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Abstract

This paper presents a class of Stochastic Petri Nets with concurrent transition firings. It is assumed that

transitions occur in steps and that for every step each enabled transition decides probabilistically whether

it wants to participate in the step or not. Among the transitions which want to participate in a step, a

maximal number is chosen to perform the firing step. The observable behavior of a net is described by labels

associated with transitions. For this class of nets the dynamic behavior is defined and equivalence relations

are introduced. The equivalence relations extend the well-known trace and bisimulation equivalences for

systems with step semantics to Stochastic Petri Nets with concurrent transition firing. It is shown that the

equivalence notions form a lattice of interrelations.

Keywords: Stochastic Petri Nets, Step Semantics, Equivalence Relations, Bisimulation.

1 Introduction

Stochastic Petri Nets (SPNs) are an established model type for the quantitative analysis of Discrete Event
Dynamic Systems (DEDSs). SPNs have been proposed about twenty years ago [9, 15] and are mainly considered
on a continuous time scale which usually means that exponential or phase type distributions are associated with
transitions. In this way, the stochastic process underlying an SPN is a Continuous Time Markov Chain (CTMC)
which can be generated and analyzed with well-known methods [20]. One particular characterization of this
class of SPNs is that only single transitions fire, such that the well-known interleaving semantics is the basic
approach for defining the dynamic behavior of SPNs. This interleaving behavior is also used for Generalized
Stochastic Petri Nets (GSPNs) [1, 6] which include transitions with exponential firing delay and that with zero
firing delay. Even for such immediate transitions with instantaneous firing interleaving semantics is commonly
considered. For SPNs and GSPNs, labeling of transitions has been introduced recently [3, 4]. After definition of
transition labeling it is possible to define bisimulation equivalence for SPNs and GSPNs such that equivalent nets
behave identically from a stochastic point of view. Details about the approach which introduces bisimulation
for CTMCs with labeled transitions can be found in [2, 3, 11, 12].

Apart from continuous time distributions also discrete time distributions can be assigned to transitions of
Petri nets. Usually geometric distributions or mixtures of geometric distributions are used. First approaches
have been published about 15 years ago [16], but also more recent extensions of the basic class of nets with
discrete time steps have been proposed [23, 24]. To distinguish continuous and discrete time SPNs, we denote
the former as CTSPNs and the latter as DTSPNs. DTSPNs describe an underlying Discrete Time Markov
Chain (DTMC). The major problem with this model class is that transitions fire concurrently such that steps
instead of interleavings have to be considered. This makes the interpretation and analysis of the model class
more complex. For DTSPNs labeling of transitions and an adequate definition of equivalence has not been
introduced yet.

In this paper, we present an introduction of a new class of DTSPNs with labeled transitions. The dynamic
behavior of this class of nets is characterized by steps instead of single transitions. The underlying stochastic
process is still a DTMC, however, transitions of the DTMC describe sets of transitions that fire concurrently.

∗The paper was prepared during postdoctoral research of the author supported by DFG-stipend from the Postgraduate Program

“Specification of Discrete Processes and Systems of Processes by Operational Models and Logics” at TU Dresden. Current e-mail:

tarasyuk@tcs.inf.tu-dresden.de. In addition, a partial support was obtained from the Russian Foundation for Basic Research,

grant 00-01-00898.
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Thus, commonly used notions defining bisimulation or trace equivalence of probabilistic processes [7, 14] are
not adequate for this type of model.

The outline of the rest of the paper is as follows. In the next Section 2 a new class of DTSPNs and
the underlying stochastic process is introduced. Afterwards some examples are presented. Then, in Section
3, equivalence relations are defined for the presented class of nets, and interrelations between the different
equivalence relations are outlined. Section 4 introduces briefly the long run behavior of DTSPNs and describes
which behavior is preserved by which equivalence relation. In the concluding Section 5 we remind the main
results of the paper and propose some directions of future research.

2 A class of Discrete Time Stochastic Petri Nets

In this section, we introduce basic notions used throughout the paper and present several examples.

2.1 Formal definitions of the model and its behavior

DTSPNs which are the basic net class considered in this paper are defined as follows.

Definition 2.1 A DTSPN is a seven tuple N = (P, T,W,Λ,Ω, L,Min) where:

• P and T are finite sets of places and transitions respectively such that P ∪ T 6= ∅ and P ∩ T = ∅;

• W : (P × T ) ∪ (T × P ) → N is function describing the weights of arcs between places and transitions and
vice versa;

• Λ : T → R+ is the transition weight function;

• Ω : T → (0, 1] is the transition probability function;

• L : T → Actτ is the transition labeling function assigning labels from a finite set of visible actions Act or
an invisible action τ to transitions (i.e., Actτ = Act ∪ {τ});

• Min : P → N is the initial marking.

The initial markingMin is a specific case of a marking which assigns natural numbers to places. The marking
of the net is modified by firing transitions. A transition t ∈ T is enabled at marking M if M(p) ≥ W (p, t) for
all p ∈ P . Let Ena(M) be the set of all transitions that are enabled at marking M . Firings of transitions are
atomic operations, and transitions may fire concurrently. We assume that firings of transitions take place in
steps. A transition t ∈ Ena(M) tries to fire in the next step with probability Ω(t). Let U ⊆ Ena(M) be a set
of transitions that try to fire in the next step. The probability that transitions from the set U try to fire is
given by:

PF [U ] =
∏

t∈U

Ω(t) ·
∏

t∈Ena(M)\U

(1 − Ω(t)). (1)

However, not necessarily the whole batch U can fire concurrently because transitions may be in conflict such
that only a subset of transitions is able to fire. All transitions from a set U can fire if:

∀p ∈ P : M(p) ≥
∑

t∈U

W (p, t). (2)

If not all transitions from U can fire, then maximal subsets are chosen.
A set V ⊆ Ena(M) is a maximal fireable subset at marking M if (2) holds for V and no more transitions

from Ena(M) \ V can be added when (2) has to hold. By MaxFire(M) we denote the set of all maximal
fireable subsets at marking M .

Similarly, a set V ⊆ U is a maximal fireable subset of U at marking M if (2) holds for V and no more
transitions from U \V can be added when (2) has to hold. By MaxFire(U,M) we denote the set of all maximal
fireable subsets of U at marking M .

