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Abstract: A class of Stochastic Petri Nets with con-
current transition firings is proposed. It is assumed that
transitions occur in steps and that for every step each en-
abled transition decides probabilistically whether it wants
to participate in the step or not. Among the transitions
which want to participate in a step, a maximal number is
chosen to perform the firing step. The observable behav-
ior of a net is described by labels associated with tran-
sitions. For this class of nets the dynamic behavior is
defined and equivalence relations are introduced. The
equivalences extend the well-known trace and bisimula-
tion ones for systems with step semantics to Stochastic
Petri Nets with concurrent transition firing. It is shown
that the equivalence notions form a lattice of interrela-
tions. In addition, we demonstrate how the equivalences
can be used to compare stationary behavior of nets.
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Previous work

1. Continuous time: the stochastic process is a Contin-
uous Time Markov Chain (CTMC).

• Continuous Time Stochastic Petri Nets (CTSPNs)
[FlNa85,Moll82]:

transitions with exponential firing delay,

interleaving semantics.

• Generalized Continuous Time Stochastic Petri Nets
(GCTSPNs) [AjBC84,CABC93]:

transitions with exponential and zero firing delay,

interleaving semantics.

2. Discrete time: the stochastic process is a Discrete
Time Markov Chain (DTMC).

• Discrete Time Stochastic Petri Nets (DTSPNs)
[Moll85,ZiCH97,ZiGe94]:

transitions with exponential firing delay,

step semantics.

Transition labeling in SPNs and GSPNs [Buch95,Buch98].

Bisimulation equivalences for SPNs and GSPNs [Buch94,
Buch95,HeRe94,Hill94].
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Formal model

Definition 1 A DTSPN is a seven tuple
N = (P, T, W,Λ,Ω, L, Min) where:

• P and T are finite sets of places and transitions re-
spectively such that P ∪ T 6= ∅ and P ∩ T = ∅;

• W : (P × T ) ∪ (T × P ) → IN is function describing the
weights of arcs between places and transitions and
vice versa;

• Λ : T → IR is the transition weight function;

• Ω : T → (0,1] is the transition probability function;

• L : T → Actτ is the transition labeling function assign-
ing labels from a finite set of visible actions Act or an
invisible action τ to transitions (i.e., Actτ = Act∪{τ});

• Min : P → IN is the initial marking.
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Behavior of the model

Ena(M) denotes the set of all transitions that are enabled
in marking M . The transitions from U ⊆ Ena(M) try to
fire in the next step with probability:

PF [U ] =
∏

t∈U

Ω(t) ·
∏

t∈Ena(M)\U
(1−Ω(t)).

All transitions from U can fire if the following condition
(*) holds:

∀p ∈ P : M(p) ≥
∑

t∈U

W (p, t).

A set V ⊆ Ena(M) is a maximal fireable subset in mark-
ing M if (*) holds for V and no more transitions from
Ena(M)\V can be added when the condition has to hold.

MaxFire(M) denotes the set of all maximal fireable sub-
sets in marking M .

A set V ⊆ U is a maximal fireable subset of U in marking
M if the condition holds for V and no more transitions
from U \ V can be added.

MaxFire(U, M) denotes the set of all maximal fireable
subsets of U in marking M .

The weight function is extended to sets of transitions
V ⊆ T :

Λ(V ) =
∑

t∈V

Λ(t).
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If transitions from the set U try to fire, but cannot fire
concurrently since (*) does not hold, then a maximal fire-
able subset of transitions, i.e., V ∈ MaxFire(U, M) is cho-
sen with probability:

PC[V, U ] = Λ(V )

/
 ∑

W∈MaxFire(U,M)

Λ(W )


 .

For V ∈ MaxFire(M) let SubEna(V, M) be the set of all
subsets of Ena(M) that include V . The probability of
firing V ∈ MaxFire(M) is:

PT [V, M ] =
∑

U∈SubEna(V,M)

PF [U ] · PC[V, U ].

If no transition wants to fire at the next step, then U =
∅ = V and:

PT [∅, M ] = PF [∅] =
∏

t∈Ena(M)

(1−Ω(t)).

We define the visible labeling function V isL on sets of
transitions V ⊆ T :

V isL(V ) =
∑

(t∈V )∧(L(t) 6=τ)

L(t).

