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Abstract: A class of Stochastic Petri Nets with con-
current transition firings is proposed. It is assumed that
transitions occur in steps and that for every step each en-
abled transition decides probabilistically whether it wants
to participate in the step or not. Among the transitions
which want to participate in a step, a maximal number is
chosen to perform the firing step. The observable behav-
ior of a net is described by labels associated with tran-
sitions.  For this class of nets the dynamic behavior is
defined and equivalence relations are introduced. The
equivalences extend the well-known trace and bisimula-
tion ones for systems with step semantics to Stochastic
Petri Nets with concurrent transition firing. It is shown
that the equivalence notions form a lattice of interrela-
tions. In addition, we demonstrate how the equivalences
can be used to compare stationary behavior of nets.
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Previous work

1. Continuous time: the stochastic process is a Contin-
uous Time Markov Chain (CTMCQC).

e Continuous Time Stochastic Petri Nets (CTSPNSs)
[FINa85,MolI82]:

transitions with exponential firing delay,
Interleaving semantics.

e Generalized Continuous Time Stochastic Petri Nets
(GCTSPNs) [AjBC84,CABC93]:
transitions with exponential and zero firing delay,
interleaving semantics.

2. Discrete time: the stochastic process is a Discrete
Time Markov Chain (DTMC).

e Discrete Time Stochastic Petri Nets (DTSPNSs)
[MolI85,ZiCH97,ZiGe94]:
transitions with exponential firing delay,

step semantics.

Transition labeling in SPNs and GSPNs [Buch95,Buch98].

Bisimulation equivalences for SPNs and GSPNs [Buch94,
Buch95,HeRe94,Hill94].



Formal model

Definition 1 A DTSPN is a seven tuple
N = (P, T,W,\,2, L, M;,) where:

e P and T are finite sets of places and transitions re-
spectively such that PUT %= () and PNT = {;

e W :(PxT)U(T x P)— IN is function describing the
weights of arcs between places and transitions and
vice versa;

e N:T — IR is the transition weight function;
e Q:T — (0,1] is the transition probability function;

o L :T — Act; is the transition labeling function assign-
ing labels from a finite set of visible actions Act or an
invisible action T to transitions (i.e., Act; = ActU{7});

o M;,: P— IN is the initial marking.



Behavior of the model

Ena(M) denotes the set of all transitions that are enabled
in marking M. The transitions from U C Ena(M) try to
fire in the next step with probability:

rrivl=1]1Q® - [ Q-@).

teU te Ena(M)\U

All transitions from U can fire if the following condition
(*) holds:

Vpe P: M(p) > ZW(p,t)-

teU

A set V C Ena(M) is a maximal fireable subset in mark-
ing M if (*) holds for V and no more transitions from
Ena(M)\V can be added when the condition has to hold.

MaxFire(M) denotes the set of all maximal fireable sub-
sets in marking M.

A set V C U is a maximal fireable subset of U in marking
M if the condition holds for V and no more transitions
from U\ V can be added.

MaxFire(U, M) denotes the set of all maximal fireable
subsets of U in marking M.

The weight function is extended to sets of transitions
VvV T

AV) =) A®).

teV



If transitions from the set U try to fire, but cannot fire
concurrently since (*) does not hold, then a maximal fire-
able subset of transitions, i.e., V € MaxFire(U, M) is cho-
sen with probability:

PC[V,U] = /\(V)/ > A(W)

WeMazxFire(UM)

For V € MaxFire(M) let SubEna(V,M) be the set of all
subsets of Ena(M) that include V. The probability of
firing V. € MaxFire(M) is:

PT[V,M] = > PF[U] - PC[V,U].
UeSubEna(V,M)

If no transition wants to fire at the next step, then U =
=V and:

rrio. M =PRI =[] Q-Q®).

te Ena(M)

We define the visible labeling function VisL on sets of
transitions V C T

VisL(V) = > L(t).
(tEVIA(L(t)#T)

Denote a set of all multisets over a set X by M(X). Let

A € M(Act). The set of all subsets of transitions which
are labeled by A is:

Trans(A) ={V CT | VisL(V) = A}.



The probability of observing A in marking M is:

PL[A, M] = Z PT[V, M].
VeTrans(A)NMaxFire(M)

If V fires in M, then the successor marking M is defined
as:

M(p) = M(p) = > W(p,t)+ > W(t,p).

teV teVv

Let V be a set of transitiopvs which can fire concurrently
in marking M resulting to M and P = PT[V, M], notation

M —p M.

We write M - M if M Lp M for some P > 0. For one-
element set of transitions V = {t} we write M L M
and M - M.