We extend the weight function to sets of transitions. If V ⊆ T then:

Λ(V ) =
∑

t∈V

Λ(t).
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If transitions from the set U try to fire, but cannot fire concurrently since (2) does not hold, then a maximal
fireable subset of transitions, i.e., one element from MaxFire(U,M), is chosen. Subsets are chosen according
to the normalized weights. I.e., a subset V ∈ MaxFire(U,M) is chosen with probability:

PC[V, U ] = Λ(V )

/
 ∑

W∈MaxFire(U,M)

Λ(W )


 . (3)

For each V ∈ MaxFire(M) let SubEna(V,M) be the set of all subsets of Ena(M) that include V . The
probability of observing V ∈ MaxFire(M) is given by:

PT [V,M ] =
∑

U∈SubEna(V,M)

PF [U ] · PC[V, U ]. (4)

Observe that (3) defines a probability distribution over all sets of transitions from MaxFire(M). Sets of
transitions that do not belong to MaxFire(M) cannot fire concurrently at marking M and thus receive zero
probability.

We have not considered the labeling of transitions yet. However, the idea of labeling is that transitions
receive the same label if they are indistinguishable for an external observer. We assume that the set of labels
Actτ contains a specific label τ that is not visible. Thus, transitions labeled with τ cannot be observed and
called invisible.

We define the visible labeling function V isL on sets of transitions which associates with them multisets of
visible actions. If V ⊆ T then:

V isL(V ) =
∑

(t∈V )∧(L(t) 6=τ)

L(t).

Denote a set of all multisets over a set X by M(X). Let A be a multiset of visible transition labels, i.e.,
A ∈ M(Act). Then

Trans(A) = {V ⊆ T | V isL(V ) = A}

is the set of all subsets of transitions which are labeled with A.
The probability of observing A at marking M is then given by:

PL[A,M ] =
∑

V ∈Trans(A)∩MaxFire(M)

PT [V,M ]. (5)

Firing of sets of transitions yields a successor marking. If V fires in M , then the successor marking M̃ is
defined componentwise as:

M̃(p) = M(p)−
∑

t∈V

W (p, t) +
∑

t∈V

W (t, p).

Let V be a set of transitions which can fire concurrently at marking M resulting to M̃ and P = PT [V,M ].

We use the shorthand notation M
V
−→P M̃ for such a firing step. We shall write M

V
−→ M̃ if M

V
−→P M̃ for

some P > 0. For one-element set of transitions V = {t} we write M
t

−→P M̃ and M
t

−→ M̃ .
By considering only the labels and not the concrete transitions, we obtain steps described by multisets of

transition labels. Thus, M
A

−→P M̃ describes a step starting at marking M , performing transitions labeled
with A and ending at M̃ . The probability of the step P = PS[A,M, M̃ ] is computed as:

PS[A,M, M̃ ] =
∑

{V ∈Trans(A)|M
V

−→PM̃}

P .

We shall write M
A

−→ M̃ if M
A

−→P M̃ for some P > 0. For one-element multiset of actions A = {a} we

write M
a

−→P M̃ and M
a

−→ M̃ .

Definition 2.2 For a DTSPN N we define:

• The reachability set RS(N) as the minimal set of markings M for which the following conditions hold:

– Min ∈ RS(N);
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– if M ∈ RS(N) and M
A

−→P M̃ for P > 0, then M̃ ∈ RS(N).

• The reachability graph RG(N) as a directed labeled graph with a set of nodes RS(N) and an arc labeled

with A, P between nodes M and M̃ whenever M
A

−→P M̃ holds.

• The underlying Discrete Time Markov Chain (DTMC) DT (N) with state space RS(N) and a transition

M −→P M̃ whenever at least one arc between M and M̃ exists in RG(N). In this case, the probability P
is computed as:

P =
∑

A∈M(Act)

PS[A,M, M̃ ].

The previous definition proposes the set of reachable markings, the corresponding reachability graph which
preserves transition labels and probabilities and the underlying Discrete Time Markov Chain. Observe that the
reachability graph may include arcs with non-zero probability which correspond to the empty multiset. In this
case, a marking is modified by firing internal transition labeled with τ . An external observer who can only see
visible transitions labeled with some action from Act cannot notice such a step. At the level of the DTMC,
transition steps can no longer be distinguished, and we observe the stochastic process as usual for discrete time
models like SPNs in discrete time [16, 23, 24].

If we assume that an observer does not know when a step takes place, (s)he cannot see firing of a set of
internal transitions resulting in an empty multiset of transition labels. This behavior can be described by
transforming the reachability graph by skipping unobservable transitions. The approach is similar to building

the observational graph in untimed models [8]. A step M
∅

−→P M̃ with P > 0 takes place when M̃ is reachable
from M by firing a set of internal transitions. To skip steps of internal transitions, we use the following recursive
definition of internal transition probabilities:

PSk[∅,M, M̃ ] =





∑
M∈RS(N) PSk−1[∅,M,M ] · PS[∅,M, M̃ ] if k ≥ 1;

1 if k = 0 and M = M̃ ;
0 otherwise.

PSk[∅,M, M̃ ] describes the probability of reaching M̃ from M by k steps of internal transitions. Furthermore
we define:

PS∗[∅,M, M̃ ] =

∞∑

k=0

PSk[∅,M, M̃ ]

which is the probability of reaching M̃ from M by steps of internal transitions and:

PS∗[A,M, M̃ ] =
∑

M∈RS(N)

PS∗[∅,M,M ] · PS[A,M, M̃ ]

which is the probability of reaching M̃ from M by an arbitrary number of internal steps, followed by an
observable step A.

A trap is a loop of internal transitions starting and ending at some marking M which occurs with probability
1. If RG(N) contains a trap, then the net stucks in a sequence of internal transitions which cannot be left.

PS∗[∅,M, M̃ ] is finite as long as no traps exist which will be assumed in the sequel. If PS∗[∅,M, M̃ ] is finite,

then PS∗[A,M, M̃ ] defines a probability distribution, i.e.:

∑

A∈M(Act)\∅

∑

M̃∈RS∗(N)

PS∗[A,M, M̃ ] = 1.

The result follows from standard results on absorbing Markov chains [13]. Thus, we can define a new

transition system with the transition relation M
A

−→→P M̃ where P = PS∗[A,M, M̃ ] and A 6= ∅.