Denote a set of all multisets over a set X by M(X). Let
A ∈ M(Act). The set of all subsets of transitions which
are labeled by A is:

Trans(A) = {V ⊆ T | V isL(V ) = A}.
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The probability of observing A in marking M is:

PL[A, M ] =
∑

V ∈Trans(A)∩MaxFire(M)

PT [V, M ].

If V fires in M , then the successor marking M̃ is defined
as:

M̃(p) = M(p)−
∑

t∈V

W (p, t) +
∑

t∈V

W (t, p).

Let V be a set of transitions which can fire concurrently
in marking M resulting to M̃ and P = PT [V, M ], notation

M
V−→P M̃ .

We write M
V−→ M̃ if M

V−→P M̃ for some P > 0. For one-

element set of transitions V = {t} we write M
t−→P M̃

and M
t−→ M̃ .

M
A−→P M̃ describes a step starting in marking M , per-

forming transitions labeled by A and ending in M̃ . The
probability P = PS[A, M, M̃ ] is:

PS[A, M, M̃ ] =
∑

{V ∈Trans(A)|M V−→QM̃}

Q.

We write M
A−→ M̃ if M

A−→P M̃ for some P > 0. For one-
element multiset of actions A = {a} we write M

a−→P M̃

and M
a−→ M̃ .
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Definition 2 For a DTSPN N we define:

• The reachability set RS(N) as the minimal set of
markings M for which the following conditions hold:

– Min ∈ RS(N);

– if M ∈ RS(N) and M
A−→P M̃ for P > 0, then

M̃ ∈ RS(N).

• The reachability graph RG(N) as a directed labeled
graph with a set of nodes RS(N) and an arc labeled

by A, P between nodes M and M̃ whenever M
A−→P M̃

holds.

• The underlying Discrete Time Markov Chain (DTMC)
DT (N) with state space RS(N) and a transition

M −→P M̃ whenever at least one arc between M

and M̃ exists in RG(N). In this case, the probability

P = PS[M, M̃ ] is computed as:

PS[M, M̃ ] =
∑

A∈M(Act)

PS[A, M, M̃ ].
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An internal step M
∅−→P M̃ with P > 0 takes place when M̃

is reachable from M by firing a set of internal transitions
or if no transition fires.

The probability of reaching M̃ from M by k internal steps
is:

PSk[∅, M, M̃ ] =





∑
M∈RS(N) PSk−1[∅, M, M ]·

PS[∅, M, M̃ ] if k ≥ 1;

1 if k = 0 and

M = M̃ ;

0 otherwise.

The probability of reaching M̃ from M by internal steps
is:

PS∗[∅, M, M̃ ] =
∞∑

k=0

PSk[∅, M, M̃ ].

The probability of reaching M̃ from M by internal steps,
followed by an observable step A is:

PS∗[A, M, M̃ ] =
∑

M∈RS(N)

PS∗[∅, M, M ] · PS[A, M, M̃ ].
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We define a new transition relation M
A−→→P M̃ where

P = PS∗[A, M, M̃ ] and A 6= ∅.

We write M
A−→→ M̃ if M

A−→→P M̃ for some P > 0. For one-
element multiset of actions A = {a} we write M

a−→→P M̃

and M
a−→→ M̃ .

RS∗(N) and RG∗(N) denote the observable reachability
set and graph respectively.

We define the embedded DTMC DT ∗(N) with state space
RS∗(N) and transition probabilities:

PS∗[M, M̃ ] =
∑

A∈M(Act)\∅
PS∗[A, M, M̃ ].

A trap is a loop of internal transitions starting and end-
ing in some marking M which occurs with probability 1.
PS∗[∅, M, M̃ ] is finite as long as no traps exist.

If PS∗[∅, M, M̃ ] is finite, then PS∗[A, M, M̃ ] defines a prob-
ability distribution, i.e.:

∑

A∈M(Act)\∅

∑

M̃∈RS∗(N)

