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2 The research area, motivation and previous work

Algebraic calculi hold a special place among formal models for specification of concurrent systems and analysis
of their behavioral properties. In such process algebras (PAs), a system or a process is specified by an algebraic
formula. A verification of the properties is accomplished at a syntactic level by means of well-developed systems
of equivalences, axioms and inference rules. One of the first PAs was CCS (Calculus of Communicating Systems)
[9].

Process algebras have been acknowledged as very suitable formalism to operate with real time and stochastic
systems as well. In the last years, stochastic extensions of PAs called stochastic process algebras (SPAs)
became very popular as a modeling framework. SPAs do not just specify actions which can happen (qualitative
features) as usual process algebras, but they associate some quantitative parameters with actions (quantitative
characteristics). The most popular SPAs proposed so far are PEPA [6], TIPP [7] and EMPA [2].

Process algebras allow one to specify processes in a compositional way via an expressive formal syntax. On
the other hand, Petri nets (PNs) provide one with an ability for visual representation of a process structure
and execution. Hence, the relationship between stochastic PNs (SPNs) and SPAs is of particular interest. To
combine advantages of both models, a semantics of algebraic formulas in terms of Petri nets is usually defined.
In the stochastic case, the Markov chain of the stochastic process specified by an SPA formula is built based on
the state transition graph of the corresponding SPN.

As a rule, stochastic process calculi proposed in the literature are based on interleaving. As a semantic
domain, the interleaving formalism of transition systems is often used. Therefore, investigation of a stochastic
extension for more expressive and powerful algebraic calculi is an important issue. At present, the development
of step or “true concurrency” (such that parallelism is considered as a causal independence) SPAs is in the very
beginning. At the same time, there were no algebra of infinite concurrent stochastic processes until past several
years.

Petri box calculus (PBC) is a flexible and expressive process algebra based on calculus CCS. PBC was
proposed more than 15 years ago [1], and it was well explored since that time. It was intended to become a tool
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for description of a Petri net structure and relationships between nets. For PBC, denotational semantics in
terms of a subclass of Petri nets equipped with interface and called Petri boxes was proposed. Calculus PBC
has step operational semantics in terms of labeled transition systems based on rules of structural operational
semantics (SOS).

A notion of equivalence is very important in formal theory of computing processes and systems. Behavioural
equivalences are applied during verification stage both to compare behaviour of systems and reduce their struc-
ture. At present time, there exists a wide diversity of equivalence notions for concurrent systems, and their
interrelations were well explored in the literature. The most well-known and widely used one is bisimulation.
Unfortunately, the mentioned behavioural equivalences take into account only functional (qualitative) but not
performance (quantitative) aspects of system behaviour. Additionally, the equivalences are often interleaving
ones, and they do not respect concurrency. In [3], a notion of interleaving stochastic bisimulation equivalence for
process terms was introduced. At the same time, no appropriate equivalence notion was defined for concurrent
SPAs until recently.

The scientific problem addressed in the project is the design of parallel systems taking into account both
qualitative and quantitative features of computing. The main objective is the development of suitable formal
models and methods respecting quantitative requirements of concurrent and distributed systems. This provides
one with an ability to construct and validate realistic computing processes. The purpose could be achieved with
a combined application of net and algebraic approaches to specification and analysis of stochastic concurrent
systems. The basic models to be used are SPNs (labeled discrete time SPNs abbreviated as LDTSPNs) and
SPAs (discrete time stochastic extension of PBC dtsPBC) with step semantics.

We consider as very desirable to propose an equivalence relation for parallel SPAs that relates formulas spec-
ifying processes with similar behavior. The equivalences could be also used for behaviour-preserving reduction
of stochastic processes. It is important to find a relation that is a congruence with respect to the algebraic
operations. A characterization of equivalences via modal logics is used to change the operational reasoning on
systems behaviour by the logical one that is a standard one for formal verification. On the other hand, we have
an operational characterization of logical equivalences as a result. An investigation of stochastic processes in
their steady states is a commonly used viewpoint for their performance evaluation via calculation of perfor-
mance indices. It is very interesting to find which relations guarantee an identity of stationary behaviour of two
equivalent processes for all their equivalence classes. Application examples and case studies are the essential
parts of a theoretical investigation. They demonstrate how theoretical results can be used in practice.