We shall write M
A

−→→ M̃ if M
A

−→→P M̃ for some P > 0. For one-element multiset of actions A = {a} we

write M
a

−→→P M̃ and M
a

−→→ M̃ .
We denote by RS∗(N) and RG∗(N) the observable reachability set and graph respectively. Note that

RS(N) 6= RS∗(N) whenever markings exist that are entered by invisible steps only (see also the examples
given below). RG∗(N) describes the viewpoint of an person who observes steps only if they include visible
transitions.
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❏

❏
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✓
✓
✓
✓✼{a},

r42
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Figure 1: First example net and the corresponding reachability graphs

Transition probabilities PS∗[·] define a DTMC with state space RS∗(N) and transition probabilities:

PS∗[M, M̃ ] =
∑

A∈M(Act)

PS∗[A,M, M̃ ]

which will be denoted as the embedded DTMC.
Following the terminology of [10], we have introduced a generative model. However, in contrast to other

stochastic models [7, 10, 14] which are based on some form of stochastic automata where only single events
occur, we consider here the concurrent execution of different transitions. This is a very natural view for Petri
nets which allow distributed state descriptions and parallel executions of transitions. Let us also note that we
do not allow selfconcurrency, i.e., concurrent firing of a transition with itself (multisets of transitions).

2.2 Examples of DTSPNs

A first example is shown in Figure 1. It describes simple net with two observable transitions t1 (labeled by a),
t2 (labeled by b) and one τ -labeled transition t3. The reachability graph RG(N) and the observable reachability
graph RG∗(N) are also depicted in the figure. To define probabilities we use the following numbering of
markings: 1. (110), 2. (011), 3. (101), 4. (002). The values qij and rij are probabilities which receive the values
shown below. Weights of transitions are not relevant in this example because the net contains no conflict. For
convenience we use the following notation: Ω(ti) = 1 − Ω(ti) (1 ≤ i ≤ 3). Now we present the probabilities
qij (1 ≤ i, j ≤ 4):

q11 = Ω(t1) · Ω(t2) q12 = Ω(t1) · Ω(t2) q13 = Ω(t1) · Ω(t2) q14 = Ω(t1) · Ω(t2) q22 = Ω(t2)

q24 = Ω(t2) q33 = Ω(t1) q34 = Ω(t3) q41 = Ω(t3) q44 = Ω(t3)

For the definition of rkl (1 ≤ k, l ≤ 4) the values qij defined above are used:

r12 = r42 = q12
1−q11

r13 = r43 = q13
1−q11

r14 = r44 = q14
1−q11

r24 = 1 r34 = 1

The second example is shown in Figure 2. It describes a net with two observable transitions t1 (labeled
by a), t2 (labeled by b) and two τ -labeled transitions t3 and t4. To avoid an overloading of notations, if two
arcs with different labels exist in RG(N) or RG∗(N), then only one arc is shown, and both labels are printed
beneath the arc (i.e., {a}, {b} describes that one arc labeled with {a} and one arc {b} are present). To define
probabilities we use the following numbering of markings: 1. (110), 2. (011), 3. (101), 4. (002), 5. (020) and 6.
(200). Observe that RS∗(N) contains only the markings 1–4. Markings 5 and 6 are not reachable, i.e., after an
observable event, the net cannot be in one of these markings. We use the notation qAij for the probability of the
transition in RG(N) between i and j which is labeled with set A (for one-element multisets like A = {a} we shall
omit the curly braces). If only one transition between i and j exists, then label A is suppressed. Similarly rAij is
used for transition probabilities in RG∗(N). For the presentation of the probabilities we use the abbreviations:

Λ34 =
Λ(t3)

Λ(t3) + Λ(t4)
and Λ43 =

Λ(t4)

Λ(t3) + Λ(t4)
.

Thus, we obtain the probabilities qAij (1 ≤ i, j ≤ 6):
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{a},r32
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r33
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Figure 2: Second example net and the corresponding reachability graphs

q11 = Ω(t1) · Ω(t2) q12 = Ω(t1) · Ω(t2)
q13 = Ω(t1) · Ω(t2) q14 = Ω(t1) · Ω(t2)
q21 = Ω(t2) · Ω(t3) · (Λ34 · Ω(t4) + Ω(t4)) q∅22 = Ω(t2) · Ω(t3) · Ω(t4)
qb22 = Ω(t2) · Ω(t4) · (Λ43 · Ω(t3) + Ω(t3)) q23 = Ω(t2) · Ω(t3) · (Λ34 · Ω(t4) + Ω(t4))
q24 = Ω(t2) · Ω(t3) · Ω(t4) q25 = Ω(t2) · Ω(t4) · (Λ43 · Ω(t3) + Ω(t3))
q31 = Ω(t1) · Ω(t4) · (Λ43 · Ω(t3) + Ω(t3)) q32 = Ω(t1) · Ω(t4) · (Λ43 · Ω(t3) + Ω(t3))

q∅33 = Ω(t1) · Ω(t3) · Ω(t4) qa33 = Ω(t1) · Ω(t3) · (Λ34 · Ω(t4) + Ω(t4))
q34 = Ω(t1) · Ω(t3) · Ω(t4) q36 = Ω(t1) · Ω(t3) · (Λ34 · Ω(t4) + Ω(t4))
q41 = Ω(t3) · Ω(t4) q42 = Ω(t3) · Ω(t4)
q43 = Ω(t3) · Ω(t4) q42 = Ω(t3) · Ω(t4)
q52 = Ω(t2) q55 = Ω(t2)
q63 = Ω(t1) q66 = Ω(t1)

For the definition of probabilities rAkl (1 ≤ k, l ≤ 4), we use the probabilities qAij :

r12 = q12/(1− q11) r13 = q13/(1− q11) r14 = q14/(1− q11)

ra22 = q21 · r12/(1− q∅22) rb22 = (qb22 + q25)/(1− q∅22) r23 = (q23 + q21 · r13)/(1− q∅22)

rb24 = q24/(1− q∅22) r
{a,b}
24 = q21 · r14/(1− q∅22) r32 = (q32 + q31 · r12)/(1− q∅33)

ra33 = (qa33 + q36)/(1− q∅33) rb33 = q31 · r13/(1− q∅33) ra34 = q34/(1− q∅33)

r
{a,b}
34 = q31 · r14/(1− q∅33) ra42 = (q41 · r12 + q43 · r32)/(1− q44) rb42 = q42 · rb22/(1− q44)
ra43 = q43 · ra33/(1− q44) rb43 = (q41 · r13 + q42 · r23)/(1− q44) ra44 = q43 · ra34/(1− q44)

rb44 = q42 · rb24/(1− q44) r
{a,b}
44 = q41 · r

{a,b}
14 /(1− q44)

3 Equivalence Relations for DTSPNs

Different equivalences have been proposed in the context of Petri nets [19, 21]. Furthermore relations have been
defined for probabilistic systems [7, 14]. However, in the probabilistic case usually some sort of probabilistic
interleaving is assumed such that only single transitions occur and not sets of transitions. A widely used class
of equivalence relations which have been defined in different settings are trace and bisimulation equivalences.
Consequently, we propose the corresponding notions for DTSPNs.