PS∗[A, M, M̃ ] = 1.
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Examples of DTSPNs
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First example net and the corresponding
reachability graphs

q11 = Ω(t1) ·Ω(t2) q12 = Ω(t1) ·Ω(t2) q13 = Ω(t1) ·Ω(t2)
q14 = Ω(t1) ·Ω(t2) q22 = Ω(t2) q24 = Ω(t2)
q33 = Ω(t1) q34 = Ω(t1) q41 = Ω(t3)
q44 = Ω(t3)

r12 = r42 = q12

1−q11
r13 = r43 = q13

1−q11
r14 = r44 = q14

1−(1−q11)
= q14

q11

r24 = 1 r34 = 1
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q11 = Ω(t1) ·Ω(t2)
q12 = Ω(t1) ·Ω(t2)
q13 = Ω(t1) ·Ω(t2)
q14 = Ω(t1) ·Ω(t2)
q21 = Ω(t2) ·Ω(t3) · (Λ34 ·Ω(t4) + Ω(t4))
q∅22 = Ω(t2) ·Ω(t3) ·Ω(t4)
qb
22 = Ω(t2) ·Ω(t4) · (Λ43 ·Ω(t3) + Ω(t3))

q23 = Ω(t2) ·Ω(t3) · (Λ34 ·Ω(t4) + Ω(t4))
q24 = Ω(t2) ·Ω(t3) ·Ω(t4)
q25 = Ω(t2) ·Ω(t4) · (Λ43 ·Ω(t3) + Ω(t3))
q31 = Ω(t1) ·Ω(t4) · (Λ43 ·Ω(t3) + Ω(t3))
q32 = Ω(t1) ·Ω(t4) · (Λ43 ·Ω(t3) + Ω(t3))
q∅33 = Ω(t1) ·Ω(t3) ·Ω(t4)
qa
33 = Ω(t1) ·Ω(t3) · (Λ34 ·Ω(t4) + Ω(t4))

q34 = Ω(t1) ·Ω(t3) ·Ω(t4)
q36 = Ω(t1) ·Ω(t3) · (Λ34 ·Ω(t4) + Ω(t4))
q41 = Ω(t3) ·Ω(t4)
q42 = Ω(t3) ·Ω(t4)
q43 = Ω(t3) ·Ω(t4)
q42 = Ω(t3) ·Ω(t4)
q52 = Ω(t2)
q55 = Ω(t2)
q63 = Ω(t1)
q66 = Ω(t1)

r12 = q12/(1− q11) r13 = q13/(1− q11)
r14 = q14/(1− q11) ra

22 = q21 · r12/(1− q∅22)
rb
22 = (qb

22 + q25)/(1− q∅22) r23 = (q23 + q21 · r13)/(1− q∅22)

rb
24 = q24/(1− q∅22) r

{a,b}
24 = q21 · r14/(1− q∅22)

r32 = (q32 + q31 · r12)/(1− q∅33) ra
33 = (qa

33 + q36)/(1− q∅33)
rb
33 = q31 · r13/(1− q∅33) ra

34 = q34/(1− q∅33)

r
{a,b}
34 = q31 · r14/(1− q∅33) ra

42 = (q41 · r12 + q43 · r32)/(1−q44)

rb
42 = q42 · rb

22/(1− q44) ra
43 = q43 · ra

33/(1− q44)
rb
43 = (q41 · r13 + q42 · r23)/(1− q44) ra

44 = q43 · ra
34/(1− q44)

rb
44 = q42 · rb

24/(1− q44) r
{a,b}
44 = q41 · r{a,b}

14 /(1− q44)
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Trace equivalences

Definition 3 An interleaving trace of a DTSPN N is a
pair (σ,P), where σ = a1 · · · an ∈ Act∗ and:

P =
∑

{M1,...,Mn|Min

a1−→→P1M1

a2−→→P2···
an−→→PnMn}

n∏

i=1

Pi.

We denote a set of all interleaving traces of a DTSPN N
by IntTraces(N). Two DTSPNs N and N ′ are interleaving
trace equivalent, denoted by N≡iN ′, if:

IntTraces(N) = IntTraces(N ′).

Definition 4 A step trace of a DTSPN N is a pair
(Σ,P), where Σ = A1 · · ·An ∈M(Act)∗ and:

P =
∑

{M1,...,Mn|Min

A1−→→P1M1

A2−→→P2···
An−→→PnMn}

n∏

i=1

Pi.

We denote a set of all step traces of a DTSPN N by
StepTraces(N). Two DTSPNs N and N ′ are step trace
equivalent, denoted by N≡sN ′, if:

StepTraces(N) = StepTraces(N ′).
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Bisimulation equivalences

Definition 5 Let N be a DTSPN. An equivalence rela-
tion R ⊆ RS∗(N)2 is an interleaving bisimulation between
two markings M1 and M2 of N (i.e., (M1, M2) ∈ R), de-
noted by R : M1↔iM2, if ∀a ∈ Act ∀L ∈ RS∗(N)/R:

M1
a−→→Q L ⇔ M2

a−→→Q L.