In [11, 13] we presented a discrete time stochastic extension dtsPBC of finite PBC. Step operational se-
mantics was defined in terms of labeled transition systems based on action and inaction rules. Denotational
semantics was defined in terms of a subclass of labeled DTSPNs (LDTSPNs) called discrete time stochastic
Petri boxes (dts-boxes). In addition, we defined a variety of probabilistic equivalences that allow one to identify
stochastic processes with similar behaviour that are differentiated by too strict notion of the semantic equiva-
lence. The interrelations of all the introduced equivalences were investigated. In [12] an enrichment of dtsPBC
was constructed with the iteration operator used to specify infinite processes.

3 The results obtained

In this section we present a short overview of the results. The complete and self-contained technical report can
be downloaded as http://www.iis.nsk.su/persons/itar/dtspbcit_cov.pdf.

1. Logical characterization of stochastic equivalences for dtsPBC.

We have presented a characterization of algebraic probabilistic bisimulation equivalences of dtsPBC via
new probabilistic modal logics based on PML. The logic iPML characterizes interleaving (↔is), and
PML characterizes step (↔ss) stochastic bisimulation equivalences.

Definition 3.1 For a dynamic expression G we write G |=G Φ, if sG |=G Φ. Two dynamic expressions G
and G′ are logically equivalent in iPML, denoted by G =iPML G′, if ∀Φ ∈ iPML G |=G Φ ⇔ G′ |=G′ Φ.

Let G be a dynamic expression and s ∈ DR(G), α ∈ L. The set of states reached from s by execution of

multiaction α, the image set, is defined as Image(s, α) = {s̃ | ∃{(α, ρ)} ∈ Exec(s) s
(α,ρ)
→→ s̃}. A dynamic

expression G is an image-finite one, if ∀s ∈ DR(G) ∀α ∈ L |Image(s, α)| <∞.

Theorem 3.1 For image-finite dynamic expressions G and G′

G↔isG
′ ⇔ G =iPML G′.
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Hence, in the interleaving semantics, we obtained a logical characterization of the stochastic bisimulation
relation or, symmetrically, an operational characterization of the probabilistic modal logic equivalence.

Definition 3.2 For a dynamic expression G we write G |=G Φ, if sG |=G Φ. Two dynamic expressions G
and G′ are logically equivalent in sPML, denoted by G =sPML G′, if ∀Φ ∈ sPML G |=G Φ ⇔ G′ |=G′ Φ.

Let G be a dynamic expression and s ∈ DR(G), A ∈ INL
f . The set of states reached from s by execution of

a multiset of multiactions A, the image set, is defined as Image(s,A) = {s̃ | ∃Γ ∈ Exec(s) L(Γ) = A, s
Γ
→→

s̃}. A dynamic expression G is an image-finite one, if ∀s ∈ DR(G) ∀A ∈ INAct
f |Image(s,A)| <∞.

Theorem 3.2 For image-finite dynamic expressions G and G′

G↔ssG
′ ⇔ G =sPML G′.

Hence, in the step semantics, we obtained a logical characterization of the stochastic bisimulation relation
or, symmetrically, an operational characterization of the probabilistic modal logic equivalence.

2. Steady states and application of the stochastic equivalences to comparing stationary behaviour.

We have proved that step stochastic bisimulation equivalence guarantees similarity of stationary behaviour
on the equivalence classes as composite states. In particular, for two processes related by step stochastic
bisimulation equivalence the overall steady state probabilities to come in an equivalence class coincide.
Further, it has been demonstrated that for the mentioned processes the steady state probabilities to come
in an equivalence class and start a step trace from it are equal.

The following proposition demonstrates that for two dynamic expressions related by ↔ss the steady state
probabilities to come in an equivalence class coincide. One can also interpret the result stating that the
mean recurrence time for an equivalence class is the same for both expressions.

Proposition 3.1 Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈ (DR(G)∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′).

The following theorem demonstrates that for two dynamic expressions related by ↔ss the steady state
probabilities to come in an equivalence class and start a step trace from it coincide.

Theorem 3.3 Let G,G′ be dynamic expressions with R : G↔ssG
′ and Σ be a step trace. Then ∀H ∈

(DR(G) ∪DR(G′))/R

∑

s∈H∩DR(G)

ψ∗(s)PT ∗(Σ, s) =
∑

s′∈H∩DR(G′)

ψ′∗(s′)PT ∗(Σ, s′).