M iﬁ, M describes a step starting in marking M, per-
forming transitions Iabeleg by A and ending in M. The
probability P = PS[A, M, M] is:

PS[A, M, M] = > 0.

{VeETrans(A) |ML>QM}

We write M -2 M if M -2 M for some P > 0. For one-
element multiset of actions A = {a} we write M —p M
and M % M.



Definition 2 For a DTSPN N we define:

e T he reachability set RS(IN) as the minimal set of
markings M for which the following conditions hold:

— if M € RS(N) and M im; M for P > 0, then
M € RS(N).

e The reachability graph RG(N) as a directed labeled
graph with a set of nodes RS(N) and an arc labeled

by A, P between nodes M and M whenever M in; M
holds.

e The underlying Discrete Time Markov Chain (DTMC)
DT(N) with state space RS(N) and a transition

M —p M whenever at least one arc between M
and M exists in RG(N). In this case, the probability
P = PS[M, M] is computed as:

PS[M M= Y PS[A M, M)
AeM(Act)



An internal step M Lp M with P > 0 takes place when M
IS reachable from M by firing a set of internal transitions
or if no transition fires.

The probability of reaching M from M by k internal steps
iS:

( ZMeRS(leSk_l[q)aMa M]
PS[0, M, M] if k> 1;
PS*I0, M, M] =< 1 if k=0 and
M = M;
0] otherwise.

\

The probability of reaching M from M by internal steps
IS:

PSSO, M M) =" PSE[0, M, M].
k=0

The probability of reaching M from M by internal steps,
followed by an observable step A is:

PSIA M M= Y PS*[0,M,M]- PS[A M, M].
MeRS(N)



We define a new transition relation M i»p M where
P = PS*[A, M, M] and A # 0.

We write M —2» M if M 2, M for some P > 0. For one-
element multiset of actions A = {a} we write M —25p M

and M —%» M.

RS*(N) and RG*(N) denote the observable reachability
set and graph respectively.

We define the embedded DTMC DT*(N) with state space
RS*(N) and transition probabilities:

PSIM M= Y PS[A M, M)
Ae M (Act)\D

A trap is a loop of internal transitions starting and end-
ing in some marking M which occurs with probability 1.

PS*[0, M, M] is finite as long as no traps exist.

If PS*[0, M, M] is finite, then PS*[A, M, M] defines a prob-
ability distribution, i.e.:

> > PSAM M]=1.

AEM(Act)\D prers+(N)



Examples of DTSPNSs

P

a b

-
First example net and the corresponding
reachability graphs

gi1 = Q(t1) - Q(t2) qi2 = Q1) - Q(t2) q13 = Q(t1) - Q(¢2)

q1a = Q(t1) - Q2(t2) g2z = Q(t2) qaa = Q(t2)

q33 = S2(11) qza = 2(11) qa1 = 2(t3)

qaa = S2(t3)

Ti2 =T42 = TH- TI3 =743 = 7o Ta=Ta4 = 11y = o
o4 = 1 r3sa = 1
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{a}.{b}.r20

{b},{a,b},

{a}{a,b},

Second example net and the corresponding
reachability graphs

CT002)

@7‘]44 {a}1{b}7{a1b}vr44
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q11 = Q(t1) - Q(t2)

q12 = Q2(t1) - Q2(t2)

q13 = S2(t1) - Q2(t2)

Q14 = g(tl) - Q(t2) _

go1 = Q(t2) - Q(t3) - (Nza - Q(ta) + Q(ta))
qu = Q(t2) - Q(t3) - Q2(ta) L

By = Qt2) - Q(ta) - (Aaz - Q(t3) + Q(¢3))
q23 = 2(t2) - C2(¢3) - (Aza - Q(ta) + 2(a))
q2a = Q(t2) - Q(t3) - Q2(ta) _

qos = Qt2) - Q(ta) - (Naz - Qt3) + Q(t3))
ga1 = Q(t1) - Q(ta) - (Naz - Q(t3) + Q(¢3))
q32 = g(tl) ’ 8(t4) ’ g\43 ’ Q(t3) + Q(t?’))
@3 = Q(t1) - Q(ts) - Q(ta) _

q§3 — Q(tl) . 8(t3) . @34 . Q(t4) + Q(t4))
qza = Q(t1) - Q2(t3) - €2(ta) _

q36 = §2(t1) - €2(t3) - (Aza - L2(ta) +€2(%a))
qa1 = 2(t3) - S2(t4)

qaz2 = S2(t3) - $2(ta)

qaz = Q2(t3) - Q(ta)

qaz = S2(t3) - €2(ta)