Two markings M1 and M2 are interleaving bisimulation
equivalent, denoted by M1↔iM2, if ∃R : M1↔iM2.

Definition 6 Let N and N ′ be two DTSPNs. A rela-
tion R ⊆ (RS∗(N) ∪ RS∗(N ′))2 is an interleaving bisim-
ulation between N and N ′, denoted by R : N↔iN ′, if
R : Min↔iM ′

in.

Two DTSPNs N and N ′ are interleaving bisimulation
equivalent, denoted by N↔iN ′, if ∃R : N↔iN ′.

Definition 7 Let N be a DTSPN. An equivalence re-
lation R ⊆ RS∗(N)2 is a step bisimulation between two
markings M1 and M2 of N , denoted by R : M1↔sM2, if
∀A ∈M(Act) ∀L ∈ RS∗(N)/R:

M1
A−→→Q L ⇔ M2

A−→→Q L.

Two markings M1 and M2 are step bisimulation equiva-
lent, denoted by M1↔sM2, if ∃R : M1↔sM2.

Definition 8 Let N and N ′ be two DTSPNs. A relation
R ⊆ (RS∗(N) ∪RS∗(N ′))2 is a step bisimulation between
N and N ′, denoted by R : N↔sN ′, if R : Min↔sM ′

in.

Two DTSPNs N and N ′ are step bisimulation equivalent,
denoted by N↔sN ′, if ∃R : N↔sN ′.
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Backward bisimulation equivalences

Definition 9 Let N be a DTSPN. An equivalence rela-
tion R ⊆ RS∗(N)2 is an interleaving backward bisimula-
tion between two markings M1 and M2 of N , denoted by
R : M1↔ibM2, if ∀a ∈ Act ∀L ∈ RS∗(N)/R:

M1
a−→→Q RS∗(N) ⇔ M2

a−→→Q RS∗(N),

L a−→→Q M1 ⇔ L a−→→Q M2 and [Min]R = {Min}.

Two markings M1 and M2 are interleaving backward bisim-
ulation equivalent, denoted by M1↔ibM2, if ∃R : M1↔ibM2.

Definition 10 Let N and N ′ be two DTSPNs. A rela-
tion R ⊆ (RS∗(N)∪RS∗(N ′))2 is an interleaving backward
bisimulation between N and N ′, denoted by R : N↔ibN

′,
if ∀a ∈ Act ∀L,K ∈ (RS∗(N) ∪RS∗(N ′))/R ∀M1, M2 ∈ L:

M1
a−→→Q RS∗(Γ(M1)) ⇔ M2

a−→→Q RS∗(Γ(M2)),

[Min]R = {Min, M ′
in} and

K a−→→Q· |L∩RS∗(Γ(M1))|
|K∩RS∗(Γ(M1))|

M1 ⇔ K a−→→Q· |L∩RS∗(Γ(M2))|
|K∩RS∗(Γ(M2))|

M2.

Two DTSPNs N and N ′ are interleaving backward bisim-
ulation equivalent, denoted by N↔ibN

′, if ∃R : N↔ibN
′.
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Definition 11 Let N be a DTSPN. An equivalence rela-
tion R ⊆ RS∗(N)2 is a step backward bisimulation between
two markings M1 and M2 of N , denoted by R : M1↔sbM2,
if ∀A ∈M(Act) ∀L ∈ RS∗(N)/R:

M1
A−→→Q RS∗(N) ⇔ M2

A−→→Q RS∗(N),

L A−→→Q M1 ⇔ L A−→→Q M2 and [Min]R = {Min}.

Two markings M1 and M2 are step backward bisimulation
equivalent, denoted by M1↔sbM2, if ∃R : M1↔sbM2.

Definition 12 Let N and N ′ be two DTSPNs. A rela-
tion R ⊆ (RS∗(N) ∪ RS∗(N ′))2 is a step backward bisim-
ulation between N and N ′, denoted by R : N↔sbN

′, if
∀A ∈M(Act) ∀L,K ∈ (RS∗(N) ∪RS∗(N ′))/R ∀M1, M2 ∈ L:

M1
A−→→Q RS∗(Γ(M1)) ⇔ M2

A−→→Q RS∗(Γ(M2)),

[Min]R = {Min, M ′
in} and

K A−→→Q· |L∩RS∗(Γ(M1))|
|K∩RS∗(Γ(M1))|

M1 ⇔ K A−→→Q· |L∩RS∗(Γ(M2))|
|K∩RS∗(Γ(M2))|

M2.