3.1 Trace equivalences

Trace equivalences are the simplest ones. In trace semantics, a behavior of a system is associated with the set
of all possible sequences of activities, i.e., protocols of work or computations. Thus, the points of choice of an
external observer between several extensions of a particular computation are not taken into account.

Let us introduce formal definitions of the trace relations. These notions resemble that of trace relations for
standard Petri nets from [21], but additionally have to take into account probabilities of occurrences of sequences
of (multisets of) actions. For this reason we have to collect probabilities of happening (multisets of) actions
along all possible paths which correspond to our sequence in the observable reachability graphs RG∗(N) and
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RG∗(N ′) of two compared nets N and N ′. Since we have already abstracted from particular transitions in such
graphs, the paths differ only by markings belonging to them. Thus, we should calculate a sum of probabilities
for all paths according our sequence and differentiating at least by one marking.

Definition 3.1 An interleaving trace of a DTSPN N is a pair (σ,P), where σ = a1 · · ·an ∈ Act∗ and:

P =
∑

{M1,...,Mn|Min

a1
−→→P1M1

a2
−→→P2 ···

an
−→→PnMn}

n∏

i=1

Pi.

We denote a set of all interleaving traces of a DTSPN N by IntT races(N). Two DTSPNs N and N ′ are
interleaving trace equivalent, denoted by N ≡i N

′, if:

IntT races(N) = IntT races(N ′).

Definition 3.2 A step trace of a DTSPN N is a pair (Σ,P), where Σ = A1 · · ·An ∈ M(Act)∗ and:

P =
∑

{M1,...,Mn|Min

A1
−→→P1M1

A2
−→→P2 ···

An
−→→PnMn}

n∏

i=1

Pi.

We denote a set of all step traces of a DTSPN N by StepT races(N). Two DTSPNs N and N ′ are step
trace equivalent, denoted by N ≡s N

′, if:

StepT races(N) = StepT races(N ′).

3.2 Bisimulation equivalences

Bisimulation equivalences completely respect points of choice of an external observer in the behavior of a
modeled system, unlike trace ones.

To define probabilistic bisimulation equivalences, we have to consider a bisimulation as an equivalence relation
which partitions states of the union of the observable reachability graphs RG∗(N) and RG∗(N ′) of two compared
nets N and N ′. For nets N and N ′ to be bisimulation equivalent, their initial markings Min and M ′

in should be
related by the bisimulation having the following transfer property: two markings are related if at each of them
the same (multisets of) actions can occur, and the resulting markings belong to the same equivalence class. In
addition, sums of probabilities for all such occurrences should be the same for both compared markings. Thus,
for our definitions, we follow the approach of [14]. Hence, the difference of bisimulation from trace equivalences
is that we do not consider all possible occurrences of (multisets of) actions from the initial markings, but only
such that lead (stepwise) to markings belonging to the same equivalence class.

First we introduce several helpful notations. Let for a DTSPN N L ⊆ RS∗(N). For some M ∈ RS∗(N) and

A ∈ M(Act) we write M
A

−→→Q L if:

∑

{M̃∈L|M
A

−→→PM̃}

P = Q.

We shall write M
A

−→→ L if M
A

−→→Q L for some Q > 0. For one-element multiset of actions A = {a} we

write M
a

−→→Q L and M
a

−→→ L.
Let X be some set. The number of elements in X is denoted as |X |. We denote the cartesian product of X

with itself X ×X by X2. Let E ⊆ X2 be an equivalence relation on X . Then an equivalence class (w.r.t. E)
of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence E partitions X by the set of
equivalence classes X/E = {[x]E | x ∈ X}.

Definition 3.3 Let N be a DTSPN. An equivalence relation R ⊆ RS∗(N)2 is an interleaving bisimulation
between two markings M1 and M2 of N (i.e., (M1,M2) ∈ R), denoted by R : M1↔iM2, if ∀a ∈ Act ∀L ∈
RS∗(N)/R:

M1
a

−→→Q L ⇔ M2
a

−→→Q L.

Two markings M1 and M2 are interleaving bisimulation equivalent, denoted by M1↔iM2, if ∃R : M1↔iM2.

To introduce a bisimulation between two DTSPNs N and N ′ we should consider a “composite” set or
reachable states, i.e., RS∗(N) ∪RS∗(N ′).
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Definition 3.4 Let N and N ′ be two DTSPNs. A relation R ⊆ (RS∗(N) ∪ RS∗(N ′))2 is an interleaving
bisimulation between N and N ′, denoted by R : N↔iN

′, if R : Min↔iM
′
in.

Two DTSPNs N and N ′ are interleaving bisimulation equivalent, denoted by N↔iN
′, if ∃R : N↔iN

′.

Definition 3.5 Let N be a DTSPN. An equivalence relation R ⊆ RS∗(N)2 is a step bisimulation between two
markings M1 and M2 of N , denoted by R : M1↔sM2, if ∀A ∈ M(Act) ∀L ∈ RS∗(N)/R:

M1
A

−→→Q L ⇔ M2
A

−→→Q L.

Two markings M1 and M2 are step bisimulation equivalent, denoted by M1↔sM2, if ∃R : M1↔sM2.

Definition 3.6 Let N and N ′ be two DTSPNs. A relation R ⊆ (RS∗(N) ∪ RS∗(N ′))2 is a step bisimulation
between N and N ′, denoted by R : N↔sN

′, if R : Min↔sM
′
in.

Two DTSPNs N and N ′ are step bisimulation equivalent, denoted by N↔sN
′, if ∃R : N↔sN

′.

It is straightforward to show that the union of two (interleaving or step) bisimulations is also an (interleaving
or step) bisimulation such that the largest bisimulation relation exists uniquely up to the ordering of equivalence
classes. Consequently, for a given DTSPN equivalent nets with a minimal state space exist.

3.3 Backward bisimulation equivalences

For untimed systems apart from bisimulation in forward direction, also bisimulation in backward direction has
been defined [17, 18]. However, the definition introduced in [17] is not a straightforward extension of forward
bisimulation which would simply mean to define a backward bisimulation as a bisimulation on the transition
graph after reversing the direction of arcs. The authors in [17] argue why such a definition is not useful in
their context of untimed systems and define backward bisimulation based on paths preserving the history that
brought the system to a state. This definition cannot be transferred to our viewpoint of stochastic systems.
Instead we define here backward bisimulation by extending forward bisimulation using two additional conditions
on the initial marking and on outgoing transition probabilities. The latter implies that we define some form of
back and forth bisimulation. However, we use the notation backward bisimulation for the resulting equivalence
which has shown to be useful for stochastic automata networks [5] and can be transferred naturally to DTSPNs.

