability
of the transition generated by synchronization, and the symbol ‖ inscribes that of the transition corresponding
to the concurrent execution of two activities. To avoid complex notation, we use the normalization factor
N ∗ = 1

ρ+χ−2ρ2χ−2ρχ2+2ρ2χ2 . Note that the probabilities Pij (1 ≤ i, j ≤ 4) are taken from Example 3.3.

P∗12 = P12
1−P11

= N ∗ρ(1− χ)(1− ρχ) P∗13 = P13
1−P11

= N ∗χ(1− ρ)(1− ρχ)

P sy∗
14 = P sy

14
1−P11

= N ∗ρχ(1− ρ)(1− χ) P‖∗14 = P‖14
1−P11

= N ∗ρχ(1− ρχ)
P∗24 = P24

1−P22
= 1 P∗34 = P34

1−P33
= 1

P∗14 = P sy∗
14 + P‖∗14 = P sy

14+P‖14
1−P11

= N ∗ρχ(2− ρ− χ)

Consider the case ρ = χ = 1
2 . Then the transition probabilities will be the following:

P∗12 = P∗13 = P‖∗14 =
3
10

, P sy∗
14 =

1
10

, P∗24 = P∗34 = 1, P∗14 =
2
5
.

Trace equivalences are the least distinctive ones. In the trace semantics, behavior of a system is associated
with the set of all possible sequences of activities, i.e., protocols of work or computations. Thus, the points
of choice of an external observer between several extensions of a particular computation are not taken into
account. We defined interleaving (≡ip) and step (≡sp) probabilistic trace equivalences.

Bisimulation equivalences respect completely the particular points of choice in the behavior of a modeled
system. We intend to present a parameterized definition of probabilistic bisimulation equivalences. We defined
interleaving (↔ip) and step (↔sp) probabilistic bisimulation equivalences.

Stochastic isomorphism (=sto) is a relation that is weaker than the equivalence with respect to the isomor-
phism of the associated transition systems without empty loops. The main idea is to summarize probabilities of
all transitions between the same pair of states such that the transition labels have the same multiaction parts.

In the following, the symbol ‘ ’ will denote “nothing”, and the equivalences subscribed by it are considered
as those without any subscription.
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Figure 7: The reachability graph and the underlying DTMC without empty loops of N from Example 3.3

≡ip ≡sp

↔ip ↔sp
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'
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?

=dts∗

?

=dts

Figure 8: Interrelations of the probabilistic equivalences
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Theorem 3.3 Let ↔,↔↔∈ {≡,↔,=,'} and ?, ?? ∈ { , ip, sp, sto, dts∗, dts}. For dynamic expressions G and
G′

G ↔? G′ ⇒ G ↔↔?? G′

iff in the graph in Figure 8 there exists a directed path from ↔? to ↔↔??.

Example 3.5 In Figure 9 the marked dts-boxes corresponding to the dynamic expressions from equivalence
examples of Theorem 3.3 are presented, i.e., E = G, N = (Boxdts(E), ◦Boxdts(E)) and E′ = G′, N ′ =
(Boxdts(E′), ◦Boxdts(E′)) for each picture (a)–(f). Since all the equivalences of dynamic expressions can be
transferred to the corresponding marked dts-boxes, we depict also which the net analogues (denoted by the same
symbols) of the algebraic equivalences relate the nets.

4 The papers prepared

1. Tarasyuk I.V. Discrete time stochastic Petri box calculus. 25 p., 2005 (to be published).

5 Participating scientific events

• Research Seminar on Stochastic Models, Real Time and Concurrent Systems group (RTCS,
http://www.info-ab.uclm.es/fmc/), University of Albacete (http://www.info-ab.uclm.es),
Albacete, Spain, July 6–7, 2005. My talk there: “Labeled DTSPNs as a semantic area for stochastic
process algebras” (http://www.iis.nsk.su/persons/itar/lectuclm.pdf).

• Seminar on Dependability Engineering - 05 (SDE’05), Graduiertenkolleg TrustSoft
(http://trustsoft.uni-oldenburg.de), CvO UO, Oldenburg, Germany, July 21, 2005,
http://se.informatik.uni-oldenburg.de/lehre/sose2005/seminar-programme/. My invited talk
there: “Equivalences for net models of concurrent stochastic systems”
(http://www.iis.nsk.su/persons/itar/lectruste.pdf).

6 Teaching activity

• Delivering the lecture “Discrete time stochastic Petri nets: a model for analysis of stochastic concurrent
systems” (http://www.iis.nsk.su/persons/itar/lecoffis.pdf), Oldenburger Forschungs- und En-
twicklungsinstitut für Informatik-Werkzeuge und -Systeme (OFFIS, http://www.offis.de), Oldenburg,
Germany.

• Giving the talk “Behavioural equivalences for stochastic models of concurrent systems”, Weekly Internal
Seminar of Parallel Systems Group, Department of Computer Science, Faculty II, CvO UO, Oldenburg,
Germany.

7 Participating regular research meetings

• Monthly Guest Colloquium, OFFIS, Oldenburg, Germany.

• Weekly PhD Students Seminar of Graduate School “TrustSoft”, Department of Computer Science, Faculty
II, CvO UO, Oldenburg, Germany.

• Weekly Research Seminar of Project Group “P-Umlaut”, Department of Computer Science, Faculty II,
CvO UO, Oldenburg, Germany.

• Monthly Internal Colloquium, OFFIS, Oldenburg, Germany.

• Weekly Internal Seminar of Parallel Systems Group, Department of Computer Science, Faculty II, CvO
UO, Oldenburg, Germany.

• Weekly Research Seminar of Graduate and Postgraduate Students (“Diplomanden- und Doktorandensem-
inar (D+D)”, Department of Computer Science, Faculty II, CvO UO, Oldenburg, Germany.
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Figure 9: Dts-boxes of the dynamic expressions from equivalence examples of Theorem 3.3
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8 Future research

Future work consists in the construction a congruence relation based on some probabilistic algebraic equivalence
we defined. We can also abstract from the silent activities, i.e., those with empty multiaction part in the
definitions of the equivalences. The abstraction from empty loops and that from silent activities could be done
in one step as well. The main point is that we should collect probabilities during such the abstractions from the
internal activity. As a result, we shall have the algebraic analogues of the net probabilistic equivalences from
[15]. Moreover, we plan to extend dtsPBC with infiniteness constructs such as iteration and recursion. This
research is planned to be done in close cooperation with the groups from Oldenburg, Germany, and Albacete,
Spain.
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[46] Macià H.S., Valero V.R., Cuartero F.G., Pelayo F.L. A new synchronization in finite stochastic
Petri box calculus. Proceedings of 3rd International IEEE Conference on Application of Concurrency to
System Design - 03 (ACSD’03), p. 216–225, Guimarães, Portugal, IEEE Computer Society Press, June
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