3. Preservation of the equivalences by algebraic operations and constructing the congruence relation.

We have investigated which equivalences of dtsPBC withstand application of all the algebraic operations.
Using this knowledge, we have constructed a new congruence relation for the calculus based on the
extended notion of the transition system TS(G) of a dynamic expression G called sr-transition system
and denoted by TSsr(G).

Definition 3.3 Let E be a static expression and TS(E) = (S,L, T , s). The (labeled probabilistic) sr-
transition system of E is a quadruple TSsr(E) = (Ssr, Lsr, Tsr , ssr), where

• Ssr = S ∪ {[E]≃};

• Lsr ⊆ (INSL
f × (0; 1]) ∪ {(skip, 0), (redo, 1)};

• Tsr = T \ {([E]≃, (∅, 1), [E]≃)} ∪ {([E]≃, (skip, 0), [E]≃), ([E]≃, (redo, 1), [E]≃)};

• ssr = s.
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Figure 1: The diagram of the shared memory system

Definition 3.4 Two dynamic expressions E and E′ are isomorphic with respect to sr-transition systems,
denoted by E =tssr E′, if TSsr(E) ≃ TSsr(E′).

The following theorem demonstrates that =tssr is a congruence of static expressions with respect to the
operations of dtsPBC.

Theorem 3.4 Let a ∈ Act and E,E′, F,K ∈ RegStatExpr. If E =tssr E′ then

(a) E ◦ F =tssr E′ ◦ F, F ◦ E =tssr F ◦ E′, ◦ ∈ {; , [], ‖};

(b) E[f ] =tssr E′[f ];

(c) E ◦ a =tssr E′ ◦ a, ◦ ∈ {rs, sy};

(d) [E ∗ F ∗K] =tssr [E′ ∗ F ∗K], [F ∗ E ∗K] =tssr [F ∗ E′ ∗K], [F ∗K ∗ E] =tssr [F ∗K ∗ E′].

4. Examples of specification, analysis and reduction, case studies: processes with shared memory and dining
philosophers.

We have proposed two application examples based on process specifications of dtsPBC that explain how to
analyze performance of systems and their reductions w.r.t. step stochastic bisimulation equivalence within
the calculus. We have considered algebraic models of shared memory system and dining philosophers one.

Shared memory system

Consider a model of two processors accessing a common shared memory described in [8] in the continuous
time setting on GSPNs. We analyze this shared memory system in the discrete time setting within dtsPBC
where concurrent execution of activities is possible. The model performs as follows. After activation of the
system (turning the computer on), two processors are active, and the common memory is available. Each
processor can request an access to the memory. When a processor starts an acquisition of the memory,
another processor should wait until the former one ends its memory operations, and the system returns
to the state with both active processors and the available common memory. The diagram of the system
is depicted in Figure 1.

The action a corresponds to the system activation. The actions ri (1 ≤ i ≤ 2) represent the common
memory request of processor i. The actions bi and ei correspond to the beginning and the end, respectively,
of the common memory access of processor i. The other actions are used for communication purpose only
via synchronization, and we abstract from them later using restriction.

The static expression of the first processor is E1 = [({x1},
1
2 )∗ (({r1},

1
2 ); ({b1, y1},

1
2 ); ({e1, z1},

1
2 ))∗Stop].

The static expression of the second processor is E2 = [({x2},
1
2 ) ∗ (({r2},

1
2 ); ({b2, y2},

1
2 ); ({e2, z2},

1
2 )) ∗

Stop]. The static expression of the shared memory is E3 = [({a, x̂1, x̂2},
1
2 ) ∗ ((({ŷ1},

1
2 ); ({ẑ1},

1
2 ))[]

(({ŷ2},
1
2 ); ({ẑ2},

1
2 ))) ∗ Stop]. The static expression of the shared memory system with two processors is

E = (E1‖E2‖E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

In Figure 2 the transition system without empty loops TS∗(E) is presented.

In Figure 3 the marked dts-box corresponding to the dynamic expression of the shared memory system is
presented, i.e., N = Boxdts(E).