Like bisimulation, which will from now on also be denoted as forward bisimulation, backward bisimulation

is defined using equivalence relations. For L ⊆ RS∗(N), M ∈ RS∗(N) and A ∈ M(Act) we define L
A

−→→Q M
as follows:

∑

{M̃∈L|M̃
A

−→→PM}

P = Q.

We shall write L
A

−→→ M if L
A

−→→Q M for some Q > 0. For one-element multiset of actions A = {a} we

write L
a

−→→Q M and L
a

−→→ M .

Definition 3.7 Let N be a DTSPN. An equivalence relation R ⊆ RS∗(N)2 is an interleaving backward bisim-
ulation between two markings M1 and M2 of N , denoted by R : M1↔ibM2, if ∀a ∈ Act ∀L ∈ RS∗(N)/R:

M1
a

−→→Q RS∗(N) ⇔ M2
a

−→→Q RS∗(N), L
a

−→→Q M1 ⇔ L
a

−→→Q M2 and [Min]R = {Min}.

Two markings M1 and M2 are interleaving backward bisimulation equivalent, denoted by M1↔ibM2, if
∃R : M1↔ibM2.

Observe that backward bisimulation has a part looking forward in the future due to identical probability
sums of leaving a marking via a-labeled transitions and a part looking backwards due to identical probabilities
of incoming transitions from each other equivalence class. The definition of backward bisimulation for two nets
looks a little bit more complicated than the corresponding definition for forward bisimulation because we cannot
assume that incoming transition probabilities are the same for equivalent markings from different nets. Instead
it has to be assured that the probability flow from one equivalence class to another is the same in both nets
and for each net separately the flow into each marking of an equivalence class has to be the same. To simplify
the mentioned definitions we propose the following indicator function Γ which recovers a DTSPN by a marking
belonging to it. Let N be a DTSPN and M ∈ RS∗(N), then Γ(M) = N . Thus, this is just a convenient
notation allowing one to avoid a treatment of different cases when markings of two nets are considered together.
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Definition 3.8 Let N and N ′ be two DTSPNs. A relation R ⊆ (RS∗(N) ∪ RS∗(N ′))2 is an interleav-
ing backward bisimulation between N and N ′, denoted by R : N↔ibN

′, if ∀a ∈ Act ∀L,K ∈ (RS∗(N) ∪
RS∗(N ′))/R ∀M1,M2 ∈ L:

M1
a

−→→Q RS∗(Γ(M1)) ⇔ M2
a

−→→Q RS∗(Γ(M2)), [Min]R = {Min,M
′
in} and

K
a

−→→
Q·

|L∩RS∗(Γ(M1))|

|K∩RS∗(Γ(M1))|

M1 ⇔ K
a

−→→
Q·

|L∩RS∗(Γ(M2))|

|K∩RS∗(Γ(M2))|

M2.

Two DTSPNs N and N ′ are interleaving backward bisimulation equivalent, denoted by N↔ibN
′, if ∃R :

N↔ibN
′.

For markings M1 and M2 belonging to the same net, the conditions on incoming probabilities reduce to the
requirement of identical incoming probabilities.

Definition 3.9 Let N be a DTSPN. An equivalence relation R ⊆ RS∗(N)2 is a step backward bisimulation
between two markings M1 and M2 of N , denoted by R : M1↔sbM2, if ∀A ∈ M(Act) ∀L ∈ RS∗(N)/R:

M1
A

−→→Q RS∗(N) ⇔ M2
A

−→→Q RS∗(N), L
A

−→→Q M1 ⇔ L
A

−→→Q M2 and [Min]R = {Min}.

Two markings M1 and M2 are step backward bisimulation equivalent, denoted by M1↔sbM2, if ∃R :
M1↔sbM2.

Definition 3.10 Let N and N ′ be two DTSPNs. A relation R ⊆ (RS∗(N) ∪ RS∗(N ′))2 is a step back-
ward bisimulation between N and N ′, denoted by R : N↔sbN

′, if ∀A ∈ M(Act) ∀L,K ∈ (RS∗(N) ∪
RS∗(N ′))/R ∀M1,M2 ∈ L:

M1
A

−→→Q RS∗(Γ(M1)) ⇔ M2
A

−→→Q RS∗(Γ(M2)), [Min]R = {Min,M
′
in} and

K
A

−→→
Q·

|L∩RS∗(Γ(M1))|

|K∩RS∗(Γ(M1))|

M1 ⇔ K
A

−→→
Q·

|L∩RS∗(Γ(M2))|

|K∩RS∗(Γ(M2))|

M2.

Two DTSPNs N and N ′ are step backward bisimulation equivalent, denoted by N↔sbN
′, if ∃R : N↔sbN

′.

As before the union of backward bisimulations is a backward bisimulation.

3.4 Back and forth bisimulation equivalences

A natural way of defining a new equivalence is to combine backward and forward bisimulation. We define
here only back and forth bisimulation equivalences for two nets, the remaining definitions can be transferred
similarly.

First, we define an interleaving relation.

Definition 3.11 Two DTSPNs N and N ′ are interleaving back and forth bisimulation equivalent, denoted by
N↔ibfN

′, if N↔iN
′ and N↔ibN

′.

A definition of a step equivalence is introduced similarly.

Definition 3.12 Two DTSPNs N and N ′ are step back and forth bisimulation equivalent, denoted by
N↔sbfN

′, if N↔sN
′ and N↔sbN

′.

3.5 Examples of the equivalences

Let us present some examples of equivalence relations.
As we have seen, one can consider bisimulation between a net and itself, i.e., a bisimulation between markings

of the net and bisimulation between different nets. Let us first consider equivalence of markings of a single net
for the net shown in Figure 1. Markings (110) and (002) of N are forward bisimilar, if r12 = r42, r13 = r43
and r44 = r14 which holds by definition of the transition probabilities. If we assume that a and b are identical
symbols, then (011) and (101) are forward bisimulation equivalent independently of Λ(t1) and Λ(t2) as long
as both values are non-zero which has been assumed when RS∗(N) has been generated. Observe that the
bisimulation is not a backward bisimulation.
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Figure 3: Nets related via different equivalences

For bisimulation between different nets we consider the example shown in Figure 3. We assume that con-
flicting transitions have the same weights and firing probabilities. All nets have a very simple structure without
concurrently enabled transitions such that interleaving behavior is identical to the step one.