gs2 = S2(t2)
gs5 = S2(%2)
g63 = 2(t1)
g6 = S2(t1)
rio = qi12/(1 — q11) r13 = q13/(1 — q11)
ria = q14/(1 — q11) ry = q21 - 112/ (1 — ¢5,)
Sy = (b + q25)/(1 — ¢5,) ro3 = (23 + q21 - 113) /(1 — ¢5,)
rSs = qza/(1 — ¢55) ri = o1 r1a/(1 — ¢1)
r32 = (g32 4+ ¢31 - r12) /(1 — q?,g) r4s = (¢%5 + ¢36) /(1 — q?,g)
7"2,3 — 31 - 7"13/(1 - qg:g) T34 = Q34/(1 - qg:g)
Téi’b} = ¢31 - r14/(1 — ¢55) T8> = (qa1 - m12 + @43 - 732) /(1 —qua)
oo = qa2 - 755/ (1 — qaa) T43 = qa3 - 733/(1 — qaa)
rbs = (qa1- 113+ qa2 - 123) /(1 — qaa) 7154 = qaz-13,/(1 — qaa)
rha = qaz2 - r5, /(1 — qaa) ”'“;{;Z’b} = qa41 - Tii’b}/(l — qa4)

12



Trace equivalences
Definition 3 An interleaving trace of a DTSPN N is a
pair (o, P), where c = ay---a, € Act* and:

P = > ﬁP

{Ml’“.,Mn|Mm aq ,PlMl ap Py an, pnMn} ’L:l

We denote a set of all interleaving traces of a DTSPN N
by IntTraces(N). Two DTSPNs N and N’ are interleaving

trace equivalent, denoted by N=;N’, if:
IntTraces(N) = IntTraces(N").

Definition 4 A step trace of a DTSPN N is a pair
(X,P), where > = Ay---A, € M(Act)* and:

n

P = Z 11 Pi.

A A A 1=
{M,..., M| My —>p, M1—5p, - —5p, M, }

We denote a set of all step traces of a DTSPN N by
StepTraces(N). Two DTSPNs N and N’ are step trace

equivalent, denoted by N=_.N', if:

StepTraces(N) = StepTraces(N').

13



Bisimulation equivalences

Definition 5 Let N be a DTSPN. An equivalence rela-
tion R C RS*(IN)? is an interleaving bisimulation between
two markings M, and M, of N (i.e., (M1,M>) € R), de-
noted by R : Mi+<,M>, if Va € Act VL & RS*(N)/R

Ml—a—»Qﬁ = MQ—(I—»Q,C.

Two markings M1 and M, are interleaving bisimulation
equivalent, denoted by M1+, M>, if AR : M1+, Mo>.

Definition 6 Let N and N’ be two DTSPNs. A rela-
tion R C (RS*(N) U RS*(N'))? is an interleaving bisim-
ulation between N and N’, denoted by R : N« N’, if
R . Mmi,M{n

Two DTSPNs N and N’ are interleaving bisimulation
equivalent, denoted by N« N', if 3R : N« ,N'.

Definition 7 Let N be a DTSPN. An equivalence re-
lation R C RS*(N)? is a step bisimulation between two
markings M, and M»> of N, denoted by R : Mi<.M>, if
VA € M(Act) VL € RS*(N)/Rr:

Mli»gﬁ = MQi»Qc.

Two markings My and M, are step bisimulation equiva-
lent, denoted by M« .M, if AR . Mi+.M>.

Definition 8 Let N and N’ be two DTSPNSs. A relation
R C (RS*(N)U RS*(N"))? is a step bisimulation between
N and N’, denoted by R : N—.N', if R : My, .M] .

Two DTSPNs N and N’ are step bisimulation equivalent,
denoted by N«-.N’, if 3R : N« .N'.

14



Backward bisimulation equivalences

Definition 9 Let N be a DTSPN. An equivalence rela-
tion R C RS*(N)? is an interleaving backward bisimula-
tion between two markings My, and M> of N, denoted by
R : My, M>, if Va € Act VL € RS*(N)/R

M; 250 RS*(N) < M, 255 RS*(N),

L —a»Q M & L —a»Q M-> and [Mm]R = {Mm}

Two markings M1 and M, are interleaving backward bisim-
ulation equivalent, denoted by M1+ ;,M>, if AR : My ;, M>.

Definition 10 Let N and N’ be two DTSPNs. A rela-
tion R C (RS*(N)URS*(N'))? is an interleaving backward
bisimulation between N and N’, denoted by R : N« ,;,N’,
if Va € Act VL, K € (RS*(N) U RS*(N"))/r VM1, Mo € L:

M- —a»Q RS*(F(Ml)) & Mo —a»Q RS*(I_(MQ))a
[Min]lr = {Min, M} and

a a
K HQ'\EQRS*(I’(MI))\ M & K —»Q.MYWRS*(I—(MQ))\ M>.