Two DTSPNs N and N ′ are step backward bisimulation
equivalent, denoted by N↔sbN

′, if ∃R : N↔sbN
′.
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Back and forth bisimulation equivalences

Definition 13 Two DTSPNs N and N ′ are interleaving
back and forth bisimulation equivalent, denoted by
N↔ibfN ′, if N↔iN ′ and N↔ibN

′.

Definition 14 Two DTSPNs N and N ′ are step back
and forth bisimulation equivalent, denoted by N↔sbfN ′, if
N↔sN ′ and N↔sbN

′.
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Examples of the equivalences
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Nets related via different equivalences

N1≡sN2≡sN3≡sN4 N1↔sN2↔sN4 N1↔sbN3↔sbN4

N1↔sbfN4 N2↔/ iN3 N2↔/ ibN3
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Comparing the equivalences
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¡

¡
¡¡ª

' $

?

Interrelations of the equivalences

Proposition 1 Let ? ∈ {i, s}. For DTSPNs N and N ′
the following holds:

1. N↔?N ′ ⇒ N≡?N ′;

2. N↔?bN
′ ⇒ N≡?N ′;

3. N↔?bfN ′ ⇒ N↔?N ′ and N↔?bN
′.

Theorem 1 Let↔,↔↔ ∈ {≡,↔} and ?, ?? ∈ {i, s, ib, sb, ibf,
sbf}. For DTSPNs N and N ′ the following holds:

N↔?N
′ ⇒ N↔↔??N

′

iff in the graph in figure above there exists a directed
path from ↔? to ↔↔??.
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Examples of the equivalences



Stationary behavior

The embedded steady state distribution after the obser-
vation of a visible event is the unique solution of the set
linear equation:

ps∗(M) =
∑

M̃∈RS∗(N)

ps∗(M̃) · PS∗[M̃, M ]

subject to
∑

M∈RS∗(N) ps∗(M) = 1.

A step trace starting in marking M ∈ RS∗(N) is defined
as (Σ,P), where Σ = A1 · · ·An ∈ Act∗ and:

P =
∑

{M1,...,Mn|M A1−→→P1M1

A2−→→P2···
An−→→PnMn}

n∏

i=1

Pi.

StepTraces(N, M) be the set of all step traces of starting
in marking M .

Definition 15 A step trace in steady state is a triple
(M,Σ, ps∗(M) · P) s.t M ∈ RS∗(N) and (Σ,P) ∈
StepTraces(N, M).

The set of all step traces in steady state is denoted by
StepTracesSS(N).

Theorem 2 Let N and N ′ be backward or forward bisim-
ulation equivalent DTSPNs, then:

StepTracesSS(N) = StepTracesSS(N ′).

20



b c

a

¹¸

º·

¹¸

º·
x

?

?

¢
¢¢®

A
AAU

'

&

- Ã

!

¾

¸ ¹

N

≡s

b c

a

¹¸

º·

¹¸

º·
x

?

¢
¢¢®

A
AAU

'

&

- Ã

!

¾

¸ ¹

N ′

¹¸

º·?

a

? ?

Two step trace equivalent nets with
StepTracesSS(N) 6= StepTracesSS(N ′)
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The results obtained

• A new class of Stochastic Petri Nets with labeled
transitions and a step semantics for transition firing
(DTSPNs).

• Equivalences for DTSPNs which preserve interesting
aspects of behavior and thus can be used to compare
systems and to compute for a given one a minimal
equivalent representation [Buch95].

• A diagram of interrelations for the equivalences.

• An application of the equivalences for comparing sta-
tionary behavior of DTSPNs.
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Further research

• Other equivalences in interleaving and step seman-
tics:

interleaving branching bisimulation [PRS92] (respect-
ing conflicts with invisible transitions),

back-forth bisimulations [NMV90,Pin93] (moving
backward along history of computation).

• True concurrent equivalences:

partial word and pomset bisimulations [PRS92,Vog92]
(partial order models of computation).
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