The following equivalence relations exist between the nets:

N1 ≡s N2 ≡s N3 ≡s N4 N1↔sN2↔sN4 N1↔sbN3↔sbN4 N1↔sbfN4

Observe that there is no bisimulation relation between N2 and N3, i.e., N2↔/ iN3 and N2↔/ ibN3.

3.6 Interrelations of the equivalences

In this section, we compare the introduced equivalences and obtain the lattice of their interrelations.

Proposition 3.1 Let ⋆ ∈ {i, s}. For DTSPNs N and N ′ the following holds:

N↔⋆N
′ ⇒ N ≡⋆ N ′.

Proof. See Appendix A. ⊓⊔

In a similar way we show that backward bisimulation implies trace equivalence.

Proposition 3.2 Let ⋆ ∈ {i, s}. For DTSPNs N and N ′ the following holds:

N↔⋆bN
′ ⇒ N ≡⋆ N ′.

Proof. See Appendix B. ⊓⊔

The following proposition concerns relations of back and forth bisimulations with other ones.
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Figure 4: Interrelations of the equivalences

Proposition 3.3 Let ⋆ ∈ {i, s}. For DTSPNs N and N ′ the following holds:

N↔⋆bfN
′ ⇒ N↔⋆N

′ and N↔⋆bN
′.

Proof. The result follows from the definitions of back and forth bisimulations. ⊓⊔

Thus, we obtained several important results for our equivalences stating that bisimulation (forward or
backward) relations imply trace ones. This helps us to establish interrelations of the introduced equivalence
notions.

Theorem 3.1 Let ↔,↔↔∈ {≡,↔} and ⋆, ⋆⋆ ∈ {i, s, ib, sb, ibf, sbf}. For DTSPNs N and N ′ the following
holds:

N ↔⋆ N ′ ⇒ N ↔↔⋆⋆ N ′

iff in the graph in Figure 4 there exists a directed path from ↔⋆ to ↔↔⋆⋆.

Proof. (⇐) Let us check the validity of the implications in the graph in Figure 4.

• The implications ↔s→↔i, ↔∈ {≡,↔}, and ↔sb → ↔ib, ↔sbf → ↔ibf , are valid since actions are
one-element multisets.

• The implications ↔⋆ ⇒≡⋆, ↔⋆b ⇒≡⋆, ⋆ ∈ {i, s}, are valid by Proposition 3.1 and Proposition 3.2
respectively.

• The implications ↔⋆bf ⇒ ↔⋆, ↔⋆bf ⇒ ↔⋆b, ⋆ ∈ {i, s}, are valid by Proposition 3.3.

(⇒) An absence of additional nontrivial arrows in the graph in Figure 4 is proved by the following examples.
As in the previous examples we assume that conflicting transitions have equal weights and probabilities.

• In Figure 5(a), N↔ibfN
′, but N 6≡s N ′, since only in the DTSPN N ′ actions a and b cannot happen

concurrently.

• In Figure 5(b), N ≡s N
′, but N↔/ iN

′ and N↔/ ibN
′, since only in the DTSPN N ′ an action a can happen

so that no action b can happen afterwards.

• In Figure 3, N1↔sN2, but N1↔/ ibN2, since only in N2 there is a place with two input transitions labeled
by b. Hence, the probability for a token to go to this place is always more than for that with only one
input b-labeled transition.

• In Figure 3, N1↔sbN3, but N1↔/ iN3, since only in the DTSPN N1 an action a can happen so that a
sequence of actions bc cannot happen just after it. ⊓⊔
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Figure 5: Examples of the equivalences

4 Stationary Behavior of DTSPNs

A natural observation of the behavior of a dynamic system is the observation of traces starting from the initial
marking of the DTSPN. Depending on the chosen viewpoint steps or only single transitions are observed. Traces
have been used to define trace equivalence. Consequently, trace equivalent DTSPNs have the same traces, and
since trace equivalence is the weakest relation we have defined, all other equivalences also preserve traces.

An alternative and commonly used viewpoint in stochastic systems is to consider the DTSPN in its steady
state. For this behavior we consider only nets with an infinite behavior and assume that the embedded DTMC is
irreducible or contains at least only one irreducible subset of markings. The embedded steady state distribution
after the observation of a visible event is the unique solution of the set linear equation:

ps∗(M) =
∑

M̃∈RS∗(N)

ps∗(M̃) · PS∗[M̃,M ]

subject to
∑

M∈RS∗(N) ps
∗(M) = 1.

We consider in the following only step behavior but the results can be easily formulated for interleaving
behavior as well. First, extend the notion of step traces by defining step traces starting at some marking
M ∈ RS∗(N) as (M,Σ,P), where Σ = A1 · · ·An ∈ Act∗ and:

P =
∑

{M1,...,Mn|M
A1
−→→P1M1

A2
−→→P2 ···

An
−→→PnMn}

n∏

i=1

Pi.

Thus, in the definition of StepT races(N) we replace Min by M . Let StepT races(N,M) be the set of all
step traces of DTSPN N starting at marking M . The set of all step traces in steady state is defined as:

StStepT races(N) = {(M,Σ, ps(M) · P) | M ∈ RS∗(N) ∧ (Σ,P) ∈ StepT races(N,M)}.

Now we show that forward or backward bisimulation equivalent nets have the same steady state traces,
whereas trace equivalence does not preserve steady state traces.

Proposition 4.1 1. Let N and N ′ be two forward bisimulation equivalent DTSPNs, then ∀L ∈ (RS∗(N) ∪
RS∗(N ′))/R:

∑

M∈L∩RS∗(N)

ps∗(M) =
∑

M ′∈L∩RS∗(N ′)

ps∗(M ′).

2. Let N and N ′ be two backward bisimulation equivalent DTSPNs, then ∀L ∈ (RS∗(N) ∪RS∗(N ′))/R:

∑

M∈L∩RS∗(N)

ps∗(M) =
∑

M ′∈L∩RS∗(N ′)

ps∗(M ′);

∀M, M̃ ∈ L ∩RS∗(N), ∀M ′, M̃ ′ ∈ L ∩RS∗(N ′) :

ps∗(M) = ps∗(M̃) and ps∗(M ′) = ps∗(M̃ ′).
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Figure 6: Two step trace equivalent nets with StStepT races(N) 6= StStepT races(N ′)

Proof. The proof is an extension of the corresponding results for the continuous time case [2, 3]. ⊓⊔

Theorem 4.1 Let N and N ′ be backward or forward bisimulation equivalent DTSPNs, then:

StStepT races(N) = StStepT races(N ′).