Dining philosophers system

Consider a model of five dining philosophers, for which the Petri net interpretation was proposed in [10],
in the discrete time stochastic setting of dtsPBC. The philosophers occupy a round table, and there is one
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Figure 4: The diagram of the dining philosophers system

fork between every neighboring persons, hence, there are five forks on the table. A philosopher needs two
forks to eat, namely, his left and right one. Hence, all five philosophers cannot eat together, since otherwise
there will be not enough forks available, but only one of two of them who are not neighbors. The model
performs as follows. After activation of the system (coming the philosophers in the dining room), five forks
appear on the table. If the left and right forks available for a philosopher, he takes them simultaneously
and begins eating. At the end of eating, the philosopher places both his forks simultaneously back on
the table. The strategy to pick up and release two forks simultaneously prevents the situation when a
philosopher takes one fork but is not able to pick up the second one since their neighbor has already done
so. In particular, we avoid a deadlock when all the philosophers take their left (right) forks and wait until
their right (left) forks will be available. The diagram of the system is depicted in Figure 4.

The action a corresponds to the system activation. The actions bi and ei correspond to the beginning and
the end, respectively, of eating of philosopher i (1 ≤ i ≤ 5). The other actions are used for communication
purpose only via synchronization, and we abstract from them later using restriction. Note that the
expression of each philosopher includes two alternative subexpressions such that the second one specifies
a resource (fork) sharing with the right neighbor.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Ei = [({xi},
1
2 ) ∗ ((({bi, ŷi},

1
2 ); ({ei, ẑi},

1
2 ))[]

(({yi+1},
1
2 ); ({zi+1},

1
2 )))∗Stop]. The static expression of the philosopher 5 is E5 = [({a, x̂1, x̂2, x̂2, x̂4},

1
2 )∗

((({b5, ŷ5},
1
2 ); ({e5, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 )))∗Stop]. The static expression of the dining philosophers

system is E = (E1‖E2‖E3‖E4‖E5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2 sy z3
sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

In Figure 5 the transition system without empty loops TS∗(E) is presented.

In Figure 6 the marked dts-box corresponding to the dynamic expression of the dining philosophers system
is presented, i.e., N = Boxdts(E).

Let us consider a modification of the dining philosophers system with abstraction from personalities,
i.e., such that all the philosophers are indistinguishable. For example, we can just see that one or two
philosophers dine but cannot observe who they are. We call this system abstract dining philosophers one.

The static expression of the philosopher i (1 ≤ i ≤ 4) is Fi = [({xi},
1
2 ) ∗ ((({b, ŷi},

1
2 ); ({e, ẑi},

1
2 ))[]

(({yi+1},
1
2 ); ({zi+1},

1
2 )))∗Stop]. The static expression of the philosopher 5 is F5 = [({a, x̂1, x̂2, x̂2, x̂4},

1
2 )∗

((({b, ŷ5},
1
2 ); ({e, ẑ5},

1
2 ))[](({y1},

1
2 ); ({z1},

1
2 )))∗Stop]. The static expression of the abstract dining philo-

sophers system is F = (F1‖F2‖F3‖F4‖F5) sy x1 sy x2 sy x3 sy x4 sy y1 sy y2 sy y3 sy y4 sy y5 sy z1 sy z2
sy z3 sy z4 sy z5 rs x1 rs x2 rs x3 rs x4 rs y1 rs y2 rs y3 rs y4 rs y5 rs z1 rs z2 rs z3 rs z4 rs z5.

Let us consider a reduction of the abstract dining philosophers system.

The static expression of the philosopher 1 is F ′
1 = [({x}, 1

2 )∗(({b}, 2
5 ); ({e}, 1

4 ))∗Stop]. The static expression
of the philosopher 2 is F ′

2 = [({a, x̂}, 1
16 ) ∗ (({b}, 2

5 ); ({e}, 1
4 )) ∗ Stop]. The static expression of the reduced

abstract dining philosophers system is F ′ = (F ′
1‖F

′
2) sy x rs x.

We have F↔ssF
′ with (DR(F ) ∪ DR(F ′))/↔

ss
= {H1,H2,H3,H4}, where H1 = {s1, s′1} (the initial

state), H2 = {s2, s′2} (the system is activated and no philosophers dine), H3 = {s3, s6, s7, s10, s11, s′3, s
′
4}
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Ĵ




















� 






















�

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ}

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 5: The transition system without empty loops of the dining philosophers system
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Figure 6: The marked dts-box of the dining philosophers system

(one philosopher dines), H4 = {s4, s5, s8, s9, s12, s′5} (two philosophers dine). One can see that F ′ is a
reduction of F with respect to ↔ss.

In Figure 7 the transition system without empty loops TS∗(F ′) is presented.

In Figure 8 the marked dts-box corresponding to the dynamic expression of the reduced abstract dining
philosophers system is presented, i.e., N ′ = Boxdts(F ′).