[KNRS* (I (Mq))| [KNRS* (I (M5))|

Two DTSPNs N and N’ are interleaving backward bisim-
ulation equivalent, denoted by N« N’', if 3R : N« ,;,N’.

15



Definition 11 Let N bea DTSPN. An equivalence rela-
tion R C RS*(N)? is a step backward bisimulation between
two markings M1 and M»> of N, denoted by R : M Mo,

ifYA € M(Act) VL € RS*(N) /x:

M1 245 RS*(N) & M 255 RS*(N),

L2eo My & £-255 My and [Mi)r = {Mi}.

Two markings M1 and M, are step backward bisimulation
equivalent, denoted by M, Mo, if AR : M Mo>.

Definition 12 Let N and N’ be two DTSPNs. A rela-
tion R C (RS*(N) U RS*(N"))? is a step backward bisim-
ulation between N and N’, denoted by R : N N’ if
VA € M(Act) VL, K € (RS*(N)U RS*(N"))/r VM1, M> € L:

My 20 RS*(M(M1)) < Mo —25 RS*(M(M)),
[Mm]R = {Mm, Mz/n} and

A A
)\ _—»Q‘\LQRS*(I’(M:L))\ M & K ——»Q.\mRs*(r(z\@))\ Mo.
IKNRS* (I (M1))| IKNRS* (T (M3))]

Two DTSPNs N and N’ are step backward bisimulation
equivalent, denoted by N N, ifAR : N N'.

16



Back and forth bisimulation equivalences

Definition 13 Two DTSPNs N and N’ are interleaving
back and forth bisimulation equivalent, denoted by
Nﬁibe/, i Nﬁ@N/ and NﬁibN’.

Definition 14 Two DTSPNs N and N’ are step back

and forth bisimulation equivalent, denoted by N« ., ;N’, if
N« .N"and N« N'.

17



Examples of the equivalences

D
YR
B

/ﬁ\w
Neghet
!

\'é
b
l

Nets related via different equivalences

<
On

SN

N1=:No=.N3=.Ng Ni1-—.Nop<+.Ng N1 N3 Ng

N1+ ., Na No></ ;N3 N>/ ;N3
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Comparing the equivalences

[

27])]0 —y

|

29—

I

s > S2sbf

sb

T —

Interrelations of the equivalences

F 1 Let + € {i,s}. For DTSPNs N and N’
the following holds:

1. N—~.N' = N=,N';
2. N~ ,N' = N=,N/;

3. Ni*be/ = Ni*N/ and Ni*bN/.

1 Let«r «» e {=,<}and + ~x € {i,s,ib, sb,ibf,
sbf}. For DTSPNs N and N’ the following holds:

N« ,N'" = N« N’

iff in the graph in figure above there exists a directed
path from <, to «» ..

19
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Examples of the equivalences



Stationary behavior

The embedded steady state distribution after the obser-
vation of a visible event is the unique solution of the set
linear equation:

ps (M) = > ps'(M)-PS*[M,M]
MERS+(N)
subject to } /gy ps (M) = 1.

A step trace starting in marking M € RS*(N) is defined
as (X,P), where > = A;--- A, € Act* and:

n

A A An, -
{Ml,...,Mn|M ! ’PlMl 2 Pyttt PnMn}/L

2

StepTraces(N, M) be the set of all step traces of starting
in marking M.

Definition 15 A step trace in steady state is a triple
(M,>,ps*(M) -P) s.t M e RS*(N) and (X,P) €
StepTraces(N,M).

The set of all step traces in steady state is denoted by
StepTracesSS(N).

_ 2 Let N and N’ be backward or forward bisim-
ulation equivalent D TSPNSs, then:

StepTracesSS(N) = StepTracesSS(N').

20



O N//ﬂ\
a| |a

OR®

pe

b & b c
Two step trace equivalent nets with
StepTracesSS(N) #= StepTracesSS(N')
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The results obtained

o A with labeled
transitions and a step semantics for transition firing

( ).

° which preserve interesting
aspects of behavior and thus can be used to compare
systems and to compute for a given one a minimal
equivalent representation [Buch95].

e A diagram of for the equivalences.

e An application of the equivalences for comparing
of DTSPNs.

22



Further research

e Other equivalences in interleaving and step seman-
tics:

interleaving branching bisimulation [PRS92] (respect-
ing conflicts with invisible transitions),

back-forth bisimulations [NMV90,Pin93] (moving
backward along history of computation).

e [rue concurrent equivalences:

partial word and pomset bisimulations [PRS92,V0g92]
(partial order models of computation).

23
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