Proof. See Appendix C. ⊓⊔

The implication stated in the previous theorem cannot be reversed, since for step trace equivalent nets N
and N ′, we may have StStepT race(N) 6= StStepT race(N ′). This can be seen by the two nets shown in Figure
6. For net N , the probability of being in one of both possible markings is 1/2. Consequently, a trace starts
with probability 1/2 with an a. For net N ′ the probability of being in one of the three possible markings after
observation of a transition equals 1/3. Consequently, the probability of observing a trace starting with a equals
1/3.

One should note that the stationary distribution is defined here according to the embedded distribution
after observing a step of visible transitions. This distribution differs from the stationary distribution of the net
at an arbitrary time. The latter behavior has to be analyzed on RS(N) instead of RS∗(N) and is not preserved
by any of the proposed equivalences even if we restrict the observation to visible transitions.

5 Conclusion

In this paper, we introduced a new class of Stochastic Petri Nets with labeled transitions and a step semantics
for transition firing. For this class of nets we proposed several equivalence relations and showed that these
equivalences preserve interesting aspects of system behavior. Equivalence relations can be used to compare
different systems and to compute for a given system a minimal equivalent representation [3]. The latter aspect
is especially interesting for bisimulation equivalences, for which efficient algorithms exist to compute the largest
bisimulation for a given net. By representation each equivalence class of this relation by a single marking we
obtain a minimal representation at the state transition level. As a result of comparing the equivalences in
accordance to differentiating power, we obtained a lattice of implications. Thus, we provided the new variant of
Stochastic Petri Nets with step semantics, and this naturally corresponds to non-interleaving character of the
model. This can be considered as the main contribution of the paper.

Possible extension of this work can be an attempt to define other bisimulation equivalences in interleaving
and step semantics. For example, branching bisimulation [19] can be considered as well as variants of back-forth
equivalences defined in [17, 18]. For these equivalences we cannot use observable state graphs, since we may need
lower level information. For example, to define branching relations, we should respect occurrences of invisible
transitions and states where they conflict with other ones. Thus, we cannot just abstract of invisible transitions
from very beginning. To propose notions of back-forth bisimulations, we need an information about the path of
events which came to the present state. Hence, it is not enough even to consider paths of transitions which led
from the initial marking to the present one, since the same transitions can happen concurrently or sequentially
resulting the same marking (in non-safe nets). In such a case, we should have something like processes for
stochastic nets and collect events for out of paths from such processes. We may also define true concurrent
equivalences for stochastic nets such that partial word or pomset ones [19, 22]. Step semantics proposed in the
present paper can be the first stage to true concurrent semantics for stochastic nets. These directions are left
for future research.
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A Proof of Proposition 3.1

It is enough to prove for ⋆ = s, since ⋆ = i is a particular case of the previous one with one-element multisets
of actions.

Let R : N↔sN
′ and (M1,M2) ∈ R. By the definition of step bisimulation we have ∀A ∈ M(Act) ∀L̃ ∈

(RS∗(N) ∪RS∗(N ′))/R:

M1
A

−→→Q L̃ ⇔ M2
A

−→→Q L̃.

Let L = [M1]R = [M2]R. Then we can rewrite the above identity as:

L
A

−→→Q L̃,

since for all markings from equivalence class L their probabilities of moving into L̃ as a result of occurrence
of multiset of actions A coincide (they are equal to Q).

Let (A1 · · ·An,P) ∈ StepT races(N). Since R : N↔sN
′ and taking into account the previous identity, we

have:

Min
A1−→→Q1 L1

A2−→→Q2 · · ·
An−→→Qn

Ln ⇔ M ′
in

A1−→→Q1 L1
A2−→→Q2 · · ·

An−→→Qn
Ln.

Let us also note that starting from markings of N (N ′) to some set of markings L ⊆ (RS∗(N) ∪RS∗(N ′))
we can reach only markings of the same net, since observable state graphs of two nets do not communicate.

Now we intend to show that the sum of probabilities of all paths going through markings from L1, . . . ,Ln co-
incides with the product of Q1, . . . , Qn, which is essentially the probability of the path going through L1, . . . ,Ln

in RG∗(N)/R.

Lemma A.1 For DTSPN N and all n (1 ≤ n ≤ |RG∗(N)/R|) the following holds:

∑

{M1∈L1,...,Mn∈Ln|Min

A1
−→→P1M1

A2
−→→P2 ···

An
−→→PnMn}

n∏

i=1

Pi =

n∏

i=1

Qi.

Proof. (of lemma) We shall prove by induction on n.

• n = 1:

We have to prove that:

∑

{M1∈L1|Min

A1
−→→P1M1}

P1 = Q1.

This follows from the definition of transition relation between markings and sets of markings.

• n → (n+ 1):

By induction hypothesis, we have the following equality:

∑

{M1∈L1,...,Mn∈Ln|Min

A1
−→→P1M1

A2
−→→P2 ···

An
−→→PnMn}

n∏

i=1

Pi =
n∏

i=1

Qi.
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In addition, we have:

∑

{Mn+1∈Ln+1|Mn

An+1
−→→ Pn+1

Mn+1}

Pn+1 = Qn+1,

again by the definition of transition relation between markings and sets of markings. Let us note that the
sum above does not depend on particular Mn ∈ Ln, i.e., it is the same for all paths of SG∗(N) starting
at Min and going through L1, . . . ,Ln.

As a result of multiplying left and right parts of the two equalities above, we obtain:

∑

{M1∈L1,...,Mn∈Ln|Min

A1
−→→P1M1

A2
−→→P2 ···

An
−→→PnMn}




∑

{Mn+1∈Ln+1|Mn

An+1
−→→ Pn+1

M1}

Pn+1


 ·

n∏

i=1

Pi =

(
n∏

i=1

Qi

)
· Qn+1.

By distributivity law and with the use of the above note on independence of the sum of current probabilities
on concrete marking Mn, we conclude:

∑

{M1∈L1,...,Mn+1∈Ln+1|Min

A1
−→→P1M1

A2
−→→P2 ···

An+1
−→→ Pn+1

Mn+1}

n+1∏

i=1

Pi =

n+1∏

i=1

Qi.

This ends a proof of the lemma. ⊓⊔

Let us note that the result of this lemma can also be applied to N ′.
Now we have only to note that summation by all equivalence classes is the same as summation by all

markings, i.e.:

∑

{M1,...,Mn|Min

A1
−→→P1M1

A2
−→→P2 ···

An
−→→PnMn}

n∏

i=1

Pi =
∑

{L1,...,Ln|Min

A1
−→→Q1L1

A2
−→→Q2 ···

An
−→→QnLn}

n∏

i=1

Qi =

∑

{L1,...,Ln|M ′
in

A1
−→→Q1L1

A2
−→→Q2 ···

An
−→→QnLn}

n∏

i=1

Qi =
∑

{M ′
1,...,M

′
n|M

′
in

A1
−→→P′

1
M ′

1

A2
−→→P′

2
···

An
−→→P′

n
M ′

n}

n∏

i=1

P ′
i.