Note that TS∗(F ′) can be reduced further by merging the equivalent states s′3 and s′4, thus, it can
be transformed into a transition system with four states only. But the resulted “minimal” reduction
with respect to ↔ss of the initial transition system TS∗(F ) will not be anymore a transition system
without empty loops corresponding to some dtsPBC expression. Hence, in the general case, the procedure
of expressions reduction cannot be transferred smoothly from a transition systems level. The minimal
equivalent expression does not always have the minimal transition system, in the case the latter can be
further reduced. In the following definition we consider step stochastic bisimulation equivalence between
states of a dynamic expression.

Definition 3.5 The minimal reduced with respect to ↔ss (labeled probabilistic) transition system with-
out empty loops of a dynamic expression G is a quadruple TS∗

↔
ss

(G) = (S↔
ss
, L↔

ss
, T↔

ss
, s↔

ss
), where

• S↔
ss

= DR(G)/↔
ss

;

• L↔
ss

⊆ INL
f × (0; 1];

• T↔
ss

= {(H, (A,P), H̃) | ∃s ∈ H s
A
→→P H};

• s↔
ss

= {[G]≃}.

We have DR(F )/↔
ss

= {K1,K2,K3,K4}, where K1 = {s1} (the initial state), K2 = {s2} (the sys-
tem is activated and no philosophers dine), K3 = {s3, s6, s7, s10, s11} (one philosopher dines), K4 =
{s4, s5, s8, s9, s12} (two philosophers dine).

In Figure 9 the minimal reduced with respect to ↔ss transition system without empty loops TS∗
↔

ss
(F )

is presented.

Obviously, it is easier to evaluate performance with the use of a DTMC with less states, since in this
case the dimension of the transition probability matrix will be smaller. Hence, to calculate steady-state
probabilities, we shall solve systems of less equations. Thus, we have obtained the following method
of performance analysis simplification. First, we construct the minimal reduced with respect to ↔ss
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Figure 7: The transition system without empty loops of the reduced abstract dining philosophers system
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underlying DTMC without empty loops. Second, we calculate steady-state probabilities and performance
indices based on this minimal reduction DTMC. The indices will be the same as those calculated based
on the initial unreduced DTMC.

4 The papers prepared

1. Tarasyuk I.V. Investigating equivalence relations in dtsPBC. Berichte aus dem Department für Infor-

matik 5/08, 57 pages, Carl von Ossietzky Universität Oldenburg, Germany, October 2008,
http://www.iis.nsk.su/persons/itar/dtspbcit_cov.pdf.

2. Tarasyuk I.V. A notion of congruence for dtsPBC. Bulletin of the Novosibirsk Computing Center,

Series Computer Science, IIS Special Issue 28, 20 pages, NCC Publisher, Novosibirsk, 2008 (submitted).

3. Tarasyuk I.V. Modeling and analysis of computing systems in the algebra dtsPBC. 19 pages, 2008 (in
Russian, submitted).

5 Presentation of results

• Giving the talk “Performance evaluation in dtsPBC” (http://www.iis.nsk.su/persons/itar/
dtspbcsm_pe.pdf), Weekly Research Seminar of Graduate and Postgraduate Students (“Diplomanden-
und Doktorandenseminar (D+D)”, Computer Science Departmen, Faculty II, CvO UO, Oldenburg, Ger-
many.

6 Participating regular research meetings

• Weekly Internal Seminar of Parallel Systems Group, Computer Science Department, Faculty II, CvO UO,
Oldenburg, Germany.

• Weekly Research Seminar of Graduate and Postgraduate Students (“Diplomanden- und Doktorandensem-
inar (D+D)”, Computer Science Department, Faculty II, CvO UO, Oldenburg, Germany.

7 Future research

Future work consists in abstracting from the silent activities in the definitions of the equivalences, i.e., from
the activities with empty multiaction part. The abstraction from empty loops and that from silent activities
could be done in one step as well. The main point here is that we should collect probabilities during such the
abstractions from an internal activity. As a result, we shall have the algebraic analogues of the net stochastic
equivalences from [4, 5]. Moreover, we plan to extend dtsPBC with recursion to enhance specification power
of the calculus. The research work mentioned above will be hopefully proceeded in a close cooperation with
members of Parallel Systems Group, Computer Science Department, CvO UO, Oldenburg, Germany.
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