Hence, (A1 · · ·An,P) ∈ StepT races(N ′), and we obtain StepT races(N) ⊆ StepT races(N ′). The reverse
inclusion is proved by symmetry. ⊓⊔

B Proof of Proposition 3.2

As before it is enough to prove that StepT races(N) ⊆ StepT races(N ′).
Let R : N↔sbN

′. We prove the inclusion by induction over the length of traces.

• n = 1:

Since the initial markings are the only markings in their equivalence class we have ∀A ∈ M(Act) ∀L ∈
RS∗(N)/R:

Min
A

−→→Q L ⇔ M ′
in

A
−→→Q L.

However, Q is in this case exactly the probability of observing A in the first step or the probability of
trace A. Furthermore, let ps∗[A,M ] be the probability of being at marking M after observing A from
Min. Then ∀L ∈ RS∗(N)/R the following relation holds (see [5]):
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ps∗[A,L ∩RS∗(N)] =
∑

M∈L∩RS∗(N)

ps∗[A,M ] =
∑

M ′∈L∩RS∗(N ′)

ps∗[A,M ′] = ps∗[A,L ∩RS∗(N ′)]

In addition, ps∗[A,M1] = ps∗[A,M2] for M1,M2 ∈ L∩RS∗(N) and ps∗[A,M ′
1] = ps∗[A,M ′

2] for M
′
1,M

′
2 ∈

L ∩RS∗(N ′). I.e., the equalities hold for any two markings of the same net such that they are from one
equivalence class.

Consequently, we have ps∗[A,M ] = ps∗[A,L]/|L∩RS∗(N)| for M ∈ RS∗(N) and ps∗[A,M ′] = ps∗[A,L]/
|L ∩RS∗(N ′)| for M ′ ∈ RS∗(N ′).

• n → (n+ 1):

Assume that the above relations are proved for all traces of length n. Let A1 · · ·An be the trace of length
n and let An+1 be the multiset of actions observed in step n+1. The probability of observing An+1 in N
equals:

∑

M∈RS∗(N)

ps∗[A1 · · ·An,M ] ·
∑

M̃∈RS∗(N)

PS∗[An+1,M, M̃ ]

Due to equality of probabilities in an equivalence class this probability can be rewritten as:

∑

L

∑

K

ps∗[A1 · · ·An,L ∩RS∗(N)] · PS∗[An+1,L ∩RS∗(N),K ∩RS∗(N)]

|L ∩RS∗(N)|

where the summation ranges over all L,K ∈ (RS∗(N) ∪RS∗(N ′))/R. By definition this equals:

∑

L

∑

K

ps∗[A1 · · ·An,L ∩RS∗(N ′)] · PS∗[An+1,L ∩RS∗(N ′),K ∩RS∗(N ′)]

|L ∩RS∗(N ′)|

which is the probability of observing An+1 in N ′. The probabilities of being in M ∈ K ∈ RS∗(N)/R after
observing An+1 are computed as:

ps∗[A1 · · ·An,M ] =
∑

L

ps∗[A1 · · ·An,L ∩RS∗(N)]

|L ∩RS∗(N)|
·
PS∗[An+1,L ∩RS∗(N),K ∩RS∗(N)]

|K ∩RS∗(N)|

which is the same for a all M ∈ K ∈ RS∗(N)/R. Since the above relation holds both for N and N ′, it is
easy to show that also

ps∗[A1 · · ·An,L ∩RS∗(N)] = ps∗[A1 · · ·An,L ∩RS∗(N ′)]

holds for all L ∈ (RS∗(N) ∪RS∗(N ′))/R which completes the induction step. ⊓⊔

C Proof of Theorem 4.1

We prove the theorem for backward bisimulation equivalence the proof for forward bisimulation equivalence is
similar.

We prove the theorem by induction over the length n of a trace.

• n = 1:

The following relations hold for the probability of observing A1 in steady state:

∑
L

∑
K

∑
M∈L∩RS∗(N)

ps∗(M)
∑

M̃∈K∩RS∗(N)

PS∗[A1,M, M̃ ] =
∑
L

ps∗(L)
∑
K

PS∗[A1,L,K] =

∑
L

∑
K

∑
M ′∈L∩RS∗(N ′)

ps∗(M ′)
∑

M̃ ′∈K∩RS∗(N ′)

PS∗[A1,M
′, M̃ ′]

where:
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PS∗[A,L,K] =
∑

M∈L∩RS∗(N)

∑

M̃∈K∩RS∗(N)

PS∗[A,M, M̃ ]

=
∑

M ′∈L∩RS∗(N ′)

∑

M̃ ′∈K∩RS∗(N ′)

PS∗[A,M ′, M̃ ′]

• n → (n+ 1):

The proof for n = 1 is based on equal probabilities of the equivalence classes and equal probabilities of
states inside the equivalence classes. Thus, we only have to prove that the identity holds after observing
an arbitrary step. Together with the proof for n = 1 this proves the required identity of traces. Both
equalities hold after observing a step A if they hold before observing a the step since we have:

∑
K

∑
M∈K∩RS∗(N)

ps∗(M)
∑

M̃∈L∩RS∗(N)

PS∗[A,M, M̃ ] =

∑
K
ps∗(K)

∑
L
PS∗[A,L,K] =

∑
K

∑
M ′∈K∩RS∗(N ′)

ps∗(M ′)
∑

M̃ ′∈L∩RS∗(N ′)

PS∗[A,M ′, M̃ ′]

which implies that probabilities of being in equivalence class L are identical for N and N ′.

Let ps∗A(M) be the probability of being in M ∈ L∩RS∗(N) after observing A starting with probabilities
ps∗:

ps∗A(M) =
∑
K

∑

M̃∈K∩RS∗(N)

ps∗(M̃)PS∗[A, M̃,M ]

=
∑
K
ps∗(K) · PS∗[A,K,L]

|L∩RS∗(N)|

=
∑
K

∑

M̃∈K∩RS∗(N)

ps∗(M̃)PS∗[A, M̃,M ] = ps∗A(M)

which shows that ∀M,M ∈ L ∩RS∗(N) : ps∗A(M) = ps∗A(M). By a symmetric argument the equality of
probabilities in an equivalence class for states from RS∗(N ′) can be proved. ⊓⊔
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